WO2018079377A1 - Pregnant state monitoring system - Google Patents

Pregnant state monitoring system Download PDF

Info

Publication number
WO2018079377A1
WO2018079377A1 PCT/JP2017/037699 JP2017037699W WO2018079377A1 WO 2018079377 A1 WO2018079377 A1 WO 2018079377A1 JP 2017037699 W JP2017037699 W JP 2017037699W WO 2018079377 A1 WO2018079377 A1 WO 2018079377A1
Authority
WO
WIPO (PCT)
Prior art keywords
mother
load
fetus
monitoring system
unit
Prior art date
Application number
PCT/JP2017/037699
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 湯原
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2018079377A1 publication Critical patent/WO2018079377A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the state of contraction of the pregnant woman's uterus (the state of labor during delivery) is generally detected using a pressure-sensitive sensor called a labor meter.
  • a tonometer is brought into contact with the pregnant woman's abdomen and fixed by a belt surrounding the pregnant woman's abdomen. If the pregnant woman's uterus contracts, the pregnant woman's abdominal circumference expands and the sensor part of the tocodynamometer is compressed. The tonometer detects the contraction of the uterus based on the strength of the compression.
  • Patent Document 1 proposes a labor sensor that detects contraction of the uterus based on measurement of a phonogram instead of such a labor meter.
  • a pregnancy status monitoring system for monitoring the condition of a mother on a mounting table and / or a fetus in the womb of the mother, At least one load detector that is provided under a mounting table or a leg of the mounting table and detects temporal changes in the load of the mother and the fetus; A signal analyzer for obtaining a frequency spectrum of temporal variation of the weight of the mother and the fetus; There is provided a pregnancy state monitoring system including a state monitoring unit that determines whether or not contraction has occurred in the uterus of the mother based on the obtained frequency spectrum.
  • the at least one load detector may be a plurality of load detectors.
  • the pregnancy status monitoring system according to the first aspect may further include a center-of-gravity position calculation unit that obtains the position of the center of gravity of the mother and / or the fetus from the load of the mother and the fetus, and the signal analysis unit includes: The load component that vibrates according to the respiration of the mother included in the temporal variation of the load of the mother and the fetus may be separated, and the center-of-gravity position calculation unit is a load that vibrates according to the respiration of the maternal The position of the center of gravity of the matrix may be obtained based on the component.
  • FIG. 1 is a block diagram showing a configuration of a pregnancy status monitoring system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the arrangement of the load detector with respect to the bed.
  • FIG. 3 is a flowchart showing a procedure for monitoring a pregnancy state using the pregnancy state monitoring system according to the embodiment of the present invention.
  • FIG. 4 is an example of a frequency spectrum obtained by the signal analysis unit.
  • FIG. 4A shows the frequency spectrum of the load signal during a period when the mother's uterus is not contracted
  • FIG. 4B shows the frequency spectrum of the load signal when the mother's uterus is contracted.
  • FIG. 5 is an explanatory diagram for explaining the relationship among labor start time, labor end time, labor cycle, and labor duration.
  • FIG. 6 is a block diagram showing a configuration of a bed system including a pregnancy status monitoring system according to an embodiment of the present invention.
  • pregnant state means various states related to the state of the mother (pregnant woman) and / or the fetus in the mother body.
  • an apparatus or device that is used with a pregnancy status monitoring system such as a bed, a delivery table, or a stretcher and on which a pregnant woman is placed is referred to as a “mounting table”.
  • the load detection unit 1 includes four load detectors 1a, 1b, 1c, and 1d.
  • Each of the load detectors 1a, 1b, 1c, and 1d is a load detector that detects a load using, for example, a beam-type load cell.
  • a load detector is described in, for example, Japanese Patent No. 4829020 and Japanese Patent No. 4002905.
  • Each of the load detectors 1a, 1b, 1c, and 1d is connected to the A / D converter 2 by wiring.
  • the monitoring of the condition of the subject using the pregnancy status monitoring system 100 includes a load detection step (S101) for detecting the load of the subject S as a load signal, and a signal analysis step (S102) for analyzing the detected load signal. ), A respiratory information calculation step (S103) and a heart rate information calculation step (S104) for calculating the respiratory information and heart rate information of the pregnant woman based on the analyzed signal, and the center of gravity positions of the pregnant woman and the fetus are calculated based on the detected load signal. It mainly includes a center-of-gravity position calculation step (S105), a state monitoring step (S106) for monitoring a pregnancy state based on various information calculated in the above steps, and an output step (S107) for outputting a monitoring result.
  • S105 center-of-gravity position calculation step
  • S106 state monitoring step
  • S107 for outputting a monitoring result.
  • the load detection step S101 the load of the subject S (maternal (pregnant) S1 and fetus S2) on the bed BD is detected using the load detectors 1a, 1b, 1c, and 1d. Since the load detectors 1a, 1b, 1c, and 1d are respectively disposed under the casters Ca, Cb, Cc, and Cd as described above, the load applied to the upper surface of the bed BD is four load detectors 1a, 1b, 1c, 1d are distributed and detected.
  • the load detectors 1a, 1b, 1c, and 1d each detect a load (load change) and output it to the A / D converter 2 as an analog signal.
  • the A / D conversion unit 2 converts the analog signal into a digital signal with a sampling period of, for example, 5 milliseconds, and outputs the digital signal to the control unit 3 as a digital signal (hereinafter referred to as “load signal”).
  • load signal the load signals output from the load detectors 1a, 1b, 1c, and 1d and digitally converted by the A / D converter 2 are referred to as load signals sa, sb, sc, and sd, respectively.
  • the signal analysis step S102 is a step of separating each of the load signals sa, sb, sc, and sd into a plurality of components by the signal analysis unit 31.
  • each of the load signals sa to sd includes a component that vibrates according to the breathing of the mother S1, a component that vibrates according to the heartbeat of the mother S1, a component that vibrates according to the heartbeat of the fetus S2, and the mother S1. It separates into components that vibrate according to the contraction of the uterus.
  • the frequency of human breathing is about 0.2 to 0.33 Hz. Therefore, if Fourier analysis is performed on the load signal sa, a frequency peak appears at a position corresponding to the respiration frequency (maternal respiration frequency) of the mother S1 in the frequency band of 0.2 to 0.33 Hz.
  • the signal analysis unit 31 specifies the maternal breathing frequency based on the position of the frequency peak that appears in this frequency band.
  • the signal analysis unit 31 specifies that the maternal respiratory frequency (the center value thereof) is ⁇ 1b Hz. Since the fetus S2 does not perform lung respiration, no frequency peak corresponding to the respiration of the fetus appears in the frequency spectrum.
  • the position corresponding to the heartbeat frequency of the mother S1 (maternal heartbeat frequency) and the heartbeat frequency of the fetus S2 (fetus in the frequency band of about 0.5 to 3.3 Hz).
  • the signal analysis unit 31 specifies the maternal heart rate and the fetal heart rate based on the position of the frequency peak that appears in this frequency band.
  • FIG. 4 (a) in the example shown in FIG. 4 (b), in the frequency band of approximately 0.5 ⁇ 3.3 Hz, position of the frequency [nu 1h Hz, and the frequency [nu a higher frequency side than the frequency [nu 1h Hz A frequency peak appears at a position of 2 h Hz. Therefore, the signal analysis unit 31 specifies that the maternal heartbeat frequency (the center value) is ⁇ 1h Hz and the fetal heartbeat frequency (the center value) is ⁇ 2h Hz.
  • a frequency peak appears at the position of the frequency ⁇ 1c Hz in the frequency band of about 3 to 20 Hz. Therefore, the signal analysis unit 31 specifies that the myometrial frequency (the center value thereof) is ⁇ 1c Hz.
  • FIG. 4 (a) which shows an example of the result of Fourier analysis for the load signal sa acquired during a period when the uterus of the mother S1 is not contracted, a frequency peak appears in a frequency band of about 3 to 20 Hz. Absent.
  • the signal analysis unit 31 includes a component that vibrates at the specified maternal respiratory frequency ( ⁇ 1b Hz), a component that vibrates at the maternal heart rate frequency ( ⁇ 1h HZ), and the fetus from each of the load signals sa, sb, sc, and sd.
  • a component that vibrates at a heartbeat frequency ( ⁇ 2h Hz) and a component that vibrates at a uterine muscle frequency ( ⁇ 1c Hz) are separated and extracted. Each of these components is extracted, for example, by performing a band pass filter process on each of the load signals sa to sd.
  • the components that vibrate at the maternal respiratory frequency included in the load signals sa, sb, sc, and sd are referred to as maternal respiratory components sa 1b , sb 1b , sc 1b , and sd 1b , respectively.
  • components that vibrate at maternal heart rate frequencies included in the load signals sa to sd are maternal heart rate components sa 1h to sd 1h
  • components that vibrate at fetal heart rate frequencies are vibrated at fetal heart rate components sa 2h to sd 2h
  • myometrial frequencies are called uterine contraction components sa 1c to sd 1c .
  • the respiration information calculation unit 32 calculates the respiration rate of the mother S1 based on the value of the maternal respiration frequency specified in the signal analysis step S102. Specifically, this calculation is performed, for example, by converting the maternal respiratory frequency [Hz] into the respiratory rate [times / minute].
  • the heart rate information calculation unit 33 calculates the heart rates of the mother S1 and the fetus S2 based on the values of the maternal heart rate frequency and the fetal heart rate frequency specified in the signal analysis step S102. Specifically, these calculations are also performed, for example, by converting the maternal heart rate [Hz] and the fetal heart rate [Hz] into the heart rate [times / minute].
  • the centroid position calculating unit 34 In the center of gravity position calculating step S105, the centroid position calculating unit 34, the position of the total center of gravity G 0 is a combined center of gravity of the total load exerted on the bed BD, maternal breathing centroid G 1b based on maternal respiratory component sa 1b ⁇ sd 1b The position of the maternal heart rate center G 1h based on the position, the maternal heart rate components sa 1h to sd 1h, and the position of the fetal heart rate center G 2h based on the fetal heart rate components sa 2h to sd 2h are calculated.
  • each barycentric position is performed by the following calculation.
  • XY coordinates are set as shown in FIG. 2, and the coordinates of the load detectors 1a, 1b, 1c, 1d are set to (X a , Y a ), (X b , Y b ), (X c ), respectively.
  • Y c ), (X d , Y d ) are added to the bed BD.
  • the center-of-gravity position G (X, Y) of the loaded load is calculated by the following equation.
  • the output values at the respective sampling times of the load signals sa, sb, sc, sd are used as the detected values W a , W b , W c , W d of the loads of the load detectors 1a, 1b, 1c, 1d. in the position of the total center of gravity G 0 of each sampling time is calculated.
  • the overall center of gravity G 0 , the maternal breathing center of gravity G 1b , the maternal heart rate center of gravity G 1h , and the fetal heart rate center of gravity G 2h have the following characteristics.
  • Position of the total center of gravity G 0 is the position of the center of gravity of the total load exerted on the bed BD, if entity applies a load to the bed BD is only subject S, the position of the combined center of gravity of the mother S1 and the fetus S2 It becomes.
  • the vibration frequency of these loads generally has maternal respiratory components sa 1b to sd 1b and a maternal heart rate. Since the vibration frequencies of the components sa 1h to sd 1h are different, the maternal respiratory centroid G 1b and the maternal heart rate centroid G 1h are not affected by these loads.
  • the fetal heart rate center of gravity G 2h is a position of the center of gravity calculated based on the fetal heart rate components sa 2h to sd 2h, and thus is closer to the center of gravity of the fetus S2 alone than the combined center of gravity of the mother S1 and the fetus S2.
  • the fetal heartbeat center of gravity G2h moves due to both the movement of the mother S1 and the movement of the fetus S2, but is more affected by the movement of the fetus S2 than the movement of the mother S1.
  • the state monitoring performed in the state monitoring unit 35 includes, for example, (1) pregnancy test, (2) uterine contraction state monitoring, (3) fetal heartbeat monitoring, (4) non-stress test, and (5) delivery time estimation. , (6) broken water monitoring, (7) labor monitoring.
  • the presence or absence of uterine contraction and the strength of uterine contraction determined by the state monitoring unit 35 are displayed on the display unit 5.
  • the state monitoring unit 35 uses the notification unit 6 when the uterine contraction state satisfies a predetermined standard, for example, when the uterine contraction continues for a predetermined time or when the uterine contraction intensity exceeds a predetermined value. Notification using the communication unit 7 or communication using the communication unit 7 may be performed to notify the doctor or midwife of the monitoring result.
  • the state monitoring unit 35 performs these estimations (estimation that the fetus S2 has moved in the womb of the mother S1 toward the uterine ostium and / or that the head of the fetus S2 has entered the pelvis of the mother S1). Based on the above, it can be estimated that the time of labor pain, and thus the time of delivery is approaching.
  • the estimation result may be displayed on the display unit 5, or may be notified to the doctor or midwife by performing notification using the notification unit 6 or communication using the communication unit 7.
  • Water breakage monitoring Water breakage (a phenomenon where the fetal membrane surrounding the fetus is torn and the amniotic fluid in the uterus flows out of the uterus) occurs after labor occurs immediately before parturition and may occur before labor occurs. is there.
  • the state monitoring unit 35 can detect that water breakage has occurred in the mother body S1 by the following method.
  • the labor monitoring by the state monitoring unit 35 is specifically performed as follows, for example.
  • the state monitoring unit 35 determines whether or not uterine contraction has occurred in the mother S1, that is, whether or not labor has occurred in the mother S1, at a predetermined sampling period (as an example, 5 seconds). If the determination result of the presence or absence of uterine contraction changes from “none” to “present” at a predetermined sampling time t 0 (FIG. 5), the sampling time t 0 is stored in the storage unit 4 as the labor start time t s1 .
  • the state monitoring unit 35 determines that labor is not periodic, and between the sampling time t 0 and the sampling time t 1. It is determined that the labor pain that occurred was a precursor labor pain.
  • a predetermined time for example, 1 hour as an example
  • labor pain generated between the sampling time t 0 and the sampling time t 1 is a precursor. It may be determined that it was labor pains.
  • the doctor / midwife is informed of the approaching delivery time through the communication unit 7 and the in-hospital line. Upon receiving this notification, the doctor / midwife can start various human and physical preparations for delivery.
  • the pregnancy status monitoring system 100 When the pregnancy status monitoring system 100 is used with a bed at home, the subject S is urged to go to the maternity hospital via the notification unit 6. Moreover, while communicating with a taxi company etc. via the communication part 7 and requesting a vehicle allocation, it notifies the maternity hospital that the subject S will soon go to the maternity hospital. At this time, the maternity hospital may be notified of the respiratory rate and heart rate of the mother S1, the heart rate of the fetus S2, the labor cycle T, and the labor duration D together. In addition, if it is determined that it is necessary based on the respiratory rate and heart rate of the mother S1, the heart rate of the fetus S2, etc., an ambulance may be arranged instead of dispatching a taxi.
  • the state of uterine contraction of the mother S1 and the state of heartbeat of the fetus S2 can be observed in synchronization with the pregnancy state monitoring system 100 of the present embodiment. Therefore, if the pregnancy status monitoring system 100 of the present embodiment is installed in a hospital, a non-stress test that has conventionally been performed by attaching a plurality of sensors to the mother's abdomen can be performed non-invasively. In addition, if the pregnancy status monitoring system 100 of this embodiment is installed at the home of a pregnant woman, for example, the state of contraction of the uterus of the mother S1 and the state of the heartbeat of the fetus S2 that have reached the final month can be constantly monitored. It is possible to quickly detect this situation and take an appropriate response.
  • the load detectors 1a, 1b, 1c, and 1d are respectively disposed below the casters Ca, Cb, Cc, and Cd attached to the lower ends of the legs of the bed BD.
  • Each of the load detectors 1a, 1b, 1c, and 1d may be provided between the four legs of the bed BD and the floor plate of the bed BD, or the four legs of the bed BD can be divided vertically. For example, it may be provided between the upper leg and the lower leg.
  • the load detector may be incorporated in the leg of the delivery table or the stretcher.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

This pregnant state monitoring system (100), which monitors the state of a mother's body (S1) on a placement table (BD) and/or an embryo (S2) in the womb of the mother's body, is provided with: at least one load detector (1a, 1b, 1c, 1d) which is installed on the placement table or under a leg of the placement table, and detects a temporal change in the load of the mother's body or embryo; a signal analysis unit (31) which obtains a frequency spectrum of the temporal change in the load of the mother's body and embryo; and a state monitoring unit (35) which determines, on the basis of the obtained frequency spectrum, whether a contraction occurs in the womb of the mother's body.

Description

妊娠状態モニタリングシステムPregnancy monitoring system
 本発明は、荷重検出器を用いて母体(妊婦)且つ/又は胎児の状態をモニターする妊娠状態モニタリングシステムに関する。 The present invention relates to a pregnancy status monitoring system that monitors a maternal (pregnant woman) and / or fetal status using a load detector.
 妊婦の子宮の収縮の様子を監視することは、安全な出産を迎える上で重要な技術となっている。具体的には例えば、妊娠後期の妊婦に対して実施されるノンストレステスト(NST)では、妊婦の子宮の収縮の様子と胎児の心拍の様子とを同期して検出し、安全な分娩を迎えることが可能であるか否かが判定される。分娩中にも同様に、妊婦の子宮の収縮の様子と胎児の心拍の様子の検出が行われており、医師や助産師に、安全に分娩を進めるための重要な指標を与えている。なお、分娩時に生じる妊婦の子宮の収縮は非常に強く、陣痛と呼ばれる強い痛みを妊婦に生じさせる。 Monitoring the contraction of the pregnant woman's uterus is an important technique for safe birth. Specifically, for example, in a non-stress test (NST) performed on a pregnant woman in the second trimester of pregnancy, the state of contraction of the uterus of the pregnant woman and the state of the heartbeat of the fetus are detected in synchronization, and safe delivery is reached. It is determined whether or not it is possible. Similarly, during pregnancy, the state of contraction of the uterus of the pregnant woman and the state of the heartbeat of the fetus are detected, giving doctors and midwives an important index for safe delivery. It should be noted that the contraction of the uterus of the pregnant woman that occurs at the time of delivery is very strong, causing a strong pain called labor pain in the pregnant woman.
 妊婦の子宮の収縮の様子(分娩時においては陣痛の様子)は、一般に、陣痛計と呼ばれる感圧式のセンサを用いて検出されている。具体的には、妊婦の腹部に陣痛計を接触させ、妊婦の腹部を囲むベルトによって固定する。妊婦の子宮が収縮すれば、これに伴って妊婦の腹囲が拡張し陣痛計のセンサ部が圧迫される。陣痛計は、この圧迫の強さに基づいて子宮の収縮の様子を検出する。 The state of contraction of the pregnant woman's uterus (the state of labor during delivery) is generally detected using a pressure-sensitive sensor called a labor meter. Specifically, a tonometer is brought into contact with the pregnant woman's abdomen and fixed by a belt surrounding the pregnant woman's abdomen. If the pregnant woman's uterus contracts, the pregnant woman's abdominal circumference expands and the sensor part of the tocodynamometer is compressed. The tonometer detects the contraction of the uterus based on the strength of the compression.
 また、このような陣痛計に代えて、筋音図測定に基づいて子宮の収縮を検知する陣痛センサを用いることも提案されている(特許文献1)。 In addition, it has been proposed to use a labor sensor that detects contraction of the uterus based on measurement of a phonogram instead of such a labor meter (Patent Document 1).
特開2016-67816JP2016-67816
 従来用いられている感圧式の陣痛計や特許文献1に記載の陣痛センサは、妊婦の腹部に直接接触させて用いられるため、腹部を容易に露出することのできる服装とすることが必要であったり、センサが腹部に押し付けられる感覚に耐える必要があったりと、妊婦に様々な不便や不快感を与え得るものであった。また、緊急を要する分娩においては陣痛計の取付けに手間を要することが問題であるとともに、不慣れな者が陣痛計を取り付けると陣痛計がずれたり外れたりし正確な計測が行えなくなる点も問題である。 Since the pressure-sensitive labor force meter and the labor force sensor described in Patent Document 1 are used in direct contact with a pregnant woman's abdomen, it is necessary to wear clothes that can easily expose the abdomen. And it is necessary to endure the sensation of the sensor being pressed against the abdomen, which can give various inconveniences and discomfort to pregnant women. Also, in labor that requires urgent work, it is a problem that it takes time to install the tonometer, and if an inexperienced person attaches the tonometer, the tonometer will be misaligned or detached, making it impossible to measure accurately. is there.
 そこで本発明は、子宮の収縮の様子(陣痛の様子)を、妊婦に不便や不快感を与えることのない非侵襲な方法で検出することができ、且つ取付けの手間や脱落の恐れのない妊娠状態モニタリングシステムを提供することを目的とする。 Therefore, the present invention can detect the state of contraction of the uterus (the state of labor) by a non-invasive method that does not cause inconvenience and discomfort to pregnant women, and is a pregnancy that does not cause the trouble of attachment or dropout. The purpose is to provide a condition monitoring system.
 本発明の第1の態様に従えば、
 載置台の上の母体且つ/又は該母体の子宮内の胎児の状態をモニターする妊娠状態モニタリングシステムであって、
 載置台又は載置台の脚下に設けられ、前記母体及び前記胎児の荷重の時間的変動を検出する少なくとも1つの荷重検出器と、
 前記母体及び前記胎児の荷重の時間的変動の周波数スペクトルを求める信号解析部と、
 前記求められた周波数スペクトルに基づいて、前記母体の子宮に収縮が生じているか否かを判定する状態監視部とを備える妊娠状態モニタリングシステムが提供される。
According to the first aspect of the present invention,
A pregnancy status monitoring system for monitoring the condition of a mother on a mounting table and / or a fetus in the womb of the mother,
At least one load detector that is provided under a mounting table or a leg of the mounting table and detects temporal changes in the load of the mother and the fetus;
A signal analyzer for obtaining a frequency spectrum of temporal variation of the weight of the mother and the fetus;
There is provided a pregnancy state monitoring system including a state monitoring unit that determines whether or not contraction has occurred in the uterus of the mother based on the obtained frequency spectrum.
 第1の態様の妊娠状態モニタリングシステムにおいて、前記状態監視部は、更に、前記母体の子宮に収縮が生じる周期を求めてもよい。 In the pregnancy state monitoring system according to the first aspect, the state monitoring unit may further determine a cycle in which contraction occurs in the uterus of the mother.
 第1の態様の妊娠状態モニタリングシステムは、更に、前記母体の子宮に収縮が生じる周期が所定値に至ったことに基づいて所定の出力を行う出力部を備えてもよい。 The pregnancy status monitoring system according to the first aspect may further include an output unit that performs a predetermined output based on a period when the contraction of the mother's uterus reaches a predetermined value.
 第1の態様の妊娠状態モニタリングシステムにおいて、前記信号解析部は、前記母体及び前記胎児の荷重の時間的変動に含まれる前記胎児の心拍に応じて振動する荷重成分を分離してもよく、前記状態監視部は、前記胎児の心拍に応じて振動する荷重成分に基づいて前記胎児の心拍の状態を監視してもよい。 In the pregnancy status monitoring system according to the first aspect, the signal analysis unit may separate a load component that vibrates according to a heartbeat of the fetus included in a temporal variation in the load of the mother and the fetus, The state monitoring unit may monitor the state of the fetal heartbeat based on a load component that vibrates in accordance with the fetal heartbeat.
 第1の態様の妊娠状態モニタリングシステムにおいて、前記少なくとも1つの荷重検出器は複数の荷重検出器であってもよい。また第1の態様の妊娠状態モニタリングシステムは、更に、前記母体及び前記胎児の荷重から前記母体且つ/又は前記胎児の重心の位置を求める重心位置算出部を備えてもよく、前記信号解析部は、前記母体及び前記胎児の荷重の時間的変動に含まれる前記母体の呼吸に応じて振動する荷重成分を分離してもよく、前記重心位置算出部は、該母体の呼吸に応じて振動する荷重成分に基づき前記母体の重心の位置を求めてもよい。 In the pregnancy status monitoring system according to the first aspect, the at least one load detector may be a plurality of load detectors. The pregnancy status monitoring system according to the first aspect may further include a center-of-gravity position calculation unit that obtains the position of the center of gravity of the mother and / or the fetus from the load of the mother and the fetus, and the signal analysis unit includes: The load component that vibrates according to the respiration of the mother included in the temporal variation of the load of the mother and the fetus may be separated, and the center-of-gravity position calculation unit is a load that vibrates according to the respiration of the maternal The position of the center of gravity of the matrix may be obtained based on the component.
 本発明の妊娠状態モニタリングシステムは、子宮の収縮の有無(陣痛の有無)を非侵襲でモニターすることができ、且つ取付けの手間や脱落の恐れがない。 The pregnancy status monitoring system of the present invention can monitor the presence or absence of contraction of the uterus (the presence or absence of labor) in a non-invasive manner, and there is no fear of attachment and dropout.
図1は、本発明の実施形態に係る妊娠状態モニタリングシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a pregnancy status monitoring system according to an embodiment of the present invention. 図2は、荷重検出器のベッドに対する配置を示す説明図である。FIG. 2 is an explanatory diagram showing the arrangement of the load detector with respect to the bed. 図3は、本発明の実施形態に係る妊娠状態モニタリングシステムを用いて妊娠状態を監視する手順を示すフローチャートである。FIG. 3 is a flowchart showing a procedure for monitoring a pregnancy state using the pregnancy state monitoring system according to the embodiment of the present invention. 図4は、信号解析部が求める周波数スペクトルの一例である。図4(a)は母体の子宮に収縮が生じていない期間における荷重信号の周波数スペクトルを、図4(b)は母体の子宮に収縮が生じている期間における荷重信号の周波数スペクトルを示す。FIG. 4 is an example of a frequency spectrum obtained by the signal analysis unit. FIG. 4A shows the frequency spectrum of the load signal during a period when the mother's uterus is not contracted, and FIG. 4B shows the frequency spectrum of the load signal when the mother's uterus is contracted. 図5は、陣痛開始時刻、陣痛終了時刻、陣痛周期、陣痛継続時間の関係を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the relationship among labor start time, labor end time, labor cycle, and labor duration. 図6は、本発明の実施形態に係る妊娠状態モニタリングシステムを含むベッドシステムの構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a bed system including a pregnancy status monitoring system according to an embodiment of the present invention.
<実施形態>
 図1~図5を参照して、本発明の実施形態の妊娠状態モニタリングシステム100を説明する。以下では、主に妊娠状態モニタリングシステム100をベッドと共に使用する場合を例として説明するが、妊娠状態モニタリングシステム100をその他の装置、例えば分娩台やストレッチャーと共に使用することもできる。
<Embodiment>
A pregnancy status monitoring system 100 according to an embodiment of the present invention will be described with reference to FIGS. Hereinafter, a case where the pregnancy status monitoring system 100 is mainly used with a bed will be described as an example. However, the pregnancy status monitoring system 100 may be used with other devices such as a delivery table and a stretcher.
 本明細書及び本発明において「妊娠状態」とは、母体(妊婦)の状態且つ/又は当該母体内の胎児に関連する様々な状態を意味する。また、本明細書及び本発明において、ベッド、分娩台、ストレッチャー等、妊娠状態モニタリングシステムと共に使用され且つその上に妊婦が載せられる装置や機器を「載置台」と呼ぶ。 In the present specification and the present invention, “pregnant state” means various states related to the state of the mother (pregnant woman) and / or the fetus in the mother body. Further, in the present specification and the present invention, an apparatus or device that is used with a pregnancy status monitoring system such as a bed, a delivery table, or a stretcher and on which a pregnant woman is placed is referred to as a “mounting table”.
 図1に示す通り、本実施形態の妊娠状態モニタリングシステム100は、荷重検出部1、制御部3、記憶部4、表示部5を主に有する。荷重検出部1と制御部3とは、A/D変換部2を介して接続されている。制御部3には更に、報知部6、通信部7、及び入力部8が接続されている。本明細書及び本発明では、表示部5、報知部6、通信部7をまとめて「出力部」と呼ぶ。 As shown in FIG. 1, the pregnancy status monitoring system 100 of this embodiment mainly includes a load detection unit 1, a control unit 3, a storage unit 4, and a display unit 5. The load detection unit 1 and the control unit 3 are connected via an A / D conversion unit 2. Further, a notification unit 6, a communication unit 7, and an input unit 8 are connected to the control unit 3. In this specification and this invention, the display part 5, the alerting | reporting part 6, and the communication part 7 are collectively called an "output part."
 荷重検出部1は、4つの荷重検出器1a、1b、1c、1dを備える。荷重検出器1a、1b、1c、1dのそれぞれは、例えばビーム形のロードセルを用いて荷重を検出する荷重検出器である。このような荷重検出器は例えば、特許第4829020号や特許第4002905号に記載されている。荷重検出器1a、1b、1c、1dはそれぞれ、配線によりA/D変換部2に接続されている。 The load detection unit 1 includes four load detectors 1a, 1b, 1c, and 1d. Each of the load detectors 1a, 1b, 1c, and 1d is a load detector that detects a load using, for example, a beam-type load cell. Such a load detector is described in, for example, Japanese Patent No. 4829020 and Japanese Patent No. 4002905. Each of the load detectors 1a, 1b, 1c, and 1d is connected to the A / D converter 2 by wiring.
 荷重検出部1の4つの荷重検出器1a、1b、1c、1dは、被験者が使用するベッドの脚の下に配置される。具体的には荷重検出器1a、1b、1c、1dは、図2に示す通り、ベッドBDの四隅の脚の下端部に取り付けられたキャスターCa、Cb、Cc、Cdの下にそれぞれ配置される。 The four load detectors 1a, 1b, 1c, and 1d of the load detection unit 1 are arranged below the legs of the bed used by the subject. Specifically, as shown in FIG. 2, the load detectors 1a, 1b, 1c, and 1d are respectively disposed below casters Ca, Cb, Cc, and Cd attached to the lower ends of the legs at the four corners of the bed BD. .
 A/D変換部2は、荷重検出部1からのアナログ信号をデジタル信号に変換するA/D変換器を備え、荷重検出部1と制御部3にそれぞれ配線で接続されている。 The A / D converter 2 includes an A / D converter that converts an analog signal from the load detector 1 into a digital signal, and is connected to the load detector 1 and the controller 3 by wiring.
 制御部3は、専用又は汎用のコンピュータであり、内部に信号解析部31、呼吸情報算出部32、心拍情報算出部33、重心位置算出部34、状態監視部35が構築されている。 The control unit 3 is a dedicated or general-purpose computer, in which a signal analysis unit 31, a respiration information calculation unit 32, a heart rate information calculation unit 33, a centroid position calculation unit 34, and a state monitoring unit 35 are constructed.
 記憶部4は、妊娠状態モニタリングシステム100において使用されるデータを記憶する記憶装置であり、例えばハードディスク(磁気ディスク)を用いることができる。表示部5は、制御部3から出力される情報を妊娠状態モニタリングシステム100の使用者に表示する液晶モニター等のモニターである。 The storage unit 4 is a storage device that stores data used in the pregnancy status monitoring system 100. For example, a hard disk (magnetic disk) can be used. The display unit 5 is a monitor such as a liquid crystal monitor that displays information output from the control unit 3 to a user of the pregnancy monitoring system 100.
 報知部6は、制御部3からの情報に基づいて所定の報知を聴覚的に行う装置、例えばスピーカを備える。通信部7は、所定の回線を通じて外部と通信を行う部分であり、例えばモデムを備える。入力部8は、制御部3に対して所定の入力を行うためのインターフェイスであり、キーボード及びマウスにし得る。 The notification unit 6 includes a device, for example, a speaker, that aurally performs predetermined notification based on information from the control unit 3. The communication unit 7 is a part that communicates with the outside through a predetermined line, and includes, for example, a modem. The input unit 8 is an interface for performing a predetermined input to the control unit 3 and can be a keyboard and a mouse.
 このような妊娠状態モニタリングシステム100を使用してベッド上の被験者S(母体(妊婦)S1及び胎児S2)(図2)の状態を監視する動作について説明する。 The operation of monitoring the state of the subject S (maternal (pregnant) S1 and fetus S2) (FIG. 2) on the bed using such a pregnancy state monitoring system 100 will be described.
 妊娠状態モニタリングシステム100を使用した被験者の状態の監視は、図3に示す通り、被験者Sの荷重を荷重信号として検出する荷重検出工程(S101)、検出した荷重信号を解析する信号解析工程(S102)、解析した信号に基づいて妊婦の呼吸情報及び心拍情報を算出する呼吸情報算出工程(S103)及び心拍情報算出工程(S104)、検出した荷重信号に基づいて妊婦及び胎児の重心位置を算出する重心位置算出工程(S105)、上記工程において算出された各種情報に基づいて妊娠状態を監視する状態監視工程(S106)、及び監視結果を出力する出力工程(S107)を主に含む。 As shown in FIG. 3, the monitoring of the condition of the subject using the pregnancy status monitoring system 100 includes a load detection step (S101) for detecting the load of the subject S as a load signal, and a signal analysis step (S102) for analyzing the detected load signal. ), A respiratory information calculation step (S103) and a heart rate information calculation step (S104) for calculating the respiratory information and heart rate information of the pregnant woman based on the analyzed signal, and the center of gravity positions of the pregnant woman and the fetus are calculated based on the detected load signal. It mainly includes a center-of-gravity position calculation step (S105), a state monitoring step (S106) for monitoring a pregnancy state based on various information calculated in the above steps, and an output step (S107) for outputting a monitoring result.
[荷重検出工程]
 荷重検出工程S101では、荷重検出器1a、1b、1c、1dを用いてベッドBD上の被験者S(母体(妊婦)S1及び胎児S2)の荷重を検出する。荷重検出器1a、1b、1c、1dは、上記の通りキャスターCa、Cb、Cc、Cdの下にそれぞれ配置されているため、ベッドBDの上面に加えられる荷重は、4つの荷重検出器1a、1b、1c、1dに分散して検知される。
[Load detection process]
In the load detection step S101, the load of the subject S (maternal (pregnant) S1 and fetus S2) on the bed BD is detected using the load detectors 1a, 1b, 1c, and 1d. Since the load detectors 1a, 1b, 1c, and 1d are respectively disposed under the casters Ca, Cb, Cc, and Cd as described above, the load applied to the upper surface of the bed BD is four load detectors 1a, 1b, 1c, 1d are distributed and detected.
 荷重検出器1a、1b、1c、1dはそれぞれ、荷重(荷重変化)を検出してアナログ信号としてA/D変換部2に出力する。A/D変換部2は、サンプリング周期を例えば5ミリ秒として、アナログ信号をデジタル信号に変換し、デジタル信号(以下「荷重信号」)として制御部3に出力する。以下では、荷重検出器1a、1b、1c、1dから出力され、A/D変換部2においてデジタル変換された荷重信号を、それぞれ荷重信号sa、sb、sc、sdと呼ぶ。 The load detectors 1a, 1b, 1c, and 1d each detect a load (load change) and output it to the A / D converter 2 as an analog signal. The A / D conversion unit 2 converts the analog signal into a digital signal with a sampling period of, for example, 5 milliseconds, and outputs the digital signal to the control unit 3 as a digital signal (hereinafter referred to as “load signal”). Hereinafter, the load signals output from the load detectors 1a, 1b, 1c, and 1d and digitally converted by the A / D converter 2 are referred to as load signals sa, sb, sc, and sd, respectively.
[信号解析工程]
 信号解析工程S102は、信号解析部31により、荷重信号sa、sb、sc、sdの各々を複数の成分に分離する工程である。具体的には、荷重信号sa~sdの各々を、母体S1の呼吸に応じて振動する成分、母体S1の心拍に応じて振動する成分、胎児S2の心拍に応じて振動する成分、及び母体S1の子宮の収縮に応じて振動する成分に分離する。
[Signal analysis process]
The signal analysis step S102 is a step of separating each of the load signals sa, sb, sc, and sd into a plurality of components by the signal analysis unit 31. Specifically, each of the load signals sa to sd includes a component that vibrates according to the breathing of the mother S1, a component that vibrates according to the heartbeat of the mother S1, a component that vibrates according to the heartbeat of the fetus S2, and the mother S1. It separates into components that vibrate according to the contraction of the uterus.
 信号解析部31は、まず、荷重信号saについてフーリエ解析を行い、例えば0.1Hz~20Hzの周波数帯域の周波数スペクトルを求める。求められた周波数スペクトルの一例を図4(a)、図4(b)に示す。図4(a)は母体S1の子宮に収縮が生じていない期間に取得された荷重信号saに対するフーリエ解析の結果、図4(b)は母体S1の子宮に収縮が生じている期間に取得された荷重信号saに対するフーリエ解析の結果である。なお、荷重信号sa~sdはいずれもベッドBD上の被験者Sの生体活動に応じて振動しているため、荷重信号sa~sdの各々についてのフーリエ解析の結果は略同一となる。したがってフーリエ解析は荷重信号sa~sdの少なくとも1つについて行えばよく、必ずしも荷重信号saについて行う必要はない。 The signal analysis unit 31 first performs a Fourier analysis on the load signal sa to obtain a frequency spectrum in a frequency band of 0.1 Hz to 20 Hz, for example. An example of the obtained frequency spectrum is shown in FIGS. 4 (a) and 4 (b). FIG. 4A shows the result of Fourier analysis on the load signal sa acquired during a period when the uterus of the mother S1 is not contracted. FIG. 4B is acquired during the period when the uterus of the mother S1 is contracted. It is the result of the Fourier analysis with respect to the load signal sa. Since the load signals sa to sd all vibrate according to the biological activity of the subject S on the bed BD, the results of the Fourier analysis for each of the load signals sa to sd are substantially the same. Accordingly, the Fourier analysis may be performed on at least one of the load signals sa to sd, and is not necessarily performed on the load signal sa.
 人間の呼吸は、1分間に約12~20回程度行われるため、人間の呼吸の周波数は0.2~0.33Hz程度である。したがって、荷重信号saについてフーリエ解析を行えば、0.2~0.33Hzの周波数帯域において、母体S1の呼吸の周波数(母体呼吸周波数)に対応する位置に周波数ピークが現れる。信号解析部31は、この周波数帯域に現れた周波数ピークの位置に基づいて、母体呼吸周波数を特定する。 Since human breathing is performed about 12 to 20 times per minute, the frequency of human breathing is about 0.2 to 0.33 Hz. Therefore, if Fourier analysis is performed on the load signal sa, a frequency peak appears at a position corresponding to the respiration frequency (maternal respiration frequency) of the mother S1 in the frequency band of 0.2 to 0.33 Hz. The signal analysis unit 31 specifies the maternal breathing frequency based on the position of the frequency peak that appears in this frequency band.
 図4(a)、図4(b)に示す例においては、0.2~0.33Hz程度の周波数帯域では、周波数ν1bHzの位置に周波数ピークが現れている。したがって信号解析部31は、母体呼吸周波数(の中心値)がν1bHzであると特定する。なお、胎児S2は肺呼吸を行っていないため、周波数スペクトルに胎児の呼吸に対応する周波数ピークは現れない。 In the example shown in FIGS. 4A and 4B, a frequency peak appears at the position of the frequency ν 1b Hz in the frequency band of about 0.2 to 0.33 Hz. Therefore, the signal analysis unit 31 specifies that the maternal respiratory frequency (the center value thereof) is ν 1b Hz. Since the fetus S2 does not perform lung respiration, no frequency peak corresponding to the respiration of the fetus appears in the frequency spectrum.
 人間の心拍は、1分間に30~200回程度行われるため、人間の心拍の周波数は0.5~3.3Hz程度である。また、母体の心拍数の正常値は約80~90回程度(1.33~1.5Hz程度)、胎児の心拍数の正常値は、母体の心拍数の正常値よりも大きい約120~160回程度(2~2.66Hz程度)であることがわかっている。 Since the human heartbeat is performed about 30 to 200 times per minute, the human heartbeat frequency is about 0.5 to 3.3 Hz. The normal value of the mother's heart rate is about 80 to 90 times (about 1.33 to 1.5 Hz), and the normal value of the fetal heart rate is about 120 to 160, which is larger than the normal value of the mother's heart rate. It is known that it is about twice (about 2 to 2.66 Hz).
 したがって、荷重信号saについてフーリエ解析を行えば、0.5~3.3Hz程度の周波数帯域において、母体S1の心拍の周波数(母体心拍周波数)に対応する位置、及び胎児S2の心拍の周波数(胎児心拍周波数)に対応する位置に周波数ピークが現れる。信号解析部31は、この周波数帯域に現れた周波数ピークの位置に基づいて、母体心拍周波数及び胎児心拍周波数を特定する。 Therefore, if Fourier analysis is performed on the load signal sa, the position corresponding to the heartbeat frequency of the mother S1 (maternal heartbeat frequency) and the heartbeat frequency of the fetus S2 (fetus in the frequency band of about 0.5 to 3.3 Hz). A frequency peak appears at a position corresponding to (heart rate). The signal analysis unit 31 specifies the maternal heart rate and the fetal heart rate based on the position of the frequency peak that appears in this frequency band.
 図4(a)、図4(b)に示す例においては、0.5~3.3Hz程度の周波数帯域では、周波数ν1hHzの位置、及び周波数ν1hHzより高周波数側である周波数ν2hHzの位置に周波数ピークが現れている。したがって信号解析部31は、母体心拍周波数(の中心値)がν1hHzであり、胎児心拍周波数(の中心値)がν2hHzであると特定する。 FIG. 4 (a), in the example shown in FIG. 4 (b), in the frequency band of approximately 0.5 ~ 3.3 Hz, position of the frequency [nu 1h Hz, and the frequency [nu a higher frequency side than the frequency [nu 1h Hz A frequency peak appears at a position of 2 h Hz. Therefore, the signal analysis unit 31 specifies that the maternal heartbeat frequency (the center value) is ν 1h Hz and the fetal heartbeat frequency (the center value) is ν 2h Hz.
 母体S1の子宮に収縮が生じている時には、子宮を構成する子宮筋は微小振動しており、その周波数は約3~20Hz程度であることが分かっている(例えば、特許文献1参照)。したがって、荷重信号saについてフーリエ解析を行えば、3~20Hz程度の周波数帯域において、母体S1の子宮筋の振動周波数(子宮筋周波数)に対応する位置に周波数ピークが現れる。信号解析部31は、この周波数帯域に現れた周波数ピークの位置に基づいて、子宮筋周波数を特定する。 It is known that when contraction occurs in the uterus of the mother S1, the uterine muscles constituting the uterus vibrate slightly, and the frequency is about 3 to 20 Hz (see, for example, Patent Document 1). Therefore, if Fourier analysis is performed on the load signal sa, a frequency peak appears at a position corresponding to the vibration frequency (uterine muscle frequency) of the uterine muscle of the mother S1 in a frequency band of about 3 to 20 Hz. The signal analysis unit 31 specifies the myometrial frequency based on the position of the frequency peak that appears in this frequency band.
 図4(b)に示す例においては、3~20Hz程度の周波数帯域では、周波数ν1cHzの位置に周波数ピークが現れている。したがって信号解析部31は、子宮筋周波数(の中心値)がν1cHzであると特定する。なお、母体S1の子宮に収縮が生じていない期間に取得された荷重信号saに対するフーリエ解析の結果の一例を示す図4(a)においては、3~20Hz程度の周波数帯域に周波数ピークは現れていない。 In the example shown in FIG. 4B, a frequency peak appears at the position of the frequency ν 1c Hz in the frequency band of about 3 to 20 Hz. Therefore, the signal analysis unit 31 specifies that the myometrial frequency (the center value thereof) is ν 1c Hz. In FIG. 4 (a), which shows an example of the result of Fourier analysis for the load signal sa acquired during a period when the uterus of the mother S1 is not contracted, a frequency peak appears in a frequency band of about 3 to 20 Hz. Absent.
 次いで、信号解析部31は、荷重信号sa、sb、sc、sdの各々から、特定した母体呼吸周波数(ν1bHz)で振動する成分、母体心拍周波数(ν1hHZ)で振動する成分、胎児心拍周波数(ν2hHz)で振動する成分、及び子宮筋周波数(ν1cHz)で振動する成分をそれぞれ分離して取り出す。これらの各成分は、例えば、荷重信号sa~sdの各々に対してバンドパスフィルタ処理を行うことにより取り出される。 Next, the signal analysis unit 31 includes a component that vibrates at the specified maternal respiratory frequency (ν 1b Hz), a component that vibrates at the maternal heart rate frequency (ν 1h HZ), and the fetus from each of the load signals sa, sb, sc, and sd. A component that vibrates at a heartbeat frequency (ν 2h Hz) and a component that vibrates at a uterine muscle frequency (ν 1c Hz) are separated and extracted. Each of these components is extracted, for example, by performing a band pass filter process on each of the load signals sa to sd.
 以下では、荷重信号sa、sb、sc、sdに含まれる母体呼吸周波数で振動する成分を、それぞれ、母体呼吸成分sa1b、sb1b、sc1b、sd1bと呼ぶ。同様に、荷重信号sa~sdに含まれる母体心拍周波数で振動する成分を母体心拍成分sa1h~sd1h、胎児心拍周波数で振動する成分を胎児心拍成分sa2h~sd2h、子宮筋周波数で振動する成分を子宮収縮成分sa1c~sd1cと呼ぶ。 Hereinafter, the components that vibrate at the maternal respiratory frequency included in the load signals sa, sb, sc, and sd are referred to as maternal respiratory components sa 1b , sb 1b , sc 1b , and sd 1b , respectively. Similarly, components that vibrate at maternal heart rate frequencies included in the load signals sa to sd are maternal heart rate components sa 1h to sd 1h , components that vibrate at fetal heart rate frequencies are vibrated at fetal heart rate components sa 2h to sd 2h , and myometrial frequencies. These components are called uterine contraction components sa 1c to sd 1c .
[呼吸情報算出工程、心拍情報算出工程]
 呼吸情報算出工程S103では、呼吸情報算出部32が、信号解析工程S102において特定された母体呼吸周波数の値に基づき、母体S1の呼吸数を算出する。この算出は、具体的には例えば、母体呼吸周波数[Hz]を呼吸数[回/分]に換算することにより行われる。
[Respiration information calculation process, heart rate information calculation process]
In the respiration information calculation step S103, the respiration information calculation unit 32 calculates the respiration rate of the mother S1 based on the value of the maternal respiration frequency specified in the signal analysis step S102. Specifically, this calculation is performed, for example, by converting the maternal respiratory frequency [Hz] into the respiratory rate [times / minute].
 心拍情報算出工程S104では、心拍情報算出部33が、信号解析工程S102において特定された母体心拍周波数、胎児心拍周波数の値に基づき母体S1、胎児S2の心拍数を算出する。これらの算出も、具体的には例えば、母体心拍周波数[Hz]及び胎児心拍周波数[Hz]を心拍数[回/分]に換算することにより行われる。 In the heart rate information calculation step S104, the heart rate information calculation unit 33 calculates the heart rates of the mother S1 and the fetus S2 based on the values of the maternal heart rate frequency and the fetal heart rate frequency specified in the signal analysis step S102. Specifically, these calculations are also performed, for example, by converting the maternal heart rate [Hz] and the fetal heart rate [Hz] into the heart rate [times / minute].
[重心位置算出工程]
 重心位置算出工程S105では、重心位置算出部34が、ベッドBD上に加えられる全荷重の合成重心である全体重心Gの位置、母体呼吸成分sa1b~sd1bに基づく母体呼吸重心G1bの位置、母体心拍成分sa1h~sd1hに基づく母体心拍重心G1hの位置、胎児心拍成分sa2h~sd2hに基づく胎児心拍重心G2hの位置をそれぞれ算出する。
[Center of gravity calculation process]
In the center of gravity position calculating step S105, the centroid position calculating unit 34, the position of the total center of gravity G 0 is a combined center of gravity of the total load exerted on the bed BD, maternal breathing centroid G 1b based on maternal respiratory component sa 1b ~ sd 1b The position of the maternal heart rate center G 1h based on the position, the maternal heart rate components sa 1h to sd 1h, and the position of the fetal heart rate center G 2h based on the fetal heart rate components sa 2h to sd 2h are calculated.
 各重心位置の算出は次の演算により行われる。ベッドBD上に、図2に示す通りXY座標を設定し、荷重検出器1a、1b、1c、1d、の座標をそれぞれ(X、Y)、(X、Y)、(X、Y)、(X、Y)、荷重検出器1a、1b、1c、1dの荷重の検出値をそれぞれW、W、W、Wとすると、ベッドBD上に加えられた荷重の重心位置G(X、Y)は、次式により算出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
The calculation of each barycentric position is performed by the following calculation. On the bed BD, XY coordinates are set as shown in FIG. 2, and the coordinates of the load detectors 1a, 1b, 1c, 1d are set to (X a , Y a ), (X b , Y b ), (X c ), respectively. , Y c ), (X d , Y d ), and the load detection values of the load detectors 1a, 1b, 1c, and 1d are W a , W b , W c , and W d , respectively, are added to the bed BD. The center-of-gravity position G (X, Y) of the loaded load is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、荷重検出器1a、1b、1c、1dの荷重の検出値W、W、W、Wとして荷重信号sa、sb、sc、sdの各サンプリング時刻毎の出力値を用いることで、各サンプリング時刻ごとの全体重心Gの位置が算出される。 Here, the output values at the respective sampling times of the load signals sa, sb, sc, sd are used as the detected values W a , W b , W c , W d of the loads of the load detectors 1a, 1b, 1c, 1d. in the position of the total center of gravity G 0 of each sampling time is calculated.
 同様に、荷重検出器1a、1b、1c、1dの荷重の検出値W、W、W、Wとして母体呼吸成分sa1b~sd1bの各サンプリング時刻毎の出力値を用いることで各サンプリング時刻ごとの母体呼吸重心G1bの位置が算出され、母体心拍成分sa1h~sd1hの各サンプリング時刻毎の出力値を用いることで各サンプリング時刻ごとの母体心拍重心G1hの位置が算出され、胎児心拍成分sa2h~sd2hの各サンプリング時刻毎の出力値を用いることで各サンプリング時刻ごとの胎児心拍重心G2hの位置が算出される。 Similarly, by using the output values at each sampling time of the maternal respiratory components sa 1b to sd 1b as the detected load values W a , W b , W c , and W d of the load detectors 1a, 1b, 1c, and 1d. The position of the maternal heart centroid G 1b at each sampling time is calculated, and the output value at each sampling time of the maternal heart rate components sa 1h to sd 1h is used to calculate the position of the maternal heart centroid G 1h at each sampling time. Then, the position of the fetal heart rate center G 2h at each sampling time is calculated by using the output values at each sampling time of the fetal heart rate components sa 2h to sd 2h .
 全体重心G、母体呼吸重心G1b、母体心拍重心G1h、胎児心拍重心G2hは、それぞれ次の特徴を有する。 The overall center of gravity G 0 , the maternal breathing center of gravity G 1b , the maternal heart rate center of gravity G 1h , and the fetal heart rate center of gravity G 2h have the following characteristics.
 全体重心Gの位置は、ベッドBD上に加えられる全荷重の重心の位置であり、ベッドBDに荷重を加える実体が被験者Sのみである場合は、母体S1と胎児S2との合成重心の位置となる。 Position of the total center of gravity G 0 is the position of the center of gravity of the total load exerted on the bed BD, if entity applies a load to the bed BD is only subject S, the position of the combined center of gravity of the mother S1 and the fetus S2 It becomes.
 母体呼吸重心G1b及び母体心拍重心G1hはそれぞれ、母体呼吸成分sa1b~sd1b、母体心拍成分sa1h~sd1hに基づいて算出された重心位置であるため、母体S1と胎児S2との合成重心よりも母体S1単独の重心寄りの位置となる。母体呼吸重心G1b及び母体心拍重心G1hは、母体S1の移動及び胎児S2の移動の両方に起因して移動するが、母体S1の移動の影響を胎児S2の移動の影響よりも大きく受ける。また、ベッドBD上に被験者S以外に起因する荷重(バッグ等の無生物や見舞客等による荷重)が加えられても、これらの荷重の振動周波数は一般に母体呼吸成分sa1b~sd1b、母体心拍成分sa1h~sd1hの振動周波数とは異なるため、母体呼吸重心G1b及び母体心拍重心G1hはこれらの荷重の影響を受けない。 Since the maternal respiratory centroid G 1b and the maternal heart rate centroid G 1h are the centroid positions calculated based on the maternal respiratory components sa 1b to sd 1b and the maternal heart rate components sa 1h to sd 1h , respectively, The position is closer to the center of gravity of the parent S1 alone than the combined center of gravity. The maternal respiratory centroid G 1b and the maternal heart rate centroid G 1h move due to both the movement of the mother S1 and the movement of the fetus S2, but are more affected by the movement of the mother S1 than the movement of the fetus S2. In addition, even when a load caused by a person other than the subject S (a load by an inanimate object such as a bag or a visitor) is applied to the bed BD, the vibration frequency of these loads generally has maternal respiratory components sa 1b to sd 1b and a maternal heart rate. Since the vibration frequencies of the components sa 1h to sd 1h are different, the maternal respiratory centroid G 1b and the maternal heart rate centroid G 1h are not affected by these loads.
 胎児心拍重心G2hは、胎児心拍成分sa2h~sd2hに基づいて算出された重心位置であるため、母体S1と胎児S2との合成重心よりも胎児S2単独の重心寄りの位置となる。胎児心拍重心G2hは、母体S1の移動及び胎児S2の移動の両方に起因して移動するが、胎児S2の移動の影響を母体S1の移動の影響よりも大きく受ける。また、ベッドBD上に被験者S以外に起因する荷重(バッグ等の無生物や見舞客等による荷重)が加えられても、これらの荷重の振動周波数は一般に胎児心拍成分sa2h~sd2hの振動周波数とは異なるため、胎児心拍重心G2hはこれらの荷重の影響を受けない。 The fetal heart rate center of gravity G 2h is a position of the center of gravity calculated based on the fetal heart rate components sa 2h to sd 2h, and thus is closer to the center of gravity of the fetus S2 alone than the combined center of gravity of the mother S1 and the fetus S2. The fetal heartbeat center of gravity G2h moves due to both the movement of the mother S1 and the movement of the fetus S2, but is more affected by the movement of the fetus S2 than the movement of the mother S1. In addition, even when a load caused by a person other than the subject S (a load by an inanimate object such as a bag or a visitor) is applied on the bed BD, the vibration frequency of these loads is generally the vibration frequency of the fetal heartbeat components sa 2h to sd 2h . The fetal heart rate center of gravity G2h is not affected by these loads.
 求められた全体重心G、母体呼吸重心G1b、母体心拍重心G1h、及び胎児心拍重心G2hの位置、及びこれらの時間的変動の軌跡である全体重心軌跡GT、母体呼吸重心軌跡GT1b、母体心拍重心軌跡GT1h、及び胎児心拍重心軌跡GT2hは、記憶部4に記憶される。 The positions of the obtained total center of gravity G 0 , maternal respiratory center of gravity G 1b , maternal heart rate center of gravity G 1h , and fetal heart rate center of gravity G 2 h , and the total center of gravity locus GT 0 , which is the trajectory of these temporal fluctuations, and the maternal respiratory center of gravity locus GT 1b , the maternal heart rate centroid locus GT 1h , and the fetal heart rate centroid locus GT 2h are stored in the storage unit 4.
[状態監視工程、出力工程]
 状態監視工程S106では、状態監視部35が、上記の工程において算出された各種波形や各種情報の少なくとも1つを用いて、様々な妊娠状態を監視する。出力工程S107では、状態監視工程S106における監視結果に基づく様々な出力(表示部5への表示、報知部6による報知、通信部7を介する通信等)が行われる。
[Status monitoring process, output process]
In the state monitoring step S106, the state monitoring unit 35 monitors various pregnancy states using at least one of various waveforms and various information calculated in the above steps. In the output step S107, various outputs (display on the display unit 5, notification by the notification unit 6, communication via the communication unit 7, etc.) based on the monitoring result in the state monitoring step S106 are performed.
 状態監視部35において行われる状態監視は、一例として(1)妊娠検査、(2)子宮収縮状態の監視、(3)胎児心拍の監視、(4)ノンストレステスト、(5)分娩時期の推定、(6)破水モニタリング、(7)陣痛モニタリング、を含む。 The state monitoring performed in the state monitoring unit 35 includes, for example, (1) pregnancy test, (2) uterine contraction state monitoring, (3) fetal heartbeat monitoring, (4) non-stress test, and (5) delivery time estimation. , (6) broken water monitoring, (7) labor monitoring.
(1)妊娠検査
 信号解析工程S102において得られる周波数スペクトルの0.5~3.3Hz程度の周波数帯域を観察すると、母体の子宮内に胎児が存在しない場合は母体心拍周波数に対応する位置に単独の周波数ピークが現れるのみであるが、母体の子宮内に胎児が存在する場合には母体心拍周波数に対応する位置及び胎児心拍周波数に対応する位置にそれぞれ周波数ピークが現れる。
(1) Pregnancy test When the frequency band of about 0.5 to 3.3 Hz of the frequency spectrum obtained in the signal analysis step S102 is observed, if a fetus is not present in the maternal uterus, it is alone at a position corresponding to the maternal heart rate frequency. However, when a fetus is present in the womb of the mother, frequency peaks appear at a position corresponding to the maternal heartbeat frequency and at a position corresponding to the fetal heartbeat frequency.
 したがって、信号解析工程S102において得られた周波数スペクトルの0.5~3.3Hz程度の周波数帯域に2つの周波数ピークが現れるか否かに基づいて妊娠検査を行うことができる。また、現れる周波数ピークの数に基づき胎児の数を判定することもできる。例えば、周波数ピークの数が3つであれば、胎児の数は2人であると判定できる。判定結果は表示部5に表示される。 Therefore, a pregnancy test can be performed based on whether or not two frequency peaks appear in the frequency band of about 0.5 to 3.3 Hz of the frequency spectrum obtained in the signal analysis step S102. It is also possible to determine the number of fetuses based on the number of frequency peaks that appear. For example, if the number of frequency peaks is three, it can be determined that the number of fetuses is two. The determination result is displayed on the display unit 5.
(2)子宮収縮状態の監視
 妊娠中の母体の子宮は、母体の疲労等の様々な原因により収縮する。子宮の収縮は、母体によって腹部の張りや痛みとして感知される。また、分娩の直前に生じる陣痛は子宮の強度の収縮が原因である。
(2) Monitoring of uterine contraction The uterus of the mother during pregnancy contracts due to various causes such as fatigue of the mother. Uterine contractions are perceived by the mother as abdominal tension or pain. Labor pain that occurs just before parturition is due to strong contraction of the uterus.
 状態監視部35による子宮収縮状態の監視は、例えば次のように行われる。 The monitoring of the uterine contraction state by the state monitoring unit 35 is performed as follows, for example.
 状態監視部35は、信号解析工程S102において得られた周波数スペクトルの3~20Hz程度の周波数帯域に周波数ピークが現れているか否かに基づいて、母体S1に子宮収縮が生じているか否かを判定する。具体的には、信号解析工程S102において得られた周波数スペクトルの3~20Hz程度の周波数帯域に周波数ピークが現れている場合には母体S1に子宮収縮が生じていると判定し、周波数ピークが現れていない場合には母体S1に子宮収縮が生じていないと判定する。 The state monitoring unit 35 determines whether or not uterine contraction occurs in the mother S1 based on whether or not a frequency peak appears in a frequency band of about 3 to 20 Hz of the frequency spectrum obtained in the signal analysis step S102. To do. Specifically, when a frequency peak appears in the frequency band of about 3 to 20 Hz of the frequency spectrum obtained in the signal analysis step S102, it is determined that uterine contraction occurs in the mother S1, and the frequency peak appears. If not, it is determined that no uterine contraction has occurred in the mother S1.
 更に、状態監視部35は、信号解析工程S102において得られた子宮収縮成分sa1c~sd1cの波形の振幅に基づいて、子宮収縮の強度を推定する。具体的には、振幅が大きければ子宮収縮の強度も大きいと推定し、振幅が小さければ子宮収縮の強度も小さいと推定する。 Further, the state monitoring unit 35 estimates the strength of the uterine contraction based on the amplitude of the waveform of the uterine contraction components sa 1c to sd 1c obtained in the signal analysis step S102. Specifically, if the amplitude is large, it is estimated that the strength of uterine contraction is large, and if the amplitude is small, it is estimated that the strength of uterine contraction is small.
 状態監視部35により判定された子宮収縮の有無、及び子宮収縮の強度は、表示部5に表示される。また状態監視部35は、子宮収縮の状態が所定の基準を満たした時、例えば所定時間を越えて子宮収縮が継続した時や子宮収縮の強度が所定値を超えた時に、報知部6を用いた報知や通信部7を用いた通信を行い、医師や助産師に監視結果を通知してもよい。 The presence or absence of uterine contraction and the strength of uterine contraction determined by the state monitoring unit 35 are displayed on the display unit 5. The state monitoring unit 35 uses the notification unit 6 when the uterine contraction state satisfies a predetermined standard, for example, when the uterine contraction continues for a predetermined time or when the uterine contraction intensity exceeds a predetermined value. Notification using the communication unit 7 or communication using the communication unit 7 may be performed to notify the doctor or midwife of the monitoring result.
(3)胎児心拍の監視
 状態監視部35は、信号解析工程S102において得られた胎児心拍成分sa2h~sd2hの波形、及び心拍情報算出工程S104において算出された胎児S2の心拍数に基づいて、胎児S2の心拍状態を監視することができる。
(3) Monitoring of fetal heart rate The state monitoring unit 35 is based on the waveforms of the fetal heart rate components sa 2h to sd 2h obtained in the signal analysis step S102 and the heart rate of the fetus S2 calculated in the heart rate information calculation step S104. The heartbeat state of the fetus S2 can be monitored.
 状態監視部35は、胎児S2の心拍数が正常値の範囲(一例として120~160[回/分])から逸脱した場合に、胎児S2の心拍状態が異常であると判定し、表示部5にその旨を表示してもよい。また、報知部6を用いた報知や通信部7を用いた通信を行い、医師や助産師に判定結果を通知してもよい。 The state monitoring unit 35 determines that the heart rate of the fetus S2 is abnormal when the heart rate of the fetus S2 deviates from the normal value range (for example, 120 to 160 [times / min]), and the display unit 5 This may be displayed on the screen. In addition, notification using the notification unit 6 or communication using the communication unit 7 may be performed to notify the doctor or midwife of the determination result.
(4)ノンストレステスト
 状態監視部35は、胎児S2の心拍状態の監視と、母体S1の子宮収縮状態の監視とを並行して行うことでノンストレステスト(NST)を実行することもできる。
(4) Non-stress test The state monitoring unit 35 can also execute a non-stress test (NST) by performing monitoring of the heartbeat state of the fetus S2 and monitoring of the uterine contraction state of the mother S1 in parallel.
 ノンストレステストとは、胎児が分娩時のストレスに耐える能力を有しているか否かを確認することを主な目的として、妊娠後期に産科において行われるテストであり、胎児の心拍の様子と母体の子宮収縮の様子とを同期して検知することにより実行される。医師や助産師は、胎児の心拍の様子と母体の子宮収縮の様子とを同期して観察することにより、胎児が分娩時のストレスに耐え得るか否か等を判断する。具体的には例えば、母体の子宮に収縮が生じた際に胎児の心拍数が著しく減少する等の症状が観察されれば、胎児には分娩時の子宮の収縮に耐える能力がないと判断して、帝王切開分娩を検討する。 The non-stress test is a test conducted in obstetrics in the second trimester of pregnancy mainly to check whether the fetus has the ability to withstand stress during labor. This is executed by detecting the state of uterine contraction in synchronization. Doctors and midwives determine whether or not the fetus can withstand stress during delivery by observing the fetal heartbeat and the maternal uterine contraction in synchronization. Specifically, for example, if symptoms such as a significant decrease in the heart rate of the fetus are observed when the mother's uterus contracts, the fetus determines that the fetus is not capable of withstanding the contraction of the uterus during delivery. Consider caesarean delivery.
 状態監視部35は、信号解析工程S102において得られた子宮収縮成分sa1c~sd1cの波形と胎児心拍成分sa2h~sd2hの波形とを同期させて監視し、胎児が分娩時のストレスに耐える能力を有しているか否かを判定する。又は状態監視部35による判定は行わず、子宮収縮成分sa1c~sd1cの波形と胎児心拍成分sa2h~sd2hの波形とを同期させて表示部5に表示するのみでもよい。 The state monitoring unit 35 synchronizes and monitors the waveforms of the uterine contraction components sa 1c to sd 1c and the fetal heart rate components sa 2h to sd 2h obtained in the signal analysis step S102, so that the fetus can respond to stress during delivery. Determine whether you have the ability to withstand. Alternatively, the determination by the state monitoring unit 35 may not be performed, and the waveforms of the uterine contraction components sa 1c to sd 1c and the waveforms of the fetal heart rate components sa 2h to sd 2h may be synchronized and displayed on the display unit 5.
(5)陣痛発生時期の推定
 臨月に至り分娩時期が近づくと、母体の子宮内の胎児は子宮口に向かって移動し、頭部を母体の骨盤の中に入れる。胎児の頭部が母体の骨盤の中に入ると、胎児の胎動が減少することが知られている。また胎児がこのような状態に至ると、ほどなく陣痛を生じて分娩に至ることが一般的である。
(5) Estimating the labor generation time When the month arrives and the delivery time approaches, the fetus in the mother's uterus moves toward the uterine ostium and places the head in the mother's pelvis. It is known that fetal fetal movement decreases when the fetal head enters the maternal pelvis. Moreover, when a fetus reaches such a state, it is common for labor to occur shortly before delivery.
 状態監視部35は、母体呼吸重心G1b及び/又は母体心拍重心G1hの位置と、胎児心拍重心G2hの位置とを比較し、胎児心拍重心G2hの位置が母体呼吸重心G1b及び/又は母体心拍重心G1hの位置に相対して下方に移動したことに基づいて胎児S2が母体S1の子宮内を子宮口に向かって移動したと推定する。また、状態監視部35は、胎児心拍重心G2hの移動の頻度が低下したことに基づいて胎児S2の頭部が母体S1の骨盤の中に入ったと推定する。 The state monitoring unit 35 compares the position of the maternal respiratory centroid G 1b and / or the maternal heart centroid G 1h with the position of the fetal heart centroid G 2h , and the position of the fetal heart centroid G 2h is the maternal respiratory centroid G 1b and / or Alternatively, it is estimated that the fetus S2 has moved in the womb of the mother S1 toward the uterine ostium based on the downward movement relative to the position of the mother heart rate center of gravity G1h . Further, the state monitoring unit 35 estimates that the head of the fetus S2 has entered the pelvis of the mother S1 based on the decrease in the frequency of movement of the fetal heart rate center of gravity G2h .
 状態監視部35は、これらの推定(胎児S2が母体S1の子宮内を子宮口に向かって移動したとの推定且つ/又は胎児S2の頭部が母体S1の骨盤の中に入ったとの推定)に基づいて、陣痛発生の時期、ひいては分娩の時期が近付いていると推定することができる。推定結果は、表示部5に表示されてもよく、報知部6を用いた報知や通信部7を用いた通信を行い、医師や助産師に通知されてもよい。 The state monitoring unit 35 performs these estimations (estimation that the fetus S2 has moved in the womb of the mother S1 toward the uterine ostium and / or that the head of the fetus S2 has entered the pelvis of the mother S1). Based on the above, it can be estimated that the time of labor pain, and thus the time of delivery is approaching. The estimation result may be displayed on the display unit 5, or may be notified to the doctor or midwife by performing notification using the notification unit 6 or communication using the communication unit 7.
(6)破水モニタリング
 破水(胎児を包む卵膜が破れ、子宮内の羊水が子宮外に流れ出る現象)は、陣痛が生じた後、分娩の直前に生じる場合のほか、陣痛発生前に生じることもある。状態監視部35は、次の方法により母体S1に破水が生じたことを検知することができる。
(6) Water breakage monitoring Water breakage (a phenomenon where the fetal membrane surrounding the fetus is torn and the amniotic fluid in the uterus flows out of the uterus) occurs after labor occurs immediately before parturition and may occur before labor occurs. is there. The state monitoring unit 35 can detect that water breakage has occurred in the mother body S1 by the following method.
 母体S1に破水が生じると、母体S1の子宮内の羊水は、子宮口及び膣を介して母体S1の体外に流出する。これにより、被験者Sとは別体の無生物である羊水がベッドBDの上面に現れる。したがって、全体重心Gの位置は、被験者Sとは別体の無生物である羊水による荷重が加わったことにより変動する。 When water breakage occurs in the mother S1, the amniotic fluid in the uterus of the mother S1 flows out of the mother S1 through the uterine ostium and vagina. Thereby, amniotic fluid, which is an inanimate object separate from the subject S, appears on the upper surface of the bed BD. Accordingly, the position of the overall center of gravity G 0 varies due to the addition of a load by amniotic fluid that is an inanimate object separate from the subject S.
 また、破水により、母体S1の体内(子宮内)に存在していた羊水が取り除かれる。したがって、母体呼吸重心G1b且つ/又は母体心拍重心G1hの位置は、母体S1の体内の一部に偏在していた一定の重量が取り除かれたことにより、所定の態様の変動を示す。 In addition, the amniotic fluid present in the body (in the womb) of the mother S1 is removed by water breakage. Therefore, the position of the maternal respiratory centroid G 1b and / or the maternal heart rate centroid G 1h shows a variation in a predetermined mode by removing a certain weight that is unevenly distributed in a part of the body of the mother S1.
 すなわち、母体S1が羊水を体内から体外に排出することにより、全体重心Gの位置は下方に移動し、母体呼吸重心G1b且つ/又は母体心拍重心G1hの位置は所定の態様の変動を示す。状態監視部35は、全体重心Gと、母体呼吸重心G1b且つ/又は母体心拍重心G1hとがこのような移動を示したことに基づき、母体S1に破水があったと判定する。判定結果は、表示部5、報知部6且つ/又は通信部7を用いて、母体S1、医師、助産師等に通知される。 That is, by maternal S1 is discharged to the outside of the amniotic fluid from the body, the position of the total center of gravity G 0 moves downward, the position variation of certain aspects of maternal respiratory center of gravity G 1b and / or maternal heart center of gravity G 1h Show. State monitoring unit 35 determines that the total center-of-gravity G 0, maternal respiratory center of gravity G 1b and / or the maternal heart center of gravity G 1h based on that shown such movement, there is a water broke maternal S1. The determination result is notified to the mother S1, the doctor, the midwife, and the like using the display unit 5, the notification unit 6, and / or the communication unit 7.
(7)陣痛モニタリング
 分娩が間近に迫ると、母体S1の子宮はそれまでの妊娠過程における収縮よりも強く収縮する。この収縮により母体S1に陣痛が生じる。陣痛は周期的に生じる本陣痛と、本陣痛の前に生じる非周期的な前駆陣痛とに分類されている。また本陣痛は、最初は10~15分程度の周期で発生し、分娩が近づくにしたがって発生の周期が短くなる。
(7) Labor monitoring When the labor is approaching, the uterus of the mother S1 contracts more strongly than the contraction in the pregnancy process. This contraction causes labor in the mother S1. Labor is divided into periodic main labor and aperiodic precursor labor that occurs before the main pain. In addition, main labor pains occur at a period of about 10 to 15 minutes at first, and the period of occurrence becomes shorter as the delivery approaches.
 状態監視部35は、母体S1に子宮収縮が生じているか否かの判定に基づいて母体S1の陣痛の状況を監視することができる。なお、母体S1に生じている子宮収縮が陣痛に関連するものであるか否かを判定する必要がある場合は、例えば、子宮収縮成分sa1c~sd1cの波形の振幅に基づいて推定される子宮収縮の強度が所定値を超えているか否かにより判定を行っても良く、母体S1に陣痛が生じるべき時期であるか否か(例えば臨月であり且つ胎児S2の頭部が母体S1の骨盤に入っているか否か)により判定を行ってもよい。 The state monitoring unit 35 can monitor the labor situation of the mother S1 based on the determination of whether or not uterine contraction occurs in the mother S1. When it is necessary to determine whether or not the uterine contraction occurring in the mother S1 is related to labor, it is estimated based on, for example, the amplitude of the waveform of the uterine contraction components sa 1c to sd 1c. The determination may be made based on whether or not the strength of the uterine contraction exceeds a predetermined value, and whether or not it is a time when labor should occur in the mother S1 (for example, the head of the fetus S2 is the pelvis of the mother S1) The determination may be made based on whether or not
 状態監視部35による陣痛モニタリングは、具体的には例えば、次のように行われる。 The labor monitoring by the state monitoring unit 35 is specifically performed as follows, for example.
 状態監視部35は所定のサンプリング周期(一例として5秒)で、母体S1に子宮収縮が生じているか否か、即ち母体S1に陣痛が生じているか否かを判定する。そして所定のサンプリング時刻t(図5)において子宮収縮の有無の判定結果が「無し」から「有り」に転じれば、サンプリング時刻tを陣痛開始時刻ts1として記憶部4に記憶させる。 The state monitoring unit 35 determines whether or not uterine contraction has occurred in the mother S1, that is, whether or not labor has occurred in the mother S1, at a predetermined sampling period (as an example, 5 seconds). If the determination result of the presence or absence of uterine contraction changes from “none” to “present” at a predetermined sampling time t 0 (FIG. 5), the sampling time t 0 is stored in the storage unit 4 as the labor start time t s1 .
 次いで、状態監視部35は、所定のサンプリング時刻tにおいて子宮収縮の有無の判定結果が「有り」から「無し」に転じた場合に、サンプリング時刻tを陣痛終了時刻te1として記憶部4に記憶し、陣痛開始時刻ts1と陣痛終了時刻te1との差分に基づいて陣痛継続時間Dを算出する。 Next, when the determination result of the presence or absence of uterine contraction is changed from “present” to “absent” at the predetermined sampling time t 1 , the state monitoring unit 35 stores the sampling time t 1 as labor pain end time t e1. The labor pain duration time D is calculated based on the difference between the labor pain start time t s1 and the labor pain end time t e1 .
 次いで、状態監視部35は、所定のサンプリング時刻tにおいて子宮収縮の有無の判定結果が再度「無し」から「有り」に転じた場合に、サンプリング時刻tを陣痛開始時刻ts2として記憶部4に記憶し、陣痛開示時刻ts1と陣痛開始時刻ts2との差分に基づいて陣痛周期Tを算出する。 Then, the state monitoring section 35, when the determination result of the presence or absence of uterine contractions at the predetermined sampling time t 2 is turned to "Yes" from again "no", the storage unit sampling time t 2 as the onset of labor time t s2 4, and the labor cycle T is calculated based on the difference between the labor pain disclosure time t s1 and the labor pain start time t s2 .
 状態監視部35は、算出した陣痛周期Tが所定の長さ(一例として1時間)を越えていれば、陣痛に周期性はないと判定し、サンプリング時刻tとサンプリング時刻tとの間に生じた陣痛は前駆陣痛であったと判定する。なお、陣痛周期Tの算出を行うことなく、例えば陣痛終了時刻te1から所定時間(一例として1時間)経過した時点で、サンプリング時刻tとサンプリング時刻tとの間に生じた陣痛は前駆陣痛であったと判定してもよい。 If the calculated labor cycle T exceeds a predetermined length (for example, 1 hour), the state monitoring unit 35 determines that labor is not periodic, and between the sampling time t 0 and the sampling time t 1. It is determined that the labor pain that occurred was a precursor labor pain. In addition, without calculating the labor cycle T, for example, when a predetermined time (1 hour as an example) has elapsed from the labor end time t e1 , labor pain generated between the sampling time t 0 and the sampling time t 1 is a precursor. It may be determined that it was labor pains.
 一方で、状態監視部35は、算出した陣痛周期Tが第1の所定値(一例として10分から15分程度)であればサンプリング時刻tとサンプリング時刻tとの間に生じた陣痛と、サンプリング時刻tに開始した陣痛とは、いずれも周期性を有する本陣痛であると判定する。その後、陣痛の終了及び次の陣痛の開始が生じるたびに、陣痛継続時間Dの算出及び陣痛周期Tの算出を繰り返し、陣痛周期Tが第2の所定値(一例として5分から7分程度)であるか否かを判定する。 On the other hand, if the calculated labor period T is a first predetermined value (as an example, about 10 to 15 minutes), the state monitoring unit 35 may have labor that has occurred between the sampling time t 0 and the sampling time t 1 . the labor that started the sampling time t 2, the judges that both are present labor having periodicity. After that, every time the end of labor and the start of the next labor occurs, the calculation of labor duration D and the labor cycle T are repeated, and the labor cycle T is set to a second predetermined value (for example, about 5 to 7 minutes). It is determined whether or not there is.
 状態監視部35は、陣痛周期Tが第2の所定値であると判定した場合には、被験者Sに分娩が迫っていると判定し、その旨を表示部5に表示するとともに、様々な出力を行う。 When the state monitoring unit 35 determines that the labor period T is the second predetermined value, the state monitoring unit 35 determines that the subject S is about to deliver and displays the fact on the display unit 5 and various outputs. I do.
 具体的には例えば、妊娠状態モニタリングシステム100が病室のベッドと共に使用されている場合には、通信部7及び院内回線を通じて医師・助産師に分娩時期の接近を知らせる。医師・助産師は、この報知を受けて分娩に向けた人的、物的な様々な準備を開始することができる。 Specifically, for example, when the pregnancy status monitoring system 100 is used together with a bed in a hospital room, the doctor / midwife is informed of the approaching delivery time through the communication unit 7 and the in-hospital line. Upon receiving this notification, the doctor / midwife can start various human and physical preparations for delivery.
 妊娠状態モニタリングシステム100が自宅のベッドと共に使用されている場合には、報知部6を介して、被験者Sに産院に向かうよう促す。また、通信部7を介してタクシー会社等と通信して配車を依頼するとともに、産院に対して、被験者Sがまもなく産院に向かう旨を通知する。この時、母体S1の呼吸数や心拍数、胎児S2の心拍数、陣痛周期T、陣痛継続時間Dを合わせて産院に通知してもよい。また、母体S1の呼吸数や心拍数、胎児S2の心拍数等に基づき必要であると判定される場合には、タクシーを配車する代わりに救急車を手配しても良い。 When the pregnancy status monitoring system 100 is used with a bed at home, the subject S is urged to go to the maternity hospital via the notification unit 6. Moreover, while communicating with a taxi company etc. via the communication part 7 and requesting a vehicle allocation, it notifies the maternity hospital that the subject S will soon go to the maternity hospital. At this time, the maternity hospital may be notified of the respiratory rate and heart rate of the mother S1, the heart rate of the fetus S2, the labor cycle T, and the labor duration D together. In addition, if it is determined that it is necessary based on the respiratory rate and heart rate of the mother S1, the heart rate of the fetus S2, etc., an ambulance may be arranged instead of dispatching a taxi.
 本実施形態の妊娠状態モニタリングシステム100の効果を以下にまとめる。 The effects of the pregnancy status monitoring system 100 of this embodiment are summarized below.
 本実施形態の妊娠状態モニタリングシステム100は、ベッドBDの脚の下に配置された荷重検出器1a~1dからの荷重信号に基づいて母体S1の子宮収縮状態を判定している。したがって本実施形態の妊娠状態モニタリングシステム100によれば、母体S1の子宮収縮状態(陣痛の状態を含む)を非侵襲でモニターすることができる。また、妊娠状態モニタリングシステム100を母体S1に取付ける手間がなく、妊娠状態モニタリングシステム100が母体S1から脱落する恐れもない。 The pregnancy status monitoring system 100 according to the present embodiment determines the uterine contraction state of the mother S1 based on the load signals from the load detectors 1a to 1d arranged under the legs of the bed BD. Therefore, according to the pregnancy state monitoring system 100 of the present embodiment, the uterine contraction state (including the state of labor) of the mother S1 can be monitored non-invasively. Moreover, there is no trouble of attaching the pregnancy status monitoring system 100 to the mother S1, and there is no possibility that the pregnancy status monitoring system 100 will fall off the mother S1.
 本実施形態の妊娠状態モニタリングシステム100は、べッドBDの脚の下に配置された荷重検出器1a~1dからの荷重信号に基づいて胎児S2の心拍の状態をモニターすることができる。したがって、母体S1の腹部に超音波プローブを取り付けて胎児の心音を検知する従来の方法とは異なり、胎児が子宮内でどのような姿勢を取っていても(即ち胎児の心臓が母体の腹部表面から遠い位置にあっても)、良好に胎児の心拍の状態を監視することができる。 The pregnancy status monitoring system 100 of the present embodiment can monitor the heart rate of the fetus S2 based on the load signals from the load detectors 1a to 1d arranged under the legs of the bed BD. Therefore, unlike the conventional method of detecting the fetal heart sound by attaching an ultrasonic probe to the abdomen of the mother S1, no matter what posture the fetus takes in the uterus (that is, the fetal heart is the surface of the abdomen of the mother). The heart rate of the fetus can be monitored well, even if it is far from the device.
 本実施形態の妊娠状態モニタリングシステム100により、母体S1の子宮収縮の様子と、胎児S2の心拍の様子とを同期して観察することができる。したがって、本実施形態の妊娠状態モニタリングシステム100を病院に設置すれば、従来は母体の腹部に複数のセンサを取り付けて行っていたノンストレステストを、非侵襲で実施することが可能となる。また、本実施形態の妊娠状態モニタリングシステム100を妊婦の自宅に設置すれば、例えば臨月に至った母体S1の子宮の収縮の様子と胎児S2の心拍の様子を常にモニタリングすることができるため、不測の事態を迅速に検知し、適切な対応を取ることが可能となる。 The state of uterine contraction of the mother S1 and the state of heartbeat of the fetus S2 can be observed in synchronization with the pregnancy state monitoring system 100 of the present embodiment. Therefore, if the pregnancy status monitoring system 100 of the present embodiment is installed in a hospital, a non-stress test that has conventionally been performed by attaching a plurality of sensors to the mother's abdomen can be performed non-invasively. In addition, if the pregnancy status monitoring system 100 of this embodiment is installed at the home of a pregnant woman, for example, the state of contraction of the uterus of the mother S1 and the state of the heartbeat of the fetus S2 that have reached the final month can be constantly monitored. It is possible to quickly detect this situation and take an appropriate response.
 また、本実施形態の妊娠状態モニタリングシステム100を分娩室の分娩台と共に使用することで、分娩中の母体S1の子宮の収縮の様子と胎児S2の心拍の様子を、非侵襲でモニタリングすることができる。即ち、従来の分娩監視装置を妊娠状態モニタリングシステム100に置き換えることができる。本実施形態の妊娠状態モニタリングシステム100は、分娩台の脚の下に荷重検出器1a~1dを配置するだけで使用できるため、例えば緊急を要する分娩処置において、母体S1にセンサを取り付ける時間を省略できる等の効果がある。 Further, by using the pregnancy status monitoring system 100 of the present embodiment together with the delivery table in the delivery room, the state of contraction of the uterus of the mother S1 and the state of the heartbeat of the fetus S2 during delivery can be monitored non-invasively. it can. That is, the conventional delivery monitoring device can be replaced with the pregnancy status monitoring system 100. The pregnancy status monitoring system 100 of the present embodiment can be used simply by placing the load detectors 1a to 1d under the legs of the delivery table, so that, for example, in the delivery process requiring emergency, the time for attaching the sensor to the mother S1 is omitted. There are effects such as being able to.
 本実施形態の妊娠状態モニタリングシステム100を妊婦の自宅に設置すれば、例えば臨月を迎えた妊婦は、胎児の頭部が骨盤に収まったことに基づいて、陣痛の開始を予見することができる。このように、陣痛開始時期の予見性を高めることは、妊婦の不安感を解消する上で大いに効果的である。また例えば、臨月を迎えた妊婦が睡眠中に破水した場合も、迅速にこれを検知し適切な報知を行うことができる。 If the pregnancy status monitoring system 100 of the present embodiment is installed at a pregnant woman's home, for example, a pregnant woman who has reached the final month can foresee the start of labor based on the fact that the head of the fetus has settled in the pelvis. As described above, increasing the predictability of labor start time is very effective in eliminating the anxiety of pregnant women. Moreover, for example, even when a pregnant woman who has reached the final month breaks water during sleep, this can be detected quickly and appropriate notification can be made.
 本実施形態の妊娠状態モニタリングシステム100を妊婦の自宅に設置して陣痛モニタリングを行うことで、例えば初産婦であっても陣痛の周期を正確に把握し、適切なタイミングで病院に移動することができる。また、本実施形態の妊娠状態モニタリングシステム100を病院の陣痛室に設置すれば、妊婦を分娩室に移動させる適切なタイミングを、医師や助産師の手を煩わせることなく決定することができる。 By installing the pregnancy status monitoring system 100 according to the present embodiment at the home of a pregnant woman and performing labor pain monitoring, for example, even a primiparous woman can accurately grasp the period of labor pains and move to a hospital at an appropriate timing. it can. Moreover, if the pregnancy state monitoring system 100 of this embodiment is installed in the labor room of a hospital, it is possible to determine an appropriate timing for moving a pregnant woman to the delivery room without bothering the doctor or midwife.
<変形例>
 上記実施形態の妊娠状態モニタリングシステム100において、次の変形態様を採用することも可能である。
<Modification>
In the pregnancy status monitoring system 100 of the above-described embodiment, it is possible to adopt the following modification.
 上記実施形態の妊娠状態モニタリングシステム100は、重心位置算出工程S105で算出した母体S1の母体呼吸重心G1bの位置及び母体呼吸重心軌跡GT1bを表示部5に表示してもよい。 The above embodiments of pregnancy monitoring system 100 may display the position and maternal respiratory center of gravity trajectory GT 1b maternal respiratory center of gravity G 1b maternal S1, calculated by the gravity center position calculating step S105 on the display unit 5.
 このような構成を有する妊娠状態モニタリングシステム100を分娩台と共に用いれば、使用者である医師や助産師は、母体呼吸重心G1bの移動の様子に基づいて母体S1の呼吸の様子を監視し、分娩中の母体S1に適切な呼吸を行うよう促すことができる。具体的には例えば、医師等は、母体呼吸重心G1bが停止していることに基づいて母体S1が呼吸を止めて過度に力んでいると判断し、リラックスして呼吸を継続するよう母体S1に促す。 If the pregnancy state monitoring system 100 having such a configuration is used with a delivery table, a doctor or midwife who is a user monitors the breathing state of the mother S1 based on the movement of the mother breathing center of gravity G1b , It is possible to encourage the mother S1 during labor to perform appropriate breathing. Specifically, for example, the doctor determines that the mother S1 stops breathing and is excessively strong based on the fact that the mother's breathing gravity center G1b is stopped, and relaxes the mother S1 to continue breathing. Prompt.
 上記実施形態の妊娠状態モニタリングシステム100は、信号解析工程S102において得られた周波数スペクトルに基づく妊娠検査を予め行い、胎児S2が存在すると判定した場合にのみ陣痛モニタリングを行うよう構成してもよい。 The pregnancy status monitoring system 100 of the above embodiment may be configured to perform a pregnancy test based on the frequency spectrum obtained in the signal analysis step S102 in advance, and to perform labor monitoring only when it is determined that the fetus S2 exists.
 上記実施形態の妊娠状態モニタリングシステム100を用いて陣痛モニタリングを行う場合には、信号解析工程S102におけるフーリエ解析は、周波数3Hz~20Hzの周波数帯域の周波数スペクトルのみを求めるものであってもよい。また、状態監視部35が陣痛の有無を判定するサンプリング周期は、陣痛周期Tが長い時期は長め(一例として30秒~1分)に設定し、陣痛周期が短くなるに従って短く(一例として1~5秒に)してもよい。これらの構成を採用することにより、陣痛モニタリングの精度を損なうことなく処理負荷を低減することができる。 When performing labor monitoring using the pregnancy status monitoring system 100 of the above-described embodiment, the Fourier analysis in the signal analysis step S102 may obtain only the frequency spectrum in the frequency band of 3 Hz to 20 Hz. In addition, the sampling period for determining the presence or absence of labor by the state monitoring unit 35 is set to be longer (for example, 30 seconds to 1 minute) when the labor period T is long, and becomes shorter as the labor period becomes shorter (for example, 1 to 1). (5 seconds). By adopting these configurations, it is possible to reduce the processing load without impairing the accuracy of labor monitoring.
 上記実施形態の妊娠状態モニタリングシステム100において、荷重検出器1a、1b、1c、1dは、ビーム形ロードセルを用いた荷重センサに限られず、例えばフォースセンサを使用することもできる。 In the pregnancy status monitoring system 100 of the above embodiment, the load detectors 1a, 1b, 1c, and 1d are not limited to load sensors using a beam-type load cell, and for example, force sensors can be used.
 上記実施形態の妊娠状態モニタリングシステム100において、荷重検出器は4つに限られない。ベッドBDに追加の脚を設けて5つ以上の荷重検出器を使用してもよい。又はベッドBDの脚のうち3つのみに荷重検出器を配置してもよい。荷重検出器が3つの場合でも、これを一直線に配置しなければ、ベッドBD面上での被験者Sの重心位置Gを検出できる。 In the pregnancy status monitoring system 100 of the above embodiment, the number of load detectors is not limited to four. Five or more load detectors may be used with additional legs on the bed BD. Or you may arrange | position a load detector only to three of the legs of bed BD. Even when there are three load detectors, if they are not arranged in a straight line, the center-of-gravity position G of the subject S on the bed BD surface can be detected.
 上記実施形態の妊娠状態モニタリングシステム100おいては、荷重検出器1a、1b、1c、1dは、ベッドBDの脚の下端に取り付けられたキャスターCa、Cb、Cc、Cdの下にそれぞれ配置されていたがこれには限られない。荷重検出器1a、1b、1c、1dはそれぞれ、ベッドBDの4本の脚とベッドBDの床板との間に設けられてもよいし、ベッドBDの4本の脚が上下に分割可能であれば、上部脚と下部脚との間に設けられても良い。ベッドBDに代えて分娩台やストレッチャーを用いる場合も同様に、荷重検出器は分娩台やストレッチャーの脚部に組み込まれていても良い。なお、本明細書及び本発明において「載置台に設けられた荷重検出器」とは、上述のようにベッドBDの4本の脚とベッドBDの床板との間に設けられた荷重検出器や、載置台の一部分(脚部等)に組み込まれた荷重検出器を意味する。 In the pregnancy status monitoring system 100 of the above embodiment, the load detectors 1a, 1b, 1c, and 1d are respectively disposed below the casters Ca, Cb, Cc, and Cd attached to the lower ends of the legs of the bed BD. However, it is not limited to this. Each of the load detectors 1a, 1b, 1c, and 1d may be provided between the four legs of the bed BD and the floor plate of the bed BD, or the four legs of the bed BD can be divided vertically. For example, it may be provided between the upper leg and the lower leg. Similarly, when a delivery table or a stretcher is used instead of the bed BD, the load detector may be incorporated in the leg of the delivery table or the stretcher. In the present specification and the present invention, the “load detector provided on the mounting table” means a load detector provided between the four legs of the bed BD and the floor plate of the bed BD as described above. This means a load detector incorporated in a part of the mounting table (eg, leg).
 荷重検出器1a、1b、1c、1dをベッドBDと一体型とし、ベッドBDと本実施形態の身体状態モニタリングシステム100とからなるベッドシステムBDSを構成してもよい(図6)。 The load detectors 1a, 1b, 1c, and 1d may be integrated with the bed BD, and the bed system BDS including the bed BD and the body condition monitoring system 100 of the present embodiment may be configured (FIG. 6).
 なお、上記の実施形態において、荷重検出部1とA/D変換部2との間に、荷重検出部1からの荷重信号を増幅する信号増幅部や、荷重信号からノイズを取り除くフィルタリング部を設けても良い。 In the above embodiment, a signal amplification unit that amplifies the load signal from the load detection unit 1 and a filtering unit that removes noise from the load signal are provided between the load detection unit 1 and the A / D conversion unit 2. May be.
 なお、上記実施形態の妊娠状態モニタリングシステム100において、表示部5は、使用者が視覚的に認識できるようにモニター上に情報を表示するものには限られない。例えば表示部5は、被験者Sの妊娠状態を定期的に印字して出力するプリンタでもよい。さらに、妊娠状態モニタリングシステム100は表示部5を有さなくてもよく、情報を出力する出力端子を有するのみであってもよい。表示を行うためのモニター(ディスプレイ装置)等は、当該出力端子を介して妊娠状態モニタリングシステム100に接続される。 In the pregnancy status monitoring system 100 of the above embodiment, the display unit 5 is not limited to displaying information on the monitor so that the user can visually recognize it. For example, the display unit 5 may be a printer that periodically prints and outputs the pregnancy status of the subject S. Furthermore, the pregnancy status monitoring system 100 does not have to include the display unit 5 and may only have an output terminal for outputting information. A monitor (display device) or the like for performing display is connected to the pregnancy status monitoring system 100 via the output terminal.
 なお、上記実施形態の報知部6は聴覚的に報知を行っていたが、報知部6は、光の点滅等によって視覚的に報知を行う構成であってもよく、振動により報知を行う構成であってもよい。また、上記実施形態の妊娠状態モニタリングシステム100は、報知部6を有さなくても良い。 In addition, although the alerting | reporting part 6 of the said embodiment performed alerting | reporting auditorily, the alerting | reporting part 6 may be the structure which alert | reports visually by blinking of light etc., and is the structure which alert | reports by vibration. There may be. Moreover, the pregnancy state monitoring system 100 of the said embodiment does not need to have the alerting | reporting part 6. FIG.
 なお、上記実施形態の妊娠状態モニタリングシステム100において、配線によって接続されている構成同士は、それぞれ無線によって接続されていてもよい。 In addition, in the pregnancy state monitoring system 100 of the said embodiment, the components connected by wiring may be connected by radio | wireless, respectively.
 本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are maintained, the present invention is not limited to the above embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
 本発明の妊娠状態モニタリングシステムによれば、妊娠に関連する、母体及び胎児の様々な状態を非侵襲で監視することができる。したがってこれを病院や妊婦の自宅において用いれば、妊婦の負担を増すことなく妊娠状態をより高頻度に監視することが可能となる。 According to the pregnancy status monitoring system of the present invention, various maternal and fetal conditions related to pregnancy can be monitored non-invasively. Therefore, if this is used in a hospital or a pregnant woman's home, the pregnancy status can be monitored more frequently without increasing the burden on the pregnant woman.
1 荷重検出部、1a,1b,1c,1d 荷重検出器、2 A/D変換部、3 制御部、31 信号解析部、32 呼吸情報算出部、33 心拍情報算出部、34 重心位置算出部、35 状態監視部、4 記憶部、5 表示部、6 報知部、7 通信部、8 入力部、100 妊娠状態モニタリングシステム、BD ベッド、BDS ベッドシステム S 被験者、S1 母体、S2 胎児 1 load detector, 1a, 1b, 1c, 1d load detector, 2 A / D converter, 3 controller, 31 signal analyzer, 32 breath information calculator, 33 heart rate information calculator, 34 barycentric position calculator, 35 Status monitoring unit, 4 storage unit, 5 display unit, 6 notification unit, 7 communication unit, 8 input unit, 100 pregnancy status monitoring system, BD bed, BDS bed system S subject, S1 mother, S2 fetus

Claims (5)

  1.  載置台の上の母体且つ/又は該母体の子宮内の胎児の状態をモニターする妊娠状態モニタリングシステムであって、
     載置台又は載置台の脚下に設けられ、前記母体及び前記胎児の荷重の時間的変動を検出する少なくとも1つの荷重検出器と、
     前記母体及び前記胎児の荷重の時間的変動の周波数スペクトルを求める信号解析部と、
     前記求められた周波数スペクトルに基づいて、前記母体の子宮に収縮が生じているか否かを判定する状態監視部とを備える妊娠状態モニタリングシステム。
    A pregnancy status monitoring system for monitoring the condition of a mother on a mounting table and / or a fetus in the womb of the mother,
    At least one load detector that is provided under a mounting table or a leg of the mounting table and detects temporal changes in the load of the mother and the fetus;
    A signal analyzer for obtaining a frequency spectrum of temporal variation of the weight of the mother and the fetus;
    A pregnancy monitoring system comprising: a state monitoring unit that determines whether contraction has occurred in the uterus of the mother based on the obtained frequency spectrum.
  2.  前記状態監視部は、更に、前記母体の子宮に収縮が生じる周期を求める請求項1に記載の妊娠状態モニタリングシステム。 The pregnancy state monitoring system according to claim 1, wherein the state monitoring unit further obtains a cycle in which contraction occurs in the maternal uterus.
  3.  更に、前記母体の子宮に収縮が生じる周期が所定値に至ったことに基づいて所定の出力を行う出力部を備える請求項2に記載の妊娠状態モニタリングシステム。 The pregnancy state monitoring system according to claim 2, further comprising an output unit that performs a predetermined output based on a period in which contraction of the mother's uterus reaches a predetermined value.
  4.  前記信号解析部は、前記母体及び前記胎児の荷重の時間的変動に含まれる前記胎児の心拍に応じて振動する荷重成分を分離し、
     前記状態監視部は、前記胎児の心拍に応じて振動する荷重成分に基づいて前記胎児の心拍の状態を監視する請求項1に記載の妊娠状態モニタリングシステム。
    The signal analysis unit separates a load component that vibrates according to the fetal heartbeat included in the temporal variation of the maternal and fetal load,
    The pregnancy state monitoring system according to claim 1, wherein the state monitoring unit monitors the state of the heartbeat of the fetus based on a load component that vibrates according to the heartbeat of the fetus.
  5.  前記少なくとも1つの荷重検出器は複数の荷重検出器であり、
     更に、前記母体及び前記胎児の荷重から前記母体且つ/又は前記胎児の重心の位置を求める重心位置算出部を備え、
     前記信号解析部は、前記母体及び前記胎児の荷重の時間的変動に含まれる前記母体の呼吸に応じて振動する荷重成分を分離し、
     前記重心位置算出部は、該母体の呼吸に応じて振動する荷重成分に基づき前記母体の重心の位置を求める請求項1~4のいずれか一項に記載の妊娠状態モニタリングシステム。
    The at least one load detector is a plurality of load detectors;
    Furthermore, a center-of-gravity position calculation unit for obtaining the position of the center of gravity of the mother and / or the fetus from the load of the mother and the fetus,
    The signal analysis unit separates a load component that vibrates in accordance with breathing of the mother included in temporal variation of the load of the mother and the fetus,
    The pregnancy status monitoring system according to any one of claims 1 to 4, wherein the center-of-gravity position calculation unit obtains the position of the center of gravity of the mother based on a load component that vibrates in accordance with breathing of the mother.
PCT/JP2017/037699 2016-10-26 2017-10-18 Pregnant state monitoring system WO2018079377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209504A JP6321755B2 (en) 2016-10-26 2016-10-26 Pregnancy monitoring system
JP2016-209504 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079377A1 true WO2018079377A1 (en) 2018-05-03

Family

ID=62023470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037699 WO2018079377A1 (en) 2016-10-26 2017-10-18 Pregnant state monitoring system

Country Status (2)

Country Link
JP (1) JP6321755B2 (en)
WO (1) WO2018079377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101376A4 (en) * 2020-02-06 2023-06-21 Takenaka Civil Engineering&Construction Co., Ltd. Determination device and posture control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259343B2 (en) * 2019-01-18 2023-04-18 トヨタ自動車株式会社 Vehicle dispatch service system, vehicle dispatch service method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501557A (en) * 2005-06-21 2009-01-22 アーリーセンス エルティディ Clinical symptom prediction and monitoring technology
JP2012065717A (en) * 2010-09-21 2012-04-05 Real Design:Kk Bioinformation collection device
US20160270658A1 (en) * 2015-03-19 2016-09-22 Stewart Bruce Ater Digital electronic fetal heart rate and uterine contraction monitoring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392577A (en) * 1977-01-22 1978-08-14 Anima Corp Method of measuring respiration and heart motion
JP6400937B2 (en) * 2014-04-28 2018-10-03 ヘルスセンシング株式会社 Vibration signal extraction device
JP6487172B2 (en) * 2014-10-01 2019-03-20 学校法人 関西大学 Uterus monitoring device and labor monitoring device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501557A (en) * 2005-06-21 2009-01-22 アーリーセンス エルティディ Clinical symptom prediction and monitoring technology
JP2012065717A (en) * 2010-09-21 2012-04-05 Real Design:Kk Bioinformation collection device
US20160270658A1 (en) * 2015-03-19 2016-09-22 Stewart Bruce Ater Digital electronic fetal heart rate and uterine contraction monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101376A4 (en) * 2020-02-06 2023-06-21 Takenaka Civil Engineering&Construction Co., Ltd. Determination device and posture control device

Also Published As

Publication number Publication date
JP2018068477A (en) 2018-05-10
JP6321755B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
US20220265202A1 (en) Multifactorial telehealth care pregnancy and birth monitoring
JP6594399B2 (en) Biological information monitoring system
EP2819574B1 (en) Enhanced electronic external fetal monitoring system
KR101188655B1 (en) Pillow with apparatus for inference of sleeping status
US20090143650A1 (en) Miniaturized, dermal-adhesive-based device for position-independent, non-invasive fetal monitoring
KR20160040593A (en) Wireless pregnancy monitor
CN107106118B (en) Method for detecting dicrotic notch
JP2005512719A (en) Heart monitor
JP2002538872A (en) Apparatus and method for non-invasively and passively monitoring a fetal heart
JP7297190B2 (en) alarm system
Brown et al. Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management
WO2018079377A1 (en) Pregnant state monitoring system
CN114340486A (en) Apparatus and method for monitoring maternal and fetal heart rates
JP6487172B2 (en) Uterus monitoring device and labor monitoring device using the same
KR101958863B1 (en) Pregnancy prediction system and method using wearable uterine emg sensor
WO2020194350A1 (en) A wearable device for monitoring fetus health
JP2002224054A (en) Health state measuring device
RU2656518C2 (en) Method of daily monitoring of the fetal and maternal condition in the antenatal pregnancy period and the device for its implementation
RU2568254C2 (en) Device for control and prediction of condition of &#34;mother-foetus&#34; system in procces of obstetric aid
US20170319126A1 (en) Method, apparatus and computer program product for examination of intra-uterus condition of a fetus
EP3544019A1 (en) Signal relay apparatus and patient monitoring system
RU144038U1 (en) DEVICE FOR MONITORING AND FORECASTING THE STATE OF THE MOTHER-FETUS SYSTEM DURING BIRTH CARE
Blincoe Fetal monitoring challenges and choices for midwives
Kumar et al. Real-time monitoring of fetus movements and uterine contractions using MEMS acoustic sensor
JP2020131032A (en) Fetal-heartbeat monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864863

Country of ref document: EP

Kind code of ref document: A1