WO2018079481A1 - Humidifying device - Google Patents

Humidifying device Download PDF

Info

Publication number
WO2018079481A1
WO2018079481A1 PCT/JP2017/038175 JP2017038175W WO2018079481A1 WO 2018079481 A1 WO2018079481 A1 WO 2018079481A1 JP 2017038175 W JP2017038175 W JP 2017038175W WO 2018079481 A1 WO2018079481 A1 WO 2018079481A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
humidifying
humidification
dimension
Prior art date
Application number
PCT/JP2017/038175
Other languages
French (fr)
Japanese (ja)
Inventor
晶子 白井
康弘 大石
陽介 駒井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018079481A1 publication Critical patent/WO2018079481A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/06Air-humidification, e.g. cooling by humidification by evaporation of water in the air using moving unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • F24F6/10Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present invention relates to a humidifier equipped with a humidification rotor capable of repeatedly performing moisture absorption for adsorbing moisture in the air and moisture release for releasing moisture in the air.
  • a humidifier equipped with a humidification rotor capable of repeating the adsorption and release of water is known as a humidifier used in an air cleaner with a humidification function.
  • a humidifier disclosed in Patent Document 1 Japanese Patent Laid-Open No. 2001-99453 includes a humidification rotor having a moisture absorption region that adsorbs moisture in the air and a moisture release region that releases the adsorbed moisture. .
  • the humidification rotor emits moisture adsorbed in the moisture absorption region from the moisture release region while rotating around the rotation axis, and generates humidified air.
  • the humidification rotor has a disk shape, and is arranged so that the circular main surface is along the vertical direction.
  • Such a vertically placed and disk-shaped humidification rotor is supported by a shaft and has a sliding surface that slides on the outer peripheral surface of the shaft. Moreover, the outer peripheral surface of the humidification rotor is surrounded by a frame member to which a shaft is attached.
  • the conventional frame member has a circular inner peripheral surface that faces the outer peripheral surface of the humidification rotor when viewed along the rotation axis direction of the humidification rotor.
  • the diameter of the hole formed in the humidifying rotor and into which the shaft is fitted is usually longer than the diameter of the shaft.
  • the humidification rotor moves downward in the vertical direction by the gravity applied to itself by the dimension of the gap between the sliding surface of the humidification rotor and the outer peripheral surface of the shaft.
  • the lower end part of a humidification rotor may contact the lower end part of a frame member. If the humidification rotor is locked by this contact and the rotation of the humidification rotor stops, humidification may not be performed properly.
  • An object of the present invention is to provide a humidifier capable of preventing the humidification rotor from being locked.
  • the humidification device includes a humidification rotor, a support portion, and a frame member.
  • the humidification rotor is a disk-shaped member that adsorbs and discharges water while rotating around a rotating shaft extending in the horizontal direction.
  • a support part is a member which supports a humidification rotor rotatably.
  • the frame member is a member having an annular surrounding surface that surrounds the humidification rotor on the radially outer side of the humidification rotor. In this humidifier, the lower enclosure surface dimension is longer than the upper enclosure surface dimension.
  • the lower enclosing surface dimension is a distance between the support center that is the center position of the support portion and the lower end of the enclosing surface that is the lower end of the enclosing surface when viewed along the rotation axis.
  • the upper enclosing surface dimension is a distance between the support center and the upper end of the enclosing surface that is the upper end of the enclosing surface when viewed along the rotation axis.
  • the disc-shaped humidification rotor is arranged so that the circular main surface is along the vertical direction.
  • the humidification rotor is rotatably supported by the support portion.
  • the outer peripheral surface of the humidification rotor is surrounded by the surrounding surface of the frame member. The distance from the support center, which is the center position of the support portion in the vertical direction, to the lower end of the enclosing surface is longer than the distance from the support center to the upper end of the enclosing surface.
  • the humidification rotor when the humidification rotor is attached to the frame member, even if the humidification rotor moves downward in the vertical direction due to gravity applied to the frame member, the humidification rotor does not come into contact with the enclosure surface to the extent that the humidification rotor does not contact the enclosure surface. The distance is secured. Therefore, when the humidifying rotor is rotating, the occurrence of lock, which is a problem that the lower end of the humidifying rotor collides with the surrounding surface and stops the rotation of the humidifying rotor, is prevented. Therefore, the humidifier according to the first aspect can prevent the humidification rotor from being locked.
  • the humidifier according to the second aspect of the present invention is the humidifier according to the first aspect, and the support portion has a shaft.
  • the humidification rotor has a sliding surface that slides with the outer peripheral surface of the shaft.
  • the humidification rotor is rotatably supported by the slide bearing structure.
  • the humidification rotor moves downward in the vertical direction by gravity applied to itself by the dimension of the gap between the sliding surface of the humidification rotor and the outer peripheral surface of the shaft.
  • the slide bearing structure is simple, and the size of the gap between the slide surface of the humidifying rotor and the outer peripheral surface of the shaft can be designed with high accuracy.
  • the enclosing surface of the frame member can be reduced to the limit that can prevent the humidifying rotor from being locked. Therefore, the humidifier according to the second aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
  • the humidifying device is the humidifying device according to the second aspect, wherein the support portion has a shaft that is a tapered protrusion.
  • the humidification rotor has a tapered shaft through-hole through which the shaft passes.
  • the bearing clearance dimension gradually decreases from the root of the shaft toward the tip.
  • the bearing clearance dimension is the difference between the diameter of the sliding surface, which is the inner peripheral surface of the shaft through hole, and the diameter of the outer peripheral surface of the shaft.
  • the bearing clearance dimension which is the clearance between the sliding surface of the humidifying rotor and the outer peripheral surface of the shaft, gradually decreases from the root of the shaft toward the tip. If the bearing clearance dimension on the shaft tip side is larger than the bearing clearance dimension on the root side, the load of the humidifying rotor is applied to the shaft base side, and the mechanical strength of the shaft decreases due to fatigue on the shaft base side. It becomes easy to do.
  • the humidifier according to the third aspect can suppress the life of the member supporting the humidification rotor from being shortened.
  • the humidifying device is the humidifying device according to any one of the first to third aspects, wherein the lower humidifying rotor gap dimension is larger than the upper humidifying rotor gap dimension.
  • the lower humidification rotor clearance dimension is a distance between the lower end of the humidification rotor and the lower end of the surrounding surface.
  • the upper humidification rotor clearance dimension is a distance between the upper end of the humidification rotor and the upper end of the surrounding surface.
  • the lower humidifying rotor gap dimension is larger than the upper humidifying rotor gap dimension.
  • the condition that the lower humidifying rotor clearance dimension is larger than the upper humidifying rotor clearance dimension is satisfied, the lower end of the humidifying rotor is not affected even if the shaft wears down and the vertical position of the humidifying rotor further decreases. The state where it does not hit the lower end of the enclosure surface is easily maintained. Therefore, the humidifier according to the fourth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
  • a humidifying device is the humidifying device according to any one of the first to fourth aspects, wherein the surrounding surface has a high support center when viewed along the rotation axis. The distance from the support center gradually increases from the vertical position toward the height position of the lower end of the enclosing surface.
  • the frame member has a shape in which the diameter on the lower side of the surrounding surface is larger than the diameter on the upper side of the surrounding surface. For example, the distance from the center of the shaft to the enclosing surface gradually increases from the height position of the center of the shaft downward.
  • the gap between the humidification rotor and the surrounding surface can be made as small as possible. Therefore, the humidifier according to the fifth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
  • a humidifying device is the humidifying device according to any one of the first to fifth aspects, wherein the humidifying rotor is arranged around the humidifying rotor when viewed along the rotation axis. It has a plurality of teeth arranged along the direction.
  • the humidifier further includes a drive unit. The drive unit rotates the humidification rotor around the rotation shaft while meshing with the plurality of teeth.
  • the humidifying rotor corresponds to a gear having a plurality of teeth arranged on the outer peripheral surface.
  • a drive unit such as a motor rotates the humidification rotor by rotating another gear that meshes with the teeth of the humidification rotor. That is, it is not necessary to rotate the support portion of the humidification rotor in order to rotate the humidification rotor. Therefore, the humidification rotor can be supported by the slide bearing.
  • the slide bearing has a simple structure, and the dimension of the gap between the sliding surface of the humidifying rotor and the outer peripheral surface of the shaft can be designed with high accuracy. Therefore, the enclosing surface of the frame member can be reduced to the limit that can prevent the humidifying rotor from being locked. Therefore, the humidifier according to the sixth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
  • the humidifier according to the first aspect of the present invention can prevent the humidification rotor from being locked.
  • the humidifier according to the second aspect of the present invention can achieve downsizing by suppressing the size of the frame member of the humidification rotor.
  • the humidifier according to the third aspect of the present invention can suppress the shortening of the life of the member that supports the humidification rotor.
  • the humidifier according to the fourth aspect of the present invention can achieve downsizing by suppressing the size of the frame member of the humidification rotor.
  • the humidifier according to the fifth aspect of the present invention can achieve downsizing by suppressing the dimension of the frame member of the humidification rotor.
  • the humidifying device can achieve downsizing while suppressing the size of the frame member of the humidifying rotor.
  • FIG. 5 is a diagram showing the flow of air passing through a humidification rotor 63.
  • FIG. 7 is a perspective view of an adsorption duct 68, a humidifying duct 73, a humidifying fan 75, and a second humidifying duct 180. 7 is a front view of a rotor frame wall 65.
  • FIG. FIG. 7 is a perspective view of an adsorption duct 68, a humidifying duct 73, a humidifying fan 75, and a second humidifying duct 180. 7 is a front view of a rotor frame wall 65.
  • FIG. 7 is a cross-sectional view of a rotor frame wall 65 taken along line VII-VII in FIG. 6. It is the side view of the bearing member 65c seen from the same direction as FIG. It is sectional drawing of the humidification rotor 63 when the humidification rotor 63 is cut
  • 4 is a cross-sectional view of a shaft 66 passing through a shaft through hole 67.
  • FIG. FIG. 11 is a diagram showing a state after the humidifying rotor 63 has moved downward in the vertical direction by a bearing gap 69 (second bearing gap dimension G2) from the state shown in FIG.
  • FIG. It is a figure which shows the positional relationship of the humidification rotor 63, the shaft 66, and the surrounding surface 65b when it sees along the rotating shaft 63c of the humidification rotor 63.
  • FIG. It is a figure similar to FIG. 12, Comprising: It is a figure in which the lower humidification rotor clearance dimension M1 and the upper humidification rotor clearance dimension M2 are shown.
  • FIG. 1 is a configuration diagram of an air conditioner 10 including a humidifying unit 60 that is an embodiment of a humidifier according to the present invention.
  • the air conditioner 10 is a refrigeration apparatus including a refrigeration cycle that uses a refrigerant circulating in a refrigerant circuit.
  • the air conditioner 10 mainly includes an indoor unit 20 and an outdoor unit 30.
  • the indoor unit 20 and the outdoor unit 30 are connected to each other by the refrigerant communication pipes 14 and 16 and the air supply hose 18.
  • the flow of air passing through the indoor unit 20 and the outdoor unit 30 is indicated by white arrows.
  • the air conditioner 10 has a plurality of operation modes such as a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, and an air supply operation.
  • air is sent from the outdoor unit 30 to the indoor unit 20 through the air supply hose 18 in order to supply air into the room.
  • high humidity air containing a large amount of moisture is sent from the outdoor unit 30 to the indoor unit 20, so that moisture is taken in from the outside air in the outdoor unit 30.
  • the outdoor unit 30 includes a humidification unit 60 having a function of taking moisture from outside air. In FIG. 1, the flow of air passing through the humidification unit 60 is indicated by dotted arrows.
  • the indoor unit 20 mainly includes an indoor heat exchanger 21 and an indoor fan 22.
  • the indoor fan 22 is disposed on the downstream side of the indoor heat exchanger 21, and is driven by an indoor fan motor 22a.
  • the indoor fan 22 is driven, the indoor air sucked from the indoor suction port 23 at the upper part of the indoor unit 20 passes through the indoor heat exchanger 21 and is blown out from the indoor outlet 24 at the lower part of the indoor unit 20.
  • the indoor fan 22 is, for example, a cross flow fan.
  • an indoor air inlet 25 is provided in the upstream space of the indoor heat exchanger 21.
  • One end of the air supply hose 18 is connected to the indoor air supply port 25, and the other end of the air supply hose 18 is connected to the humidification unit 60 of the outdoor unit 30.
  • the high-humidity air sent from the humidification unit 60 is supplied to the upstream space of the indoor heat exchanger 21 through the indoor air supply port 25.
  • the indoor fan 22 is driven in a state where high-humidity air is supplied to the upstream space of the indoor heat exchanger 21, the humidity of the conditioned air blown from the indoor outlet 24 of the indoor unit 20 is increased. be able to.
  • the outdoor unit 30 mainly includes a casing 40, a compressor 31, an outdoor heat exchanger 33, an outdoor fan 39, and a humidification unit 60.
  • a four-way switching valve 32, an electric expansion valve 34, an accumulator 36, a liquid side closing valve 37, and a gas side closing valve 38 are attached to the refrigerant circuit inside the outdoor unit 30.
  • FIG. 2 is a plan view of the outdoor unit 30 with the top plate 48 of the casing 40 removed.
  • FIG. 3 is a front view of the outdoor unit 30 with the protective grill 56 removed from the outdoor unit 30 of FIG. In FIG. 2, the flow of air passing through the outdoor unit 30 is indicated by dotted arrows.
  • the casing 40 mainly includes a left side plate 45, a front plate 46, a right side plate 47, a top plate 48 (see FIG. 3), a bottom plate 49 (see FIG. 3), and a back surface portion 44.
  • the internal space of the casing 40 is partitioned into a blower chamber 41 and a machine chamber 42 by a partition member 43.
  • the blower chamber 41 is a space in which the outdoor heat exchanger 33, the outdoor fan 39, and a part of the humidification unit 60 are arranged.
  • the machine room 42 is a space in which the compressor 31 and a part of the humidification unit 60 are arranged.
  • the partition member 43 is a plate-like member extending substantially in parallel with the right side plate 47 from the top plate 48 side toward the bottom plate 49 side.
  • the partition member 43 extends in an arc shape from the inner side of the front plate 46 toward the end of the outdoor heat exchanger 33 on the right side plate 47 side.
  • the partition member 43 has a function of shielding the air flow so that the air flow does not flow from the blower chamber 41 toward the machine chamber 42.
  • an electrical component unit 50 is installed in the blower chamber 41.
  • the electrical component unit 50 is equipped with a control board on which electronic components for driving the compressor 31 and the outdoor fan 39 are integrated.
  • the front plate 46 is formed with a circular outdoor air outlet 46a.
  • a ring-shaped bell mouth 52 is attached to the outdoor air outlet 46a along the peripheral edge thereof.
  • a protective grill 56 is attached to the front plate 46 of the casing 40.
  • the protective grill 56 covers the outdoor outlet 46a.
  • the protective grill 56 is formed with a plurality of openings for blowing air from the internal space of the casing 40 to the external space.
  • (3-2) Compressor 31 As shown in FIG. 1, the compressor 31 is disposed in the machine room 42. The compressor 31 is fixed to the bottom plate 49. Since the compressor 31 is at a high temperature during operation, the temperature of the machine room 42 is higher than that of the blower room 41.
  • the outdoor heat exchanger 33 is formed in an L shape so as to face the back surface portion 44 and the left side plate 45 of the casing 40.
  • the vertical dimension of the outdoor heat exchanger 33 is substantially equal to the distance between the top plate 48 and the bottom plate 49.
  • Outdoor fan 39 The outdoor fan 39 is disposed on the downstream side of the outdoor heat exchanger 33.
  • the outdoor fan 39 includes an outdoor fan motor 39a and a propeller 39b.
  • the propeller 39b is driven by the outdoor fan motor 39a.
  • a part of the propeller 39b is arranged in a space surrounded by the bell mouth 52.
  • the humidification unit 60 is disposed between the front plate 46 and the back surface portion 44 so as to straddle the blower chamber 41 and the machine chamber 42. Specifically, a part of the humidifying unit 60 is disposed in the blower chamber 41, and the other part is disposed in the machine chamber 42. The humidification unit 60 is disposed above the blower chamber 41 and the machine chamber 42 and has a function as a part of the partition member 43.
  • the humidification unit 60 mainly includes a humidification rotor 63, a humidification heater 71, an adsorption duct 68, a humidification duct 73, a humidification fan 75 (see FIG. 1), and a second humidification duct 180.
  • Humidification rotor 63 is a disk-shaped member.
  • the humidification rotor 63 adsorbs and releases moisture contained in the air while rotating around the rotation axis.
  • the rotating shaft of the humidifying rotor 63 passes through the center of the circular main surface of the humidifying rotor 63 and extends along the horizontal direction. That is, the humidification rotor 63 is arranged so that its main surface is along the vertical direction.
  • the humidification rotor 63 is disposed so as to face the front plate 46. As shown in FIG. 3, a portion of the humidification rotor 63 faces the outdoor suction port 46 b that is an opening formed in the front plate 46.
  • the outdoor suction port 46b has a fan shape with a central angle of about 240 °.
  • the fan-shaped center of the outdoor suction port 46 b is located on the rotation axis of the humidification rotor 63.
  • the humidification rotor 63 is surrounded by the rotor frame wall 65. The rotor frame wall 65 will be described later.
  • FIG. 4 is a diagram showing the flow of air passing through the humidification rotor 63.
  • the flow of air passing through the humidification rotor 63 is indicated by white arrows, and the rotation direction of the humidification rotor 63 is indicated by dotted arrows.
  • the humidification rotor 63 includes a moisture adsorption region 63a and a moisture release region 63b.
  • the moisture adsorption region 63a is a part of the main surface of the humidification rotor 63 and is a region facing the outdoor suction port 46b.
  • the moisture release area 63b is a part of the main surface of the humidification rotor 63 and is not an area facing the outdoor suction port 46b.
  • the moisture adsorption region 63a has a fan shape with a central angle of about 240 °.
  • the moisture release region 63b is adjacent to the moisture adsorption region 63a and has a sector shape with a central angle of about 120 °.
  • the moisture adsorption region 63a is a region where moisture contained in the air is adsorbed.
  • the moisture release region 63b is a region where the adsorbed moisture is released into the air.
  • the moisture adsorption region 63a is disposed closer to the bell mouth 52 than the moisture release region 63b.
  • the humidification rotor 63 When the humidification rotor 63 rotates around the rotation axis, the moisture adsorption region 63a becomes the moisture release region 63b, and the moisture release region 63b becomes the moisture adsorption region 63a. Thereby, the humidification rotor 63 can repeat adsorption
  • the moisture adsorption region 63a and the moisture release region 63b have a honeycomb structure formed by firing of zeolite or the like.
  • Adsorbents such as zeolite adsorb moisture in the air at room temperature and release the adsorbed moisture when exposed to high-temperature air and heated.
  • a plurality of teeth 63t are formed on the outer peripheral surface of the humidification rotor 63 along the circumferential direction.
  • the humidification rotor 63 functions as a gear having a plurality of teeth 63t.
  • the teeth 63t of the humidification rotor 63 mesh with the pinion gear 64a.
  • the pinion gear 64 a is rotated by the power of the rotor driving motor 64.
  • the humidification rotor 63 can rotate around its rotation axis by the rotational movement of the pinion gear 64a.
  • the humidifying heater 71 is disposed between the moisture release region 63b of the humidification rotor 63 and the front plate 46 so as to face the moisture release region 63b. As shown in FIG. 4, the humidifying heater 71 heats the air sent to the moisture releasing region 63 b in order to release moisture from the moisture releasing region 63 b of the humidifying rotor 63. The air heated by the humidifying heater 71 releases moisture from the humidifying rotor 63 when passing through the moisture release region 63b, and becomes high-humidity air.
  • the air heated by the humidifying heater 71 is air that has passed through the moisture release region 63 b of the humidifying rotor 63. This air is outside air taken in from a humidifying opening 40a (see FIG. 1) formed in the casing 40.
  • the region through which the outside air taken in from the humidifying opening 40a passes is more rotated than the region through which the air heated by the humidifying heater 71 passes. It is located downstream in the direction.
  • the outside air taken in from the humidifying opening 40a passes through the moisture releasing region 63b before being heated by the humidifying heater 71, whereby heat is recovered from the moisture releasing region 63b.
  • FIG. 5 is a perspective view of the suction duct 68, the humidification duct 73, the humidification fan 75, and the second humidification duct 180.
  • the adsorption duct 68 is a member for guiding outside air, which is air containing moisture, to the moisture adsorption region 63 a of the humidification rotor 63.
  • the suction duct 68 has an air inlet 681 that opens toward the outdoor suction port 46 b of the front plate 46.
  • the shape of the air inlet 681 is a sector shape with a central angle of about 240 °, like the outdoor suction port 46b.
  • the air inlet 681 is connected to the outdoor suction port 46b.
  • the outside air sucked from the outdoor suction port 46b flows through the adsorption duct 68, reaches the moisture adsorption area 63a of the humidification rotor 63, and passes through the moisture adsorption area 63a. At this time, the moisture contained in the outside air is adsorbed by the moisture adsorption region 63a.
  • the air that has passed through the moisture adsorption region 63a is discharged from the air outlet 683 of the adsorption duct 68 (see FIG. 2).
  • the air outlet 683 is in contact with a space (a space on the upstream side of the bell mouth 52) that becomes negative pressure when the outdoor fan 39 rotates. Therefore, since the atmospheric pressure on the air outlet 683 side becomes lower than the air pressure on the air inlet 681 side due to the rotation of the outdoor fan 39, the outside air is sucked from the air inlet 681.
  • the outdoor suction port 46b is open to the front plate 46 in the same manner as the outdoor outlet 46a.
  • the air that has passed through the outdoor heat exchanger 33 by the outdoor fan 39 is pushed out and blown out of the casing 40 from the outdoor outlet 46 a. Therefore, the air blown out from the outdoor air outlet 46a is not sucked into the outdoor air inlet 46b. Thereby, it is avoided that the low-temperature air that has passed through the outdoor heat exchanger 33 and is blown out from the outdoor outlet 46a during the heating operation is sucked into the air inlet 681 via the outdoor inlet 46b.
  • Humidification duct 73 guides the air that has been heated by the humidification heater 71 and passed through the moisture release region 63 b to the humidification fan 75. The air flow guided to the humidification duct 73 is generated by the humidification fan 75.
  • the air guided to the humidification duct 73 is heated by the humidification heater 71 to become high-temperature air, and further releases moisture from the moisture release region 63b when passing through the moisture release region 63b. As shown in FIG. 4, the air that has passed through the moisture release region 63 b and has become hot and humid flows in the humidifying duct 73 and is guided to the humidifying fan 75.
  • the humidifying fan 75 is disposed in the machine room 42. As shown in FIG. 1, the humidifying fan 75 includes an impeller 75a and a fan motor 75b. The impeller 75a sends the air humidified through the moisture release region 63b of the humidification rotor 63 in a predetermined direction. The fan motor 75b drives the impeller 75a. The humidifying fan 75 is arranged so that the rotation shaft of the impeller 75a is along the horizontal direction. The rotating shaft of the impeller 75a is connected to the rotating shaft of the fan motor 75b.
  • the impeller 75 a is surrounded by a fan casing 81.
  • the outlet of the fan casing 81 is connected to the inlet of the second humidifying duct 180.
  • the fan motor 75 b is covered with a motor cover 82.
  • Second humidification duct 180 is a duct that guides the high-temperature and high-humidity air sent by the humidifying fan 75 to the connection port of the air supply hose 18 (see FIG. 1). Almost all of the second humidifying duct 180 is disposed in the machine room 42. However, a part of the second humidifying duct 180 that is connected to the connection port of the air supply hose 18 is located on the opposite side of the machine room 42 with the right side plate 47 interposed therebetween (see FIG. 2). ).
  • the second humidifying duct 180 has a horizontal duct portion 181 and a vertical duct portion 182.
  • the horizontal duct portion 181 guides high-temperature and high-humidity air in the horizontal direction.
  • the vertical duct part 182 is connected to the horizontal duct part 181 and guides the hot and humid air passing through the horizontal duct part 181 downward.
  • the horizontal duct portion 181 extends from the inside of the machine room 42 toward the right side plate 47.
  • the vertical duct part 182 extends downward from the connection part with the horizontal duct part 181.
  • the end of the vertical duct portion 182 is connected to the connection port of the air supply hose 18.
  • FIG. 6 is a front view of the rotor frame wall 65.
  • FIG. 7 is a cross-sectional view of the rotor frame wall 65 taken along line VII-VII in FIG.
  • the disk-shaped outline of the humidification rotor 63 supported by the rotor frame wall 65 is indicated by a dotted line.
  • the rotating shaft 63c of the humidification rotor 63 is indicated by a chain line.
  • FIG. 6 is a view of the humidifying rotor 63 as viewed along the rotating shaft 63c.
  • the rotor frame wall 65 has an annular portion 65 a surrounding the humidifying rotor 63.
  • the surrounding surface 65 b that is the inner peripheral surface of the annular portion 65 a is a surface that faces the outer peripheral surface of the humidifying rotor 63 on the radially outer side of the humidifying rotor 63.
  • the radial direction of the humidification rotor 63 is the radial direction of the circular main surface of the humidification rotor 63.
  • FIG. 7 is a side view of the bearing member 65c viewed from the same direction as FIG.
  • the bearing member 65 c has a shaft 66.
  • the shaft 66 is a tapered protrusion for rotatably supporting the humidification rotor 63.
  • the bearing member 65 c is located at the center of the annular portion 65 a of the rotor frame wall 65.
  • the shaft 66 has a root portion 66a and a tip portion 66b.
  • the root portion 66a and the tip portion 66b are end portions of the shaft 66, respectively.
  • the outer diameter of the shaft 66 gradually decreases from the root portion 66a toward the tip portion 66b.
  • FIG. 8 shows the outer diameter R1 of the root portion 66a and the outer diameter R2 of the tip portion 66b.
  • the humidification rotor 63 has a shaft through hole 67 through which the shaft 66 passes.
  • the shaft through hole 67 is formed in the central portion of the main surface of the humidification rotor 63.
  • the shaft through hole 67 has a tapered shape.
  • the humidifying rotor 63 is attached to the rotor frame wall 65 by passing the shaft 66 of the bearing member 65c attached to the rotor frame wall 65 through the shaft through hole 67 of the humidifying rotor 63.
  • the center position of the shaft through hole 67 in the vertical direction is the same as the position of the rotating shaft 63 c of the humidifying rotor 63.
  • FIG. 9 is a cross-sectional view of the humidification rotor 63 when the humidification rotor 63 is cut along a plane including the rotation shaft 63c.
  • the shaft through hole 67 of the humidifying rotor 63 has a first opening 67a and a second opening 67b.
  • the 1st opening 67a and the 2nd opening 67b are the edge parts of the shaft through-hole 67 in the direction along the rotating shaft 63c, respectively.
  • the inner diameter of the shaft through hole 67 gradually decreases from the first opening 67a toward the second opening 67b.
  • FIG. 9 shows the inner diameter S1 of the first opening 67a and the inner diameter S2 of the second opening 67b.
  • the inner diameter S1 of the first opening 67a is larger than the outer diameter R1 of the root portion 66a of the shaft 66
  • the inner diameter S2 of the second opening 67b is larger than the outer diameter R2 of the tip portion 66b of the shaft 66.
  • the tip end portion 66b of the shaft 66 is inserted from the first opening 67a side of the shaft through hole 67.
  • the root portion 66 a of the shaft 66 is located on the first opening 67 a side of the shaft through hole 67, and the second opening 67 b of the shaft through hole 67 is formed.
  • the tip portion 66b of the shaft 66 is located on the side.
  • the inner peripheral surface 67 c of the shaft through hole 67 of the humidifying rotor 63 slides on the outer peripheral surface 66 c of the shaft 66. Move. That is, the inner peripheral surface 67c of the shaft through hole 67 corresponds to the sliding surface of the sliding bearing.
  • the outer diameter of the shaft 66 is smaller than the inner diameter of the shaft through hole 67 at an arbitrary position in the direction of the rotating shaft 63 c of the humidifying rotor 63.
  • FIG. 10 is a cross-sectional view of the shaft 66 passing through the shaft through hole 67.
  • FIG. 10 is a diagram showing a state immediately after the shaft 66 is passed through the shaft through hole 67 of the humidification rotor 63 and the humidification rotor 63 is not yet supported by the shaft 66.
  • the vertical center position of the shaft through hole 67 coincides with the vertical center position of the shaft 66.
  • a gap is formed between the inner peripheral surface 67 c of the shaft through hole 67 and the outer peripheral surface 66 c of the shaft 66.
  • this gap is referred to as a bearing gap 69.
  • FIG. 10 is a cross-sectional view of the shaft 66 passing through the shaft through hole 67.
  • FIG. 10 is a diagram showing a state immediately after the shaft 66 is passed through the shaft through hole 67 of the humidification rotor 63 and the humidification rotor 63 is not yet supported by the shaft 66.
  • the first bearing gap dimension G1 which is the dimension of the bearing gap 69 at the root 66a of the shaft 66, is obtained by (S1-R1) / 2, and is the dimension of the bearing gap 69 at the tip 66b of the shaft 66.
  • a certain second bearing gap dimension G2 is obtained by (S2-R2) / 2.
  • the size of the bearing gap 69 gradually decreases from the root 66a of the shaft 66 toward the tip 66b. That is, G1> G2 holds.
  • the first bearing gap dimension G1 is 0.5 mm
  • the second bearing gap dimension G2 is 0.15 mm.
  • FIG. 11 is a diagram showing a state after the humidifying rotor 63 has moved downward in the vertical direction by the amount corresponding to the bearing gap 69 (second bearing gap dimension G2) from the state shown in FIG. In FIG. 11, there is no bearing gap 69 between the upper end of the tip 66 b of the shaft 66 and the inner peripheral surface 67 c of the shaft through hole 67.
  • FIG. 12 is a diagram illustrating a positional relationship among the humidifying rotor 63, the shaft 66, and the surrounding surface 65b when viewed along the rotation shaft 63c of the humidifying rotor 63.
  • FIG. 12 is a view of the shaft 66 viewed from the tip 66b toward the root 66a.
  • FIG. 12 corresponds to the state shown in FIG.
  • FIG. 12 shows the support center 66d, the lower enclosure surface dimension L1, and the upper enclosure surface dimension L2.
  • the support center 66d is the center of the shaft 66 in the vertical direction.
  • the lower enclosure surface dimension L1 is a distance between the support center 66d and the enclosure surface lower end 65b1 which is the lower end of the enclosure surface 65b.
  • the upper enclosure surface dimension L2 is the distance between the support center 66d and the enclosure surface upper end 65b2 that is the upper end of the enclosure surface 65b.
  • the lower enclosure surface dimension L1 is longer than the upper enclosure surface dimension L2. This means that when the surrounding surface 65b is viewed along the rotation axis 63c of the humidification rotor 63, the diameter, which is the distance from the support center 66d to the surrounding surface 65b, is not uniform in the circumferential direction of the surrounding surface 65b. . That is, in FIG. 12, the entire shape of the surrounding surface 65b is not a perfect circle. Specifically, the shape of the surrounding surface 65b is designed so that the diameter of the surrounding surface 65b below the support center 66d is larger than the diameter of the surrounding surface 65b above the support center 66d.
  • the humidifying rotor 63 When the humidifying rotor 63 is attached to the rotor frame wall 65, the humidifying rotor 63 moves downward in the vertical direction by the amount of the bearing gap 69 due to gravity applied to itself. Therefore, as shown in FIG. 12, the rotating shaft 63 c of the humidifying rotor 63 attached to the rotor frame wall 65 is positioned below the support center 66 d of the shaft 66.
  • the lower enclosure surface dimension L1 and the upper enclosure surface dimension L2 are set so that the outer peripheral surface of the humidification rotor 63 attached to the rotor frame wall 65 does not contact the enclosure surface 65b.
  • the lower enclosure surface dimension L1 is set longer than the upper enclosure surface dimension L2 so that the lower end of the humidification rotor 63 does not come into contact with the enclosure surface lower end 65b1.
  • the four-way switching valve 32 connects the discharge side of the compressor 31 and the gas side of the outdoor heat exchanger 33, and the suction side of the compressor 31 and the indoor heat.
  • the gas side of the exchanger 21 is connected.
  • the state of the four-way switching valve 32 during the cooling operation is indicated by a solid line.
  • the liquid side closing valve 37 and the gas side closing valve 38 are open.
  • the opening degree of the electric expansion valve 34 is adjusted so that the degree of superheat of the refrigerant at the refrigerant outlet of the indoor heat exchanger 21 becomes constant at a predetermined target value.
  • the low-pressure gas refrigerant is sucked into the compressor 31 and compressed to become a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the outdoor heat exchanger 33 via the four-way switching valve 32 and condensed by heat exchange with the outdoor air supplied by the outdoor fan 39 to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is reduced in pressure by the electric expansion valve 34 to become a gas-liquid two-phase refrigerant, and then sent to the indoor unit 20 via the liquid-side closing valve 37 and the liquid refrigerant communication pipe 14.
  • the refrigerant in the gas-liquid two-phase state sent to the indoor unit 20 enters the indoor heat exchanger 15, and in the indoor heat exchanger 15, the liquid refrigerant evaporates due to heat exchange with the indoor air to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the outdoor unit 30 via the gas refrigerant communication pipe 16 and the gas-side closing valve 38, and flows into the accumulator 36 via the four-way switching valve 32.
  • the low-pressure gas refrigerant that has flowed into the accumulator 36 is again sucked into the compressor 31.
  • the air conditioner 10 performs a cooling operation in which the outdoor heat exchanger 33 functions as a refrigerant condenser and the indoor heat exchanger 21 functions as a refrigerant evaporator.
  • the four-way switching valve 32 connects the discharge side of the compressor 31 and the gas side of the indoor heat exchanger 21, and the suction side and outdoor heat of the compressor 31.
  • the gas side of the exchanger 33 is connected.
  • the state of the four-way switching valve 32 during the heating operation is indicated by a dotted line.
  • the liquid side closing valve 37 and the gas side closing valve 38 are open.
  • the opening degree of the electric expansion valve 34 is adjusted so that the pressure of the refrigerant flowing into the outdoor heat exchanger 33 is reduced to a pressure at which the liquid refrigerant can be completely evaporated in the outdoor heat exchanger 33.
  • the low-pressure gas refrigerant is sucked into the compressor 31 and compressed to become a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the indoor unit 20 via the four-way switching valve 32, the gas side closing valve 38 and the gas refrigerant communication pipe 16.
  • the high-pressure gas refrigerant sent to the indoor unit 20 is condensed by heat exchange with indoor air in the indoor heat exchanger 21 to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is sent to the outdoor unit 30 via the liquid refrigerant communication pipe 14 and the liquid side shut-off valve 37.
  • the high-pressure liquid refrigerant sent to the outdoor unit 30 is decompressed by the electric expansion valve 34 to become a gas-liquid two-phase refrigerant, and then flows into the outdoor heat exchanger 33.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 33 evaporates as a low-pressure gas refrigerant by heat exchange with the outdoor air supplied by the outdoor fan 39.
  • the low-pressure gas refrigerant flows into the accumulator 36 via the four-way switching valve 32.
  • the low-pressure gas refrigerant that has flowed into the accumulator 36 is again sucked into the compressor 31.
  • the air conditioner 10 performs a heating operation in which the indoor heat exchanger 21 functions as a refrigerant condenser and the outdoor heat exchanger 33 functions as a refrigerant evaporator.
  • the humidification operation of the air conditioner 10 is performed in combination with the heating operation.
  • the air inlet 681 (see FIG. 5) of the adsorption duct 68 of the humidifying unit 60 faces the outdoor suction port 46 b (see FIG. 3) of the front plate 46.
  • the air outlet port 683 (see FIG. 2) opens to the upstream side of the bell mouth 52, which becomes negative pressure when the outdoor fan 39 rotates.
  • the outdoor fan 39 is operated, the air pressure on the air outlet 683 side becomes lower than the air inlet 681 side, and the outside air that has not passed through the outdoor heat exchanger 33 is sucked in from the air inlet 681.
  • Moisture contained in the outside air sucked from the air inlet 681 is adsorbed by the moisture adsorption region 63 a of the humidification rotor 63.
  • the humidification rotor 63 is located between the air inlet 681 and the air outlet 683 and in the vicinity of the air outlet 683. During the humidifying operation, the humidifying rotor 63 is rotated at a predetermined rotational speed around the rotation shaft 63c by the power of the rotor driving motor 64. By the rotation of the humidification rotor 63, the moisture adsorbed in the moisture adsorption region 63a is carried to the moisture release region 63b.
  • the outside air taken in from the humidifying opening 40a is guided to the surroundings of the humidifying heater 71 and heated.
  • the air heated by the humidifying heater 71 passes through the moisture release region 63 b of the humidifying rotor 63.
  • moisture is released from the portion exposed to the heated air in the moisture release region 63b.
  • the high-humidity air containing moisture released from the moisture release region 63 b is guided to the humidification duct 73 and supplied into the second humidification duct 180 by the humidification fan 75.
  • the high-humidity air supplied to the second humidification duct 180 is guided to the indoor unit 20 via the air supply hose 18.
  • the disc-shaped humidification rotor 63 is attached to the rotor frame wall 65 so that the main surface thereof is along the vertical direction.
  • the humidification rotor 63 is rotatably supported by a shaft 66 of a bearing member 65c attached to the rotor frame wall 65.
  • the outer peripheral surface of the humidification rotor 63 is surrounded by the surrounding surface 65 b of the rotor frame wall 65.
  • the distance from the support center 66d of the shaft 66 to the surrounding surface 65b is not constant in the circumferential direction of the surrounding surface 65b.
  • the shape of the surrounding surface 65b is designed so that the lower surrounding surface dimension L1 is longer than the upper surrounding surface dimension L2.
  • the distance that the humidification rotor 63 moves is equal to the second bearing gap dimension G2 shown in FIG. Therefore, if the difference between the lower enclosure surface dimension L1 and the radius of the main surface of the humidification rotor 63 is larger than the second bearing gap dimension G2, when the humidification rotor 63 is attached to the rotor frame wall 65, the humidification rotor 63 It is avoided that the outer peripheral surface collides with the surrounding surface 65b.
  • a phenomenon called a lock that stops the rotation of the humidifying rotor 63 may occur.
  • the humidification unit 60 can prevent the humidification rotor 63 from being locked.
  • the humidification rotor 63 has a shaft through hole 67 through which the shaft 66 is passed. While the humidification rotor 63 is rotating, the inner peripheral surface 67 c of the shaft through hole 67 slides with the outer peripheral surface 66 c of the shaft 66 passing through the shaft through hole 67. That is, the humidification rotor 63 is rotatably supported by a sliding bearing structure in which the inner peripheral surface 67c of the shaft through hole 67 is a sliding surface.
  • the humidification rotor 63 when the humidification rotor 63 is attached to the rotor frame wall 65, the humidification rotor 63 is applied to itself by the size of the bearing gap 69 between the inner peripheral surface 67c of the shaft through hole 67 and the outer peripheral surface 66c of the shaft 66. Moves vertically downward due to gravity.
  • Such a plain bearing has a simple structure, and the size of the bearing gap 69 can be designed with high accuracy. Therefore, the surrounding surface 65b of the rotor frame wall 65 can be reduced to the limit that can prevent the humidifying rotor 63 from being locked. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
  • the dimension of the bearing gap 69 gradually decreases from the root portion 66a of the shaft 66 toward the tip portion 66b. That is, as shown in FIG. 10, the second bearing gap dimension G2 at the tip 66b is smaller than the first bearing gap dimension G1 at the root 66a.
  • the second bearing gap dimension G2 at the distal end portion 66b is larger than the first bearing gap dimension G1 at the root portion 66a
  • the humidifying rotor 63 is attached to the rotor frame wall 65
  • the humidifying rotor 63 is gravity applied to itself. Therefore, the distance of moving downward in the vertical direction is equal to the first bearing gap dimension G1.
  • the humidification unit 60 since the inner peripheral surface 67c of the shaft through-hole 67 of the humidification rotor 63 is in contact with the root portion 66a of the shaft 66, the load of the humidification rotor 63 is applied more heavily to the root portion 66a than to the tip portion 66b. Therefore, the root portion 66a of the shaft 66 is fatigued by the long-term use of the humidifying unit 60, and the mechanical strength of the shaft 66 is likely to be lowered. As a result, the shaft 66 may be broken at the root portion 66a. However, in the humidification unit 60, since the second bearing gap dimension G2 is smaller than the first bearing gap dimension G1, a decrease in the mechanical strength of the shaft 66 is suppressed. Therefore, the humidification unit 60 can suppress the lifetime of the member that supports the humidification rotor 63 from being shortened.
  • the humidification rotor 63 is driven by the rotor drive motor 64.
  • the rotor driving motor 64 rotates the humidification rotor 63 around the rotation shaft 63c by rotating the pinion gear 64a that meshes with the teeth 63t on the outer peripheral surface of the humidification rotor 63. That is, since it is not necessary to rotate the shaft 66 itself that supports the humidification rotor 63, the humidification rotor 63 can be supported by the slide bearing.
  • the plain bearing has a simple structure, and the size of the bearing gap 69 can be designed with high accuracy. Therefore, the surrounding surface 65b of the rotor frame wall 65 can be reduced to the limit that can prevent the humidifying rotor 63 from being locked. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
  • the shape of the surrounding surface 65b of the rotor frame wall 65 is designed so as to satisfy the condition that the lower surrounding surface dimension L1 is longer than the upper surrounding surface dimension L2. Is done.
  • the shape of the surrounding surface 65b of the rotor frame wall 65 may be further designed to satisfy other conditions.
  • FIG. 13 is a view similar to FIG. 12 and shows the lower humidifying rotor gap dimension M1 and the upper humidifying rotor gap dimension M2.
  • the lower humidification rotor clearance dimension M1 is a distance between the vertical lower end 63d1 of the humidification rotor 63 and the surrounding surface lower end 65b1.
  • the upper humidifying rotor gap dimension M2 is a distance between the vertical upper end 63d2 of the humidifying rotor 63 and the surrounding surface upper end 65b2.
  • the shape of the surrounding surface 65b of the rotor frame wall 65 is designed so as to satisfy the condition that the lower humidifying rotor gap dimension M1 is larger than the upper humidifying rotor gap dimension M2. .
  • the gap between the humidification rotor 63 and the surrounding surface 65b it is necessary to make the gap between the humidification rotor 63 and the surrounding surface 65b as small as possible.
  • the vertical position of the humidifying rotor 63 is further lowered, and the humidifying rotor 63 may come into contact with the surrounding surface 65b. is there.
  • the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
  • the entire shape of the surrounding surface 65b shown in FIG. 12 is not a perfect circle.
  • the diameter of the surrounding surface 65b below the support center 66d (for example, the lower surrounding surface dimension L1) is the diameter of the surrounding surface 65b above the support center 66d (for example, the upper surrounding surface dimension L2).
  • the shape of the surrounding surface 65b is designed to be larger than that.
  • the enclosure surface 65b when the enclosure surface 65b is viewed along the rotation shaft 63c of the humidification rotor 63, the enclosure surface 65b is moved from the support center 66d toward the height position of the enclosure surface lower end 65b1 from the height position of the support center 66d. It is preferable to have a shape in which the distance is gradually increased.
  • the shape of the surrounding surface 65b above the support center 66d is a perfect circle arc, and is more than the support center 66d.
  • the shape of the surrounding surface 65b on the lower side may be an elliptical arc whose major axis is along the vertical direction.
  • the gap between the humidification rotor 63 and the surrounding surface 65b can be made as small as possible by using the rotor frame wall 65 whose shape of the surrounding surface 65b is designed in this way. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
  • the humidifier according to the present invention can prevent the humidification rotor from being locked.
  • Humidification unit Humidification rotor 63c Rotating shaft of the humidification rotor 63t Humidification rotor teeth 64 Rotor drive motor (drive unit) 65 Rotor frame wall (frame member) 65b Enclosure surface 65b1 Enclosure surface lower end 65b2 Enclosure surface upper end 66 Shaft (support part) 66c Outer peripheral surface of shaft (outer peripheral surface) 66d Shaft support center (support center) 67 Shaft through hole 67c Inner peripheral surface (slip surface) of shaft through hole G1 First bearing clearance dimension (bearing clearance dimension) G2 Second bearing clearance dimension (bearing clearance dimension) L1 Lower enclosure surface dimension L2 Upper enclosure surface dimension M1 Lower humidification rotor clearance dimension M2 Upper humidification rotor clearance dimension

Abstract

The humidifying device according to the present invention can prevent a humidifying rotor from locking up. A humidifying unit (60) is provided with a humidifying rotor (63), a shaft (66), and a rotor frame wall (65). The humidifying rotor (63) rotates about a rotation axis (63c) extending in the horizontal direction. The shaft (66) supports the humidifying rotor (63) in a rotatable manner. The rotor frame wall (65) has an annular surrounding surface (65b) surrounding the humidifying rotor (63). The lower surrounding surface dimension (L1) is longer than the upper surrounding surface dimension (L2). The lower surrounding surface dimension (L1) is a distance between a support center (66d) which is the center position of the shaft (66) and the lower end (65b1) of the surrounding surface. The upper surrounding surface dimension (L2) is a distance between the support center (66d) and the upper end (65b2) of the surrounding surface. The lower surrounding surface dimension (L1) is guaranteed to be long enough that the humidifying rotor (63) does not come into contact with the surrounding surface (65b) even when, during attachment of the humidifying rotor (63) to the rotor frame wall (65), the humidifying rotor (63) moves downward by an amount equal to a gap around the shaft (66).

Description

加湿装置Humidifier
 本発明は、空気中の水分を吸着する吸湿と、空気中に水分を放出する放湿とを繰り返し行うことができる加湿ロータを備える加湿装置に関する。 The present invention relates to a humidifier equipped with a humidification rotor capable of repeatedly performing moisture absorption for adsorbing moisture in the air and moisture release for releasing moisture in the air.
 従来、加湿機能付きの空気清浄機等に用いられる加湿装置として、水の吸着と放出とを繰り返すことができる加湿ロータを備える加湿装置が知られている。例えば、特許文献1(特開2001-99453号公報)に開示されている加湿装置は、空気中の水分を吸着する吸湿領域と、吸着した水分を放出する放湿領域とを有する加湿ロータを備える。加湿ロータは、回転軸の周りを回転しながら、吸湿領域で吸着した水分を放湿領域から放出して、加湿された空気を生成する。加湿ロータは、円盤形状を有し、円形の主表面が鉛直方向に沿うように配置されている。 2. Description of the Related Art Conventionally, a humidifier equipped with a humidification rotor capable of repeating the adsorption and release of water is known as a humidifier used in an air cleaner with a humidification function. For example, a humidifier disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-99453) includes a humidification rotor having a moisture absorption region that adsorbs moisture in the air and a moisture release region that releases the adsorbed moisture. . The humidification rotor emits moisture adsorbed in the moisture absorption region from the moisture release region while rotating around the rotation axis, and generates humidified air. The humidification rotor has a disk shape, and is arranged so that the circular main surface is along the vertical direction.
 このような縦置き型かつ円盤形状の加湿ロータは、シャフトによって支持され、シャフトの外周面と摺動するすべり面を有する。また、加湿ロータの外周面は、シャフトが取り付けられている枠部材によって囲まれている。従来の枠部材は、加湿ロータの回転軸方向に沿って視た場合に、加湿ロータの外周面と対向する円形の内周面を有している。しかし、加湿ロータに形成されシャフトが嵌め込まれる孔の径は、通常、シャフトの径よりも長い。そのため、加湿ロータの孔にシャフトを嵌め込むと、加湿ロータのすべり面とシャフトの外周面との間の隙間の寸法だけ、加湿ロータは、自身にかかる重力によって鉛直方向下方に移動する。これにより、加湿ロータを枠部材に取り付けたときに、加湿ロータの下端部が、枠部材の下端部と接触する可能性がある。この接触によって、加湿ロータがロックして加湿ロータの回転が停止すると、加湿が適切に行われないおそれがある。 Such a vertically placed and disk-shaped humidification rotor is supported by a shaft and has a sliding surface that slides on the outer peripheral surface of the shaft. Moreover, the outer peripheral surface of the humidification rotor is surrounded by a frame member to which a shaft is attached. The conventional frame member has a circular inner peripheral surface that faces the outer peripheral surface of the humidification rotor when viewed along the rotation axis direction of the humidification rotor. However, the diameter of the hole formed in the humidifying rotor and into which the shaft is fitted is usually longer than the diameter of the shaft. Therefore, when the shaft is fitted into the hole of the humidification rotor, the humidification rotor moves downward in the vertical direction by the gravity applied to itself by the dimension of the gap between the sliding surface of the humidification rotor and the outer peripheral surface of the shaft. Thereby, when a humidification rotor is attached to a frame member, the lower end part of a humidification rotor may contact the lower end part of a frame member. If the humidification rotor is locked by this contact and the rotation of the humidification rotor stops, humidification may not be performed properly.
 本発明の目的は、加湿ロータのロックを防止することができる加湿装置を提供することである。 An object of the present invention is to provide a humidifier capable of preventing the humidification rotor from being locked.
 本発明の第1観点に係る加湿装置は、加湿ロータと、支持部と、枠部材とを備える。加湿ロータは、水平方向に延びる回転軸の周りを回転しながら水の吸着および放出を行う円盤形状の部材である。支持部は、加湿ロータを回転自在に支持する部材である。枠部材は、加湿ロータの径方向外側において加湿ロータを囲む環状の囲み面を有する部材である。この加湿装置において、下側囲み面寸法は、上側囲み面寸法よりも長い。下側囲み面寸法は、回転軸に沿って視た場合に、支持部の中心位置である支持中心と、囲み面の下端である囲み面下端との間の距離である。上側囲み面寸法は、回転軸に沿って視た場合に、支持中心と、囲み面の上端である囲み面上端との間の距離である。 The humidification device according to the first aspect of the present invention includes a humidification rotor, a support portion, and a frame member. The humidification rotor is a disk-shaped member that adsorbs and discharges water while rotating around a rotating shaft extending in the horizontal direction. A support part is a member which supports a humidification rotor rotatably. The frame member is a member having an annular surrounding surface that surrounds the humidification rotor on the radially outer side of the humidification rotor. In this humidifier, the lower enclosure surface dimension is longer than the upper enclosure surface dimension. The lower enclosing surface dimension is a distance between the support center that is the center position of the support portion and the lower end of the enclosing surface that is the lower end of the enclosing surface when viewed along the rotation axis. The upper enclosing surface dimension is a distance between the support center and the upper end of the enclosing surface that is the upper end of the enclosing surface when viewed along the rotation axis.
 第1観点に係る加湿装置では、円盤形状の加湿ロータは、円形の主表面が鉛直方向に沿うように配置される。加湿ロータは、支持部によって回転自在に支持されている。加湿ロータの外周面は、枠部材の囲み面によって囲まれている。支持部の鉛直方向の中心位置である支持中心から囲み面の下端までの距離は、支持中心から囲み面の上端までの間の距離より長い。これにより、加湿ロータを枠部材に取り付ける際に、加湿ロータが自身にかかる重力によって鉛直方向下方に移動しても、加湿ロータが囲み面と接触しない程度に、支持中心から囲み面の下端までの距離が確保されている。そのため、加湿ロータが回転しているときに、加湿ロータの下端が囲み面に衝突して加湿ロータの回転が停止する不具合であるロックの発生が防止される。従って、第1観点に係る加湿装置は、加湿ロータのロックを防止することができる。 In the humidifier according to the first aspect, the disc-shaped humidification rotor is arranged so that the circular main surface is along the vertical direction. The humidification rotor is rotatably supported by the support portion. The outer peripheral surface of the humidification rotor is surrounded by the surrounding surface of the frame member. The distance from the support center, which is the center position of the support portion in the vertical direction, to the lower end of the enclosing surface is longer than the distance from the support center to the upper end of the enclosing surface. As a result, when the humidification rotor is attached to the frame member, even if the humidification rotor moves downward in the vertical direction due to gravity applied to the frame member, the humidification rotor does not come into contact with the enclosure surface to the extent that the humidification rotor does not contact the enclosure surface. The distance is secured. Therefore, when the humidifying rotor is rotating, the occurrence of lock, which is a problem that the lower end of the humidifying rotor collides with the surrounding surface and stops the rotation of the humidifying rotor, is prevented. Therefore, the humidifier according to the first aspect can prevent the humidification rotor from being locked.
 本発明の第2観点に係る加湿装置は、第1観点に係る加湿装置であって、支持部は、シャフトを有する。加湿ロータは、シャフトの外周面と摺動するすべり面を有する。 The humidifier according to the second aspect of the present invention is the humidifier according to the first aspect, and the support portion has a shaft. The humidification rotor has a sliding surface that slides with the outer peripheral surface of the shaft.
 第2観点に係る加湿装置では、加湿ロータは、すべり軸受構造によって回転自在に支持されている。この場合、加湿ロータを枠部材に取り付ける際に、加湿ロータのすべり面とシャフトの外周面との間の隙間の寸法だけ、加湿ロータが自身にかかる重力によって鉛直方向下方に移動する。しかし、加湿ロータが囲み面と接触しない程度に、シャフトの支持中心から囲み面の下端までの距離が確保されているので、加湿ロータのロックが防止される。すべり軸受構造は、単純であり、加湿ロータのすべり面とシャフトの外周面との間の隙間の寸法を高い精度で設計できる。そのため、加湿ロータのロックを防止できる限界まで、枠部材の囲み面を小さくすることができる。従って、第2観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 In the humidifier according to the second aspect, the humidification rotor is rotatably supported by the slide bearing structure. In this case, when the humidification rotor is attached to the frame member, the humidification rotor moves downward in the vertical direction by gravity applied to itself by the dimension of the gap between the sliding surface of the humidification rotor and the outer peripheral surface of the shaft. However, since the distance from the support center of the shaft to the lower end of the surrounding surface is secured to the extent that the humidifying rotor does not contact the surrounding surface, the humidifying rotor is prevented from being locked. The slide bearing structure is simple, and the size of the gap between the slide surface of the humidifying rotor and the outer peripheral surface of the shaft can be designed with high accuracy. Therefore, the enclosing surface of the frame member can be reduced to the limit that can prevent the humidifying rotor from being locked. Therefore, the humidifier according to the second aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
 本発明の第3観点に係る加湿装置は、第2観点に係る加湿装置であって、支持部は、テーパ形状の突起であるシャフトを有する。加湿ロータは、シャフトが貫通するテーパ形状のシャフト貫通孔を有する。回転軸に沿って視た場合に、軸受隙間寸法は、シャフトの根元から先端に向かって徐々に小さくなる。軸受隙間寸法は、シャフト貫通孔の内周面であるすべり面の径と、シャフトの外周面の径との差である。 The humidifying device according to the third aspect of the present invention is the humidifying device according to the second aspect, wherein the support portion has a shaft that is a tapered protrusion. The humidification rotor has a tapered shaft through-hole through which the shaft passes. When viewed along the rotation axis, the bearing clearance dimension gradually decreases from the root of the shaft toward the tip. The bearing clearance dimension is the difference between the diameter of the sliding surface, which is the inner peripheral surface of the shaft through hole, and the diameter of the outer peripheral surface of the shaft.
 第3観点に係る加湿装置では、加湿ロータのすべり面とシャフトの外周面との間の隙間である軸受隙間寸法は、シャフトの根元から先端に向かって徐々に小さくなる。シャフトの先端側の軸受隙間寸法が、根元側の軸受隙間寸法より大きいと、シャフトの根元側に加湿ロータの荷重が重点的にかかり、シャフトの根元側の疲労によって、シャフトの機械的強度が低下しやすくなる。しかし、この加湿装置では、シャフトの根元側の軸受隙間寸法が、先端側の軸受隙間寸法より大きいので、シャフトの機械的強度の低下が抑制される。従って、第3観点に係る加湿装置は、加湿ロータを支持する部材の寿命が短くなることを抑制することができる。 In the humidifying device according to the third aspect, the bearing clearance dimension, which is the clearance between the sliding surface of the humidifying rotor and the outer peripheral surface of the shaft, gradually decreases from the root of the shaft toward the tip. If the bearing clearance dimension on the shaft tip side is larger than the bearing clearance dimension on the root side, the load of the humidifying rotor is applied to the shaft base side, and the mechanical strength of the shaft decreases due to fatigue on the shaft base side. It becomes easy to do. However, in this humidifier, since the bearing gap dimension on the base side of the shaft is larger than the bearing gap dimension on the tip end side, a reduction in mechanical strength of the shaft is suppressed. Therefore, the humidifier according to the third aspect can suppress the life of the member supporting the humidification rotor from being shortened.
 本発明の第4観点に係る加湿装置は、第1観点から第3観点のいずれか1つに係る加湿装置であって、下側加湿ロータ隙間寸法は、上側加湿ロータ隙間寸法より大きい。下側加湿ロータ隙間寸法は、加湿ロータの下端と、囲み面下端との間の距離である。上側加湿ロータ隙間寸法は、加湿ロータの上端と、囲み面上端との間の距離である。 The humidifying device according to the fourth aspect of the present invention is the humidifying device according to any one of the first to third aspects, wherein the lower humidifying rotor gap dimension is larger than the upper humidifying rotor gap dimension. The lower humidification rotor clearance dimension is a distance between the lower end of the humidification rotor and the lower end of the surrounding surface. The upper humidification rotor clearance dimension is a distance between the upper end of the humidification rotor and the upper end of the surrounding surface.
 第4観点に係る加湿装置では、下側加湿ロータ隙間寸法は、上側加湿ロータ隙間寸法よりも大きい。加湿装置の小型化のためには、加湿ロータと囲み面との間の隙間をできるだけ小さくする必要がある。その場合、下側加湿ロータ隙間寸法が上側加湿ロータ隙間寸法よりも大きいという条件が満たされていれば、シャフトが磨耗して加湿ロータの鉛直方向の位置がさらに下がっても、加湿ロータの下端が囲み面下端に当たらない状態が維持されやすい。従って、第4観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 In the humidifier according to the fourth aspect, the lower humidifying rotor gap dimension is larger than the upper humidifying rotor gap dimension. In order to reduce the size of the humidifier, it is necessary to make the gap between the humidification rotor and the surrounding surface as small as possible. In that case, if the condition that the lower humidifying rotor clearance dimension is larger than the upper humidifying rotor clearance dimension is satisfied, the lower end of the humidifying rotor is not affected even if the shaft wears down and the vertical position of the humidifying rotor further decreases. The state where it does not hit the lower end of the enclosure surface is easily maintained. Therefore, the humidifier according to the fourth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
 本発明の第5観点に係る加湿装置は、第1観点から第4観点のいずれか1つに係る加湿装置であって、囲み面は、回転軸に沿って視た場合において、支持中心の高さ位置から囲み面下端の高さ位置に向かって、支持中心からの距離が徐々に大きくなる形状を有する。 A humidifying device according to a fifth aspect of the present invention is the humidifying device according to any one of the first to fourth aspects, wherein the surrounding surface has a high support center when viewed along the rotation axis. The distance from the support center gradually increases from the vertical position toward the height position of the lower end of the enclosing surface.
 第5観点に係る加湿装置では、枠部材は、囲み面の下側の径が囲み面の上側の径より大きい形状を有している。例えば、シャフトの中心の高さ位置から下方に向かって、シャフトの中心から囲み面までの距離が徐々に大きくなっている。枠部材がこのような形状を有することにより、加湿ロータと囲み面との間の隙間をできるだけ小さくすることができる。従って、第5観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 In the humidifier according to the fifth aspect, the frame member has a shape in which the diameter on the lower side of the surrounding surface is larger than the diameter on the upper side of the surrounding surface. For example, the distance from the center of the shaft to the enclosing surface gradually increases from the height position of the center of the shaft downward. When the frame member has such a shape, the gap between the humidification rotor and the surrounding surface can be made as small as possible. Therefore, the humidifier according to the fifth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
 本発明の第6観点に係る加湿装置は、第1観点から第5観点のいずれか1つに係る加湿装置であって、加湿ロータは、回転軸に沿って視た場合において、加湿ロータの周方向に沿って配置される複数の歯を有する。この加湿装置は、駆動部をさらに備える。駆動部は、複数の歯と噛み合いながら、回転軸の周りに加湿ロータを回転させる。 A humidifying device according to a sixth aspect of the present invention is the humidifying device according to any one of the first to fifth aspects, wherein the humidifying rotor is arranged around the humidifying rotor when viewed along the rotation axis. It has a plurality of teeth arranged along the direction. The humidifier further includes a drive unit. The drive unit rotates the humidification rotor around the rotation shaft while meshing with the plurality of teeth.
 第6観点に係る加湿装置では、加湿ロータは、外周面に複数の歯が配置された歯車に相当する。モータ等の駆動部は、加湿ロータの歯と噛み合う別の歯車を回転させることで、加湿ロータを回転させる。すなわち、加湿ロータを回転させるために、加湿ロータの支持部を回転させる必要がない。そのため、加湿ロータを、すべり軸受によって支持することができる。すべり軸受は、構造が単純であり、加湿ロータのすべり面とシャフトの外周面との間の隙間の寸法を高い精度で設計できる。そのため、加湿ロータのロックを防止できる限界まで、枠部材の囲み面を小さくすることができる。従って、第6観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 In the humidifying device according to the sixth aspect, the humidifying rotor corresponds to a gear having a plurality of teeth arranged on the outer peripheral surface. A drive unit such as a motor rotates the humidification rotor by rotating another gear that meshes with the teeth of the humidification rotor. That is, it is not necessary to rotate the support portion of the humidification rotor in order to rotate the humidification rotor. Therefore, the humidification rotor can be supported by the slide bearing. The slide bearing has a simple structure, and the dimension of the gap between the sliding surface of the humidifying rotor and the outer peripheral surface of the shaft can be designed with high accuracy. Therefore, the enclosing surface of the frame member can be reduced to the limit that can prevent the humidifying rotor from being locked. Therefore, the humidifier according to the sixth aspect can achieve downsizing while suppressing the size of the frame member of the humidification rotor.
 本発明の第1観点に係る加湿装置は、加湿ロータのロックを防止することができる。 The humidifier according to the first aspect of the present invention can prevent the humidification rotor from being locked.
 本発明の第2観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 The humidifier according to the second aspect of the present invention can achieve downsizing by suppressing the size of the frame member of the humidification rotor.
 本発明の第3観点に係る加湿装置は、加湿ロータを支持する部材の寿命が短くなることを抑制することができる。 The humidifier according to the third aspect of the present invention can suppress the shortening of the life of the member that supports the humidification rotor.
 本発明の第4観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 The humidifier according to the fourth aspect of the present invention can achieve downsizing by suppressing the size of the frame member of the humidification rotor.
 本発明の第5観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 The humidifier according to the fifth aspect of the present invention can achieve downsizing by suppressing the dimension of the frame member of the humidification rotor.
 本発明の第6観点に係る加湿装置は、加湿ロータの枠部材の寸法を抑えて、小型化を達成することができる。 The humidifying device according to the sixth aspect of the present invention can achieve downsizing while suppressing the size of the frame member of the humidifying rotor.
本発明に係る加湿装置の一実施形態である加湿ユニット60を備える空調機10の構成図である。It is a lineblock diagram of air conditioner 10 provided with humidification unit 60 which is one embodiment of the humidification device concerning the present invention. ケーシング40の天板48が取り外された状態の室外ユニット30の平面図である。It is a top view of the outdoor unit 30 in the state where the top plate 48 of the casing 40 is removed. 図2の室外ユニット30から防護用グリル56が取り外された状態の室外ユニット30の正面図である。FIG. 3 is a front view of the outdoor unit 30 in a state where a protective grill 56 is removed from the outdoor unit 30 of FIG. 2. 加湿ロータ63を通過する空気の流れを示す図である。FIG. 5 is a diagram showing the flow of air passing through a humidification rotor 63. 吸着用ダクト68、加湿用ダクト73、加湿用ファン75、及び第2加湿用ダクト180の斜視図である。FIG. 7 is a perspective view of an adsorption duct 68, a humidifying duct 73, a humidifying fan 75, and a second humidifying duct 180. ロータ枠壁65の正面図である。7 is a front view of a rotor frame wall 65. FIG. 図6の線分VII-VIIにおけるロータ枠壁65の断面図である。FIG. 7 is a cross-sectional view of a rotor frame wall 65 taken along line VII-VII in FIG. 6. 図7と同じ方向から視た軸受部材65cの側面図である。It is the side view of the bearing member 65c seen from the same direction as FIG. 回転軸63cを含む平面で加湿ロータ63を切断した場合における、加湿ロータ63の断面図である。It is sectional drawing of the humidification rotor 63 when the humidification rotor 63 is cut | disconnected by the plane containing the rotating shaft 63c. シャフト貫通孔67を通るシャフト66の断面図である。4 is a cross-sectional view of a shaft 66 passing through a shaft through hole 67. FIG. 図10に示される状態から、加湿ロータ63が軸受隙間69の分(第2軸受隙間寸法G2)だけ鉛直方向下方に移動した後の状態を示す図である。FIG. 11 is a diagram showing a state after the humidifying rotor 63 has moved downward in the vertical direction by a bearing gap 69 (second bearing gap dimension G2) from the state shown in FIG. 加湿ロータ63の回転軸63cに沿って視た場合における、加湿ロータ63と、シャフト66と、囲み面65bとの位置関係を示す図である。It is a figure which shows the positional relationship of the humidification rotor 63, the shaft 66, and the surrounding surface 65b when it sees along the rotating shaft 63c of the humidification rotor 63. FIG. 図12と同様の図であって、下側加湿ロータ隙間寸法M1及び上側加湿ロータ隙間寸法M2が示されている図である。It is a figure similar to FIG. 12, Comprising: It is a figure in which the lower humidification rotor clearance dimension M1 and the upper humidification rotor clearance dimension M2 are shown.
 本発明の実施形態について、図面を参照しながら説明する。以下に説明される実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。 Embodiments of the present invention will be described with reference to the drawings. The embodiments described below are specific examples of the present invention and do not limit the technical scope of the present invention.
 (1)空調機10の構成
 図1は、本発明に係る加湿装置の一実施形態である加湿ユニット60を備える空調機10の構成図である。空調機10は、冷媒回路を循環する冷媒を用いる冷凍サイクルを備える冷凍装置である。空調機10は、主として、室内ユニット20と、室外ユニット30とを備える。室内ユニット20及び室外ユニット30は、冷媒連絡配管14,16及び給気ホース18によって互いに接続されている。図1では、室内ユニット20及び室外ユニット30を通過する空気の流れが、白抜きの矢印で示されている。
(1) Configuration of Air Conditioner 10 FIG. 1 is a configuration diagram of an air conditioner 10 including a humidifying unit 60 that is an embodiment of a humidifier according to the present invention. The air conditioner 10 is a refrigeration apparatus including a refrigeration cycle that uses a refrigerant circulating in a refrigerant circuit. The air conditioner 10 mainly includes an indoor unit 20 and an outdoor unit 30. The indoor unit 20 and the outdoor unit 30 are connected to each other by the refrigerant communication pipes 14 and 16 and the air supply hose 18. In FIG. 1, the flow of air passing through the indoor unit 20 and the outdoor unit 30 is indicated by white arrows.
 空調機10は、冷房運転、暖房運転、除湿運転、加湿運転、及び給気運転等の複数の運転モードを有する。加湿運転、及び給気運転では、室内に空気を供給するために、給気ホース18を通して室外ユニット30から室内ユニット20へ空気が送られる。特に、加湿運転では、水分を多く含んだ湿度の高い空気を室外ユニット30から室内ユニット20に送るため、室外ユニット30において外気から水分が取り込まれる。室外ユニット30は、外気から水分を取り込む機能を有する加湿ユニット60を備える。図1では、加湿ユニット60を通過する空気の流れが、点線の矢印で示されている。 The air conditioner 10 has a plurality of operation modes such as a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, and an air supply operation. In the humidifying operation and the air supply operation, air is sent from the outdoor unit 30 to the indoor unit 20 through the air supply hose 18 in order to supply air into the room. In particular, in the humidifying operation, high humidity air containing a large amount of moisture is sent from the outdoor unit 30 to the indoor unit 20, so that moisture is taken in from the outside air in the outdoor unit 30. The outdoor unit 30 includes a humidification unit 60 having a function of taking moisture from outside air. In FIG. 1, the flow of air passing through the humidification unit 60 is indicated by dotted arrows.
 (2)室内ユニット20の構成
 室内ユニット20は、主として、室内熱交換器21と、室内ファン22とを備える。図1に示されるように、室内ファン22は、室内熱交換器21の下流側に配置され、室内ファンモータ22aによって駆動される。室内ファン22が駆動されると、室内ユニット20上部の室内吸込口23から吸い込まれた室内空気は、室内熱交換器21を通過して、室内ユニット20下部の室内吹出口24から吹き出される。室内ファン22は、例えば、クロスフローファンである。
(2) Configuration of Indoor Unit 20 The indoor unit 20 mainly includes an indoor heat exchanger 21 and an indoor fan 22. As shown in FIG. 1, the indoor fan 22 is disposed on the downstream side of the indoor heat exchanger 21, and is driven by an indoor fan motor 22a. When the indoor fan 22 is driven, the indoor air sucked from the indoor suction port 23 at the upper part of the indoor unit 20 passes through the indoor heat exchanger 21 and is blown out from the indoor outlet 24 at the lower part of the indoor unit 20. The indoor fan 22 is, for example, a cross flow fan.
 室内ユニット20では、室内給気口25が、室内熱交換器21の上流側空間に設けられている。給気ホース18の一端は、室内給気口25に接続され、給気ホース18の他端は、室外ユニット30の加湿ユニット60に接続される。加湿ユニット60から送られてきた湿度の高い空気は、室内給気口25を介して、室内熱交換器21の上流側空間に供給される。室内熱交換器21の上流側空間に湿度の高い空気が供給されている状態で室内ファン22が駆動されることにより、室内ユニット20の室内吹出口24から吹き出される調和空気の湿度を高くすることができる。 In the indoor unit 20, an indoor air inlet 25 is provided in the upstream space of the indoor heat exchanger 21. One end of the air supply hose 18 is connected to the indoor air supply port 25, and the other end of the air supply hose 18 is connected to the humidification unit 60 of the outdoor unit 30. The high-humidity air sent from the humidification unit 60 is supplied to the upstream space of the indoor heat exchanger 21 through the indoor air supply port 25. When the indoor fan 22 is driven in a state where high-humidity air is supplied to the upstream space of the indoor heat exchanger 21, the humidity of the conditioned air blown from the indoor outlet 24 of the indoor unit 20 is increased. be able to.
 (3)室外ユニット30の構成
 室外ユニット30は、主として、ケーシング40、圧縮機31、室外熱交換器33、室外ファン39、及び加湿ユニット60を備える。室外ユニット30内部の冷媒回路には、四路切換弁32、電動膨張弁34、アキュムレータ36、液側閉鎖弁37、及びガス側閉鎖弁38が取り付けられている。
(3) Configuration of Outdoor Unit 30 The outdoor unit 30 mainly includes a casing 40, a compressor 31, an outdoor heat exchanger 33, an outdoor fan 39, and a humidification unit 60. A four-way switching valve 32, an electric expansion valve 34, an accumulator 36, a liquid side closing valve 37, and a gas side closing valve 38 are attached to the refrigerant circuit inside the outdoor unit 30.
 図2は、ケーシング40の天板48が取り外された状態の室外ユニット30の平面図である。図3は、図2の室外ユニット30から防護用グリル56が取り外された状態の室外ユニット30の正面図である。図2では、室外ユニット30を通過する空気の流れが、点線の矢印で示されている。 FIG. 2 is a plan view of the outdoor unit 30 with the top plate 48 of the casing 40 removed. FIG. 3 is a front view of the outdoor unit 30 with the protective grill 56 removed from the outdoor unit 30 of FIG. In FIG. 2, the flow of air passing through the outdoor unit 30 is indicated by dotted arrows.
 (3-1)ケーシング40
 ケーシング40は、主として、左側板45、前板46、右側板47、天板48(図3参照)、底板49(図3参照)、及び背面部44から構成される。ケーシング40の内部空間は、仕切部材43によって送風機室41と機械室42とに区画されている。送風機室41は、室外熱交換器33、室外ファン39、及び加湿ユニット60の一部が配置される空間である。機械室42は、圧縮機31、及び加湿ユニット60の一部が配置される空間である。
(3-1) Casing 40
The casing 40 mainly includes a left side plate 45, a front plate 46, a right side plate 47, a top plate 48 (see FIG. 3), a bottom plate 49 (see FIG. 3), and a back surface portion 44. The internal space of the casing 40 is partitioned into a blower chamber 41 and a machine chamber 42 by a partition member 43. The blower chamber 41 is a space in which the outdoor heat exchanger 33, the outdoor fan 39, and a part of the humidification unit 60 are arranged. The machine room 42 is a space in which the compressor 31 and a part of the humidification unit 60 are arranged.
 仕切部材43は、天板48側から底板49側に向かって、右側板47と略並行に延びている板状部材である。仕切部材43は、前板46の内側から、室外熱交換器33の右側板47側の端部に向かって、円弧状に延びている。その結果、仕切部材43は、送風機室41から機械室42に向かって空気の流れが回り込まないように、空気の流れを遮蔽する機能を有する。 The partition member 43 is a plate-like member extending substantially in parallel with the right side plate 47 from the top plate 48 side toward the bottom plate 49 side. The partition member 43 extends in an arc shape from the inner side of the front plate 46 toward the end of the outdoor heat exchanger 33 on the right side plate 47 side. As a result, the partition member 43 has a function of shielding the air flow so that the air flow does not flow from the blower chamber 41 toward the machine chamber 42.
 図3に示されるように、送風機室41には、電装品ユニット50が設置されている。電装品ユニット50は、圧縮機31及び室外ファン39等を駆動するための電子部品が集約された制御基板を搭載している。 As shown in FIG. 3, an electrical component unit 50 is installed in the blower chamber 41. The electrical component unit 50 is equipped with a control board on which electronic components for driving the compressor 31 and the outdoor fan 39 are integrated.
 図3に示されるように、前板46には、円形の室外吹出口46aが形成されている。室外吹出口46aには、その周縁に沿うようにリング状のベルマウス52が取り付けられている。図2に示されるように、ケーシング40の前板46には、防護用グリル56が取り付けられている。防護用グリル56は、室外吹出口46aを覆っている。防護用グリル56には、ケーシング40の内部空間から外部空間に空気を吹き出すための複数の開口が形成されている。 As shown in FIG. 3, the front plate 46 is formed with a circular outdoor air outlet 46a. A ring-shaped bell mouth 52 is attached to the outdoor air outlet 46a along the peripheral edge thereof. As shown in FIG. 2, a protective grill 56 is attached to the front plate 46 of the casing 40. The protective grill 56 covers the outdoor outlet 46a. The protective grill 56 is formed with a plurality of openings for blowing air from the internal space of the casing 40 to the external space.
 (3-2)圧縮機31
 図1に示されるように、圧縮機31は、機械室42に配置されている。圧縮機31は、底板49に固定されている。圧縮機31は、運転時に高温になるので、機械室42は送風機室41と比べて温度が高くなる。
(3-2) Compressor 31
As shown in FIG. 1, the compressor 31 is disposed in the machine room 42. The compressor 31 is fixed to the bottom plate 49. Since the compressor 31 is at a high temperature during operation, the temperature of the machine room 42 is higher than that of the blower room 41.
 (3-3)室外熱交換器33
 図2に示されるように、室外熱交換器33は、ケーシング40の背面部44及び左側板45と対向するように、L字状に成形されている。室外熱交換器33の鉛直方向の寸法は、天板48と底板49との間の距離にほぼ等しい。
(3-3) Outdoor heat exchanger 33
As shown in FIG. 2, the outdoor heat exchanger 33 is formed in an L shape so as to face the back surface portion 44 and the left side plate 45 of the casing 40. The vertical dimension of the outdoor heat exchanger 33 is substantially equal to the distance between the top plate 48 and the bottom plate 49.
 (3-4)室外ファン39
 室外ファン39は、室外熱交換器33の下流側に配置されている。室外ファン39は、室外ファンモータ39aと、プロペラ39bとを有する。プロペラ39bは、室外ファンモータ39aによって駆動される。プロペラ39bの一部は、ベルマウス52で囲まれた空間内に配置されている。
(3-4) Outdoor fan 39
The outdoor fan 39 is disposed on the downstream side of the outdoor heat exchanger 33. The outdoor fan 39 includes an outdoor fan motor 39a and a propeller 39b. The propeller 39b is driven by the outdoor fan motor 39a. A part of the propeller 39b is arranged in a space surrounded by the bell mouth 52.
 室外ファンモータ39aによってプロペラ39bが駆動されると、室外熱交換器33の背面部44側から外気が吸い込まれる。吸い込まれた外気は、室外熱交換器33を通過し、室外吹出口46a(図3参照)から吹き出される。室外吹出口46aの前面は防護用グリル56(図2参照)で覆われているので、室外ユニット30の外側からはプロペラ39bに触れられないようになっている。 When the propeller 39b is driven by the outdoor fan motor 39a, the outside air is sucked from the back surface 44 side of the outdoor heat exchanger 33. The sucked outside air passes through the outdoor heat exchanger 33 and is blown out from the outdoor outlet 46a (see FIG. 3). Since the front surface of the outdoor outlet 46a is covered with a protective grill 56 (see FIG. 2), the propeller 39b cannot be touched from the outside of the outdoor unit 30.
 (3-5)加湿ユニット60
 図2に示されるように、加湿ユニット60は、前板46と背面部44との間において、送風機室41と機械室42とに跨るように配置されている。具体的には、加湿ユニット60の一部は、送風機室41に配置され、その他の部分は、機械室42に配置されている。加湿ユニット60は、送風機室41及び機械室42の上部に配置され、仕切部材43の一部分としての機能を有する。
(3-5) Humidification unit 60
As shown in FIG. 2, the humidification unit 60 is disposed between the front plate 46 and the back surface portion 44 so as to straddle the blower chamber 41 and the machine chamber 42. Specifically, a part of the humidifying unit 60 is disposed in the blower chamber 41, and the other part is disposed in the machine chamber 42. The humidification unit 60 is disposed above the blower chamber 41 and the machine chamber 42 and has a function as a part of the partition member 43.
 加湿ユニット60は、主として、加湿ロータ63、加湿用ヒータ71、吸着用ダクト68、加湿用ダクト73、加湿用ファン75(図1参照)、及び第2加湿用ダクト180を有している。 The humidification unit 60 mainly includes a humidification rotor 63, a humidification heater 71, an adsorption duct 68, a humidification duct 73, a humidification fan 75 (see FIG. 1), and a second humidification duct 180.
 (3-5-1)加湿ロータ63
 加湿ロータ63は、円盤形状の部材である。加湿ロータ63は、回転軸の周りを回転しながら、空気中に含まれる水分の吸着および放出を行う。加湿ロータ63の回転軸は、加湿ロータ63の円形の主表面の中心を通り、かつ、水平方向に沿って延びている。すなわち、加湿ロータ63は、その主表面が鉛直方向に沿うように配置されている。
(3-5-1) Humidification rotor 63
The humidification rotor 63 is a disk-shaped member. The humidification rotor 63 adsorbs and releases moisture contained in the air while rotating around the rotation axis. The rotating shaft of the humidifying rotor 63 passes through the center of the circular main surface of the humidifying rotor 63 and extends along the horizontal direction. That is, the humidification rotor 63 is arranged so that its main surface is along the vertical direction.
 加湿ロータ63は、前板46と対向するように配置されている。図3に示されるように、加湿ロータ63の一部は、前板46に形成される開口である室外吸込口46bと対向する。室外吸込口46bは、中心角が約240°の扇形を有する。室外吸込口46bの扇形の中心は、加湿ロータ63の回転軸上に位置している。加湿ロータ63は、ロータ枠壁65によって囲まれている。ロータ枠壁65については、後述する。 The humidification rotor 63 is disposed so as to face the front plate 46. As shown in FIG. 3, a portion of the humidification rotor 63 faces the outdoor suction port 46 b that is an opening formed in the front plate 46. The outdoor suction port 46b has a fan shape with a central angle of about 240 °. The fan-shaped center of the outdoor suction port 46 b is located on the rotation axis of the humidification rotor 63. The humidification rotor 63 is surrounded by the rotor frame wall 65. The rotor frame wall 65 will be described later.
 図4は、加湿ロータ63を通過する空気の流れを示す図である。図4では、加湿ロータ63を通過する空気の流れが、白抜きの矢印で示され、かつ、加湿ロータ63の回転方向が、点線の矢印で示されている。図4に示されるように、加湿ロータ63は、水分吸着領域63aと水分放出領域63bとを有する。水分吸着領域63aは、加湿ロータ63の主表面の一部であって、室外吸込口46bと対向する領域である。水分放出領域63bは、加湿ロータ63の主表面の一部であって、室外吸込口46bと対向しない領域である。水分吸着領域63aは、室外吸込口46bと同様に、中心角が約240°の扇形を有する。水分放出領域63bは、水分吸着領域63aに隣接し、中心角が約120°の扇形を有する。水分吸着領域63aは、空気中に含まれる水分が吸着される領域である。水分放出領域63bは、吸着された水分が空気中に放出される領域である。水分吸着領域63aは、水分放出領域63bよりもベルマウス52側に配置されている。 FIG. 4 is a diagram showing the flow of air passing through the humidification rotor 63. In FIG. 4, the flow of air passing through the humidification rotor 63 is indicated by white arrows, and the rotation direction of the humidification rotor 63 is indicated by dotted arrows. As shown in FIG. 4, the humidification rotor 63 includes a moisture adsorption region 63a and a moisture release region 63b. The moisture adsorption region 63a is a part of the main surface of the humidification rotor 63 and is a region facing the outdoor suction port 46b. The moisture release area 63b is a part of the main surface of the humidification rotor 63 and is not an area facing the outdoor suction port 46b. Similar to the outdoor suction port 46b, the moisture adsorption region 63a has a fan shape with a central angle of about 240 °. The moisture release region 63b is adjacent to the moisture adsorption region 63a and has a sector shape with a central angle of about 120 °. The moisture adsorption region 63a is a region where moisture contained in the air is adsorbed. The moisture release region 63b is a region where the adsorbed moisture is released into the air. The moisture adsorption region 63a is disposed closer to the bell mouth 52 than the moisture release region 63b.
 加湿ロータ63が回転軸周りに回転することで、水分吸着領域63aが水分放出領域63bとなり、水分放出領域63bが水分吸着領域63aとなる。これにより、加湿ロータ63は、その回転軸周りに回転することで、空気中に含まれる水分の吸着および放出を繰り返し行うことができる。 When the humidification rotor 63 rotates around the rotation axis, the moisture adsorption region 63a becomes the moisture release region 63b, and the moisture release region 63b becomes the moisture adsorption region 63a. Thereby, the humidification rotor 63 can repeat adsorption | suction and discharge | release of the water | moisture content contained in the air by rotating around the rotating shaft.
 水分吸着領域63a及び水分放出領域63bは、ゼオライト等の焼成によって形成されるハニカム構造を有する。ゼオライト等の吸着剤は、常温で空気中の水分を吸着し、かつ、高温の空気に曝されて加熱されることで吸着した水分を放出する。 The moisture adsorption region 63a and the moisture release region 63b have a honeycomb structure formed by firing of zeolite or the like. Adsorbents such as zeolite adsorb moisture in the air at room temperature and release the adsorbed moisture when exposed to high-temperature air and heated.
 図4に示されるように、加湿ロータ63の外周面には、周方向に沿って複数の歯63tが形成されている。これにより、加湿ロータ63は、複数の歯63tを有する歯車として機能する。図3に示されるように、加湿ロータ63の歯63tは、ピニオンギア64aと噛み合っている。ピニオンギア64aは、ロータ駆動用モータ64の動力によって回転する。ピニオンギア64aの回転運動によって、加湿ロータ63は、その回転軸周りに回転することができる。 4, a plurality of teeth 63t are formed on the outer peripheral surface of the humidification rotor 63 along the circumferential direction. Thereby, the humidification rotor 63 functions as a gear having a plurality of teeth 63t. As shown in FIG. 3, the teeth 63t of the humidification rotor 63 mesh with the pinion gear 64a. The pinion gear 64 a is rotated by the power of the rotor driving motor 64. The humidification rotor 63 can rotate around its rotation axis by the rotational movement of the pinion gear 64a.
 (3-5-2)加湿用ヒータ71
 加湿用ヒータ71は、加湿ロータ63の水分放出領域63bと前板46との間において、水分放出領域63bと対向するように配置されている。図4に示されるように、加湿用ヒータ71は、加湿ロータ63の水分放出領域63bから水分を放出させるために、水分放出領域63bに送られる空気を加熱する。加湿用ヒータ71によって加熱された空気は、水分放出領域63bを通過するときに加湿ロータ63から水分を放出させて、湿度が高い空気となる。
(3-5-2) Humidification heater 71
The humidifying heater 71 is disposed between the moisture release region 63b of the humidification rotor 63 and the front plate 46 so as to face the moisture release region 63b. As shown in FIG. 4, the humidifying heater 71 heats the air sent to the moisture releasing region 63 b in order to release moisture from the moisture releasing region 63 b of the humidifying rotor 63. The air heated by the humidifying heater 71 releases moisture from the humidifying rotor 63 when passing through the moisture release region 63b, and becomes high-humidity air.
 図4に示されるように、加湿用ヒータ71で加熱される空気は、加湿ロータ63の水分放出領域63bを通過した空気である。この空気は、ケーシング40に形成された加湿用開口40a(図1参照)から取り込まれた外気である。 As shown in FIG. 4, the air heated by the humidifying heater 71 is air that has passed through the moisture release region 63 b of the humidifying rotor 63. This air is outside air taken in from a humidifying opening 40a (see FIG. 1) formed in the casing 40.
 図4に示されるように、水分放出領域63bにおいて、加湿用開口40aから取り込まれた外気が通過する領域は、加湿用ヒータ71で加熱された空気が通過する領域よりも、加湿ロータ63の回転方向下流側に位置している。加湿用開口40aから取り込まれた外気が加湿用ヒータ71で加熱される前に水分放出領域63bを通過することで、水分放出領域63bから熱が回収される。 As shown in FIG. 4, in the moisture discharge region 63b, the region through which the outside air taken in from the humidifying opening 40a passes is more rotated than the region through which the air heated by the humidifying heater 71 passes. It is located downstream in the direction. The outside air taken in from the humidifying opening 40a passes through the moisture releasing region 63b before being heated by the humidifying heater 71, whereby heat is recovered from the moisture releasing region 63b.
 (3-5-3)吸着用ダクト68
 図5は、吸着用ダクト68、加湿用ダクト73、加湿用ファン75、及び第2加湿用ダクト180の斜視図である。
(3-5-3) Adsorption duct 68
FIG. 5 is a perspective view of the suction duct 68, the humidification duct 73, the humidification fan 75, and the second humidification duct 180.
 吸着用ダクト68は、加湿ロータ63の水分吸着領域63aに、水分を含む空気である外気を導くための部材である。吸着用ダクト68は、前板46の室外吸込口46bに向かって開口する空気流入口681を有する。空気流入口681の形状は、室外吸込口46bと同様に、中心角が約240°の扇形である。空気流入口681は、室外吸込口46bに接続されている。 The adsorption duct 68 is a member for guiding outside air, which is air containing moisture, to the moisture adsorption region 63 a of the humidification rotor 63. The suction duct 68 has an air inlet 681 that opens toward the outdoor suction port 46 b of the front plate 46. The shape of the air inlet 681 is a sector shape with a central angle of about 240 °, like the outdoor suction port 46b. The air inlet 681 is connected to the outdoor suction port 46b.
 図4に示されるように、室外吸込口46bから吸い込まれた外気は、吸着用ダクト68内を流れて、加湿ロータ63の水分吸着領域63aに到達し、水分吸着領域63aを通過する。このとき、外気中に含まれる水分は、水分吸着領域63aに吸着される。水分吸着領域63aを通過した空気は、吸着用ダクト68の空気流出口683(図2参照)から排出される。空気流出口683は、室外ファン39が回転するときに負圧になる空間(ベルマウス52の上流側の空間)に接している。そのため、室外ファン39の回転によって、空気流出口683側の気圧は空気流入口681側の気圧より低くなるので、空気流入口681から外気が吸い込まれる。 As shown in FIG. 4, the outside air sucked from the outdoor suction port 46b flows through the adsorption duct 68, reaches the moisture adsorption area 63a of the humidification rotor 63, and passes through the moisture adsorption area 63a. At this time, the moisture contained in the outside air is adsorbed by the moisture adsorption region 63a. The air that has passed through the moisture adsorption region 63a is discharged from the air outlet 683 of the adsorption duct 68 (see FIG. 2). The air outlet 683 is in contact with a space (a space on the upstream side of the bell mouth 52) that becomes negative pressure when the outdoor fan 39 rotates. Therefore, since the atmospheric pressure on the air outlet 683 side becomes lower than the air pressure on the air inlet 681 side due to the rotation of the outdoor fan 39, the outside air is sucked from the air inlet 681.
 図3に示されるように、室外吸込口46bは、室外吹出口46aと同様に、前板46に開口している。図4に示されるように、室外ファン39によって室外熱交換器33を通過した空気は、押し出されて、室外吹出口46aから勢いよくケーシング40の外部に吹き出される。そのため、室外吹出口46aから吹き出された空気が、室外吸込口46bに吸い込まれることはない。これにより、暖房運転時に室外熱交換器33を通過して室外吹出口46aから吹き出された低温の空気が、室外吸込口46bを経由して空気流入口681に吸い込まれることが回避される。低温の空気が空気流入口681に吸い込まれた場合、加湿ロータ63が吸着できる水分量が低下する。そのため、室外吹出口46aから吹き出された空気が室外吸込口46bに吸い込まれることを回避することで、加湿ロータ63が吸着できる水分量の低下が抑制される。 As shown in FIG. 3, the outdoor suction port 46b is open to the front plate 46 in the same manner as the outdoor outlet 46a. As shown in FIG. 4, the air that has passed through the outdoor heat exchanger 33 by the outdoor fan 39 is pushed out and blown out of the casing 40 from the outdoor outlet 46 a. Therefore, the air blown out from the outdoor air outlet 46a is not sucked into the outdoor air inlet 46b. Thereby, it is avoided that the low-temperature air that has passed through the outdoor heat exchanger 33 and is blown out from the outdoor outlet 46a during the heating operation is sucked into the air inlet 681 via the outdoor inlet 46b. When low-temperature air is sucked into the air inlet 681, the amount of moisture that can be adsorbed by the humidification rotor 63 decreases. Therefore, the fall of the moisture content which the humidification rotor 63 can adsorb | suck is suppressed by avoiding that the air which blown off from the outdoor blower outlet 46a is suck | inhaled by the outdoor suction inlet 46b.
 (3-5-4)加湿用ダクト73
 加湿用ダクト73は、加湿用ヒータ71によって加熱され水分放出領域63bを通過した空気を加湿用ファン75まで導く。加湿用ダクト73に導かれる空気の流れは、加湿用ファン75によって発生する。
(3-5-4) Humidification duct 73
The humidification duct 73 guides the air that has been heated by the humidification heater 71 and passed through the moisture release region 63 b to the humidification fan 75. The air flow guided to the humidification duct 73 is generated by the humidification fan 75.
 加湿用ダクト73に導かれる空気は、加湿用ヒータ71によって加熱されて高温の空気となり、さらに、水分放出領域63bを通過する際に水分放出領域63bから水分を放出させる。図4に示されるように、水分放出領域63bを通過して高温高湿となった空気は、加湿用ダクト73内を流れて、加湿用ファン75まで導かれる。 The air guided to the humidification duct 73 is heated by the humidification heater 71 to become high-temperature air, and further releases moisture from the moisture release region 63b when passing through the moisture release region 63b. As shown in FIG. 4, the air that has passed through the moisture release region 63 b and has become hot and humid flows in the humidifying duct 73 and is guided to the humidifying fan 75.
 (3-5-5)加湿用ファン75
 加湿用ファン75は、機械室42に配置されている。加湿用ファン75は、図1に示されるように、羽根車75aと、ファンモータ75bとを有する。羽根車75aは、加湿ロータ63の水分放出領域63bを通過して加湿された空気を所定の方向へ送り出す。ファンモータ75bは、羽根車75aを駆動する。加湿用ファン75は、羽根車75aの回転軸が水平方向に沿うように配置される。羽根車75aの回転軸は、ファンモータ75bの回転軸に接続されている。
(3-5-5) Humidification fan 75
The humidifying fan 75 is disposed in the machine room 42. As shown in FIG. 1, the humidifying fan 75 includes an impeller 75a and a fan motor 75b. The impeller 75a sends the air humidified through the moisture release region 63b of the humidification rotor 63 in a predetermined direction. The fan motor 75b drives the impeller 75a. The humidifying fan 75 is arranged so that the rotation shaft of the impeller 75a is along the horizontal direction. The rotating shaft of the impeller 75a is connected to the rotating shaft of the fan motor 75b.
 羽根車75aは、ファンケーシング81に囲まれている。ファンケーシング81の出口は、第2加湿用ダクト180の入口と繋がっている。ファンモータ75bは、モータカバー82によって覆われている。 The impeller 75 a is surrounded by a fan casing 81. The outlet of the fan casing 81 is connected to the inlet of the second humidifying duct 180. The fan motor 75 b is covered with a motor cover 82.
 (3-5-6)第2加湿用ダクト180
 第2加湿用ダクト180は、加湿用ファン75によって送られてきた高温高湿の空気を、給気ホース18(図1参照)の接続口まで導くダクトである。第2加湿用ダクト180のほぼ全体は、機械室42に配置されている。しかし、第2加湿用ダクト180の一部であって、給気ホース18の接続口に接続される部分は、右側板47を挟んで機械室42の反対側に位置している(図2参照)。
(3-5-6) Second humidification duct 180
The second humidifying duct 180 is a duct that guides the high-temperature and high-humidity air sent by the humidifying fan 75 to the connection port of the air supply hose 18 (see FIG. 1). Almost all of the second humidifying duct 180 is disposed in the machine room 42. However, a part of the second humidifying duct 180 that is connected to the connection port of the air supply hose 18 is located on the opposite side of the machine room 42 with the right side plate 47 interposed therebetween (see FIG. 2). ).
 図5に示されるように、第2加湿用ダクト180は、水平ダクト部181と、鉛直ダクト部182とを有している。水平ダクト部181は、高温高湿の空気を水平方向に導く。鉛直ダクト部182は、水平ダクト部181に接続され、水平ダクト部181を通過した高温高湿の空気を下方に導く。水平ダクト部181は、機械室42内部から右側板47に向かって延びている。鉛直ダクト部182は、水平ダクト部181との接続部から下方に向かって延びている。鉛直ダクト部182の終端は、給気ホース18の接続口と接続されている。 As shown in FIG. 5, the second humidifying duct 180 has a horizontal duct portion 181 and a vertical duct portion 182. The horizontal duct portion 181 guides high-temperature and high-humidity air in the horizontal direction. The vertical duct part 182 is connected to the horizontal duct part 181 and guides the hot and humid air passing through the horizontal duct part 181 downward. The horizontal duct portion 181 extends from the inside of the machine room 42 toward the right side plate 47. The vertical duct part 182 extends downward from the connection part with the horizontal duct part 181. The end of the vertical duct portion 182 is connected to the connection port of the air supply hose 18.
 (4)加湿ロータ63及びロータ枠壁65の詳細な構成
 ロータ枠壁65は、加湿ロータ63を所定の位置において回転可能に支持するための部材である。図6は、ロータ枠壁65の正面図である。図7は、図6の線分VII-VIIにおけるロータ枠壁65の断面図である。図6,7では、ロータ枠壁65に支持されている加湿ロータ63の円盤形状の輪郭が点線で示されている。図7では、加湿ロータ63の回転軸63cが鎖線で示されている。図6は、加湿ロータ63の回転軸63cに沿って視た図である。
(4) Detailed Configuration of Humidification Rotor 63 and Rotor Frame Wall 65 The rotor frame wall 65 is a member for rotatably supporting the humidification rotor 63 at a predetermined position. FIG. 6 is a front view of the rotor frame wall 65. FIG. 7 is a cross-sectional view of the rotor frame wall 65 taken along line VII-VII in FIG. In FIGS. 6 and 7, the disk-shaped outline of the humidification rotor 63 supported by the rotor frame wall 65 is indicated by a dotted line. In FIG. 7, the rotating shaft 63c of the humidification rotor 63 is indicated by a chain line. FIG. 6 is a view of the humidifying rotor 63 as viewed along the rotating shaft 63c.
 ロータ枠壁65は、加湿ロータ63の周囲を囲む環状部65aを有する。図6,7に示されるように、環状部65aの内周面である囲み面65bは、加湿ロータ63の径方向外側において、加湿ロータ63の外周面と対向する面である。加湿ロータ63の径方向とは、加湿ロータ63の円形の主表面の径方向である。 The rotor frame wall 65 has an annular portion 65 a surrounding the humidifying rotor 63. As shown in FIGS. 6 and 7, the surrounding surface 65 b that is the inner peripheral surface of the annular portion 65 a is a surface that faces the outer peripheral surface of the humidifying rotor 63 on the radially outer side of the humidifying rotor 63. The radial direction of the humidification rotor 63 is the radial direction of the circular main surface of the humidification rotor 63.
 図7に示されるように、ロータ枠壁65には、樹脂製の軸受部材65cが取り付けられている。図8は、図7と同じ方向から視た軸受部材65cの側面図である。軸受部材65cは、シャフト66を有する。シャフト66は、加湿ロータ63を回転自在に支持するためのテーパ形状の突起である。加湿ロータ63の回転軸63cに沿って視た場合に、軸受部材65cは、ロータ枠壁65の環状部65aの中央部に位置している。 As shown in FIG. 7, a resin bearing member 65 c is attached to the rotor frame wall 65. FIG. 8 is a side view of the bearing member 65c viewed from the same direction as FIG. The bearing member 65 c has a shaft 66. The shaft 66 is a tapered protrusion for rotatably supporting the humidification rotor 63. When viewed along the rotation shaft 63 c of the humidification rotor 63, the bearing member 65 c is located at the center of the annular portion 65 a of the rotor frame wall 65.
 図8に示されるように、シャフト66は、根元部66aと先端部66bとを有する。根元部66a及び先端部66bは、それぞれ、シャフト66の端部である。根元部66aから先端部66bに向かって、シャフト66の外径は徐々に小さくなる。図8には、根元部66aの外径R1、及び、先端部66bの外径R2が示されている。 As shown in FIG. 8, the shaft 66 has a root portion 66a and a tip portion 66b. The root portion 66a and the tip portion 66b are end portions of the shaft 66, respectively. The outer diameter of the shaft 66 gradually decreases from the root portion 66a toward the tip portion 66b. FIG. 8 shows the outer diameter R1 of the root portion 66a and the outer diameter R2 of the tip portion 66b.
 図4,6,7に示されるように、加湿ロータ63は、シャフト66を通すためのシャフト貫通孔67を有する。シャフト貫通孔67は、加湿ロータ63の主表面の中央部に形成されている。シャフト貫通孔67は、シャフト66と同様に、テーパ形状を有する。加湿ロータ63のシャフト貫通孔67に、ロータ枠壁65に取り付けられている軸受部材65cのシャフト66を通すことによって、加湿ロータ63がロータ枠壁65に取り付けられる。シャフト貫通孔67の鉛直方向の中心位置は、加湿ロータ63の回転軸63cの位置と同じである。 As shown in FIGS. 4, 6, and 7, the humidification rotor 63 has a shaft through hole 67 through which the shaft 66 passes. The shaft through hole 67 is formed in the central portion of the main surface of the humidification rotor 63. As with the shaft 66, the shaft through hole 67 has a tapered shape. The humidifying rotor 63 is attached to the rotor frame wall 65 by passing the shaft 66 of the bearing member 65c attached to the rotor frame wall 65 through the shaft through hole 67 of the humidifying rotor 63. The center position of the shaft through hole 67 in the vertical direction is the same as the position of the rotating shaft 63 c of the humidifying rotor 63.
 図9は、回転軸63cを含む平面で加湿ロータ63を切断した場合における、加湿ロータ63の断面図である。加湿ロータ63のシャフト貫通孔67は、第1開口67aと第2開口67bとを有する。第1開口67a及び第2開口67bは、それぞれ、回転軸63cに沿った方向における、シャフト貫通孔67の端部である。第1開口67aから第2開口67bに向かって、シャフト貫通孔67の内径は徐々に小さくなる。図9には、第1開口67aの内径S1、及び、第2開口67bの内径S2が示されている。第1開口67aの内径S1は、シャフト66の根元部66aの外径R1より大きく、第2開口67bの内径S2は、シャフト66の先端部66bの外径R2より大きい。 FIG. 9 is a cross-sectional view of the humidification rotor 63 when the humidification rotor 63 is cut along a plane including the rotation shaft 63c. The shaft through hole 67 of the humidifying rotor 63 has a first opening 67a and a second opening 67b. The 1st opening 67a and the 2nd opening 67b are the edge parts of the shaft through-hole 67 in the direction along the rotating shaft 63c, respectively. The inner diameter of the shaft through hole 67 gradually decreases from the first opening 67a toward the second opening 67b. FIG. 9 shows the inner diameter S1 of the first opening 67a and the inner diameter S2 of the second opening 67b. The inner diameter S1 of the first opening 67a is larger than the outer diameter R1 of the root portion 66a of the shaft 66, and the inner diameter S2 of the second opening 67b is larger than the outer diameter R2 of the tip portion 66b of the shaft 66.
 ロータ枠壁65に加湿ロータ63を取り付けるために、シャフト貫通孔67にシャフト66を通す際には、シャフト貫通孔67の第1開口67aの側から、シャフト66の先端部66bを挿入する。これにより、シャフト貫通孔67にシャフト66を通した後において、シャフト貫通孔67の第1開口67aの側には、シャフト66の根元部66aが位置し、シャフト貫通孔67の第2開口67bの側には、シャフト66の先端部66bが位置する。 When the shaft 66 is passed through the shaft through hole 67 in order to attach the humidifying rotor 63 to the rotor frame wall 65, the tip end portion 66b of the shaft 66 is inserted from the first opening 67a side of the shaft through hole 67. Thereby, after passing the shaft 66 through the shaft through hole 67, the root portion 66 a of the shaft 66 is located on the first opening 67 a side of the shaft through hole 67, and the second opening 67 b of the shaft through hole 67 is formed. The tip portion 66b of the shaft 66 is located on the side.
 ここで、ロータ駆動用モータ64の動力によって加湿ロータ63が回転軸63c周りに回転している間は、加湿ロータ63のシャフト貫通孔67の内周面67cは、シャフト66の外周面66cと摺動する。すなわち、シャフト貫通孔67の内周面67cは、すべり軸受のすべり面に相当する。また、加湿ロータ63の回転軸63c方向の任意の位置において、シャフト66の外径は、シャフト貫通孔67の内径より小さい。 Here, while the humidifying rotor 63 is rotated around the rotation shaft 63 c by the power of the rotor driving motor 64, the inner peripheral surface 67 c of the shaft through hole 67 of the humidifying rotor 63 slides on the outer peripheral surface 66 c of the shaft 66. Move. That is, the inner peripheral surface 67c of the shaft through hole 67 corresponds to the sliding surface of the sliding bearing. In addition, the outer diameter of the shaft 66 is smaller than the inner diameter of the shaft through hole 67 at an arbitrary position in the direction of the rotating shaft 63 c of the humidifying rotor 63.
 図10は、シャフト貫通孔67を通るシャフト66の断面図である。図10は、加湿ロータ63のシャフト貫通孔67にシャフト66が通された直後であり、加湿ロータ63が未だシャフト66によって支持されていない状態を示す図である。図10において、シャフト貫通孔67の鉛直方向の中心位置(加湿ロータ63の回転軸63cの位置)は、シャフト66の鉛直方向の中心位置と一致している。このとき、シャフト貫通孔67の内周面67cと、シャフト66の外周面66cとの間には、隙間が形成されている。以下、この隙間を、軸受隙間69と呼ぶ。図10において、シャフト66の根元部66aにおける軸受隙間69の寸法である第1軸受隙間寸法G1は、(S1-R1)/2で求められ、シャフト66の先端部66bにおける軸受隙間69の寸法である第2軸受隙間寸法G2は、(S2-R2)/2で求められる。軸受隙間69の寸法は、シャフト66の根元部66aから先端部66bに向かって徐々に小さくなる。すなわち、G1>G2が成り立つ。例えば、第1軸受隙間寸法G1は、0.5mmであり、第2軸受隙間寸法G2は、0.15mmである。 FIG. 10 is a cross-sectional view of the shaft 66 passing through the shaft through hole 67. FIG. 10 is a diagram showing a state immediately after the shaft 66 is passed through the shaft through hole 67 of the humidification rotor 63 and the humidification rotor 63 is not yet supported by the shaft 66. In FIG. 10, the vertical center position of the shaft through hole 67 (the position of the rotating shaft 63 c of the humidifying rotor 63) coincides with the vertical center position of the shaft 66. At this time, a gap is formed between the inner peripheral surface 67 c of the shaft through hole 67 and the outer peripheral surface 66 c of the shaft 66. Hereinafter, this gap is referred to as a bearing gap 69. In FIG. 10, the first bearing gap dimension G1, which is the dimension of the bearing gap 69 at the root 66a of the shaft 66, is obtained by (S1-R1) / 2, and is the dimension of the bearing gap 69 at the tip 66b of the shaft 66. A certain second bearing gap dimension G2 is obtained by (S2-R2) / 2. The size of the bearing gap 69 gradually decreases from the root 66a of the shaft 66 toward the tip 66b. That is, G1> G2 holds. For example, the first bearing gap dimension G1 is 0.5 mm, and the second bearing gap dimension G2 is 0.15 mm.
 図10に示される状態では、シャフト66の全周において、シャフト貫通孔67の内周面67cと、シャフト66の外周面66cとの間には、軸受隙間69が存在する。そのため、図10に示される加湿ロータ63は、自身にかかる重力によって、軸受隙間69の分だけ鉛直方向下方に移動する。図10に示される加湿ロータ63が移動する距離は、軸受隙間69の寸法の最小値である第2軸受隙間寸法G2に等しい。図11は、図10に示される状態から、加湿ロータ63が軸受隙間69の分(第2軸受隙間寸法G2)だけ鉛直方向下方に移動した後の状態を示す図である。図11では、シャフト66の先端部66bの上端と、シャフト貫通孔67の内周面67cとの間には、軸受隙間69が存在しない。 In the state shown in FIG. 10, a bearing gap 69 exists between the inner peripheral surface 67 c of the shaft through hole 67 and the outer peripheral surface 66 c of the shaft 66 on the entire circumference of the shaft 66. Therefore, the humidification rotor 63 shown in FIG. 10 moves downward in the vertical direction by the amount of the bearing gap 69 due to gravity applied to itself. The distance traveled by the humidifying rotor 63 shown in FIG. 10 is equal to the second bearing gap dimension G2, which is the minimum dimension of the bearing gap 69. FIG. 11 is a diagram showing a state after the humidifying rotor 63 has moved downward in the vertical direction by the amount corresponding to the bearing gap 69 (second bearing gap dimension G2) from the state shown in FIG. In FIG. 11, there is no bearing gap 69 between the upper end of the tip 66 b of the shaft 66 and the inner peripheral surface 67 c of the shaft through hole 67.
 ロータ枠壁65の囲み面65bの形状は、ロータ枠壁65に加湿ロータ63を取り付ける際に軸受隙間69の分だけ加湿ロータ63が下方に移動することを考慮して設計されている。図12は、加湿ロータ63の回転軸63cに沿って視た場合における、加湿ロータ63と、シャフト66と、囲み面65bとの位置関係を示す図である。図12は、シャフト66の先端部66bから根元部66aに向かって視た図である。図12では、本実施形態の特徴が明確に把握できるように、加湿ロータ63、シャフト66、及び囲み面65bの形状の輪郭のみが示され、かつ、一部の寸法が誇張して描かれている。図12において、加湿ロータ63は、点線で示されている。図12は、図11に示される状態に相当する。 The shape of the surrounding surface 65b of the rotor frame wall 65 is designed in consideration of the fact that the humidifying rotor 63 moves downward by the bearing gap 69 when the humidifying rotor 63 is attached to the rotor frame wall 65. FIG. 12 is a diagram illustrating a positional relationship among the humidifying rotor 63, the shaft 66, and the surrounding surface 65b when viewed along the rotation shaft 63c of the humidifying rotor 63. FIG. 12 is a view of the shaft 66 viewed from the tip 66b toward the root 66a. In FIG. 12, only the contours of the shapes of the humidification rotor 63, the shaft 66, and the surrounding surface 65b are shown, and some dimensions are exaggerated so that the features of the present embodiment can be clearly understood. Yes. In FIG. 12, the humidification rotor 63 is indicated by a dotted line. FIG. 12 corresponds to the state shown in FIG.
 図12には、支持中心66d、下側囲み面寸法L1、及び上側囲み面寸法L2が示されている。支持中心66dは、シャフト66の鉛直方向の中心である。下側囲み面寸法L1は、支持中心66dと、囲み面65bの下端である囲み面下端65b1との間の距離である。上側囲み面寸法L2は、支持中心66dと、囲み面65bの上端である囲み面上端65b2との間の距離である。 FIG. 12 shows the support center 66d, the lower enclosure surface dimension L1, and the upper enclosure surface dimension L2. The support center 66d is the center of the shaft 66 in the vertical direction. The lower enclosure surface dimension L1 is a distance between the support center 66d and the enclosure surface lower end 65b1 which is the lower end of the enclosure surface 65b. The upper enclosure surface dimension L2 is the distance between the support center 66d and the enclosure surface upper end 65b2 that is the upper end of the enclosure surface 65b.
 図12において、下側囲み面寸法L1は、上側囲み面寸法L2よりも長い。これは、加湿ロータ63の回転軸63cに沿って囲み面65bを視た場合において、支持中心66dから囲み面65bまでの距離である径が、囲み面65bの周方向において均一でないことを意味する。すなわち、図12において、囲み面65b全体の形状は、真円ではない。具体的には、支持中心66dよりも下方における囲み面65bの径が、支持中心66dよりも上方における囲み面65bの径よりも大きくなるように、囲み面65bの形状が設計されている。 In FIG. 12, the lower enclosure surface dimension L1 is longer than the upper enclosure surface dimension L2. This means that when the surrounding surface 65b is viewed along the rotation axis 63c of the humidification rotor 63, the diameter, which is the distance from the support center 66d to the surrounding surface 65b, is not uniform in the circumferential direction of the surrounding surface 65b. . That is, in FIG. 12, the entire shape of the surrounding surface 65b is not a perfect circle. Specifically, the shape of the surrounding surface 65b is designed so that the diameter of the surrounding surface 65b below the support center 66d is larger than the diameter of the surrounding surface 65b above the support center 66d.
 加湿ロータ63は、ロータ枠壁65に取り付けられる際に、自身にかかる重力によって、軸受隙間69の分だけ鉛直方向下方に移動する。そのため、図12に示されるように、ロータ枠壁65に取り付けられた加湿ロータ63の回転軸63cは、シャフト66の支持中心66dよりも下方に位置する。下側囲み面寸法L1及び上側囲み面寸法L2は、ロータ枠壁65に取り付けられた加湿ロータ63の外周面が囲み面65bと接触しないように設定されている。具体的には、加湿ロータ63の下端が囲み面下端65b1と接触しない程度に、下側囲み面寸法L1は、上側囲み面寸法L2と比べて長く設定されている。 When the humidifying rotor 63 is attached to the rotor frame wall 65, the humidifying rotor 63 moves downward in the vertical direction by the amount of the bearing gap 69 due to gravity applied to itself. Therefore, as shown in FIG. 12, the rotating shaft 63 c of the humidifying rotor 63 attached to the rotor frame wall 65 is positioned below the support center 66 d of the shaft 66. The lower enclosure surface dimension L1 and the upper enclosure surface dimension L2 are set so that the outer peripheral surface of the humidification rotor 63 attached to the rotor frame wall 65 does not contact the enclosure surface 65b. Specifically, the lower enclosure surface dimension L1 is set longer than the upper enclosure surface dimension L2 so that the lower end of the humidification rotor 63 does not come into contact with the enclosure surface lower end 65b1.
 (5)空調機10の動作
 冷房運転モード、暖房運転モード、及び加湿運転モードのそれぞれにおける、空調機10の動作について説明する。
(5) Operation of Air Conditioner 10 The operation of the air conditioner 10 in each of the cooling operation mode, the heating operation mode, and the humidification operation mode will be described.
 (5-1)冷房運転
 冷房運転時において、四路切換弁32は、圧縮機31の吐出側と室外熱交換器33のガス側とを接続し、かつ、圧縮機31の吸入側と室内熱交換器21のガス側とを接続する。図1において、冷房運転時における四路切換弁32の状態は、実線で示されている。
(5-1) Cooling Operation During the cooling operation, the four-way switching valve 32 connects the discharge side of the compressor 31 and the gas side of the outdoor heat exchanger 33, and the suction side of the compressor 31 and the indoor heat. The gas side of the exchanger 21 is connected. In FIG. 1, the state of the four-way switching valve 32 during the cooling operation is indicated by a solid line.
 液側閉鎖弁37及びガス側閉鎖弁38は、開状態である。電動膨張弁34の開度は、室内熱交換器21の冷媒出口における冷媒の過熱度が所定の目標値で一定になるように調節される。 The liquid side closing valve 37 and the gas side closing valve 38 are open. The opening degree of the electric expansion valve 34 is adjusted so that the degree of superheat of the refrigerant at the refrigerant outlet of the indoor heat exchanger 21 becomes constant at a predetermined target value.
 このような状態の冷媒回路において、圧縮機31、室外ファン39及び室内ファン22の運転を開始すると、低圧のガス冷媒は、圧縮機31に吸入されて圧縮されて高圧のガス冷媒となる。高圧のガス冷媒は、四路切換弁32を経由して室外熱交換器33に送られて、室外ファン39によって供給される室外空気との熱交換により凝縮して高圧の液冷媒となる。高圧の液冷媒は、電動膨張弁34で減圧されて気液二相状態の冷媒となった後、液側閉鎖弁37及び液冷媒連絡配管14を経由して、室内ユニット20に送られる。 In the refrigerant circuit in such a state, when the operation of the compressor 31, the outdoor fan 39 and the indoor fan 22 is started, the low-pressure gas refrigerant is sucked into the compressor 31 and compressed to become a high-pressure gas refrigerant. The high-pressure gas refrigerant is sent to the outdoor heat exchanger 33 via the four-way switching valve 32 and condensed by heat exchange with the outdoor air supplied by the outdoor fan 39 to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is reduced in pressure by the electric expansion valve 34 to become a gas-liquid two-phase refrigerant, and then sent to the indoor unit 20 via the liquid-side closing valve 37 and the liquid refrigerant communication pipe 14.
 室内ユニット20に送られた気液二相状態の冷媒は、室内熱交換器15に入り、室内熱交換器15において室内空気との熱交換により液冷媒が蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、ガス冷媒連絡配管16及びガス側閉鎖弁38を経由して室外ユニット30に送られ、四路切換弁32を経由して、アキュムレータ36に流入する。アキュムレータ36に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。 The refrigerant in the gas-liquid two-phase state sent to the indoor unit 20 enters the indoor heat exchanger 15, and in the indoor heat exchanger 15, the liquid refrigerant evaporates due to heat exchange with the indoor air to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the outdoor unit 30 via the gas refrigerant communication pipe 16 and the gas-side closing valve 38, and flows into the accumulator 36 via the four-way switching valve 32. The low-pressure gas refrigerant that has flowed into the accumulator 36 is again sucked into the compressor 31.
 このように、空調機10は、室外熱交換器33を冷媒の凝縮器として機能させ、かつ、室内熱交換器21を冷媒の蒸発器として機能させる冷房運転を行う。 Thus, the air conditioner 10 performs a cooling operation in which the outdoor heat exchanger 33 functions as a refrigerant condenser and the indoor heat exchanger 21 functions as a refrigerant evaporator.
 (5-2)暖房運転
 暖房運転時において、四路切換弁32は、圧縮機31の吐出側と室内熱交換器21のガス側とを接続し、かつ、圧縮機31の吸入側と室外熱交換器33のガス側とを接続する。図1において、暖房運転時における四路切換弁32の状態は、点線で示されている。
(5-2) Heating Operation During the heating operation, the four-way switching valve 32 connects the discharge side of the compressor 31 and the gas side of the indoor heat exchanger 21, and the suction side and outdoor heat of the compressor 31. The gas side of the exchanger 33 is connected. In FIG. 1, the state of the four-way switching valve 32 during the heating operation is indicated by a dotted line.
 液側閉鎖弁37及びガス側閉鎖弁38は、開状態である。電動膨張弁34の開度は、室外熱交換器33に流入する冷媒の圧力が、室外熱交換器33において液冷媒が完全に蒸発できる圧力まで低下するように調節される。 The liquid side closing valve 37 and the gas side closing valve 38 are open. The opening degree of the electric expansion valve 34 is adjusted so that the pressure of the refrigerant flowing into the outdoor heat exchanger 33 is reduced to a pressure at which the liquid refrigerant can be completely evaporated in the outdoor heat exchanger 33.
 このような状態の冷媒回路において、圧縮機31、室外ファン39及び室内ファン22の運転を開始すると、低圧のガス冷媒は、圧縮機31に吸入されて圧縮されて高圧のガス冷媒となる。高圧のガス冷媒は、四路切換弁32、ガス側閉鎖弁38及びガス冷媒連絡配管16を経由して、室内ユニット20に送られる。 In the refrigerant circuit in such a state, when the operation of the compressor 31, the outdoor fan 39 and the indoor fan 22 is started, the low-pressure gas refrigerant is sucked into the compressor 31 and compressed to become a high-pressure gas refrigerant. The high-pressure gas refrigerant is sent to the indoor unit 20 via the four-way switching valve 32, the gas side closing valve 38 and the gas refrigerant communication pipe 16.
 室内ユニット20に送られた高圧のガス冷媒は、室内熱交換器21において、室内空気との熱交換により凝縮して高圧の液冷媒となる。高圧の液冷媒は、液冷媒連絡配管14及び液側閉鎖弁37を経由して室外ユニット30に送られる。 The high-pressure gas refrigerant sent to the indoor unit 20 is condensed by heat exchange with indoor air in the indoor heat exchanger 21 to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is sent to the outdoor unit 30 via the liquid refrigerant communication pipe 14 and the liquid side shut-off valve 37.
 室外ユニット30に送られた高圧の液冷媒は、電動膨張弁34で減圧されて気液二相状態の冷媒となった後に、室外熱交換器33に流入する。室外熱交換器33に流入した低圧の気液二相状態の冷媒は、室外ファン39によって供給される室外空気との熱交換により液冷媒が蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、四路切換弁32を経由してアキュムレータ36に流入する。アキュムレータ36に流入した低圧のガス冷媒は、再び、圧縮機31に吸入される。 The high-pressure liquid refrigerant sent to the outdoor unit 30 is decompressed by the electric expansion valve 34 to become a gas-liquid two-phase refrigerant, and then flows into the outdoor heat exchanger 33. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 33 evaporates as a low-pressure gas refrigerant by heat exchange with the outdoor air supplied by the outdoor fan 39. The low-pressure gas refrigerant flows into the accumulator 36 via the four-way switching valve 32. The low-pressure gas refrigerant that has flowed into the accumulator 36 is again sucked into the compressor 31.
 このように、空調機10は、室内熱交換器21を冷媒の凝縮器として機能させ、かつ、室外熱交換器33を冷媒の蒸発器として機能させる暖房運転を行う。 Thus, the air conditioner 10 performs a heating operation in which the indoor heat exchanger 21 functions as a refrigerant condenser and the outdoor heat exchanger 33 functions as a refrigerant evaporator.
 (5-3)加湿運転
 空調機10の加湿運転は、暖房運転と組み合わされて行われる。図2、図3及び図5に示されるように、加湿ユニット60の吸着用ダクト68の空気流入口681(図5参照)は、前板46の室外吸込口46b(図3参照)に向かって開口し、空気流出口683(図2参照)は、室外ファン39が回転するときに負圧となるベルマウス52の上流側に開口している。室外ファン39が稼動すると、空気流出口683側の気圧が空気流入口681側より低くなり、室外熱交換器33を通過していない外気が、空気流入口681から吸い込まれる。空気流入口681から吸い込まれた外気に含まれる水分は、加湿ロータ63の水分吸着領域63aに吸着される。
(5-3) Humidification operation The humidification operation of the air conditioner 10 is performed in combination with the heating operation. As shown in FIGS. 2, 3, and 5, the air inlet 681 (see FIG. 5) of the adsorption duct 68 of the humidifying unit 60 faces the outdoor suction port 46 b (see FIG. 3) of the front plate 46. The air outlet port 683 (see FIG. 2) opens to the upstream side of the bell mouth 52, which becomes negative pressure when the outdoor fan 39 rotates. When the outdoor fan 39 is operated, the air pressure on the air outlet 683 side becomes lower than the air inlet 681 side, and the outside air that has not passed through the outdoor heat exchanger 33 is sucked in from the air inlet 681. Moisture contained in the outside air sucked from the air inlet 681 is adsorbed by the moisture adsorption region 63 a of the humidification rotor 63.
 加湿ロータ63は、空気流入口681と空気流出口683との間であって、かつ、空気流出口683の近傍に位置する。加湿運転時において、加湿ロータ63は、ロータ駆動用モータ64の動力によって、その回転軸63cを中心に所定の回転速度で回転する。加湿ロータ63の回転によって、水分吸着領域63aで吸着された水分は、水分放出領域63bまで運ばれる。 The humidification rotor 63 is located between the air inlet 681 and the air outlet 683 and in the vicinity of the air outlet 683. During the humidifying operation, the humidifying rotor 63 is rotated at a predetermined rotational speed around the rotation shaft 63c by the power of the rotor driving motor 64. By the rotation of the humidification rotor 63, the moisture adsorbed in the moisture adsorption region 63a is carried to the moisture release region 63b.
 同時に、加湿用ファン75の駆動によって、加湿用開口40aから取り込まれた外気が、加湿用ヒータ71の周囲まで導かれて加熱される。加湿用ヒータ71によって加熱された空気は、加湿ロータ63の水分放出領域63bを通過する。このとき、水分放出領域63bにおいて、加熱された空気に曝された部分から水分が放出される。その後、水分放出領域63bから放出された水分を含む高湿の空気は、加湿用ダクト73に導かれ、加湿用ファン75によって第2加湿用ダクト180内に供給される。第2加湿用ダクト180に供給された高湿の空気は、給気ホース18を経由して室内ユニット20へ導かれる。 At the same time, by driving the humidifying fan 75, the outside air taken in from the humidifying opening 40a is guided to the surroundings of the humidifying heater 71 and heated. The air heated by the humidifying heater 71 passes through the moisture release region 63 b of the humidifying rotor 63. At this time, moisture is released from the portion exposed to the heated air in the moisture release region 63b. Thereafter, the high-humidity air containing moisture released from the moisture release region 63 b is guided to the humidification duct 73 and supplied into the second humidification duct 180 by the humidification fan 75. The high-humidity air supplied to the second humidification duct 180 is guided to the indoor unit 20 via the air supply hose 18.
 (6)特徴
 本実施形態の加湿ユニット60では、円盤形状の加湿ロータ63が、その主表面が鉛直方向に沿うように、ロータ枠壁65に取り付けられている。加湿ロータ63は、ロータ枠壁65に取り付けられている軸受部材65cのシャフト66によって回転自在に支持されている。加湿ロータ63の外周面は、ロータ枠壁65の囲み面65bによって囲まれている。
(6) Features In the humidification unit 60 of the present embodiment, the disc-shaped humidification rotor 63 is attached to the rotor frame wall 65 so that the main surface thereof is along the vertical direction. The humidification rotor 63 is rotatably supported by a shaft 66 of a bearing member 65c attached to the rotor frame wall 65. The outer peripheral surface of the humidification rotor 63 is surrounded by the surrounding surface 65 b of the rotor frame wall 65.
 図12に示されるように、シャフト66の支持中心66dから囲み面65bまでの距離は、囲み面65bの周方向において一定ではない。具体的には、下側囲み面寸法L1が上側囲み面寸法L2よりも長くなるように、囲み面65bの形状が設計されている。加湿ロータ63をロータ枠壁65に取り付ける際に、シャフト66周りに軸受隙間69(図10参照)の分だけ、加湿ロータ63が自身にかかる重力によって下方に移動しても、加湿ロータ63の外周面が囲み面65bと接触しない程度に、下側囲み面寸法L1が確保されている。加湿ロータ63が移動する距離は、図10に示される第2軸受隙間寸法G2に等しい。そのため、下側囲み面寸法L1と、加湿ロータ63の主表面の半径との差が第2軸受隙間寸法G2よりも大きければ、加湿ロータ63をロータ枠壁65に取り付ける際に、加湿ロータ63の外周面が囲み面65bに衝突することが回避される。加湿ロータ63が回転しているときに、加湿ロータ63の外周面が囲み面65bに衝突すると、加湿ロータ63の回転が停止するロックという現象が発生するおそれがある。そのため、下側囲み面寸法L1を上側囲み面寸法L2よりも長くすることで、加湿ロータ63の外周面が囲み面65bに接触することが回避される。従って、加湿ユニット60は、加湿ロータ63のロックを防止することができる。 As shown in FIG. 12, the distance from the support center 66d of the shaft 66 to the surrounding surface 65b is not constant in the circumferential direction of the surrounding surface 65b. Specifically, the shape of the surrounding surface 65b is designed so that the lower surrounding surface dimension L1 is longer than the upper surrounding surface dimension L2. When the humidifying rotor 63 is attached to the rotor frame wall 65, even if the humidifying rotor 63 moves downward by gravity applied to itself around the shaft 66 by the bearing gap 69 (see FIG. 10), the outer periphery of the humidifying rotor 63 The lower enclosure surface dimension L1 is ensured to the extent that the surface does not contact the enclosure surface 65b. The distance that the humidification rotor 63 moves is equal to the second bearing gap dimension G2 shown in FIG. Therefore, if the difference between the lower enclosure surface dimension L1 and the radius of the main surface of the humidification rotor 63 is larger than the second bearing gap dimension G2, when the humidification rotor 63 is attached to the rotor frame wall 65, the humidification rotor 63 It is avoided that the outer peripheral surface collides with the surrounding surface 65b. When the humidifying rotor 63 is rotating, if the outer peripheral surface of the humidifying rotor 63 collides with the surrounding surface 65b, a phenomenon called a lock that stops the rotation of the humidifying rotor 63 may occur. Therefore, by making the lower enclosure surface dimension L1 longer than the upper enclosure surface dimension L2, it is avoided that the outer peripheral surface of the humidification rotor 63 contacts the enclosure surface 65b. Therefore, the humidification unit 60 can prevent the humidification rotor 63 from being locked.
 また、本実施形態の加湿ユニット60では、加湿ロータ63は、シャフト66を通すためのシャフト貫通孔67を有する。加湿ロータ63が回転している間、シャフト貫通孔67の内周面67cは、シャフト貫通孔67を通るシャフト66の外周面66cと摺動する。すなわち、加湿ロータ63は、シャフト貫通孔67の内周面67cをすべり面とするすべり軸受構造によって回転自在に支持されている。この場合、加湿ロータ63をロータ枠壁65に取り付ける際に、シャフト貫通孔67の内周面67cとシャフト66の外周面66cとの間の軸受隙間69の寸法だけ、加湿ロータ63が自身にかかる重力によって鉛直方向下方に移動する。このようなすべり軸受は、構造が単純であり、軸受隙間69の寸法を高い精度で設計できる。そのため、加湿ロータ63のロックを防止できる限界まで、ロータ枠壁65の囲み面65bを小さくすることができる。従って、加湿ユニット60は、ロータ枠壁65の寸法を抑えて、小型化を達成することができる。 Further, in the humidification unit 60 of the present embodiment, the humidification rotor 63 has a shaft through hole 67 through which the shaft 66 is passed. While the humidification rotor 63 is rotating, the inner peripheral surface 67 c of the shaft through hole 67 slides with the outer peripheral surface 66 c of the shaft 66 passing through the shaft through hole 67. That is, the humidification rotor 63 is rotatably supported by a sliding bearing structure in which the inner peripheral surface 67c of the shaft through hole 67 is a sliding surface. In this case, when the humidification rotor 63 is attached to the rotor frame wall 65, the humidification rotor 63 is applied to itself by the size of the bearing gap 69 between the inner peripheral surface 67c of the shaft through hole 67 and the outer peripheral surface 66c of the shaft 66. Moves vertically downward due to gravity. Such a plain bearing has a simple structure, and the size of the bearing gap 69 can be designed with high accuracy. Therefore, the surrounding surface 65b of the rotor frame wall 65 can be reduced to the limit that can prevent the humidifying rotor 63 from being locked. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
 また、本実施形態の加湿ユニット60では、軸受隙間69の寸法は、シャフト66の根元部66aから先端部66bに向かって徐々に小さくなる。すなわち、図10に示されるように、先端部66bにおける第2軸受隙間寸法G2は、根元部66aにおける第1軸受隙間寸法G1より小さい。ここで、先端部66bにおける第2軸受隙間寸法G2が、根元部66aにおける第1軸受隙間寸法G1より大きいと、加湿ロータ63をロータ枠壁65に取り付ける際に、加湿ロータ63が自身にかかる重力によって鉛直方向下方に移動する距離は、第1軸受隙間寸法G1に等しくなる。この場合、加湿ロータ63のシャフト貫通孔67の内周面67cは、シャフト66の根元部66aと接触するので、先端部66bよりも根元部66aに加湿ロータ63の荷重が重点的にかかる。そのため、加湿ユニット60の長期間の使用によってシャフト66の根元部66aが疲労して、シャフト66の機械的強度が低下しやすくなる。その結果、シャフト66が、根元部66aにおいて折れるおそれがある。しかし、加湿ユニット60では、第2軸受隙間寸法G2は第1軸受隙間寸法G1より小さいので、シャフト66の機械的強度の低下が抑制される。従って、加湿ユニット60は、加湿ロータ63を支持する部材の寿命が短くなることを抑制することができる。 Further, in the humidification unit 60 of the present embodiment, the dimension of the bearing gap 69 gradually decreases from the root portion 66a of the shaft 66 toward the tip portion 66b. That is, as shown in FIG. 10, the second bearing gap dimension G2 at the tip 66b is smaller than the first bearing gap dimension G1 at the root 66a. Here, when the second bearing gap dimension G2 at the distal end portion 66b is larger than the first bearing gap dimension G1 at the root portion 66a, when the humidifying rotor 63 is attached to the rotor frame wall 65, the humidifying rotor 63 is gravity applied to itself. Therefore, the distance of moving downward in the vertical direction is equal to the first bearing gap dimension G1. In this case, since the inner peripheral surface 67c of the shaft through-hole 67 of the humidification rotor 63 is in contact with the root portion 66a of the shaft 66, the load of the humidification rotor 63 is applied more heavily to the root portion 66a than to the tip portion 66b. Therefore, the root portion 66a of the shaft 66 is fatigued by the long-term use of the humidifying unit 60, and the mechanical strength of the shaft 66 is likely to be lowered. As a result, the shaft 66 may be broken at the root portion 66a. However, in the humidification unit 60, since the second bearing gap dimension G2 is smaller than the first bearing gap dimension G1, a decrease in the mechanical strength of the shaft 66 is suppressed. Therefore, the humidification unit 60 can suppress the lifetime of the member that supports the humidification rotor 63 from being shortened.
 また、本実施形態の加湿ユニット60では、加湿ロータ63は、ロータ駆動用モータ64によって駆動される。ロータ駆動用モータ64は、図3に示されるように、加湿ロータ63の外周面の歯63tと噛み合うピニオンギア64aを回転させて、加湿ロータ63を回転軸63c周りに回転させる。すなわち、加湿ロータ63を支持するシャフト66自体を回転させる必要がないので、加湿ロータ63を、すべり軸受によって支持することができる。すべり軸受は、構造が単純であり、軸受隙間69の寸法を高い精度で設計できる。そのため、加湿ロータ63のロックを防止できる限界まで、ロータ枠壁65の囲み面65bを小さくすることができる。従って、加湿ユニット60は、ロータ枠壁65の寸法を抑えて、小型化を達成することができる。 Further, in the humidification unit 60 of this embodiment, the humidification rotor 63 is driven by the rotor drive motor 64. As shown in FIG. 3, the rotor driving motor 64 rotates the humidification rotor 63 around the rotation shaft 63c by rotating the pinion gear 64a that meshes with the teeth 63t on the outer peripheral surface of the humidification rotor 63. That is, since it is not necessary to rotate the shaft 66 itself that supports the humidification rotor 63, the humidification rotor 63 can be supported by the slide bearing. The plain bearing has a simple structure, and the size of the bearing gap 69 can be designed with high accuracy. Therefore, the surrounding surface 65b of the rotor frame wall 65 can be reduced to the limit that can prevent the humidifying rotor 63 from being locked. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
 (7)変形例
 本発明の具体的構成は、本発明の要旨を逸脱しない範囲内で変更可能である。次に、本発明の実施形態の適用可能な変形例について説明する。
(7) Modifications The specific configuration of the present invention can be changed without departing from the gist of the present invention. Next, modifications to which the embodiment of the present invention can be applied will be described.
 (7-1)変形例A
 実施形態の加湿ユニット60では、図12に示されるように、下側囲み面寸法L1が上側囲み面寸法L2よりも長いという条件を満たすように、ロータ枠壁65の囲み面65bの形状が設計される。しかし、ロータ枠壁65の囲み面65bの形状は、さらに、他の条件を満たすように設計されてもよい。
(7-1) Modification A
In the humidifying unit 60 of the embodiment, as shown in FIG. 12, the shape of the surrounding surface 65b of the rotor frame wall 65 is designed so as to satisfy the condition that the lower surrounding surface dimension L1 is longer than the upper surrounding surface dimension L2. Is done. However, the shape of the surrounding surface 65b of the rotor frame wall 65 may be further designed to satisfy other conditions.
 図13は、図12と同様の図であって、下側加湿ロータ隙間寸法M1及び上側加湿ロータ隙間寸法M2が示されている図である。下側加湿ロータ隙間寸法M1は、加湿ロータ63の鉛直方向下端63d1と、囲み面下端65b1との間の距離である。上側加湿ロータ隙間寸法M2は、加湿ロータ63の鉛直方向上端63d2と、囲み面上端65b2との間の距離である。 FIG. 13 is a view similar to FIG. 12 and shows the lower humidifying rotor gap dimension M1 and the upper humidifying rotor gap dimension M2. The lower humidification rotor clearance dimension M1 is a distance between the vertical lower end 63d1 of the humidification rotor 63 and the surrounding surface lower end 65b1. The upper humidifying rotor gap dimension M2 is a distance between the vertical upper end 63d2 of the humidifying rotor 63 and the surrounding surface upper end 65b2.
 本変形例では、図13に示されるように、下側加湿ロータ隙間寸法M1が上側加湿ロータ隙間寸法M2より大きいという条件を満たすように、ロータ枠壁65の囲み面65bの形状が設計される。ここで、加湿ユニット60の小型化を達成するためには、加湿ロータ63と囲み面65bとの間の隙間をできるだけ小さくする必要がある。しかし、加湿ユニット60の長期間の運転によってシャフト66が磨耗してシャフト66の径が減少すると、加湿ロータ63の鉛直方向の位置がさらに下がって、加湿ロータ63が囲み面65bに接触するおそれがある。そのため、下側加湿ロータ隙間寸法M1の長さを抑えつつ、下側加湿ロータ隙間寸法M1が上側加湿ロータ隙間寸法M2よりも長いという条件が満たされるように囲み面65bの形状を設計することで、シャフト66の磨耗により加湿ロータ63の鉛直方向の位置がさらに下がっても、加湿ロータ63の下端が囲み面下端65b1に当たらない状態が維持されやすい。従って、この加湿ユニット60は、ロータ枠壁65の寸法を抑えて、小型化を達成することができる。 In this modification, as shown in FIG. 13, the shape of the surrounding surface 65b of the rotor frame wall 65 is designed so as to satisfy the condition that the lower humidifying rotor gap dimension M1 is larger than the upper humidifying rotor gap dimension M2. . Here, in order to achieve the miniaturization of the humidification unit 60, it is necessary to make the gap between the humidification rotor 63 and the surrounding surface 65b as small as possible. However, when the shaft 66 is worn and the diameter of the shaft 66 decreases due to the long-term operation of the humidifying unit 60, the vertical position of the humidifying rotor 63 is further lowered, and the humidifying rotor 63 may come into contact with the surrounding surface 65b. is there. Therefore, by designing the shape of the surrounding surface 65b so as to satisfy the condition that the lower humidification rotor gap dimension M1 is longer than the upper humidification rotor gap dimension M2 while suppressing the length of the lower humidification rotor gap dimension M1. Even when the vertical position of the humidifying rotor 63 is further lowered due to wear of the shaft 66, the state in which the lower end of the humidifying rotor 63 does not hit the surrounding surface lower end 65b1 is easily maintained. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
 (7-2)変形例B
 実施形態の加湿ユニット60では、図12に示される囲み面65b全体の形状は、真円ではない。具体的には、支持中心66dよりも下方における囲み面65bの径(例えば、下側囲み面寸法L1)が、支持中心66dよりも上方における囲み面65bの径(例えば、上側囲み面寸法L2)よりも大きくなるように、囲み面65bの形状が設計されている。
(7-2) Modification B
In the humidification unit 60 of the embodiment, the entire shape of the surrounding surface 65b shown in FIG. 12 is not a perfect circle. Specifically, the diameter of the surrounding surface 65b below the support center 66d (for example, the lower surrounding surface dimension L1) is the diameter of the surrounding surface 65b above the support center 66d (for example, the upper surrounding surface dimension L2). The shape of the surrounding surface 65b is designed to be larger than that.
 この場合、囲み面65bは、加湿ロータ63の回転軸63cに沿って視た場合において、支持中心66dの高さ位置から囲み面下端65b1の高さ位置に向かって、支持中心66dから囲み面65bまでの距離が徐々に大きくなる形状を有することが好ましい。 In this case, when the enclosure surface 65b is viewed along the rotation shaft 63c of the humidification rotor 63, the enclosure surface 65b is moved from the support center 66d toward the height position of the enclosure surface lower end 65b1 from the height position of the support center 66d. It is preferable to have a shape in which the distance is gradually increased.
 具体的には、加湿ロータ63の回転軸63cに沿って囲み面65bを視た場合において、支持中心66dよりも上方における囲み面65bの形状は、真円の弧であり、支持中心66dよりも下方における囲み面65bの形状は、長軸が鉛直方向に沿っている楕円の弧であってもよい。 Specifically, when the surrounding surface 65b is viewed along the rotation axis 63c of the humidifying rotor 63, the shape of the surrounding surface 65b above the support center 66d is a perfect circle arc, and is more than the support center 66d. The shape of the surrounding surface 65b on the lower side may be an elliptical arc whose major axis is along the vertical direction.
 加湿ユニット60では、囲み面65bの形状がこのように設計されたロータ枠壁65を用いることで、加湿ロータ63と囲み面65bとの間の隙間をできるだけ小さくすることができる。従って、加湿ユニット60は、ロータ枠壁65の寸法を抑えて、小型化を達成することができる。 In the humidification unit 60, the gap between the humidification rotor 63 and the surrounding surface 65b can be made as small as possible by using the rotor frame wall 65 whose shape of the surrounding surface 65b is designed in this way. Therefore, the humidification unit 60 can achieve downsizing while suppressing the size of the rotor frame wall 65.
 本発明に係る加湿装置は、加湿ロータのロックを防止することができる。 The humidifier according to the present invention can prevent the humidification rotor from being locked.
 60      加湿ユニット(加湿装置)
 63      加湿ロータ
 63c     加湿ロータの回転軸
 63t     加湿ロータの歯
 64      ロータ駆動用モータ(駆動部)
 65      ロータ枠壁(枠部材)
 65b     囲み面
 65b1    囲み面下端
 65b2    囲み面上端
 66      シャフト(支持部)
 66c     シャフトの外周面(外周面)
 66d     シャフトの支持中心(支持中心)
 67      シャフト貫通孔
 67c     シャフト貫通孔の内周面(すべり面)
  G1     第1軸受隙間寸法(軸受隙間寸法)
  G2     第2軸受隙間寸法(軸受隙間寸法)
  L1     下側囲み面寸法
  L2     上側囲み面寸法
  M1     下側加湿ロータ隙間寸法
  M2     上側加湿ロータ隙間寸法
60 Humidification unit (humidifier)
63 Humidification rotor 63c Rotating shaft of the humidification rotor 63t Humidification rotor teeth 64 Rotor drive motor (drive unit)
65 Rotor frame wall (frame member)
65b Enclosure surface 65b1 Enclosure surface lower end 65b2 Enclosure surface upper end 66 Shaft (support part)
66c Outer peripheral surface of shaft (outer peripheral surface)
66d Shaft support center (support center)
67 Shaft through hole 67c Inner peripheral surface (slip surface) of shaft through hole
G1 First bearing clearance dimension (bearing clearance dimension)
G2 Second bearing clearance dimension (bearing clearance dimension)
L1 Lower enclosure surface dimension L2 Upper enclosure surface dimension M1 Lower humidification rotor clearance dimension M2 Upper humidification rotor clearance dimension
特開2001-99453号公報JP 2001-99453 A

Claims (6)

  1.  水平方向に延びる回転軸(63c)の周りを回転しながら水の吸着および放出を行う円盤形状の加湿ロータ(63)と、
     前記加湿ロータを回転自在に支持する支持部と、
     前記加湿ロータの径方向外側において前記加湿ロータを囲む環状の囲み面(65b)を有する枠部材(65)と、
    を備え、
     前記回転軸に沿って視た場合に、前記支持部の中心位置である支持中心(66d)と、前記囲み面の下端である囲み面下端(65b1)との間の距離である下側囲み面寸法(L1)は、前記支持中心と、前記囲み面の上端である囲み面上端(65b2)との間の距離である上側囲み面寸法(L2)よりも長い、
    加湿装置(60)。
    A disc-shaped humidification rotor (63) that adsorbs and discharges water while rotating around a rotating shaft (63c) extending in the horizontal direction;
    A support portion for rotatably supporting the humidification rotor;
    A frame member (65) having an annular surrounding surface (65b) surrounding the humidifying rotor on the radially outer side of the humidifying rotor;
    With
    When viewed along the rotation axis, the lower enclosing surface is the distance between the support center (66d), which is the center position of the support portion, and the enclosing surface lower end (65b1), which is the lower end of the enclosing surface. The dimension (L1) is longer than the upper enclosure surface dimension (L2) which is the distance between the support center and the enclosure surface upper end (65b2) which is the upper end of the enclosure surface.
    Humidifier (60).
  2.  前記支持部は、シャフト(66)を有し、
     前記加湿ロータは、前記シャフトの外周面(66c)と摺動するすべり面(67c)を有する、
    請求項1に記載の加湿装置。
    The support has a shaft (66);
    The humidifying rotor has a sliding surface (67c) that slides with the outer peripheral surface (66c) of the shaft.
    The humidifier according to claim 1.
  3.  前記支持部は、テーパ形状の突起である前記シャフトを有し、
     前記加湿ロータは、前記シャフトが貫通するテーパ形状のシャフト貫通孔(67)を有し、
     前記回転軸に沿って視た場合に、前記シャフト貫通孔の内周面である前記すべり面の径と、前記シャフトの前記外周面の径との差である軸受隙間寸法(G1,G2)は、前記シャフトの根元から先端に向かって徐々に小さくなる、
    請求項2に記載の加湿装置。
    The support portion includes the shaft that is a tapered protrusion,
    The humidification rotor has a tapered shaft through hole (67) through which the shaft passes,
    When viewed along the rotation axis, the bearing clearance dimension (G1, G2), which is the difference between the diameter of the sliding surface that is the inner peripheral surface of the shaft through hole and the diameter of the outer peripheral surface of the shaft, is , Gradually decreases from the root of the shaft toward the tip,
    The humidifier according to claim 2.
  4.  前記加湿ロータの下端と前記囲み面下端との間の距離である下側加湿ロータ隙間寸法(M1)は、前記加湿ロータの上端と前記囲み面上端との間の距離である上側加湿ロータ隙間寸法(M2)より大きい、
    請求項1から3のいずれか1項に記載の加湿装置。
    The lower humidifying rotor gap dimension (M1), which is the distance between the lower end of the humidifying rotor and the lower end of the surrounding surface, is the upper humidifying rotor gap dimension, which is the distance between the upper end of the humidifying rotor and the upper end of the surrounding surface. Greater than (M2),
    The humidifier according to any one of claims 1 to 3.
  5.  前記囲み面は、前記回転軸に沿って視た場合において、前記支持中心の高さ位置から前記囲み面下端の高さ位置に向かって、前記支持中心からの距離が徐々に大きくなる形状を有する、
    請求項1から4のいずれか1項に記載の加湿装置。
    The enclosing surface has a shape in which the distance from the support center gradually increases from the height position of the support center toward the height position of the lower end of the enclosing surface when viewed along the rotation axis. ,
    The humidifier according to any one of claims 1 to 4.
  6.  前記加湿ロータは、前記回転軸に沿って視た場合において、前記加湿ロータの周方向に沿って配置される複数の歯(63t)を有し、
     前記複数の歯と噛み合いながら、前記回転軸の周りに前記加湿ロータを回転させる駆動部(64)をさらに備える、
    請求項1から5のいずれか1項に記載の加湿装置。
    The humidifying rotor has a plurality of teeth (63t) arranged along the circumferential direction of the humidifying rotor when viewed along the rotation axis,
    A drive unit (64) for rotating the humidification rotor around the rotation axis while meshing with the plurality of teeth;
    The humidifier according to any one of claims 1 to 5.
PCT/JP2017/038175 2016-10-28 2017-10-23 Humidifying device WO2018079481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-211683 2016-10-28
JP2016211683A JP6281725B1 (en) 2016-10-28 2016-10-28 Humidifier

Publications (1)

Publication Number Publication Date
WO2018079481A1 true WO2018079481A1 (en) 2018-05-03

Family

ID=61231474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038175 WO2018079481A1 (en) 2016-10-28 2017-10-23 Humidifying device

Country Status (2)

Country Link
JP (1) JP6281725B1 (en)
WO (1) WO2018079481A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551245A (en) * 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
JP2012057887A (en) * 2010-09-10 2012-03-22 Hitachi Appliances Inc Air cleaner
US20130139890A1 (en) * 2011-12-05 2013-06-06 Venmar Ces, Inc. Rotary wheel sealing system
WO2015031948A1 (en) * 2013-09-09 2015-03-12 Commonwealth Scientific And Industrial Research Organisation Solid desiccant cooling system
JP2016114344A (en) * 2014-12-18 2016-06-23 ダイキン工業株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353143Y1 (en) * 1974-07-22 1978-12-19

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551245A (en) * 1995-01-25 1996-09-03 Engelhard/Icc Hybrid air-conditioning system and method of operating the same
JP2012057887A (en) * 2010-09-10 2012-03-22 Hitachi Appliances Inc Air cleaner
US20130139890A1 (en) * 2011-12-05 2013-06-06 Venmar Ces, Inc. Rotary wheel sealing system
WO2015031948A1 (en) * 2013-09-09 2015-03-12 Commonwealth Scientific And Industrial Research Organisation Solid desiccant cooling system
JP2016114344A (en) * 2014-12-18 2016-06-23 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP6281725B1 (en) 2018-02-21
JP2018071879A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP2018084351A (en) Outdoor unit
WO2016098727A1 (en) Outdoor unit for air conditioner
WO2015076287A1 (en) Air-conditioner outdoor unit
JP2012251692A (en) Outdoor unit of air conditioner
JP6281725B1 (en) Humidifier
JP5532100B2 (en) Air conditioner outdoor unit
JP5532099B2 (en) Air conditioner outdoor unit
JP5672284B2 (en) Air conditioner outdoor unit
JP5533970B2 (en) Air conditioner outdoor unit
JP2017044395A (en) Air conditioner
JP6402764B2 (en) Humidifier
JP2016118312A (en) Outdoor unit of air conditioner
JP6489096B2 (en) Humidifier
WO2016098726A1 (en) Outdoor unit for air conditioner
JP5910697B2 (en) Air conditioner outdoor unit
JP6888283B2 (en) Humidifier
JP5659954B2 (en) Air conditioner outdoor unit
JP5862058B2 (en) Air conditioner outdoor unit
JP4535192B2 (en) Humidification unit
JP7368751B2 (en) air conditioner
JP2012251691A (en) Outdoor unit for air conditioner
JP4525821B2 (en) Humidification unit
JP6032344B2 (en) Air conditioner outdoor unit
JP2018091579A (en) air conditioner
WO2015046013A1 (en) Air-conditioner outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865547

Country of ref document: EP

Kind code of ref document: A1