WO2018079344A1 - Ultrasound image processing device and program - Google Patents

Ultrasound image processing device and program Download PDF

Info

Publication number
WO2018079344A1
WO2018079344A1 PCT/JP2017/037548 JP2017037548W WO2018079344A1 WO 2018079344 A1 WO2018079344 A1 WO 2018079344A1 JP 2017037548 W JP2017037548 W JP 2017037548W WO 2018079344 A1 WO2018079344 A1 WO 2018079344A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
cross
coordinate system
normalized
observation
Prior art date
Application number
PCT/JP2017/037548
Other languages
French (fr)
Japanese (ja)
Inventor
笠原 英司
裕哉 宍戸
優子 永瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018079344A1 publication Critical patent/WO2018079344A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic image processing apparatus and a program, and more particularly to a technique for processing volume data.
  • An ultrasonic image can be obtained by transmitting and receiving an ultrasonic beam to and from a subject using an ultrasonic diagnostic apparatus.
  • an ultrasonic beam is scanned in a three-dimensional space, and echo data is sequentially collected from the three-dimensional space. Based on the collected echo data, three-dimensional ultrasonic data (volume data) or volume data is obtained.
  • An STIC (Spatio-Temporal Image Correlation) method for generating four-dimensional ultrasound data arranged in the time direction is known.
  • a user such as a doctor may specify an observation cross section (main cross section) in the volume data and perform observation or diagnosis using a tomographic image in the specified observation cross section.
  • volume data including a fetal heart image may be acquired in advance, and a tomographic image of an arbitrary observation cross section in the volume data may be displayed on the display unit for diagnosis or observation.
  • the cross section to be observed is predetermined for each diagnosis content. For example, in the case of the heart, when an abnormality of the left ventricle, left atrium, right ventricle, and right atrium is observed, a four-chamber cross section (a cross section including the left ventricle, left atrium, right ventricle, and right atrium) is observed. It becomes a power section. Therefore, the user needs to appropriately specify the observation cross section in the volume data according to the diagnosis contents.
  • ⁇ Operation to specify an appropriate observation section in volume data may be difficult.
  • the fetal heart since the fetus can take various postures within the mother's body, the fetal heart can be in various positions relative to a predetermined position on the mother's surface (ie, a predetermined ultrasonic wave transmitting / receiving surface).
  • the orientation (posture) can be taken. That is, for each volume data, the position or orientation of the fetal heart can vary. Therefore, it may be difficult or time-consuming to specify a target observation cross section in the fetal heart from the volume data.
  • Patent Documents 1 to 6 Conventionally, techniques for automatically specifying an observation cross section in volume data have been proposed (for example, Patent Documents 1 to 6).
  • JP 2014-36863 A Japanese Patent No. 5479138 US Patent Publication No. 2015/0190112 JP 2009-72593 A Special table 2009-513221 gazette Special table 2015-534872 gazette
  • a method of first specifying a reference cross section and specifying an observation cross section based on the reference cross section For example, in Patent Document 1, a reference cross section is first specified from volume data, and a plane obtained by horizontally moving the specified reference cross section by a predetermined distance is used as an observation cross section. In Patent Document 2, a reference cross section is specified based on three reference points detected in an observation target (heart) included in volume data, and a plane obtained by rotating the reference cross section by a predetermined angle in a predetermined direction is an observation cross section. It is said. In Patent Document 3, a user inputs a plurality of feature points (reference points) in an observation target (heart) included in volume data, and specifies a plurality of arbitrary cross sections based on the plurality of reference points.
  • the cross section specified as the observation cross section may not be an accurate observation cross section intended by the user.
  • a cross section horizontally moved by a predetermined distance from a four-chamber cross section as a reference cross section as a five-chamber cross section (a cross section including the left ventricle, left atrium, right ventricle, right atrium, and aorta)
  • the shape of the heart in this case
  • the distance between the four-chamber cross-section and the five-chamber cross-section has individual differences. Therefore, in this method, an accurate five-chamber cross-section may not be specified depending on the subject.
  • An object of the present invention is to easily and more accurately specify an observation cross section in consideration of individual differences of target tissues in volume data obtained by transmission and reception of ultrasonic waves.
  • the ultrasonic image processing apparatus is based on the target tissue image included in the volume data obtained by transmission and reception of ultrasonic waves, and the real coordinate system included in the volume data and the calculated normalized coordinate system.
  • Correspondence generation means for calculating a correspondence relation, and based on the correspondence relation, from a normalized observation cross section defined in the normalized coordinate system, a cross section specifying means for specifying an actual data observation cross section in the real coordinate system, Image forming means for forming a tomographic image corresponding to the identified actual data observation section from the volume data.
  • the correspondence between the real coordinate system and the normalized coordinate system of the volume data is calculated.
  • the correspondence relationship indicates coordinate conversion between the real coordinate system and the normalized coordinate system.
  • a normalized observation section is defined in the normalized coordinate system.
  • the normalized observation cross section is defined by three coordinates in the normalized coordinate system.
  • a target tissue image having a prescribed size or orientation can be defined. Therefore, a normalized observation cross section corresponding to each observation cross section can be uniquely defined without considering individual differences in the target tissue image.
  • each real data observation section on the real coordinate system corresponding to each normalized observation section defined in the normalized coordinate system can be specified.
  • the correspondence between the real coordinate system and the normalized coordinate system can be calculated for each target tissue image. Therefore, by specifying the actual data observation cross section based on the normalized observation cross section and the correspondence relationship, even if there is an individual difference in the target tissue image, the individual difference is absorbed, and in any target tissue image A more accurate actual data observation section is specified in the volume data.
  • the correspondence generation means calculates the correspondence based on a representative point group detected from the target tissue image.
  • the representative point group includes a reference point of the target tissue image and both end points of the target tissue image on each coordinate axis of the real coordinate system, and the normalized coordinate system includes the reference point and Defined based on the endpoints.
  • the normalized coordinate system has at least two different scales.
  • the normalized coordinate system has a plurality of different scales, it is possible to specify a more accurate actual data observation section in the volume data in consideration of the size balance of each part included in the target tissue and distortion of the arrangement relationship. be able to.
  • the difference in the shape of the heart due to individual differences may not only be different in outline but also in the ratio of the size of the left and right ventricles, for example.
  • by changing the left and right scales based on the septum of the heart in the normalized coordinate system it is possible to specify the actual data observation section while eliminating the balance of the left and right ventricle sizes. .
  • a plurality of the normalized observation cross sections are defined, and the cross section specifying means is configured to select the realization corresponding to the selected normalized observation cross section based on a selected normalization observation cross section selected from the plurality of normalization observation cross sections. Identify the data observation cross section.
  • a plurality of normalized observation sections can be defined in advance. According to the present invention, even if any one of the plurality of normalized observation sections is selected, the actual data observation section corresponding to the selected normal observation section based on the correspondence between the actual coordinate system and the normalized coordinate system. Can be specified.
  • it further includes a representative cross-section specifying means for specifying a representative cross-section in the volume data, wherein the correspondence relationship generating means includes the coordinates in the real coordinate system and the normality of a plurality of representative points detected in the representative cross-section. The correspondence is calculated based on the relationship with the coordinates in the coordinated coordinate system.
  • the representative cross-section specifying means includes a posture specifying means for specifying a posture of the volume data so that a target tissue image included in the temporary representative cross-section specified in the volume data matches template data, and the posture Representative volume search means for searching for the representative cross section in the vicinity of the temporary representative cross section in the volume data of the posture defined by the defining means.
  • the volume data is rotated so that the specified temporary representative cross-section predetermined (orientation) is in the prescribed orientation.
  • the direction of the representative cross-sectional image is the direction indicated by the template data. For example, the direction on the apex side of the heart is defined.
  • This orientation corresponds to the orientation of the target tissue image defined in the normalized coordinate system.
  • searching for the vicinity of the temporary representative cross-section in the rotated volume data the representative cross-section facing the specified direction can be specified.
  • a display unit that displays the tomographic image, and in the normalized coordinate system, a label space region that corresponds to each part of the target tissue image and includes label information indicating each part is defined,
  • the display unit displays label information corresponding to the label space region crossed by the normalized observation cross section together with a tomographic image corresponding to the normalized observation cross section. indicate.
  • the label information corresponding to the label space region traversed by the normalized section, regardless of which normalized section is selected.
  • the user can easily grasp which part is which part in the displayed tomographic image.
  • the label information is displayed so that the correspondence between the part included in the tomographic image corresponding to the normalized observation section and the part corresponding to the label information becomes clear.
  • FIG. 1 is a schematic configuration diagram of an ultrasonic diagnostic apparatus according to the present embodiment. It is a figure for demonstrating the three-dimensional scanning in this embodiment. It is a figure which shows several volume data corresponding to each time phase. It is a figure which shows the observation cross section in the heart of a fetus. It is a figure which shows the detailed structure of a volume data processing part. It is a figure which shows the mode of the reversal binarization process with respect to a temporary four-chamber cross section. It is a graph which shows the threshold value for a binarization process. It is a figure which shows template data. It is a figure which shows the mode of a matching process with provisional four-chamber cross-sectional data and template data.
  • FIG. 6 is an enlarged view near a feature point C. It is a figure which shows a heart area
  • FIG. 1 is a schematic configuration diagram of an ultrasonic diagnostic apparatus 10 as an ultrasonic image processing apparatus.
  • the ultrasonic diagnostic apparatus 10 is generally a medical device that is installed in a medical institution such as a hospital and performs ultrasonic diagnosis on a living body.
  • a target tissue is a fetal heart and a tomographic image of an observation cross section in the fetal heart is formed, but the present invention is not limited thereto.
  • Probe 12 is an ultrasonic probe that transmits and receives ultrasonic waves to and from the fetal heart.
  • the probe 12 is communicably connected to the apparatus main body including the transmission / reception unit 14 and below by a cable or wirelessly.
  • the probe 12 has a transducer array including a plurality of transducer elements, and ultrasonic waves are transmitted and received by the transducer array.
  • a scanning plane is formed in a space including the fetal heart by transmitting and receiving ultrasonic waves from the transducer array.
  • a fetal heart that is a subject is included by mechanically moving a scanning surface that is electronically formed by a plurality of one-dimensionally arranged vibration elements (1D array transducers).
  • An ultrasonic beam is scanned in the dimensional space.
  • a plurality of vibration elements (2D array transducers) arranged two-dimensionally may be electronically controlled to scan the ultrasonic beam three-dimensionally.
  • FIG. 2 is a diagram for explaining the three-dimensional scanning in the present embodiment.
  • the three-dimensional space including the fetal heart is represented by an xyz coordinate system which is a real coordinate system.
  • the scanning surface S is formed so as to be substantially parallel to the xy plane, and the plurality of scanning surfaces S are formed along the z-axis direction while slowly moving the scanning surface S in the z-axis direction. It is formed.
  • the scanning plane S is slowly moved in the z-axis direction over a plurality of cardiac cycles (beating cycles) of the fetal heart.
  • the transmission / reception unit 14 forms a transmission beam of ultrasonic waves by supplying a transmission signal corresponding to each transducer included in the transducer array of the probe 12.
  • the transmission / reception unit 14 receives a plurality of reception signals from each transducer included in the transducer array of the probe 12.
  • the phasing addition unit 16 performs phasing addition processing on the plurality of reception signals received by the transmission / reception unit 14 to form an ultrasonic reception beam, and outputs echo data obtained along the reception beam.
  • the beam processing unit 18 performs various signal processing such as gain correction processing, logarithmic amplification processing, envelope detection processing, and filter processing on the echo data output from the phasing addition unit 16. Thereby, beam data corresponding to each echo data is formed.
  • the DSC (Digital Scan Converter) 20 has an interpolation function and a coordinate conversion function, and forms a display frame, that is, an ultrasonic image, based on a plurality of beam data output from the beam processing unit 18.
  • a B-mode image that is a tomographic image is formed.
  • the DSC 20 forms an ultrasonic image for each scanning plane S (see FIG. 2).
  • a plurality of ultrasonic images arranged in the z-axis direction are formed.
  • the plurality of ultrasonic images are stored in the storage unit 22 described later.
  • the ultrasonic image formed by the DSC 20 may be directly output to the image composition unit 32 (described later).
  • the storage unit 22 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or a hard disk.
  • the storage unit 22 stores a program for operating each unit of the ultrasound diagnostic apparatus 10. Further, as shown in FIG. 1, a previous memory 24 and a data memory 26 are constructed in the storage unit 22. A plurality of ultrasonic images formed by the DSC 20 are stored in the previous memory 24.
  • the data memory 26 stores four-dimensional volume data (a plurality of volume data arranged in the time direction) formed by a reconstruction processing unit 28 described later.
  • the reconstruction processing unit 28 searches a plurality of reference images at a frame interval (image interval) corresponding to the cardiac cycle of the fetal heart from a plurality of ultrasonic images stored in the previous memory 24.
  • the reconstruction processing unit 28 sets the plurality of ultrasonic images stored in the previous memory 24 as a plurality of images by using each of the plurality of reference images as a unit of division. Divide into groups. Then, a plurality of tomographic image data corresponding to each time phase in the cardiac cycle is extracted from each of the plurality of image groups, thereby realizing reconstruction processing (reconstruction processing).
  • a plurality of volume data including a fetal heart three-dimensional image as a target tissue image is formed from a plurality of ultrasonic images stored in the previous memory 24.
  • the plurality of volume data corresponds to each time phase in the cardiac cycle. Since the plurality of volume data are arranged in the time direction, it can be said that the reconstruction processing unit 28 forms the four-dimensional volume data.
  • the four-dimensional volume data formed by the reconstruction processing unit 28 is stored in the data memory 26.
  • FIG. 3 shows a plurality of volume data 40 stored in the data memory 26.
  • the data memory 26 stores a plurality of volume data 40 for one cardiac cycle, but the volume data 40 over a longer period may be stored.
  • the position and posture of the probe 12 are adjusted by a user such as a doctor, so that at least a cross section (provisional four chambers) in the vicinity of the four-chamber cross section in each scanning plane S group constituting each volume data. Cross section).
  • the provisional four-chamber section does not need to be an accurate four-chamber section, and may be a section that is complexly displaced from the exact four-chamber section in the xyz-axis direction.
  • the orientation (rotation direction) and size of the provisional four-chamber cross section in the xy plane need not be specific. It should be noted that ultrasonic waves are transmitted and received in a relatively wide area, a heart stereoscopic image is detected from the volume data obtained thereby, and volume data including at least a provisional four-chamber section is automatically cut out as a scanning plane S by image processing. You may do it.
  • the volume data processing unit 30 performs processing on the four-dimensional volume data stored in the data memory 26, and automatically selects one or a plurality of actual data observation sections desired by the user for each volume data. And forming a tomographic image in the actual data observation cross section.
  • the detailed configuration of the volume data processing unit 30 and the details of the processing will be described later.
  • the image composition unit 32 synthesizes images or characters indicating various information with the tomographic image (B-mode image) of the actual data observation section formed by the volume data processing unit 30 to form display screen data.
  • the display screen data may include an ultrasonic image formed by the DSC 20.
  • the display unit 34 is composed of, for example, a liquid crystal panel or an organic EL panel. Display screen data formed by the image composition unit 32 is displayed on the display unit 34.
  • the control unit 36 is constituted by, for example, a CPU or a microcontroller, and controls each unit of the ultrasonic diagnostic apparatus 10 according to a program stored in the storage unit 22.
  • each of the transmission / reception unit 14, the phasing addition unit 16, the beam processing unit 18, the DSC 20, the reconstruction processing unit 28, the volume data processing unit 30, and the image composition unit 32 is, for example, It can be realized using hardware such as an electronic circuit or a processor, and a device such as a memory may be used as necessary in the realization. In addition, functions corresponding to the above-described units may be realized by cooperation between hardware such as a CPU, a processor, and a memory, and software (program) that defines the operation of the CPU and the processor.
  • the observation cross section means a cross section mainly used by a doctor or the like for diagnosis or observation.
  • FIG. 4 shows a schematic diagram of the fetal heart.
  • a fetal heart 42, aorta 44, pulmonary artery 46, superior vena cava 48, and lung 50 are shown.
  • the apex of an adult heart is directed to the stomach side (the lower side in FIG. 4), but in the case of a fetus, air is not contained in the lung 50, and the heart 42 has a diaphragm (not shown in FIG. 4). Therefore, the direction of the heart 42 is generally the direction in which the apex 42a faces sideways.
  • an observation cross section cross section orthogonal to the paper surface indicated by reference numeral 52 in FIG.
  • the observation cross section indicated by reference numeral 54 translated from the head to the head side shows the five-chamber cross section.
  • the observation cross section indicated by reference numeral 56 translated from the head side shows a three blood vessel cross section (a cross section including the pulmonary artery, the aorta, and the superior vena cava), and further, the reference numeral 58 translated from the head side.
  • the observation cross section shown by (3) shows a three-vascular tracheal cross section (a cross section including the pulmonary artery, aorta, superior vena cava and trachea). Note that the observation cross section shown in FIG.
  • observation cross sections 4 is a part, and there are various other observation cross sections (for example, observation cross sections that are not parallel to the four-chamber cross section).
  • observation cross sections for example, observation cross sections that are not parallel to the four-chamber cross section.
  • the volume data processing unit 30 one or a plurality of actual data observation sections are automatically specified in the four-dimensional volume data stored in the data memory 26.
  • FIG. 5 shows a detailed configuration of the volume data processing unit 30.
  • the details of the processing of the volume data processing unit 30 will be described along the processing flow.
  • the filter unit 60 extracts volume data 40 of a specific time phase from a plurality of volume data 40 (see FIG. 3) stored in the data memory 26.
  • volume data 40 corresponding to the end diastole is extracted from the cardiac cycle. This is because the end-diastolic volume data 40 in which the heart chamber becomes the largest is more suitable for later processing because the four-chamber cross section is specified later as the reference cross section.
  • the filter unit 60 extracts volume data 40 at a specific time phase by performing image processing on each volume data 40.
  • the volume data 40 corresponding to the end diastole can be detected based on the volume of the blood flow part (for example, in the heart chamber) of the fetal heart in each volume data 40.
  • the outline of the heart is extracted by three-dimensional image processing, and the volume data 40 having the largest volume of the heart cavity that is the inner space is identified as the volume data 40 at the end diastole. can do.
  • the filter unit 60 performs a process such as a smoothing filter for smoothing the omission of the tissue on the data or the boundary part on the extracted end-diastolic volume data 40.
  • the filter process reduces the possibility of erroneous detection or erroneous determination in subsequent processes.
  • the adjustment unit 62 first specifies a provisional four-chamber section as a provisional representative section in the end-diastolic volume data 40 extracted and filtered by the filter unit 60.
  • the xy section at the center in the z-axis direction is specified as the provisional four-chamber section 90 in the volume data 40.
  • the provisional four-chamber cross section 90 thus identified is generally not an accurate four-chamber cross section. That is, it does not include an accurate four-chamber cross-sectional image.
  • the provisional four-chamber cross section 90 is not limited to the cross section at the center in the z-axis direction, and may be specified based on other criteria as long as the provisional four-chamber cross section 90 can be specified in the volume data 40.
  • the adjustment unit 62 performs binarization processing on the volume data 40. That is, the adjustment unit 62 also functions as a binarization processing unit. By the binarization processing, subsequent processing can be simplified.
  • the adjustment unit 62 performs inversion binarization processing on the volume data 40.
  • FIG. 6 shows a provisional four-chamber cross section 92 in the volume data 40 subjected to the reverse binarization process.
  • the threshold value for binarization processing is determined by analyzing the luminance distribution of each voxel in the volume data 40. In general, the luminance distribution of each voxel in the volume data 40 is a bimodal graph as shown in FIG. In the present embodiment, the adjustment unit 62 performs binarization processing using the luminance corresponding to the first inflection point (the inflection point closest to the luminance value 0) in the bimodal graph as a threshold value.
  • the adjustment unit 62 defines the posture of the volume data 40 so that the orientation and size of the provisional four-chamber cross-sectional image 92a (see FIG. 6) included in the provisional four-chamber cross section 92 become the prescribed orientation and size. I do. That is, the adjustment unit 62 also functions as a posture defining unit. In the present embodiment, the adjustment unit 62 performs a process of defining the posture based on the template data 64 stored in advance in the storage unit 22.
  • FIG. 8 shows a schematic diagram of the template data 64.
  • the template data 64 defines the direction and size of the four-chamber cross-sectional image.
  • the template data 64 is used to define the orientation and size of the provisional four-chamber cross-sectional image 92a.
  • the template data 64 in the present embodiment is image data.
  • the template data 64 has an oval part 64a corresponding to the heart cavity part of the four-chamber cross-sectional image.
  • the egg-shaped portion 64a has an asymmetric shape in the up-down direction, and this indicates the prescribed direction of the four-chamber cross-sectional image, particularly the left-right direction as the first direction.
  • the left-right direction means the left-right direction when the fetal heart is viewed from the front (see FIG. 4).
  • the direction of the apex is shown in the template data 64.
  • one end portion of the egg-shaped portion 64a is a narrow end portion 64b
  • the other end portion is a thick end portion 64c
  • the narrow end portion 64b side is the apex side of the four-chamber cross-sectional image. Show.
  • the size (area) of the egg shaped portion 64a indicates the prescribed size (area) of the four-chamber cross-sectional image.
  • the template data 64 includes a slit 64d that extends from the narrow end portion 64b of the egg-shaped portion 64a toward the thick end portion 64c. The slit 64d corresponds to the septum of the four-chamber cross-sectional image.
  • “1” is set as the luminance value for the pixel of the egg-shaped portion 64a, and “0” is set as the luminance value for the other pixels including the slit 64d.
  • the adjustment unit 62 uses such template data 64 to rotate, enlarge, and enlarge the volume data 40 so that the provisional four-chamber cross-sectional image 92a has a specified orientation and a predetermined size.
  • a reduction process or a parallel movement process of the three-dimensional heart image included in the volume data 40 is performed.
  • these processes are collectively referred to as a matching process.
  • the state of the matching process is shown in FIG.
  • the luminance value of each pixel corresponding to the heart chamber portion of the provisional four-chamber section 92 that has been inverted and binarized is approximately “1”, and the luminance value of the pixel corresponding to the other portion (such as the myocardium or septum). Is “0”.
  • the luminance value of the pixel of the egg-shaped portion 64a corresponding to the heart cavity portion of the template data 64 is “1”
  • the luminance value of the pixel corresponding to the other portion is “0”.
  • the adjustment unit 62 superimposes the provisional four-chamber section 92 and the template data 64 so that the sum of the products of the luminance values of the corresponding pixels is maximized between the provisional four-chamber section 92 and the template data 64.
  • the provisional four-chamber cross section 92 is rotated, enlarged / reduced, or translated. Accordingly, the volume data 40 is also rotated, enlarged / reduced, and the heart stereoscopic image included in the volume data 40 is translated.
  • the weight is increased as the distance from the slit 64d is increased in the horizontal direction (left and right direction in FIG. 8) of the template data 64, and the weight is decreased as the distance from the slit 64d is increased.
  • the orientation and size of the provisional four-chamber cross-sectional image 92a can be determined based on the position of the septum of the slit 64d and the provisional four-chamber cross-sectional image 92a.
  • the orientation of the volume data 40 can be defined so that the orientation and size of the provisional four-chamber cross-sectional image 92a are as defined in the template data 64.
  • FIG. 9 shows a provisional four-chamber cross section 94 including a provisional four-chamber cross-sectional image 94a subjected to matching processing.
  • the rotation process of the volume data 40 can be expressed by an equation using a quaternion.
  • the quaternion is expressed by the following expression by four elements that are one real part and three imaginary parts.
  • t is a real part and x, y, and z are imaginary parts.
  • a certain coordinate (X, Y, Z) in the coordinate system is expressed as follows according to a quaternion.
  • the rotation axis does not start from the coordinate origin
  • the rotation axis and the coordinates of the target of the rotation process are translated and the rotation axis is set to the coordinate origin. Then, the coordinates after the rotation processing are obtained by the above formula, and the target coordinates can be obtained by translating the coordinates in the reverse direction.
  • the adjustment unit 62 holds each parameter related to the rotation processing of the volume data 40 in the storage unit 22. Specifically, a unit vector ( ⁇ , ⁇ , ⁇ ) representing the rotation axis and ⁇ representing the rotation angle are held. When the volume data 40 is enlarged / reduced, the enlargement / reduction ratio is retained. Furthermore, when a translation is performed with respect to the heart stereoscopic image, a vector indicating the translation is held.
  • the template data 64 is used to perform the matching process, but the orientation and size of the provisional four-chamber cross-sectional image 92a are adjusted by performing image recognition processing on the provisional four-chamber section 92. You may do it. For example, a feature point (for example, apex portion, central part of the septum, etc.) included in the provisional four-chamber cross-sectional image 92a is detected, and based on the detected feature point, the provisional four-chamber cross-sectional image 92a (and thus the volume data 40) is You may make it perform the process to perform. In such a process, a machine learning method that uses the accumulated results of past adjustment processes may be used.
  • a feature point for example, apex portion, central part of the septum, etc.
  • the representative cross-section detector 66 as representative cross-section search means searches for the (true) four-chamber cross section as the representative cross-section in the adjusted volume data with reference to the provisional four-chamber cross section 94 matched by the adjusting section 62.
  • FIG. 10 shows a processing flow of the representative cross-section detection unit 66.
  • a post-adjustment volume data 96 whose posture has been adjusted by the adjustment unit 62 and a provisional four-chamber cross section 94 including the provisional four-chamber cross-sectional image 94a that has been adjusted are shown.
  • the representative cross-section detection unit 66 superimposes the temporary four-chamber cross-sectional image 94a included in the temporary four-chamber cross section 94 and the template data 64, and the rotation axis that is the tangent to the lower end (the lower end of the thick end portion 64c) in the template data 64.
  • the temporary four-chamber cross section 94 and the template data 64 are both rotated about 98a (see the upper right figure in FIG. 10).
  • the brightness of each coordinate corresponding to the cross-sectional image included in the rotated provisional four-chamber section 94 and the template data 64 is similar to the matching process shown in FIG.
  • the sum of the products of the values is calculated, and in the adjusted volume data 96, the first detection cross section 100 (see the lower left figure in FIG. 10) that is the cross section in which the sum is maximized (that is, the area in the heart chamber is maximized). To detect.
  • the representative cross-section detection unit 66 sets both the first detection cross-section 100 and the template data 64 around the rotation axis 98b that is the tangent to the upper end (the upper end of the narrow end 64b) of the template data 64 in the first detection cross-section 100. Rotate. Then, while rotating the first detection section 100 and the template data 64, the sum of the products of the brightness values of the corresponding coordinates of the rotated first detection section 100 and the template data 64 is calculated.
  • the second detection cross section 102 (see the lower right diagram in FIG. 10), which is the cross section in which the sum is the maximum, is detected. Note that either the rotation process based on the lower end of the template data 64 or the rotation process based on the upper end may be performed first.
  • the representative cross-section detector 66 rotates both the second detection cross-section 102 and the template data 64 around the central axis 98c (axis along the slit 64d) 98c of the template data 64 in the second detection cross-section 102. Then, while rotating the second detection cross section 102 and the template data 64, the sum of the products of the brightness values of the corresponding coordinates of the rotated second detection cross section 102 and the template data 64 is calculated. The cross section where the sum is the maximum is detected.
  • a cross section having a larger heart chamber area is searched in the vicinity of the provisional four-chamber cross section 94 in the adjusted volume data 96.
  • the cross section having the maximum cardiac chamber area searched in this way is specified as the four-chamber cross section.
  • the apex direction of the four-chamber cross-sectional image included in the four-chamber cross section specified in this way indicates the apex direction of the three-dimensional heart image in the adjusted volume data 96.
  • the adjustment unit 62 and the representative cross-section detection unit 66 constitute a representative cross-section specifying unit or a first direction specifying unit.
  • each rotation process by the representative cross-section detection unit 66 is also executed using an expression including a quaternion, and the representative cross-section detection unit 66 holds each parameter related to each rotation process in the storage unit 22. Specifically, a unit vector ( ⁇ , ⁇ , ⁇ ) representing each rotation axis and ⁇ representing each rotation angle are held.
  • the feature point / size detection unit 68 performs image processing on the four-chamber cross section detected by the representative cross-section detection unit 66 to detect a plurality of feature points in the four-chamber cross-sectional image included in the four-chamber cross section.
  • FIG. 11 shows feature points detected in the four-chamber cross-sectional image 104 a included in the four-chamber cross-section 104.
  • FIG. 11 shows the coordinate axes of the rotating real coordinate system in which the four-chamber cross section is the rxry plane and the direction orthogonal to the rxry plane is the rz axis.
  • seven feature points are detected in the four-chamber cross-sectional image 104a. Specifically, as shown in FIG. 11, a total of seven feature points A to G including the upper and lower ends, the left and right ends, and the three feature points indicating the centers as reference points are detected.
  • Feature point A indicates the upper end of the four-chamber cross-sectional image 104a.
  • an approximate curve that passes through a plurality of points (represented by x marks in FIG. 12A) detected as a result of the edge search in the vicinity of the upper end of the four-chamber cross-sectional image 104a is calculated.
  • the vertex is identified as the feature point A.
  • the feature point B indicates the lower end of the four-chamber cross-sectional image 104a and is identified by the same method as the feature point A.
  • Feature point C indicates the center of the four-chamber cross-sectional image 104a.
  • the feature point C is defined as a midpoint between the feature point D and the feature point E.
  • the feature point D indicates one of the left and right ventricular end portions on the septal side and the valve side.
  • the right edge of the septum is searched from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point D. Is done.
  • the inflection point can be detected as a point where the amount of change in the ry coordinate between the edge point detected immediately before and the edge point detected this time is 0 or negative.
  • the feature point E indicates the other septum side and valve end of the left or right ventricle.
  • the left edge of the septum is searched from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point E.
  • Feature point F indicates the left end of the four-chamber cross-sectional image 104a.
  • the edge search is performed along the left line from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point becomes the feature point F.
  • the feature point G indicates the right end of the four-chamber cross-sectional image 104a.
  • the edge search is performed along the right line from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point G.
  • the feature point / size detection unit 68 performs processing for detecting the size of the heart stereoscopic image in the adjusted volume data 96. Specifically, the feature point / size detection unit 68 performs a process of detecting a rectangular parallelepiped-shaped region (hereinafter referred to as “heart solid region”) circumscribing the heart stereoscopic image in the adjusted volume data 96.
  • heart solid region a rectangular parallelepiped-shaped region circumscribing the heart stereoscopic image in the adjusted volume data 96.
  • the feature point / size detection unit 68 specifies the rx coordinates of the left and right ends of the four-chamber cross-sectional image 104a in the four-chamber cross-section 104 as shown in FIG. As described above, the left and right ends of the four-chamber cross-sectional image 104 a are detected by the feature point / size detection unit 68. Specifically, the rx coordinate of the feature point F is the rx coordinate (min_rx) at the left end of the four-chamber cross-sectional image 104a, and the rx coordinate of the feature point G is the rx coordinate (max_rx) at the right end of the four-chamber cross-sectional image 104a.
  • the feature point / size detection unit 68 specifies the ry coordinates of the upper and lower ends of the four-chamber cross-sectional image 104a in the four-chamber cross-section 104. As described above, the upper and lower ends of the four-chamber cross-sectional image 104a are also detected by the feature point / size detection unit 68. Specifically, the ry coordinate of the feature point A is the rx coordinate (min_ry) of the upper end of the four-chamber cross-sectional image 104a, and the ry coordinate of the feature point B is the ry coordinate (max_ry) of the lower end of the four-chamber cross-sectional image 104a.
  • the feature point / size detection unit 68 performs processing for detecting both ends of the heart stereoscopic image in the rz-axis direction.
  • FIG. 14 shows how the processing is performed.
  • the feature point / size detection unit 68 translates the processing surface parallel to and the same size as the heart region surface 106 specified in the four-chamber cross section 104 in the negative direction of the rz axis, and the luminance on the processing surface. The number of pixels with the value “1” is monitored. Then, the point of the luminance value “1” on the processing surface 106 a immediately before the number of pixels of the luminance value “1” is 0, that is, the processing surface becomes a black image, is specified as the feature point H.
  • the center of gravity of the plurality of points is obtained and set as the feature point H.
  • the rz coordinate of the feature point H (that is, the processing surface 106a) is specified as min_rz that is the end of the heart solid region in the negative direction of the rz axis.
  • the number of pixels with the luminance value “1” on the processing surface is monitored while the processing surface parallel to the heart region surface 106 and having the same size is translated in the positive direction of the rz axis.
  • the point of the luminance value “1” on the processing surface 106b immediately before the number becomes 0 is specified as the feature point I.
  • the processing in the case where there are a plurality of points having the luminance value “1” on the processing surface 106 b is the same as the method for specifying the feature point H.
  • the rz coordinate of the feature point I is specified as max_rz which is the end of the heart solid region in the positive direction of the rz axis.
  • max_rz is the end of the heart solid region in the positive direction of the rz axis.
  • the one-side partial heart stereoscopic image on one side in the rz-axis direction and the other-side partial heart stereoscopic image on the other side in the rz-axis direction The shapes are different from each other. From this, by comparing the one-side partial heart stereoscopic image and the other-side partial heart stereoscopic image, the orientation of the cardiac stereoscopic image in the up-down direction as the second direction can be specified.
  • the vertical direction means a vertical direction when the fetal heart is viewed from the front (see FIG. 4), and a direction orthogonal to the horizontal direction. In FIG.
  • the vertical direction is indicated by the rz-axis direction.
  • the section length from one end of the three-dimensional heart region to the heart region surface 106 (four-chamber cross section) (that is, the length along the rz axis from min_rz to the rz coordinate of the heart region surface 106))
  • the vertical direction of the three-dimensional heart image is specified. can do.
  • the longer section length is the head side
  • the shorter section length is the stomach side.
  • the feature point / size detection unit 68 also functions as a second direction specifying unit.
  • the three-dimensional heart region 108 is specified in the adjusted volume data 96 as shown in FIG.
  • the heart solid region 108 is a region where rx coordinates are min_rx to max_rx, ry coordinates are min_ry to max_ry, and rz coordinates are min_rz to max_rz.
  • six feature points (feature points A, B, F, G, H, and I) among the nine feature points (feature points A to I) identified in the heart stereoscopic image. Based on this, the three-dimensional heart region 108 is specified.
  • the feature point / size detection unit 68 stores each value of min_rx, max_rx, min_ry, max_ry, min_rz, and max_rz in the storage unit 22 and holds them. Further, among the identified feature points, at least the coordinates of the feature points A, B, and C in the rotating coordinate system are held in the storage unit 22.
  • the coordinates of the feature point A are (ax, ay, az)
  • the coordinates of the feature point B are (bx, by, bz)
  • the coordinates of the feature point C are (cx, cy, cz).
  • the normalized coordinate setting unit 70 sets a normalized coordinate system in the heart solid region 108 specified by the feature point / size detection unit 68. Specifically, a process of associating the coordinates of the rotating real coordinate system with the coordinates of the normalized coordinate system in the heart solid region 108 is performed.
  • FIG. 16 shows a three-dimensional heart region 110 converted to normalized coordinates.
  • the normalized coordinate system has a feature point C (the center point of the four-chamber cross-sectional image) in the rotating real coordinate system as the origin. That is, the coordinates (cx, cy, cz) in the rotating real coordinate system correspond to the coordinates (0, 0, 0) in the normalized coordinate system.
  • the coordinates (min_rx, min_ry, min_rz) in the rotating real coordinate system correspond to ( ⁇ 1, ⁇ 1, ⁇ 1) in the normalized coordinate system
  • the coordinates (max_rx, max_ry, max_rz) in the rotating real coordinate system are normal. This corresponds to (1, 1, 1) in the generalized coordinate system. That is, both ends of each axis of the heart solid region 108 in the rotating real coordinate system correspond to ⁇ 1 and 1 of each axis in the normalized coordinate system.
  • FIG. 17A shows the position of the origin (feature point C) on the nxnz plane.
  • FIG. 17B shows the position of the origin (feature point C) on the nynz plane.
  • the normalized coordinate system has multiple scales. Specifically, each of the nx axis direction, the ny axis direction, and the nz axis direction has different scales on both sides of the origin. Although details will be described later, since the normalized coordinate system has a plurality of scales, it is possible to specify the actual data observation cross section after successfully absorbing the individual differences of the fetal heart.
  • the conversion function generation unit 72 as the correspondence generation unit is defined by a real coordinate system (see FIGS. 3 and 6) defined by the x-axis, y-axis, and z-axis, and the nx-axis, ny-axis, and nz-axis.
  • a conversion function is generated as a correspondence relationship with the normalized coordinate system (see FIG. 16).
  • the conversion function generation unit 72 includes a first conversion function that is a conversion function between a normalized coordinate system and a rotating real coordinate system (see FIG. 15 and the like), and a rotating real coordinate system and a real coordinate system.
  • a second conversion function that is a conversion function between and is generated.
  • the first conversion function is to convert coordinates in the normalized coordinate system into coordinates in the rotating real coordinate system
  • the second conversion function is to convert coordinates in the rotating real coordinate system into coordinates in the real coordinate system. is there.
  • the first conversion function is generated based on a correspondence relationship between the coordinates of the feature point in the rotating real coordinate system and the coordinates of the feature point in the normalized coordinate system.
  • the conversion formulas for converting the coordinates of the normalized coordinate system into the actual rotation coordinate system are different in each region.
  • the eight conversion expressions corresponding to the eight regions are collectively referred to as a first conversion function.
  • each conversion formula regarding Xr, Yr, and Zr will be described taking the region R1 as an example.
  • a conversion formula from the nx coordinate to the rx coordinate will be described.
  • the rx coordinate cx of the feature point C in the rotated actual coordinate system corresponds to the origin (0) of the nx coordinate in the normalized coordinate system
  • the rx coordinate max_rx in the rotated actual coordinate system is the nx coordinate in the normalized coordinate system.
  • the difference between max_rx and cx is calculated, and the difference is multiplied by the nx coordinate Xn of the normalized coordinate system.
  • the basic value of Xr is calculated by adding cx, which is the rx coordinate of the feature point C, to the value (second term on the right side).
  • a correction term (third term on the right side) that takes into account the gap or distortion of the septum is further added to the basic value calculated as described above.
  • the septal shift or distortion is a shift or distortion with respect to the template data 64. This is caused by a positional shift of each part of the fetal heart such as the left ventricle, the left atrium, the right ventricle, and the right atrium, a size balance shift, and the like.
  • the septal line may not be parallel to the ry axis of the rotating real coordinate system, that is, may be displaced from the slit 64d of the template data 64 due to individual differences.
  • the line connecting the feature points A, C, and B specified in the four-chamber cross-sectional image (see FIG. 15 and the like) in the rotating real coordinate system is not parallel to the ry axis, or the feature points A, C and B may not be on a straight line.
  • the Xr coordinate is corrected based on the amount of deviation in the rx-axis direction between the feature point C and the feature point B in the actual rotation coordinate system.
  • FIG. 19 shows a diagram for explaining the correction term.
  • the conversion formula from the ny coordinate to the ry coordinate and the conversion formula from the nz coordinate to the rz coordinate have the same concept as that except for the correction term in the conversion formula from the nx coordinate to the rx coordinate. Is omitted. Further, the conversion formulas for the coordinates of the other regions (R2 to R8) can be described in the same manner as the conversion formulas for the region R1 described above, and thus the description thereof is omitted here.
  • the correction term in the conversion formula from the nx coordinate to the rx coordinate in the regions R5 to R8 indicates correction of the Xr coordinate based on the inclination with respect to the ry axis of the straight line connecting the feature point A and the feature point C in the rotating real coordinate system. It is.
  • Each conversion formula corresponding to each area described above may be stored in the storage unit 22 in advance.
  • the conversion function generation unit 72 fits each value of min_rx, max_rx, min_ry, max_ry, min_rz, max_rz, ax, bx, cx, cy, and cz detected by the feature point / size detection unit 68 to the conversion equation. Thus, the first conversion function is generated.
  • min_rx is determined by the feature point F
  • max_rx is determined by the feature point G
  • min_ry and ax are determined by the feature point A
  • max_ry and bx are determined by the feature point B
  • min_rz is determined by the feature point H
  • cx, cy, and cz are defined by a feature point C.
  • the normalized observation section defined in the normalized coordinate system is the actual data rotation observation section (specifically, the actual data) in the rotation actual coordinate system.
  • Three rotation real coordinates indicating the rotation observation section are calculated.
  • the first conversion function is generated based on a plurality of feature points specified in the heart image of the fetus to be observed or diagnosed. That is, the first conversion function varies depending on the observation or diagnosis target.
  • each observation cross section is uniquely specified.
  • each observation section can be uniquely specified in the normalized coordinate system, but the diagnosis target is calculated by the first conversion function calculated for each observation or diagnosis target. The individual differences are absorbed, and the real rotation data observation section can be specified in the real rotation coordinate system.
  • the normalized coordinate system has a plurality of scales.
  • different scales are provided in the normalization axis directions with respect to the center of the four-chamber cross section.
  • conversion considering the balance of each part to be diagnosed is performed. That is, according to the present embodiment, a suitable rotation actual data observation cross section in which not only the individual difference in the outer shape of the diagnosis target but also the individual difference in the shape of each part included therein is absorbed is specified.
  • a correction term is added in consideration of a positional shift of each part to be diagnosed or a shape distortion. In the above-described example, a correction term is added in consideration of septal deviation or distortion. Therefore, according to the first transformation function, individual differences such as a positional shift of each part to be diagnosed or a size balance shift are eliminated, and a suitable rotation actual data observation section is specified.
  • the second transformation function is a function that realizes the three-dimensional affine transformation in which the matching process (rotation process, enlargement / reduction process, and parallel movement process) described in FIG. 9 and the rotation process described in FIG. 10 are performed in the reverse direction. is there. That is, the second conversion function includes a conversion formula indicating a rotation process in which the rotation process for the matching process and the representative cross-section search is performed in the reverse direction, a conversion formula for performing the enlargement / reduction process in the matching process in the reverse direction, and the matching process. It is comprised by the conversion type
  • the real rotation coordinate system is converted to the real coordinate system, that is, the real rotation data observation cross section (more specifically, the three real rotation coordinates indicating the real rotation data observation cross section) is the real data observation cross section (more specifically, the real data 3 real coordinates indicating the observation section).
  • the rotation process is a process of rotating the same rotation axis by the same angle in the opposite direction on the same rotation axis.
  • the rotation process in the matching process is represented by two quaternions Q and R.
  • the representative cross section detecting unit 66 holds the parameters ⁇ , ⁇ , ⁇ , and ⁇ in the quaternions Q and R for each rotation (three types of rotations in the above description) in the storage unit 22. Therefore, the conversion function generation unit 72 generates each conversion expression indicating the reverse rotation of each rotation process using each parameter.
  • the parameters ⁇ , ⁇ , and ⁇ of the quaternions Q and R described above are maintained as they are (that is, each rotation axis is the same as the representative section search process), and ⁇ is set to ⁇ ( That is, each quaternion Q ′ and R ′ is generated (indicating rotation in the opposite direction to the representative cross-section search process).
  • the second conversion function includes the quaternions Q ′ and R ′.
  • the conversion equation indicating the rotation processing of the second conversion function includes a conversion equation for rotating the same rotation axis in the opposite direction by the same angle as the rotation processing in the matching processing described in FIG.
  • the conversion function generating unit 72 maintains the parameters ⁇ , ⁇ , and ⁇ of the quaternions Q and R held by the adjusting unit 62 in the storage unit 22 during the matching process as they are (that is, rotation).
  • the axes are the same as in the matching process), and quaternions Q ′ and R ′ are generated with ⁇ being ⁇ (that is, indicating rotation in the opposite direction to the matching process).
  • the second conversion function further includes the quaternions Q ′ and R ′.
  • the conversion expression indicating the enlargement / reduction process in the second conversion function is a conversion expression indicating a process for returning the enlargement / reduction process in the matching process, and this is held in the storage unit 22 by the adjustment unit 62. It is determined based on the enlargement / reduction ratio in the matching process.
  • the conversion formula indicating the translation process in the second conversion function is a conversion formula indicating a process for returning the translation process in the matching process, and this is a matching process held in the storage unit 22 by the adjustment unit 62. Is determined on the basis of a vector indicating the parallel movement at.
  • the second conversion function is generated as described above. Similar to the first conversion function, the second conversion function also differs depending on the observation or diagnosis target.
  • the coordinates of the real coordinate system corresponding to each coordinate in the normalized coordinate system can be calculated. That is, the normalized coordinate system is associated with the real coordinate system.
  • the cross-section specifying unit 74 serving as the cross-section specifying means performs an actual observation in the real coordinate system from the normalized observation cross-section defined in the normalized coordinate system stored in the cross-section table 76. Identify the data observation cross section.
  • the cross section table 76 defines one or more normalized observation cross sections corresponding to one or a plurality of observation cross sections. In the present embodiment, as described above, each normalized observation cross section is defined by three coordinates.
  • the three blood vessel cross section is a cross section obtained by translating the four-chamber cross section specified as the representative cross section, but the normalized observation cross section may not be a cross section parallel to the four-chamber cross section.
  • FIG. 20 shows a state in which the normalized observation section is converted to the actual data observation section.
  • the cross section specifying unit 74 uses the first and second conversion functions generated by the conversion function generation unit 72 to select the normalization.
  • the first transformation function converts the three coordinates to coordinates (rx1, rx2, rx3), (rx1, rx2) in the rotating real coordinate system. , Rx3) and (rx1, rx2, rx3).
  • the three blood vessel cross section 112 as the rotation real data whose direction and size are specified is specified.
  • the three-vessel section 114 as the actual data observation section in the real coordinate system is specified. .
  • the cross-section position correcting unit 78 corrects the position of the actual data observation cross-section specified by the cross-section specifying unit 74 based on a user instruction.
  • the operation unit (Not shown) can be used to instruct correction of the position of the actual data observation section.
  • the cross-section position correction unit 78 corrects the position of the actual data observation cross-section.
  • the tomographic image forming unit 80 as an image forming unit is specified by the cross-section specifying unit 74 or corrected by the cross-sectional position correcting unit 78 in each of a plurality of volume data 40 (see FIG. 3) stored in the data memory 26.
  • a tomographic image is formed in the actual data observation section.
  • a plurality of tomographic images of the three blood vessel cross sections in each time phase are formed.
  • the plurality of tomographic images generated in this way are processed by the image composition unit 32 and displayed on the display unit 34.
  • FIG. 21 shows a first display example of a tomographic image of an actual data observation cross section.
  • the tomographic image 120 of the identified actual data observation cross section (four-chamber cross section in FIG. 21) is enlarged and displayed. Since the actual data observation section is specified in each of the plurality of volume data 40 arranged in the time direction, a moving image can be displayed as the tomographic image 120 by continuously switching the tomographic image corresponding to each volume data 40. .
  • a label 120a indicating each part of the heart for example, left ventricle, left atrium, right ventricle, right atrium
  • the display process of the label 120a will be described later.
  • a guide image 122 indicating the position of the observation cross section is displayed together with the tomographic image 120.
  • a three-dimensional model of the heart prepared in advance and a cross-sectional index 122a indicating the position of the actual data observation cross-section with respect to the heart are shown.
  • the guide image 122 may be displayed based on a normalized coordinate system. For example, the position and orientation of the cross-sectional index 122a relative to the three-dimensional model of the heart may be determined based on the selected normalized observation cross section.
  • the user can preferably grasp which cross section the displayed tomographic image 120 corresponds to.
  • the guide image 122 includes a direction indicator 122b indicating the rotation direction of the tomographic image 120.
  • the cross-section index 122a is shown as a rectangular surface, and the direction index 122b is attached to one corner of the surface.
  • a direction indicator 120b is also attached to one corner of the rectangular frame of the tomographic image 120.
  • the direction indicators 120b and 122b correspond to each other, and the user can grasp the rotation direction of the tomographic image 120 by checking the direction indicators 120b and 122b.
  • the positions to which the direction indicators 120b and 122b are attached may be determined according to the rotation angle in the second conversion function.
  • FIG. 22 shows a second display example of the tomographic image of the actual data observation cross section.
  • a plurality of actual data observation sections are specified in each volume data 40, and the tomographic image groups 124 corresponding to the specified plurality of actual data observation sections are displayed in parallel.
  • the guide image 126 is also displayed in the second display example.
  • the guide image 126 shows a three-dimensional model of the heart and a plurality of cross-sectional indices 126a indicating the positions of a plurality of actual data observation cross sections. Note that correspondence between a plurality of tomographic images and a plurality of cross-sectional indices 126a may be shown.
  • the color of the frame of each tomographic image may correspond to the color of the cross-sectional index 126a.
  • a tomographic image group 128 corresponding to a plurality of observation cross sections (parallel multi-sections) parallel to the four-chamber cross section as a representative cross section may be displayed.
  • the guide image 130 is also displayed in the parallel multi-section display, and a plurality of cross-sectional indices 130a indicating the positions of the four-chamber cross section and a plurality of observation cross sections parallel thereto are displayed.
  • a tomographic image group 132 corresponding to a four-chamber cross section as a representative cross section and two observation cross sections (orthogonal cross sections) orthogonal thereto may be displayed.
  • the guide image 134 is also shown in the orthogonal cross-section display, and a plurality of cross-sectional indices 134a indicating the positions of the four-chamber cross section and two observation cross sections orthogonal to the four-chamber cross section are displayed.
  • each label space region 140 is a three-dimensional region and corresponds to each part of the fetal heart.
  • the label space region 140a corresponds to the left ventricle
  • the label space region 140b corresponds to the right ventricle
  • the label space region 140c corresponds to the left atrium
  • the label space Region 140d corresponds to the right atrium.
  • the position of the label space region 140 corresponding to each part can be defined in the normalized coordinate system.
  • the label space area 140 may have a predetermined shape. However, as described later, the label space area 140 corresponds to a heart stereoscopic image (see FIG. 16) converted into a normalized coordinate system (that is, for each subject). The shape may be adjusted accordingly.
  • Each label space area 140 has label information indicating each part of the corresponding heart.
  • the label space region 140a corresponding to the left ventricle includes “LV” character data indicating the left ventricle as label information
  • the label space region 140b corresponding to the right ventricle includes the character “RV” indicating the right ventricle. Data is included as label information.
  • a normalized observation section 142 is defined in the three-dimensional heart region 110 of the normalized coordinate system as shown in FIG.
  • a label plane area 144 that is an area intersecting with the label space area 140 is generated on the normalized observation cross section 142.
  • the label plane area 144a corresponding to the label space area 140a on the normalized observation cross section 142
  • a label plane area 144b corresponding to the label space area 140b is generated.
  • the label processing unit 82 centroid of the label plane area 144 in the normalized coordinate system.
  • the coordinates 146 are calculated.
  • a known image processing technique can be used. In the example shown in FIG. 26, the barycentric coordinates 146a of the label plane area 144a and the barycentric coordinates 146b of the label plane area 144b are calculated.
  • the label processing unit 82 uses the first conversion function and the second conversion function to convert the barycentric coordinates 146 in the normalized coordinate system into the barycentric coordinates in the real coordinate system. Convert to Then, the image compositing unit 32 uses a position based on the converted barycentric coordinates of the real coordinate system in a tomographic image corresponding to the real data observation cross section (the barycentric coordinates of the real coordinate system are located on the real data observation cross section) Display the label information.
  • FIG. 27A shows a tomographic image 148 displayed on the display unit 34.
  • the label information 152a is displayed around the barycentric coordinate 150a in the real coordinate system corresponding to the barycentric coordinate 146a (see FIG. 26) in the normalized coordinate system.
  • the barycentric coordinates 150a are indicated by black dots, but the barycentric coordinates 150a may not be displayed.
  • the letters “LV” indicating the left ventricle are displayed as the label information 152a.
  • the label information 152b is displayed around the barycentric coordinate 150b in the real coordinate system corresponding to the barycentric coordinate 146b in the normalized coordinate system.
  • the characters “RV” indicating the right ventricle are displayed as the label information 152b.
  • FIG. 27B shows another display example of the label information 152.
  • the label information 152 may be displayed in the outer region of the tomographic image 148 as shown in FIG. 27B. Thereby, it is possible to display the label information while suppressing a decrease in the visibility of the tomographic image.
  • the leader line is drawn from the barycentric coordinates 150, and the label information 152 corresponding to the tip of the leader line is displayed. Also good.
  • the label processing unit 82 adjusts the shape of the label space region 140 by a three-dimensional region growing process based on a heart stereoscopic image in a normalized coordinate system.
  • FIG. 28 shows the state of the three-dimensional region growing process. In FIG. 28, one cross section in the heart stereo image included in the heart stereo region 110 is shown.
  • the three-dimensional region growing process is a process for expanding or reducing each label space region 140 so as to be adapted to each part of the heart stereoscopic image.
  • the label space region 140a corresponding to the left ventricle is expanded so as to fit the left ventricle region of the cardiac stereoscopic image, and the adjusted label space region 160a is formed.
  • the three-dimensional region growing process will be described with reference to FIG. 29, taking the label space region 140a corresponding to the left ventricle as an example.
  • “1” is set as a data value in each voxel constituting the label space area 140a.
  • the label processing unit 82 calculates the product of the data value of each voxel constituting the label space region 140a and the luminance value of the inverted binarized heart stereoscopic image at the coordinates corresponding to each voxel. Then, the voxel whose calculation result is “0” is excluded from the label space area 140a.
  • the luminance of the heart chamber is “1” and the luminance values of the other positions are “0”.
  • a label space region 162a is generated in which a portion outside the (left ventricle) is excluded (see the left diagram in FIG. 29).
  • the label processing unit 82 calculates the product of the voxel adjacent to the label space region 162a and the luminance value of the inverted binarized heart stereoscopic image at the coordinates corresponding to the voxel. If the calculation result is “1”, the adjacent voxel is added to the label space area 162a. When the calculation result is “0”, the voxel is not added to the label space area 162a. By repeating this process until the shape of the label space region 162a does not change, an adjusted label space region 160a suitable for the heart chamber (left ventricle) is formed. It should be noted that in the three-dimensional heart region, a region (processing boundary) that can be taken by the left ventricle is determined in advance, and the expansion processing may be performed within the processing boundary.
  • the processing of the valve part becomes a problem.
  • the valve portion since the valve portion may not be closed in the three-dimensional heart image, the label space region 160 corresponding to a certain portion is adjacent via the valve portion by the three-dimensional region growing process. It may expand to other parts.
  • the adjusted label space region 160a corresponding to the left ventricle may expand to the left atrial region.
  • the label processing unit 82 generates a boundary surface of the three-dimensional region glowing process at the valve portion of the heart stereoscopic image with the annulus portion (the base portion of the valve) as a reference.
  • FIG. 30 shows the state of the boundary surface generation process in the valve portion.
  • the label processing unit 82 detects a feature point 170 indicating the annulus.
  • the feature point 170 may be detected, for example, by a technique similar to the detection process of the feature points D to G shown in FIG. 11 on the four-chamber cross section of the heart stereoscopic image.
  • feature points 170a and 170b indicating the two annulus portions of the mitral valve are detected (see the upper left diagram in FIG. 30).
  • the label processing unit 82 When the two feature points 170a and 170b are detected, the label processing unit 82 generates a straight line 172 that connects the two feature points (see the central diagram in the upper part of FIG. 30).
  • the label processing unit 82 performs an edge search process in the direction orthogonal to the straight line 172 on both sides of the straight line 172 (see the upper right diagram in FIG. 30).
  • the edge search process a plurality of high-luminance pixels 174 corresponding to valves are detected on one side of the straight line 172 (see the left diagram in the lower part of FIG. 30).
  • the label processing unit 82 generates an approximate curve (secondary curve) 176 based on the plurality of high-luminance pixels 174 (see the lower center diagram in FIG. 30).
  • the label processing unit 82 rotates the generated approximate curve 176 around a rotation axis that passes through the midpoint of the straight line 172 and is orthogonal to the straight line 172 (see the lower right diagram in FIG. 30).
  • a boundary surface is formed as a processing boundary of the three-dimensional region growing process between the left ventricle and the left atrium.
  • the real coordinate system of the volume data and the heart of a predetermined size and orientation First and second conversion functions are generated that indicate a correspondence relationship with a normalized coordinate system in which a stereoscopic image is defined. Thereby, the first and second conversion relations are generated for each fetal heart, that is, for each target tissue. And based on the 1st and 2nd conversion function, the real data observation cross section in a real coordinate system is specified from the normalization observation cross section previously defined in the normalization coordinate system. Through the above processing, the actual data observation cross section can be identified more preferably when the individual difference of the fetal heart is absorbed.
  • the prescribed orientation (posture) of the fetal heart image in the volume data it is possible to specify the prescribed orientation (posture) of the fetal heart image in the volume data.
  • the left-right direction (apical portion side) and the up-down direction (head side, stomach side) of the fetal heart are specified. Therefore, for example, when a three-dimensional heart image included in the volume data is displayed in a three-dimensional manner, a three-dimensional heart image can be displayed.
  • a cardiac tomographic image oriented in a predetermined direction can be displayed. As a result, the user can more easily observe or diagnose the fetal heart image using the volume data.

Abstract

With an adjustment unit (62), a representative cross-section detection unit (66), and a feature point/size detection unit (68), with regard to volume data (40) which includes a three-dimensional image of a fetal heart, the volume data (40) is rotated such that the three-dimensional image of the fetal heart is in a stipulated orientation. A plurality of feature points are detected in the three-dimensional image of the fetal heart which has been placed in the stipulated orientation. On the basis of the coordinates of the plurality of feature points in an actual (rotated) coordinate system, a normalized coordinate setting unit (70) sets a normalized coordinate system. A conversion function generating unit (72) generates a correspondence between the actual coordinate system and the normalized coordinate system. On the basis of the correspondence, a cross-section identification unit (74) identifies an actual data observation cross-section in the actual coordinate system from a normalized observation cross-section which has been defined in the normalized coordinate system.

Description

超音波画像処理装置及びプログラムUltrasonic image processing apparatus and program
 本発明は、超音波画像処理装置及びプログラムに関し、特に、ボリュームデータを処理するための技術に関する。 The present invention relates to an ultrasonic image processing apparatus and a program, and more particularly to a technique for processing volume data.
 超音波診断装置を用いて被検体に対して超音波ビームを送受波することで超音波画像を得ることができる。従来、3次元空間内において超音波ビームをスキャン(走査)して3次元空間内からエコーデータを逐次収集し、収集したエコーデータに基づいて3次元超音波データ(ボリュームデータ)、あるいはボリュームデータが時間方向に並んだ4次元超音波データを生成するSTIC(Spatio-Temporal Image Correlation)法が知られている。また、2次元アレイ振動子を有する超音波プローブにおいて超音波ビームを送受波することでリアルタイムに4次元超音波データを取得する技術も知られている。 An ultrasonic image can be obtained by transmitting and receiving an ultrasonic beam to and from a subject using an ultrasonic diagnostic apparatus. Conventionally, an ultrasonic beam is scanned in a three-dimensional space, and echo data is sequentially collected from the three-dimensional space. Based on the collected echo data, three-dimensional ultrasonic data (volume data) or volume data is obtained. An STIC (Spatio-Temporal Image Correlation) method for generating four-dimensional ultrasound data arranged in the time direction is known. There is also known a technique for acquiring four-dimensional ultrasonic data in real time by transmitting and receiving an ultrasonic beam in an ultrasonic probe having a two-dimensional array transducer.
 医師などのユーザにより、ボリュームデータにおいて観察断面(主要断面)が特定され、特定された観察断面における断層画像を用いて観察あるいは診断が行われる場合がある。例えば、胎児の心臓像を含むボリュームデータを予め取得しておき、当該ボリュームデータにおける任意の観察断面の断層画像を表示部に表示させて診断あるいは観察が行われる場合がある。観察すべき断面は、診断内容毎に予め定められているのが一般的である。例えば、心臓の例においては、左室、左房、右室、及び右房の異常をみる場合は、四腔断面(左室、左房、右室、及び右房を含む断面)が観察すべき断面となる。そのため、ユーザは、診断内容に応じてボリュームデータにおいて観察断面を適切に指定する必要がある。 A user such as a doctor may specify an observation cross section (main cross section) in the volume data and perform observation or diagnosis using a tomographic image in the specified observation cross section. For example, volume data including a fetal heart image may be acquired in advance, and a tomographic image of an arbitrary observation cross section in the volume data may be displayed on the display unit for diagnosis or observation. In general, the cross section to be observed is predetermined for each diagnosis content. For example, in the case of the heart, when an abnormality of the left ventricle, left atrium, right ventricle, and right atrium is observed, a four-chamber cross section (a cross section including the left ventricle, left atrium, right ventricle, and right atrium) is observed. It becomes a power section. Therefore, the user needs to appropriately specify the observation cross section in the volume data according to the diagnosis contents.
 ボリュームデータにおいて適切な観察断面を特定する操作に困難を伴う場合がある。例えば、胎児の心臓の例においては、胎児は母体内において様々な姿勢を取り得るから、胎児の心臓は、母体表面の所定位置(つまり所定の超音波送受波面)に対して多種多様の位置あるいは向き(姿勢)を取り得る。つまり、ボリュームデータ毎に、胎児の心臓の位置あるいは向きが区々となり得る。したがって、ボリュームデータから胎児の心臓における目的の観察断面を特定するのが困難、あるいは時間がかかってしまう場合がある。 ∙ Operation to specify an appropriate observation section in volume data may be difficult. For example, in the case of the fetal heart, since the fetus can take various postures within the mother's body, the fetal heart can be in various positions relative to a predetermined position on the mother's surface (ie, a predetermined ultrasonic wave transmitting / receiving surface). The orientation (posture) can be taken. That is, for each volume data, the position or orientation of the fetal heart can vary. Therefore, it may be difficult or time-consuming to specify a target observation cross section in the fetal heart from the volume data.
 上記を鑑みて、従来、ボリュームデータにおいて観察断面を自動的に特定する技術が提案されている(例えば特許文献1~6)。 In view of the above, conventionally, techniques for automatically specifying an observation cross section in volume data have been proposed (for example, Patent Documents 1 to 6).
特開2014-36863号公報JP 2014-36863 A 特許第5479138号明細書Japanese Patent No. 5479138 米国特許公開第2015/0190112号明細書US Patent Publication No. 2015/0190112 特開2009-72593号公報JP 2009-72593 A 特表2009-513221号公報Special table 2009-513221 gazette 特表2015-534872号公報Special table 2015-534872 gazette
 ボリュームデータにおいて観察断面を自動的に特定する従来の方法において、まず基準断面を特定し、当該基準断面に基づいて観察断面を特定する方法がある。例えば、特許文献1では、ボリュームデータから基準断面をまず特定し、特定された基準断面を所定距離水平移動などさせた面を観察断面としている。また、特許文献2では、ボリュームデータに含まれる観察対象(心臓)において検出された3つの基準点に基づいて基準断面を特定し、当該基準断面を所定方向に所定角度回転させた面を観察断面としている。また、特許文献3では、ボリュームデータに含まれる観察対象(心臓)における複数の特徴点(基準点)をユーザが入力し、当該複数の基準点に基づいて複数の任意断面を特定している。 In a conventional method of automatically specifying an observation cross section in volume data, there is a method of first specifying a reference cross section and specifying an observation cross section based on the reference cross section. For example, in Patent Document 1, a reference cross section is first specified from volume data, and a plane obtained by horizontally moving the specified reference cross section by a predetermined distance is used as an observation cross section. In Patent Document 2, a reference cross section is specified based on three reference points detected in an observation target (heart) included in volume data, and a plane obtained by rotating the reference cross section by a predetermined angle in a predetermined direction is an observation cross section. It is said. In Patent Document 3, a user inputs a plurality of feature points (reference points) in an observation target (heart) included in volume data, and specifies a plurality of arbitrary cross sections based on the plurality of reference points.
 従来の観察断面を特定する方法では、観察断面として特定された断面が、ユーザが意図する正確な観察断面とならない場合があった。例えば、基準断面としての四腔断面から所定距離水平移動した断面を五腔断面(左室、左房、右室、右房、及び大動脈を含む断面)として特定する場合、心臓の形状(この場合特に四腔断面から五腔断面の間の距離など)は個体差があることから、この方式では、被検者によっては正確な五腔断面が特定できない場合が生じ得る。 In the conventional method of specifying the observation cross section, the cross section specified as the observation cross section may not be an accurate observation cross section intended by the user. For example, when specifying a cross section horizontally moved by a predetermined distance from a four-chamber cross section as a reference cross section as a five-chamber cross section (a cross section including the left ventricle, left atrium, right ventricle, right atrium, and aorta), the shape of the heart (in this case In particular, the distance between the four-chamber cross-section and the five-chamber cross-section has individual differences. Therefore, in this method, an accurate five-chamber cross-section may not be specified depending on the subject.
 本発明の目的は、超音波の送受波により得られたボリュームデータにおいて対象組織の個体差を考慮した上で観察断面を簡便且つより正確に特定することにある。 An object of the present invention is to easily and more accurately specify an observation cross section in consideration of individual differences of target tissues in volume data obtained by transmission and reception of ultrasonic waves.
 本発明に係る超音波画像処理装置は、超音波の送受波により得られたボリュームデータに含まれる対象組織像に基づいて、前記ボリュームデータが有する実座標系と計算上の正規化座標系との対応関係を演算する対応関係生成手段と、前記対応関係に基づいて、前記正規化座標系において定義された正規化観察断面から、前記実座標系における実データ観察断面を特定する断面特定手段と、前記ボリュームデータから、特定された前記実データ観察断面に対応する断層画像を形成する画像形成手段と、を備えることを特徴とする。 The ultrasonic image processing apparatus according to the present invention is based on the target tissue image included in the volume data obtained by transmission and reception of ultrasonic waves, and the real coordinate system included in the volume data and the calculated normalized coordinate system. Correspondence generation means for calculating a correspondence relation, and based on the correspondence relation, from a normalized observation cross section defined in the normalized coordinate system, a cross section specifying means for specifying an actual data observation cross section in the real coordinate system, Image forming means for forming a tomographic image corresponding to the identified actual data observation section from the volume data.
 上記構成によれば、まず、ボリュームデータが有する実座標系と正規化座標系との対応関係が演算される。当該対応関係は、実座標系と正規化座標系との間の座標変換を示すものである。正規化座標系において正規化観察断面が定義される。例えば、正規化観察断面は、正規化座標系における3つの座標により定義される。正規化座標系においては、規定のサイズあるいは向きの対象組織像が定義できることから、対象組織像の個体差を考慮せずに各観察断面に対応する正規化観察断面を一意に定義し得る。実座標系と正規化座標系との対応関係によれば、正規化座標系において定義された各正規化観察断面に対応する実座標系上の各実データ観察断面が特定され得る。実座標系と正規化座標系との対応関係は対象組織像毎に演算され得る。したがって、正規化観察断面及び対応関係に基づいて実データ観察断面を特定することで、たとえ対象組織像に個体差があったとしても、その個体差が吸収されて、いずれの対象組織像においてもより正確な実データ観察断面がボリュームデータにおいて特定される。 According to the above configuration, first, the correspondence between the real coordinate system and the normalized coordinate system of the volume data is calculated. The correspondence relationship indicates coordinate conversion between the real coordinate system and the normalized coordinate system. A normalized observation section is defined in the normalized coordinate system. For example, the normalized observation cross section is defined by three coordinates in the normalized coordinate system. In the normalized coordinate system, a target tissue image having a prescribed size or orientation can be defined. Therefore, a normalized observation cross section corresponding to each observation cross section can be uniquely defined without considering individual differences in the target tissue image. According to the correspondence relationship between the real coordinate system and the normalized coordinate system, each real data observation section on the real coordinate system corresponding to each normalized observation section defined in the normalized coordinate system can be specified. The correspondence between the real coordinate system and the normalized coordinate system can be calculated for each target tissue image. Therefore, by specifying the actual data observation cross section based on the normalized observation cross section and the correspondence relationship, even if there is an individual difference in the target tissue image, the individual difference is absorbed, and in any target tissue image A more accurate actual data observation section is specified in the volume data.
 望ましくは、前記対応関係生成手段は、前記対象組織像から検出された代表点群に基づいて前記対応関係を演算する。また、望ましくは、前記代表点群は、前記対象組織像の基準点、及び、前記実座標系の各座標軸における前記対象組織像の両端点を含み、前記正規化座標系は、前記基準点及び前記両端点に基づいて定義される。 Desirably, the correspondence generation means calculates the correspondence based on a representative point group detected from the target tissue image. Preferably, the representative point group includes a reference point of the target tissue image and both end points of the target tissue image on each coordinate axis of the real coordinate system, and the normalized coordinate system includes the reference point and Defined based on the endpoints.
 望ましくは、前記正規化座標系は、少なくとも2つの異なるスケールを有する。 Preferably, the normalized coordinate system has at least two different scales.
 正規化座標系が複数の異なるスケールを有することで、対象組織に含まれる各部位の大きさバランスや配置関係の歪みなどをも考慮して、ボリュームデータにおいてより正確な実データ観察断面を特定することができる。例えば、対象組織が心臓である場合を考えると、個体差による心臓の形状の差は、単純に外形が異なるだけではなく、例えば左心室と右心室の大きさの比率なども異なる場合がある。このような場合、正規化座標系において心臓の中隔を基準として左右のスケールを変えることで、左心室と右心室の大きさのバランスを解消した上で実データ観察断面を特定することができる。 Since the normalized coordinate system has a plurality of different scales, it is possible to specify a more accurate actual data observation section in the volume data in consideration of the size balance of each part included in the target tissue and distortion of the arrangement relationship. be able to. For example, considering the case where the target tissue is the heart, the difference in the shape of the heart due to individual differences may not only be different in outline but also in the ratio of the size of the left and right ventricles, for example. In such a case, by changing the left and right scales based on the septum of the heart in the normalized coordinate system, it is possible to specify the actual data observation section while eliminating the balance of the left and right ventricle sizes. .
 望ましくは、前記正規化観察断面は複数定義され、前記断面特定手段は、前記複数の正規化観察断面から選択された選択正規化観察断面に基づいて、前記選択正規化観察断面に対応する前記実データ観察断面を特定する。 Preferably, a plurality of the normalized observation cross sections are defined, and the cross section specifying means is configured to select the realization corresponding to the selected normalized observation cross section based on a selected normalization observation cross section selected from the plurality of normalization observation cross sections. Identify the data observation cross section.
 正規化座標系においては、予め複数の正規化観察断面を定義することができる。本発明によれば、複数の正規化観察断面のいずれが選択されたとしても、実座標系と正規化座標系との対応関係に基づいて、選択された正規観察断面に対応する実データ観察断面を特定することができる。 In the normalized coordinate system, a plurality of normalized observation sections can be defined in advance. According to the present invention, even if any one of the plurality of normalized observation sections is selected, the actual data observation section corresponding to the selected normal observation section based on the correspondence between the actual coordinate system and the normalized coordinate system. Can be specified.
 望ましくは、前記ボリュームデータにおける代表断面を特定する代表断面特定手段、をさらに含み、前記対応関係生成手段は、前記代表断面において検出された複数の代表点の、前記実座標系における座標と前記正規化座標系における座標との関係に基づいて前記対応関係を演算する。 Desirably, it further includes a representative cross-section specifying means for specifying a representative cross-section in the volume data, wherein the correspondence relationship generating means includes the coordinates in the real coordinate system and the normality of a plurality of representative points detected in the representative cross-section. The correspondence is calculated based on the relationship with the coordinates in the coordinated coordinate system.
 望ましくは、前記代表断面特定手段は、前記ボリュームデータにおいて特定された仮代表断面に含まれる対象組織像がテンプレートデータにマッチングするように、前記ボリュームデータの姿勢を規定する姿勢規定手段と、前記姿勢規定手段により規定された姿勢の前記ボリュームデータにおいて、前記仮代表断面の近傍範囲において前記代表断面を探索する代表断面探索手段と、を含む。 Preferably, the representative cross-section specifying means includes a posture specifying means for specifying a posture of the volume data so that a target tissue image included in the temporary representative cross-section specified in the volume data matches template data, and the posture Representative volume search means for searching for the representative cross section in the vicinity of the temporary representative cross section in the volume data of the posture defined by the defining means.
 当該構成によれば、まず、特定された仮代表断面所定(向き)が規定の向きとなるように、ボリュームデータが回転させられる。当該代表断面像の向きは、テンプレートデータが示す向きであり、例えば心臓の心尖部側の方向が規定される。この向きは、正規化座標系において定義される対象組織像の向きに対応するものである。その上で、回転されたボリュームデータの中で、仮代表断面近傍を探索することでこれにより、規定の向きを向いた代表断面が特定できる。代表断面を正確に特定することで、より正確な実座標系と正規化座標系の対応関係を好適に演算することができる。 According to this configuration, first, the volume data is rotated so that the specified temporary representative cross-section predetermined (orientation) is in the prescribed orientation. The direction of the representative cross-sectional image is the direction indicated by the template data. For example, the direction on the apex side of the heart is defined. This orientation corresponds to the orientation of the target tissue image defined in the normalized coordinate system. Then, by searching for the vicinity of the temporary representative cross-section in the rotated volume data, the representative cross-section facing the specified direction can be specified. By accurately specifying the representative cross section, a more accurate correspondence between the real coordinate system and the normalized coordinate system can be suitably calculated.
 望ましくは、前記断層画像を表示する表示部と、をさらに備え、前記正規化座標系において、前記対象組織像の各部位に対応し、各部位を示すラベル情報を含むラベル空間領域が定義され、前記表示部は、前記正規化観察断面が前記ラベル空間領域を横断する場合に、当該正規化観察断面に対応する断層画像と共に、当該正規化観察断面が横断したラベル空間領域に対応するラベル情報を表示する。 Preferably, a display unit that displays the tomographic image, and in the normalized coordinate system, a label space region that corresponds to each part of the target tissue image and includes label information indicating each part is defined, When the normalized observation cross section crosses the label space region, the display unit displays label information corresponding to the label space region crossed by the normalized observation cross section together with a tomographic image corresponding to the normalized observation cross section. indicate.
 当該構成によれば、いずれの正規化断面が選択された場合であっても、当該正規化断面が横断するラベル空間領域に対応するラベル情報を表示することができる。これにより、ユーザは、表示された断層画像において、どの部分がどの部位であるかを容易に把握することができる。好適には、正規化観察断面に対応する断層画像に含まれる部位とラベル情報に対応する部位との対応関係が明確になるようにラベル情報が表示される。 According to the configuration, it is possible to display the label information corresponding to the label space region traversed by the normalized section, regardless of which normalized section is selected. Thereby, the user can easily grasp which part is which part in the displayed tomographic image. Preferably, the label information is displayed so that the correspondence between the part included in the tomographic image corresponding to the normalized observation section and the part corresponding to the label information becomes clear.
 本発明によれば、超音波の送受波により得られたボリュームデータにおいて対象組織の個体差を考慮した上で観察断面を簡便且つより正確に特定することができる。 According to the present invention, it is possible to easily and more accurately specify an observation cross section in consideration of individual differences of target tissues in volume data obtained by transmitting and receiving ultrasonic waves.
本実施形態に係る超音波診断装置の構成概略図である。1 is a schematic configuration diagram of an ultrasonic diagnostic apparatus according to the present embodiment. 本実施形態における3次元的な走査を説明するための図である。It is a figure for demonstrating the three-dimensional scanning in this embodiment. 各時相に対応する複数のボリュームデータを示す図である。It is a figure which shows several volume data corresponding to each time phase. 胎児の心臓における観察断面を示す図である。It is a figure which shows the observation cross section in the heart of a fetus. ボリュームデータ処理部の詳細な構成を示す図である。It is a figure which shows the detailed structure of a volume data processing part. 仮四腔断面に対する反転2値化処理の様子を示す図である。It is a figure which shows the mode of the reversal binarization process with respect to a temporary four-chamber cross section. 2値化処理のための閾値を示すグラフである。It is a graph which shows the threshold value for a binarization process. テンプレートデータを示す図である。It is a figure which shows template data. 仮四腔断面タとテンプレートデータとのマッチング処理の様子を示す図である。It is a figure which shows the mode of a matching process with provisional four-chamber cross-sectional data and template data. 仮四腔断面データ近傍において四腔断面を探索する処理の様子を示す図である。It is a figure which shows the mode of the process which searches a four-chamber cross section in temporary four-chamber cross-section data vicinity. 四腔断面像において検出された複数の特徴点を示す図である。It is a figure which shows the some feature point detected in the four-chamber cross-sectional image. 特徴点A近傍の拡大図である。It is an enlarged view near the feature point A. 特徴点C近傍の拡大図である。FIG. 6 is an enlarged view near a feature point C. 心臓領域面を示す図である。It is a figure which shows a heart area | region surface. rz軸方向における心臓立体像の端部を検索する処理の様子を示す図である。It is a figure which shows the mode of the process which searches the edge part of the heart stereo image in a rz-axis direction. 心臓空間領域を示す図である。It is a figure which shows a cardiac space area | region. 正規化座標系を示す図である。It is a figure which shows a normalization coordinate system. 正規化座標系におけるnx軸及びny軸方向のスケールを示す図である。It is a figure which shows the scale of the nx-axis and ny-axis direction in a normalization coordinate system. 正規化座標系におけるny軸及びnz軸方向のスケールを示す図である。It is a figure which shows the scale of the ny-axis and nz-axis direction in a normalization coordinate system. 正規化座標系におけるスケールの異なる8つの領域を示す図である。It is a figure which shows eight area | regions from which a scale differs in a normalization coordinate system. 第1変換関数における補正項の説明のための図である。It is a figure for explanation of a correction term in the 1st conversion function. 正規化座標系から実座標系への変換処理の様子を示す図である。It is a figure which shows the mode of the conversion process from a normalization coordinate system to a real coordinate system. 実データ観察断面の断層画像の第1の表示例を示す図である。It is a figure which shows the 1st example of a display of the tomographic image of a real data observation cross section. 実データ観察断面の断層画像の第2の表示例を示す図である。It is a figure which shows the 2nd example of a display of the tomographic image of an actual data observation cross section. 実データ観察断面の断層画像の第3の表示例を示す図である。It is a figure which shows the 3rd example of a display of the tomographic image of an actual data observation cross section. 実データ観察断面の断層画像の第4の表示例を示す図である。It is a figure which shows the 4th example of a display of the tomographic image of an actual data observation cross section. 正規化座標系において定義されたラベル空間領域を示す図である。It is a figure which shows the label space area | region defined in the normalization coordinate system. ラベル空間領域を横断する規格化観察断面に対応する実データ観察断面上のラベル平面領域を示す図である。It is a figure which shows the label plane area | region on the actual data observation cross section corresponding to the normalization observation cross section which crosses a label space area | region. 第1のラベル表示例を示す図である。It is a figure which shows the 1st example of a label display. 第2のラベル表示例を示す図である。It is a figure which shows the 2nd example of a label display. ラベル空間領域の3次元リージョングローイング処理の様子を示す図である。It is a figure which shows the mode of the three-dimensional region growing process of a label space area | region. 3次元リージョングローイング処理の詳細な様子を示す図である。It is a figure which shows the detailed mode of a three-dimensional region growing process. 3次元リージョングローイング処理における弁部の境界生成処理の様子を示す図である。It is a figure which shows the mode of the boundary production | generation process of the valve part in a three-dimensional region growing process.
 以下、本発明に係る超音波画像処理装置の実施形態について説明する。 Hereinafter, embodiments of the ultrasonic image processing apparatus according to the present invention will be described.
 図1は、超音波画像処理装置としての超音波診断装置10の構成概略図である。超音波診断装置10は、一般に、病院などの医療機関に設置され、生体に対して超音波診断を実行する医療上の機器である。なお、以下においては、対象組織を胎児の心臓とし、胎児の心臓における観察断面の断層画像を形成する例において本実施形態を説明するが、本発明はそれに限定されるものではない。 FIG. 1 is a schematic configuration diagram of an ultrasonic diagnostic apparatus 10 as an ultrasonic image processing apparatus. The ultrasonic diagnostic apparatus 10 is generally a medical device that is installed in a medical institution such as a hospital and performs ultrasonic diagnosis on a living body. In the following, the present embodiment will be described using an example in which a target tissue is a fetal heart and a tomographic image of an observation cross section in the fetal heart is formed, but the present invention is not limited thereto.
 プローブ12は、胎児の心臓に対して超音波の送受波を行う超音波プローブである。プローブ12は、ケーブルあるいは無線により、送受信部14以下を含む装置本体と通信可能に接続される。プローブ12は、複数の振動素子を含む振動子アレイを有しており、当該振動子アレイにより超音波が送受波される。振動子アレイから超音波が送受波されることで胎児の心臓を含む空間内において走査面が形成される。本実施形態では、例えば1次元的に配列された複数の振動素子(1Dアレイ振動子)によって電子的に形成される走査面を機械的に動かすことにより、被検体である胎児の心臓を含む3次元空間において超音波ビームが走査される。あるいは、2次元的に配列された複数の振動素子(2Dアレイ振動子)を電子的に制御して超音波ビームを3次元的に走査してもよい。 Probe 12 is an ultrasonic probe that transmits and receives ultrasonic waves to and from the fetal heart. The probe 12 is communicably connected to the apparatus main body including the transmission / reception unit 14 and below by a cable or wirelessly. The probe 12 has a transducer array including a plurality of transducer elements, and ultrasonic waves are transmitted and received by the transducer array. A scanning plane is formed in a space including the fetal heart by transmitting and receiving ultrasonic waves from the transducer array. In this embodiment, for example, a fetal heart that is a subject is included by mechanically moving a scanning surface that is electronically formed by a plurality of one-dimensionally arranged vibration elements (1D array transducers). An ultrasonic beam is scanned in the dimensional space. Alternatively, a plurality of vibration elements (2D array transducers) arranged two-dimensionally may be electronically controlled to scan the ultrasonic beam three-dimensionally.
 図2は、本実施形態における3次元的な走査を説明するための図である。図2において胎児の心臓を含む3次元空間は実座標系であるxyz座標系で表現されている。本実施形態では、xy平面に対してほぼ平行となるように走査面Sが形成され、その走査面Sをz軸方向にゆっくりと移動させつつ、z軸方向に沿って複数の走査面Sが形成される。走査面Sは、胎児の心臓の複数の心周期(拍動周期)に亘って、z軸方向にゆっくりと移動される。 FIG. 2 is a diagram for explaining the three-dimensional scanning in the present embodiment. In FIG. 2, the three-dimensional space including the fetal heart is represented by an xyz coordinate system which is a real coordinate system. In the present embodiment, the scanning surface S is formed so as to be substantially parallel to the xy plane, and the plurality of scanning surfaces S are formed along the z-axis direction while slowly moving the scanning surface S in the z-axis direction. It is formed. The scanning plane S is slowly moved in the z-axis direction over a plurality of cardiac cycles (beating cycles) of the fetal heart.
 図1に戻り、送受信部14は、プローブ12の振動子アレイに含まれる各振動子に対応した送信信号を供給することにより超音波の送信ビームを形成する。また、送受信部14は、プローブ12の振動子アレイに含まれる各振動子から複数の受信信号を受信する。 Returning to FIG. 1, the transmission / reception unit 14 forms a transmission beam of ultrasonic waves by supplying a transmission signal corresponding to each transducer included in the transducer array of the probe 12. The transmission / reception unit 14 receives a plurality of reception signals from each transducer included in the transducer array of the probe 12.
 整相加算部16は、送受信部14が受信した複数の受信信号に対して整相加算処理を施して超音波の受信ビームを形成し、受信ビームに沿って得られるエコーデータを出力する。 The phasing addition unit 16 performs phasing addition processing on the plurality of reception signals received by the transmission / reception unit 14 to form an ultrasonic reception beam, and outputs echo data obtained along the reception beam.
 ビーム処理部18は、整相加算部16が出力したエコーデータに対して、ゲイン補正処理、対数増幅処理、包絡線検波処理、及びフィルタ処理などの各種信号処理を行う。これにより、各エコーデータに対応するビームデータが形成される。 The beam processing unit 18 performs various signal processing such as gain correction processing, logarithmic amplification processing, envelope detection processing, and filter processing on the echo data output from the phasing addition unit 16. Thereby, beam data corresponding to each echo data is formed.
 DSC(Digital Scan Converter)20は、補間機能及び座標変換機能を有し、ビーム処理部18から出力される複数のビームデータに基づいて、表示フレームすなわち超音波画像を形成する。本実施形態では断層画像であるBモード画像が形成される。ここで、DSC20は、走査面S(図2参照)毎に超音波画像を形成する。これにより、z軸方向に並ぶ複数の超音波画像が形成される。複数の超音波画像は、後述の記憶部22に記憶される。なお、DSC20が形成した超音波画像は直接画像合成部32(後述)に出力されてもよい。 The DSC (Digital Scan Converter) 20 has an interpolation function and a coordinate conversion function, and forms a display frame, that is, an ultrasonic image, based on a plurality of beam data output from the beam processing unit 18. In the present embodiment, a B-mode image that is a tomographic image is formed. Here, the DSC 20 forms an ultrasonic image for each scanning plane S (see FIG. 2). Thereby, a plurality of ultrasonic images arranged in the z-axis direction are formed. The plurality of ultrasonic images are stored in the storage unit 22 described later. The ultrasonic image formed by the DSC 20 may be directly output to the image composition unit 32 (described later).
 記憶部22は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、あるいはハードディスクなどで構成される。記憶部22には、超音波診断装置10の各部を動作させるためのプログラムが記憶される。また、図1に示される通り、記憶部22内には、前メモリ24及びデータメモリ26が構築される。前メモリ24には、DSC20により形成された複数の超音波画像が記憶される。データメモリ26には、後述の再構成処理部28により形成される4次元ボリュームデータ(時間方向に並ぶ複数のボリュームデータ)が記憶される。 The storage unit 22 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or a hard disk. The storage unit 22 stores a program for operating each unit of the ultrasound diagnostic apparatus 10. Further, as shown in FIG. 1, a previous memory 24 and a data memory 26 are constructed in the storage unit 22. A plurality of ultrasonic images formed by the DSC 20 are stored in the previous memory 24. The data memory 26 stores four-dimensional volume data (a plurality of volume data arranged in the time direction) formed by a reconstruction processing unit 28 described later.
 再構成処理部28は、前メモリ24に記憶された複数の超音波画像の中から、胎児の心臓の心周期に対応したフレーム間隔(画像の間隔)で複数の基準画像を探索する。そして、複数の基準画像が探索されると、再構成処理部28は、複数の基準画像の各々を分割の単位とすることにより、前メモリ24に記憶された複数の超音波画像を複数の画像群に分割する。そして、複数の画像群の各々から心周期における各時相に対応した複数の断層画像データを抽出することにより、再構成処理(再構築処理)を実現する。当該再構成処理により、前メモリ24に記憶された複数の超音波画像から、対象組織像としての胎児の心臓立体像を含む複数のボリュームデータが形成される。当該複数のボリュームデータは、心周期における各時相に対応したものである。複数のボリュームデータは時間方向に並ぶものであるから、再構成処理部28により4次元ボリュームデータが形成されるといえる。再構成処理部28により形成された4次元ボリュームデータはデータメモリ26に記憶される。 The reconstruction processing unit 28 searches a plurality of reference images at a frame interval (image interval) corresponding to the cardiac cycle of the fetal heart from a plurality of ultrasonic images stored in the previous memory 24. When a plurality of reference images are searched, the reconstruction processing unit 28 sets the plurality of ultrasonic images stored in the previous memory 24 as a plurality of images by using each of the plurality of reference images as a unit of division. Divide into groups. Then, a plurality of tomographic image data corresponding to each time phase in the cardiac cycle is extracted from each of the plurality of image groups, thereby realizing reconstruction processing (reconstruction processing). By the reconstruction process, a plurality of volume data including a fetal heart three-dimensional image as a target tissue image is formed from a plurality of ultrasonic images stored in the previous memory 24. The plurality of volume data corresponds to each time phase in the cardiac cycle. Since the plurality of volume data are arranged in the time direction, it can be said that the reconstruction processing unit 28 forms the four-dimensional volume data. The four-dimensional volume data formed by the reconstruction processing unit 28 is stored in the data memory 26.
 図3に、データメモリ26に記憶される複数のボリュームデータ40が示されている。本実施形態においては、データメモリ26には1心周期分の複数のボリュームデータ40が記憶されるが、それ以上の期間に亘るボリュームデータ40が記憶されてもよい。また、本実施形態においては、医師などのユーザによりプローブ12の位置及び姿勢が調整されることで、各ボリュームデータを構成する各走査面S群において、少なくとも四腔断面近傍の断面(仮四腔断面)が含まれるようにしている。仮四腔断面は正確な四腔断面である必要はなく、正確な四腔断面からxyz軸方向に複合的にずれた断面であってもよい。あるいは、仮四腔断面のxy平面における向き(回転方向)及びサイズも特定のものである必要はない。なお、比較的広い領域において超音波を送受波させ、それにより得られたボリュームデータから心臓立体像を検出し、画像処理により走査面Sとして少なくとも仮四腔断面を含むボリュームデータを自動的に切り出すようにしてもよい。 FIG. 3 shows a plurality of volume data 40 stored in the data memory 26. In the present embodiment, the data memory 26 stores a plurality of volume data 40 for one cardiac cycle, but the volume data 40 over a longer period may be stored. Further, in the present embodiment, the position and posture of the probe 12 are adjusted by a user such as a doctor, so that at least a cross section (provisional four chambers) in the vicinity of the four-chamber cross section in each scanning plane S group constituting each volume data. Cross section). The provisional four-chamber section does not need to be an accurate four-chamber section, and may be a section that is complexly displaced from the exact four-chamber section in the xyz-axis direction. Alternatively, the orientation (rotation direction) and size of the provisional four-chamber cross section in the xy plane need not be specific. It should be noted that ultrasonic waves are transmitted and received in a relatively wide area, a heart stereoscopic image is detected from the volume data obtained thereby, and volume data including at least a provisional four-chamber section is automatically cut out as a scanning plane S by image processing. You may do it.
 図1に戻り、ボリュームデータ処理部30は、データメモリ26に記憶された4次元ボリュームデータに対して処理を行い、各ボリュームデータにおいて、ユーザが所望する1又は複数の実データ観察断面を自動的に特定し、当該実データ観察断面における断層画像を形成するものである。ボリュームデータ処理部30の詳細な構成、及び処理の詳細については後述する。 Returning to FIG. 1, the volume data processing unit 30 performs processing on the four-dimensional volume data stored in the data memory 26, and automatically selects one or a plurality of actual data observation sections desired by the user for each volume data. And forming a tomographic image in the actual data observation cross section. The detailed configuration of the volume data processing unit 30 and the details of the processing will be described later.
 画像合成部32は、ボリュームデータ処理部30が形成した実データ観察断面の断層画像(Bモード画像)に対して種々の情報を示す画像あるいは文字などを合成して表示画面データを形成するものである。当該表示画面データには、DSC20が形成した超音波画像を含んでいてもよい。 The image composition unit 32 synthesizes images or characters indicating various information with the tomographic image (B-mode image) of the actual data observation section formed by the volume data processing unit 30 to form display screen data. is there. The display screen data may include an ultrasonic image formed by the DSC 20.
 表示部34は、例えば液晶パネルあるいは有機ELパネルなどから構成される。表示部34には、画像合成部32が形成した表示画面データが表示される。 The display unit 34 is composed of, for example, a liquid crystal panel or an organic EL panel. Display screen data formed by the image composition unit 32 is displayed on the display unit 34.
 制御部36は、例えばCPUあるいはマイクロコントローラなどから構成され、記憶部22に記憶されたプログラムに従って超音波診断装置10の各部を制御するものである。 The control unit 36 is constituted by, for example, a CPU or a microcontroller, and controls each unit of the ultrasonic diagnostic apparatus 10 according to a program stored in the storage unit 22.
 超音波診断装置10の構成概略は以上の通りである。なお、図1に示す構成のうち、送受信部14、整相加算部16、ビーム処理部18、DSC20、再構成処理部28、ボリュームデータ処理部30、及び画像合成部32の各部は、例えば電気電子回路やプロセッサなどのハードウェアを利用して実現することができ、その実現において必要に応じてメモリなどのデバイスが利用されてもよい。また、上記各部に対応した機能が、CPUやプロセッサやメモリなどのハードウェアと、CPUやプロセッサの動作を規定するソフトウェア(プログラム)との協働により実現されてもよい。 The configuration outline of the ultrasonic diagnostic apparatus 10 is as described above. In the configuration illustrated in FIG. 1, each of the transmission / reception unit 14, the phasing addition unit 16, the beam processing unit 18, the DSC 20, the reconstruction processing unit 28, the volume data processing unit 30, and the image composition unit 32 is, for example, It can be realized using hardware such as an electronic circuit or a processor, and a device such as a memory may be used as necessary in the realization. In addition, functions corresponding to the above-described units may be realized by cooperation between hardware such as a CPU, a processor, and a memory, and software (program) that defines the operation of the CPU and the processor.
 以下、ボリュームデータ処理部30の詳細について説明するに先立って、胎児の心臓における観察断面(主要断面)について説明する。観察断面とは、医師などが診断あるいは観察のために主に用いる断面を意味する。 Hereinafter, before explaining the details of the volume data processing unit 30, the observation cross section (main cross section) in the fetal heart will be described. The observation cross section means a cross section mainly used by a doctor or the like for diagnosis or observation.
 図4には、胎児の心臓の概略図が示されている。図4には、胎児の心臓42、大動脈44、肺動脈46、上大静脈48、及び肺50が示されている。通常、成人の心臓は心尖部が胃側(図4における下側)を向いているが、胎児の場合、肺50内に空気が入っておらず、心臓42が横隔膜(図4において不図示)により押し上げられるため、心臓42の向きは、心尖部42aが横を向いた向きとなるのが一般的である。そのような胎児の心臓において、例えば、図4の符号52で示される観察断面(紙面と直交する断面)が四腔断面を示している。そこから頭側に平行移動した符号54で示す観察断面が五腔断面を示している。さらに、そこから頭側に平行移動した符号56で示す観察断面が三血管断面(肺動脈、大動脈、及び上大静脈を含む断面)を示しており、さらに、そこから頭側に平行移動した符号58で示す観察断面が三血管気管断面(肺動脈、大動脈、上大静脈及び気管を含む断面)を示している。なお、図4に示された観察断面は一部であり、その他にも種々の観察断面(例えば四腔断面とは平行でない観察断面)が存在する。ボリュームデータ処理部30によれば、データメモリ26に記憶された4次元ボリュームデータにおいて、1又は複数の実データ観察断面が自動的に特定される。 FIG. 4 shows a schematic diagram of the fetal heart. In FIG. 4, a fetal heart 42, aorta 44, pulmonary artery 46, superior vena cava 48, and lung 50 are shown. Normally, the apex of an adult heart is directed to the stomach side (the lower side in FIG. 4), but in the case of a fetus, air is not contained in the lung 50, and the heart 42 has a diaphragm (not shown in FIG. 4). Therefore, the direction of the heart 42 is generally the direction in which the apex 42a faces sideways. In such a fetal heart, for example, an observation cross section (cross section orthogonal to the paper surface) indicated by reference numeral 52 in FIG. 4 shows a four-chamber cross section. The observation cross section indicated by reference numeral 54 translated from the head to the head side shows the five-chamber cross section. Furthermore, the observation cross section indicated by reference numeral 56 translated from the head side shows a three blood vessel cross section (a cross section including the pulmonary artery, the aorta, and the superior vena cava), and further, the reference numeral 58 translated from the head side. The observation cross section shown by (3) shows a three-vascular tracheal cross section (a cross section including the pulmonary artery, aorta, superior vena cava and trachea). Note that the observation cross section shown in FIG. 4 is a part, and there are various other observation cross sections (for example, observation cross sections that are not parallel to the four-chamber cross section). According to the volume data processing unit 30, one or a plurality of actual data observation sections are automatically specified in the four-dimensional volume data stored in the data memory 26.
 図5には、ボリュームデータ処理部30の詳細な構成が示されている。以下、処理の流れに沿って、ボリュームデータ処理部30の処理の詳細を説明する。 FIG. 5 shows a detailed configuration of the volume data processing unit 30. Hereinafter, the details of the processing of the volume data processing unit 30 will be described along the processing flow.
 フィルタ部60は、データメモリ26に記憶された複数のボリュームデータ40(図3参照)の中から、特定時相のボリュームデータ40を抽出する。本実施形態では、心周期のうち拡張末期に対応するボリュームデータ40を抽出する。これは、後に基準断面として四腔断面を特定する関係上、心腔が最も大きくなる拡張末期のボリュームデータ40が後の処理により適するためである。フィルタ部60は、各ボリュームデータ40に対して画像処理を行うことにより、特定時相のボリュームデータ40を抽出する。例えば、各ボリュームデータ40における胎児の心臓の血流部(例えば心腔内)の容積を検出し、当該血流部の容積に基づいて拡張末期に対応するボリュームデータ40を検出することができる。具体的には、各ボリュームデータ40において、3次元画像処理により心臓の輪郭を抽出し、その内側空間である心腔の容積が一番大きいボリュームデータ40を拡張末期のボリュームデータ40であると特定することができる。 The filter unit 60 extracts volume data 40 of a specific time phase from a plurality of volume data 40 (see FIG. 3) stored in the data memory 26. In the present embodiment, volume data 40 corresponding to the end diastole is extracted from the cardiac cycle. This is because the end-diastolic volume data 40 in which the heart chamber becomes the largest is more suitable for later processing because the four-chamber cross section is specified later as the reference cross section. The filter unit 60 extracts volume data 40 at a specific time phase by performing image processing on each volume data 40. For example, the volume data 40 corresponding to the end diastole can be detected based on the volume of the blood flow part (for example, in the heart chamber) of the fetal heart in each volume data 40. Specifically, in each volume data 40, the outline of the heart is extracted by three-dimensional image processing, and the volume data 40 having the largest volume of the heart cavity that is the inner space is identified as the volume data 40 at the end diastole. can do.
 さらに、フィルタ部60は、抽出した拡張末期のボリュームデータ40に対して、データ上の組織の抜けあるいは境界部を滑らかにするための平滑化フィルタなどの処理を行う。当該フィルタ処理により、後の処理における誤検出あるいは誤判定の可能性が低減される。 Further, the filter unit 60 performs a process such as a smoothing filter for smoothing the omission of the tissue on the data or the boundary part on the extracted end-diastolic volume data 40. The filter process reduces the possibility of erroneous detection or erroneous determination in subsequent processes.
 調整部62は、まず、フィルタ部60により抽出されフィルタ処理された拡張末期のボリュームデータ40において、仮代表断面としての仮四腔断面を特定する。本実施形態では、図6に示される通り、ボリュームデータ40のうち、z軸方向中心のxy断面が仮四腔断面90として特定される。このように特定された仮四腔断面90は、一般的に正確な四腔断面ではない。つまり、正確な四腔断面像を含むものではない。なお、仮四腔断面90としては、z軸方向中心の断面に限られず、ボリュームデータ40のうち、仮四腔断面90を特定できる限りにおいて他の基準で特定されてもよい。 The adjustment unit 62 first specifies a provisional four-chamber section as a provisional representative section in the end-diastolic volume data 40 extracted and filtered by the filter unit 60. In the present embodiment, as shown in FIG. 6, the xy section at the center in the z-axis direction is specified as the provisional four-chamber section 90 in the volume data 40. The provisional four-chamber cross section 90 thus identified is generally not an accurate four-chamber cross section. That is, it does not include an accurate four-chamber cross-sectional image. The provisional four-chamber cross section 90 is not limited to the cross section at the center in the z-axis direction, and may be specified based on other criteria as long as the provisional four-chamber cross section 90 can be specified in the volume data 40.
 調整部62は、次に、ボリュームデータ40に対して二値化処理を行う。つまり、調整部62は、二値化処理手段としても機能する。当該二値化処理により、後段の処理を簡略化することができる。本実施形態では、調整部62は、ボリュームデータ40に対して反転二値化処理を行う。図6には、反転二値化処理されたボリュームデータ40における仮四腔断面92が示されている。なお、二値化処理の閾値は、ボリュームデータ40における各ボクセルの輝度分布を解析することにより決定される。一般的に、ボリュームデータ40における各ボクセルの輝度分布は図7に示すように二峰性のグラフを示す。本実施形態では、調整部62は、当該二峰性のグラフにおける第1変曲点(輝度値0から最も近い変曲点)に相当する輝度を閾値として二値化処理を行う。 Next, the adjustment unit 62 performs binarization processing on the volume data 40. That is, the adjustment unit 62 also functions as a binarization processing unit. By the binarization processing, subsequent processing can be simplified. In the present embodiment, the adjustment unit 62 performs inversion binarization processing on the volume data 40. FIG. 6 shows a provisional four-chamber cross section 92 in the volume data 40 subjected to the reverse binarization process. Note that the threshold value for binarization processing is determined by analyzing the luminance distribution of each voxel in the volume data 40. In general, the luminance distribution of each voxel in the volume data 40 is a bimodal graph as shown in FIG. In the present embodiment, the adjustment unit 62 performs binarization processing using the luminance corresponding to the first inflection point (the inflection point closest to the luminance value 0) in the bimodal graph as a threshold value.
 さらに、調整部62は、仮四腔断面92に含まれる仮四腔断面像92a(図6参照)の向き及びサイズが規定の向き及びサイズとなるように、ボリュームデータ40の姿勢を規定する処理を行う。つまり、調整部62は、姿勢規定手段としても機能する。本実施形態では、調整部62は、記憶部22に予め記憶されたテンプレートデータ64に基づいて姿勢を規定する処理を行う。 Further, the adjustment unit 62 defines the posture of the volume data 40 so that the orientation and size of the provisional four-chamber cross-sectional image 92a (see FIG. 6) included in the provisional four-chamber cross section 92 become the prescribed orientation and size. I do. That is, the adjustment unit 62 also functions as a posture defining unit. In the present embodiment, the adjustment unit 62 performs a process of defining the posture based on the template data 64 stored in advance in the storage unit 22.
 図8にテンプレートデータ64の概略図が示されている。テンプレートデータ64は、四腔断面像の向き及びサイズを規定するものである。テンプレートデータ64を用いて、仮四腔断面像92aの向き及びサイズが規定される。本実施形態におけるテンプレートデータ64は画像データである。テンプレートデータ64は、四腔断面像の心腔部に対応する卵型部64aを有している。卵型部64aは、上下方向において非対称形状となっており、これにより四腔断面像の規定の方向、特に第1方向としての左右方向の向きが示されている。本明細書において、左右方向とは、胎児の心臓を正面から見たとき(図4参照)の左右方向を意味する。本実施形態では、テンプレートデータ64においては心尖部の向きが示されている。詳しくは、卵型部64aの一方の端部が細端部64bとなっており、他方の端部が太端部64cとなっており、細端部64b側が四腔断面像の心尖部側を示している。 FIG. 8 shows a schematic diagram of the template data 64. The template data 64 defines the direction and size of the four-chamber cross-sectional image. The template data 64 is used to define the orientation and size of the provisional four-chamber cross-sectional image 92a. The template data 64 in the present embodiment is image data. The template data 64 has an oval part 64a corresponding to the heart cavity part of the four-chamber cross-sectional image. The egg-shaped portion 64a has an asymmetric shape in the up-down direction, and this indicates the prescribed direction of the four-chamber cross-sectional image, particularly the left-right direction as the first direction. In this specification, the left-right direction means the left-right direction when the fetal heart is viewed from the front (see FIG. 4). In the present embodiment, the direction of the apex is shown in the template data 64. Specifically, one end portion of the egg-shaped portion 64a is a narrow end portion 64b, the other end portion is a thick end portion 64c, and the narrow end portion 64b side is the apex side of the four-chamber cross-sectional image. Show.
 また、卵型部64aのサイズ(面積)が四腔断面像の規定のサイズ(面積)を示している。さらに、テンプレートデータ64は、卵型部64aの細端部64bから太端部64cに向けて伸張するスリット64dを含んでいる。スリット64dは四腔断面像の中隔に対応するものである。 In addition, the size (area) of the egg shaped portion 64a indicates the prescribed size (area) of the four-chamber cross-sectional image. Furthermore, the template data 64 includes a slit 64d that extends from the narrow end portion 64b of the egg-shaped portion 64a toward the thick end portion 64c. The slit 64d corresponds to the septum of the four-chamber cross-sectional image.
 テンプレートデータ64において、卵型部64aの画素には輝度値として「1」が設定され、スリット64dを含むその他の部分の画素には輝度値として「0」が設定されている。 In the template data 64, “1” is set as the luminance value for the pixel of the egg-shaped portion 64a, and “0” is set as the luminance value for the other pixels including the slit 64d.
 本実施形態では、調整部62は、このようなテンプレートデータ64を用いて、仮四腔断面像92aが規定の向き及び所定のサイズとなるように、ボリュームデータ40に対して回転処理、拡大・縮小処理、あるいはボリュームデータ40に含まれる心臓立体像の平行移動処理を行う。ここでは、これらの各処理を総称してマッチング処理と呼ぶ。 In the present embodiment, the adjustment unit 62 uses such template data 64 to rotate, enlarge, and enlarge the volume data 40 so that the provisional four-chamber cross-sectional image 92a has a specified orientation and a predetermined size. A reduction process or a parallel movement process of the three-dimensional heart image included in the volume data 40 is performed. Here, these processes are collectively referred to as a matching process.
 マッチング処理の様子が図9に示されている。反転二値化された仮四腔断面92の心腔部に対応する各画素の輝度値は概ね「1」となっており、その他の部分(心筋あるいは中隔など)に対応する画素の輝度値は「0」となっている。一方において、テンプレートデータ64の心腔部に対応する卵型部64aの画素の輝度値は「1」であり、その他の部分に対応する画素の輝度値は「0」となっている。調整部62は、仮四腔断面92とテンプレートデータ64とを重ね合わせ、仮四腔断面92とテンプレートデータ64との間において、対応する画素同士の輝度値の積の総和が最大となるように、仮四腔断面92を回転、拡大・縮小、又は、平行移動させる。それに応じて、ボリュームデータ40も回転、拡大・縮小され、またボリュームデータ40に含まれる心臓立体像が平行移動される。各座標の輝度値の積の総和を取る際に、テンプレートデータ64の水平方向(図8における左右方向)において、スリット64dから近い程重み付けを大きくし、スリット64dから離れるほど重み付けを小さくして値を加算するのが好適である。これにより、スリット64dと仮四腔断面像92aの中隔の位置を基準に仮四腔断面像92aの向き及びサイズを決定することができる。以上の処理により、仮四腔断面像92aの向き及びサイズをテンプレートデータ64に示された規定のものとなるように、ボリュームデータ40の姿勢を規定することができる。図9に、マッチング処理された仮四腔断面像94aを含む仮四腔断面94が示されている。 The state of the matching process is shown in FIG. The luminance value of each pixel corresponding to the heart chamber portion of the provisional four-chamber section 92 that has been inverted and binarized is approximately “1”, and the luminance value of the pixel corresponding to the other portion (such as the myocardium or septum). Is “0”. On the other hand, the luminance value of the pixel of the egg-shaped portion 64a corresponding to the heart cavity portion of the template data 64 is “1”, and the luminance value of the pixel corresponding to the other portion is “0”. The adjustment unit 62 superimposes the provisional four-chamber section 92 and the template data 64 so that the sum of the products of the luminance values of the corresponding pixels is maximized between the provisional four-chamber section 92 and the template data 64. The provisional four-chamber cross section 92 is rotated, enlarged / reduced, or translated. Accordingly, the volume data 40 is also rotated, enlarged / reduced, and the heart stereoscopic image included in the volume data 40 is translated. When calculating the sum of the products of the luminance values of the respective coordinates, the weight is increased as the distance from the slit 64d is increased in the horizontal direction (left and right direction in FIG. 8) of the template data 64, and the weight is decreased as the distance from the slit 64d is increased. Is preferably added. Thus, the orientation and size of the provisional four-chamber cross-sectional image 92a can be determined based on the position of the septum of the slit 64d and the provisional four-chamber cross-sectional image 92a. Through the above processing, the orientation of the volume data 40 can be defined so that the orientation and size of the provisional four-chamber cross-sectional image 92a are as defined in the template data 64. FIG. 9 shows a provisional four-chamber cross section 94 including a provisional four-chamber cross-sectional image 94a subjected to matching processing.
 ボリュームデータ40の回転処理は、四元数(クォータニオン)を用いた式で表すことができる。四元数は、1つの実部と3つの虚部である4つの要素により以下の式により表現される。
Figure JPOXMLDOC01-appb-M000001
 ここで、tが実部でありx,y,zが虚部である。
 座標系におけるある座標(X,Y,Z)は、四元数によれば以下のように表現される。
Figure JPOXMLDOC01-appb-M000002
The rotation process of the volume data 40 can be expressed by an equation using a quaternion. The quaternion is expressed by the following expression by four elements that are one real part and three imaginary parts.
Figure JPOXMLDOC01-appb-M000001
Here, t is a real part and x, y, and z are imaginary parts.
A certain coordinate (X, Y, Z) in the coordinate system is expressed as follows according to a quaternion.
Figure JPOXMLDOC01-appb-M000002
 以上の前提において、四元数を用いることにより、3次元座標系における任意の回転軸を中心とした回転処理を簡易的に表現することができる。具体的には、原点を始点とする単位ベクトル(α,β,γ)を回転軸とした角度θの回転処理は、以下の2つの四元数(共役四元数)により表現される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上述の2つの四元数Q及びRによれば、当該回転処理後の座標Pの値は、以下の式の解の虚部(XR,YR,ZR)により表される。
Figure JPOXMLDOC01-appb-M000005
 なお、回転軸が座標原点を始点とするものではない場合には、回転処理後の座標を求める場合は、回転軸及び回転処理の対象の座標を平行移動させて回転軸を座標原点を始点とするものとした上で、上述の式により回転処理後の座標を求め、当該座標を逆方向に平行移動させることで目的の座標を求めることができる。
Based on the above assumption, by using a quaternion, rotation processing around an arbitrary rotation axis in a three-dimensional coordinate system can be simply expressed. Specifically, the rotation process of the angle θ with the unit vector (α, β, γ) starting from the origin as the rotation axis is expressed by the following two quaternions (conjugate quaternions).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
According to the two quaternions Q and R described above, the value of the coordinate P after the rotation processing is represented by the imaginary part (XR, YR, ZR) of the solution of the following equation.
Figure JPOXMLDOC01-appb-M000005
When the rotation axis does not start from the coordinate origin, when obtaining the coordinates after the rotation process, the rotation axis and the coordinates of the target of the rotation process are translated and the rotation axis is set to the coordinate origin. Then, the coordinates after the rotation processing are obtained by the above formula, and the target coordinates can be obtained by translating the coordinates in the reverse direction.
 調整部62は、ボリュームデータ40の回転処理に関する各パラメータを記憶部22に保持しておく。具体的には、回転軸を表す単位ベクトル(α,β,γ)、回転角度を示すθを保持しておく。また、ボリュームデータ40の拡大・縮小処理を行った場合は、その拡大・縮小率を保持しておく。さらに、心臓立体像に対するに平行移動を行った場合は当該平行移動を示すベクトルを保持しておく。 The adjustment unit 62 holds each parameter related to the rotation processing of the volume data 40 in the storage unit 22. Specifically, a unit vector (α, β, γ) representing the rotation axis and θ representing the rotation angle are held. When the volume data 40 is enlarged / reduced, the enlargement / reduction ratio is retained. Furthermore, when a translation is performed with respect to the heart stereoscopic image, a vector indicating the translation is held.
 本実施形態では、上記マッチング処理を行うためにテンプレートデータ64を用いていたが、仮四腔断面92に対して画像認識処理を行うことで、仮四腔断面像92aの向き及びサイズを調整するようにしてもよい。例えば、仮四腔断面像92aに含まれる特徴点(例えば心尖部、中隔の中心部など)を検出し、それに基づいて、仮四腔断面像92a(ひいてはボリュームデータ40)を規定の向きとする処理を行うようにしてもよい。そのような処理の際には、蓄積された過去の調整処理の結果を利用する機械学習手法が用いられてもよい。 In the present embodiment, the template data 64 is used to perform the matching process, but the orientation and size of the provisional four-chamber cross-sectional image 92a are adjusted by performing image recognition processing on the provisional four-chamber section 92. You may do it. For example, a feature point (for example, apex portion, central part of the septum, etc.) included in the provisional four-chamber cross-sectional image 92a is detected, and based on the detected feature point, the provisional four-chamber cross-sectional image 92a (and thus the volume data 40) is You may make it perform the process to perform. In such a process, a machine learning method that uses the accumulated results of past adjustment processes may be used.
 代表断面探索手段としての代表断面検出部66は、調整部62によりマッチング処理された仮四腔断面94を基準に、調整後ボリュームデータ内において代表断面としての(真の)四腔断面を探索する処理を行う。図10に、代表断面検出部66の処理の流れが示されている。図10の左上図においては、調整部62よって姿勢が調整された調整後ボリュームデータ96、及び調整処理された仮四腔断面像94aを含む仮四腔断面94が示されている。 The representative cross-section detector 66 as representative cross-section search means searches for the (true) four-chamber cross section as the representative cross-section in the adjusted volume data with reference to the provisional four-chamber cross section 94 matched by the adjusting section 62. Process. FIG. 10 shows a processing flow of the representative cross-section detection unit 66. In the upper left diagram of FIG. 10, a post-adjustment volume data 96 whose posture has been adjusted by the adjustment unit 62 and a provisional four-chamber cross section 94 including the provisional four-chamber cross-sectional image 94a that has been adjusted are shown.
 まず、代表断面検出部66は、仮四腔断面94に含まれる仮四腔断面像94aとテンプレートデータ64を重ね合わせ、テンプレートデータ64における下端(太端部64cの下端)の接線である回転軸98a(図10右上図参照)を中心に、仮四腔断面94とテンプレートデータ64を共に回転させる。そして、仮四腔断面94及びテンプレートデータ64を回転させながら、図9に示すマッチング処理と同様に、回転された仮四腔断面94に含まれる断面像とテンプレートデータ64の対応する各座標の輝度値の積の総和を演算し、調整後ボリュームデータ96において、当該総和が最大となる(つまり心腔内の面積が最大となる)断面である第1検出断面100(図10左下図参照)を検出する。 First, the representative cross-section detection unit 66 superimposes the temporary four-chamber cross-sectional image 94a included in the temporary four-chamber cross section 94 and the template data 64, and the rotation axis that is the tangent to the lower end (the lower end of the thick end portion 64c) in the template data 64. The temporary four-chamber cross section 94 and the template data 64 are both rotated about 98a (see the upper right figure in FIG. 10). Then, while rotating the provisional four-chamber section 94 and the template data 64, the brightness of each coordinate corresponding to the cross-sectional image included in the rotated provisional four-chamber section 94 and the template data 64 is similar to the matching process shown in FIG. The sum of the products of the values is calculated, and in the adjusted volume data 96, the first detection cross section 100 (see the lower left figure in FIG. 10) that is the cross section in which the sum is maximized (that is, the area in the heart chamber is maximized). To detect.
 次いで、代表断面検出部66は、第1検出断面100におけるテンプレートデータ64における上端(細端部64bの上端)の接線である回転軸98bを中心に、第1検出断面100とテンプレートデータ64を共に回転させる。そして、第1検出断面100及びテンプレートデータ64を回転させながら、回転された第1検出断面100とテンプレートデータ64の対応する各座標の輝度値の積の総和を演算し、調整後ボリュームデータ96において、当該総和が最大となる断面である第2検出断面102(図10右下図参照)を検出する。なお、テンプレートデータ64の下端を基準とする回転処理と上端を基準とする回転処理はいずれを先に行うようにしてもよい。 Next, the representative cross-section detection unit 66 sets both the first detection cross-section 100 and the template data 64 around the rotation axis 98b that is the tangent to the upper end (the upper end of the narrow end 64b) of the template data 64 in the first detection cross-section 100. Rotate. Then, while rotating the first detection section 100 and the template data 64, the sum of the products of the brightness values of the corresponding coordinates of the rotated first detection section 100 and the template data 64 is calculated. The second detection cross section 102 (see the lower right diagram in FIG. 10), which is the cross section in which the sum is the maximum, is detected. Note that either the rotation process based on the lower end of the template data 64 or the rotation process based on the upper end may be performed first.
 さらに、代表断面検出部66は、第2検出断面102におけるテンプレートデータ64の中心軸(スリット64dに沿った軸)98cを中心に、第2検出断面102とテンプレートデータ64を共に回転させる。そして、第2検出断面102及びテンプレートデータ64を回転させながら、回転された第2検出断面102とテンプレートデータ64の対応する各座標の輝度値の積の総和を演算し、調整後ボリュームデータ96において、当該総和が最大となる断面を検出する。 Furthermore, the representative cross-section detector 66 rotates both the second detection cross-section 102 and the template data 64 around the central axis 98c (axis along the slit 64d) 98c of the template data 64 in the second detection cross-section 102. Then, while rotating the second detection cross section 102 and the template data 64, the sum of the products of the brightness values of the corresponding coordinates of the rotated second detection cross section 102 and the template data 64 is calculated. The cross section where the sum is the maximum is detected.
 上述の処理により、調整後ボリュームデータ96内の仮四腔断面94の近傍範囲において、より心腔面積の大きい断面が探索される。このようにして探索された心腔面積最大となる断面が四腔断面として特定される。このように特定された四腔断面に含まれる四腔断面像の心尖方向が、調整後ボリュームデータ96における心臓立体像の心尖方向を示している。上述の通り、本実施形態では、調整部62及び代表断面検出部66が代表断面特定手段あるいは第1方向特定手段を構成する。 By the above-described processing, a cross section having a larger heart chamber area is searched in the vicinity of the provisional four-chamber cross section 94 in the adjusted volume data 96. The cross section having the maximum cardiac chamber area searched in this way is specified as the four-chamber cross section. The apex direction of the four-chamber cross-sectional image included in the four-chamber cross section specified in this way indicates the apex direction of the three-dimensional heart image in the adjusted volume data 96. As described above, in the present embodiment, the adjustment unit 62 and the representative cross-section detection unit 66 constitute a representative cross-section specifying unit or a first direction specifying unit.
 なお、代表断面検出部66による各回転処理も、四元数を含む式を用いて実行され、代表断面検出部66は、上記各回転処理に関する各パラメータを記憶部22に保持しておく。具体的には、各回転軸を表す単位ベクトル(α,β,γ)、各回転角度を示すθをそれぞれ保持しておく。 In addition, each rotation process by the representative cross-section detection unit 66 is also executed using an expression including a quaternion, and the representative cross-section detection unit 66 holds each parameter related to each rotation process in the storage unit 22. Specifically, a unit vector (α, β, γ) representing each rotation axis and θ representing each rotation angle are held.
 特徴点・サイズ検出部68は、代表断面検出部66により検出された四腔断面に対して画像処理を施すことにより、四腔断面に含まれる四腔断面像において複数の特徴点を検出する。図11に、四腔断面104に含まれる四腔断面像104aにおいて検出された特徴点が示されている。なお、図11には、四腔断面をrxry平面とし、rxry平面に直交する方向をrz軸とする回転実座標系の座標軸が示されている。 The feature point / size detection unit 68 performs image processing on the four-chamber cross section detected by the representative cross-section detection unit 66 to detect a plurality of feature points in the four-chamber cross-sectional image included in the four-chamber cross section. FIG. 11 shows feature points detected in the four-chamber cross-sectional image 104 a included in the four-chamber cross-section 104. FIG. 11 shows the coordinate axes of the rotating real coordinate system in which the four-chamber cross section is the rxry plane and the direction orthogonal to the rxry plane is the rz axis.
 本実施形態では、四腔断面像104aにおいて7点の特徴点を検出する。具体的には、図11に示す通り、四腔断面像104aの上下端、左右端、及び基準点としての中心を示す3つの特徴点を含む全部で7つの特徴点A~Gを検出する。 In this embodiment, seven feature points are detected in the four-chamber cross-sectional image 104a. Specifically, as shown in FIG. 11, a total of seven feature points A to G including the upper and lower ends, the left and right ends, and the three feature points indicating the centers as reference points are detected.
 特徴点Aは、四腔断面像104aの上端を示すものである。図12Aに示される通り、四腔断面像104aの上端近傍におけるエッジ探索の結果検出された複数の点(図12Aにおいてxマークで表されている)を通る近似曲線を演算し、当該近似曲線の頂点が特徴点Aとして特定される。特徴点Bは、四腔断面像104aの下端を示すものであり、特徴点Aと同様の手法で特定される。 Feature point A indicates the upper end of the four-chamber cross-sectional image 104a. As shown in FIG. 12A, an approximate curve that passes through a plurality of points (represented by x marks in FIG. 12A) detected as a result of the edge search in the vicinity of the upper end of the four-chamber cross-sectional image 104a is calculated. The vertex is identified as the feature point A. The feature point B indicates the lower end of the four-chamber cross-sectional image 104a and is identified by the same method as the feature point A.
 特徴点Cは、四腔断面像104aの中心を示すものである。特徴点Cは、特徴点Dと特徴点Eの中点として定義される。特徴点Dは、左室又は右室の一方の中隔側及び弁側の端部を示すものである。図12Bに示される通り、四腔断面像104aの上端から下端に向かって中隔の右側のエッジ探索をしていき、変曲点が検出された場合に当該変曲点が特徴点Dとして特定される。変曲点は、1つ前に検出されたエッジ点と今回検出されたエッジ点のry座標の変化量が0又は負となる点として検出可能である。また、特徴点Eは、左室又は右室の他方の中隔側及び弁側の端部を示すものである。四腔断面像104aの上端から下端に向かって中隔の左側のエッジ探索をしていき、変曲点が検出された場合に当該変曲点が特徴点Eとして特定される。 Feature point C indicates the center of the four-chamber cross-sectional image 104a. The feature point C is defined as a midpoint between the feature point D and the feature point E. The feature point D indicates one of the left and right ventricular end portions on the septal side and the valve side. As shown in FIG. 12B, the right edge of the septum is searched from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point D. Is done. The inflection point can be detected as a point where the amount of change in the ry coordinate between the edge point detected immediately before and the edge point detected this time is 0 or negative. The feature point E indicates the other septum side and valve end of the left or right ventricle. The left edge of the septum is searched from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point E.
 特徴点Fは、四腔断面像104aの左端を示すものである。図12Bに示される通り、四腔断面像104aの上端から下端に向かって左側のラインに沿ってエッジ探索をしていき、変曲点が検出された場合に当該変曲点が特徴点Fとして特定される。特徴点Gは、四腔断面像104aの右端を示すものである。四腔断面像104aの上端から下端に向かって右側のラインに沿ってエッジ探索をしていき、変曲点が検出された場合に当該変曲点が特徴点Gとして特定される。 Feature point F indicates the left end of the four-chamber cross-sectional image 104a. As shown in FIG. 12B, the edge search is performed along the left line from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point becomes the feature point F. Identified. The feature point G indicates the right end of the four-chamber cross-sectional image 104a. The edge search is performed along the right line from the upper end to the lower end of the four-chamber cross-sectional image 104a, and when the inflection point is detected, the inflection point is specified as the feature point G.
 次に、特徴点・サイズ検出部68は、調整後ボリュームデータ96における心臓立体像のサイズを検出する処理を行う。具体的には、特徴点・サイズ検出部68は、調整後ボリュームデータ96において、心臓立体像に外接する直方体形状の領域(以下「心臓立体領域」と記載する)を検出する処理を行う。 Next, the feature point / size detection unit 68 performs processing for detecting the size of the heart stereoscopic image in the adjusted volume data 96. Specifically, the feature point / size detection unit 68 performs a process of detecting a rectangular parallelepiped-shaped region (hereinafter referred to as “heart solid region”) circumscribing the heart stereoscopic image in the adjusted volume data 96.
 サイズ検出処理にあたって、まず、特徴点・サイズ検出部68は、図13に示されるように、四腔断面104において、四腔断面像104aの左右端のrx座標を特定する。上述の通り、四腔断面像104aの左右端は特徴点・サイズ検出部68により検出されている。具体的には、特徴点Fのrx座標を四腔断面像104aの左端のrx座標(min_rx)とし、特徴点Gのrx座標を四腔断面像104aの右端のrx座標(max_rx)とする。同様に、特徴点・サイズ検出部68は、四腔断面104において、四腔断面像104aの上下端のry座標を特定する。上述の通り、四腔断面像104aの上下端も特徴点・サイズ検出部68により検出されている。具体的には、特徴点Aのry座標を四腔断面像104aの上端のrx座標(min_ry)とし、特徴点Bのry座標を四腔断面像104aの下端のry座標(max_ry)とする。 In the size detection process, first, the feature point / size detection unit 68 specifies the rx coordinates of the left and right ends of the four-chamber cross-sectional image 104a in the four-chamber cross-section 104 as shown in FIG. As described above, the left and right ends of the four-chamber cross-sectional image 104 a are detected by the feature point / size detection unit 68. Specifically, the rx coordinate of the feature point F is the rx coordinate (min_rx) at the left end of the four-chamber cross-sectional image 104a, and the rx coordinate of the feature point G is the rx coordinate (max_rx) at the right end of the four-chamber cross-sectional image 104a. Similarly, the feature point / size detection unit 68 specifies the ry coordinates of the upper and lower ends of the four-chamber cross-sectional image 104a in the four-chamber cross-section 104. As described above, the upper and lower ends of the four-chamber cross-sectional image 104a are also detected by the feature point / size detection unit 68. Specifically, the ry coordinate of the feature point A is the rx coordinate (min_ry) of the upper end of the four-chamber cross-sectional image 104a, and the ry coordinate of the feature point B is the ry coordinate (max_ry) of the lower end of the four-chamber cross-sectional image 104a.
 上述の処理により、四腔断面104において、心臓立体領域を構成する1つの面である心臓領域面106が特定される。具体的には、rx=min_rx、rx=max_rx、ry=min_ry、ry=max_ry、で規定される長方形が心臓領域面106となる。 Through the above-described processing, the heart region surface 106 that is one surface constituting the three-dimensional heart region is specified in the four-chamber cross section 104. Specifically, a rectangle defined by rx = min_rx, rx = max_rx, ry = min_ry, ry = max_ry is the heart region surface 106.
 次に、特徴点・サイズ検出部68は、rz軸方向における心臓立体像の両端を検出する処理を行う。図14に、当該処理を行う様子が示されている。特徴点・サイズ検出部68は、上述のように四腔断面104において特定された心臓領域面106と平行且つ同サイズの処理面をrz軸の負方向に平行移動させながら、当該処理面における輝度値「1」の画素数をモニタする。そして、輝度値「1」の画素数が0、つまり処理面が真っ黒の画像となる直前の処理面106aにおける輝度値「1」の点を特徴点Hとして特定する。なお、処理面106aにおいて輝度値「1」の点が複数ある場合は、それら複数の点の重心を求めて特徴点Hとする。そして、特徴点H(つまり処理面106a)のrz座標を心臓立体領域のrz軸負方向の端部であるmin_rzとして特定する。同様に、心臓領域面106と平行且つ同サイズの処理面をrz軸の正方向に平行移動させながら、当該処理面における輝度値「1」の画素数をモニタし、輝度値「1」の画素数が0となる直前の処理面106bにおける輝度値「1」の点を特徴点Iとして特定する。処理面106bにおいて輝度値「1」の点が複数ある場合の処理は特徴点Hの特定方法と同様である。そして、特徴点I(処理面106b)のrz座標を心臓立体領域のrz軸正方向の端部であるmax_rzとして特定する。以上のように、本実施形態では、四腔断面像104aにおいて7点、及びrz軸方向の両端部を示す2点を含む9点の特徴点が心臓立体像において特定される。 Next, the feature point / size detection unit 68 performs processing for detecting both ends of the heart stereoscopic image in the rz-axis direction. FIG. 14 shows how the processing is performed. As described above, the feature point / size detection unit 68 translates the processing surface parallel to and the same size as the heart region surface 106 specified in the four-chamber cross section 104 in the negative direction of the rz axis, and the luminance on the processing surface. The number of pixels with the value “1” is monitored. Then, the point of the luminance value “1” on the processing surface 106 a immediately before the number of pixels of the luminance value “1” is 0, that is, the processing surface becomes a black image, is specified as the feature point H. When there are a plurality of points having the luminance value “1” on the processing surface 106a, the center of gravity of the plurality of points is obtained and set as the feature point H. Then, the rz coordinate of the feature point H (that is, the processing surface 106a) is specified as min_rz that is the end of the heart solid region in the negative direction of the rz axis. Similarly, the number of pixels with the luminance value “1” on the processing surface is monitored while the processing surface parallel to the heart region surface 106 and having the same size is translated in the positive direction of the rz axis. The point of the luminance value “1” on the processing surface 106b immediately before the number becomes 0 is specified as the feature point I. The processing in the case where there are a plurality of points having the luminance value “1” on the processing surface 106 b is the same as the method for specifying the feature point H. Then, the rz coordinate of the feature point I (processing surface 106b) is specified as max_rz which is the end of the heart solid region in the positive direction of the rz axis. As described above, in the present embodiment, nine feature points including seven points in the four-chamber cross-sectional image 104a and two points indicating both ends in the rz-axis direction are specified in the cardiac stereoscopic image.
 ここで、胎児の心臓の構造上の特徴から、心臓領域面106を基準として、rz軸方向の一方側における一方側部分心臓立体像と、rz軸方向の他方側における他方側部分心臓立体像との形状が互いに異なる。このことから、一方側部分心臓立体像と他方側部分心臓立体像との比較により、第2方向としての上下方向における心臓立体像の向きを特定することができる。本明細書において、上下方向とは、胎児の心臓を正面から見たとき(図4参照)の上下方向であって、左右方向に直交する方向を意味する。図14においては、上下方向はrz軸方向により示されている。具体的には、心臓立体領域の一方の端部から心臓領域面106(四腔断面)までの区間長(つまりmin_rzから心臓領域面106のrz座標までのrz軸に沿った長さ)と、心臓立体領域の他方の端部から心臓領域面106までの区間長(つまり心臓領域面106のrz座標からmax_rzまでのrz軸に沿った長さ)に基づいて、心臓立体像の上下方向を特定することができる。詳しくは、当該区間長が長い方が頭側であり、当該区間長が短い方が胃側となる。このように、特徴点・サイズ検出部68は、第2方向特定手段としても機能する。 Here, from the structural features of the fetal heart, with the heart region plane 106 as a reference, the one-side partial heart stereoscopic image on one side in the rz-axis direction and the other-side partial heart stereoscopic image on the other side in the rz-axis direction The shapes are different from each other. From this, by comparing the one-side partial heart stereoscopic image and the other-side partial heart stereoscopic image, the orientation of the cardiac stereoscopic image in the up-down direction as the second direction can be specified. In the present specification, the vertical direction means a vertical direction when the fetal heart is viewed from the front (see FIG. 4), and a direction orthogonal to the horizontal direction. In FIG. 14, the vertical direction is indicated by the rz-axis direction. Specifically, the section length from one end of the three-dimensional heart region to the heart region surface 106 (four-chamber cross section) (that is, the length along the rz axis from min_rz to the rz coordinate of the heart region surface 106), Based on the section length from the other end of the three-dimensional heart region to the heart region surface 106 (that is, the length along the rz axis from the rz coordinate of the heart region surface 106 to max_rz), the vertical direction of the three-dimensional heart image is specified. can do. Specifically, the longer section length is the head side, and the shorter section length is the stomach side. Thus, the feature point / size detection unit 68 also functions as a second direction specifying unit.
 上述の処理によって、図15に示す通り、調整後ボリュームデータ96内において心臓立体領域108が特定される。具体的に、心臓立体領域108は、rx座標がmin_rx~max_rx、ry座標がmin_ry~max_ry、rz座標がmin_rz~max_rzを取る領域である。このように、本実施形態では、心臓立体像において特定された9つの特徴点(特徴点A~I)のうち、6つの特徴点(特徴点A、B、F、G、H、及びI)に基づいて心臓立体領域108が特定される。 By the above process, the three-dimensional heart region 108 is specified in the adjusted volume data 96 as shown in FIG. Specifically, the heart solid region 108 is a region where rx coordinates are min_rx to max_rx, ry coordinates are min_ry to max_ry, and rz coordinates are min_rz to max_rz. As described above, in the present embodiment, six feature points (feature points A, B, F, G, H, and I) among the nine feature points (feature points A to I) identified in the heart stereoscopic image. Based on this, the three-dimensional heart region 108 is specified.
 特徴点・サイズ検出部68は、min_rx、max_rx、min_ry、max_ry、min_rz、及びmax_rzの各値を記憶部22に記憶させて保持しておく。さらに、特定した特徴点のうち、少なくとも特徴点A、B、及びCの回転座標系における座標を記憶部22に保持しておく。ここでは、特徴点Aの座標を(ax,ay,az)とし、特徴点Bの座標を(bx,by,bz)とし、特徴点Cの座標を(cx,cy,cz)とする。なお、ay=min_ryであり、by=max_ryであり、az=bz=czである。 The feature point / size detection unit 68 stores each value of min_rx, max_rx, min_ry, max_ry, min_rz, and max_rz in the storage unit 22 and holds them. Further, among the identified feature points, at least the coordinates of the feature points A, B, and C in the rotating coordinate system are held in the storage unit 22. Here, the coordinates of the feature point A are (ax, ay, az), the coordinates of the feature point B are (bx, by, bz), and the coordinates of the feature point C are (cx, cy, cz). Note that ay = min_ry, by = max_ry, and az = bz = cz.
 正規化座標設定部70は、特徴点・サイズ検出部68が特定した心臓立体領域108において正規化座標系を設定する。具体的には、心臓立体領域108における回転実座標系の座標を正規化座標系の座標とを対応付ける処理を行う。図16に、正規化座標に変換された心臓立体領域110が示されている。正規化座標系は、回転実座標系における特徴点C(四腔断面像の中心点)を原点としている。つまり、回転実座標系における座標(cx,cy,cz)が正規化座標系における座標(0,0,0)に対応する。また、回転実座標系における座標(min_rx,min_ry,min_rz)が正規化座標系における(-1,-1,-1)に対応し、回転実座標系における座標(max_rx,max_ry,max_rz)が正規化座標系における(1,1,1)に対応する。つまり、回転実座標系における心臓立体領域108の各軸における両端部が、正規化座標系における各軸の-1及び1に対応する。 The normalized coordinate setting unit 70 sets a normalized coordinate system in the heart solid region 108 specified by the feature point / size detection unit 68. Specifically, a process of associating the coordinates of the rotating real coordinate system with the coordinates of the normalized coordinate system in the heart solid region 108 is performed. FIG. 16 shows a three-dimensional heart region 110 converted to normalized coordinates. The normalized coordinate system has a feature point C (the center point of the four-chamber cross-sectional image) in the rotating real coordinate system as the origin. That is, the coordinates (cx, cy, cz) in the rotating real coordinate system correspond to the coordinates (0, 0, 0) in the normalized coordinate system. Further, the coordinates (min_rx, min_ry, min_rz) in the rotating real coordinate system correspond to (−1, −1, −1) in the normalized coordinate system, and the coordinates (max_rx, max_ry, max_rz) in the rotating real coordinate system are normal. This corresponds to (1, 1, 1) in the generalized coordinate system. That is, both ends of each axis of the heart solid region 108 in the rotating real coordinate system correspond to −1 and 1 of each axis in the normalized coordinate system.
 ここで、正規化座標系における原点(つまり特徴点C)は、心臓立体領域110の正確な中心とはなっていない。図17Aには、nxnz平面における原点(特徴点C)の位置が示されている。図17Aに示される通り、nx軸についてみれば、特徴点C(nx=0)は、nx=1とnx=-1の中点とはなっていない。ny軸についても同様である。また、図17Bには、nynz平面における原点(特徴点C)の位置が示されている。上述の通り、回転実座標系において、心臓領域面106のrz座標は、min_rzとmax_rzとの中点とはなっていないことから、図17Bに示される通り、nz軸についてみても、特徴点C(nz=0)も、nz=1とnz=-1の中点とはなっていない。 Here, the origin (that is, the feature point C) in the normalized coordinate system is not an accurate center of the heart solid region 110. FIG. 17A shows the position of the origin (feature point C) on the nxnz plane. As shown in FIG. 17A, regarding the nx axis, the feature point C (nx = 0) is not a midpoint between nx = 1 and nx = -1. The same applies to the ny axis. FIG. 17B shows the position of the origin (feature point C) on the nynz plane. As described above, in the rotating real coordinate system, the rz coordinate of the heart region surface 106 is not the midpoint between min_rz and max_rz. Therefore, as shown in FIG. (Nz = 0) is not a midpoint between nz = 1 and nz = -1.
 つまり、正規化座標系は複数のスケールを有している。具体的には、nx軸方向、ny軸方向、及びnz軸方向のそれぞれについて、原点の両側において異なるスケールを有している。詳細は後述するが、正規化座標系が複数のスケールを有していることにより、胎児の心臓の個体差をうまく吸収した上で、実データ観察断面を特定することができる。 That is, the normalized coordinate system has multiple scales. Specifically, each of the nx axis direction, the ny axis direction, and the nz axis direction has different scales on both sides of the origin. Although details will be described later, since the normalized coordinate system has a plurality of scales, it is possible to specify the actual data observation cross section after successfully absorbing the individual differences of the fetal heart.
 対応関係生成手段としての変換関数生成部72は、x軸、y軸、z軸で規定される実座標系(図3、図6参照)と、nx軸、ny軸、nz軸で規定される正規化座標系(図16参照)との対応関係としての変換関数を生成する。本実施形態では、変換関数生成部72は、正規化座標系と回転実座標系(図15など参照)との間の変換関数である第1変換関数、及び、回転実座標系と実座標系との間の変換関数である第2変換関数を生成する。第1変換関数は、正規化座標系における座標を、回転実座標系における座標に変換するものであり、第2変換関数は、回転実座標系における座標を実座標系における座標に変換するものである。 The conversion function generation unit 72 as the correspondence generation unit is defined by a real coordinate system (see FIGS. 3 and 6) defined by the x-axis, y-axis, and z-axis, and the nx-axis, ny-axis, and nz-axis. A conversion function is generated as a correspondence relationship with the normalized coordinate system (see FIG. 16). In the present embodiment, the conversion function generation unit 72 includes a first conversion function that is a conversion function between a normalized coordinate system and a rotating real coordinate system (see FIG. 15 and the like), and a rotating real coordinate system and a real coordinate system. A second conversion function that is a conversion function between and is generated. The first conversion function is to convert coordinates in the normalized coordinate system into coordinates in the rotating real coordinate system, and the second conversion function is to convert coordinates in the rotating real coordinate system into coordinates in the real coordinate system. is there.
 まず、図18を用いて、第1変換関数について説明する。第1変換関数は、回転実座標系における特徴点の座標と、正規化座標系における当該特徴点の座標との対応関係に基づいて生成される。図18に示されるように、正規化座標系において、心臓立体領域110は、nx=0で表される面と、ny=0で表される面と、nz=0で表される面により8つの領域(図18におけるR1~R8)に区分される。当該8つの領域は、それぞれスケールが異なる領域である。これに応じて、各領域において、正規化座標系の座標を回転実座標系に変換するための変換式がそれぞれ異なる。本実施形態では、8つの領域に対応する8つの変換式をまとめて第1変換関数と呼ぶ。 First, the first conversion function will be described with reference to FIG. The first conversion function is generated based on a correspondence relationship between the coordinates of the feature point in the rotating real coordinate system and the coordinates of the feature point in the normalized coordinate system. As shown in FIG. 18, in the normalized coordinate system, the three-dimensional heart region 110 is composed of a surface represented by nx = 0, a surface represented by ny = 0, and a surface represented by nz = 0. It is divided into two regions (R1 to R8 in FIG. 18). The eight areas are areas having different scales. In accordance with this, the conversion formulas for converting the coordinates of the normalized coordinate system into the actual rotation coordinate system are different in each region. In the present embodiment, the eight conversion expressions corresponding to the eight regions are collectively referred to as a first conversion function.
 正規化座標系の座標を(Xn,Yn,Zn)とし、それに対応する回転実座標系の座標を(Xr、Yr、Zr)とすると、各領域における変換式は以下の様に表される。 When the coordinates of the normalized coordinate system are (Xn, Yn, Zn) and the corresponding coordinates of the rotating real coordinate system are (Xr, Yr, Zr), the conversion formula in each region is expressed as follows.
 領域R1(nx≧0、ny≧0、nz≧0)
Figure JPOXMLDOC01-appb-M000006
Region R1 (nx ≧ 0, ny ≧ 0, nz ≧ 0)
Figure JPOXMLDOC01-appb-M000006
 領域R2(nx<0、ny≧0、nz≧0)
Figure JPOXMLDOC01-appb-M000007
Region R2 (nx <0, ny ≧ 0, nz ≧ 0)
Figure JPOXMLDOC01-appb-M000007
 領域R3(nx≧0、ny≧0、nz<0)
Figure JPOXMLDOC01-appb-M000008
Region R3 (nx ≧ 0, ny ≧ 0, nz <0)
Figure JPOXMLDOC01-appb-M000008
 領域R4(nx<0、ny≧0、nz<0)
Figure JPOXMLDOC01-appb-M000009
Region R4 (nx <0, ny ≧ 0, nz <0)
Figure JPOXMLDOC01-appb-M000009
 領域R5(nx≧0、ny<0、nz≧0)
Figure JPOXMLDOC01-appb-M000010
Region R5 (nx ≧ 0, ny <0, nz ≧ 0)
Figure JPOXMLDOC01-appb-M000010
 領域R6(nx<0、ny<0、nz≧0)
Figure JPOXMLDOC01-appb-M000011
Region R6 (nx <0, ny <0, nz ≧ 0)
Figure JPOXMLDOC01-appb-M000011
 領域R7(nx≧0、ny<0、nz<0)
Figure JPOXMLDOC01-appb-M000012
Region R7 (nx ≧ 0, ny <0, nz <0)
Figure JPOXMLDOC01-appb-M000012
 領域R8(nx<0、ny<0、nz<0)
Figure JPOXMLDOC01-appb-M000013
Region R8 (nx <0, ny <0, nz <0)
Figure JPOXMLDOC01-appb-M000013
 図15及び図18を参照しながら、領域R1を例に、Xr、Yr、及びZrに関する各変換式について説明する。まず、nx座標からrx座標への変換式について説明する。回転実座標系における特徴点Cのrx座標cxは、正規化座標系におけるnx座標の原点(0)に対応しており、回転実座標系におけるrx座標max_rxは、正規化座標系におけるnx座標の1に対応している。つまり、正規化座標系における領域R1においては、nx座標は0~1の値を取る。 Referring to FIG. 15 and FIG. 18, each conversion formula regarding Xr, Yr, and Zr will be described taking the region R1 as an example. First, a conversion formula from the nx coordinate to the rx coordinate will be described. The rx coordinate cx of the feature point C in the rotated actual coordinate system corresponds to the origin (0) of the nx coordinate in the normalized coordinate system, and the rx coordinate max_rx in the rotated actual coordinate system is the nx coordinate in the normalized coordinate system. Corresponds to 1. That is, the nx coordinate takes a value of 0 to 1 in the region R1 in the normalized coordinate system.
 領域R1におけるXrを示す式の右辺第1項によれば、max_rxとcxの差が算出され、当該差に正規化座標系のnx座標Xnが乗算される。これにより、回転実座標系におけるrx=cxからrx=Xrまでの距離を示す値が算出される。当該値に、特徴点Cのrx座標であるcxを加算することで(右辺第2項)、Xrの基本値が算出される。 According to the first term on the right side of the expression indicating Xr in the region R1, the difference between max_rx and cx is calculated, and the difference is multiplied by the nx coordinate Xn of the normalized coordinate system. Thus, a value indicating the distance from rx = cx to rx = Xr in the rotating real coordinate system is calculated. The basic value of Xr is calculated by adding cx, which is the rx coordinate of the feature point C, to the value (second term on the right side).
 上述のように算出された基本値に対して、さらに、中隔のずれあるいは歪みを考慮した補正項(右辺第3項)が加えられる。中隔のずれあるいは歪みとは、テンプレートデータ64に対するずれあるいは歪みである。これは、左室、左房、右室、右房といった胎児の心臓における各部位の位置ずれや、大きさのバランスずれなどによって生じるものである。胎児の心臓においては、個体差などにより、中隔のラインが回転実座標系のry軸とは平行とならない場合、つまりテンプレートデータ64のスリット64dからずれている場合がある。このような場合、回転実座標系における四腔断面像(図15など参照)において特定された特徴点A、C、Bを結ぶラインがry軸に平行にならず、あるいは、そもそも特徴点A、C、Bが一直線上にない場合もある。領域R1におけるXrを示す式においては、回転実座標系における特徴点Cと特徴点Bとのrx軸方向のずれ量に基づいてXr座標が補正される。 A correction term (third term on the right side) that takes into account the gap or distortion of the septum is further added to the basic value calculated as described above. The septal shift or distortion is a shift or distortion with respect to the template data 64. This is caused by a positional shift of each part of the fetal heart such as the left ventricle, the left atrium, the right ventricle, and the right atrium, a size balance shift, and the like. In the fetal heart, the septal line may not be parallel to the ry axis of the rotating real coordinate system, that is, may be displaced from the slit 64d of the template data 64 due to individual differences. In such a case, the line connecting the feature points A, C, and B specified in the four-chamber cross-sectional image (see FIG. 15 and the like) in the rotating real coordinate system is not parallel to the ry axis, or the feature points A, C and B may not be on a straight line. In the expression indicating Xr in the region R1, the Xr coordinate is corrected based on the amount of deviation in the rx-axis direction between the feature point C and the feature point B in the actual rotation coordinate system.
 図19に、当該補正項を説明するための図が示されている。図19においては、回転実座標系における特徴点B及びC、及びrx=max_rxの位置関係を示す図である。図19に示される通り、rx=max_rxと特徴点Cのrx座標であるrx=cxとの間のrx軸方向の距離は(max_rx-cx)で表される。同様に、rx=max_rxと特徴点Bのrx座標であるrx=bxとの間のrx軸方向の距離は(max_rx-bx)で表される。これらに基づいて、特徴点Bのrx座標であるrx=bxと特徴点Cのrx座標であるrx=cxとの間のrx軸方向の距離(ずれ量)は(max_rx-cx)-(max_rx-bx)で表される。当該補正項は、特徴点Cと特徴点Bとのrx軸方向のずれ量に正規化座標系のny座標であるYnが乗算されたものを表している。領域R1においては、Ynは0~1の値を取るから、例えば、Yn=1の場合は、補正項として、特徴点Cと特徴点Bとのrx軸方向のずれ量そのものが加算される。また、例えば、Yn=0.5の場合は、補正項として、特徴点Cと特徴点Bとのrx軸方向のずれ量の半分が加算される。このように、特徴点Cと特徴点Bとのrx軸方向のずれ量が大きい程(つまり中隔のずれが大きい程)、Ynの値に応じて、より多くの補正値がXrに加えられることになる。つまり、中隔のずれに応じたXrが算出される。 FIG. 19 shows a diagram for explaining the correction term. In FIG. 19, it is a figure which shows the positional relationship of the feature points B and C in a rotation real coordinate system, and rx = max_rx. As shown in FIG. 19, the distance in the rx-axis direction between rx = max_rx and rx = cx that is the rx coordinate of the feature point C is represented by (max_rx−cx). Similarly, the distance in the rx axis direction between rx = max_rx and rx = bx which is the rx coordinate of the feature point B is represented by (max_rx−bx). Based on these, the distance (shift amount) in the rx axis direction between rx = bx that is the rx coordinate of the feature point B and rx = cx that is the rx coordinate of the feature point C is (max_rx−cx) − (max_rx). -Bx). The correction term represents a value obtained by multiplying the deviation amount between the feature point C and the feature point B in the rx-axis direction by Yn which is the ny coordinate of the normalized coordinate system. In the region R1, Yn takes a value from 0 to 1. For example, when Yn = 1, the deviation amount itself between the feature point C and the feature point B in the rx-axis direction is added as a correction term. Further, for example, when Yn = 0.5, half of the shift amount in the rx-axis direction between the feature point C and the feature point B is added as a correction term. Thus, the larger the amount of deviation between the feature point C and the feature point B in the rx-axis direction (that is, the greater the deviation of the septum), the more correction values are added to Xr according to the value of Yn. It will be. That is, Xr corresponding to the septal shift is calculated.
 ny座標からry座標への変換式、及びnz座標からrz座標への変換式については、nx座標からrx座標への変換式における補正項を除いたものと同様の概念であるため、ここでは説明を省略する。また、他の領域(R2~R8)についても各座標の変換式も上述した領域R1における変換式と同様に説明できるため、ここでは説明を省略する。なお、領域R5~R8におけるnx座標からrx座標への変換式における補正項は、回転実座標系における特徴点Aと特徴点Cを結ぶ直線のry軸に対する傾きに基づくXr座標の補正を示すものである。 The conversion formula from the ny coordinate to the ry coordinate and the conversion formula from the nz coordinate to the rz coordinate have the same concept as that except for the correction term in the conversion formula from the nx coordinate to the rx coordinate. Is omitted. Further, the conversion formulas for the coordinates of the other regions (R2 to R8) can be described in the same manner as the conversion formulas for the region R1 described above, and thus the description thereof is omitted here. The correction term in the conversion formula from the nx coordinate to the rx coordinate in the regions R5 to R8 indicates correction of the Xr coordinate based on the inclination with respect to the ry axis of the straight line connecting the feature point A and the feature point C in the rotating real coordinate system. It is.
 上述の各領域に対応する各変換式は予め記憶部22に記憶されていてよい。変換関数生成部72は、特徴点・サイズ検出部68が検出した、min_rx、max_rx、min_ry、max_ry、min_rz、max_rz、ax、bx、cx、cy、及びczの各値を上記変換式に当て嵌めることで、第1変換関数を生成する。min_rxは特徴点Fにより定められ、max_rxは特徴点Gにより定められ、min_ry及びaxは特徴点Aにより定められ、max_ry及びbxは特徴点Bにより定められ、min_rzは特徴点Hにより定められ、max_rzは特徴点Iにより定められ、cx、cy、及びczは特徴点Cにより定められる。このように、第1変換関数は、回転実座標系の心臓立体像において検出された特徴点群により生成されるといえる。 Each conversion formula corresponding to each area described above may be stored in the storage unit 22 in advance. The conversion function generation unit 72 fits each value of min_rx, max_rx, min_ry, max_ry, min_rz, max_rz, ax, bx, cx, cy, and cz detected by the feature point / size detection unit 68 to the conversion equation. Thus, the first conversion function is generated. min_rx is determined by the feature point F, max_rx is determined by the feature point G, min_ry and ax are determined by the feature point A, max_ry and bx are determined by the feature point B, min_rz is determined by the feature point H, and max_rz Is defined by a feature point I, and cx, cy, and cz are defined by a feature point C. Thus, it can be said that the first conversion function is generated by the feature point group detected in the heart stereoscopic image of the rotating real coordinate system.
 第1変換関数によれば、正規化座標系において定義された正規化観察断面(詳しくは観察断面を示す少なくとも3つの正規化座標)が回転実座標系における実データ回転観察断面(詳しくは実データ回転観察断面を示す3つの回転実座標)が算出される。 According to the first transformation function, the normalized observation section defined in the normalized coordinate system (specifically, at least three normalized coordinates indicating the observation section) is the actual data rotation observation section (specifically, the actual data) in the rotation actual coordinate system. Three rotation real coordinates indicating the rotation observation section) are calculated.
 上述のように、第1変換関数は、観測あるいは診断対象の胎児の心臓像において特定された複数の特徴点に基づいて生成される。つまり、第1変換関数は、観測あるいは診断対象に応じて異なるものとなる。一方において、正規化座標系においては、胎児の心臓像が既定の向きあるいはサイズで定義されていることから、各観察断面が一意に特定される。以上のようであるから、本実施形態によれば、正規化座標系において各観察断面を一意に特定することができながらも、観測あるいは診断対象毎に演算される第1変換関数によって、診断対象の個体差が吸収されて、回転実座標系において回転実データ観察断面を特定することができる。しかも、正規化座標系においては複数のスケールを有している。例えば本実施形態では四腔断面の中心を基準として各正規化軸方向に異なるスケールを有している。これにより、第1変換関数による座標変換において、診断対象の各部位のバランスを考慮した変換が行われる。つまり、本実施形態によれば、診断対象の外形形状の個体差のみならず、それに含まれる各部位の形状の個体差までもが吸収された好適な回転実データ観察断面が特定される。さらに、第1変換関数においては、診断対象の各部位の位置のずれ、あるいは形状の歪みが考慮された補正項が加えられている。上述の例では、中隔のずれあるいは歪みを考慮した補正項が加えられている。したがって、第1変換関数によれば、診断対象の各部位の位置のずれ、あるいは大きさのバランスずれといった個体差も解消されて好適な回転実データ観察断面が特定される。 As described above, the first conversion function is generated based on a plurality of feature points specified in the heart image of the fetus to be observed or diagnosed. That is, the first conversion function varies depending on the observation or diagnosis target. On the other hand, in the normalized coordinate system, since the heart image of the fetus is defined with a predetermined orientation or size, each observation cross section is uniquely specified. As described above, according to the present embodiment, each observation section can be uniquely specified in the normalized coordinate system, but the diagnosis target is calculated by the first conversion function calculated for each observation or diagnosis target. The individual differences are absorbed, and the real rotation data observation section can be specified in the real rotation coordinate system. Moreover, the normalized coordinate system has a plurality of scales. For example, in the present embodiment, different scales are provided in the normalization axis directions with respect to the center of the four-chamber cross section. Thereby, in the coordinate conversion by the first conversion function, conversion considering the balance of each part to be diagnosed is performed. That is, according to the present embodiment, a suitable rotation actual data observation cross section in which not only the individual difference in the outer shape of the diagnosis target but also the individual difference in the shape of each part included therein is absorbed is specified. Further, in the first conversion function, a correction term is added in consideration of a positional shift of each part to be diagnosed or a shape distortion. In the above-described example, a correction term is added in consideration of septal deviation or distortion. Therefore, according to the first transformation function, individual differences such as a positional shift of each part to be diagnosed or a size balance shift are eliminated, and a suitable rotation actual data observation section is specified.
 次に、第2変換関数について説明する。第2変換関数は、図9において説明したマッチング処理(回転処理、拡大・縮小処理、及び平行移動処理)、及び図10において説明した回転処理を逆方向に行う3次元アフィン変換を実現する関数である。すなわち、第2変換関数は、マッチング処理及び代表断面探索のための回転処理を逆方向に行う回転処理を示す変換式、マッチング処理における拡大・縮小処理を逆方向に行う変換式、及び、マッチング処理における平行移動処理を逆方向に行う変換式により構成される。第2変換関数により、回転実座標系が実座標系に変換され、つまり回転実データ観察断面(詳しくは回転実データ観察断面を示す3つの回転実座標)が実データ観察断面(詳しくは実データ観察断面を示す3つの実座標)に変換される。 Next, the second conversion function will be described. The second transformation function is a function that realizes the three-dimensional affine transformation in which the matching process (rotation process, enlargement / reduction process, and parallel movement process) described in FIG. 9 and the rotation process described in FIG. 10 are performed in the reverse direction. is there. That is, the second conversion function includes a conversion formula indicating a rotation process in which the rotation process for the matching process and the representative cross-section search is performed in the reverse direction, a conversion formula for performing the enlargement / reduction process in the matching process in the reverse direction, and the matching process. It is comprised by the conversion type | formula which performs the parallel movement process in reverse. By the second conversion function, the real rotation coordinate system is converted to the real coordinate system, that is, the real rotation data observation cross section (more specifically, the three real rotation coordinates indicating the real rotation data observation cross section) is the real data observation cross section (more specifically, the real data 3 real coordinates indicating the observation section).
 まず、第2変換関数のうち、回転処理に示す変換式ついて説明する。まず、図10において説明した各回転処理を逆方向に行う処理について説明する。当該回転処理は、当該各回転処理と同じ回転軸において、逆方向に同じ角度だけ回転させる処理となる。上述のように、マッチング処理における回転処理は、2つの四元数Q及びRによって表される。代表断面探索時において、代表断面検出部66は、各回転(上述では3種類の回転)についての四元数Q及びRにおけるパラメータα、β、γ、及びθを記憶部22に保持しているから、変換関数生成部72は、当該各パラメータを用いて、当該各回転処理の逆回転を示す各変換式を生成する。具体的には、上述の各四元数Q及びRのパラメータα、β、及びγはそのまま維持して(つまり各回転軸は代表断面探索処理と同じであり)、θを-θとした(つまり代表断面探索処理とは逆方向への回転を示す)各四元数Q’及びR’を生成する。第2変換関数には、当該各四元数Q’及びR’が含まれる。さらに、第2変換関数の回転処理を示す変換式には、図9において説明したマッチング処理における回転処理と同じ回転軸において、逆方向に同じ角度だけ回転させるための変換式が含まれる。これについても同様に、変換関数生成部72は、調整部62がマッチング処理にあたって記憶部22に保持した上述の四元数Q及びRのパラメータα、β、及びγはそのまま維持して(つまり回転軸はマッチング処理と同じであり)、θを-θとした(つまりマッチング処理とは逆方向への回転を示す)四元数Q’及びR’を生成する。第2変換関数には、さらに、当該四元数Q’及びR’が含まれる。 First, the conversion formula shown in the rotation process in the second conversion function will be described. First, a process of performing each rotation process described in FIG. 10 in the reverse direction will be described. The rotation process is a process of rotating the same rotation axis by the same angle in the opposite direction on the same rotation axis. As described above, the rotation process in the matching process is represented by two quaternions Q and R. At the time of searching for the representative cross section, the representative cross section detecting unit 66 holds the parameters α, β, γ, and θ in the quaternions Q and R for each rotation (three types of rotations in the above description) in the storage unit 22. Therefore, the conversion function generation unit 72 generates each conversion expression indicating the reverse rotation of each rotation process using each parameter. Specifically, the parameters α, β, and γ of the quaternions Q and R described above are maintained as they are (that is, each rotation axis is the same as the representative section search process), and θ is set to −θ ( That is, each quaternion Q ′ and R ′ is generated (indicating rotation in the opposite direction to the representative cross-section search process). The second conversion function includes the quaternions Q ′ and R ′. Furthermore, the conversion equation indicating the rotation processing of the second conversion function includes a conversion equation for rotating the same rotation axis in the opposite direction by the same angle as the rotation processing in the matching processing described in FIG. Similarly, the conversion function generating unit 72 maintains the parameters α, β, and γ of the quaternions Q and R held by the adjusting unit 62 in the storage unit 22 during the matching process as they are (that is, rotation). The axes are the same as in the matching process), and quaternions Q ′ and R ′ are generated with θ being −θ (that is, indicating rotation in the opposite direction to the matching process). The second conversion function further includes the quaternions Q ′ and R ′.
 また、第2変換関数のうち拡大・縮小処理を示す変換式は、マッチング処理における拡大・縮小処理を元に戻す処理を示す変換式であり、これは調整部62により記憶部22に保持されたマッチング処理における拡大・縮小率に基づいて決定される。さらに、第2変換関数のうち平行移動処理を示す変換式は、マッチング処理における平行移動処理を元に戻す処理を示す変換式であり、これは調整部62により記憶部22に保持されたマッチング処理における平行移動を示すベクトルに基づいて決定される。 In addition, the conversion expression indicating the enlargement / reduction process in the second conversion function is a conversion expression indicating a process for returning the enlargement / reduction process in the matching process, and this is held in the storage unit 22 by the adjustment unit 62. It is determined based on the enlargement / reduction ratio in the matching process. Furthermore, the conversion formula indicating the translation process in the second conversion function is a conversion formula indicating a process for returning the translation process in the matching process, and this is a matching process held in the storage unit 22 by the adjustment unit 62. Is determined on the basis of a vector indicating the parallel movement at.
 上述のようにして第2変換関数が生成される。第2変換関数も、第1変換関数同様に、観測あるいは診断対象に応じて異なるものとなる。 The second conversion function is generated as described above. Similar to the first conversion function, the second conversion function also differs depending on the observation or diagnosis target.
 第1変換関数及び第2変換関数が生成されることにより、正規化座標系における各座標に対応する実座標系の座標が演算できることになる。つまり、正規化座標系と実座標系とが対応付けられる。 By generating the first conversion function and the second conversion function, the coordinates of the real coordinate system corresponding to each coordinate in the normalized coordinate system can be calculated. That is, the normalized coordinate system is associated with the real coordinate system.
 断面特定手段としての断面特定部74は、第1変換関数及び第2変換関数に基づいて、断面テーブル76に記憶された正規化座標系において定義された正規化観察断面から、実座標系において実データ観察断面を特定する。断面テーブル76には、1又は複数の観察断面に対応する1又は複数の正規化観察断面が定義されている。本実施形態では、上述のように、各正規化観察断面は3つの座標により定義される。例えば、三血管断面に対応する正規化観察断面は、(nx,ny,nz)=(-1,1,0.72)、(-1,-1,0.72)、及び(1,1,0.72)の3つの座標で定義されている。なお、当該三血管断面は、代表断面として特定された四腔断面を平行移動させた断面となるが、正規化観察断面としては、四腔断面に平行な断面でなくてもよい。 Based on the first conversion function and the second conversion function, the cross-section specifying unit 74 serving as the cross-section specifying means performs an actual observation in the real coordinate system from the normalized observation cross-section defined in the normalized coordinate system stored in the cross-section table 76. Identify the data observation cross section. The cross section table 76 defines one or more normalized observation cross sections corresponding to one or a plurality of observation cross sections. In the present embodiment, as described above, each normalized observation cross section is defined by three coordinates. For example, the normalized observation sections corresponding to the three blood vessel sections are (nx, ny, nz) = (− 1, 1, 0.72), (−1, −1, 0.72), and (1, 1 , 0.72). The three blood vessel cross section is a cross section obtained by translating the four-chamber cross section specified as the representative cross section, but the normalized observation cross section may not be a cross section parallel to the four-chamber cross section.
 図20に、正規化観察断面から実データ観察断面へ変換される様子が示されている。ユーザから選択されるなどして、ある正規化観察断面が選択されると、断面特定部74は、変換関数生成部72が生成した第1及び第2変換関数を用いて、選択された正規化観察断面を定義する正規化座標系における3つの座標を実座標系における3つの座標に変換する。例えば、図19に示される通り、正規化座標系において、三血管断面を示す(nx,ny,nz)=(-1,1,0.72)、(-1,-1,0.72)、及び(1,1,0.72)の3つの座標が選択されると、第1変換関数により、当該3つの座標が回転実座標系における座標(rx1,rx2,rx3)、(rx1,rx2,rx3)、及び(rx1,rx2,rx3)が特定される。これにより、回転実座標系において、向き及びサイズが規定のものである回転実データとしての三血管断面112が特定される。さらに、三血管断面112に対して、第2変換関数を用いて回転、平行移動、及び拡大・縮小処理を行うことで、実座標系における実データ観察断面としての三血管断面114が特定される。 FIG. 20 shows a state in which the normalized observation section is converted to the actual data observation section. When a normalization observation cross section is selected, for example, when selected by the user, the cross section specifying unit 74 uses the first and second conversion functions generated by the conversion function generation unit 72 to select the normalization. Three coordinates in the normalized coordinate system defining the observation cross section are converted into three coordinates in the real coordinate system. For example, as shown in FIG. 19, (nx, ny, nz) = (− 1, 1, 0.72), (−1, −1, 0.72) indicating a cross section of three blood vessels in the normalized coordinate system. , And (1, 1, 0.72) are selected, the first transformation function converts the three coordinates to coordinates (rx1, rx2, rx3), (rx1, rx2) in the rotating real coordinate system. , Rx3) and (rx1, rx2, rx3). Thereby, in the rotation real coordinate system, the three blood vessel cross section 112 as the rotation real data whose direction and size are specified is specified. Further, by performing rotation, parallel movement, and enlargement / reduction processing on the three-vessel section 112 using the second transformation function, the three-vessel section 114 as the actual data observation section in the real coordinate system is specified. .
 断面位置補正部78は、ユーザの指示に基づいて、断面特定部74により特定された実データ観察断面の位置を補正する。ユーザは、後述の断層画像形成部80により形成され表示部34に表示された実データ観察断面の断層画像を確認して、それが目的の観察断面からずれていると判断した場合は、操作部(不図示)を用いて実データ観察断面の位置の修正を指示することができる。断面位置補正部78は当該ユーザからの指示を受けて、実データ観察断面の位置を修正する。 The cross-section position correcting unit 78 corrects the position of the actual data observation cross-section specified by the cross-section specifying unit 74 based on a user instruction. When the user confirms the tomographic image of the actual data observation cross section formed by the tomographic image forming unit 80 described later and displayed on the display unit 34, and determines that it is shifted from the target observation cross section, the operation unit (Not shown) can be used to instruct correction of the position of the actual data observation section. In response to an instruction from the user, the cross-section position correction unit 78 corrects the position of the actual data observation cross-section.
 画像形成手段としての断層画像形成部80は、データメモリ26に記憶された複数のボリュームデータ40(図3参照)それぞれにおいて、断面特定部74が特定し、あるいは断面位置補正部78により補正された実データ観察断面における断層画像を形成する。これにより、例えば三血管断面の実データ観察断面が特定された場合、各時相における三血管断面の複数の断層画像が形成される。このように生成された複数の断層画像は画像合成部32により処理され、表示部34に表示される。 The tomographic image forming unit 80 as an image forming unit is specified by the cross-section specifying unit 74 or corrected by the cross-sectional position correcting unit 78 in each of a plurality of volume data 40 (see FIG. 3) stored in the data memory 26. A tomographic image is formed in the actual data observation section. Thereby, for example, when an actual data observation cross section of a three blood vessel cross section is specified, a plurality of tomographic images of the three blood vessel cross sections in each time phase are formed. The plurality of tomographic images generated in this way are processed by the image composition unit 32 and displayed on the display unit 34.
 以下、断面特定部74などにより特定された実データ観察断面の断層画像の表示態様について説明する。 Hereinafter, the display mode of the tomographic image of the actual data observation cross-section specified by the cross-section specifying unit 74 will be described.
 図21には、実データ観察断面の断層画像の第1の表示例が示されている。第1の表示例では、特定された実データ観察断面(図21においては四腔断面)の断層画像120が拡大表示される。時間方向に並ぶ複数のボリュームデータ40それぞれにおいて実データ観察断面が特定されているから、各ボリュームデータ40に対応する断層画像を連続的に切り替えることで、断層画像120として動画を表示することもできる。また、断層画像120においては、心臓の各部位(例えば左室、左房、右室、右房など)を示すラベル120aが表示されてもよい。ラベル120aの表示処理については後述する。 FIG. 21 shows a first display example of a tomographic image of an actual data observation cross section. In the first display example, the tomographic image 120 of the identified actual data observation cross section (four-chamber cross section in FIG. 21) is enlarged and displayed. Since the actual data observation section is specified in each of the plurality of volume data 40 arranged in the time direction, a moving image can be displayed as the tomographic image 120 by continuously switching the tomographic image corresponding to each volume data 40. . In the tomographic image 120, a label 120a indicating each part of the heart (for example, left ventricle, left atrium, right ventricle, right atrium) may be displayed. The display process of the label 120a will be described later.
 また、断層画像120と共に、観察断面の位置を示すガイド画像122が表示される。ガイド画像122には、予め用意された心臓の3次元モデル、及び心臓に対する実データ観察断面の位置を示す断面指標122aが示されている。ガイド画像122は、正規化座標系に基づいて表示されてよい。例えば、心臓の3次元モデルに対する断面指標122aの位置及び向きは、選択された正規化観察断面に基づいて決定されてよい。ガイド画像122が表示されることで、ユーザは、表示された断層画像120がどの断面に対応するものであるか好適に把握することができる。 Also, a guide image 122 indicating the position of the observation cross section is displayed together with the tomographic image 120. In the guide image 122, a three-dimensional model of the heart prepared in advance and a cross-sectional index 122a indicating the position of the actual data observation cross-section with respect to the heart are shown. The guide image 122 may be displayed based on a normalized coordinate system. For example, the position and orientation of the cross-sectional index 122a relative to the three-dimensional model of the heart may be determined based on the selected normalized observation cross section. By displaying the guide image 122, the user can preferably grasp which cross section the displayed tomographic image 120 corresponds to.
 また、ガイド画像122には、断層画像120の回転方向を示す方向指標122bが含まれる。本実施形態では、断面指標122aが矩形の面で示されており、方向指標122bは、当該面の1つの角に付されている。また、断層画像120の矩形の枠の1つの角にも方向指標120bが付されている。方向指標120bと122bは対応するものであり、ユーザは方向指標120b及び122bを確認することで、断層画像120の回転方向を把握することができる。方向指標120b及び122bが付される位置は、第2変換関数における回転角度に応じて決定されてよい。 In addition, the guide image 122 includes a direction indicator 122b indicating the rotation direction of the tomographic image 120. In the present embodiment, the cross-section index 122a is shown as a rectangular surface, and the direction index 122b is attached to one corner of the surface. A direction indicator 120b is also attached to one corner of the rectangular frame of the tomographic image 120. The direction indicators 120b and 122b correspond to each other, and the user can grasp the rotation direction of the tomographic image 120 by checking the direction indicators 120b and 122b. The positions to which the direction indicators 120b and 122b are attached may be determined according to the rotation angle in the second conversion function.
 図22には、実データ観察断面の断層画像の第2の表示例が示されている。第2の表示例では、各ボリュームデータ40において、複数の実データ観察断面が特定され、特定された複数の実データ観察断面に対応する断層画像群124が並列表示される。このように、本実施形態では、複数の正規化観察断面を選択することが可能であり、選択された複数の正規化観察断面に対応する実データ観察断面を同時に表示することができる。第2の表示例においてもガイド画像126が表示される。当該ガイド画像126には、心臓の3次元モデルと、複数の実データ観察断面の位置を示す複数の断面指標126aが示されている。なお、複数の断層画像と複数の断面指標126aの対応が示されてよい。例えば、各断層画像の枠の色と断面指標126aの色を対応させるなどしてもよい。 FIG. 22 shows a second display example of the tomographic image of the actual data observation cross section. In the second display example, a plurality of actual data observation sections are specified in each volume data 40, and the tomographic image groups 124 corresponding to the specified plurality of actual data observation sections are displayed in parallel. Thus, in this embodiment, it is possible to select a plurality of normalized observation sections, and it is possible to simultaneously display actual data observation sections corresponding to the selected plurality of normalized observation sections. The guide image 126 is also displayed in the second display example. The guide image 126 shows a three-dimensional model of the heart and a plurality of cross-sectional indices 126a indicating the positions of a plurality of actual data observation cross sections. Note that correspondence between a plurality of tomographic images and a plurality of cross-sectional indices 126a may be shown. For example, the color of the frame of each tomographic image may correspond to the color of the cross-sectional index 126a.
 また、図23に示されるように、代表断面としての四腔断面に対して平行な複数の観察断面(平行多断面)に対応する断層画像群128を表示するようにしてもよい。平行多断面表示においてもガイド画像130が示され、四腔断面及びそれと平行な複数の観察断面の位置を示す複数の断面指標130aが表示される。さらに、図24に示されるように、代表断面としての四腔断面と、それに直交する2つの観察断面(直交断面)に対応する断層画像群132を表示するようにしてもよい。直交断面表示においてもガイド画像134が示され、四腔断面及びそれに直交する2つの観察断面の位置を示す複数の断面指標134aが表示される。 Further, as shown in FIG. 23, a tomographic image group 128 corresponding to a plurality of observation cross sections (parallel multi-sections) parallel to the four-chamber cross section as a representative cross section may be displayed. The guide image 130 is also displayed in the parallel multi-section display, and a plurality of cross-sectional indices 130a indicating the positions of the four-chamber cross section and a plurality of observation cross sections parallel thereto are displayed. Further, as shown in FIG. 24, a tomographic image group 132 corresponding to a four-chamber cross section as a representative cross section and two observation cross sections (orthogonal cross sections) orthogonal thereto may be displayed. The guide image 134 is also shown in the orthogonal cross-section display, and a plurality of cross-sectional indices 134a indicating the positions of the four-chamber cross section and two observation cross sections orthogonal to the four-chamber cross section are displayed.
 以下、ラベル処理部82及び画像合成部32によるラベルの表示処理について説明する。 Hereinafter, label display processing by the label processing unit 82 and the image composition unit 32 will be described.
 図25には、正規化座標系の心臓立体領域110内に定義される複数のラベル空間領域(140a~b(以下総称してラベル空間領域140と記載する場合がある。他の符号についても同様である))が示されている。各ラベル空間領域140は3次元領域であり、胎児の心臓の各部位に対応するものである。図24の例では、ラベル空間領域140aは左心室に対応するものであり、ラベル空間領域140bは右心室に対応するものであり、ラベル空間領域140cは左心房に対応するものであり、ラベル空間領域140dは右心房に対応するものである。 In FIG. 25, a plurality of label space regions (140a-b (hereinafter collectively referred to as a label space region 140) defined in the heart solid region 110 of the normalized coordinate system may be described. Is)) is shown. Each label space region 140 is a three-dimensional region and corresponds to each part of the fetal heart. In the example of FIG. 24, the label space region 140a corresponds to the left ventricle, the label space region 140b corresponds to the right ventricle, the label space region 140c corresponds to the left atrium, and the label space Region 140d corresponds to the right atrium.
 上述の通り、正規化座標系においては、胎児の心臓の向き及びサイズが規定されているため、正規化座標系において、各部位に対応するラベル空間領域140の位置を定義することができる。なお、ラベル空間領域140は、予め定められた形状であってもよいが、後述のように、正規化座標系に変換された心臓立体像(図16参照)に応じて(つまり被検体毎に応じて)その形状が適宜調整されてもよい。 As described above, since the orientation and size of the fetal heart are defined in the normalized coordinate system, the position of the label space region 140 corresponding to each part can be defined in the normalized coordinate system. The label space area 140 may have a predetermined shape. However, as described later, the label space area 140 corresponds to a heart stereoscopic image (see FIG. 16) converted into a normalized coordinate system (that is, for each subject). The shape may be adjusted accordingly.
 各ラベル空間領域140は、対応する心臓の各部位を示すラベル情報を有している。例えば、左心室に対応するラベル空間領域140aには左心室を示す「LV」の文字データがラベル情報として含まれ、右心室に対応するラベル空間領域140bには右心室を示す「RV」の文字データがラベル情報として含まれる。 Each label space area 140 has label information indicating each part of the corresponding heart. For example, the label space region 140a corresponding to the left ventricle includes “LV” character data indicating the left ventricle as label information, and the label space region 140b corresponding to the right ventricle includes the character “RV” indicating the right ventricle. Data is included as label information.
 例えばユーザにより正規化観察断面が選択されると、図26に示されるように、正規化座標系の心臓立体領域110において正規化観察断面142が定義される。定義された正規化観察断面142がラベル空間領域140を横断する場合、当該正規化観察断面142上にはラベル空間領域140と交わる領域であるラベル平面領域144が生じる。図26に示す例では、正規化観察断面142は、ラベル空間領域140a及びラベル空間領域140bを横断しているから、正規化観察断面142上において、ラベル空間領域140aに対応するラベル平面領域144a、及びラベル空間領域140bに対応するラベル平面領域144bが生じている。 For example, when a normalized observation section is selected by the user, a normalized observation section 142 is defined in the three-dimensional heart region 110 of the normalized coordinate system as shown in FIG. When the defined normalized observation cross section 142 crosses the label space area 140, a label plane area 144 that is an area intersecting with the label space area 140 is generated on the normalized observation cross section 142. In the example shown in FIG. 26, since the normalized observation cross section 142 crosses the label space area 140a and the label space area 140b, the label plane area 144a corresponding to the label space area 140a on the normalized observation cross section 142, In addition, a label plane area 144b corresponding to the label space area 140b is generated.
 ラベル処理部82は、正規化観察断面142がラベル空間領域140を横断する場合、つまり、正規化観察断面142上にラベル平面領域144が生じた場合、正規化座標系におけるラベル平面領域144の重心座標146を演算する。重心の演算処理は、既知の画像処理技術を用いることができる。図26に示す例では、ラベル平面領域144aの重心座標146a、及びラベル平面領域144bの重心座標146bが演算される。 When the normalized observation section 142 crosses the label space area 140, that is, when the label plane area 144 is generated on the normalized observation section 142, the label processing unit 82 centroid of the label plane area 144 in the normalized coordinate system. The coordinates 146 are calculated. For the calculation process of the center of gravity, a known image processing technique can be used. In the example shown in FIG. 26, the barycentric coordinates 146a of the label plane area 144a and the barycentric coordinates 146b of the label plane area 144b are calculated.
 正規化観察断面142上において重心座標146が演算されると、ラベル処理部82は、第1変換関数及び第2変換関数を用いて、正規化座標系における重心座標146を実座標系の重心座標に変換する。そして、画像合成部32は、実データ観察断面(実座標系の重心座標は実データ観察断面上に位置する)に対応する断層画像において、変換された実座標系の重心座標を基準とした位置に、ラベル情報を表示させる。 When the barycentric coordinates 146 are calculated on the normalized observation cross section 142, the label processing unit 82 uses the first conversion function and the second conversion function to convert the barycentric coordinates 146 in the normalized coordinate system into the barycentric coordinates in the real coordinate system. Convert to Then, the image compositing unit 32 uses a position based on the converted barycentric coordinates of the real coordinate system in a tomographic image corresponding to the real data observation cross section (the barycentric coordinates of the real coordinate system are located on the real data observation cross section) Display the label information.
 図27Aには、表示部34に表示される断層画像148が示されている。図27Aに示す通り、正規化座標系における重心座標146a(図26参照)に対応する実座標系における重心座標150aを中心として、ラベル情報152aが表示される。なお、図27Aにおいては、重心座標150aが黒点で示されているが、重心座標150aは表示されなくてもよい。本実施形態では、ラベル情報152aとして左心室を示す「LV」という文字が表示される。同様に、正規化座標系における重心座標146bに対応する実座標系における重心座標150bを中心として、ラベル情報152bが表示される。本実施形態では、ラベル情報152bとして右心室を示す「RV」という文字が表示される。 FIG. 27A shows a tomographic image 148 displayed on the display unit 34. As shown in FIG. 27A, the label information 152a is displayed around the barycentric coordinate 150a in the real coordinate system corresponding to the barycentric coordinate 146a (see FIG. 26) in the normalized coordinate system. In FIG. 27A, the barycentric coordinates 150a are indicated by black dots, but the barycentric coordinates 150a may not be displayed. In the present embodiment, the letters “LV” indicating the left ventricle are displayed as the label information 152a. Similarly, the label information 152b is displayed around the barycentric coordinate 150b in the real coordinate system corresponding to the barycentric coordinate 146b in the normalized coordinate system. In the present embodiment, the characters “RV” indicating the right ventricle are displayed as the label information 152b.
 図27Bには、ラベル情報152の他の表示例が示されている。ラベル情報152は、図27Bに示される通り、断層画像148の外側領域に表示されてもよい。これにより、断層画像の視認性の低下を抑制しつつラベル情報を表示することができる。各ラベル情報152がいずれの部位に対応するものであるかを明確にするために、重心座標150から引き出し線が引き出され、当該引き出し線の先に対応するラベル情報152が表示されるようにしてもよい。 FIG. 27B shows another display example of the label information 152. The label information 152 may be displayed in the outer region of the tomographic image 148 as shown in FIG. 27B. Thereby, it is possible to display the label information while suppressing a decrease in the visibility of the tomographic image. In order to clarify which part each label information 152 corresponds to, the leader line is drawn from the barycentric coordinates 150, and the label information 152 corresponding to the tip of the leader line is displayed. Also good.
 以下、ラベル空間領域140の形状を調整する処理について説明する。本実施形態においては、ラベル処理部82は、正規化座標系における心臓立体像に基づく3次元リージョングローイング処理によりラベル空間領域140の形状を調整する。図28に、3次元リージョングローイング処理の様子が示されている。なお、図28においては、心臓立体領域110に含まれる心臓立体像における1つの断面が示されている。 Hereinafter, processing for adjusting the shape of the label space area 140 will be described. In the present embodiment, the label processing unit 82 adjusts the shape of the label space region 140 by a three-dimensional region growing process based on a heart stereoscopic image in a normalized coordinate system. FIG. 28 shows the state of the three-dimensional region growing process. In FIG. 28, one cross section in the heart stereo image included in the heart stereo region 110 is shown.
 3次元リージョングローイング処理は、心臓立体像の各部位に適合するように、各ラベル空間領域140を拡張あるいは縮小させる処理である。図28の例では、左心室に対応するラベル空間領域140aが心臓立体像の左心室領域に適合するように拡張され、調整後ラベル空間領域160aが形成されている。右心室、左心房、及び右心房に対応する各ラベル空間領域140についても同様である。 The three-dimensional region growing process is a process for expanding or reducing each label space region 140 so as to be adapted to each part of the heart stereoscopic image. In the example of FIG. 28, the label space region 140a corresponding to the left ventricle is expanded so as to fit the left ventricle region of the cardiac stereoscopic image, and the adjusted label space region 160a is formed. The same applies to each label space region 140 corresponding to the right ventricle, the left atrium, and the right atrium.
 以下、図29を用いて、左心室に対応するラベル空間領域140aを例に3次元リージョングローイング処理について説明する。まず、ラベル空間領域140aを構成する各ボクセルにはデータ値として「1」が設定されている。ラベル処理部82は、ラベル空間領域140aを構成する各ボクセルのデータ値と、各ボクセルに対応する座標における反転二値化された心臓立体像の輝度値との積を演算する。そして、その演算結果が「0」となったボクセルはラベル空間領域140aから除外する。心臓立体像においては、心腔部の輝度が「1」となっており、その他の位置の輝度値は「0」となっているから、当該処理により、ラベル空間領域140aのうち、心腔部(左心室)から外れている部分が除外されたラベル空間領域162aが生成される(図29の左図参照)。 Hereinafter, the three-dimensional region growing process will be described with reference to FIG. 29, taking the label space region 140a corresponding to the left ventricle as an example. First, “1” is set as a data value in each voxel constituting the label space area 140a. The label processing unit 82 calculates the product of the data value of each voxel constituting the label space region 140a and the luminance value of the inverted binarized heart stereoscopic image at the coordinates corresponding to each voxel. Then, the voxel whose calculation result is “0” is excluded from the label space area 140a. In the three-dimensional heart image, the luminance of the heart chamber is “1” and the luminance values of the other positions are “0”. A label space region 162a is generated in which a portion outside the (left ventricle) is excluded (see the left diagram in FIG. 29).
 次に、ラベル処理部82は、ラベル空間領域162aに隣接するボクセルと、当該ボクセルに対応する座標における反転二値化された心臓立体像の輝度値との積を演算する。その演算結果が「1」であれば、当該隣接するボクセルをラベル空間領域162aに追加する。その演算結果が「0」の場合は、当該ボクセルはラベル空間領域162aに追加しない。ラベル空間領域162aの形状が変化しなくなるまで当該処理を繰り返すことで、心腔部(左心室)に適合した調整後ラベル空間領域160aが形成される。なお、予め心臓立体領域において、左心室が取り得る領域(処理境界)を予め定めておき、上記拡張処理は当該処理境界内の限りにおいて行うようにしてもよい。 Next, the label processing unit 82 calculates the product of the voxel adjacent to the label space region 162a and the luminance value of the inverted binarized heart stereoscopic image at the coordinates corresponding to the voxel. If the calculation result is “1”, the adjacent voxel is added to the label space area 162a. When the calculation result is “0”, the voxel is not added to the label space area 162a. By repeating this process until the shape of the label space region 162a does not change, an adjusted label space region 160a suitable for the heart chamber (left ventricle) is formed. It should be noted that in the three-dimensional heart region, a region (processing boundary) that can be taken by the left ventricle is determined in advance, and the expansion processing may be performed within the processing boundary.
 例えば左心室のような心腔内の部位に対応するラベル空間領域140に対して3次元リージョングローイング処理を行う場合、弁部の処理が問題となる。弁部により部位が区切られる一方において、心臓立体像において弁部が閉じていない場合があるために、3次元リージョングローイング処理により、ある部位に対応するラベル空間領域160が弁部を介して隣接する他の部位まで拡張してしまう場合がある。例えば左心室に対応する調整後ラベル空間領域160aが左心房領域まで拡張してしまう場合がある。 For example, when the three-dimensional region growing process is performed on the label space region 140 corresponding to the site in the heart chamber such as the left ventricle, the processing of the valve part becomes a problem. On the other hand, since the valve portion may not be closed in the three-dimensional heart image, the label space region 160 corresponding to a certain portion is adjacent via the valve portion by the three-dimensional region growing process. It may expand to other parts. For example, the adjusted label space region 160a corresponding to the left ventricle may expand to the left atrial region.
 したがって、本実施形態では、ラベル処理部82は、弁輪部(弁の付け根部分)を基準として心臓立体像の弁部において3次元リージョングローイング処理の境界面を生成する。図30に、弁部における境界面の生成処理の様子が示されている。 Therefore, in the present embodiment, the label processing unit 82 generates a boundary surface of the three-dimensional region glowing process at the valve portion of the heart stereoscopic image with the annulus portion (the base portion of the valve) as a reference. FIG. 30 shows the state of the boundary surface generation process in the valve portion.
 まず、ラベル処理部82は、弁輪部を示す特徴点170を検出する。特徴点170の検出は、例えば心臓立体像の四腔断面上において、図11に示された特徴点D~Gの検出処理と同様の手法により検出されてよい。ここでは、僧帽弁の2つの弁輪部を示す特徴点170a及び170bが検出されたとする(図30上段左図参照)。2つの特徴点170a及び170bが検出されると、ラベル処理部82は、当該2つの特徴点を結ぶ直線172を生成する(図30上段中央図参照)。 First, the label processing unit 82 detects a feature point 170 indicating the annulus. The feature point 170 may be detected, for example, by a technique similar to the detection process of the feature points D to G shown in FIG. 11 on the four-chamber cross section of the heart stereoscopic image. Here, it is assumed that feature points 170a and 170b indicating the two annulus portions of the mitral valve are detected (see the upper left diagram in FIG. 30). When the two feature points 170a and 170b are detected, the label processing unit 82 generates a straight line 172 that connects the two feature points (see the central diagram in the upper part of FIG. 30).
 次に、ラベル処理部82は、直線172の両側において、直線172と直交する方向に対してエッジ探索処理を行う(図30上段右図参照)。当該エッジ探索処理により、直線172の一方側において弁に相当する複数の高輝度画素174が検出される(図30下段左図参照)。さらに、ラベル処理部82は、複数の高輝度画素174に基づく近似曲線(二次曲線)176を生成する(図30下段中央図参照)。最後に、ラベル処理部82は、生成された近似曲線176を直線172の中点を通り、直線172に直交する回転軸を中心に回転させる(図30下段右図参照)。これにより、心臓立体領域110において、左心室と左心房の間に3次元リージョングローイング処理の処理境界としての境界面が形成される。 Next, the label processing unit 82 performs an edge search process in the direction orthogonal to the straight line 172 on both sides of the straight line 172 (see the upper right diagram in FIG. 30). By the edge search process, a plurality of high-luminance pixels 174 corresponding to valves are detected on one side of the straight line 172 (see the left diagram in the lower part of FIG. 30). Further, the label processing unit 82 generates an approximate curve (secondary curve) 176 based on the plurality of high-luminance pixels 174 (see the lower center diagram in FIG. 30). Finally, the label processing unit 82 rotates the generated approximate curve 176 around a rotation axis that passes through the midpoint of the straight line 172 and is orthogonal to the straight line 172 (see the lower right diagram in FIG. 30). Thereby, in the three-dimensional heart region 110, a boundary surface is formed as a processing boundary of the three-dimensional region growing process between the left ventricle and the left atrium.
 以上説明した本実施形態によれば、超音波の送受波により得られたボリュームデータに含まれる胎児の心臓立体像に基づいて、当該ボリュームデータが有する実座標系と、既定のサイズ及び向きの心臓立体像が定義される正規化座標系との対応関係を示す第1及び第2変換関数が生成される。これにより、胎児の心臓毎に、つまり対象組織毎に第1及び第2変換関するが生成される。そして、第1及び第2変換関数に基づいて、予め正規化座標系において定義された正規化観察断面から実座標系における実データ観察断面を特定する。以上の処理により、胎児の心臓の個体差が吸収されたより好適が実データ観察断面を特定することができる。 According to the present embodiment described above, based on the fetal heart stereo image included in the volume data obtained by transmitting and receiving ultrasonic waves, the real coordinate system of the volume data and the heart of a predetermined size and orientation First and second conversion functions are generated that indicate a correspondence relationship with a normalized coordinate system in which a stereoscopic image is defined. Thereby, the first and second conversion relations are generated for each fetal heart, that is, for each target tissue. And based on the 1st and 2nd conversion function, the real data observation cross section in a real coordinate system is specified from the normalization observation cross section previously defined in the normalization coordinate system. Through the above processing, the actual data observation cross section can be identified more preferably when the individual difference of the fetal heart is absorbed.
 また、本実施形態によれば、ボリュームデータにおいて、胎児の心臓像の規定の向き(姿勢)を特定することができる。上記実施形態では、胎児の心臓の左右方向(心尖部側)、及び上下方向(頭側、胃側)が特定される。したがって、例えば、ボリュームデータに含まれる心臓立体像を3次元表示する場合に、既定の向きの心臓立体像を表示することができる。あるいはボリュームデータから切り出された断層画像を表示する場合において、既定の向きを向いた心臓断層像を表示することができる。これにより、ユーザはより容易にボリュームデータを用いた胎児の心臓像の観察あるいは診断を行うことができる。 Further, according to the present embodiment, it is possible to specify the prescribed orientation (posture) of the fetal heart image in the volume data. In the embodiment described above, the left-right direction (apical portion side) and the up-down direction (head side, stomach side) of the fetal heart are specified. Therefore, for example, when a three-dimensional heart image included in the volume data is displayed in a three-dimensional manner, a three-dimensional heart image can be displayed. Alternatively, when displaying a tomographic image cut out from volume data, a cardiac tomographic image oriented in a predetermined direction can be displayed. As a result, the user can more easily observe or diagnose the fetal heart image using the volume data.
 以上、本発明に係る実施形態を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 As mentioned above, although embodiment which concerns on this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning of this invention.
 10 超音波診断装置、12 プローブ、14 送受信部、16 整相加算部、18 ビーム処理部、20 DSC、22 記憶部、24 前メモリ、26 データメモリ、28 再構成処理部、30 ボリュームデータ処理部、32 画像合成部、34 表示部、36 制御部、60 フィルタ部、62 調整部、64 テンプレートデータ、66 代表断面検出部、68 特徴点・サイズ検出部、70 正規化座標設定部、72 変換関数生成部、74 断面特定部、76 断面テーブル、78 断面位置補正部、80 断層画像形成部、82 ラベル処理部。 10 ultrasonic diagnostic equipment, 12 probes, 14 transmission / reception unit, 16 phasing addition unit, 18 beam processing unit, 20 DSC, 22 storage unit, 24 pre-memory, 26 data memory, 28 reconfiguration processing unit, 30 volume data processing unit , 32 Image composition unit, 34 Display unit, 36 Control unit, 60 Filter unit, 62 Adjustment unit, 64 Template data, 66 Representative section detection unit, 68 Feature point / size detection unit, 70 Normalized coordinate setting unit, 72 Conversion function Generation unit, 74 cross-section specifying unit, 76 cross-section table, 78 cross-section position correcting unit, 80 tomographic image forming unit, 82 label processing unit.

Claims (9)

  1.  超音波の送受波により得られたボリュームデータに含まれる対象組織像に基づいて、前記ボリュームデータが有する実座標系と計算上の正規化座標系との対応関係を演算する対応関係生成手段と、
     前記対応関係に基づいて、前記正規化座標系において定義された正規化観察断面から、前記実座標系における実データ観察断面を特定する断面特定手段と、
     前記ボリュームデータから、特定された前記実データ観察断面に対応する断層画像を形成する画像形成手段と、
     を備えることを特徴とする超音波画像処理装置。
    Correspondence generation means for calculating the correspondence between the actual coordinate system of the volume data and the calculated normalized coordinate system based on the target tissue image included in the volume data obtained by transmitting and receiving ultrasonic waves;
    Based on the correspondence relationship, from a normalized observation cross section defined in the normalized coordinate system, a cross section specifying means for specifying an actual data observation cross section in the real coordinate system;
    An image forming means for forming a tomographic image corresponding to the specified actual data observation section from the volume data;
    An ultrasonic image processing apparatus comprising:
  2.  前記対応関係生成手段は、前記対象組織像から検出された代表点群に基づいて前記対応関係を演算する、
     ことを特徴とする請求項1に記載の超音波画像処理装置。
    The correspondence generation unit calculates the correspondence based on a representative point group detected from the target tissue image.
    The ultrasonic image processing apparatus according to claim 1.
  3.  前記代表点群は、前記対象組織像の基準点、及び、前記実座標系の各座標軸における前記対象組織像の両端点を含み、
     前記正規化座標系は、前記基準点及び前記両端点に基づいて定義される、
     ことを特徴とする請求項2に記載の超音波画像処理装置。
    The representative point group includes a reference point of the target tissue image, and both end points of the target tissue image in each coordinate axis of the real coordinate system,
    The normalized coordinate system is defined based on the reference point and the end points.
    The ultrasonic image processing apparatus according to claim 2.
  4.  前記正規化座標系は、少なくとも2つの異なるスケールを有する、
     ことを特徴とする請求項1に記載の超音波画像処理装置。
    The normalized coordinate system has at least two different scales;
    The ultrasonic image processing apparatus according to claim 1.
  5.  前記正規化観察断面は複数定義され、
     前記断面特定手段は、前記複数の正規化観察断面から選択された選択正規化観察断面に基づいて、前記選択正規化観察断面に対応する前記実データ観察断面を特定する、
     ことを特徴とする請求項1に記載の超音波画像処理装置。
    A plurality of the normalized observation cross sections are defined,
    The cross-section specifying means specifies the actual data observation cross section corresponding to the selected normalized observation cross section based on the selected normalization observation cross section selected from the plurality of normalization observation cross sections.
    The ultrasonic image processing apparatus according to claim 1.
  6.  前記ボリュームデータにおける代表断面を特定する代表断面特定手段、
     をさらに含み、
     前記対応関係生成手段は、前記代表断面において検出された複数の代表点の、前記実座標系における座標と前記正規化座標系における座標との関係に基づいて前記対応関係を演算する、
     ことを特徴とする請求項2に記載の超音波画像処理装置。
    Representative section specifying means for specifying a representative section in the volume data;
    Further including
    The correspondence generation means calculates the correspondence based on the relationship between the coordinates in the real coordinate system and the coordinates in the normalized coordinate system of a plurality of representative points detected in the representative section.
    The ultrasonic image processing apparatus according to claim 2.
  7.  前記代表断面特定手段は、
     前記ボリュームデータにおいて特定された仮代表断面に含まれる対象組織像がテンプレートデータにマッチングするように、前記ボリュームデータの姿勢を規定する姿勢規定手段と、
     前記姿勢規定手段により規定された姿勢の前記ボリュームデータにおいて、前記仮代表断面の近傍範囲において前記代表断面を探索する代表断面探索手段と、
     を含む、
     ことを特徴とする請求項6に記載の超音波画像処理装置。
    The representative section specifying means is
    Posture defining means for defining the posture of the volume data so that the target tissue image included in the temporary representative cross section specified in the volume data matches the template data;
    In the volume data of the posture defined by the posture defining means, representative cross-section search means for searching for the representative cross-section in the vicinity range of the temporary representative cross-section,
    including,
    The ultrasonic image processing apparatus according to claim 6.
  8.  前記断層画像を表示する表示部と、
     をさらに備え、
     前記正規化座標系において、前記対象組織像の各部位に対応し、各部位を示すラベル情報を含むラベル空間領域が定義され、
     前記表示部は、前記正規化観察断面が前記ラベル空間領域を横断する場合に、当該正規化観察断面に対応する断層画像と共に、当該正規化観察断面が横断したラベル空間領域に対応するラベル情報を表示する、
     ことを特徴とする請求項1に記載の超音波画像処理装置。
    A display unit for displaying the tomographic image;
    Further comprising
    In the normalized coordinate system, a label space region corresponding to each part of the target tissue image and including label information indicating each part is defined,
    When the normalized observation cross section crosses the label space region, the display unit displays label information corresponding to the label space region crossed by the normalized observation cross section together with a tomographic image corresponding to the normalized observation cross section. indicate,
    The ultrasonic image processing apparatus according to claim 1.
  9.  コンピュータを、
     超音波の送受波により得られたボリュームデータに含まれる対象組織像に基づいて、前記ボリュームデータが有する実座標系と計算上の正規化座標系との対応関係を演算する対応関係生成手段と、
     前記対応関係に基づいて、前記正規化座標系において定義された正規化観察断面から、前記実座標系における実データ観察断面を特定する断面特定手段と、
     前記ボリュームデータから、特定された前記実データ観察断面に対応する断層画像を形成する画像形成手段と、
     として機能させることを特徴とする超音波画像処理プログラム。
    Computer
    Correspondence generation means for calculating the correspondence between the actual coordinate system of the volume data and the calculated normalized coordinate system based on the target tissue image included in the volume data obtained by transmitting and receiving ultrasonic waves;
    Based on the correspondence relationship, from a normalized observation cross section defined in the normalized coordinate system, a cross section specifying means for specifying an actual data observation cross section in the real coordinate system;
    An image forming means for forming a tomographic image corresponding to the specified actual data observation section from the volume data;
    An ultrasonic image processing program which is made to function as:
PCT/JP2017/037548 2016-10-26 2017-10-17 Ultrasound image processing device and program WO2018079344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016209919A JP2018068494A (en) 2016-10-26 2016-10-26 Ultrasonic image processing system and program
JP2016-209919 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079344A1 true WO2018079344A1 (en) 2018-05-03

Family

ID=62023495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037548 WO2018079344A1 (en) 2016-10-26 2017-10-17 Ultrasound image processing device and program

Country Status (2)

Country Link
JP (1) JP2018068494A (en)
WO (1) WO2018079344A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613480A (en) * 2019-01-14 2019-12-27 广州爱孕记信息科技有限公司 Fetus ultrasonic dynamic image detection method and system based on deep learning
CN112367923A (en) * 2018-07-13 2021-02-12 古野电气株式会社 Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072593A (en) * 2007-09-18 2009-04-09 Siemens Medical Solutions Usa Inc Automated detection method of plane from three-dimensional echocardiographic data
JP2011125708A (en) * 2009-12-15 2011-06-30 Medison Co Ltd Ultrasound system and method of selecting two-dimensional slice image from three-dimensional ultrasound image
JP2012217791A (en) * 2011-04-14 2012-11-12 Hitachi Aloka Medical Ltd Ultrasound diagnostic device
JP5479138B2 (en) * 2010-02-09 2014-04-23 富士フイルム株式会社 MEDICAL IMAGE DISPLAY DEVICE, MEDICAL IMAGE DISPLAY METHOD, AND PROGRAM THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072593A (en) * 2007-09-18 2009-04-09 Siemens Medical Solutions Usa Inc Automated detection method of plane from three-dimensional echocardiographic data
JP2011125708A (en) * 2009-12-15 2011-06-30 Medison Co Ltd Ultrasound system and method of selecting two-dimensional slice image from three-dimensional ultrasound image
JP5479138B2 (en) * 2010-02-09 2014-04-23 富士フイルム株式会社 MEDICAL IMAGE DISPLAY DEVICE, MEDICAL IMAGE DISPLAY METHOD, AND PROGRAM THEREOF
JP2012217791A (en) * 2011-04-14 2012-11-12 Hitachi Aloka Medical Ltd Ultrasound diagnostic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367923A (en) * 2018-07-13 2021-02-12 古野电气株式会社 Ultrasonic imaging device, ultrasonic imaging system, ultrasonic imaging method, and ultrasonic imaging program
US11948324B2 (en) 2018-07-13 2024-04-02 Furuno Electric Company Limited Ultrasound imaging device, ultrasound imaging system, ultrasound imaging method, and ultrasound imaging program
CN110613480A (en) * 2019-01-14 2019-12-27 广州爱孕记信息科技有限公司 Fetus ultrasonic dynamic image detection method and system based on deep learning

Also Published As

Publication number Publication date
JP2018068494A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6745861B2 (en) Automatic segmentation of triplane images for real-time ultrasound imaging
JP5138369B2 (en) Ultrasonic diagnostic apparatus and image processing method thereof
JP6160487B2 (en) Ultrasonic diagnostic apparatus and control method thereof
JP6574532B2 (en) 3D image synthesis for ultrasound fetal imaging
JP3872424B2 (en) Ultrasonic diagnostic equipment
JP6640922B2 (en) Ultrasound diagnostic device and image processing device
JP5462598B2 (en) Ultrasound diagnostic system
BR112015011288B1 (en) Ultrasound diagnostic system for imaging multiple planes of a fetal heart; method for ultrasound imaging a plurality of different selected image planes of a target anatomy, in real time; and method for ultrasound imaging a plurality of different selected image planes of a fetal heart, in real time
US20070249935A1 (en) System and method for automatically obtaining ultrasound image planes based on patient specific information
JP2007296335A (en) User interface and method for specifying related information displayed in ultrasonic system
US20180092628A1 (en) Ultrasonic diagnostic apparatus
JP7375140B2 (en) Ultrasonic diagnostic equipment, medical image diagnostic equipment, medical image processing equipment, and medical image processing programs
JP2010227568A (en) System and method for functional ultrasound imaging
JP2018068495A (en) Ultrasonic image processing system and program
WO2018205274A1 (en) Ultrasonic device, and method and system for transforming display of three-dimensional ultrasonic image thereof
JP4870449B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image processing method
JP4652780B2 (en) Ultrasonic diagnostic equipment
WO2018079344A1 (en) Ultrasound image processing device and program
JP2007117252A (en) Ultrasonic diagnostic apparatus
JP4758578B2 (en) Heart wall motion evaluation device
EP3409210B1 (en) Ultrasound diagnosis apparatus and operating method thereof
US9842427B2 (en) Methods and systems for visualization of flow jets
JP6251002B2 (en) Image processing apparatus, image processing method, and computer program
JP5182932B2 (en) Ultrasonic volume data processor
US11883241B2 (en) Medical image diagnostic apparatus, ultrasonic diagnostic apparatus, medical imaging system, and imaging control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866313

Country of ref document: EP

Kind code of ref document: A1