WO2018079248A1 - Vehicular wiper device and method for controlling vehicular wiper device - Google Patents

Vehicular wiper device and method for controlling vehicular wiper device Download PDF

Info

Publication number
WO2018079248A1
WO2018079248A1 PCT/JP2017/036676 JP2017036676W WO2018079248A1 WO 2018079248 A1 WO2018079248 A1 WO 2018079248A1 JP 2017036676 W JP2017036676 W JP 2017036676W WO 2018079248 A1 WO2018079248 A1 WO 2018079248A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiping
vehicle
output shaft
time
enlargement
Prior art date
Application number
PCT/JP2017/036676
Other languages
French (fr)
Japanese (ja)
Inventor
典弘 杉本
岡田 真一
義久 伴野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018079248A1 publication Critical patent/WO2018079248A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/18Means for transmitting drive mechanically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/32Wipers or the like, e.g. scrapers characterised by constructional features of wiper blade arms or blades
    • B60S1/34Wiper arms; Mountings therefor
    • B60S1/36Variable-length arms

Definitions

  • the present disclosure relates to a vehicle wiper device that can expand a wiping range, and a control method for the vehicle wiper device.
  • the wiper device for wiping the windshield glass of an automobile has wiper arms 150D and 150P with wiper blades 154D and 154P connected to the front end portions thereof, and a wiper motor and lower inversion positions P4D and P4P.
  • the reciprocation is performed between the reversal positions P3D and P3P.
  • the trajectories of the operations of the wiper arms 150D and 150P are substantially arc-shaped around the pivot shafts 152D and 152P of the wiper arms 150D and 150P.
  • the wiping ranges 156D and 156P which are areas where the wiper blades 154D and 154P wipe the windshield glass 1 and the like, have a substantially fan shape centered on the pivot shafts 152D and 152P.
  • JP 2014-83993 A and JP 2012-224231 A disclose wiper devices that wipe the substantially fan-shaped wiping ranges 156D and 156P.
  • the car windshield glass 1 has a substantially isosceles trapezoidal shape. Therefore, in the parallel (tandem) type wiper device in which the two wiper arms 150D and 150P disclosed in JP 2014-83993 A and 2 simultaneously rotate in the same direction, the pivot shafts 152D and 152P are connected to the windshield glass 1.
  • the upper reversal position P3D of the wiper blade 154D on the driver's seat side is close to the leg (vertical side of the isosceles trapezoidal shape) 1B of the windshield glass 1 having a substantially isosceles trapezoid shape. In parallel with the leg in position.
  • the upper reversal position P3P of the wiper blade 154P on the passenger seat side of the wiper device disclosed in JP 2014-83993A and JP 2012-224231 also preferentially wipes the windshield glass 1 on the driver seat side. Therefore, the windshield glass 1 is provided in parallel with the leg 1B on the driver's seat side.
  • the wiping range of the wiper blade 154P has a substantially fan shape. Therefore, when the upper inversion position P3P is provided at the above-described position, the upper corner 1C of the windshield glass 1 on the passenger seat side is the center. A non-wiping range 158 that is not wiped by the wiper blade 154P is generated.
  • non-wiping range 158 water droplets are likely to gather when the wiper blade 154P is wiped from the lower inversion position P4P to the upper inversion position P3P. Water droplets collected in the non-wiping range 158 flow down to the wiping range 156P.
  • the wiper blade 154P wipes from the upper reverse position P3P to the lower reverse position P4P, water droplets are removed from the wiping range 156P by the wiper blade 154P.
  • some of the removed water droplets become splashes 160 and scatter outside the passenger seat of the windshield glass 1. In this case, pedestrians who are present, occupants of motorcycles, etc. are exposed to the splashes.
  • the present disclosure provides a vehicle wiper device and a vehicle wiper device control method for preventing water droplets from being scattered to a pedestrian or the like.
  • a first aspect of the present disclosure is a vehicle wiper device in which a wiper blade connected to a tip portion of a wiper arm is rotated between two different inversion positions on a windshield by rotation of a first output shaft.
  • a second driving shaft and a second output shaft synchronized with the driving of the first driving source to operate a telescopic mechanism provided on the wiper arm to vary a wiping range of the windshield by the wiper blade;
  • the vehicle wiper device controls the drive of the second drive source in synchronization with the drive of the first drive source.
  • the telescopic mechanism is operated, the wiping range of the windshield by the wiper blade is variable (enlarged), and the wiping range on the passenger seat side of the windshield is expanded.
  • the vehicular wiper device is more effective at the time of return wiping when the wiper blade moves from the upper inversion position to the lower inversion position than the wiping range at the time of forward wiping in which the wiper blade moves from the lower inversion position to the upper inversion position.
  • the control unit determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of the forward path wiping and the return path wiping, and operates at an expansion ratio determined by the expansion / contraction mechanism.
  • the first drive source and the second drive source may be controlled.
  • the vehicular wiper device determines the expansion ratio of each of the expansion and contraction mechanisms at the time of outward wiping and at the time of backward wiping according to the degree of water droplets scattered at the time of outward wiping.
  • the vehicle wiper device of the second aspect can prevent water droplets from scattering to pedestrians and the like.
  • the vehicle speed information detection unit further acquires vehicle speed information
  • the control unit is based on the speed information detected by the vehicle speed information detection unit. You may determine the expansion rate at the time of the said outward wiping, and the expansion rate at the time of the said return wiping.
  • the vehicle wiper device controls the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the speed information of the vehicle. Water droplets can be prevented from scattering.
  • the control unit You may make the expansion rate at the time of the said return path wiping small with respect to an expansion rate.
  • the vehicle wiper device of the fourth aspect when the vehicle decelerates, the amount of water drops on the windshield and the vehicle roof flowing down to the windshield becomes significant. In addition, by reducing the enlargement rate at the time of wiping the return path, it is possible to prevent water droplets from being scattered to pedestrians.
  • control unit is configured to wipe the outward path as the vehicle speed decreases based on the speed information detected by the vehicle speed information detection unit. You may make small the expansion rate at the time of the said return path wiping with respect to the expansion rate of time.
  • the vehicle wiper device prevents the water droplets from being scattered to pedestrians and the like by reducing the enlargement rate at the time of the backward wiping with respect to the enlargement rate at the time of the outward wiping as the vehicle speed is lower. it can.
  • the sixth aspect further includes a first rotation angle detection unit that detects a rotation angle of the first output shaft, and the control unit includes the first rotation angle.
  • the enlargement rate at the time of the forward pass wiping and the enlargement rate at the time of the return pass wiping may be determined according to the rotation speed of the first output shaft calculated based on the rotation angle detected by the detection unit.
  • the pedestrian is controlled by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the rotation speed of the first output shaft. It is possible to prevent water droplets from being scattered on the surface.
  • control unit increases the enlargement rate during the return pass wiping with respect to the enlargement rate during the forward pass wiping as the rotational speed of the first output shaft increases. It may be small.
  • the vehicular wiper device can be used for a pedestrian or the like by reducing the enlargement ratio at the time of the backward wiping with respect to the enlargement ratio at the time of the outward wiping as the rotation speed of the first output shaft is larger. Can prevent water droplets from splashing.
  • the eighth aspect of the present disclosure further includes a water droplet detection unit that detects water droplets attached to the windshield, and the control unit is based on a detection result of the water droplet detection unit.
  • the enlargement rate at the time of the forward wiping and the enlargement rate at the time of the return wiping may be determined.
  • the vehicle wiper device controls the first drive source and the second drive source so that the telescopic mechanism operates at an enlargement ratio determined according to the amount of water on the windshield, thereby enabling a pedestrian or the like to Can prevent water droplets from splashing.
  • control unit may reduce the enlargement ratio at the time of the return path wiping with respect to the enlargement ratio at the time of the outward wiping as the amount of water increases.
  • the vehicular wiper device can prevent water droplets from being scattered to pedestrians and the like by reducing the enlargement rate during the return pass wiping with respect to the enlargement rate during the outward pass wiping as the amount of water increases.
  • a tenth aspect of the present disclosure further includes an in-vehicle sensor that detects a pedestrian and a two-wheeled vehicle in the above-described aspect, and the control unit detects the pedestrian or the two-wheeled vehicle by the in-vehicle sensor and
  • the enlargement rate may be made smaller than the enlargement rate at the time of wiping the outward path.
  • the vehicle wiper device When the vehicle wiper device according to the tenth aspect detects a pedestrian or the like by a vehicle-mounted sensor, it reduces the enlargement rate at the time of wiping the return path with respect to the enlargement rate at the time of the outward wiping, thereby Spattering can be prevented.
  • An eleventh aspect of the present disclosure is a method for controlling a vehicle wiper device, wherein two different wiper blades connected to the tip of a wiper arm by rotation of a first output shaft of a first drive source are arranged on a windshield.
  • a first driving source actuating step for performing a wiping operation between the reversing positions; and a telescopic mechanism provided on the wiper arm by actuating the second output shaft of the second driving source synchronized with the driving of the first driving source.
  • a second driving source actuating step for changing the wiping range of the windshield by the wiper blade; and the first driving source and the second driving source so that the wiping range at the time of the return pass wiping is smaller than the wiping range at the time of the forward pass wiping.
  • a control step for controlling.
  • the control method of the vehicle wiper device controls the driving of the second driving source in synchronization with the driving of the first driving source.
  • the telescopic mechanism is operated, the wiping range of the windshield by the wiper blade is variable (enlarged), and the wiping range on the passenger seat side of the windshield is expanded.
  • the control method of the vehicle wiper device according to the eleventh aspect is such that the wiper blade moves from the upper reversal position to the lower reversal position than the wiping range at the time of forward wiping when the wiper blade moves from the lower reversal position to the upper reversal position.
  • the control step determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of the forward wiping and the return wiping, and the expansion mechanism determines
  • the first drive source and the second drive source may be controlled to operate at a rate.
  • the enlargement ratio of each of the expansion and contraction mechanisms at the time of the forward wiping and at the time of the backward wiping is determined according to the degree of the water droplets scattered at the time of the forward wiping.
  • the vehicle wiper device according to the twelfth aspect controls the first drive source and the second drive source so that the expansion / contraction mechanism operates at such an enlargement ratio, thereby preventing water droplets from scattering to pedestrians and the like. it can.
  • the control step is based on speed information detected by a vehicle speed information detection unit that acquires vehicle speed information. And an enlargement rate at the time of wiping the return pass may be determined.
  • the pedestrian is controlled by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to vehicle speed information. It is possible to prevent water droplets from being scattered on the surface.
  • the thirteenth aspect when the vehicle decelerates based on speed information detected by the vehicle speed information detection unit, You may make the expansion rate at the time of the said return path wiping small with respect to an expansion rate.
  • the control method for the vehicle wiper device according to the fourteenth aspect is In addition, by reducing the enlargement rate at the time of wiping the return path, it is possible to prevent water droplets from being scattered to pedestrians.
  • control step is configured such that, based on the speed information detected by the vehicle speed information detection unit, the forward wiping is performed as the vehicle speed decreases. You may make small the expansion rate at the time of the said return path wiping with respect to the expansion rate of time.
  • the lower the speed of the vehicle the smaller the enlargement rate at the time of the backward wiping relative to the enlargement rate at the time of the outward wiping, so Spattering can be prevented.
  • the control step includes calculating the first output calculated based on a rotation angle of the first output shaft detected by a first rotation angle detection unit. Depending on the rotational speed of the shaft, the enlargement rate at the time of the forward pass wiping and the enlargement rate at the time of the return pass wiping may be determined.
  • the first drive source and the second drive source are controlled so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the rotation speed of the first output shaft.
  • the control step sets an enlargement ratio during the return path wiping with respect to an enlargement ratio during the forward path wiping. It may be small.
  • the control step includes a step of: calculating on the windshield calculated based on a detection result of a water droplet detection unit that detects a water droplet adhering to the windshield. Depending on the amount of water, the enlargement rate at the time of the forward wiping and the enlargement rate at the time of the return wiping may be determined.
  • the control method of the vehicle wiper device of the eighteenth aspect by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the amount of water on the windshield. Water droplets can be prevented from scattering to pedestrians.
  • control step may reduce the enlargement rate at the return pass wiping with respect to the enlargement rate at the outward pass wiping as the amount of water increases.
  • the control method of the vehicle wiper device reduces the amount of water droplets scattered to pedestrians and the like by reducing the enlargement rate at the time of wiping the return path with respect to the enlargement rate at the time of the outward wiping as the amount of water increases. Can be prevented.
  • the control step detects a pedestrian or a two-wheeled vehicle using an on-vehicle sensor
  • the enlargement ratio at the time of the return path wiping is increased by the enlargement ratio at the time of the outward wiping. It may be smaller than the rate.
  • the walking rate is reduced by reducing the enlargement rate at the time of the return pass wiping with respect to the enlargement rate at the time of the outward pass wiping. It is possible to prevent water droplets from splashing on the person.
  • FIG. 1 is a schematic diagram illustrating an example of a vehicle wiper system including a vehicle wiper device according to a first exemplary embodiment of the present disclosure. It is a top view in the stop state of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication.
  • FIG. 3 is a cross-sectional view of the second holder member along the line AA in FIG. 2. It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication.
  • FIG. 3 is a circuit diagram schematically illustrating a circuit of a wiper system according to a first exemplary embodiment of the present disclosure. It is explanatory drawing which showed an example of the 2nd output shaft rotation angle map which prescribed
  • FIG. 1 is a schematic diagram illustrating an example of a wiper system 100 including a vehicle wiper device (hereinafter referred to as “wiper device”) 2 according to a first exemplary embodiment of the present disclosure.
  • a wiper system 100 shown in FIG. 1 is for wiping a windshield glass 1 as a “windshield” provided in a vehicle such as a passenger car, for example, and includes a pair of wiper arms (driver seat side wiper arms described later). 17 and the passenger seat side wiper arm 35), the first motor 11, the second motor 12, the control circuit 52, the drive circuit 56, and the washer device 70.
  • FIG. 1 shows the case of a right-hand drive vehicle
  • the right side of the vehicle (left side of FIG. 1) is the driver's seat side
  • the left side of the vehicle (right side of FIG. 1) is the passenger seat side.
  • the left side of the vehicle (right side in FIG. 1) is the driver's seat side
  • the right side of the vehicle (left side in FIG. 1) is the passenger seat side.
  • the configuration of the wiper device 2 is opposite to the left and right.
  • the first motor 11 as the first drive source rotates the output shaft forward and backward within a range of a predetermined rotation angle so that each of the driver seat side wiper arm 17 and the passenger seat side wiper arm 35 is placed on the windshield glass 1.
  • Drive source for reciprocating operation when the first motor 11 rotates forward, the driver seat side wiper arm 17 operates so that the driver seat side wiper blade 18 wipes the upper inversion position P1D from the lower inversion position P2D.
  • the side wiper arm 35 operates such that the passenger-side wiper blade 36 wipes the upper inversion position P1P from the lower inversion position P2P.
  • the driver's seat side wiper arm 17 When the first motor 11 rotates in the reverse direction, the driver's seat side wiper arm 17 operates so that the driver's seat side wiper blade 18 wipes the upper inverted position P1D to the lower inverted position P2D, and the passenger seat side wiper arm 35
  • the passenger-side wiper blade 36 operates so as to wipe from the upper inversion position P1P to the lower inversion position P2P.
  • the outer edge portion of the windshield glass 1 is a light shielding portion 1A coated with a ceramic black pigment in order to block visible light and ultraviolet rays.
  • the black pigment is applied to the outer edge of the windshield glass 1 on the vehicle interior side, and then melted by being heated at a predetermined temperature, and is fixed on the vehicle interior side surface of the windshield glass 1.
  • the windshield glass 1 is fixed to the vehicle body by an adhesive applied to the outer edge portion.
  • the light shielding portion 1A that does not transmit ultraviolet rays is provided at the outer edge portion, so that the adhesive by ultraviolet rays is provided. Suppresses deterioration.
  • first predetermined rotation angle a predetermined rotation angle
  • the second motor 12 as the second drive source has an output shaft (a second output shaft 12A described later) of the second motor 12 at a predetermined rotation angle from 0 ° (hereinafter referred to as “second predetermined rotation angle”).
  • second predetermined rotation angle This is a drive source that apparently extends the wiper arm 35 on the passenger seat side by rotating forward and backward at a rotation angle up to.
  • the passenger seat side wiper arm 35 is apparently extended upward on the passenger seat side, and the passenger seat side wiper blade 36 wipes the wiping range Z2.
  • the magnitude of the second predetermined rotation angle it is possible to change the range in which the passenger seat side wiper arm 35 extends. For example, if the second predetermined rotation angle is increased, the range in which the passenger seat side wiper arm 35 extends is increased, and if the second predetermined rotation angle is decreased, the range in which the passenger seat side wiper arm 35 is extended is decreased.
  • the first motor 11 and the second motor 12 are motors that can control the rotation direction of each output shaft to forward rotation and reverse rotation, and can also control the rotation speed of each output shaft. Either a DC motor or a brushless DC motor.
  • a control circuit 52 for controlling each rotation is connected to the first motor 11 and the second motor 12.
  • the control circuit 52 includes, for example, an absolute angle sensor (not shown) as a “rotation angle detection unit” provided near the output shaft end of each of the first motor 11 and the second motor 12.
  • the duty of voltage applied to each of the first motor 11 and the second motor 12 based on the rotation direction, rotation position, rotation speed and rotation angle of the output shaft of each of the first motor 11 and the second motor 12 detected by the Calculate the ratio.
  • the voltage applied to each of the first motor 11 and the second motor 12 is a pulse that modulates the voltage (approximately 12 V) of the in-vehicle battery as a power source by turning on and off the switching element by a switching element.
  • the duty ratio is a ratio of the time of one pulse generated when the switching element is turned on to one period of a waveform of a voltage generated by PWM.
  • One period of the waveform of the voltage generated by PWM is the sum of the time of the one pulse described above and the time during which the switching element is turned off and no pulse is generated.
  • the drive circuit 56 turns on and off switching elements in the drive circuit 56 in accordance with the duty ratio calculated by the control circuit 52 to generate voltages to be applied to the first motor 11 and the second motor 12, and the generated voltages are supplied to the first circuit. The voltage is applied to each winding terminal of the first motor 11 and the second motor 12.
  • each of the first motor 11 and the second motor 12 has a speed reduction mechanism configured by a worm gear
  • the rotation direction, the rotation speed, and the rotation angle of each output shaft are set as follows.
  • the rotation speed and rotation angle of the 1 motor 11 main body and the second motor 12 main body are not the same.
  • each motor and each speed reduction mechanism are inseparably configured, and hence the rotational speed and rotational angle of the output shaft of each of the first motor 11 and the second motor 12 will be described below.
  • the rotation direction, the rotation speed, and the rotation angle of each of the first motor 11 and the second motor 12 are considered.
  • the absolute angle sensor is provided, for example, in each speed reduction mechanism of the first motor 11 and the second motor 12, and converts the magnetic field (magnetic force) of an excitation coil or a magnet that rotates in conjunction with each output shaft into a current. It is a sensor to detect, for example, a magnetic sensor such as an MR sensor.
  • the control circuit 52 determines the position of the driver's seat side wiper blade 18 on the windshield glass 1 from the rotation angle of the output shaft of the first motor 11 detected by an absolute angle sensor provided near the output shaft end of the first motor.
  • a computable microcomputer 58 is provided. The microcomputer 58 controls the drive circuit 56 so that the rotational speed of the output shaft of the first motor 11 changes according to the calculated position.
  • the microcomputer 58 detects the rotation angle of the output shaft of the first motor 11 detected by the absolute angle sensor provided near the output shaft end of the first motor on the windshield glass 1 of the passenger side wiper blade 36. The position is calculated, and the drive circuit 56 is controlled so that the rotational speed of the output shaft of the second motor 12 changes according to the calculated position. Further, the microcomputer 58 calculates the degree of extension of the passenger seat side wiper arm 35 from the rotation angle of the output shaft of the second motor 12 detected by the absolute angle sensor provided near the output shaft end of the second motor 12.
  • the control circuit 52 is provided with a memory 60 that is a storage device that stores data and programs used to control the drive circuit 56.
  • the memory 60 stores the first motor 11 and the second motor 12 according to the rotation angle of the output shaft of the first motor 11 indicating the positions of the driver-side wiper blade 18 and the passenger-side wiper blade 36 on the windshield glass 1. Data and a program for calculating the rotation speed and the like (including the rotation angle) of each output shaft are stored.
  • the microcomputer 58 is connected to a vehicle ECU (Electronic Control Unit) 90 that controls the vehicle engine and the like. Further, the vehicle ECU 90 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a rain sensor 76, a vehicle speed sensor 92 for detecting the vehicle speed, an in-vehicle camera 94 for photographing the front of the vehicle, a GPS (Global Positioning System). ) A device 96, a steering angle sensor 98, and a millimeter wave radar 102 are connected.
  • a vehicle ECU 90 Electronic Control Unit 90 that controls the vehicle engine and the like. Further, the vehicle ECU 90 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a rain sensor 76, a vehicle speed sensor 92 for detecting the vehicle speed, an in-vehicle camera 94 for photographing the front of the vehicle, a GPS (Global Positioning System). ) A device 96, a steering angle sensor 98, and a mill
  • the wiper switch 50 is a switch that turns on or off the power supplied from the vehicle battery to the first motor 11.
  • the wiper switch 50 is a low-speed operation mode selection position for operating the driver-side wiper blade 18 and the passenger-side wiper blade 36 at a low speed, a high-speed operation mode selection position for operating at a high speed, and an intermittent operation that operates intermittently at a constant cycle.
  • the mode selection position can be switched to an AUTO (auto) operation mode selection position and a storage (stop) mode selection position that are operated when the rain sensor 76 detects raindrops. Further, a signal corresponding to the selected position of each mode is output to the microcomputer 58 via the vehicle ECU 90.
  • the microcomputer 58 controls the memory 60 to control corresponding to the output signal from the wiper switch 50. This is done using stored data and programs.
  • the wiper switch 50 may be separately provided with an expansion mode switch that changes the wiping range of the passenger-side wiper blade 36 to the wiping range Z2.
  • a predetermined signal is input to the microcomputer 58 via the vehicle ECU 90.
  • a predetermined signal is input to the microcomputer 58, for example, when the passenger seat wiper blade 36 operates from the lower inversion position P2P to the upper inversion position P1P, the second motor 12 is configured to wipe the wiping range Z2. To control.
  • the direction indicator switch 54 is a switch for instructing the operation of a vehicle direction indicator (not shown).
  • a signal for turning on the right or left direction indicator is operated to the vehicle ECU 90 by a driver's operation. Output.
  • the vehicle ECU 90 causes the right or left direction indicator lamp to blink based on the signal output from the direction indicator switch 54.
  • a signal output from the direction indicator switch 54 is also input to the microcomputer 58 via the vehicle ECU 90.
  • the washer switch 62 is a switch for turning on or off the power supplied from the battery of the vehicle to the washer motor 64, the first motor 11 and the second motor 12.
  • the washer switch 62 is provided integrally with an operating means such as a lever provided with the wiper switch 50 described above, and is turned on by an operation such as pulling the lever or the like by a passenger.
  • the microcomputer 58 operates the washer motor 64 and the first motor 11.
  • the wiper blade 36 on the passenger side wipes from the lower reverse position P2P to the upper reverse position P1P
  • the microcomputer 58 wipes the wiper blade 36 from the upper reverse position P1P so as to wipe the wiping range Z2.
  • the second motor 12 is controlled so as to wipe the wiping range Z1. With this control, the passenger seat side of the windshield glass 1 can be wiped widely.
  • the washer pump 66 While the washer switch 62 is on, the washer pump 66 is driven by the rotation of the washer motor 64 provided in the washer device 70.
  • the washer pump 66 pumps the washer liquid in the washer liquid tank 68 to the driver side hose 72A or the passenger side hose 72B.
  • the driver seat side hose 72A is connected to a driver seat side nozzle 74A provided below the driver seat side of the windshield glass 1.
  • the passenger seat side hose 72B is connected to a passenger seat side nozzle 74B provided below the windshield glass 1 on the passenger seat side.
  • the pumped washer liquid is sprayed onto the windshield glass 1 from the driver seat side nozzle 74A and the passenger seat side nozzle 74B.
  • the washer liquid adhering to the windshield glass 1 is wiped together with dirt on the windshield glass 1 by the operating driver side wiper blade 18 and the passenger seat side wiper blade 36.
  • the microcomputer 58 controls the washer motor 64 so that it operates only while the washer switch 62 is on. Further, the microcomputer 58 controls the first motor 11 so that the operation continues until the driver-side wiper blade 18 and the passenger-side wiper blade 36 reach the lower inversion positions P2D and P2P even when the washer switch 62 is turned off. Control. Further, when the washer switch 62 is turned off when the driver-side wiper blade 18 and the passenger-side wiper blade 36 are wiped toward the upper inversion positions P1D and P1P, the microcomputer 58 The second motor 12 is controlled to wipe the wiping range Z2 until the wiper blade 18 and the passenger side wiper blade 36 reach the upper inversion positions P1D and P1P by the rotation of the first motor 11.
  • the rain sensor 76 is, for example, a kind of optical sensor provided on the vehicle interior side of the windshield glass 1 and detects water droplets on the surface of the windshield glass 1.
  • the rain sensor 76 includes an LED that is an infrared light emitting element, a photodiode that is a light receiving element, a lens that forms an infrared optical path, and a control circuit.
  • the infrared rays emitted from the LED are totally reflected by the windshield glass 1, but if there are water droplets on the surface of the windshield glass 1, some of the infrared rays are transmitted through the water droplets and emitted to the outside.
  • the amount of reflection decreases.
  • the amount of light entering the photodiode that is the light receiving element is reduced. Based on the decrease in the amount of light, water droplets on the surface of the windshield glass 1 are detected.
  • the vehicle speed sensor 92 is a sensor that detects the rotational speed of the vehicle wheel and outputs a signal indicating the rotational speed.
  • the vehicle ECU 90 calculates the vehicle speed from the signal output from the vehicle speed sensor 92 and the circumference of the wheel.
  • the in-vehicle camera 94 is a device that captures the front of the vehicle and acquires moving image data.
  • the vehicle ECU 90 can determine whether the vehicle is approaching a curve or the like by performing image processing on moving image data acquired by the in-vehicle camera 94. Further, the vehicle ECU 90 can calculate the brightness in front of the vehicle from the luminance of the moving image data acquired by the in-vehicle camera 94.
  • the rain sensor 76 and the in-vehicle camera 94 are provided at a position corresponding to the center upper portion of the windshield glass 1 on the vehicle interior side, and more specifically, provided on the back side of the rearview mirror or the like (not shown). ) There are many cases. However, in the present exemplary embodiment, the positions of the rain sensor 76 and the in-vehicle camera 94 are not limited to the center upper portion of the windshield glass 1 on the passenger compartment side, but are located on the passenger seat side upper portion of the windshield glass 1 on the passenger compartment side. May be.
  • the non-wiping range X in FIG. 20 is an area that exists in the wiping range Z2 when the passenger-side wiper arm 35 is extended, but outside the wiping range Z1 when the passenger-side wiper arm 35 is not extended. .
  • the microcomputer 58 may control the second motor 12 to wipe the wiping range Z2 when the rain sensor 76 detects water droplets on the surface of the windshield glass 1, for example, the non-wiping range X.
  • the microcomputer 58 may control the second motor 12 to wipe the wiping range Z2 based on the pixel feature amount of the image data acquired by the in-vehicle camera 94. For example, the microcomputer 58 wipes when the difference between the image feature amount of the wiping range Z1 of the windshield glass 1 and the image feature amount of the non-wiping range X in the image data acquired by the in-vehicle camera 94 is equal to or larger than a predetermined value. The second motor 12 is controlled to wipe the range Z2.
  • the image feature amount is, for example, a luminance value
  • the microcomputer 58 adheres to the non-wiping range X when the difference between the luminance value of the wiping range Z1 and the luminance value of the non-wiping range X becomes a predetermined value or more.
  • the second motor 12 is controlled to wipe the wiping range Z2.
  • the image feature amount is an optical flow indicating a motion vector of the front end portion of the passenger-side wiper blade 36, and the microcomputer 58 has a predetermined amount of change in the motion vector of the passenger-side wiper blade 36 indicated by the optical flow.
  • the second motor 12 is controlled to wipe the wiping range Z2 on the assumption that snow is present on the windshield glass 1.
  • the GPS device 96 is a device that calculates the current position of the vehicle based on a positioning signal received from a GPS satellite in the sky.
  • the GPS device 96 dedicated to the wiper system 100 is used.
  • the vehicle includes another GPS device such as a car navigation system
  • the other GPS device may be used.
  • the GPS device 96 is used.
  • the present invention is not limited to this, and another satellite positioning system (Navigation Satellite System) may be used.
  • the steering angle sensor 98 is a sensor that is provided on a rotation shaft (not shown) of the steering as an example and detects the rotation angle of the steering.
  • the millimeter wave radar 102 is a front millimeter wave radar that detects a distance to an obstacle ahead, a front side millimeter wave radar that detects a distance to an obstacle ahead, and a rear millimeter that detects a distance to an obstacle behind. Includes wave radar, rear side millimeter wave radar that detects distance to rear side obstacles.
  • the front millimeter wave radar is provided, for example, near the center of the front grille of the vehicle, and the front side millimeter wave radar is provided near both ends in the vehicle width direction in the bumper, and emits millimeter waves to the front and front sides of the vehicle, respectively.
  • the radio wave reflected from the object is received, and the distance to the object, the relative speed with the own vehicle, and the like are measured based on the propagation time and the frequency difference caused by the Doppler effect.
  • the rear millimeter wave radar and the rear side millimeter wave radar are provided in a rear bumper of the vehicle, and receive radio waves reflected from the object by emitting millimeter waves to the rear and rear sides of the vehicle, The distance to the object and the relative speed with the vehicle are measured based on the propagation time and the frequency difference caused by the Doppler effect.
  • the wiper device 2 includes a plate-like central frame 3 and one end fixed to the central frame 3.
  • a pair of pipe frames 4 and 5 extending on both sides are provided.
  • a first holder member 6 including a driver seat side pivot shaft 15 of the driver seat side wiper arm 17 and the like is formed at the other end portion of the pipe frame 4.
  • the second holder member 7 provided with the second passenger seat side pivot shaft 22 of the passenger seat side wiper arm 35 and the like is formed at the other end portion of the pipe frame 5.
  • the wiper device 2 is supported on the vehicle by a support portion 3A provided on the central frame 3, and each of the fixing portion 6A of the first holder member 6 and the fixing portion 7A of the second holder member 7 is attached to the vehicle by a bolt or the like. By being fastened, it is fixed to the vehicle.
  • the wiper device 2 includes a first motor 11 and a second motor 12 for driving the wiper device 2 on the back surface (the surface facing the passenger compartment side) of the central frame 3.
  • the first output shaft 11A of the first motor 11 passes through the central frame 3 and protrudes from the surface of the central frame 3 (surface on the outside of the vehicle), and a first drive crank arm is provided at the tip of the first output shaft 11A.
  • One end of 13 is fixed.
  • the second output shaft 12A of the second motor 12 passes through the central frame 3 and protrudes from the surface of the central frame 3, and one end of the second drive crank arm 14 is fixed to the tip of the second output shaft 12A.
  • a driver seat side pivot shaft 15 is rotatably supported by the first holder member 6, and one end of the driver seat side swing lever 16 is provided at the base end portion (the back side in FIG. 2) of the driver seat side pivot shaft 15.
  • the arm head of the driver's seat side wiper arm 17 is fixed to the tip of the driver's seat side pivot shaft 15 (front side in FIG. 2).
  • a driver seat side wiper blade 18 for wiping the driver seat side of the windshield glass 1 is connected to the tip of the driver seat side wiper arm 17.
  • the other end of the first drive crank arm 13 and the other end of the driver seat side swing lever 16 are connected via a first connecting rod 19.
  • the driver seat side swing lever 16 rotates, and the rotational force is transmitted to the driver seat side swing lever 16 via the first connecting rod 19, and the driver seat side swing lever 16. Sway.
  • the driver seat side wiper arm 17 is also swung, and the driver seat side wiper blade 18 wipes the wiping range H1 between the lower inversion position P2D and the upper inversion position P1D.
  • FIG. 3 is a cross-sectional view of the second holder member 7 taken along line AA in FIG.
  • the first holder seat side pivot shaft 21 is supported on the second holder member 7 so as to be rotatable about the first axis L1
  • the second passenger seat side pivot shaft 22 is secondly supported. It is supported so as to be rotatable about the axis L2.
  • the first axis L1 and the second axis L2 are arranged on the same straight line L (concentric).
  • FIG. 3 shows a state where the waterproof cover K shown in FIG. 2 and FIGS. 4 to 8 is removed.
  • the cylindrical part 7B is formed in the second holder member 7, and the first passenger seat side pivot shaft 21 is rotatably supported via a bearing 23 on the inner peripheral side of the cylindrical part 7B.
  • the first passenger seat side pivot shaft 21 is formed in a cylindrical shape, and the second passenger seat side pivot shaft 22 is rotatably supported via a bearing 24 on the inner peripheral side of the first passenger seat side pivot shaft 21. .
  • first passenger seat side swing lever 25 is fixed to the base end portion of the first passenger seat side pivot shaft 21, and the first drive lever 26 has a first drive lever 26 attached to the distal end portion of the first passenger seat side pivot shaft 21. One end is fixed.
  • the other end of the first passenger seat side swing lever 25 and the other end of the driver seat side swing lever 16 are connected by a second connecting rod 27. Accordingly, when the first motor 11 is driven and the driver's seat side swing lever 16 is pivoted, the second connecting rod 27 transmits the driving force to the first passenger's seat side swing lever 25 and the first passenger seat side swing lever. 25, the first drive lever 26 is swung (rotated) around the first axis L1.
  • the second passenger seat side pivot shaft 22 is formed longer than the first passenger seat side pivot shaft 21, and the base end portion and the distal end portion of the second passenger seat side pivot shaft 22 are the first.
  • One end of a second passenger seat side swinging lever 28 is fixed to the base end portion of the second passenger seat side pivot shaft 21 so as to protrude in the axial direction from the passenger seat side pivot shaft 21.
  • One end of the second drive lever 29 is fixed to the tip portion.
  • the other end of the second drive crank arm 14 and the other end of the second passenger seat side swing lever 28 are connected by a third connecting rod 31. Therefore, when the second motor 12 is driven, the second drive crank arm 14 rotates, and the third connecting rod 31 transmits the driving force of the second drive crank arm 14 to the second passenger seat side swing lever 28.
  • the second drive lever 29 is swung (rotated) together with the second passenger seat-side rocking lever 28.
  • the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are provided coaxially, but the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not mutually connected.
  • the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not interlocked and rotate independently of each other.
  • the wiper device 2 includes a first driven lever having a base end portion coupled to a third axis L3 on the other end side of the first drive lever 26 so as to be rotatable. 32.
  • the wiper device 2 has a base end portion coupled to be rotatable about a fourth axis L4 on the distal end side of the first driven lever 32 and a fifth axis L5 on the other end side of the second drive lever 29.
  • An arm head 33 which is a second driven lever having a distal end connected to be rotatable about the center is provided.
  • the arm head 33 constitutes a passenger-side wiper arm 35 together with a retainer 34 whose base end is fixed to the distal end of the arm head 33.
  • a front passenger side wiper blade 36 for wiping the front passenger side of the windshield glass 1 is connected to the front end of the front passenger side wiper arm 35.
  • the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the first axis L1 (second axis L2) to the third axis L3, and from the fourth axis L4 to the fifth. It connects so that the length to the axis line L5 may become the same.
  • the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the third axis L3 to the fourth axis L4, and the first axis L1 (second axis L2) to the fifth. It connects so that the length to the axis line L5 may become the same.
  • first drive lever 26 and the arm head 33 are kept parallel, and the second drive lever 29 and the first driven lever 32 are kept parallel.
  • the first drive lever 26 and the second drive lever 29, the 1st driven lever 32, and the arm head 33 comprise the substantially parallelogram-shaped link mechanism (expansion-contraction mechanism).
  • the fifth axis L5 is a fulcrum when the passenger-side wiper arm 35 operates.
  • the passenger-side wiper arm 35 is rotated about the fifth axis L5 by the driving force of the first motor 11 to windshield glass. Reciprocates on 1.
  • the second motor 12 passes the fifth axis L5 through a substantially parallelogram link mechanism including the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33.
  • the windshield glass 1 is moved more than in the case of FIGS.
  • the passenger side wiper arm 35 is apparently extended. Accordingly, when the second motor 12 is operated together with the first motor 11, the passenger side wiper blade 36 wipes the wiping range Z2.
  • the fifth axis L5 starts from the position shown in FIGS. 2, 7, and 8 (hereinafter referred to as “first position”). It does n’t move. Accordingly, the passenger side wiper arm 35 operates between the lower inversion position P2P and the upper inversion position P1P while drawing a substantially arc-shaped locus around the fifth axis L5 whose position does not change, and the passenger seat side wiper blade 36 The substantially fan-shaped wiping range Z1 is wiped.
  • the first motor 11 and the second motor 12 are each controlled so as to wipe the wiping range Z2.
  • the first motor 11 and the second motor 11 wipe the wiping range Z1 when the passenger seat wiper blade 36 reversed at the upper reversal position P1P moves toward the lower reversal position P2P (return wiping).
  • Each motor 12 is controlled.
  • the wiping range Z2 When the passenger-side wiper blade 36 reciprocates between the lower inversion position P2P and the upper inversion position P1P, the wiping range Z2 is wiped in the forward movement and the wiping range Z1 is wiped in the backward movement. 1 wide range can be wiped off. Alternatively, when the passenger-side wiper blade 36 reciprocates between the lower inversion position P2P and the upper inversion position P1P, the wiping range Z1 is wiped in the forward movement and the wiping range Z2 is wiped in the backward movement. A wide range of windshield glass 1 can be wiped off. Alternatively, the wiping range Z2 may be wiped at the time of forward movement and backward movement.
  • the driver-seat-side wiper arm 17 and the driver-seat-side wiper blade 18 only operate around the driver-seat-side pivot shaft 15 according to the rotation of the first motor 11. 35 and the operation of the passenger seat side wiper blade 36 will be described in detail.
  • FIG. 2 shows a state in which the passenger-side wiper blade 36 is positioned at the lower inversion position P2P, and the passenger-side wiper arm 35 is in the stop position.
  • the first output shaft 11A of the first motor 11 is rotated in the rotation direction CC1 shown in FIG.
  • the first drive lever 26 starts rotating
  • the passenger seat side wiper arm 35 starts rotating around the fifth axis L5.
  • the second output shaft 12A of the second motor 12 also starts to rotate in the rotational direction CC2 shown in FIG.
  • the rotation of the first output shaft 11A in the rotation direction CC1 and the rotation of the second output shaft 12A in the rotation direction CC2 are defined as positive rotations of the respective output shafts.
  • FIG. 4 shows a state where the passenger-side wiper blade 36 wipes the windshield glass 1 halfway (approximately 1/4 of the forward travel).
  • the driving force generated by the rotation of the second motor 12 in the rotational direction CC2 is transmitted to the second drive lever 29.
  • the second drive lever 29 to which the driving force of the second motor 12 is transmitted operates in the operation direction CW3, and the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, is located above the passenger seat side of the windshield glass 1. Move towards.
  • FIG. 5 shows that when the first output shaft 11A is rotated to an intermediate rotation angle between 0 ° and the first predetermined angle, the first drive lever 26 is further rotated, and the front passenger side wiper blade 36 is in the lower inverted position. A case is shown in which a substantially intermediate point of the stroke (forward stroke) between P2P and the upper reversal position P1P is reached.
  • the second output shaft 12A of the second motor 12 is also rotated to the second predetermined rotation angle in the rotation direction CC2 shown in FIG.
  • the fifth axis L5 which is the fulcrum of the passenger-side wiper arm 35, is connected to the second drive crank arm 14, the third connecting rod 31, the second The passenger seat side swing lever 28 and the second drive lever 29 are lifted to the uppermost position (second position).
  • the front end portion of the passenger seat side wiper blade 36 is moved to a position near the upper corner of the windshield glass 1 on the passenger seat side, as shown in FIG.
  • the intermediate rotation angle described above is about half of the first predetermined rotation angle, but is set individually according to the shape of the windshield glass 1 and the like.
  • the second position is a position at which the fifth axis L5 is disposed at the uppermost position in each magnification.
  • the second position is determined when the first output shaft 11A is between 0 ° and the first predetermined angle when the passenger-side wiper blade wipes a range wider than the wiping range Z1 (for example, the wiping range Z2). This is the position at which the fifth axis L5 is arranged when rotated to the intermediate rotation angle.
  • FIG. 6 shows that when the first drive lever 26 is further rotated, the passenger-side wiper blade 36 reaches approximately 3/4 of the stroke (forward stroke) between the lower inversion position P2P and the upper inversion position P1P. Shows the case.
  • the rotation direction of the first output shaft 11A of the first motor 11 is the same as that of FIGS. 4 and 5, but the second output shaft 12A of the second motor 12 is opposite to the case of FIGS. It rotates in the rotation direction CW2 (reverse rotation).
  • the second drive lever 29 operates in the operation direction CC3
  • the fifth axis L5 which is a fulcrum of the passenger seat side wiper arm 35, is moved downward from the second position.
  • the front passenger side wiper blade 36 moves on the windshield glass 1 while wiping the wiping range Z2 while drawing the locus indicated by the broken line above the wiping range Z2 shown in FIG.
  • FIG. 7 shows a case where the first output shaft 11A of the first motor 11 rotates forward to the first predetermined rotation angle and the second output shaft 12A of the second motor 12 rotates reversely at the second predetermined rotation angle. Yes. Since the rotation angle of the first output shaft 11A of the first motor 11 in the forward rotation is maximized, the driver seat side wiper arm 17 and the driver seat side wiper blade 18 reach the upper inversion position P1D. Further, the second output shaft 12A of the second motor 12 is reversed at the second predetermined rotation angle from the state shown in FIG. 5 (the state where the second output shaft 12A has reached the second predetermined rotation angle by forward rotation).
  • the fifth axis L5 which is the fulcrum of the passenger-side wiper arm 35, is at the first position, which is the position before the second output shaft 12A of the second motor 12 shown in FIG. I'm back.
  • the passenger seat side wiper arm 35 and the passenger seat side wiper blade 36 reach the same upper inversion position P1P as the wiping range Z1 when the second motor 12 is not driven.
  • FIG. 8 shows a state in which the driver's seat side wiper arm 17 and the driver's seat side wiper blade 18 and the passenger's seat side wiper arm 35 and the passenger's seat side wiper blade 36 move from the upper inverted positions P1D and P1P to the lower inverted positions P2D and P2P.
  • the state (return stroke) is shown.
  • the first output shaft 11A of the first motor 11 rotates in the reverse direction, and rotates in the rotation direction CW1 in the reverse direction to the case of FIGS.
  • the second output shaft 12A of the second motor 12 does not rotate, and therefore the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, does not move from the first position, so the first output shaft 11A of the first motor 11 does not move.
  • the passenger seat side wiper arm 35 draws a substantially arc-shaped locus.
  • the passenger side wiper blade 36 connected to the front end of the passenger side wiper arm 35 wipes the wiping range Z1.
  • FIG. 9 is a circuit diagram schematically showing a circuit of the wiper system 100 according to the exemplary embodiment. As shown in FIG. 9, the wiper system 100 includes a control circuit 52 and a drive circuit 56.
  • the control circuit 52 includes the microcomputer 58 and the memory 60.
  • the microcomputer 58 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a vehicle ECU 90 (not shown), A rain sensor 76, a vehicle speed sensor 92, an in-vehicle camera 94, a GPS device 96, a steering angle sensor 98, and a millimeter wave radar 102 are connected to each other.
  • the drive circuit 56 includes a first pre-driver 104 and a first motor drive circuit 108 for driving the first motor 11, and a second pre-driver 106 and a second motor drive circuit 110 for driving the second motor 12. ing.
  • the drive circuit 56 includes a relay drive circuit 78, an FET drive circuit 80, and a washer motor drive circuit 57 for driving the washer motor 64.
  • the microcomputer 58 of the control circuit 52 rotates the first motor 11 via the second pre-driver 106 by turning on and off the switching elements constituting the first motor driving circuit 108 via the first pre-driver 104.
  • the rotation of the second motor 12 is controlled by turning on and off the switching elements of the two-motor drive circuit 110.
  • the microcomputer 58 controls the rotation of the washer motor 64 by controlling the relay drive circuit 78 and the FET drive circuit 80.
  • the first motor drive circuit 108 and the second motor drive circuit 110 each include four switching elements.
  • the switching element is, for example, an N-type FET (field effect transistor).
  • the first motor drive circuit 108 includes FETs 108A to 108D.
  • the FET 108 ⁇ / b> A has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to one end of the first motor 11.
  • the FET 108 ⁇ / b> B has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to the other end of the first motor 11.
  • the FET 108C has a drain connected to one end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded.
  • the FET 108D has a drain connected to the other end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded.
  • the first pre-driver 104 controls driving of the first motor 11 by switching a control signal supplied to the gates of the FETs 108A to 108D in accordance with a control signal from the microcomputer 58. That is, when the first pre-driver 104 rotates the first output shaft 11A of the first motor 11 in a predetermined direction (forward rotation), the first pre-driver 104 turns on the set of the FET 108A and the FET 108D and the first output of the first motor 11 When rotating the shaft 11A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 108B and the FET 108C is turned on. Further, the first pre-driver 104 performs PWM for intermittently turning on and off the FET 108A and the FET 108D based on a control signal from the microcomputer 58.
  • the first pre-driver 104 controls the rotational speed of the first motor 11 in the forward rotation by changing the duty ratio related to the on / off of the FET 108A and the FET 108D by PWM. If the duty ratio is increased, the effective value of the voltage applied to the terminal of the first motor 11 during forward rotation is increased, and the rotation speed of the first motor 11 is increased.
  • the first pre-driver 104 controls the rotational speed in the reverse rotation of the first motor 11 by changing the duty ratio related to on / off of the FET 108B and the FET 108C by PWM. If the duty ratio increases, the effective value of the voltage applied to the terminal of the first motor 11 during reverse rotation increases, and the rotation speed of the first motor 11 increases.
  • the second motor drive circuit 110 includes FETs 110A to 110D.
  • the FET 110 ⁇ / b> A has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to one end of the second motor 12.
  • the FET 110 ⁇ / b> B has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to the other end of the second motor 12.
  • the FET 110C has a drain connected to one end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded.
  • the FET 110D has a drain connected to the other end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded.
  • the second pre-driver 106 controls the driving of the second motor 12 by switching the control signal supplied to the gates of the FETs 110A to 110D in accordance with the control signal from the microcomputer 58. That is, when the second pre-driver 106 rotates the second output shaft 12A of the second motor 12 in a predetermined direction (forward rotation), the second pre-driver 106 turns on the set of the FET 110A and the FET 110D and outputs the second output of the second motor 12. When rotating the shaft 12A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 110B and the FET 110C is turned on.
  • the second pre-driver 106 controls the rotation speed of the second motor 12 by performing PWM like the first pre-driver 104 described above based on the control signal from the microcomputer 58.
  • a two-pole sensor magnet 112A is fixed to the output shaft end portion 112 of the first output shaft 11A in the speed reduction mechanism of the first motor 11, and a first absolute angle sensor 114 is provided so as to face the sensor magnet 112A. ing.
  • a two-pole sensor magnet 116A is fixed to the output shaft end portion 116 of the second output shaft 12A in the speed reduction mechanism of the second motor 12, and a second absolute angle sensor 118 is provided so as to face the sensor magnet 116A. ing.
  • the first absolute angle sensor 114 detects the magnetic field of the sensor magnet 112A
  • the second absolute angle sensor 118 detects the magnetic field of the sensor magnet 116A, and outputs a signal corresponding to the strength of the detected magnetic field.
  • the microcomputer 58 determines the rotational angle and rotational position of each of the first output shaft 11A of the first motor 11 and the second motor 12 based on the signals output from the first absolute angle sensor 114 and the second absolute angle sensor 118, respectively. The rotation direction and the rotation speed are calculated.
  • the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 can be calculated. Further, from the rotation angle of the second output shaft 12A of the second motor 12, the degree of apparent extension (degree of enlargement) of the passenger-side wiper arm 35 can be calculated.
  • the microcomputer 58 determines the rotation angle of the second output shaft 12A based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat wiper blade 18 calculated from the rotation angle of the first output shaft 11A. By controlling the above, the operations of the first motor 11 and the second motor 12 are synchronized.
  • the position (or the rotation angle of the first output shaft 11A) between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 and the rotation angle of the second output shaft 12A is stored in advance, and the rotation angle of the second output shaft 12A is controlled according to the rotation angle of the first output shaft 11A according to the map.
  • the washer motor drive circuit 57 includes a relay unit 84 incorporating two relays RLY1 and RLY2, and two FETs 86A and 86B.
  • the relay coils of the relays RLY1 and RLY2 of the relay unit 84 are connected to the relay drive circuit 78, respectively.
  • the relay drive circuit 78 switches the relays RLY1 and RLY2 on and off (excitation / excitation stop of the relay coil). When the relay coils are not excited, the relays RLY1 and RLY2 maintain the state in which the common terminals 84C1 and 84C2 are connected to the first terminals 84A1 and 84A2 (off state), respectively, and the relay coils are excited.
  • the common terminals 84C1 and 84C2 are switched to the state of connecting to the second terminals 84B1 and 84B2, respectively.
  • the common terminal 84C1 of the relay RLY1 is connected to one end of the washer motor 64, and the common terminal 84C2 of the relay RLY2 is connected to the other end of the washer motor 64.
  • the first terminals 84A1 and 84A2 of the relays RLY1 and RLY2 are connected to the drain of the FET 86B, and the second terminals 84B1 and 84B2 of the relays RLY1 and RLY2 are connected to the power source (+ B).
  • the FET 86B has a gate connected to the FET drive circuit 80 and a source grounded. The duty ratio related to the on / off of the FET 86B is controlled by the FET drive circuit 80.
  • An FET 86A is provided between the drain of the FET 86B and the power supply (+ B). The FET 86A is provided for the purpose of using a parasitic diode for absorbing a surge without switching on and off because no control signal is input to the gate.
  • the relay driving circuit 78 and the FET driving circuit 80 control the driving of the washer motor 64 by switching on and off the two relays RLY1, RLY2 and the FET 86B. That is, when rotating the output shaft of the washer motor 64 in a predetermined direction (forward rotation), the relay drive circuit 78 turns on the relay RLY1 (relay RLY2 is off), and the FET drive circuit 80 turns on the FET 86B with a predetermined duty ratio. Let With the above control, the rotation speed of the output shaft of the washer motor 64 is controlled.
  • FIG. 10A shows an example of a second output shaft rotation angle map that defines the rotation angle of the second output shaft 12A in accordance with the rotation angle of the first output shaft 11A in the present exemplary embodiment.
  • the horizontal axis of FIG. 10A is the first output shaft rotation angle ⁇ A that is the rotation angle of the first output shaft 11A
  • the vertical axis is the second output shaft rotation angle ⁇ B that is the rotation angle of the second output shaft 12A. is there.
  • the origin O in FIG. 10A shows a state where the passenger seat side wiper blade 36 is at the lower inversion position P2P.
  • ⁇ 1 indicates a state in which the first output shaft 11A is rotated by the first predetermined rotation angle ⁇ 1 and the passenger seat side wiper blade 36 is at the upper inversion position P1P.
  • the microcomputer 58 detects the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 and the second output shaft. Check the rotation angle map. With this collation, the second output shaft rotation angle ⁇ B corresponding to the first output shaft rotation angle ⁇ A detected by the first absolute angle sensor 114 is calculated from the angle indicated by the curve 190 in FIG. so that the second output shaft rotation angle theta B controls the rotation angle of the second output shaft 12A of the second motor 12.
  • FIG. 10A shows three second output shaft rotation angle maps of curves 190, 192, and 194.
  • a curve 190 indicates the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 100%.
  • a curve 192 represents the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 50%.
  • a curve 194 shows the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 0%.
  • may driving force affects the rotation angle of the second output shaft 12A is in fact might not always 0 ° regardless of the value of the first output shaft rotation angle theta a.
  • the microcomputer 58 determines that the first absolute angle sensor 114 starts changing the rotation angle of the first output shaft 11A of the first motor 11 from 0 ° in the positive rotation direction. It is determined that the wiper blade 36 has started to move from the lower inversion position P2P, and the second output shaft 12A starts to rotate forward. As described above, the microcomputer 58 determines the rotation angle of the second output shaft 12A corresponding to the rotation angle of the first output shaft 11A using the second output shaft rotation angle map. 2 The rotation angle of the second output shaft 12A is monitored based on the signal from the absolute angle sensor 118, and the rotation of the second motor 12 is controlled so as to be the rotation angle determined using the second output shaft rotation angle map. .
  • the second output shaft rotation angle map indicated by the curve 190 when the first output shaft rotation angle ⁇ A becomes an intermediate rotation angle ⁇ m between 0 ° and the first predetermined rotation angle ⁇ 1.
  • the rotation angle of the second output shaft 12A in the positive rotation is set to the second predetermined rotation angle ⁇ 2 .
  • the fifth axis L5 which is the fulcrum of the passenger seat side wiper arm 35, is positioned above the passenger seat side on the windshield glass 1 ( To the second position).
  • the rotation angle in the forward rotation of the second output shaft 12A reaches a second predetermined rotational angle theta 2
  • the rotation angle of the first output shaft 11A reaches the first predetermined rotational angle theta 1
  • the second output shaft 12A second predetermined rotation until the passenger's side wiper blade 36 reaches the upper reversal position P1P
  • the rotation angle of the second output shaft 12A is reduced to 0 °.
  • the fifth axis L5 that is the fulcrum of the passenger seat side wiper arm 35 is returned to the original position (first position).
  • the first output shaft rotation angle ⁇ A becomes an intermediate rotation angle ⁇ m between 0 ° and the first predetermined rotation angle ⁇ 1.
  • the rotation angle of the second output shaft 12A in the forward rotation is set to ⁇ 3 which is approximately 1 ⁇ 2 of the second predetermined rotation angle ⁇ 2 .
  • the fifth axis L5 which is a fulcrum of the passenger seat side wiper arm 35, is moved upward on the passenger seat side on the windshield glass 1.
  • the movement amount of the 5-axis line L5 is suppressed as compared with the case where the curve 190 is used, and the enlargement ratio is 50%.
  • the rotation angle of the second output shaft 12A is decreased according to the curve 192 that is the second output shaft rotation angle map. Specifically, the second output shaft 12A is reversed by ⁇ 3 until the rotation angle of the first output shaft 11A reaches the first predetermined rotation angle ⁇ 1 and the passenger seat wiper blade 36 reaches the upper inversion position P1P. By rotating, the rotation angle of the second output shaft 12A is reduced to 0 °. By the reverse rotation of the second output shaft 12A, the fifth axis L5 that is the fulcrum of the passenger seat side wiper arm 35 is returned to the original position (first position).
  • the wiping range Z2 is wiped while the passenger seat side wiper blade 36 is moved from the lower inversion position P2P to the upper inversion position P1P.
  • the rotation angle of the first output shaft 11A is reversed from 0 ° by the first absolute angle sensor 114.
  • the change starts in the rotation direction it is determined that the passenger-side wiper blade 36 has started to move from the upper reversal position P1P, and the second output shaft 12A of the second motor 12 starts to rotate forward.
  • the second output shaft rotation angle map shown in FIG. 10A is has a symmetrical curve 190 by an intermediate rotation angle theta m to the shaft, but is not limited thereto. The curve of the map is individually set according to the shape of the windshield glass 1 and the like.
  • the microcomputer 58 changes the wiping speed of the wiper blade based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 and the degree of enlargement of the passenger seat side wiper arm 35. It is also possible to perform control such as Hereinafter, an example of wiping speed control when the second predetermined rotation angle, which is the rotation angle of the second output shaft 12A, is set large to increase the degree of expansion of the passenger seat side wiper arm 35 will be described. In such a case, the rotation speed of the first output shaft 11A is gradually reduced as the rotation angle of the first output shaft 11A of the first motor 11 approaches the intermediate rotation angle.
  • the rotation angle of the first output shaft 11A reaches the intermediate rotation angle, that is, when the passenger seat side wiper arm 35 is extended to the maximum, control is performed so that the rotation speed of the first output shaft 11A is minimized.
  • a map (not shown) of the rotation speed of the first output shaft 11A defined according to the rotation angle of the first output shaft 11A is used for controlling the rotation speed of the first output shaft 11A.
  • the rotational speed of the second output shaft 12A is also controlled in accordance with the rotational speed of the first output shaft 11A. For example, if the second output shaft rotation angle map as shown in FIG. 10A is used, the rotation of the second output shaft 12A can be synchronized with the rotation of the first output shaft 11A.
  • the rotation speed of the second output shaft 12A can also be controlled. With this control, the speed at which the passenger-side wiper arm 35 is extended and the wiping speed of the passenger-side wiper blade 36 can be alleviated, and the possibility that the passenger feels uncomfortable that the passenger-side wiper arm 35 has suddenly extended can be reduced. .
  • the two second output shaft rotation angle maps of the curves 190 and 192 stored in the memory 60 are used, but as shown in FIG. 10B, the difference 200 between the curves 190 and 190 is obtained. May be stored in the memory 60, and the second output shaft rotation angle ⁇ B may be controlled using the curve 190 and the difference 200 when wiping at 50% magnification.
  • FIG. 11 shows an example of a change in the wiping range according to the enlargement ratio.
  • the wiping range Z1 shows the case where the enlargement rate is 0%
  • the wiping range Z2 shows the case where the enlargement rate is 100%
  • the wiping range Z3 shows the case where the enlargement rate is 50%.
  • the water droplets are scattered outside the front passenger seat (side surface of the vehicle) of the windshield glass 1 by changing the enlargement ratio according to the degree of the water droplet flowing down on the windshield glass 1. To prevent.
  • FIG. 12 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the exemplary embodiment.
  • step 120 it is determined whether or not the wiper switch 50 is turned on.
  • step 120 it is determined in step 122 whether or not a pedestrian or motorcycle has been detected in the left direction of the vehicle (outside the passenger seat).
  • Various methods are conceivable for detecting the pedestrian or the two-wheeled vehicle.
  • the pedestrian or the two-wheeled vehicle is detected by the millimeter wave radar 102 included in the vehicle.
  • step 124 a wiping operation is performed to make the enlargement rate at the backward movement smaller than the enlargement rate at the forward movement, and the process is returned.
  • the wiping operation is performed at an enlargement ratio of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement, and the curve during the backward movement.
  • the wiping operation is performed so that the enlargement ratio at the time of backward movement with respect to the enlargement ratio at the time of the previous forward movement becomes 50%.
  • the wiping operation of the wiper blade 36 on the passenger seat side is avoided while avoiding water droplets flowing down from the upper part on the passenger seat side of the windshield glass 1, so Scattering can be suppressed.
  • the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation
  • movement at the time of the outward movement which enlarged the expansion ratio the visibility from a driver's seat is ensured.
  • the operations of the forward movement enlargement ratio 100% in step 124 and the backward movement enlargement ratio 50% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned.
  • the number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines.
  • the passenger seat side wiper arm 35 is enlarged at the time of return. By suppressing the rate, it is possible to prevent water droplets from scattering to pedestrians and the like.
  • the millimeter wave radar 102 or the in-vehicle camera 94 In addition to detection by the millimeter wave radar 102 or the in-vehicle camera 94, by detecting radio waves transmitted from a portable information terminal carried by a pedestrian or the like, a pedestrian or the like existing outside the passenger seat of the vehicle is detected. May be. When radio waves from the portable information terminal are detected, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the enlargement ratio of the passenger-side wiper arm 35 during backward movement.
  • FIG. 13 shows an example of a second output shaft rotation angle map that defines the rotation angle of the second output shaft 12A according to the rotation angle of the first output shaft 11A in the present exemplary embodiment.
  • FIG. 13 shows a curve 190 showing the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 100%.
  • a curve 192 showing the rotation angle of the second output shaft when the enlargement ratio is 50% and a curve 194 showing the rotation angle of the second output shaft 12A when the enlargement ratio is 0% are also shown in FIG. 10A. The same.
  • curves 196 and 198 are added to FIG. 10A in addition to the curves 190, 192 and 194.
  • Curves 196 and 198 are second output shaft rotation angle maps for interpolating the enlargement ratios of the curves 190 and 192.
  • a curve 196 indicates the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 90%.
  • a curve 198 shows the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle ⁇ A when the enlargement ratio is 80%.
  • FIG. 14 shows an example of a change in the wiping range according to the enlargement ratio.
  • the wiping range Z1 has an enlargement rate of 0%
  • the wiping range Z2 has an enlargement rate of 100%
  • the wiping range Z3 has an enlargement rate of 50%
  • the wiping range Z4 has an enlargement rate of 90%.
  • the wiping range Z5 indicates the case where the enlargement ratio is 80%.
  • water droplets are prevented from scattering outside the front passenger seat of the windshield glass 1 by changing the enlargement ratio according to the situation.
  • FIG. 15 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the exemplary embodiment.
  • step 150 it is determined whether or not the wiper switch 50 is turned on.
  • step 150 determines whether or not a pedestrian or motorcycle has been detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate
  • step 154 it is determined in step 154 whether or not the vehicle has been decelerated.
  • the vehicle is decelerating. For example, when the brake pedal is depressed, it is determined that the vehicle is decelerating. Alternatively, it may be determined that the vehicle is decelerated based on the decrease amount of the vehicle speed detected by the vehicle speed sensor 92 per unit time, or a separate acceleration sensor (not shown) is provided, and the vehicle is decelerated based on the detection result of the acceleration sensor. May be determined.
  • step 154 the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 166, and the second output shaft rotation of the curve 192 is performed during the backward movement.
  • the wiping operation is performed so that the enlargement ratio at the time of backward movement with respect to the enlargement ratio at the time of the previous forward movement is 50%, and the process is returned.
  • the vehicle decelerates, the vehicle is turned forward, so that water droplets on the vehicle roof flow down onto the windshield glass 1.
  • the enlargement ratio of the passenger-side wiper arm 35 is large, there is a high possibility that water droplets are scattered on a pedestrian or the like existing outside the passenger seat.
  • the enlargement rate at the time of reverse movement with respect to the enlargement rate at the time of the previous forward movement is set to 50% or 50% or less as an example to prevent water droplets from being scattered to a pedestrian or the like.
  • the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation
  • the operation of the enlargement rate during forward movement 100% in step 166 and the enlargement rate 50% during backward movement with respect to the enlargement rate during the previous forward movement is executed at a predetermined number of reciprocations of 1 or more and the process is returned.
  • the number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines.
  • steps 158, 162, and 164 which will be described later, the wiping operation is performed a predetermined number of times of reciprocation, and the process is returned, but each time of reciprocation in steps 158, 162, and 164 is effective for water droplets on the windshield glass 1.
  • the number of times may be different from that in the case of step 166, and may be different in each of steps 158, 162, and 164.
  • step 156 it is determined in step 156 whether or not the vehicle speed is greater than or equal to a first predetermined value.
  • the first predetermined value is 30 km / h. If the determination in step 156 is affirmative, the second output shaft rotation angle map of the curve 190 is used in step 158, the enlargement rate during the forward movement is 100%, and the enlargement during the backward operation with respect to the enlargement rate during the previous forward movement. The wiping operation is performed at a rate of 100%, and the process returns. If the vehicle speed is above a certain level, the water droplets on the windshield glass 1 and on the roof are blown backwards by the driving wind. This is because there is less risk of scattering.
  • step 160 it is determined in step 160 whether or not the vehicle speed is greater than or equal to a second predetermined value.
  • the second predetermined value is 10 km / h. If the determination in step 160 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 162, and the second output shaft rotation of the curve 196 is performed during the backward movement. Using the angle map, for example, the wiping operation is performed so that the enlargement rate at the backward movement is 90% with respect to the enlargement rate at the previous forward movement, and the processing is returned.
  • the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 164, and the second output of the curve 198 is performed during the backward movement.
  • the wiping operation is performed using the shaft rotation angle map so that the enlargement ratio at the backward movement is 80% with respect to the enlargement ratio at the previous forward movement, and the process is returned.
  • the enlargement ratio of the passenger-side wiper arm 35 during backward movement is minimized, and in other cases, the vehicle speed increases as the vehicle speed increases.
  • the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of reverse movement is 100%, 90%, or 80% according to the vehicle speed. It is not limited to these.
  • the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of reverse movement is 95%, 90%, or 85% according to the vehicle speed.
  • FIG. 16 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the present exemplary embodiment.
  • step 600 it is determined whether or not the wiper switch 50 is turned on.
  • step 600 it is determined in step 602 whether or not a pedestrian or two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate
  • step 602 If the determination in step 602 is affirmative, the rotation speed of the first output shaft 11A is calculated from the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 in step 604, and the calculated rotation speed is calculated. It is determined whether or not it corresponds to the high speed operation mode.
  • a wiping operation is performed at an enlargement ratio of 100% using the second output shaft rotation angle map of the curve 190 during forward movement in step 606.
  • the enlargement ratio is 70% during backward movement.
  • a wiping operation is performed so that the enlargement ratio at the time of backward movement relative to the enlargement ratio at the time of the previous forward movement is 70%, and the process is returned. The greater the wiping speed of the front passenger side wiper blade 36, the easier the water droplets are scattered to the outside of the front passenger seat due to centrifugal force.
  • the wiping speed when the wiping speed is equivalent to the high-speed operation mode, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the enlargement rate at the backward movement relative to the enlargement rate at the forward movement. To do.
  • the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation
  • Step 606 the operations of the forward movement enlargement ratio of 100% in step 606 and the backward movement enlargement ratio of 70% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned.
  • the number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines.
  • Steps 610 and 612 which will be described later, the wiping operation is performed for a predetermined number of reciprocations, and the process is returned.
  • the number of reciprocations in Steps 610 and 612 can effectively remove water droplets on the windshield glass 1. If there is, the number of times may be different from the case of step 606, and may be different in each of steps 606, 610, and 612.
  • step 608 it is determined in step 608 whether the rotation speed calculated from the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 is equivalent to the low speed operation mode. If the determination in step 608 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 610, and the second output shaft rotation of the curve 198 is performed during the backward movement. Using the angle map, for example, the wiping operation is performed so that the enlargement rate at the backward movement is 80% with respect to the enlargement rate at the previous forward movement, and the process is returned.
  • the wiping speed of the passenger-side wiper blade 36 is considered to be equivalent to the intermittent operation mode, and the forward output in step 612 uses the second output shaft rotation angle map of the curve 190.
  • Wiping operation is performed at an enlargement rate of 100%, and at the time of backward movement, using the second output shaft rotation angle map of the curve 196, for example, the enlargement rate at the time of backward movement is 90% with respect to the enlargement rate at the time of the previous forward movement.
  • the enlargement ratio of the passenger-side wiper arm 35 at the time of forward movement is decreased as the wiping speed becomes higher such as the intermittent operation mode, the low speed operation mode, and the high speed operation mode.
  • the wiping speed of the passenger-side wiper blade 36 increases, the non-wiping range X becomes larger at the time of backward movement. However, if the wiping speed is faster, the wiping speed at the next forward movement can be quickly shifted. And since it wipes off with the expansion rate of 100% at the time of forward movement, the non-wiping range X can be wiped off effectively.
  • the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 80%, or 70% according to the wiping speed.
  • the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 85%, or 80% according to the wiping speed.
  • FIG. 17 is a flowchart showing an example of water droplet scattering prevention processing in the wiper system 100 according to the present exemplary embodiment.
  • step 700 it is determined whether or not the wiper switch 50 is turned on.
  • step 700 it is determined in step 702 whether or not a pedestrian or two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate
  • step 704 the amount of water on the windshield glass 1 is calculated from the state of attachment of water droplets detected on the windshield glass 1 detected by the rain sensor 76, and the calculated amount of water is the first threshold value. It is determined whether it is above.
  • the calculated amount of water is, for example, a numerical value equivalent to one hour of rainfall. In this exemplary embodiment, as an example, when the amount of water on the windshield glass 1 corresponds to a moderate amount of rainfall equivalent to 10 mm in one hour of rainfall, an affirmative determination is made in step 704.
  • the wiping operation is performed at an enlargement rate of 100% using the second output shaft rotation angle map of the curve 190 in the forward movement in step 706, and as an example, the enlargement rate is 70% in the backward movement.
  • a wiping operation is performed so that the enlargement ratio at the time of backward movement relative to the enlargement ratio at the time of the previous forward movement is 70%, and the process is returned. As the amount of water on the windshield glass 1 increases, water droplets are more likely to be scattered outside the passenger seat.
  • the amount of water when the amount of water is equal to or greater than the first threshold value, it is possible to prevent water droplets from scattering to pedestrians and the like by suppressing the enlargement rate at the time of backward movement relative to the enlargement rate at the time of forward movement. .
  • the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation
  • the operations of the forward movement enlargement ratio of 100% in step 706 and the backward movement enlargement ratio of 70% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned.
  • the number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines.
  • steps 710 and 712 which will be described later, the wiping operation is performed for a predetermined number of reciprocations, and the process is returned.
  • each reciprocation in steps 710 and 712 can effectively remove water droplets on the windshield glass 1. If so, the number of times may be different from that in step 706, and may be different in each of steps 706, 710, and 712.
  • the second threshold value is an amount of water corresponding to weak rain of about 1 to 3 mm in one hour of rainfall.
  • the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 710, and the second output shaft rotation of the curve 198 is performed during the backward movement.
  • the wiping operation is performed so that the enlargement rate at the backward movement is 80% with respect to the enlargement rate at the previous forward movement, and the process is returned.
  • the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 712, and the second output of the curve 196 is performed during the backward movement.
  • the wiping operation is performed so that the enlargement ratio at the backward movement relative to the enlargement ratio at the previous forward movement is 90%, and the process is returned. This is because if the amount of water on the windshield glass 1 is small, the possibility of water droplets scattering outside the passenger seat is reduced even if the enlargement ratio of the passenger-side wiper arm 35 is increased.
  • the enlargement ratio of the passenger-side wiper arm 35 at the time of forward movement is reduced as the amount of water on the windshield glass 1 is increased, thereby preventing water droplets from scattering to pedestrians and the like.
  • the non-wiping range X becomes larger at the time of backward movement, but at the next forward movement, wiping is performed at an enlargement rate of 100%, so that the non-wiping range X can be effectively wiped off. .
  • the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 80%, or 70% according to the amount of water on the windshield glass 1.
  • the present disclosure is not limited to this.
  • the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of backward movement is 90%, 85%, or 80%.
  • the first output shaft 11A of the first motor 11 and the second output shaft 12A of the second motor 12 are controlled to be able to rotate forward and backward (reciprocating). It is not limited to.
  • one of the first output shaft 11A and the second output shaft 12A may rotate in one direction.
  • each of the exemplary embodiments of the present disclosure causes the driver seat side wiper blade 18 and the passenger seat side wiper blade 36 to be turned upside down with respect to the upper turning positions P1D and P1P by the rotation of the first output shaft 11A of the first motor 11.
  • the first motor 11 includes a “driver's seat side first motor” and a “passenger's seat side first motor”, and the driver seat side wiper blade 18 is moved down to the upper inversion position P1D by the rotation of the driver seat side first motor.
  • the structure may be such that the passenger seat side wiper blade 36 is moved between the upper inversion position P1P and the lower inversion position P2P by moving between the inversion position P2D and rotation of the first passenger seat side motor.
  • the driver-side wiper blade 18 and the passenger-side wiper blade 36 have a structure that does not overlap in the vehicle width direction at the lower inversion positions P2D and P2P. It is not limited to.
  • the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 may be set longer.
  • the length of the passenger seat side wiper blade 36 is set so that the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 overlaps the passenger seat side wiper blade 36 side of the driver seat side wiper blade 18. Also good. Thereby, when wiping the wiping range Z2 during the reciprocating motion, it is possible to reduce the non-wiping area that remains on the lower center side of the windshield glass.
  • the passenger-side wiper arm 35 (passenger-side wiper blade 36) is extended to the vicinity of the intermediate angle at the predetermined rotation angle of the first output shaft 11A, and the vicinity of the intermediate angle.
  • the control for reducing the passenger-side wiper arm 35 (passenger-side wiper blade 36) is performed between the first rotation angle and the predetermined rotation angle, but the present invention is not limited to this.
  • the passenger seat side wiper blade 36 wipes from the lower inversion position P2P toward the upper inversion position P1P (during forward wiping)
  • the passenger seat side wiper arm 35 may be controlled to gradually extend.
  • the exemplary embodiment using the rotation angle of the first output shaft 11A of the first motor 11 and the rotation angle of the second output shaft 12A of the second motor 12 has been described. Instead of this, the rotational position of the first output shaft 11A and the rotational position of the second output shaft 12A may be used.
  • the expansion of the wiping range is performed after one or more predetermined times, and then the process is returned.
  • the present invention is not limited to this.
  • the wiping range has been expanded a predetermined number of times of 1 or more and the dirt or the like of the non-wiping range X has not been removed, it is determined that the situation cannot be removed (freezing or clouding on the inner surface)
  • the expansion of the wiping range is not executed in a situation where removal is not possible even if the wiping range such as freezing or fogging of the inner surface is expanded, the uncomfortable feeling in the operation of the wiper device 2 can be suppressed.
  • the first motor 11 and the second motor 12 are controlled to wipe the wiping range Z2 in a situation where a wide field of view on the passenger seat side should be secured.
  • An “automatic enlargement changeover switch” that can cancel the execution of the above may be separately provided.
  • the wiping range Z1 can be wiped without executing the enlargement of the wiping range even in a situation where a wide field of view on the passenger seat side should be secured.
  • the wiping range is not expanded (wiping of the wiping range Z2).
  • the position where the automatic enlargement changeover switch is provided is not limited.
  • the second motor 12 is controlled so as to suppress the enlargement rate at the time of reverse movement relative to the enlargement rate at the time of forward movement according to the vehicle speed, the wiping speed, and the amount of water.
  • the present disclosure is not limited to this.
  • a mode may be provided in which the second motor 12 is controlled so that the enlargement rate during movement relative to the enlargement rate during movement depends on the conditions (vehicle speed, wiping speed, and water amount).
  • the present disclosure it is determined whether a pedestrian or a two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat) by the millimeter wave radar 102 or the in-vehicle camera 94 as the in-vehicle sensor. It was. However, the present disclosure is not limited to this. For example, it may be determined whether a pedestrian or a two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat) with an ultrasonic sensor such as an ultrasonic sonar.

Abstract

Provided is a vehicular wiper device equipped with: a first motor which, by rotation of a first output shaft, causes a wiper blade connected to the leading end of a wiper arm to perform a wiping action between two different reversal positions on a windshield; a second motor which, by rotation of a second output shaft in synchronization with the rotation of the first motor, actuates an extending/contracting mechanism provided to the wiper arm so as to allow the wiping range of the wiper blade on the windshield to vary; and a control unit which controls the first and second motors such that the wiping range along the outward path is smaller than the wiping range along the return path.

Description

車両用ワイパ装置及び車両用ワイパ装置の制御方法WIPER WIPER DEVICE AND CONTROL METHOD FOR VEHICLE WIPER DEVICE
 本開示は、払拭範囲を拡大できる車両用ワイパ装置、及び車両用ワイパ装置の制御方法に関する。 The present disclosure relates to a vehicle wiper device that can expand a wiping range, and a control method for the vehicle wiper device.
 自動車のウィンドシールドガラス等を払拭するワイパ装置は、図18Aに示したように、先端部にワイパブレード154D、154Pが連結されたワイパアーム150D、150Pを、ワイパモータによって、下反転位置P4D、P4Pと上反転位置P3D、P3Pとの間を往復動作させている。ワイパアーム150D、150Pの動作の軌跡は、多くの場合、ワイパアーム150D、150Pのピボット軸152D、152Pを中心とした略円弧状である。従って、ワイパブレード154D、154Pがウィンドシールドガラス1等を払拭する領域である払拭範囲156D、156Pは、ピボット軸152D、152Pを中心とした略扇形を呈する。 As shown in FIG. 18A, the wiper device for wiping the windshield glass of an automobile has wiper arms 150D and 150P with wiper blades 154D and 154P connected to the front end portions thereof, and a wiper motor and lower inversion positions P4D and P4P. The reciprocation is performed between the reversal positions P3D and P3P. In many cases, the trajectories of the operations of the wiper arms 150D and 150P are substantially arc-shaped around the pivot shafts 152D and 152P of the wiper arms 150D and 150P. Accordingly, the wiping ranges 156D and 156P, which are areas where the wiper blades 154D and 154P wipe the windshield glass 1 and the like, have a substantially fan shape centered on the pivot shafts 152D and 152P.
 特開2014-83993号公報、特開2012-224231号公報には、略扇形の払拭範囲156D、156Pを払拭する、ワイパ装置が開示されている。 JP 2014-83993 A and JP 2012-224231 A disclose wiper devices that wipe the substantially fan- shaped wiping ranges 156D and 156P.
 自動車のウィンドシールドガラス1は、略等脚台形状を呈している。従って、特開2014-83993号公報、2に開示された2本のワイパアーム150D、150Pが同時に同方向に回動する並行(タンデム)型のワイパ装置では、ピボット軸152D、152Pをウィンドシールドガラス1の下方に設けた場合、運転席側のワイパブレード154Dの上反転位置P3Dは、略等脚台形を呈するウィンドシールドガラス1の運転席側の脚(等脚台形の縦方向の辺)1Bに近い位置で当該脚に並行して設けられる。 The car windshield glass 1 has a substantially isosceles trapezoidal shape. Therefore, in the parallel (tandem) type wiper device in which the two wiper arms 150D and 150P disclosed in JP 2014-83993 A and 2 simultaneously rotate in the same direction, the pivot shafts 152D and 152P are connected to the windshield glass 1. The upper reversal position P3D of the wiper blade 154D on the driver's seat side is close to the leg (vertical side of the isosceles trapezoidal shape) 1B of the windshield glass 1 having a substantially isosceles trapezoid shape. In parallel with the leg in position.
 特開2014-83993号公報、特開2012-224231号公報に開示されたワイパ装置の助手席側のワイパブレード154Pの上反転位置P3Pも、運転席側のウィンドシールドガラス1を優先的に払拭するために、ウィンドシールドガラス1の運転席側の脚1Bに並行して設けられる。 The upper reversal position P3P of the wiper blade 154P on the passenger seat side of the wiper device disclosed in JP 2014-83993A and JP 2012-224231 also preferentially wipes the windshield glass 1 on the driver seat side. Therefore, the windshield glass 1 is provided in parallel with the leg 1B on the driver's seat side.
 しかしながら、前述のように、ワイパブレード154Pの払拭範囲は、略扇形を呈するので、上反転位置P3Pが上述の位置に設けられると、ウィンドシールドガラス1の助手席側の上部の角1Cを中心として、ワイパブレード154Pによって払拭されない非払拭範囲158が生じる。 However, as described above, the wiping range of the wiper blade 154P has a substantially fan shape. Therefore, when the upper inversion position P3P is provided at the above-described position, the upper corner 1C of the windshield glass 1 on the passenger seat side is the center. A non-wiping range 158 that is not wiped by the wiper blade 154P is generated.
 非払拭範囲158には、ワイパブレード154Pが下反転位置P4Pから上反転位置P3Pを払拭する往動時に水滴が集まりやすい。非払拭範囲158に集められた水滴は、払拭範囲156Pに流下する。ワイパブレード154Pが上反転位置P3Pから下反転位置P4Pを払拭する復動時に、水滴は、ワイパブレード154Pによって払拭範囲156Pから除去される。しかしながら、図18Bに示したように、除去された水滴の一部は、飛沫160になってウィンドシールドガラス1の助手席外側に飛散する。この場合、居合わせた歩行者、二輪車の乗員等が、当該飛沫を浴びてしまう。 In the non-wiping range 158, water droplets are likely to gather when the wiper blade 154P is wiped from the lower inversion position P4P to the upper inversion position P3P. Water droplets collected in the non-wiping range 158 flow down to the wiping range 156P. When the wiper blade 154P wipes from the upper reverse position P3P to the lower reverse position P4P, water droplets are removed from the wiping range 156P by the wiper blade 154P. However, as shown in FIG. 18B, some of the removed water droplets become splashes 160 and scatter outside the passenger seat of the windshield glass 1. In this case, pedestrians who are present, occupants of motorcycles, etc. are exposed to the splashes.
 本開示は、歩行者等への水滴の飛散を防止する、車両用ワイパ装置、及び車両用ワイパ装置の制御方法を提供する。 The present disclosure provides a vehicle wiper device and a vehicle wiper device control method for preventing water droplets from being scattered to a pedestrian or the like.
 本開示の第1の態様は、車両用ワイパ装置であって、第1出力軸の回転によりワイパアームの先端部に連結されたワイパブレードをウィンドシールド上の異なる2つの反転位置間で払拭動作させる第1駆動源と、前記第1駆動源の駆動に同期させた第2出力軸の回転により前記ワイパアームに設けられた伸縮機構を作動させて前記ワイパブレードによる前記ウィンドシールドの払拭範囲を可変させる第2駆動源と、往路払拭時の払拭範囲より復路払拭時の払拭範囲が小さくなるように前記第1駆動源及び前記第2駆動源を制御する制御部と、を備えている。 A first aspect of the present disclosure is a vehicle wiper device in which a wiper blade connected to a tip portion of a wiper arm is rotated between two different inversion positions on a windshield by rotation of a first output shaft. A second driving shaft and a second output shaft synchronized with the driving of the first driving source to operate a telescopic mechanism provided on the wiper arm to vary a wiping range of the windshield by the wiper blade; A driving source; and a control unit that controls the first driving source and the second driving source so that a wiping range at the time of backward wiping is smaller than a wiping range at the time of wiping forward.
 第1の態様の車両用ワイパ装置は、第1駆動源の駆動に同期させて第2駆動源の駆動を制御する。かかる制御により、伸縮機構を作動させ、ワイパブレードによるウィンドシールドの払拭範囲を可変(拡大)し、ウィンドシールドの助手席側の払拭範囲を拡大する。第1の態様の車両用ワイパ装置は、ワイパブレードが下反転位置から上反転位置に移動する往路払拭時の払拭範囲よりも、ワイパブレードが上反転位置から下反転位置に移動する復路払拭時の払拭範囲を小さくすることで、車両の側面側への水滴の飛散を抑制することにより、歩行者等への水滴の飛散を防止できる。 The vehicle wiper device according to the first aspect controls the drive of the second drive source in synchronization with the drive of the first drive source. By such control, the telescopic mechanism is operated, the wiping range of the windshield by the wiper blade is variable (enlarged), and the wiping range on the passenger seat side of the windshield is expanded. The vehicular wiper device according to the first aspect is more effective at the time of return wiping when the wiper blade moves from the upper inversion position to the lower inversion position than the wiping range at the time of forward wiping in which the wiper blade moves from the lower inversion position to the upper inversion position. By reducing the wiping range, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the water droplets from flying to the side of the vehicle.
 本開示の第2の態様は、上記態様において、前記制御部は、前記往路払拭時及び前記復路払拭時における前記伸縮機構の各々の拡大率を決定し、前記伸縮機構が決定した拡大率で作動するように前記第1駆動源及び前記第2駆動源を制御してもよい。 According to a second aspect of the present disclosure, in the above aspect, the control unit determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of the forward path wiping and the return path wiping, and operates at an expansion ratio determined by the expansion / contraction mechanism. Thus, the first drive source and the second drive source may be controlled.
 第2の態様の車両用ワイパ装置は、往路払拭時に水滴が飛散する程度に応じて、往路払拭時及び復路払拭時における伸縮機構の各々の拡大率を決定する。かかる拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、第2の態様の車両用ワイパ装置は、歩行者等への水滴の飛散を防止できる。 The vehicular wiper device according to the second aspect determines the expansion ratio of each of the expansion and contraction mechanisms at the time of outward wiping and at the time of backward wiping according to the degree of water droplets scattered at the time of outward wiping. By controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at such an enlargement ratio, the vehicle wiper device of the second aspect can prevent water droplets from scattering to pedestrians and the like.
 本開示の第3の態様は、上記態様において、車両の速度情報を取得する車両速度情報検出部をさらに備え、前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to a third aspect of the present disclosure, in the above aspect, the vehicle speed information detection unit further acquires vehicle speed information, and the control unit is based on the speed information detected by the vehicle speed information detection unit. You may determine the expansion rate at the time of the said outward wiping, and the expansion rate at the time of the said return wiping.
 第3の態様の車両用ワイパ装置は、車両の速度情報に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 The vehicle wiper device according to the third aspect controls the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the speed information of the vehicle. Water droplets can be prevented from scattering.
 本開示の第4の態様は、上記第3の態様において、前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両が減速した場合は、前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a fourth aspect of the present disclosure, in the third aspect, when the vehicle decelerates based on speed information detected by the vehicle speed information detection unit, the control unit You may make the expansion rate at the time of the said return path wiping small with respect to an expansion rate.
 第4の態様の車両用ワイパ装置によれば、車両が減速した場合にはウィンドシールド及び車両のルーフ上の水滴がウィンドシールドに流下する量が顕著となるので、往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 According to the vehicle wiper device of the fourth aspect, when the vehicle decelerates, the amount of water drops on the windshield and the vehicle roof flowing down to the windshield becomes significant. In addition, by reducing the enlargement rate at the time of wiping the return path, it is possible to prevent water droplets from being scattered to pedestrians.
 本開示の第5の態様は、上記第3、第4の態様において、前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両の速度が低いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a fifth aspect of the present disclosure, in the third and fourth aspects, the control unit is configured to wipe the outward path as the vehicle speed decreases based on the speed information detected by the vehicle speed information detection unit. You may make small the expansion rate at the time of the said return path wiping with respect to the expansion rate of time.
 車両の速度が大きければ走行風によりウィンドシールド上の水滴は後方へ吹き流されるが、車両の速度が小さい場合には、走行風により後方に吹き流される水滴は少なくなる。従って、第5の態様の車両用ワイパ装置は、車両の速度が低いほど往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 If the vehicle speed is high, water droplets on the windshield are blown backward by the traveling wind, but if the vehicle speed is low, the water droplets blown backward by the traveling wind are reduced. Accordingly, the vehicle wiper device according to the fifth aspect prevents the water droplets from being scattered to pedestrians and the like by reducing the enlargement rate at the time of the backward wiping with respect to the enlargement rate at the time of the outward wiping as the vehicle speed is lower. it can.
 本開示の第6の態様は、上記第1、第2の態様において、前記第1出力軸の回転角度を検出する第1回転角度検出部をさらに備え、前記制御部は、前記第1回転角度検出部で検出した前記回転角度に基づいて算出した前記第1出力軸の回転速度に応じて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to a sixth aspect of the present disclosure, in the first and second aspects, the sixth aspect further includes a first rotation angle detection unit that detects a rotation angle of the first output shaft, and the control unit includes the first rotation angle. The enlargement rate at the time of the forward pass wiping and the enlargement rate at the time of the return pass wiping may be determined according to the rotation speed of the first output shaft calculated based on the rotation angle detected by the detection unit.
 第6の態様の車両用ワイパ装置は、第1出力軸の回転速度に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 According to the sixth aspect of the vehicle wiper device, the pedestrian is controlled by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the rotation speed of the first output shaft. It is possible to prevent water droplets from being scattered on the surface.
 本開示の第7の態様は、上記第6の態様において、前記制御部は、前記第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a seventh aspect of the present disclosure, in the sixth aspect, the control unit increases the enlargement rate during the return pass wiping with respect to the enlargement rate during the forward pass wiping as the rotational speed of the first output shaft increases. It may be small.
 ワイパブレードの払拭速度、すなわち第1駆動源の第1出力軸の回転速度が大きければ、車両の側面側への水滴の飛散は顕著になる。従って、第7の態様の車両用ワイパ装置は、第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 If the wiping speed of the wiper blade, that is, the rotational speed of the first output shaft of the first drive source is high, the splash of water droplets on the side surface of the vehicle becomes remarkable. Therefore, the vehicular wiper device according to the seventh aspect can be used for a pedestrian or the like by reducing the enlargement ratio at the time of the backward wiping with respect to the enlargement ratio at the time of the outward wiping as the rotation speed of the first output shaft is larger. Can prevent water droplets from splashing.
 本開示の第8の態様は、上記第1、第2の態様において、前記ウィンドシールドに付着する水滴を検出する水滴検出部をさらに備え、前記制御部は、前記水滴検出部の検知結果に基づいて算出した前記ウィンドシールド上の水量に応じて前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to an eighth aspect of the present disclosure, in the first and second aspects, the eighth aspect of the present disclosure further includes a water droplet detection unit that detects water droplets attached to the windshield, and the control unit is based on a detection result of the water droplet detection unit. Depending on the amount of water on the windshield calculated as described above, the enlargement rate at the time of the forward wiping and the enlargement rate at the time of the return wiping may be determined.
 第8の態様の車両用ワイパ装置は、ウィンドシールド上の水量に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 The vehicle wiper device according to the eighth aspect controls the first drive source and the second drive source so that the telescopic mechanism operates at an enlargement ratio determined according to the amount of water on the windshield, thereby enabling a pedestrian or the like to Can prevent water droplets from splashing.
 本開示の第9の態様は、上記第8の態様において、前記制御部は、前記水量が多いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 In a ninth aspect of the present disclosure, in the eighth aspect, the control unit may reduce the enlargement ratio at the time of the return path wiping with respect to the enlargement ratio at the time of the outward wiping as the amount of water increases.
 ウィンドシールド上の水量が多いほど車両の側面側への水滴の飛散は顕著になる。従って、第9の態様の車両用ワイパ装置は、当該水量多いほど往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 ¡The more water on the windshield, the more water droplets are scattered on the side of the vehicle. Therefore, the vehicular wiper device according to the ninth aspect can prevent water droplets from being scattered to pedestrians and the like by reducing the enlargement rate during the return pass wiping with respect to the enlargement rate during the outward pass wiping as the amount of water increases.
 本開示の第10の態様は、上記態様において、歩行者及び二輪車を検出する車載センサをさらに備え、前記制御部は、前記車載センサによって歩行者又は二輪車を検知した場合に、前記復路払拭時の拡大率を前記往路払拭時の拡大率よりも小さくしてもよい。 A tenth aspect of the present disclosure further includes an in-vehicle sensor that detects a pedestrian and a two-wheeled vehicle in the above-described aspect, and the control unit detects the pedestrian or the two-wheeled vehicle by the in-vehicle sensor and The enlargement rate may be made smaller than the enlargement rate at the time of wiping the outward path.
 第10の態様の車両用ワイパ装置は、車載センサによって歩行者等を検出した場合、往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 When the vehicle wiper device according to the tenth aspect detects a pedestrian or the like by a vehicle-mounted sensor, it reduces the enlargement rate at the time of wiping the return path with respect to the enlargement rate at the time of the outward wiping, thereby Spattering can be prevented.
 本開示の第11の態様は、車両用ワイパ装置の制御方法であって、第1駆動源の第1出力軸の回転によりワイパアームの先端部に連結されたワイパブレードをウィンドシールド上の異なる2つの反転位置間で払拭動作させる第1駆動源作動ステップと、前記第1駆動源の駆動に同期させた第2駆動源の第2出力軸の回転により前記ワイパアームに設けられた伸縮機構を作動させて前記ワイパブレードによる前記ウィンドシールドの払拭範囲を可変させる第2駆動源作動ステップと、往路払拭時の払拭範囲より復路払拭時の払拭範囲が小さくなるように前記第1駆動源及び前記第2駆動源を制御する制御ステップと、を備えている。 An eleventh aspect of the present disclosure is a method for controlling a vehicle wiper device, wherein two different wiper blades connected to the tip of a wiper arm by rotation of a first output shaft of a first drive source are arranged on a windshield. A first driving source actuating step for performing a wiping operation between the reversing positions; and a telescopic mechanism provided on the wiper arm by actuating the second output shaft of the second driving source synchronized with the driving of the first driving source. A second driving source actuating step for changing the wiping range of the windshield by the wiper blade; and the first driving source and the second driving source so that the wiping range at the time of the return pass wiping is smaller than the wiping range at the time of the forward pass wiping. And a control step for controlling.
 第11の態様の車両用ワイパ装置の制御方法は、第1駆動源の駆動に同期させて第2駆動源の駆動を制御する。かかる制御により、伸縮機構を作動させ、ワイパブレードによるウィンドシールドの払拭範囲を可変(拡大)し、ウィンドシールドの助手席側の払拭範囲を拡大する。第11の態様の車両用ワイパ装置の制御方法は、ワイパブレードが下反転位置から上反転位置に移動する往路払拭時の払拭範囲よりも、ワイパブレードが上反転位置から下反転位置に移動する復路払拭時の払拭範囲を小さくすることで、車両の側面側への水滴の飛散を抑制することにより、歩行者等への水滴の飛散を防止できる。 The control method of the vehicle wiper device according to the eleventh aspect controls the driving of the second driving source in synchronization with the driving of the first driving source. By such control, the telescopic mechanism is operated, the wiping range of the windshield by the wiper blade is variable (enlarged), and the wiping range on the passenger seat side of the windshield is expanded. The control method of the vehicle wiper device according to the eleventh aspect is such that the wiper blade moves from the upper reversal position to the lower reversal position than the wiping range at the time of forward wiping when the wiper blade moves from the lower reversal position to the upper reversal position. By reducing the wiping range at the time of wiping, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the water droplets from flying to the side of the vehicle.
 本開示の第12の態様は、上記第11の態様において、前記制御ステップは、前記往路払拭時及び前記復路払拭時における前記伸縮機構の各々の拡大率を決定し、前記伸縮機構が決定した拡大率で作動するように前記第1駆動源及び前記第2駆動源を制御してもよい。 According to a twelfth aspect of the present disclosure, in the eleventh aspect, in the eleventh aspect, the control step determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of the forward wiping and the return wiping, and the expansion mechanism determines The first drive source and the second drive source may be controlled to operate at a rate.
 第12の態様の車両用ワイパ装置の制御方によれば、往路払拭時に水滴が飛散する程度に応じて、往路払拭時及び復路払拭時における伸縮機構の各々の拡大率を決定する。第12の態様の車両用ワイパ装置の制御方は、かかる拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 According to the control method of the vehicle wiper device of the twelfth aspect, the enlargement ratio of each of the expansion and contraction mechanisms at the time of the forward wiping and at the time of the backward wiping is determined according to the degree of the water droplets scattered at the time of the forward wiping. The vehicle wiper device according to the twelfth aspect controls the first drive source and the second drive source so that the expansion / contraction mechanism operates at such an enlargement ratio, thereby preventing water droplets from scattering to pedestrians and the like. it can.
 本開示の第13の態様は、上記第11、第12の態様において、前記制御ステップは、車両の速度情報を取得する車両速度情報検出部で検出された速度情報に基づいて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to a thirteenth aspect of the present disclosure, in the eleventh and twelfth aspects, the control step is based on speed information detected by a vehicle speed information detection unit that acquires vehicle speed information. And an enlargement rate at the time of wiping the return pass may be determined.
 第13の態様の車両用ワイパ装置の制御方法は、車両の速度情報に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 According to a thirteenth aspect of the vehicle wiper device control method, the pedestrian is controlled by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to vehicle speed information. It is possible to prevent water droplets from being scattered on the surface.
 本開示の第14の態様は、上記第13の態様において、前記制御ステップは、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両が減速した場合は、前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a fourteenth aspect of the present disclosure, in the thirteenth aspect, in the thirteenth aspect, when the vehicle decelerates based on speed information detected by the vehicle speed information detection unit, You may make the expansion rate at the time of the said return path wiping small with respect to an expansion rate.
 車両が減速した場合、ウィンドシールド及び車両のルーフ上の水滴がウィンドシールドに流下する量が顕著となるので、第14の態様の車両用ワイパ装置の制御方法は、往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 When the vehicle decelerates, the amount of water drops on the windshield and the vehicle roof flowing down to the windshield becomes significant. Therefore, the control method for the vehicle wiper device according to the fourteenth aspect is In addition, by reducing the enlargement rate at the time of wiping the return path, it is possible to prevent water droplets from being scattered to pedestrians.
 本開示の第15の態様は、上記第13、第14の態様において、前記制御ステップは、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両の速度が低いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a fifteenth aspect of the present disclosure, in the thirteenth and fourteenth aspects, the control step is configured such that, based on the speed information detected by the vehicle speed information detection unit, the forward wiping is performed as the vehicle speed decreases. You may make small the expansion rate at the time of the said return path wiping with respect to the expansion rate of time.
 車両の速度が大きければ走行風によりウィンドシールド上の水滴は後方へ吹き流されるが、車両の速度が小さい場合には、走行風により後方に吹き流される水滴は少なくなる。従って、第15の態様の車両用ワイパ装置の制御方法は、車両の速度が低いほど往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 If the vehicle speed is high, water droplets on the windshield are blown backward by the traveling wind, but if the vehicle speed is low, the water droplets blown backward by the traveling wind are reduced. Therefore, according to the control method of the vehicle wiper device of the fifteenth aspect, the lower the speed of the vehicle, the smaller the enlargement rate at the time of the backward wiping relative to the enlargement rate at the time of the outward wiping, so Spattering can be prevented.
 本開示の第16の態様は、上記第11、第12の態様において、前記制御ステップは、第1回転角度検出部で検出した前記第1出力軸の回転角度に基づいて算出した前記第1出力軸の回転速度に応じて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to a sixteenth aspect of the present disclosure, in the eleventh and twelfth aspects, the control step includes calculating the first output calculated based on a rotation angle of the first output shaft detected by a first rotation angle detection unit. Depending on the rotational speed of the shaft, the enlargement rate at the time of the forward pass wiping and the enlargement rate at the time of the return pass wiping may be determined.
 第16の態様の車両用ワイパ装置の制御方法によれば、第1出力軸の回転速度に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 According to the control method for a vehicle wiper device of the sixteenth aspect, the first drive source and the second drive source are controlled so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the rotation speed of the first output shaft. As a result, water droplets can be prevented from scattering to pedestrians and the like.
 本開示の第17の態様は、上記第16の態様において、前記制御ステップは、前記第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 According to a seventeenth aspect of the present disclosure, in the sixteenth aspect, in the sixteenth aspect, as the rotational speed of the first output shaft increases, the control step sets an enlargement ratio during the return path wiping with respect to an enlargement ratio during the forward path wiping. It may be small.
 ワイパブレードの払拭速度、すなわち第1駆動源の第1出力軸の回転速度が大きければ、車両の側面側への水滴の飛散は顕著になる。従って、第17の態様の車両用ワイパ装置の制御方法は、第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 If the wiping speed of the wiper blade, that is, the rotational speed of the first output shaft of the first drive source is high, the splash of water droplets on the side surface of the vehicle becomes remarkable. Therefore, according to the control method of the vehicle wiper device of the seventeenth aspect, the larger the rotation speed of the first output shaft is, the smaller the enlargement ratio at the time of the return pass wiping is made smaller than the enlargement ratio at the time of the forward pass wiping. It is possible to prevent water droplets from splashing on the person.
 本開示の第18の態様は、上記第11、第12の態様において、前記制御ステップは、前記ウィンドシールドに付着する水滴を検出する水滴検出部の検知結果に基づいて算出した前記ウィンドシールド上の水量に応じて前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定してもよい。 According to an eighteenth aspect of the present disclosure, in the eleventh and twelfth aspects, the control step includes a step of: calculating on the windshield calculated based on a detection result of a water droplet detection unit that detects a water droplet adhering to the windshield. Depending on the amount of water, the enlargement rate at the time of the forward wiping and the enlargement rate at the time of the return wiping may be determined.
 第18の態様の車両用ワイパ装置の制御方法によれば、ウィンドシールド上の水量に応じて決定した拡大率で伸縮機構が作動するように第1駆動源及び第2駆動源を制御することにより、歩行者等への水滴の飛散を防止できる。 According to the control method of the vehicle wiper device of the eighteenth aspect, by controlling the first drive source and the second drive source so that the expansion / contraction mechanism operates at an enlargement ratio determined according to the amount of water on the windshield. Water droplets can be prevented from scattering to pedestrians.
 本開示の第19の態様は、上記第18の態様において、前記制御ステップは、前記水量が多いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくしてもよい。 In the nineteenth aspect of the present disclosure, in the eighteenth aspect, the control step may reduce the enlargement rate at the return pass wiping with respect to the enlargement rate at the outward pass wiping as the amount of water increases.
 ウィンドシールド上の水量が多いほど車両の側面側への水滴の飛散は顕著になる。従って、第19の態様の車両用ワイパ装置の制御方法は、当該水量多いほど往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 ¡The more water on the windshield, the more water droplets are scattered on the side of the vehicle. Therefore, the control method of the vehicle wiper device according to the nineteenth aspect reduces the amount of water droplets scattered to pedestrians and the like by reducing the enlargement rate at the time of wiping the return path with respect to the enlargement rate at the time of the outward wiping as the amount of water increases. Can be prevented.
 本開示の第20の態様は、上記第11~19の態様において、前記制御ステップは、車載センサによって歩行者又は二輪車を検知した場合に、前記復路払拭時の拡大率を前記往路払拭時の拡大率よりも小さくしてもよい。 According to a twentieth aspect of the present disclosure, in the eleventh to nineteenth aspects described above, when the control step detects a pedestrian or a two-wheeled vehicle using an on-vehicle sensor, the enlargement ratio at the time of the return path wiping is increased by the enlargement ratio at the time of the outward wiping. It may be smaller than the rate.
 第20の態様の車両用ワイパ装置の制御方法によれば、車載センサによって歩行者等を検出した場合に、往路払拭時の拡大率に対して復路払拭時の拡大率を小さくすることにより、歩行者等への水滴の飛散を防止できる。 According to the control method for a vehicle wiper device of the twentieth aspect, when a pedestrian or the like is detected by a vehicle-mounted sensor, the walking rate is reduced by reducing the enlargement rate at the time of the return pass wiping with respect to the enlargement rate at the time of the outward pass wiping. It is possible to prevent water droplets from splashing on the person.
本開示の第1の例示的実施形態に係る車両用ワイパ装置を含む車両用ワイパシステムの一例を示した概略図である。1 is a schematic diagram illustrating an example of a vehicle wiper system including a vehicle wiper device according to a first exemplary embodiment of the present disclosure. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の停止状態での平面図である。It is a top view in the stop state of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 図2のA-A線に沿った第2ホルダ部材の断面図である。FIG. 3 is a cross-sectional view of the second holder member along the line AA in FIG. 2. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の動作中の平面図である。It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の動作中の平面図である。It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の動作中の平面図である。It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の動作中の平面図である。It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の動作中の平面図である。It is a top view in operation of the wiper device for vehicles concerning a 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係るワイパシステムの回路を模式的に示した回路図である。FIG. 3 is a circuit diagram schematically illustrating a circuit of a wiper system according to a first exemplary embodiment of the present disclosure. 本開示の第1の実施形態における第1出力軸の回転角度に応じた第2出力軸の回転角度を規定した第2出力軸回転角度マップの一例を示した説明図である。It is explanatory drawing which showed an example of the 2nd output shaft rotation angle map which prescribed | regulated the rotation angle of the 2nd output shaft according to the rotation angle of the 1st output shaft in 1st Embodiment of this indication. 拡大率が大きい場合の第2出力軸回転角度マップに対する差分により拡大率が小さい場合に対応させる例を示した説明図である。It is explanatory drawing which showed the example matched with the case where an enlargement rate is small with the difference with respect to the 2nd output shaft rotation angle map when an enlargement rate is large. 本開示の第1の例示的実施形態に係る車両用ワイパ装置の拡大率に応じた払拭範囲の変化の一例を示した説明図である。It is explanatory drawing which showed an example of the change of the wiping range according to the expansion rate of the wiper apparatus for vehicles which concerns on 1st exemplary embodiment of this indication. 本開示の第1の例示的実施形態に係るワイパシステムにおける、水滴飛散防止処理の一例を示したフローチャートである。6 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system according to the first exemplary embodiment of the present disclosure. 本開示の第2の例示的実施形態における第1出力軸の回転角度に応じた第2出力軸の回転角度を規定した第2出力軸回転角度マップの一例を示した説明図である。It is explanatory drawing which showed an example of the 2nd output shaft rotation angle map which prescribed | regulated the rotation angle of the 2nd output shaft according to the rotation angle of the 1st output shaft in 2nd exemplary embodiment of this indication. 本開示の第2の例示的実施形態に係る車両用ワイパ装置の拡大率に応じた払拭範囲の変化の一例を示した説明図である。It is explanatory drawing which showed an example of the change of the wiping range according to the expansion rate of the wiper apparatus for vehicles which concerns on 2nd exemplary embodiment of this indication. 本開示の第2の例示的実施形態に係るワイパシステムにおける、水滴飛散防止処理の一例を示したフローチャートである。12 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system according to the second exemplary embodiment of the present disclosure. 本開示の第3の例示的実施形態に係るワイパシステムにおける、水滴飛散防止処理の一例を示したフローチャートである。12 is a flowchart illustrating an example of water droplet scattering prevention processing in a wiper system according to a third exemplary embodiment of the present disclosure. 本開示の第4の例示的実施形態に係るワイパシステムにおける、水滴飛散防止処理の一例を示したフローチャートである。It is the flowchart which showed an example of the water droplet scattering prevention process in the wiper system which concerns on 4th exemplary embodiment of this indication. 払拭範囲を拡大しないワイパ装置の一例を示した概略図である。It is the schematic which showed an example of the wiper apparatus which does not expand the wiping range. 払拭された水滴の一部は飛沫になってウィンドシールドガラスの助手席外側に飛散することを示した説明図である。It is explanatory drawing which showed that one part of the wiped-off water droplet was splashed and scattered on the passenger seat outer side of a windshield glass.
 〔第1の例示的実施形態〕
 図1は、本開示の第1の例示的実施形態に係る車両用ワイパ装置(以下、「ワイパ装置」と称する)2を含むワイパシステム100の一例を示した概略図である。図1に示したワイパシステム100は、例えば、乗用自動車等の車両に備えられた「ウィンドシールド」としてのウィンドシールドガラス1を払拭するためのものであり、一対のワイパアーム(後述する運転席側ワイパアーム17及び助手席側ワイパアーム35)と、第1モータ11と、第2モータ12と、制御回路52と、駆動回路56と、ウォッシャ装置70と、を含んで構成されている。
[First exemplary embodiment]
FIG. 1 is a schematic diagram illustrating an example of a wiper system 100 including a vehicle wiper device (hereinafter referred to as “wiper device”) 2 according to a first exemplary embodiment of the present disclosure. A wiper system 100 shown in FIG. 1 is for wiping a windshield glass 1 as a “windshield” provided in a vehicle such as a passenger car, for example, and includes a pair of wiper arms (driver seat side wiper arms described later). 17 and the passenger seat side wiper arm 35), the first motor 11, the second motor 12, the control circuit 52, the drive circuit 56, and the washer device 70.
 図1は、右ハンドル車の場合を示しているので、車両の右側(図1の左側)が運転席側、車両の左側(図1の右側)が助手席側である。車両が左ハンドル車の場合には、車両の左側(図1の右側)が運転席側、車両の右側(図1の左側)が助手席側になる。また、車両が左ハンドル車の場合には、ワイパ装置2の構成が左右反対になる。 Since FIG. 1 shows the case of a right-hand drive vehicle, the right side of the vehicle (left side of FIG. 1) is the driver's seat side, and the left side of the vehicle (right side of FIG. 1) is the passenger seat side. When the vehicle is a left-hand drive vehicle, the left side of the vehicle (right side in FIG. 1) is the driver's seat side, and the right side of the vehicle (left side in FIG. 1) is the passenger seat side. Further, when the vehicle is a left-hand drive vehicle, the configuration of the wiper device 2 is opposite to the left and right.
 第1駆動源としての第1モータ11は、出力軸が所定の回転角度の範囲で正回転及び逆回転することにより、運転席側ワイパアーム17及び助手席側ワイパアーム35の各々をウィンドシールドガラス1上で往復動作させるための駆動源である。本例示的実施形態では、第1モータ11が正回転した場合に、運転席側ワイパアーム17は運転席側ワイパブレード18が下反転位置P2Dから上反転位置P1Dを払拭するように動作し、助手席側ワイパアーム35は助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pを払拭するように動作する。また、第1モータ11が逆回転した場合には、運転席側ワイパアーム17は運転席側ワイパブレード18が上反転位置P1Dから下反転位置P2Dを払拭するように動作し、助手席側ワイパアーム35は助手席側ワイパブレード36が上反転位置P1Pから下反転位置P2Pを払拭するように動作する。 The first motor 11 as the first drive source rotates the output shaft forward and backward within a range of a predetermined rotation angle so that each of the driver seat side wiper arm 17 and the passenger seat side wiper arm 35 is placed on the windshield glass 1. Drive source for reciprocating operation. In the exemplary embodiment, when the first motor 11 rotates forward, the driver seat side wiper arm 17 operates so that the driver seat side wiper blade 18 wipes the upper inversion position P1D from the lower inversion position P2D. The side wiper arm 35 operates such that the passenger-side wiper blade 36 wipes the upper inversion position P1P from the lower inversion position P2P. When the first motor 11 rotates in the reverse direction, the driver's seat side wiper arm 17 operates so that the driver's seat side wiper blade 18 wipes the upper inverted position P1D to the lower inverted position P2D, and the passenger seat side wiper arm 35 The passenger-side wiper blade 36 operates so as to wipe from the upper inversion position P1P to the lower inversion position P2P.
 ウィンドシールドガラス1の外縁部は、可視光及び紫外線を遮るため、セラミックス系の黒色顔料が塗布された遮光部1Aとなっている。黒色顔料は、ウィンドシールドガラス1の車室内側の外縁部に塗布された後、所定温度で加熱されることにより溶融し、ウィンドシールドガラス1の車室側表面に定着される。ウィンドシールドガラス1は、外縁部に塗布された接着剤により車体に固定されるが、図1に示したように、紫外線を透過させない遮光部1Aを外縁部に設けることにより、紫外線による当該接着剤の劣化を抑制する。 The outer edge portion of the windshield glass 1 is a light shielding portion 1A coated with a ceramic black pigment in order to block visible light and ultraviolet rays. The black pigment is applied to the outer edge of the windshield glass 1 on the vehicle interior side, and then melted by being heated at a predetermined temperature, and is fixed on the vehicle interior side surface of the windshield glass 1. The windshield glass 1 is fixed to the vehicle body by an adhesive applied to the outer edge portion. However, as shown in FIG. 1, the light shielding portion 1A that does not transmit ultraviolet rays is provided at the outer edge portion, so that the adhesive by ultraviolet rays is provided. Suppresses deterioration.
 後述する第2モータ12が動作しない場合には、第1モータ11の出力軸(後述する第1出力軸11A)が0°から所定の回転角度(以下、「第1所定回転角度」と称する)までの回転角度で正回転及び逆回転することにより、運転席側ワイパブレード18は払拭範囲H1を、助手席側ワイパブレード36は払拭範囲Z1を、各々払拭する。 When the second motor 12 described later does not operate, the output shaft of the first motor 11 (first output shaft 11A described later) is rotated from 0 ° to a predetermined rotation angle (hereinafter referred to as “first predetermined rotation angle”). By rotating in the forward and reverse directions up to the rotation angle, the driver seat side wiper blade 18 wipes the wiping range H1, and the passenger seat side wiper blade 36 wipes the wiping range Z1.
 第2駆動源としての第2モータ12は、当該第2モータ12の出力軸(後述する第2出力軸12A)が0°から所定の回転角度(以下、「第2所定回転角度」と称する)までの回転角度で正回転及び逆回転することにより、助手席側ワイパアーム35を見かけ上伸長させる駆動源である。前述の第1モータ11が動作中に第2モータ12が動作することにより、助手席側ワイパアーム35は助手席側上方に見かけ上伸長され、助手席側ワイパブレード36は払拭範囲Z2を払拭する。また、第2所定回転角度の大きさを変更することにより、助手席側ワイパアーム35が伸長する範囲を変更することが可能となる。例えば、第2所定回転角度を大きくすれば、助手席側ワイパアーム35が伸長する範囲は大きくなり、第2所定回転角度を小さくすれば、助手席側ワイパアーム35が伸長する範囲は小さくなる。 The second motor 12 as the second drive source has an output shaft (a second output shaft 12A described later) of the second motor 12 at a predetermined rotation angle from 0 ° (hereinafter referred to as “second predetermined rotation angle”). This is a drive source that apparently extends the wiper arm 35 on the passenger seat side by rotating forward and backward at a rotation angle up to. By operating the second motor 12 while the first motor 11 is operating, the passenger seat side wiper arm 35 is apparently extended upward on the passenger seat side, and the passenger seat side wiper blade 36 wipes the wiping range Z2. Further, by changing the magnitude of the second predetermined rotation angle, it is possible to change the range in which the passenger seat side wiper arm 35 extends. For example, if the second predetermined rotation angle is increased, the range in which the passenger seat side wiper arm 35 extends is increased, and if the second predetermined rotation angle is decreased, the range in which the passenger seat side wiper arm 35 is extended is decreased.
 第1モータ11及び第2モータ12は、各々の出力軸の回転方向を正回転及び逆回転に制御可能であると共に、各々の出力軸の回転速度も制御可能なモータであり、一例としてブラシ付きDCモータ及びブラシレスDCモータのいずれかである。 The first motor 11 and the second motor 12 are motors that can control the rotation direction of each output shaft to forward rotation and reverse rotation, and can also control the rotation speed of each output shaft. Either a DC motor or a brushless DC motor.
 第1モータ11及び第2モータ12には、各々の回転を制御するための制御回路52が接続されている。本例示的実施形態に係る制御回路52は、例えば、第1モータ11及び第2モータ12の各々の出力軸末端付近に設けられた「回転角検出部」としての絶対角センサ(図示せず)が検知した第1モータ11及び第2モータ12の各々の出力軸の回転方向、回転位置、回転速度及び回転角度に基づいて、第1モータ11及び第2モータ12の各々に印加する電圧のデューティ比を算出する。 A control circuit 52 for controlling each rotation is connected to the first motor 11 and the second motor 12. The control circuit 52 according to the exemplary embodiment includes, for example, an absolute angle sensor (not shown) as a “rotation angle detection unit” provided near the output shaft end of each of the first motor 11 and the second motor 12. The duty of voltage applied to each of the first motor 11 and the second motor 12 based on the rotation direction, rotation position, rotation speed and rotation angle of the output shaft of each of the first motor 11 and the second motor 12 detected by the Calculate the ratio.
 本例示的実施形態では、第1モータ11及び第2モータ12の各々に印加する電圧を、電源である車載バッテリの電圧(略12V)をスイッチング素子によってオンオフしてパルス状の波形に変調するパルス幅変調(PWM)によって生成する。本例示的実施形態でデューティ比は、PWMによって生成される電圧の波形の1周期間に対する前述のスイッチング素子がオンになったことで生じる1のパルスの時間の割合である。また、PWMによって生成される電圧の波形の1周期は、前述の1のパルスの時間と前述のスイッチング素子がオフになりパルスが生じない時間との和である。駆動回路56は、制御回路52によって算出されたデューティ比に従って駆動回路56内のスイッチング素子をオンオフさせて第1モータ11及び第2モータ12の各々に印加する電圧を生成し、生成した電圧を第1モータ11及び第2モータ12の各々の巻線の端子に印加する。 In the present exemplary embodiment, the voltage applied to each of the first motor 11 and the second motor 12 is a pulse that modulates the voltage (approximately 12 V) of the in-vehicle battery as a power source by turning on and off the switching element by a switching element. Generated by width modulation (PWM). In the present exemplary embodiment, the duty ratio is a ratio of the time of one pulse generated when the switching element is turned on to one period of a waveform of a voltage generated by PWM. One period of the waveform of the voltage generated by PWM is the sum of the time of the one pulse described above and the time during which the switching element is turned off and no pulse is generated. The drive circuit 56 turns on and off switching elements in the drive circuit 56 in accordance with the duty ratio calculated by the control circuit 52 to generate voltages to be applied to the first motor 11 and the second motor 12, and the generated voltages are supplied to the first circuit. The voltage is applied to each winding terminal of the first motor 11 and the second motor 12.
 本例示的実施形態に係る第1モータ11及び第2モータ12の各々は、ウォームギアで構成された減速機構を有しているので、各々の出力軸の回転方向、回転速度及び回転角度は、第1モータ11本体及び第2モータ12本体の各々の回転速度及び回転角度と同一ではない。しかしながら、本例示的実施形態では、各モータと各減速機構とは、一体不可分に構成されているので、以下、第1モータ11及び第2モータ12の各々の出力軸の回転速度及び回転角度を、第1モータ11及び第2モータ12の各々の回転方向、回転速度及び回転角度とみなすものとする。 Since each of the first motor 11 and the second motor 12 according to the exemplary embodiment has a speed reduction mechanism configured by a worm gear, the rotation direction, the rotation speed, and the rotation angle of each output shaft are set as follows. The rotation speed and rotation angle of the 1 motor 11 main body and the second motor 12 main body are not the same. However, in this exemplary embodiment, each motor and each speed reduction mechanism are inseparably configured, and hence the rotational speed and rotational angle of the output shaft of each of the first motor 11 and the second motor 12 will be described below. The rotation direction, the rotation speed, and the rotation angle of each of the first motor 11 and the second motor 12 are considered.
 絶対角センサは、例えば第1モータ11及び第2モータ12の各々の減速機構内に設けられ、各々の出力軸に連動して回転する励磁コイル又はマグネットの磁界(磁力)を電流に変換して検出するセンサであり、一例として、MRセンサ等の磁気センサである。 The absolute angle sensor is provided, for example, in each speed reduction mechanism of the first motor 11 and the second motor 12, and converts the magnetic field (magnetic force) of an excitation coil or a magnet that rotates in conjunction with each output shaft into a current. It is a sensor to detect, for example, a magnetic sensor such as an MR sensor.
 制御回路52は、第1モータの出力軸末端付近に設けられた絶対角センサが検出した第1モータ11の出力軸の回転角度から運転席側ワイパブレード18のウィンドシールドガラス1上での位置を算出可能なマイクロコンピュータ58を備えている。マイクロコンピュータ58は、算出した位置に応じて第1モータ11の出力軸の回転速度が変化するように駆動回路56を制御する。 The control circuit 52 determines the position of the driver's seat side wiper blade 18 on the windshield glass 1 from the rotation angle of the output shaft of the first motor 11 detected by an absolute angle sensor provided near the output shaft end of the first motor. A computable microcomputer 58 is provided. The microcomputer 58 controls the drive circuit 56 so that the rotational speed of the output shaft of the first motor 11 changes according to the calculated position.
 また、マイクロコンピュータ58は、第1モータの出力軸末端付近に設けられた絶対角センサが検出した第1モータ11の出力軸の回転角度から助手席側ワイパブレード36のウィンドシールドガラス1上での位置を算出し、算出した位置に応じて第2モータ12の出力軸の回転速度が変化するように駆動回路56を制御する。また、マイクロコンピュータ58は、第2モータ12の出力軸末端付近に設けられた絶対角センサが検出した第2モータ12の出力軸の回転角度から助手席側ワイパアーム35の伸長の程度を算出する。 Further, the microcomputer 58 detects the rotation angle of the output shaft of the first motor 11 detected by the absolute angle sensor provided near the output shaft end of the first motor on the windshield glass 1 of the passenger side wiper blade 36. The position is calculated, and the drive circuit 56 is controlled so that the rotational speed of the output shaft of the second motor 12 changes according to the calculated position. Further, the microcomputer 58 calculates the degree of extension of the passenger seat side wiper arm 35 from the rotation angle of the output shaft of the second motor 12 detected by the absolute angle sensor provided near the output shaft end of the second motor 12.
 制御回路52には、駆動回路56の制御に用いるデータ及びプログラムを記憶した記憶装置であるメモリ60が設けられている。メモリ60は、運転席側ワイパブレード18及び助手席側ワイパブレード36のウィンドシールドガラス1上の位置を示す第1モータ11の出力軸の回転角度に応じて第1モータ11及び第2モータ12の各々の出力軸の回転速度等(回転角度を含む)を算出するためのデータ及びプログラムを記憶している。 The control circuit 52 is provided with a memory 60 that is a storage device that stores data and programs used to control the drive circuit 56. The memory 60 stores the first motor 11 and the second motor 12 according to the rotation angle of the output shaft of the first motor 11 indicating the positions of the driver-side wiper blade 18 and the passenger-side wiper blade 36 on the windshield glass 1. Data and a program for calculating the rotation speed and the like (including the rotation angle) of each output shaft are stored.
 また、マイクロコンピュータ58には、車両のエンジン等の制御を統括する車両ECU(Electronic Control Unit)90が接続されている。また、車両ECU90には、ワイパスイッチ50、方向指示器スイッチ54、ウォッシャスイッチ62、レインセンサ76、車両の速度を検知する車速センサ92、車両の前方を撮影する車載カメラ94、GPS(Global Positioning System)装置96、操舵角センサ98及びミリ波レーダ102が接続されている。 The microcomputer 58 is connected to a vehicle ECU (Electronic Control Unit) 90 that controls the vehicle engine and the like. Further, the vehicle ECU 90 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a rain sensor 76, a vehicle speed sensor 92 for detecting the vehicle speed, an in-vehicle camera 94 for photographing the front of the vehicle, a GPS (Global Positioning System). ) A device 96, a steering angle sensor 98, and a millimeter wave radar 102 are connected.
 ワイパスイッチ50は、車両のバッテリから第1モータ11に供給される電力をオン又はオフするスイッチである。ワイパスイッチ50は、運転席側ワイパブレード18及び助手席側ワイパブレード36を、低速で動作させる低速作動モード選択位置、高速で動作させる高速作動モード選択位置、一定周期で間欠的に動作させる間欠作動モード選択位置、レインセンサ76が雨滴を検知した場合に動作させるAUTO(オート)作動モード選択位置、格納(停止)モード選択位置に切替可能である。また、各モードの選択位置に応じた信号を、車両ECU90を介してマイクロコンピュータ58に出力する。 The wiper switch 50 is a switch that turns on or off the power supplied from the vehicle battery to the first motor 11. The wiper switch 50 is a low-speed operation mode selection position for operating the driver-side wiper blade 18 and the passenger-side wiper blade 36 at a low speed, a high-speed operation mode selection position for operating at a high speed, and an intermittent operation that operates intermittently at a constant cycle. The mode selection position can be switched to an AUTO (auto) operation mode selection position and a storage (stop) mode selection position that are operated when the rain sensor 76 detects raindrops. Further, a signal corresponding to the selected position of each mode is output to the microcomputer 58 via the vehicle ECU 90.
 ワイパスイッチ50から各モードの選択位置に応じて出力された信号が車両ECU90を介してマイクロコンピュータ58に入力されると、マイクロコンピュータ58がワイパスイッチ50からの出力信号に対応する制御をメモリ60に記憶されたデータ及びプログラムを用いて行う。 When a signal output from the wiper switch 50 according to the selected position of each mode is input to the microcomputer 58 via the vehicle ECU 90, the microcomputer 58 controls the memory 60 to control corresponding to the output signal from the wiper switch 50. This is done using stored data and programs.
 本例示的実施形態では、ワイパスイッチ50には、助手席側ワイパブレード36の払拭範囲を払拭範囲Z2に変更する拡大モードスイッチが別途設けられていてもよい。拡大モードスイッチがオンになると、所定の信号が車両ECU90を介してマイクロコンピュータ58に入力される。マイクロコンピュータ58は、所定の信号が入力されると、例えば、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに動作する場合に、払拭範囲Z2を払拭するように第2モータ12を制御する。 In the exemplary embodiment, the wiper switch 50 may be separately provided with an expansion mode switch that changes the wiping range of the passenger-side wiper blade 36 to the wiping range Z2. When the enlargement mode switch is turned on, a predetermined signal is input to the microcomputer 58 via the vehicle ECU 90. When a predetermined signal is input to the microcomputer 58, for example, when the passenger seat wiper blade 36 operates from the lower inversion position P2P to the upper inversion position P1P, the second motor 12 is configured to wipe the wiping range Z2. To control.
 方向指示器スイッチ54は、車両の方向指示器(図示せず)の作動を指示するスイッチであり、運転者の操作により、右又は左の方向指示器をオンにするための信号を車両ECU90に出力する。車両ECU90は、方向指示器スイッチ54から出力された信号に基づいて、右又は左の方向指示器のランプを点滅させる。方向指示器スイッチ54から出力された信号は、車両ECU90を介してマイクロコンピュータ58にも入力される。 The direction indicator switch 54 is a switch for instructing the operation of a vehicle direction indicator (not shown). A signal for turning on the right or left direction indicator is operated to the vehicle ECU 90 by a driver's operation. Output. The vehicle ECU 90 causes the right or left direction indicator lamp to blink based on the signal output from the direction indicator switch 54. A signal output from the direction indicator switch 54 is also input to the microcomputer 58 via the vehicle ECU 90.
 ウォッシャスイッチ62は、車両のバッテリからウォッシャモータ64、第1モータ11及び第2モータ12に供給される電力をオン又はオフするスイッチである。ウォッシャスイッチ62は、例えば、前述のワイパスイッチ50を備えたレバー等の操作手段に一体に設けられ、当該レバー等を乗員が手元に引く等の操作によりオンになる。マイクロコンピュータ58は、ウォッシャスイッチ62がオンになると、ウォッシャモータ64及び第1モータ11を作動させる。マイクロコンピュータ58は、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pまで払拭する場合には、払拭範囲Z2を払拭するように、助手席側ワイパブレード36が上反転位置P1Pから下反転位置P2Pまで払拭する場合には、払拭範囲Z1を払拭するように第2モータ12を各々制御する。かかる制御により、ウィンドシールドガラス1の助手席側を広く払拭することが可能となる。 The washer switch 62 is a switch for turning on or off the power supplied from the battery of the vehicle to the washer motor 64, the first motor 11 and the second motor 12. For example, the washer switch 62 is provided integrally with an operating means such as a lever provided with the wiper switch 50 described above, and is turned on by an operation such as pulling the lever or the like by a passenger. When the washer switch 62 is turned on, the microcomputer 58 operates the washer motor 64 and the first motor 11. When the wiper blade 36 on the passenger side wipes from the lower reverse position P2P to the upper reverse position P1P, the microcomputer 58 wipes the wiper blade 36 from the upper reverse position P1P so as to wipe the wiping range Z2. When wiping up to the reverse position P2P, the second motor 12 is controlled so as to wipe the wiping range Z1. With this control, the passenger seat side of the windshield glass 1 can be wiped widely.
 ウォッシャスイッチ62がオンになっている間は、ウォッシャ装置70が備えるウォッシャモータ64の回転でウォッシャポンプ66が駆動される。ウォッシャポンプ66はウォッシャ液タンク68内のウォッシャ液を運転席側ホース72A又は助手席側ホース72Bに圧送する。運転席側ホース72Aは、ウィンドシールドガラス1の運転席側の下方に設けられた運転席側ノズル74Aに接続されている。また、助手席側ホース72Bは、ウィンドシールドガラス1の助手席側の下方に設けられた助手席側ノズル74Bに接続されている。圧送されたウォッシャ液は、運転席側ノズル74A及び助手席側ノズル74Bからウィンドシールドガラス1上に噴射される。ウィンドシールドガラス1上に付着したウォッシャ液は、動作している運転席側ワイパブレード18及び助手席側ワイパブレード36によってウィンドシールドガラス1上の汚れと一緒に払拭される。 While the washer switch 62 is on, the washer pump 66 is driven by the rotation of the washer motor 64 provided in the washer device 70. The washer pump 66 pumps the washer liquid in the washer liquid tank 68 to the driver side hose 72A or the passenger side hose 72B. The driver seat side hose 72A is connected to a driver seat side nozzle 74A provided below the driver seat side of the windshield glass 1. Further, the passenger seat side hose 72B is connected to a passenger seat side nozzle 74B provided below the windshield glass 1 on the passenger seat side. The pumped washer liquid is sprayed onto the windshield glass 1 from the driver seat side nozzle 74A and the passenger seat side nozzle 74B. The washer liquid adhering to the windshield glass 1 is wiped together with dirt on the windshield glass 1 by the operating driver side wiper blade 18 and the passenger seat side wiper blade 36.
 マイクロコンピュータ58は、ウォッシャスイッチ62がオンになっている間のみ動作するようにウォッシャモータ64を制御する。また、マイクロコンピュータ58は、ウォッシャスイッチ62がオフになっても運転席側ワイパブレード18及び助手席側ワイパブレード36が下反転位置P2D、P2Pに達するまで動作を継続するように第1モータ11を制御する。さらにマイクロコンピュータ58は、運転席側ワイパブレード18及び助手席側ワイパブレード36が上反転位置P1D、P1Pに向かって払拭している際にウォッシャスイッチ62がオフになった場合には、運転席側ワイパブレード18及び助手席側ワイパブレード36が、第1モータ11の回転により上反転位置P1D、P1Pに達するまで、払拭範囲Z2を払拭するように第2モータ12を制御する。 The microcomputer 58 controls the washer motor 64 so that it operates only while the washer switch 62 is on. Further, the microcomputer 58 controls the first motor 11 so that the operation continues until the driver-side wiper blade 18 and the passenger-side wiper blade 36 reach the lower inversion positions P2D and P2P even when the washer switch 62 is turned off. Control. Further, when the washer switch 62 is turned off when the driver-side wiper blade 18 and the passenger-side wiper blade 36 are wiped toward the upper inversion positions P1D and P1P, the microcomputer 58 The second motor 12 is controlled to wipe the wiping range Z2 until the wiper blade 18 and the passenger side wiper blade 36 reach the upper inversion positions P1D and P1P by the rotation of the first motor 11.
 レインセンサ76は、例えば、ウィンドシールドガラス1の車室内側に設けられる光学センサの一種であり、ウィンドシールドガラス1表面の水滴を検知する。レインセンサ76は、一例として、赤外線の発光素子であるLED、受光素子であるフォトダイオード、赤外線の光路を形成するレンズ及び制御回路を含んでいる。LEDから放射された赤外線はウィンドシールドガラス1で全反射するが、ウィンドシールドガラス1の表面に水滴が存在すると赤外線の一部が水滴を透過して外部に放出されるため、ウィンドシールドガラス1での反射量が減少する。その結果、受光素子であるフォトダイオードに入る光量が減少する。かかる光量の減少に基づいて、ウィンドシールドガラス1表面の水滴を検知する。 The rain sensor 76 is, for example, a kind of optical sensor provided on the vehicle interior side of the windshield glass 1 and detects water droplets on the surface of the windshield glass 1. As an example, the rain sensor 76 includes an LED that is an infrared light emitting element, a photodiode that is a light receiving element, a lens that forms an infrared optical path, and a control circuit. The infrared rays emitted from the LED are totally reflected by the windshield glass 1, but if there are water droplets on the surface of the windshield glass 1, some of the infrared rays are transmitted through the water droplets and emitted to the outside. The amount of reflection decreases. As a result, the amount of light entering the photodiode that is the light receiving element is reduced. Based on the decrease in the amount of light, water droplets on the surface of the windshield glass 1 are detected.
 車速センサ92は、車両の車輪の回転数を検知し、当該回転数を示す信号を出力するセンサである。車両ECU90は、車速センサ92が出力した信号と車輪の周長から車速を算出する。 The vehicle speed sensor 92 is a sensor that detects the rotational speed of the vehicle wheel and outputs a signal indicating the rotational speed. The vehicle ECU 90 calculates the vehicle speed from the signal output from the vehicle speed sensor 92 and the circumference of the wheel.
 車載カメラ94は、車両前方を撮影し、動画像のデータを取得する装置である。車両ECU90は、車載カメラ94で取得した動画像のデータを画像処理することにより、車両がカーブに差し掛かっている等を判定することが可能である。また、車両ECU90は、車載カメラ94で取得した動画像のデータの輝度から、車両前方の明るさを算出できる。 The in-vehicle camera 94 is a device that captures the front of the vehicle and acquires moving image data. The vehicle ECU 90 can determine whether the vehicle is approaching a curve or the like by performing image processing on moving image data acquired by the in-vehicle camera 94. Further, the vehicle ECU 90 can calculate the brightness in front of the vehicle from the luminance of the moving image data acquired by the in-vehicle camera 94.
 なお、レインセンサ76及び車載カメラ94は、一例として、ウィンドシールドガラス1の車室内側の中央上部に相当する位置に設けられ、より具体的にはバックミラーの裏側等に設けられる(図示せず)場合が少なくない。しかしながら、本例示的実施形態では、レインセンサ76及び車載カメラ94の位置を、ウィンドシールドガラス1の車室内側の中央上部に限定せず、ウィンドシールドガラス1の車室内側の助手席側上部にしてもよい。レインセンサ76及び車載カメラ94をウィンドシールドガラス1の車室内側の助手席側上部に設けることにより、図1に示した非払拭範囲Xの少なくとも一部の情報(画像及び水滴の有無)を取得可能に構成してもよい。なお、図20の非払拭範囲Xは、助手席側ワイパアーム35を伸長させた場合の払拭範囲Z2内ではあるものの、助手席側ワイパアーム35を伸長させない場合の払拭範囲Z1外に存在する領域である。 As an example, the rain sensor 76 and the in-vehicle camera 94 are provided at a position corresponding to the center upper portion of the windshield glass 1 on the vehicle interior side, and more specifically, provided on the back side of the rearview mirror or the like (not shown). ) There are many cases. However, in the present exemplary embodiment, the positions of the rain sensor 76 and the in-vehicle camera 94 are not limited to the center upper portion of the windshield glass 1 on the passenger compartment side, but are located on the passenger seat side upper portion of the windshield glass 1 on the passenger compartment side. May be. By providing the rain sensor 76 and the in-vehicle camera 94 on the passenger seat side upper portion of the windshield glass 1 in the passenger compartment side, at least a part of information (images and presence / absence of water droplets) of the non-wiping range X shown in FIG. 1 is acquired. You may comprise. Note that the non-wiping range X in FIG. 20 is an area that exists in the wiping range Z2 when the passenger-side wiper arm 35 is extended, but outside the wiping range Z1 when the passenger-side wiper arm 35 is not extended. .
 マイクロコンピュータ58は、レインセンサ76によってウィンドシールドガラス1表面、例えば非払拭範囲Xに水滴を検知した場合に、払拭範囲Z2を払拭するように第2モータ12を制御してもよい。 The microcomputer 58 may control the second motor 12 to wipe the wiping range Z2 when the rain sensor 76 detects water droplets on the surface of the windshield glass 1, for example, the non-wiping range X.
 また、マイクロコンピュータ58は、車載カメラ94が取得した画像データの画素特徴量に基づいて、払拭範囲Z2を払拭するように第2モータ12を制御してもよい。例えば、マイクロコンピュータ58は、車載カメラ94が取得した画像データにおけるウィンドシールドガラス1の払拭範囲Z1の画像特徴量と非払拭範囲Xの画像特徴量との差が所定値以上になった場合に払拭範囲Z2を払拭するように第2モータ12を制御する。 Further, the microcomputer 58 may control the second motor 12 to wipe the wiping range Z2 based on the pixel feature amount of the image data acquired by the in-vehicle camera 94. For example, the microcomputer 58 wipes when the difference between the image feature amount of the wiping range Z1 of the windshield glass 1 and the image feature amount of the non-wiping range X in the image data acquired by the in-vehicle camera 94 is equal to or larger than a predetermined value. The second motor 12 is controlled to wipe the range Z2.
 画像特徴量は、一例として輝度値であり、マイクロコンピュータ58は、払拭範囲Z1の輝度値と非払拭範囲Xの輝度値との差が所定値以上になった場合に非払拭範囲Xに付着物が存在すると判定して払拭範囲Z2を払拭するように第2モータ12を制御する。 The image feature amount is, for example, a luminance value, and the microcomputer 58 adheres to the non-wiping range X when the difference between the luminance value of the wiping range Z1 and the luminance value of the non-wiping range X becomes a predetermined value or more. And the second motor 12 is controlled to wipe the wiping range Z2.
 また、画像特徴量は、助手席側ワイパブレード36の先端部の動きベクトルを示すオプティカルフローであり、マイクロコンピュータ58は、当該オプティカルフローが示す助手席側ワイパブレード36の動きベクトルの変化量が所定値以下になった場合に、積雪がウィンドシールドガラス1上に存在するとみなして、払拭範囲Z2を払拭するように第2モータ12を制御する。 The image feature amount is an optical flow indicating a motion vector of the front end portion of the passenger-side wiper blade 36, and the microcomputer 58 has a predetermined amount of change in the motion vector of the passenger-side wiper blade 36 indicated by the optical flow. When the value is less than or equal to the value, the second motor 12 is controlled to wipe the wiping range Z2 on the assumption that snow is present on the windshield glass 1.
 GPS装置96は、上空にあるGPS衛星から受信した測位のための信号に基づいて車両の現在位置を算出する装置である。本例示的実施形態では、ワイパシステム100専用のGPS装置96を用いるが、車両がカーナビゲーションシステム等の他のGPS装置を備える場合には、当該他のGPS装置を用いてもよい。尚、本例示的実施形態では、GPS装置96を用いたが、これに限定されず、他の衛星測位システム(Navigation Satellite System)が用いられてもよい。 The GPS device 96 is a device that calculates the current position of the vehicle based on a positioning signal received from a GPS satellite in the sky. In this exemplary embodiment, the GPS device 96 dedicated to the wiper system 100 is used. However, when the vehicle includes another GPS device such as a car navigation system, the other GPS device may be used. In the exemplary embodiment, the GPS device 96 is used. However, the present invention is not limited to this, and another satellite positioning system (Navigation Satellite System) may be used.
 操舵角センサ98は、一例としてステアリングの回転軸(図示せず)に設けられ、当該ステアリングの回転角度を検出するセンサである。 The steering angle sensor 98 is a sensor that is provided on a rotation shaft (not shown) of the steering as an example and detects the rotation angle of the steering.
 ミリ波レーダ102は、前方の障害物までの距離を検出する前方ミリ波レーダ、前側方の障害物までの距離を検出する前側方ミリ波レーダ、後方の障害物までの距離を検出する後方ミリ波レーダ、後側方の障害物までの距離を検出する後側方ミリ波レーダを含む。 The millimeter wave radar 102 is a front millimeter wave radar that detects a distance to an obstacle ahead, a front side millimeter wave radar that detects a distance to an obstacle ahead, and a rear millimeter that detects a distance to an obstacle behind. Includes wave radar, rear side millimeter wave radar that detects distance to rear side obstacles.
 前方ミリ波レーダは、例えば、車両のフロントグリル中央付近に設けられ、前側方ミリ波レーダは、バンパ内の車幅方向両端付近等に設けられ、それぞれ車両前方や前側方にミリ波を出射することで対象物から反射してきた電波を受信し、伝搬時間やドップラー効果によって生じる周波数差などを基に対象物までの距離や自車との相対速度等を測定する。また、後方ミリ波レーダ及び後側方ミリ波レーダは、車両のリアバンパー等に設けられ、それぞれ車両後方や後側方にミリ波を出射することで対象物から反射してきた電波を受信し、伝搬時間やドップラー効果によって生じる周波数差などを基に対象物までの距離や自車との相対速度等を測定する。 The front millimeter wave radar is provided, for example, near the center of the front grille of the vehicle, and the front side millimeter wave radar is provided near both ends in the vehicle width direction in the bumper, and emits millimeter waves to the front and front sides of the vehicle, respectively. Thus, the radio wave reflected from the object is received, and the distance to the object, the relative speed with the own vehicle, and the like are measured based on the propagation time and the frequency difference caused by the Doppler effect. The rear millimeter wave radar and the rear side millimeter wave radar are provided in a rear bumper of the vehicle, and receive radio waves reflected from the object by emitting millimeter waves to the rear and rear sides of the vehicle, The distance to the object and the relative speed with the vehicle are measured based on the propagation time and the frequency difference caused by the Doppler effect.
 以下、図2~8を用いて、本例示的実施形態に係るワイパ装置2の構成を説明する。図2、図4~8に示したように、本例示的実施形態に係るワイパ装置2は、板状の中央フレーム3と、中央フレーム3に一端部が固定され、中央フレーム3から車両幅方向両側に延設された一対のパイプフレーム4、5とを備える。パイプフレーム4の他端部には、運転席側ワイパアーム17の運転席側ピボット軸15等を備えた第1ホルダ部材6が形成されている。また、パイプフレーム5の他端部には、助手席側ワイパアーム35の第2助手席側ピボット軸22等が設けられた第2ホルダ部材7が形成されている。ワイパ装置2は、中央フレーム3に設けられた支持部3Aで車両に支持されると共に、第1ホルダ部材6の固定部6A及び第2ホルダ部材7の固定部7Aの各々がボルト等により車両に締結されることにより、車両に固定される。 Hereinafter, the configuration of the wiper apparatus 2 according to the exemplary embodiment will be described with reference to FIGS. As shown in FIGS. 2 and 4 to 8, the wiper device 2 according to this exemplary embodiment includes a plate-like central frame 3 and one end fixed to the central frame 3. A pair of pipe frames 4 and 5 extending on both sides are provided. A first holder member 6 including a driver seat side pivot shaft 15 of the driver seat side wiper arm 17 and the like is formed at the other end portion of the pipe frame 4. Further, the second holder member 7 provided with the second passenger seat side pivot shaft 22 of the passenger seat side wiper arm 35 and the like is formed at the other end portion of the pipe frame 5. The wiper device 2 is supported on the vehicle by a support portion 3A provided on the central frame 3, and each of the fixing portion 6A of the first holder member 6 and the fixing portion 7A of the second holder member 7 is attached to the vehicle by a bolt or the like. By being fastened, it is fixed to the vehicle.
 ワイパ装置2は、中央フレーム3の裏面(車室側に対向する面)に、ワイパ装置2を駆動させるための第1モータ11と第2モータ12とを備えている。第1モータ11の第1出力軸11Aは、中央フレーム3を貫通して中央フレーム3の表面(車両の外部側の面)に突出し、第1出力軸11Aの先端部には第1駆動クランクアーム13の一端が固定されている。第2モータ12の第2出力軸12Aは、中央フレーム3を貫通して中央フレーム3の表面に突出し、第2出力軸12Aの先端部には第2駆動クランクアーム14の一端が固定されている。 The wiper device 2 includes a first motor 11 and a second motor 12 for driving the wiper device 2 on the back surface (the surface facing the passenger compartment side) of the central frame 3. The first output shaft 11A of the first motor 11 passes through the central frame 3 and protrudes from the surface of the central frame 3 (surface on the outside of the vehicle), and a first drive crank arm is provided at the tip of the first output shaft 11A. One end of 13 is fixed. The second output shaft 12A of the second motor 12 passes through the central frame 3 and protrudes from the surface of the central frame 3, and one end of the second drive crank arm 14 is fixed to the tip of the second output shaft 12A. .
 第1ホルダ部材6には、運転席側ピボット軸15が回転可能に支持され、運転席側ピボット軸15の基端部(図2の奥側)には運転席側揺動レバー16の一端が固定され、運転席側ピボット軸15の先端部(図2の手前側)には運転席側ワイパアーム17のアームヘッドが固定されている。図1に示したように、運転席側ワイパアーム17の先端部には、ウィンドシールドガラス1の運転席側を払拭するための運転席側ワイパブレード18が連結されている。 A driver seat side pivot shaft 15 is rotatably supported by the first holder member 6, and one end of the driver seat side swing lever 16 is provided at the base end portion (the back side in FIG. 2) of the driver seat side pivot shaft 15. The arm head of the driver's seat side wiper arm 17 is fixed to the tip of the driver's seat side pivot shaft 15 (front side in FIG. 2). As shown in FIG. 1, a driver seat side wiper blade 18 for wiping the driver seat side of the windshield glass 1 is connected to the tip of the driver seat side wiper arm 17.
 第1駆動クランクアーム13の他端と運転席側揺動レバー16の他端とは、第1連結ロッド19を介して連結されている。第1モータ11が駆動されると、第1駆動クランクアーム13は回転し、その回転力が第1連結ロッド19を介して運転席側揺動レバー16に伝達されて運転席側揺動レバー16を搖動させる。運転席側揺動レバー16が搖動されることにより運転席側ワイパアーム17も搖動し、運転席側ワイパブレード18が下反転位置P2Dと上反転位置P1Dとの間の払拭範囲H1を払拭する。 The other end of the first drive crank arm 13 and the other end of the driver seat side swing lever 16 are connected via a first connecting rod 19. When the first motor 11 is driven, the first drive crank arm 13 rotates, and the rotational force is transmitted to the driver seat side swing lever 16 via the first connecting rod 19, and the driver seat side swing lever 16. Sway. When the driver seat side swing lever 16 is swung, the driver seat side wiper arm 17 is also swung, and the driver seat side wiper blade 18 wipes the wiping range H1 between the lower inversion position P2D and the upper inversion position P1D.
 図3は、図2のA-A線に沿った第2ホルダ部材7の断面図である。図3に示したように、第2ホルダ部材7には、第1助手席側ピボット軸21が第1軸線L1を中心として回転可能に支持させると共に、第2助手席側ピボット軸22が第2軸線L2を中心として回転可能に支持されている。本例示的実施形態では、第1軸線L1と第2軸線L2とが同一直線L(同心)上に配置されている。なお、図3は、図2、図4~8に示されている防水カバーKを外した状態を示している。 FIG. 3 is a cross-sectional view of the second holder member 7 taken along line AA in FIG. As shown in FIG. 3, the first holder seat side pivot shaft 21 is supported on the second holder member 7 so as to be rotatable about the first axis L1, and the second passenger seat side pivot shaft 22 is secondly supported. It is supported so as to be rotatable about the axis L2. In the exemplary embodiment, the first axis L1 and the second axis L2 are arranged on the same straight line L (concentric). FIG. 3 shows a state where the waterproof cover K shown in FIG. 2 and FIGS. 4 to 8 is removed.
 第2ホルダ部材7には、筒状部7Bが形成され、筒状部7Bの内周側には軸受23を介して第1助手席側ピボット軸21が回転可能に支持されている。第1助手席側ピボット軸21は筒状に形成され、第1助手席側ピボット軸21の内周側には軸受24を介して第2助手席側ピボット軸22が回転可能に支持されている。 The cylindrical part 7B is formed in the second holder member 7, and the first passenger seat side pivot shaft 21 is rotatably supported via a bearing 23 on the inner peripheral side of the cylindrical part 7B. The first passenger seat side pivot shaft 21 is formed in a cylindrical shape, and the second passenger seat side pivot shaft 22 is rotatably supported via a bearing 24 on the inner peripheral side of the first passenger seat side pivot shaft 21. .
 第1助手席側ピボット軸21の基端部には、第1助手席側揺動レバー25の一端が固定され、第1助手席側ピボット軸21の先端部には、第1駆動レバー26の一端が固定されている。図2に示したように、第1助手席側揺動レバー25の他端と運転席側揺動レバー16の他端とは、第2連結ロッド27により連結されている。従って、第1モータ11が駆動されて運転席側揺動レバー16搖動すると、第2連結ロッド27が駆動力を第1助手席側揺動レバー25に伝達し、第1助手席側揺動レバー25と共に、第1駆動レバー26を第1軸線L1周りに揺動(回転)させる。 One end of the first passenger seat side swing lever 25 is fixed to the base end portion of the first passenger seat side pivot shaft 21, and the first drive lever 26 has a first drive lever 26 attached to the distal end portion of the first passenger seat side pivot shaft 21. One end is fixed. As shown in FIG. 2, the other end of the first passenger seat side swing lever 25 and the other end of the driver seat side swing lever 16 are connected by a second connecting rod 27. Accordingly, when the first motor 11 is driven and the driver's seat side swing lever 16 is pivoted, the second connecting rod 27 transmits the driving force to the first passenger's seat side swing lever 25 and the first passenger seat side swing lever. 25, the first drive lever 26 is swung (rotated) around the first axis L1.
 図3に示したように、第2助手席側ピボット軸22は、第1助手席側ピボット軸21よりも長く形成され、第2助手席側ピボット軸22の基端部及び先端部が第1助手席側ピボット軸21から軸方向に突出し、第2助手席側ピボット軸の基端部には、第2助手席側揺動レバー28の一端が固定され、第2助手席側ピボット軸22の先端部には、第2駆動レバー29の一端が固定されている。 As shown in FIG. 3, the second passenger seat side pivot shaft 22 is formed longer than the first passenger seat side pivot shaft 21, and the base end portion and the distal end portion of the second passenger seat side pivot shaft 22 are the first. One end of a second passenger seat side swinging lever 28 is fixed to the base end portion of the second passenger seat side pivot shaft 21 so as to protrude in the axial direction from the passenger seat side pivot shaft 21. One end of the second drive lever 29 is fixed to the tip portion.
 第2駆動クランクアーム14の他端と第2助手席側揺動レバー28の他端とは、第3連結ロッド31によって連結されている。従って、第2モータ12が駆動されると、第2駆動クランクアーム14が回転し、第3連結ロッド31が第2駆動クランクアーム14の駆動力を第2助手席側揺動レバー28に伝達し、第2助手席側揺動レバー28と共に、第2駆動レバー29を揺動(回転)させる。前述のように第1助手席側ピボット軸21及び第2助手席側ピボット軸22は同軸に設けられているが、第1助手席側ピボット軸21及び第2助手席側ピボット軸22は互いには連動しておらず、第1助手席側ピボット軸21及び第2助手席側ピボット軸22は、各々独立して回転する。 The other end of the second drive crank arm 14 and the other end of the second passenger seat side swing lever 28 are connected by a third connecting rod 31. Therefore, when the second motor 12 is driven, the second drive crank arm 14 rotates, and the third connecting rod 31 transmits the driving force of the second drive crank arm 14 to the second passenger seat side swing lever 28. The second drive lever 29 is swung (rotated) together with the second passenger seat-side rocking lever 28. As described above, the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are provided coaxially, but the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not mutually connected. The first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not interlocked and rotate independently of each other.
 図2、図4~8に示したように、ワイパ装置2は、第1駆動レバー26の他端側にある第3軸線L3を中心として回転可能に基端部が連結された第1従動レバー32を備える。 As shown in FIGS. 2 and 4 to 8, the wiper device 2 includes a first driven lever having a base end portion coupled to a third axis L3 on the other end side of the first drive lever 26 so as to be rotatable. 32.
 ワイパ装置2は、第1従動レバー32の先端側にある第4軸線L4を中心として回転可能に基端部が連結されると共に、第2駆動レバー29の他端側にある第5軸線L5を中心として回転可能に先端側が連結された第2従動レバーであるアームヘッド33を備える。アームヘッド33は、当該アームヘッド33の先端に基端部が固定されるリテーナ34と共に助手席側ワイパアーム35を構成する。助手席側ワイパアーム35の先端部には、ウィンドシールドガラス1の助手席側を払拭するための助手席側ワイパブレード36が連結されている。 The wiper device 2 has a base end portion coupled to be rotatable about a fourth axis L4 on the distal end side of the first driven lever 32 and a fifth axis L5 on the other end side of the second drive lever 29. An arm head 33 which is a second driven lever having a distal end connected to be rotatable about the center is provided. The arm head 33 constitutes a passenger-side wiper arm 35 together with a retainer 34 whose base end is fixed to the distal end of the arm head 33. A front passenger side wiper blade 36 for wiping the front passenger side of the windshield glass 1 is connected to the front end of the front passenger side wiper arm 35.
 第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、第1軸線L1(第2軸線L2)から第3軸線L3までの長さと、第4軸線L4から第5軸線L5までの長さが同じになるように連結されている。第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、第3軸線L3から第4軸線L4までの長さと、第1軸線L1(第2軸線L2)から第5軸線L5までの長さが同じになるように連結されている。従って、第1駆動レバー26とアームヘッド33とが平行を保持し、かつ第2駆動レバー29と第1従動レバー32とが平行を保持することになり、第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、略平行四辺形状のリンク機構(伸縮機構)を構成する。 The first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the first axis L1 (second axis L2) to the third axis L3, and from the fourth axis L4 to the fifth. It connects so that the length to the axis line L5 may become the same. The first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the third axis L3 to the fourth axis L4, and the first axis L1 (second axis L2) to the fifth. It connects so that the length to the axis line L5 may become the same. Accordingly, the first drive lever 26 and the arm head 33 are kept parallel, and the second drive lever 29 and the first driven lever 32 are kept parallel. The first drive lever 26 and the second drive lever 29, the 1st driven lever 32, and the arm head 33 comprise the substantially parallelogram-shaped link mechanism (expansion-contraction mechanism).
 第5軸線L5は、助手席側ワイパアーム35が動作する際の支点であり、助手席側ワイパアーム35は、第1モータ11の駆動力により、第5軸線L5を中心として回転することによりウィンドシールドガラス1上を往復動作する。また、第2モータ12は、第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33で構成される略平行四辺形状のリンク機構を介して、第5軸線L5を、図4~6に示したように、図2、図7及び図8の場合よりもウィンドシールドガラス1の上方に移動させる。かかる第5軸線L5の移動により、助手席側ワイパアーム35は見かけ上伸長される。従って、第1モータ11と共に第2モータ12が動作することにより、助手席側ワイパブレード36は払拭範囲Z2を払拭する。 The fifth axis L5 is a fulcrum when the passenger-side wiper arm 35 operates. The passenger-side wiper arm 35 is rotated about the fifth axis L5 by the driving force of the first motor 11 to windshield glass. Reciprocates on 1. Further, the second motor 12 passes the fifth axis L5 through a substantially parallelogram link mechanism including the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33. As shown in FIGS. 4 to 6, the windshield glass 1 is moved more than in the case of FIGS. By such movement of the fifth axis L5, the passenger side wiper arm 35 is apparently extended. Accordingly, when the second motor 12 is operated together with the first motor 11, the passenger side wiper blade 36 wipes the wiping range Z2.
 第2モータ12が動作せずに第1モータ11のみが動作する場合には、第5軸線L5は図2、図7及び図8に示した位置(以下、「第1位置」と称する)から動かない。従って、助手席側ワイパアーム35は、位置が変化しない第5軸線L5を中心に略円弧状の軌跡を描きながら下反転位置P2Pと上反転位置P1Pの間を動作し、助手席側ワイパブレード36は略扇形の払拭範囲Z1を払拭する。 When the second motor 12 does not operate and only the first motor 11 operates, the fifth axis L5 starts from the position shown in FIGS. 2, 7, and 8 (hereinafter referred to as “first position”). It does n’t move. Accordingly, the passenger side wiper arm 35 operates between the lower inversion position P2P and the upper inversion position P1P while drawing a substantially arc-shaped locus around the fifth axis L5 whose position does not change, and the passenger seat side wiper blade 36 The substantially fan-shaped wiping range Z1 is wiped.
 本例示的実施形態では、ウィンドシールドガラス1を広く払拭することを要する場合には、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに動作する往動時(往路払拭時)に、払拭範囲Z2を払拭するように第1モータ11及び第2モータ12を各々制御する。そして、上反転位置P1Pで反転した助手席側ワイパブレード36が下反転位置P2Pに向かって動作する復動時(復路払拭時)に、払拭範囲Z1を払拭するように第1モータ11及び第2モータ12を各々制御する。助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間を往復する際に、往動時には払拭範囲Z2を、復動時には払拭範囲Z1を、各々払拭することにより、ウィンドシールドガラス1の幅広い範囲を払拭できる。または、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間を往復する際に、往動時には払拭範囲Z1を、復動時には払拭範囲Z2を、各々払拭することによっても、ウィンドシールドガラス1の幅広い範囲を払拭できる。または、往動時及び復動時に、払拭範囲Z2を払拭するようにしてもよい。 In this exemplary embodiment, when it is necessary to wipe the windshield glass 1 widely, during the forward movement when the passenger seat wiper blade 36 operates from the lower inversion position P2P to the upper inversion position P1P (during wiping the outward path). The first motor 11 and the second motor 12 are each controlled so as to wipe the wiping range Z2. The first motor 11 and the second motor 11 wipe the wiping range Z1 when the passenger seat wiper blade 36 reversed at the upper reversal position P1P moves toward the lower reversal position P2P (return wiping). Each motor 12 is controlled. When the passenger-side wiper blade 36 reciprocates between the lower inversion position P2P and the upper inversion position P1P, the wiping range Z2 is wiped in the forward movement and the wiping range Z1 is wiped in the backward movement. 1 wide range can be wiped off. Alternatively, when the passenger-side wiper blade 36 reciprocates between the lower inversion position P2P and the upper inversion position P1P, the wiping range Z1 is wiped in the forward movement and the wiping range Z2 is wiped in the backward movement. A wide range of windshield glass 1 can be wiped off. Alternatively, the wiping range Z2 may be wiped at the time of forward movement and backward movement.
 以下、本例示的実施形態に係るワイパ装置2の動作について説明する。本例示的実施形態では、運転席側ワイパアーム17及び運転席側ワイパブレード18は、第1モータ11の回転に従い、運転席側ピボット軸15を中心として動作するのみなので、以下では、助手席側ワイパアーム35及び助手席側ワイパブレード36の動作について詳述する。 Hereinafter, the operation of the wiper device 2 according to the exemplary embodiment will be described. In the present exemplary embodiment, the driver-seat-side wiper arm 17 and the driver-seat-side wiper blade 18 only operate around the driver-seat-side pivot shaft 15 according to the rotation of the first motor 11. 35 and the operation of the passenger seat side wiper blade 36 will be described in detail.
 図2は、助手席側ワイパブレード36が下反転位置P2Pに位置している状態であり、助手席側ワイパアーム35が停止位置にある状態を示している。かかる状態で、前述のウォッシャスイッチ62又は拡大モードスイッチがオンになると、制御回路52の制御により第1モータ11の第1出力軸11Aが図4に示した回転方向CC1で回転することにより、第1駆動レバー26が回転を開始し、助手席側ワイパアーム35は、第5軸線L5を中心として回転動作を開始する。同時に、第2モータ12の第2出力軸12Aも、図4に示した回転方向CC2での回転を開始する。なお、本例示的実施形態では、第1出力軸11Aの回転方向CC1での回転、及び第2出力軸12Aの回転方向CC2での回転を、各々の出力軸における正回転とする。 FIG. 2 shows a state in which the passenger-side wiper blade 36 is positioned at the lower inversion position P2P, and the passenger-side wiper arm 35 is in the stop position. In this state, when the washer switch 62 or the enlargement mode switch is turned on, the first output shaft 11A of the first motor 11 is rotated in the rotation direction CC1 shown in FIG. The first drive lever 26 starts rotating, and the passenger seat side wiper arm 35 starts rotating around the fifth axis L5. At the same time, the second output shaft 12A of the second motor 12 also starts to rotate in the rotational direction CC2 shown in FIG. In the exemplary embodiment, the rotation of the first output shaft 11A in the rotation direction CC1 and the rotation of the second output shaft 12A in the rotation direction CC2 are defined as positive rotations of the respective output shafts.
 図4は、助手席側ワイパブレード36がウィンドシールドガラス1を途中(往動行程の略1/4)まで払拭した状態を示している。本例示的実施形態では、第1モータ11が回転方向CC1での回転を開始すると、第2モータ12の回転方向CC2での回転による駆動力が第2駆動レバー29に伝達される。第2モータ12の駆動力が伝達された第2駆動レバー29は、動作方向CW3に動作し、助手席側ワイパアーム35の支点である第5軸線L5をウィンドシールドガラス1の助手席側の上方に向けて移動させる。 FIG. 4 shows a state where the passenger-side wiper blade 36 wipes the windshield glass 1 halfway (approximately 1/4 of the forward travel). In the exemplary embodiment, when the first motor 11 starts to rotate in the rotational direction CC1, the driving force generated by the rotation of the second motor 12 in the rotational direction CC2 is transmitted to the second drive lever 29. The second drive lever 29 to which the driving force of the second motor 12 is transmitted operates in the operation direction CW3, and the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, is located above the passenger seat side of the windshield glass 1. Move towards.
 図5は、第1出力軸11Aが0°と第1所定角度との間の中間回転角度まで回転したことにより、第1駆動レバー26がさらに回転され、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間の行程(往動行程)の略中間点に到達した場合を示している。図5では、第2モータ12の第2出力軸12Aは、図4で示した回転方向CC2で第2所定回転角度まで回転した状態でもある。第2出力軸12Aの正回転での回転角度が最大となったことにより、助手席側ワイパアーム35の支点である第5軸線L5は、第2駆動クランクアーム14、第3連結ロッド31、第2助手席側揺動レバー28及び第2駆動レバー29により、最も上方の位置(第2位置)まで持ち上げられる。その結果、助手席側ワイパブレード36の先端部は、図1に示したように、ウィンドシールドガラス1の助手席側の上方の角に近い位置まで移動される。なお、前述の中間回転角度は、第1所定回転角度の半分程度であるが、ウィンドシールドガラス1の形状等に応じて、個別に設定する。なお、第2位置は、各々の拡大率において第5軸線L5が最も上方に配置される位置である。詳説すると、第2位置は、助手席側ワイパブレードが払拭範囲Z1より広い範囲(例えば、払拭範囲Z2)を払拭する際に、第1出力軸11Aが0°と第1所定角度との間の中間回転角度まで回転した時の第5軸線L5が配置される位置である。 FIG. 5 shows that when the first output shaft 11A is rotated to an intermediate rotation angle between 0 ° and the first predetermined angle, the first drive lever 26 is further rotated, and the front passenger side wiper blade 36 is in the lower inverted position. A case is shown in which a substantially intermediate point of the stroke (forward stroke) between P2P and the upper reversal position P1P is reached. In FIG. 5, the second output shaft 12A of the second motor 12 is also rotated to the second predetermined rotation angle in the rotation direction CC2 shown in FIG. Due to the maximum rotation angle of the second output shaft 12A in the forward rotation, the fifth axis L5, which is the fulcrum of the passenger-side wiper arm 35, is connected to the second drive crank arm 14, the third connecting rod 31, the second The passenger seat side swing lever 28 and the second drive lever 29 are lifted to the uppermost position (second position). As a result, the front end portion of the passenger seat side wiper blade 36 is moved to a position near the upper corner of the windshield glass 1 on the passenger seat side, as shown in FIG. The intermediate rotation angle described above is about half of the first predetermined rotation angle, but is set individually according to the shape of the windshield glass 1 and the like. Note that the second position is a position at which the fifth axis L5 is disposed at the uppermost position in each magnification. Specifically, the second position is determined when the first output shaft 11A is between 0 ° and the first predetermined angle when the passenger-side wiper blade wipes a range wider than the wiping range Z1 (for example, the wiping range Z2). This is the position at which the fifth axis L5 is arranged when rotated to the intermediate rotation angle.
 図6は、第1駆動レバー26がさらに回転されたことにより、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間の行程(往動行程)の略3/4に達した場合を示している。図6では、第1モータ11の第1出力軸11Aの回転方向は図4、5の場合と同じだが、第2モータ12の第2出力軸12Aは、図4、5の場合とは逆の回転方向CW2で回転する(逆回転)。第2出力軸12Aが回転方向CW2で回転することにより、第2駆動レバー29は動作方向CC3で動作し、助手席側ワイパアーム35の支点である第5軸線L5は第2位置から下方へ移動される。その結果、助手席側ワイパブレード36は、その先端部が図1に示した払拭範囲Z2上方の破線で示された軌跡を描きながらウィンドシールドガラス1上を移動し、払拭範囲Z2を払拭する。 FIG. 6 shows that when the first drive lever 26 is further rotated, the passenger-side wiper blade 36 reaches approximately 3/4 of the stroke (forward stroke) between the lower inversion position P2P and the upper inversion position P1P. Shows the case. In FIG. 6, the rotation direction of the first output shaft 11A of the first motor 11 is the same as that of FIGS. 4 and 5, but the second output shaft 12A of the second motor 12 is opposite to the case of FIGS. It rotates in the rotation direction CW2 (reverse rotation). When the second output shaft 12A rotates in the rotation direction CW2, the second drive lever 29 operates in the operation direction CC3, and the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, is moved downward from the second position. The As a result, the front passenger side wiper blade 36 moves on the windshield glass 1 while wiping the wiping range Z2 while drawing the locus indicated by the broken line above the wiping range Z2 shown in FIG.
 図7は、第1モータ11の第1出力軸11Aが第1所定回転角度まで正回転し、かつ第2モータ12の第2出力軸12Aが第2所定回転角度で逆回転した場合を示している。第1モータ11の第1出力軸11Aの正回転での回転角度が最大となったことにより、運転席側ワイパアーム17及び運転席側ワイパブレード18は、上反転位置P1Dに到達する。また、第2モータ12の第2出力軸12Aは、図5の示した状態(第2出力軸12Aが正回転にて第2所定回転角度に達した状態)から、第2所定回転角度で逆回転したことにより、助手席側ワイパアーム35の支点である第5軸線L5は、図2に示した第2モータ12の第2出力軸12Aが正回転を開始する前の位置である第1位置に戻っている。その結果、助手席側ワイパアーム35及び助手席側ワイパブレード36は、第2モータ12を駆動しない場合の払拭範囲Z1と同じ上反転位置P1Pに達する。 FIG. 7 shows a case where the first output shaft 11A of the first motor 11 rotates forward to the first predetermined rotation angle and the second output shaft 12A of the second motor 12 rotates reversely at the second predetermined rotation angle. Yes. Since the rotation angle of the first output shaft 11A of the first motor 11 in the forward rotation is maximized, the driver seat side wiper arm 17 and the driver seat side wiper blade 18 reach the upper inversion position P1D. Further, the second output shaft 12A of the second motor 12 is reversed at the second predetermined rotation angle from the state shown in FIG. 5 (the state where the second output shaft 12A has reached the second predetermined rotation angle by forward rotation). Due to the rotation, the fifth axis L5, which is the fulcrum of the passenger-side wiper arm 35, is at the first position, which is the position before the second output shaft 12A of the second motor 12 shown in FIG. I'm back. As a result, the passenger seat side wiper arm 35 and the passenger seat side wiper blade 36 reach the same upper inversion position P1P as the wiping range Z1 when the second motor 12 is not driven.
 図8は、運転席側ワイパアーム17及び運転席側ワイパブレード18並びに助手席側ワイパアーム35及び助手席側ワイパブレード36が上反転位置P1D、P1Pから下反転位置P2D、P2Pに移動する復動時の状態(復動行程)を示している。復動時では、第1モータ11の第1出力軸11Aは逆回転し、図2、図4~7の場合とは逆方向の回転方向CW1で回転する。しかしながら、第2モータ12の第2出力軸12Aは回転せず、従って助手席側ワイパアーム35の支点である第5軸線L5は第1位置から移動しないので、第1モータ11の第1出力軸11Aが逆回転することにより、助手席側ワイパアーム35は略円弧状の軌跡を描く。その結果、助手席側ワイパアーム35の先端に連結された助手席側ワイパブレード36は、払拭範囲Z1を払拭する。 FIG. 8 shows a state in which the driver's seat side wiper arm 17 and the driver's seat side wiper blade 18 and the passenger's seat side wiper arm 35 and the passenger's seat side wiper blade 36 move from the upper inverted positions P1D and P1P to the lower inverted positions P2D and P2P. The state (return stroke) is shown. At the time of backward movement, the first output shaft 11A of the first motor 11 rotates in the reverse direction, and rotates in the rotation direction CW1 in the reverse direction to the case of FIGS. However, the second output shaft 12A of the second motor 12 does not rotate, and therefore the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, does not move from the first position, so the first output shaft 11A of the first motor 11 does not move. Is reversely rotated, the passenger seat side wiper arm 35 draws a substantially arc-shaped locus. As a result, the passenger side wiper blade 36 connected to the front end of the passenger side wiper arm 35 wipes the wiping range Z1.
 図9は、本例示的実施形態に係るワイパシステム100の回路を模式的に示した回路図である。図9に示すように、ワイパシステム100は、制御回路52と駆動回路56とを含んでいる。 FIG. 9 is a circuit diagram schematically showing a circuit of the wiper system 100 according to the exemplary embodiment. As shown in FIG. 9, the wiper system 100 includes a control circuit 52 and a drive circuit 56.
 制御回路52は、前述のようにマイクロコンピュータ58とメモリ60を有し、マイクロコンピュータ58には、車両ECU90(図示せず)を介して、ワイパスイッチ50、方向指示器スイッチ54、ウォッシャスイッチ62、レインセンサ76、車速センサ92、車載カメラ94、GPS装置96、操舵角センサ98、ミリ波レーダ102が各々接続されている。 As described above, the control circuit 52 includes the microcomputer 58 and the memory 60. The microcomputer 58 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a vehicle ECU 90 (not shown), A rain sensor 76, a vehicle speed sensor 92, an in-vehicle camera 94, a GPS device 96, a steering angle sensor 98, and a millimeter wave radar 102 are connected to each other.
 駆動回路56は、第1モータ11を駆動させるための第1プリドライバ104及び第1モータ駆動回路108、第2モータ12を駆動させるための第2プリドライバ106及び第2モータ駆動回路110を備えている。また駆動回路56は、ウォッシャモータ64を駆動させるための、リレー駆動回路78、FET駆動回路80及びウォッシャモータ駆動回路57を有している。 The drive circuit 56 includes a first pre-driver 104 and a first motor drive circuit 108 for driving the first motor 11, and a second pre-driver 106 and a second motor drive circuit 110 for driving the second motor 12. ing. The drive circuit 56 includes a relay drive circuit 78, an FET drive circuit 80, and a washer motor drive circuit 57 for driving the washer motor 64.
 制御回路52のマイクロコンピュータ58は、第1プリドライバ104を介して第1モータ駆動回路108を構成するスイッチング素子をオンオフさせることにより第1モータ11の回転を、第2プリドライバ106を介して第2モータ駆動回路110のスイッチング素子をオンオフさせることにより第2モータ12の回転を、各々制御する。また、マイクロコンピュータ58は、リレー駆動回路78及びFET駆動回路80を制御することによりウォッシャモータ64の回転を制御する。 The microcomputer 58 of the control circuit 52 rotates the first motor 11 via the second pre-driver 106 by turning on and off the switching elements constituting the first motor driving circuit 108 via the first pre-driver 104. The rotation of the second motor 12 is controlled by turning on and off the switching elements of the two-motor drive circuit 110. The microcomputer 58 controls the rotation of the washer motor 64 by controlling the relay drive circuit 78 and the FET drive circuit 80.
 第1モータ11及び第2モータ12がブラシ付きDCモータの場合、第1モータ駆動回路108及び第2モータ駆動回路110は、各々4個のスイッチング素子を含む。スイッチング素子は、一例としてN型のFET(電界効果トランジスタ)である。 When the first motor 11 and the second motor 12 are brushed DC motors, the first motor drive circuit 108 and the second motor drive circuit 110 each include four switching elements. The switching element is, for example, an N-type FET (field effect transistor).
 図9に示すように、第1モータ駆動回路108は、FET108A~108Dを含んでいる。FET108Aは、ドレインが電源(+B)に接続され、ゲートが第1プリドライバ104に接続され、ソースが第1モータ11の一端部に接続されている。FET108Bは、ドレインが電源(+B)に接続され、ゲートが第1プリドライバ104に接続され、ソースが第1モータ11の他端部に接続されている。FET108Cは、ドレインが第1モータ11の一端部に接続され、ゲートが第1プリドライバ104に接続され、ソースが接地されている。FET108Dは、ドレインが第1モータ11の他端部に接続され、ゲートが第1プリドライバ104に接続され、ソースが接地されている。 As shown in FIG. 9, the first motor drive circuit 108 includes FETs 108A to 108D. The FET 108 </ b> A has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to one end of the first motor 11. The FET 108 </ b> B has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to the other end of the first motor 11. The FET 108C has a drain connected to one end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded. The FET 108D has a drain connected to the other end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded.
 第1プリドライバ104は、マイクロコンピュータ58からの制御信号に従ってFET108A~108Dのゲートに供給する制御信号を切り替えることで、第1モータ11の駆動を制御する。すなわち、第1プリドライバ104は、第1モータ11の第1出力軸11Aを所定方向に回転(正回転)させる場合には、FET108AとFET108Dの組をオンさせ、第1モータ11の第1出力軸11Aを所定方向と逆方向に回転(逆回転)させる場合には、FET108BとFET108Cの組をオンさせる。また、第1プリドライバ104は、マイクロコンピュータ58からの制御信号に基づいて、FET108A及びFET108Dを断続的にオンオフさせるPWMを行う。 The first pre-driver 104 controls driving of the first motor 11 by switching a control signal supplied to the gates of the FETs 108A to 108D in accordance with a control signal from the microcomputer 58. That is, when the first pre-driver 104 rotates the first output shaft 11A of the first motor 11 in a predetermined direction (forward rotation), the first pre-driver 104 turns on the set of the FET 108A and the FET 108D and the first output of the first motor 11 When rotating the shaft 11A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 108B and the FET 108C is turned on. Further, the first pre-driver 104 performs PWM for intermittently turning on and off the FET 108A and the FET 108D based on a control signal from the microcomputer 58.
 第1プリドライバ104はPWMにより、FET108A及びFET108Dのオンオフに係るデューティ比を変化させることにより、第1モータ11の正回転での回転速度を制御する。当該デューティ比が大きくなれば、正回転時に第1モータ11の端子に印加される電圧の実効値が高くなり、第1モータ11の回転速度は大きくなる。 The first pre-driver 104 controls the rotational speed of the first motor 11 in the forward rotation by changing the duty ratio related to the on / off of the FET 108A and the FET 108D by PWM. If the duty ratio is increased, the effective value of the voltage applied to the terminal of the first motor 11 during forward rotation is increased, and the rotation speed of the first motor 11 is increased.
 同様に、第1プリドライバ104はPWMにより、FET108B及びFET108Cのオンオフに係るデューティ比を変化させることにより、第1モータ11の逆回転での回転速度を制御する。当該デューティ比が大きくなれば、逆回転時に第1モータ11の端子に印加される電圧の実効値は高くなり、第1モータ11の回転速度は大きくなる。 Similarly, the first pre-driver 104 controls the rotational speed in the reverse rotation of the first motor 11 by changing the duty ratio related to on / off of the FET 108B and the FET 108C by PWM. If the duty ratio increases, the effective value of the voltage applied to the terminal of the first motor 11 during reverse rotation increases, and the rotation speed of the first motor 11 increases.
 第2モータ駆動回路110は、FET110A~110Dを含んでいる。FET110Aは、ドレインが電源(+B)に接続され、ゲートが第2プリドライバ106に接続され、ソースが第2モータ12の一端部に接続されている。FET110Bは、ドレインが電源(+B)に接続され、ゲートが第2プリドライバ106に接続され、ソースが第2モータ12の他端部に接続されている。FET110Cは、ドレインが第2モータ12の一端部に接続され、ゲートが第2プリドライバ106に接続され、ソースが接地されている。FET110Dは、ドレインが第2モータ12の他端部に接続され、ゲートが第2プリドライバ106に接続され、ソースが接地されている。 The second motor drive circuit 110 includes FETs 110A to 110D. The FET 110 </ b> A has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to one end of the second motor 12. The FET 110 </ b> B has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to the other end of the second motor 12. The FET 110C has a drain connected to one end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded. The FET 110D has a drain connected to the other end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded.
 第2プリドライバ106は、マイクロコンピュータ58からの制御信号に従ってFET110A~110Dのゲートに供給する制御信号を切り替えることで、第2モータ12の駆動を制御する。すなわち、第2プリドライバ106は、第2モータ12の第2出力軸12Aを所定方向に回転(正回転)させる場合には、FET110AとFET110Dの組をオンさせ、第2モータ12の第2出力軸12Aを所定方向と逆方向に回転(逆回転)させる場合には、FET110BとFET110Cの組をオンさせる。また、第2プリドライバ106は、マイクロコンピュータ58からの制御信号に基づいて、前述の第1プリドライバ104のようなPWMを行うことにより、第2モータ12の回転速度を制御する。 The second pre-driver 106 controls the driving of the second motor 12 by switching the control signal supplied to the gates of the FETs 110A to 110D in accordance with the control signal from the microcomputer 58. That is, when the second pre-driver 106 rotates the second output shaft 12A of the second motor 12 in a predetermined direction (forward rotation), the second pre-driver 106 turns on the set of the FET 110A and the FET 110D and outputs the second output of the second motor 12. When rotating the shaft 12A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 110B and the FET 110C is turned on. The second pre-driver 106 controls the rotation speed of the second motor 12 by performing PWM like the first pre-driver 104 described above based on the control signal from the microcomputer 58.
 第1モータ11の減速機構内における第1出力軸11Aの出力軸端部112には、2極のセンサマグネット112Aが固定され、センサマグネット112Aに対向するように第1絶対角センサ114が設けられている。 A two-pole sensor magnet 112A is fixed to the output shaft end portion 112 of the first output shaft 11A in the speed reduction mechanism of the first motor 11, and a first absolute angle sensor 114 is provided so as to face the sensor magnet 112A. ing.
 第2モータ12の減速機構内における第2出力軸12Aの出力軸端部116には、2極のセンサマグネット116Aが固定され、センサマグネット116Aに対向するように第2絶対角センサ118が設けられている。 A two-pole sensor magnet 116A is fixed to the output shaft end portion 116 of the second output shaft 12A in the speed reduction mechanism of the second motor 12, and a second absolute angle sensor 118 is provided so as to face the sensor magnet 116A. ing.
 第1絶対角センサ114は、センサマグネット112Aの磁界を、第2絶対角センサ118はセンサマグネット116Aの磁界を、各々検出し、検出した磁界の強さに応じた信号を出力する。マイクロコンピュータ58は、第1絶対角センサ114及び第2絶対角センサ118が各々出力した信号に基づいて、第1モータ11の第1出力軸11A及び第2モータ12の各々の回転角度、回転位置、回転方向及び回転速度を算出する。 The first absolute angle sensor 114 detects the magnetic field of the sensor magnet 112A, and the second absolute angle sensor 118 detects the magnetic field of the sensor magnet 116A, and outputs a signal corresponding to the strength of the detected magnetic field. The microcomputer 58 determines the rotational angle and rotational position of each of the first output shaft 11A of the first motor 11 and the second motor 12 based on the signals output from the first absolute angle sensor 114 and the second absolute angle sensor 118, respectively. The rotation direction and the rotation speed are calculated.
 第1モータ11の第1出力軸11Aの回転角度からは、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置が算出できる。また、第2モータ12の第2出力軸12Aの回転角度からは、助手席側ワイパアーム35の見かけの伸長の程度(拡大の程度)が算出できる。マイクロコンピュータ58は、第1出力軸11Aの回転角度から算出した運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置に基づいて、第2出力軸12Aの回転角度を制御することにより、第1モータ11と第2モータ12の各々の動作を同期させる。一例として、メモリ60に、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置(又は第1出力軸11Aの回転角度)と第2出力軸12Aの回転角度とを対応付けたマップ(例えば、後述する第2出力軸回転角度マップ)を予め記憶させ、当該マップに従って、第1出力軸11Aの回転角度に応じて第2出力軸12Aの回転角度を制御する。 From the rotation angle of the first output shaft 11A of the first motor 11, the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 can be calculated. Further, from the rotation angle of the second output shaft 12A of the second motor 12, the degree of apparent extension (degree of enlargement) of the passenger-side wiper arm 35 can be calculated. The microcomputer 58 determines the rotation angle of the second output shaft 12A based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat wiper blade 18 calculated from the rotation angle of the first output shaft 11A. By controlling the above, the operations of the first motor 11 and the second motor 12 are synchronized. As an example, in the memory 60, the position (or the rotation angle of the first output shaft 11A) between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 and the rotation angle of the second output shaft 12A (For example, a second output shaft rotation angle map described later) is stored in advance, and the rotation angle of the second output shaft 12A is controlled according to the rotation angle of the first output shaft 11A according to the map.
 ウォッシャモータ駆動回路57は、2個のリレーRLY1、RLY2を内蔵したリレーユニット84、2個のFET86A、86Bを含んでいる。リレーユニット84のリレーRLY1、RLY2のリレーコイルは、リレー駆動回路78に各々接続されている。リレー駆動回路78は、リレーRLY1、RLY2のオンオフ(リレーコイルの励磁/励磁停止)を切り替える。リレーRLY1、RLY2は、リレーコイルが励磁されていない間は、共通端子84C1、84C2が第1端子84A1、84A2と各々接続している状態(オフ状態)を維持し、リレーコイルが励磁されると共通端子84C1、84C2を第2端子84B1、84B2に各々接続する状態に切り替わる。リレーRLY1の共通端子84C1はウォッシャモータ64の一端に接続されており、リレーRLY2の共通端子84C2はウォッシャモータ64の他端に接続されている。また、リレーRLY1、RLY2の第1端子84A1、84A2の各々はFET86Bのドレインに接続され、リレーRLY1、RLY2の第2端子84B1、84B2の各々は電源(+B)に接続されている。 The washer motor drive circuit 57 includes a relay unit 84 incorporating two relays RLY1 and RLY2, and two FETs 86A and 86B. The relay coils of the relays RLY1 and RLY2 of the relay unit 84 are connected to the relay drive circuit 78, respectively. The relay drive circuit 78 switches the relays RLY1 and RLY2 on and off (excitation / excitation stop of the relay coil). When the relay coils are not excited, the relays RLY1 and RLY2 maintain the state in which the common terminals 84C1 and 84C2 are connected to the first terminals 84A1 and 84A2 (off state), respectively, and the relay coils are excited. The common terminals 84C1 and 84C2 are switched to the state of connecting to the second terminals 84B1 and 84B2, respectively. The common terminal 84C1 of the relay RLY1 is connected to one end of the washer motor 64, and the common terminal 84C2 of the relay RLY2 is connected to the other end of the washer motor 64. The first terminals 84A1 and 84A2 of the relays RLY1 and RLY2 are connected to the drain of the FET 86B, and the second terminals 84B1 and 84B2 of the relays RLY1 and RLY2 are connected to the power source (+ B).
 FET86BはゲートがFET駆動回路80に接続され、ソースが接地されている。FET86Bのオンオフに係るデューティ比はFET駆動回路80によって制御される。また、FET86Bのドレインと電源(+B)との間には、FET86Aが設けられている。FET86Aは、ゲートに制御信号が入力されないのでオンオフの切り替えは行われず、寄生ダイオードをサージの吸収に用いる目的で設けられている。 The FET 86B has a gate connected to the FET drive circuit 80 and a source grounded. The duty ratio related to the on / off of the FET 86B is controlled by the FET drive circuit 80. An FET 86A is provided between the drain of the FET 86B and the power supply (+ B). The FET 86A is provided for the purpose of using a parasitic diode for absorbing a surge without switching on and off because no control signal is input to the gate.
 リレー駆動回路78及びFET駆動回路80は、2個のリレーRLY1、RLY2とFET86Bとのオンオフを切り替えることで、ウォッシャモータ64の駆動を制御する。すなわち、ウォッシャモータ64の出力軸を所定方向に回転(正回転)させる場合、リレー駆動回路78はリレーRLY1をオンさせ(リレーRLY2はオフ)、FET駆動回路80は所定のデューティ比でFET86Bをオンさせる。上記の制御により、ウォッシャモータ64の出力軸の回転速度が制御される。 The relay driving circuit 78 and the FET driving circuit 80 control the driving of the washer motor 64 by switching on and off the two relays RLY1, RLY2 and the FET 86B. That is, when rotating the output shaft of the washer motor 64 in a predetermined direction (forward rotation), the relay drive circuit 78 turns on the relay RLY1 (relay RLY2 is off), and the FET drive circuit 80 turns on the FET 86B with a predetermined duty ratio. Let With the above control, the rotation speed of the output shaft of the washer motor 64 is controlled.
 図10Aは、本例示的実施形態における第1出力軸11Aの回転角度に応じた第2出力軸12Aの回転角度を規定した第2出力軸回転角度マップの一例を示している。図10Aの横軸は、第1出力軸11Aの回転角度である第1出力軸回転角度θAであり、縦軸は第2出力軸12Aの回転角度である第2出力軸回転角度θBである。図10Aの原点Oは、助手席側ワイパブレード36が下反転位置P2Pにある状態を示している。図10Aのθ1は、第1出力軸11Aが第1所定回転角度θ1回転して、助手席側ワイパブレード36が上反転位置P1Pにある状態を示している。 FIG. 10A shows an example of a second output shaft rotation angle map that defines the rotation angle of the second output shaft 12A in accordance with the rotation angle of the first output shaft 11A in the present exemplary embodiment. The horizontal axis of FIG. 10A is the first output shaft rotation angle θ A that is the rotation angle of the first output shaft 11A, and the vertical axis is the second output shaft rotation angle θ B that is the rotation angle of the second output shaft 12A. is there. The origin O in FIG. 10A shows a state where the passenger seat side wiper blade 36 is at the lower inversion position P2P. In FIG. 10A, θ 1 indicates a state in which the first output shaft 11A is rotated by the first predetermined rotation angle θ 1 and the passenger seat side wiper blade 36 is at the upper inversion position P1P.
 マイクロコンピュータ58は、第1絶対角センサ114が第1モータ11の第1出力軸11Aが回転を始めると、第1絶対角センサ114で検知した第1出力軸11Aの回転角度と第2出力軸回転角度マップとを照合する。かかる照合により、図10Aの曲線190で示された角度から、第1絶対角センサ114で検知した第1出力軸回転角度θAに対応する第2出力軸回転角度θBを算出し、算出した第2出力軸回転角度θBになるように第2モータ12の第2出力軸12Aの回転角度を制御する。図10Aには、曲線190、192、194の3本の第2出力軸回転角度マップが記載されている。曲線190は、拡大率が100%の場合に第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示している。曲線192は、拡大率が50%の場合に第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示している。曲線194は、拡大率が0%の場合に、第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示している。 When the first absolute angle sensor 114 starts rotation of the first output shaft 11A of the first motor 11, the microcomputer 58 detects the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 and the second output shaft. Check the rotation angle map. With this collation, the second output shaft rotation angle θ B corresponding to the first output shaft rotation angle θ A detected by the first absolute angle sensor 114 is calculated from the angle indicated by the curve 190 in FIG. so that the second output shaft rotation angle theta B controls the rotation angle of the second output shaft 12A of the second motor 12. FIG. 10A shows three second output shaft rotation angle maps of curves 190, 192, and 194. A curve 190 indicates the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 100%. A curve 192 represents the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 50%. A curve 194 shows the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 0%.
 拡大率が0%相当の場合、すなわち第2モータ12が回転しない場合には、理論上、第2出力軸12Aの回転角度は、第1出力軸回転角度θAの値に関係なく常に0°になる。しかしながら、本例示的実施形態では、助手席側ワイパアーム35の支点である第5軸線L5を移動させるリンク機構にも、運転席側ワイパアーム17及び助手席側ワイパアーム35を往復動作させる第1モータ11の駆動力が影響する場合があり、第2出力軸12Aの回転角度は、実際には第1出力軸回転角度θAの値に関係なく常に0°にはならない場合がある。 When the enlargement ratio is equivalent to 0%, that is, when the second motor 12 does not rotate, theoretically, the rotation angle of the second output shaft 12A is always 0 ° regardless of the value of the first output shaft rotation angle θ A. become. However, in the present exemplary embodiment, the link mechanism that moves the fifth axis L5, which is the fulcrum of the passenger seat side wiper arm 35, also causes the driver motor side wiper arm 17 and the passenger seat side wiper arm 35 to reciprocate. may driving force affects the rotation angle of the second output shaft 12A is in fact might not always 0 ° regardless of the value of the first output shaft rotation angle theta a.
 本例示的実施形態では、マイクロコンピュータ58は、第1絶対角センサ114により第1モータ11の第1出力軸11Aの回転角度が0°から正回転方向で変化を開始した場合を、助手席側ワイパブレード36が下反転位置P2Pからの移動を開始したと判定し、第2出力軸12Aの正回転を開始させる。マイクロコンピュータ58は、前述のように、第2出力軸回転角度マップを用いて第1出力軸11Aの回転角度に対応した第2出力軸12Aの回転角度を決定するが、マイクロコンピュータ58は、第2絶対角センサ118からの信号に基づいて第2出力軸12Aの回転角度をモニターし、第2出力軸回転角度マップを用いて決定した回転角度になるように第2モータ12の回転を制御する。曲線190で示した第2出力軸回転角度マップを用いた場合、第1出力軸回転角度θAが0°と第1所定回転角度θ1との間の中間回転角度θmになった場合に、第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2となるようにする。第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2になることで、助手席側ワイパアーム35の支点である第5軸線L5をウィンドシールドガラス1上の助手席側上方(第2位置)に移動させる。 In the present exemplary embodiment, the microcomputer 58 determines that the first absolute angle sensor 114 starts changing the rotation angle of the first output shaft 11A of the first motor 11 from 0 ° in the positive rotation direction. It is determined that the wiper blade 36 has started to move from the lower inversion position P2P, and the second output shaft 12A starts to rotate forward. As described above, the microcomputer 58 determines the rotation angle of the second output shaft 12A corresponding to the rotation angle of the first output shaft 11A using the second output shaft rotation angle map. 2 The rotation angle of the second output shaft 12A is monitored based on the signal from the absolute angle sensor 118, and the rotation of the second motor 12 is controlled so as to be the rotation angle determined using the second output shaft rotation angle map. . When the second output shaft rotation angle map indicated by the curve 190 is used, when the first output shaft rotation angle θ A becomes an intermediate rotation angle θ m between 0 ° and the first predetermined rotation angle θ 1. The rotation angle of the second output shaft 12A in the positive rotation is set to the second predetermined rotation angle θ 2 . When the rotation angle of the second output shaft 12A in the forward rotation becomes the second predetermined rotation angle θ 2 , the fifth axis L5, which is the fulcrum of the passenger seat side wiper arm 35, is positioned above the passenger seat side on the windshield glass 1 ( To the second position).
 第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2に達した後は、第2出力軸回転角度マップである曲線190に従い、第2出力軸12Aの回転角度を減少させる。具体的には、第1出力軸11Aの回転角度が第1所定回転角度θ1に達して、助手席側ワイパブレード36が上反転位置P1Pに達するまでに第2出力軸12Aを第2所定回転角度θ2で逆回転させることにより、第2出力軸12Aの回転角度を0°まで減少させる。かかる第2出力軸12Aの逆回転により、助手席側ワイパアーム35の支点である第5軸線L5は元の位置(第1位置)に戻される。 After the rotation angle in the forward rotation of the second output shaft 12A reaches a second predetermined rotational angle theta 2, in accordance with the curve 190 is a second output shaft rotation angle map, reduces the rotation angle of the second output shaft 12A . Specifically, the rotation angle of the first output shaft 11A reaches the first predetermined rotational angle theta 1, the second output shaft 12A second predetermined rotation until the passenger's side wiper blade 36 reaches the upper reversal position P1P By rotating backward at an angle θ 2 , the rotation angle of the second output shaft 12A is reduced to 0 °. By the reverse rotation of the second output shaft 12A, the fifth axis L5 that is the fulcrum of the passenger seat side wiper arm 35 is returned to the original position (first position).
 また、曲線192で示した第2出力軸回転角度マップを用いた場合は、第1出力軸回転角度θAが0°と第1所定回転角度θ1との間の中間回転角度θmになった場合に、第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2の略1/2のθ3になるようにする。第2出力軸12Aの正回転での回転角度がθ3になることで、助手席側ワイパアーム35の支点である第5軸線L5をウィンドシールドガラス1上の助手席側上方に移動させるが、第5軸線L5の移動量は曲線190を用いた場合よりも抑制され、拡大率は50%となる。 Further, when the second output shaft rotation angle map shown by the curve 192 is used, the first output shaft rotation angle θ A becomes an intermediate rotation angle θ m between 0 ° and the first predetermined rotation angle θ 1. In this case, the rotation angle of the second output shaft 12A in the forward rotation is set to θ 3 which is approximately ½ of the second predetermined rotation angle θ 2 . When the rotation angle at the forward rotation of the second output shaft 12A is θ 3 , the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, is moved upward on the passenger seat side on the windshield glass 1. The movement amount of the 5-axis line L5 is suppressed as compared with the case where the curve 190 is used, and the enlargement ratio is 50%.
 第2出力軸12Aの正回転での回転角度がθ3達した後は、第2出力軸回転角度マップである曲線192に従い、第2出力軸12Aの回転角度を減少させる。具体的には、第1出力軸11Aの回転角度が第1所定回転角度θ1に達して、助手席側ワイパブレード36が上反転位置P1Pに達するまでに第2出力軸12Aをθ3で逆回転させることにより、第2出力軸12Aの回転角度を0°まで減少させる。かかる第2出力軸12Aの逆回転により、助手席側ワイパアーム35の支点である第5軸線L5は、元の位置(第1位置)に戻される。 After the rotation angle of the second output shaft 12A in the forward rotation reaches θ 3 , the rotation angle of the second output shaft 12A is decreased according to the curve 192 that is the second output shaft rotation angle map. Specifically, the second output shaft 12A is reversed by θ 3 until the rotation angle of the first output shaft 11A reaches the first predetermined rotation angle θ 1 and the passenger seat wiper blade 36 reaches the upper inversion position P1P. By rotating, the rotation angle of the second output shaft 12A is reduced to 0 °. By the reverse rotation of the second output shaft 12A, the fifth axis L5 that is the fulcrum of the passenger seat side wiper arm 35 is returned to the original position (first position).
 以上の説明は、助手席側ワイパブレード36を下反転位置P2Pから上反転位置P1Pに移動させながら払拭範囲Z2を払拭させる場合である。助手席側ワイパブレード36を上反転位置P1Pから下反転位置P2Pに移動させながら払拭範囲Z2を払拭させる場合には、第1絶対角センサ114により第1出力軸11Aの回転角度が0°から逆回転方向で変化を開始した場合を、助手席側ワイパブレード36が上反転位置P1Pからの移動を開始したと判定し、第2モータ12の第2出力軸12Aの正回転を開始させる。なお、図10Aに示す第2出力軸回転角度マップは中間回転角度θmを軸にして左右対称な曲線190となっているが、これに限定されることはない。マップの曲線は、ウィンドシールドガラス1の形状等に応じて、個別に設定される。 The above description is a case where the wiping range Z2 is wiped while the passenger seat side wiper blade 36 is moved from the lower inversion position P2P to the upper inversion position P1P. When the wiping range Z2 is wiped while the passenger-side wiper blade 36 is moved from the upper inversion position P1P to the lower inversion position P2P, the rotation angle of the first output shaft 11A is reversed from 0 ° by the first absolute angle sensor 114. When the change starts in the rotation direction, it is determined that the passenger-side wiper blade 36 has started to move from the upper reversal position P1P, and the second output shaft 12A of the second motor 12 starts to rotate forward. Note that the second output shaft rotation angle map shown in FIG. 10A is has a symmetrical curve 190 by an intermediate rotation angle theta m to the shaft, but is not limited thereto. The curve of the map is individually set according to the shape of the windshield glass 1 and the like.
 また、マイクロコンピュータ58は、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置及び助手席側ワイパアーム35の拡大の程度に基づいて、ワイパブレードの払拭速度を変化させる等の制御を行うことも可能である。以下に、第2出力軸12Aの回転角度である第2所定回転角度を大きく設定して、助手席側ワイパアーム35の拡大の程度を大きくした場合の払拭速度の制御の一例について述べる。かかる場合には、第1モータ11の第1出力軸11Aの回転角度が中間回転角度に近づくにつれて、第1出力軸11Aの回転速度を徐々に減速させる。そして、第1出力軸11Aの回転角度が中間回転角度に達した場合、すなわち、助手席側ワイパアーム35が最大に伸長される場合に、第1出力軸11Aの回転速度が極小となるように制御する。第1出力軸11Aの回転速度の制御には、例えば、第1出力軸11Aの回転角度に応じて規定された第1出力軸11Aの回転速度のマップ等(図示せず)を用いる。また、第1出力軸11Aの回転速度に対応して、第2出力軸12Aの回転速度も制御する。例えば、図10Aに示したような第2出力軸回転角度マップを用いているのであれば、第1出力軸11Aの回転に第2出力軸12Aの回転を同期できるので、第1出力軸11Aの回転速度の増減に対応して、第2出力軸12Aの回転速度も制御できる。かかる制御により、助手席側ワイパアーム35を伸長させる速度と助手席側ワイパブレード36の払拭速度とを緩和でき、「助手席側ワイパアーム35が急激に伸びた」という違和感を乗員が覚えるおそれを軽減できる。 Further, the microcomputer 58 changes the wiping speed of the wiper blade based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 and the degree of enlargement of the passenger seat side wiper arm 35. It is also possible to perform control such as Hereinafter, an example of wiping speed control when the second predetermined rotation angle, which is the rotation angle of the second output shaft 12A, is set large to increase the degree of expansion of the passenger seat side wiper arm 35 will be described. In such a case, the rotation speed of the first output shaft 11A is gradually reduced as the rotation angle of the first output shaft 11A of the first motor 11 approaches the intermediate rotation angle. When the rotation angle of the first output shaft 11A reaches the intermediate rotation angle, that is, when the passenger seat side wiper arm 35 is extended to the maximum, control is performed so that the rotation speed of the first output shaft 11A is minimized. To do. For example, a map (not shown) of the rotation speed of the first output shaft 11A defined according to the rotation angle of the first output shaft 11A is used for controlling the rotation speed of the first output shaft 11A. Further, the rotational speed of the second output shaft 12A is also controlled in accordance with the rotational speed of the first output shaft 11A. For example, if the second output shaft rotation angle map as shown in FIG. 10A is used, the rotation of the second output shaft 12A can be synchronized with the rotation of the first output shaft 11A. Corresponding to the increase / decrease in the rotation speed, the rotation speed of the second output shaft 12A can also be controlled. With this control, the speed at which the passenger-side wiper arm 35 is extended and the wiping speed of the passenger-side wiper blade 36 can be alleviated, and the possibility that the passenger feels uncomfortable that the passenger-side wiper arm 35 has suddenly extended can be reduced. .
 以上説明したように、図10Aでは、メモリ60に記憶した曲線190、192の2つの第2出力軸回転角度マップを用いたが、図10Bに示したように、曲線190と曲線190に対する差分200をメモリ60に記憶し、拡大率50%で払拭する場合には、曲線190と差分200とを用いて第2出力軸回転角度θBを制御してもよい。 As described above, in FIG. 10A, the two second output shaft rotation angle maps of the curves 190 and 192 stored in the memory 60 are used, but as shown in FIG. 10B, the difference 200 between the curves 190 and 190 is obtained. May be stored in the memory 60, and the second output shaft rotation angle θ B may be controlled using the curve 190 and the difference 200 when wiping at 50% magnification.
 図11は、拡大率に応じた払拭範囲の変化の一例を示している。図11において、払拭範囲Z1は拡大率が0%の場合、払拭範囲Z2は拡大率が100%の場合、払拭範囲Z3は拡大率が50%の場合、を各々示している。図11に示したように、水滴がウィンドシールドガラス1上を流下する程度に応じて拡大率を変化させることにより、水滴がウィンドシールドガラス1の助手席外側(車両の側面側)に飛散することを防止する。 FIG. 11 shows an example of a change in the wiping range according to the enlargement ratio. In FIG. 11, the wiping range Z1 shows the case where the enlargement rate is 0%, the wiping range Z2 shows the case where the enlargement rate is 100%, and the wiping range Z3 shows the case where the enlargement rate is 50%. As shown in FIG. 11, the water droplets are scattered outside the front passenger seat (side surface of the vehicle) of the windshield glass 1 by changing the enlargement ratio according to the degree of the water droplet flowing down on the windshield glass 1. To prevent.
 以下、本例示的実施形態に係るワイパシステム100の制御について説明する。図12は、本例示的実施形態に係るワイパシステム100における、水滴飛散防止処理の一例を示したフローチャートである。ステップ120では、ワイパスイッチ50がオンになっているか否かを判定する。 Hereinafter, control of the wiper system 100 according to the exemplary embodiment will be described. FIG. 12 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the exemplary embodiment. In step 120, it is determined whether or not the wiper switch 50 is turned on.
 ステップ120で肯定判定の場合には、ステップ122で車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定する。歩行者又は二輪車の検出には、種々の方法が考えられるが、例えば、車両が備えるミリ波レーダ102によって歩行者又は二輪車を検出する。また、車載カメラ94で取得した画像データを既知の方法で画像処理することにより、歩行者又は二輪車を検出してもよい。 If the determination in step 120 is affirmative, it is determined in step 122 whether or not a pedestrian or motorcycle has been detected in the left direction of the vehicle (outside the passenger seat). Various methods are conceivable for detecting the pedestrian or the two-wheeled vehicle. For example, the pedestrian or the two-wheeled vehicle is detected by the millimeter wave radar 102 included in the vehicle. Moreover, you may detect a pedestrian or a two-wheeled vehicle by image-processing the image data acquired with the vehicle-mounted camera 94 by a known method.
 ステップ122で肯定判定の場合には、ステップ124で復動時の拡大率を往動時の拡大率よりも小さくする払拭動作を行って処理をリターンする。図10Aに示したような第2出力軸回転角度マップを用いるのであれば、往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線192の第2出力軸回転角度マップを用いて直前の往動時の拡大率に対する復動時の拡大率が50%になるように払拭動作を行う。復動時に拡大率を抑制することにより、ウィンドシールドガラス1の助手席側上部から流下する水滴を避けて助手席側ワイパブレード36を払拭動作させるので、飛沫をウィンドシールドガラス1の助手席外側に飛散させることを抑制できる。なお、ウィンドシールドガラス1の助手席側上部から流下する水滴は、拡大率を大きくした往動時の払拭動作で払拭されるので、運転席からの視界は、確保される。 If the determination in step 122 is affirmative, in step 124, a wiping operation is performed to make the enlargement rate at the backward movement smaller than the enlargement rate at the forward movement, and the process is returned. If the second output shaft rotation angle map as shown in FIG. 10A is used, the wiping operation is performed at an enlargement ratio of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement, and the curve during the backward movement. Using the second output shaft rotation angle map 192, the wiping operation is performed so that the enlargement ratio at the time of backward movement with respect to the enlargement ratio at the time of the previous forward movement becomes 50%. By suppressing the enlargement ratio at the time of backward movement, the wiping operation of the wiper blade 36 on the passenger seat side is avoided while avoiding water droplets flowing down from the upper part on the passenger seat side of the windshield glass 1, so Scattering can be suppressed. In addition, since the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation | movement at the time of the outward movement which enlarged the expansion ratio, the visibility from a driver's seat is ensured.
 なお、ステップ124での往動時拡大率100%、直前の往動時拡大率に対する復動時拡大率50%の動作は、1以上の所定の往復回数で実行して処理をリターンする。往復回数は任意であるが、ウィンドシールドガラス1上の水滴を効果的に払拭できる回数を、実機を用いた実験等を通じで決定する。 It should be noted that the operations of the forward movement enlargement ratio 100% in step 124 and the backward movement enlargement ratio 50% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned. The number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines.
 以上説明したように、本例示的実施形態によれば、ミリ波レーダ102又は車載カメラ94により車両の助手席外側に存在する歩行者等を検知した場合、復動時には助手席側ワイパアーム35の拡大率を抑制することにより、歩行者等への水滴の飛散を防止することが可能となる。 As described above, according to the present exemplary embodiment, when a pedestrian or the like existing outside the passenger seat of the vehicle is detected by the millimeter wave radar 102 or the in-vehicle camera 94, the passenger seat side wiper arm 35 is enlarged at the time of return. By suppressing the rate, it is possible to prevent water droplets from scattering to pedestrians and the like.
 また、ミリ波レーダ102又は車載カメラ94による検知の他に、歩行者等が所持する携帯情報端末から発信される電波を検出することにより、車両の助手席外側に存在する歩行者等を検知してもよい。携帯情報端末からの電波を検出した場合には、復動時には助手席側ワイパアーム35の拡大率を抑制することにより、歩行者等への水滴の飛散を防止することが可能となる。 In addition to detection by the millimeter wave radar 102 or the in-vehicle camera 94, by detecting radio waves transmitted from a portable information terminal carried by a pedestrian or the like, a pedestrian or the like existing outside the passenger seat of the vehicle is detected. May be. When radio waves from the portable information terminal are detected, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the enlargement ratio of the passenger-side wiper arm 35 during backward movement.
 〔第2の例示的実施形態〕
 続いて本開示の第2の例示的実施形態について説明する。本例示的実施形態に係るワイパシステムの構成は、図1~9に示した第1の例示的実施形態に係るワイパシステム100と同一なので、詳細な説明は省略する。
[Second exemplary embodiment]
Subsequently, a second exemplary embodiment of the present disclosure will be described. Since the configuration of the wiper system according to the exemplary embodiment is the same as that of the wiper system 100 according to the first exemplary embodiment shown in FIGS. 1 to 9, detailed description thereof is omitted.
 本例示的実施形態は、水滴がウィンドシールドガラス1上を流下する程度に応じて助手席側ワイパアーム35の拡大率を第1の例示的実施形態の場合よりも多段階できめ細かく変化させる制御を行う。図13は、本例示的実施形態における第1出力軸11Aの回転角度に応じた第2出力軸12Aの回転角度を規定した第2出力軸回転角度マップの一例を示している。図13は、拡大率が100%の場合に第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示した曲線190は第1の例示的実施形態の図10Aと同じである。また、拡大率が50%の場合の第2出力軸の回転角を示した曲線192、及び拡大率が0%の場合の第2出力軸12Aの回転角度を示した曲線194も、図10Aと同じである。 In the present exemplary embodiment, control is performed to change the enlargement ratio of the passenger-side wiper arm 35 in more steps than in the first exemplary embodiment in accordance with the degree to which water drops flow down on the windshield glass 1. . FIG. 13 shows an example of a second output shaft rotation angle map that defines the rotation angle of the second output shaft 12A according to the rotation angle of the first output shaft 11A in the present exemplary embodiment. FIG. 13 shows a curve 190 showing the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 100%. FIG. Is the same. A curve 192 showing the rotation angle of the second output shaft when the enlargement ratio is 50% and a curve 194 showing the rotation angle of the second output shaft 12A when the enlargement ratio is 0% are also shown in FIG. 10A. The same.
 図13は図10Aに対し、曲線190、192、194に加えて、曲線196、198が追加されている。曲線196、198は、曲線190と曲線192とによる拡大率を補間するための第2出力軸回転角度マップである。一例として、曲線196は拡大率が90%の場合に第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示している。曲線198は拡大率が80%の場合に第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度を示している。 In FIG. 13, curves 196 and 198 are added to FIG. 10A in addition to the curves 190, 192 and 194. Curves 196 and 198 are second output shaft rotation angle maps for interpolating the enlargement ratios of the curves 190 and 192. As an example, a curve 196 indicates the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 90%. A curve 198 shows the rotation angle of the second output shaft 12A determined according to the first output shaft rotation angle θ A when the enlargement ratio is 80%.
 図14は、拡大率に応じた払拭範囲の変化の一例を示している。図14において、払拭範囲Z1は拡大率が0%の場合、払拭範囲Z2は拡大率が100%の場合、払拭範囲Z3は拡大率が50%の場合、払拭範囲Z4は拡大率が90%の場合、払拭範囲Z5は拡大率が80%の場合、を各々示している。図14に示したように、状況に応じて拡大率を変化させることにより、水滴がウィンドシールドガラス1の助手席外側に飛散することを防止する。 FIG. 14 shows an example of a change in the wiping range according to the enlargement ratio. In FIG. 14, the wiping range Z1 has an enlargement rate of 0%, the wiping range Z2 has an enlargement rate of 100%, the wiping range Z3 has an enlargement rate of 50%, and the wiping range Z4 has an enlargement rate of 90%. In this case, the wiping range Z5 indicates the case where the enlargement ratio is 80%. As shown in FIG. 14, water droplets are prevented from scattering outside the front passenger seat of the windshield glass 1 by changing the enlargement ratio according to the situation.
 以下、本例示的実施形態に係るワイパシステム100の制御について説明する。図15は、本例示的実施形態に係るワイパシステム100における、水滴飛散防止処理の一例を示したフローチャートである。ステップ150では、ワイパスイッチ50がオンになっているか否かを判定する。 Hereinafter, control of the wiper system 100 according to the exemplary embodiment will be described. FIG. 15 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the exemplary embodiment. In step 150, it is determined whether or not the wiper switch 50 is turned on.
 ステップ150で肯定判定の場合には、ステップ152で車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定する。歩行者又は二輪車の検出方法は第1の例示的実施形態と同様なので、詳細な説明は省略する。なお、ステップ150、152で否定判定の場合には、処理をリターンする。 If the determination in step 150 is affirmative, it is determined in step 152 whether or not a pedestrian or motorcycle has been detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate | omitted. If the determination is negative in steps 150 and 152, the process is returned.
 ステップ152で肯定判定の場合には、ステップ154で車両が減速されたか否かを判定する。減速か否かを判定するには種々の方法が存在するが、一例としてブレーキペダルが踏まれた場合を減速と判定する。又は、車速センサ92によって検知した車速の単位時間での減少量から減速と判定してもよいし、別途、加速度センサ(図示せず)を備え、当該加速度センサの検知結果に基づいて車両の減速を判定してもよい。 If the determination in step 152 is affirmative, it is determined in step 154 whether or not the vehicle has been decelerated. There are various methods for determining whether or not the vehicle is decelerating. For example, when the brake pedal is depressed, it is determined that the vehicle is decelerating. Alternatively, it may be determined that the vehicle is decelerated based on the decrease amount of the vehicle speed detected by the vehicle speed sensor 92 per unit time, or a separate acceleration sensor (not shown) is provided, and the vehicle is decelerated based on the detection result of the acceleration sensor. May be determined.
 ステップ154で肯定判定の場合には、ステップ166で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線192の第2出力軸回転角度マップを用いて直前の往動時の拡大率に対する復動時の拡大率が50%となるように払拭動作を行い、処理をリターンする。減速時には車両が前のめりになるので、車両のルーフ上の水滴がウィンドシールドガラス1上に流下してくる。従って、助手席側ワイパアーム35の拡大率が大きいと助手席外側に存在する歩行者等に水滴が飛散させるおそれが大きい。かかる場合には、直前の往動時の拡大率に対する復動時の拡大率を一例として50%又は50%以下にして、歩行者等への水滴の飛散を防止する。なお、ウィンドシールドガラス1の助手席側上部から流下する水滴は、拡大率を大きくした往動時の払拭動作で払拭されるので、運転席からの視界は、確保される。 If the determination in step 154 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 166, and the second output shaft rotation of the curve 192 is performed during the backward movement. Using the angle map, the wiping operation is performed so that the enlargement ratio at the time of backward movement with respect to the enlargement ratio at the time of the previous forward movement is 50%, and the process is returned. When the vehicle decelerates, the vehicle is turned forward, so that water droplets on the vehicle roof flow down onto the windshield glass 1. Therefore, if the enlargement ratio of the passenger-side wiper arm 35 is large, there is a high possibility that water droplets are scattered on a pedestrian or the like existing outside the passenger seat. In such a case, the enlargement rate at the time of reverse movement with respect to the enlargement rate at the time of the previous forward movement is set to 50% or 50% or less as an example to prevent water droplets from being scattered to a pedestrian or the like. In addition, since the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation | movement at the time of the outward movement which enlarged the expansion ratio, the visibility from a driver's seat is ensured.
 なお、ステップ166での往動時拡大率100%、直前の往動時の拡大率に対する復動時の拡大率50%の動作は、1以上の所定の往復回数で実行して処理をリターンする。往復回数は任意であるが、ウィンドシールドガラス1上の水滴を効果的に払拭できる回数を、実機を用いた実験等を通じで決定する。後述するステップ158、162、164でも、所定の往復回数の払拭動作を行って処理をリターンするが、ステップ158、162、164での各々の往復回数は、ウィンドシールドガラス1上の水滴を効果的に除去できるのであれば、ステップ166の場合と異なる回数でよく、さらにステップ158、162、164の各々で異なっていてもよい。 It should be noted that the operation of the enlargement rate during forward movement 100% in step 166 and the enlargement rate 50% during backward movement with respect to the enlargement rate during the previous forward movement is executed at a predetermined number of reciprocations of 1 or more and the process is returned. . The number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines. In steps 158, 162, and 164, which will be described later, the wiping operation is performed a predetermined number of times of reciprocation, and the process is returned, but each time of reciprocation in steps 158, 162, and 164 is effective for water droplets on the windshield glass 1. However, the number of times may be different from that in the case of step 166, and may be different in each of steps 158, 162, and 164.
ステップ154で否定判定の場合には、ステップ156で車速が第1所定値以上か否かを判定する。第1所定値は一例として30km/hである。ステップ156で肯定判定の場合には、ステップ158で曲線190の第2出力軸回転角度マップを用い、往動時の拡大率を100%、直前の往動時の拡大率に対する復動時の拡大率を100%にして払拭動作を行い、処理をリターンする。車速がある程度以上であれば、ウィンドシールドガラス1上部、及びルーフ上の水滴は走行風によって後方に吹き流されるので、復動時に拡大率を大きくしても助手席外側の歩行者等に水滴が飛散するおそれは少なくなるからである。 If the determination in step 154 is negative, it is determined in step 156 whether or not the vehicle speed is greater than or equal to a first predetermined value. As an example, the first predetermined value is 30 km / h. If the determination in step 156 is affirmative, the second output shaft rotation angle map of the curve 190 is used in step 158, the enlargement rate during the forward movement is 100%, and the enlargement during the backward operation with respect to the enlargement rate during the previous forward movement. The wiping operation is performed at a rate of 100%, and the process returns. If the vehicle speed is above a certain level, the water droplets on the windshield glass 1 and on the roof are blown backwards by the driving wind. This is because there is less risk of scattering.
 ステップ156で否定判定の場合には、ステップ160で車速が第2所定値以上か否かを判定する。第2所定値は一例として10km/hである。ステップ160で肯定判定の場合には、ステップ162で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線196の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が90%となるように払拭動作を行い、処理をリターンする。 If the determination in step 156 is negative, it is determined in step 160 whether or not the vehicle speed is greater than or equal to a second predetermined value. As an example, the second predetermined value is 10 km / h. If the determination in step 160 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 162, and the second output shaft rotation of the curve 196 is performed during the backward movement. Using the angle map, for example, the wiping operation is performed so that the enlargement rate at the backward movement is 90% with respect to the enlargement rate at the previous forward movement, and the processing is returned.
 また、ステップ160で否定判定の場合には、ステップ164で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線198の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が80%となるように払拭動作を行い、処理をリターンする。 If the determination in step 160 is negative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 164, and the second output of the curve 198 is performed during the backward movement. For example, the wiping operation is performed using the shaft rotation angle map so that the enlargement ratio at the backward movement is 80% with respect to the enlargement ratio at the previous forward movement, and the process is returned.
 車速が大きければウィンドシールドガラス1上、及びルーフ上の水滴はウィンドシールドガラス1上に流下しにくくなるので、車速が大きければ大きいほど、助手席側ワイパアーム35の拡大率を大きくしても水滴が助手席外側に飛散するおそれは少なくなる。 If the vehicle speed is high, water droplets on the windshield glass 1 and the roof are less likely to flow down on the windshield glass 1. Therefore, the higher the vehicle speed, the water droplets even if the enlargement ratio of the passenger side wiper arm 35 is increased. The risk of splashing outside the passenger seat is reduced.
 従って、以上説明したように、本例示的実施形態によれば、車両が減速した場合は復動時の助手席側ワイパアーム35の拡大率を最小にし、それ以外の場合には、車速が大きくなるほど復動時の助手席側ワイパアーム35の拡大率を大きくすることにより(逆に言えば、車両の車速が小さくなるほど復動時の助手席側ワイパアーム35の拡大率を小さくする)、助手席外側への水滴の飛散を防止すると共に、ウィンドシールドガラス1のより広い範囲を払拭できるようにする。 Therefore, as described above, according to the present exemplary embodiment, when the vehicle decelerates, the enlargement ratio of the passenger-side wiper arm 35 during backward movement is minimized, and in other cases, the vehicle speed increases as the vehicle speed increases. By increasing the enlargement ratio of the passenger-side wiper arm 35 during reverse movement (in other words, as the vehicle speed of the vehicle decreases, the enlargement ratio of the passenger-side wiper arm 35 during backward movement is reduced) to the outside of the passenger seat Water droplets are prevented from being scattered and a wider range of the windshield glass 1 can be wiped off.
 車両の減速の状態、又は車速に応じて助手席側ワイパアーム35の拡大率を第1の例示的実施形態の場合よりも多段階できめ細かく変化させる制御を行うことにより、ウィンドシールドガラス1上の広い範囲を効果的に払拭できると共に、車両付近に存在する歩行者等への水滴の飛散を効果的に抑制できる。
 なお、本例示的実施形態では、車速に応じて復動時の助手席側ワイパアーム35の拡大率が100%、90%又は80%となるように払拭動作を行うとしたが、本開示は、これらに限定されない。例えば、車速に応じて復動時の助手席側ワイパアーム35の拡大率を95%、90%又は85%となるように、払拭動作を行ってもよい。
By controlling the enlargement ratio of the passenger-side wiper arm 35 more finely than in the first exemplary embodiment in accordance with the deceleration state of the vehicle or the vehicle speed, a wide range on the windshield glass 1 is obtained. The range can be effectively wiped off, and the scattering of water droplets to pedestrians and the like existing in the vicinity of the vehicle can be effectively suppressed.
In the exemplary embodiment, the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of reverse movement is 100%, 90%, or 80% according to the vehicle speed. It is not limited to these. For example, the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of reverse movement is 95%, 90%, or 85% according to the vehicle speed.
 〔第3の例示的実施形態〕
 続いて本開示の第3の例示的実施形態について説明する。本例示的実施形態に係るワイパシステムの構成は、図1~9に示した第1の例示的実施形態に係るワイパシステム100と同一なので、詳細な説明は省略する。本例示的実施形態では、払拭速度に応じて往動時の拡大率と復動時の拡大率を制御するが、図13に示した第2の例示的実施形態の第2出力軸回転角度マップを使用する。
[Third exemplary embodiment]
Subsequently, a third exemplary embodiment of the present disclosure will be described. Since the configuration of the wiper system according to the exemplary embodiment is the same as that of the wiper system 100 according to the first exemplary embodiment shown in FIGS. 1 to 9, detailed description thereof is omitted. In this exemplary embodiment, the enlargement rate during forward movement and the enlargement rate during backward movement are controlled according to the wiping speed, but the second output shaft rotation angle map of the second exemplary embodiment shown in FIG. Is used.
 図16は、本例示的実施形態に係るワイパシステム100における、水滴飛散防止処理の一例を示したフローチャートである。ステップ600では、ワイパスイッチ50がオンになっているか否かを判定する。 FIG. 16 is a flowchart illustrating an example of water droplet scattering prevention processing in the wiper system 100 according to the present exemplary embodiment. In step 600, it is determined whether or not the wiper switch 50 is turned on.
 ステップ600で肯定判定の場合には、ステップ602で車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定する。歩行者又は二輪車の検出方法は第1の例示的実施形態と同様なので、詳細な説明は省略する。なお、ステップ600、602で否定判定の場合には、処理をリターンする。 If the determination in step 600 is affirmative, it is determined in step 602 whether or not a pedestrian or two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate | omitted. If the determination is negative in steps 600 and 602, the process is returned.
 ステップ602で肯定判定の場合には、ステップ604で第1絶対角センサ114によって検知した第1出力軸11Aの回転角度から、第1出力軸11Aの回転速度を算出し、算出された回転速度が高速作動モード相当か否かを判定する。 If the determination in step 602 is affirmative, the rotation speed of the first output shaft 11A is calculated from the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 in step 604, and the calculated rotation speed is calculated. It is determined whether or not it corresponds to the high speed operation mode.
 ステップ604で肯定判定の場合には、ステップ606で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、一例として復動時には拡大率が70%の第2出力軸回転角度マップ(図示せず)を用いて直前の往動時の拡大率に対する復動時の拡大率が70%となるように払拭動作を行い、処理をリターンする。助手席側ワイパブレード36の払拭速度が大きければ大きいほど、遠心力により水滴は助手席外側に飛散しやすい。本例示的実施形態では、払拭速度が高速作動モード相当の場合には、往動時の拡大率に対して復動時の拡大率を抑制することにより、歩行者等への水滴の飛散を防止する。なお、ウィンドシールドガラス1の助手席側上部から流下する水滴は、拡大率を大きくした往動時の払拭動作で払拭されるので、運転席からの視界は、確保される。 If the determination in step 604 is affirmative, a wiping operation is performed at an enlargement ratio of 100% using the second output shaft rotation angle map of the curve 190 during forward movement in step 606. For example, the enlargement ratio is 70% during backward movement. Using a second output shaft rotation angle map (not shown), a wiping operation is performed so that the enlargement ratio at the time of backward movement relative to the enlargement ratio at the time of the previous forward movement is 70%, and the process is returned. The greater the wiping speed of the front passenger side wiper blade 36, the easier the water droplets are scattered to the outside of the front passenger seat due to centrifugal force. In this exemplary embodiment, when the wiping speed is equivalent to the high-speed operation mode, it is possible to prevent water droplets from being scattered to pedestrians and the like by suppressing the enlargement rate at the backward movement relative to the enlargement rate at the forward movement. To do. In addition, since the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation | movement at the time of the outward movement which enlarged the expansion ratio, the visibility from a driver's seat is ensured.
 なお、ステップ606での往動時拡大率100%、直前の往動時拡大率に対する復動時拡大率70%の動作は、1以上の所定の往復回数で実行して処理をリターンする。往復回数は任意であるが、ウィンドシールドガラス1上の水滴を効果的に払拭できる回数を、実機を用いた実験等を通じで決定する。後述するステップ610、612でも、所定の往復回数の払拭動作を行って処理をリターンするが、ステップ610、612での各々の往復回数は、ウィンドシールドガラス1上の水滴を効果的に除去できるのであれば、ステップ606の場合と異なる回数でよく、さらにステップ606、610、612の各々で異なっていてもよい。 It should be noted that the operations of the forward movement enlargement ratio of 100% in step 606 and the backward movement enlargement ratio of 70% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned. The number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines. In Steps 610 and 612, which will be described later, the wiping operation is performed for a predetermined number of reciprocations, and the process is returned. However, the number of reciprocations in Steps 610 and 612 can effectively remove water droplets on the windshield glass 1. If there is, the number of times may be different from the case of step 606, and may be different in each of steps 606, 610, and 612.
ステップ604で否定判定の場合には、ステップ608で、第1絶対角センサ114によって検知した第1出力軸11Aの回転角度から算出された回転速度が低速作動モード相当か否かを判定する。ステップ608で肯定判定の場合には、ステップ610で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線198の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が80%になるように払拭動作を行い、処理をリターンする。 If the determination in step 604 is negative, it is determined in step 608 whether the rotation speed calculated from the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 is equivalent to the low speed operation mode. If the determination in step 608 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 610, and the second output shaft rotation of the curve 198 is performed during the backward movement. Using the angle map, for example, the wiping operation is performed so that the enlargement rate at the backward movement is 80% with respect to the enlargement rate at the previous forward movement, and the process is returned.
 また、ステップ608で否定判定の場合には、助手席側ワイパブレード36の払拭速度は間欠作動モード相当であるとみなし、ステップ612で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線196の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が90%になるように払拭動作を行い、処理をリターンする。助手席側ワイパブレード36の払拭速度が低下すれば、助手席側ワイパアーム35の拡大率を大きくしても水滴が助手席外側に飛散するおそれは少なくなるからである。 If the determination in step 608 is negative, the wiping speed of the passenger-side wiper blade 36 is considered to be equivalent to the intermittent operation mode, and the forward output in step 612 uses the second output shaft rotation angle map of the curve 190. Wiping operation is performed at an enlargement rate of 100%, and at the time of backward movement, using the second output shaft rotation angle map of the curve 196, for example, the enlargement rate at the time of backward movement is 90% with respect to the enlargement rate at the time of the previous forward movement. Take action and return processing. This is because if the wiping speed of the front passenger side wiper blade 36 decreases, the possibility of water droplets scattering outside the front passenger seat is reduced even if the enlargement ratio of the front passenger side wiper arm 35 is increased.
 本例示的実施形態では、往動時の助手席側ワイパアーム35の拡大率を、払拭速度が間欠作動モード相当、低速作動モード相当、高速作動モード相当のように高速になるほど低下させている。助手席側ワイパブレード36の払拭速度が大きくなるほど復動時に非払拭範囲Xは大きくなるが、払拭速度が早ければ素早く次の往動時の払拭に移行できる。そして、往動時では拡大率100%で払拭するので、非払拭範囲Xを効果的に払拭することができる。 In the present exemplary embodiment, the enlargement ratio of the passenger-side wiper arm 35 at the time of forward movement is decreased as the wiping speed becomes higher such as the intermittent operation mode, the low speed operation mode, and the high speed operation mode. As the wiping speed of the passenger-side wiper blade 36 increases, the non-wiping range X becomes larger at the time of backward movement. However, if the wiping speed is faster, the wiping speed at the next forward movement can be quickly shifted. And since it wipes off with the expansion rate of 100% at the time of forward movement, the non-wiping range X can be wiped off effectively.
 以上説明したように、本例示的実施形態によれば、助手席側ワイパブレード36の払拭速度に応じて復動時の助手席側ワイパアーム35の拡大率を変更することにより、助手席外側への水滴の飛散を防止すると共に、ウィンドシールドガラス1のより広い範囲を払拭できるようになる。
 尚、本例示的実施形態では、払拭速度に応じて復動時の助手席側ワイパアーム35の拡大率を90%、80%又は70%となるように払拭動作を行うとしたが、本開示は、これらに限されない。例えば、払拭速度に応じて復動時の助手席側ワイパアーム35の拡大率を90%、85%又は80%となるように、払拭動作を行ってもよい。
As described above, according to the present exemplary embodiment, by changing the enlargement ratio of the passenger-side wiper arm 35 during the backward movement according to the wiping speed of the passenger-side wiper blade 36, Water droplets can be prevented from being scattered and a wider range of the windshield glass 1 can be wiped off.
In the exemplary embodiment, the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 80%, or 70% according to the wiping speed. However, it is not limited to these. For example, the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 85%, or 80% according to the wiping speed.
 〔第4の例示的実施形態〕
 続いて本開示の第4の例示的実施形態について説明する。本例示的実施形態に係るワイパシステムの構成は、図1~9に示した第1の例示的実施形態に係るワイパシステム100と同一なので、詳細な説明は省略する。本例示的実施形態では、ウィンドシールドガラス1上の水量に応じて往動時の拡大率と復動時の拡大率を制御するが、前述の第3の例示的実施形態と同様に、図13に示した第2の例示的実施形態の第2出力軸回転角度マップを使用する。
[Fourth Exemplary Embodiment]
Subsequently, a fourth exemplary embodiment of the present disclosure will be described. Since the configuration of the wiper system according to the exemplary embodiment is the same as that of the wiper system 100 according to the first exemplary embodiment shown in FIGS. 1 to 9, detailed description thereof is omitted. In the present exemplary embodiment, the enlargement ratio at the time of forward movement and the enlargement ratio at the time of backward movement are controlled according to the amount of water on the windshield glass 1, but as in the third exemplary embodiment described above, FIG. The second output shaft rotation angle map of the second exemplary embodiment shown in FIG.
 図17は、本例示的実施形態に係るワイパシステム100における、水滴飛散防止処理の一例を示したフローチャートである。ステップ700では、ワイパスイッチ50がオンになっているか否かを判定する。 FIG. 17 is a flowchart showing an example of water droplet scattering prevention processing in the wiper system 100 according to the present exemplary embodiment. In step 700, it is determined whether or not the wiper switch 50 is turned on.
 ステップ700で肯定判定の場合には、ステップ702で車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定する。歩行者又は二輪車の検出方法は第1の例示的実施形態と同様なので、詳細な説明は省略する。なお、ステップ700、702で否定判定の場合には、処理をリターンする。 If the determination in step 700 is affirmative, it is determined in step 702 whether or not a pedestrian or two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat). Since the detection method of a pedestrian or a two-wheeled vehicle is the same as that of 1st exemplary embodiment, detailed description is abbreviate | omitted. In the case of negative determination in steps 700 and 702, the process is returned.
 ステップ702で肯定判定の場合には、ステップ704で、レインセンサ76によって検知したウィンドシールドガラス1上の水滴の付着状況からウィンドシールドガラス1上の水量を算出し、算出された水量が第1閾値以上か否かを判定する。算出される水量は、例えば1時間雨量相当の数値である。本例示的実施形態では、一例として、ウィンドシールドガラス1上の水量が1時間雨量で10mm相当の中程度の雨量に相当する場合にステップ704で肯定判定を行う。 If the determination in step 702 is affirmative, in step 704, the amount of water on the windshield glass 1 is calculated from the state of attachment of water droplets detected on the windshield glass 1 detected by the rain sensor 76, and the calculated amount of water is the first threshold value. It is determined whether it is above. The calculated amount of water is, for example, a numerical value equivalent to one hour of rainfall. In this exemplary embodiment, as an example, when the amount of water on the windshield glass 1 corresponds to a moderate amount of rainfall equivalent to 10 mm in one hour of rainfall, an affirmative determination is made in step 704.
 ステップ704で肯定判定の場合には、ステップ706で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、一例として復動時には拡大率が70%の第2出力軸回転角度マップ(図示せず)を用いて直前の往動時の拡大率に対する復動時の拡大率が70%となるように払拭動作を行い、処理をリターンする。ウィンドシールドガラス1上の水量が多いほど水滴は助手席外側に飛散しやすい。本例示的実施形態では、水量が第1閾値以上の場合には、往動時の拡大率に対して復動時の拡大率を抑制することにより、歩行者等への水滴の飛散を防止する。なお、ウィンドシールドガラス1の助手席側上部から流下する水滴は、拡大率を大きくした往動時の払拭動作で払拭されるので、運転席からの視界は、確保される。 If an affirmative determination is made in step 704, the wiping operation is performed at an enlargement rate of 100% using the second output shaft rotation angle map of the curve 190 in the forward movement in step 706, and as an example, the enlargement rate is 70% in the backward movement. Using a second output shaft rotation angle map (not shown), a wiping operation is performed so that the enlargement ratio at the time of backward movement relative to the enlargement ratio at the time of the previous forward movement is 70%, and the process is returned. As the amount of water on the windshield glass 1 increases, water droplets are more likely to be scattered outside the passenger seat. In the present exemplary embodiment, when the amount of water is equal to or greater than the first threshold value, it is possible to prevent water droplets from scattering to pedestrians and the like by suppressing the enlargement rate at the time of backward movement relative to the enlargement rate at the time of forward movement. . In addition, since the water droplet which flows down from the passenger seat side upper part of the windshield glass 1 is wiped off by the wiping operation | movement at the time of the outward movement which enlarged the expansion ratio, the visibility from a driver's seat is ensured.
 なお、ステップ706での往動時拡大率100%、直前の往動時拡大率に対する復動時拡大率70%の動作は、1以上の所定の往復回数で実行して処理をリターンする。往復回数は任意であるが、ウィンドシールドガラス1上の水滴を効果的に払拭できる回数を、実機を用いた実験等を通じで決定する。後述するステップ710、712でも、所定の往復回数の払拭動作を行って処理をリターンするが、ステップ710、712での各々の往復回数は、ウィンドシールドガラス1上の水滴を効果的に除去できるのであれば、ステップ706の場合と異なる回数でよく、さらにステップ706、710、712の各々で異なっていてもよい。 It should be noted that the operations of the forward movement enlargement ratio of 100% in step 706 and the backward movement enlargement ratio of 70% with respect to the previous forward movement enlargement ratio are executed at a predetermined number of reciprocations of 1 or more, and the process is returned. The number of reciprocations is arbitrary, but the number of times that water droplets on the windshield glass 1 can be effectively wiped is determined through experiments using actual machines. In steps 710 and 712, which will be described later, the wiping operation is performed for a predetermined number of reciprocations, and the process is returned. However, each reciprocation in steps 710 and 712 can effectively remove water droplets on the windshield glass 1. If so, the number of times may be different from that in step 706, and may be different in each of steps 706, 710, and 712.
ステップ704で否定判定の場合には、ステップ708で、ウィンドシールドガラス1上の水量が第2閾値以上か否かを判定する。第2閾値は、一例として、1時間雨量で1~3mm程度の弱い雨に相当する水量である。 If the determination in step 704 is negative, it is determined in step 708 whether or not the amount of water on the windshield glass 1 is greater than or equal to the second threshold value. As an example, the second threshold value is an amount of water corresponding to weak rain of about 1 to 3 mm in one hour of rainfall.
 ステップ708で肯定判定の場合には、ステップ710で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線198の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が80%になるように払拭動作を行い、処理をリターンする。 If the determination in step 708 is affirmative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 710, and the second output shaft rotation of the curve 198 is performed during the backward movement. Using the angle map, for example, the wiping operation is performed so that the enlargement rate at the backward movement is 80% with respect to the enlargement rate at the previous forward movement, and the process is returned.
 また、ステップ708で否定判定の場合には、ステップ712で往動時には曲線190の第2出力軸回転角度マップを用いて拡大率100%で払拭動作を行い、復動時には曲線196の第2出力軸回転角度マップを用いて例えば直前の往動時の拡大率に対する復動時の拡大率が90%になるように払拭動作を行い、処理をリターンする。ウィンドシールドガラス1上の水量が少なければ、助手席側ワイパアーム35の拡大率を大きくしても水滴が助手席外側に飛散するおそれは少なくなるからである。 If the determination in step 708 is negative, the wiping operation is performed at a magnification of 100% using the second output shaft rotation angle map of the curve 190 during the forward movement in step 712, and the second output of the curve 196 is performed during the backward movement. Using the shaft rotation angle map, for example, the wiping operation is performed so that the enlargement ratio at the backward movement relative to the enlargement ratio at the previous forward movement is 90%, and the process is returned. This is because if the amount of water on the windshield glass 1 is small, the possibility of water droplets scattering outside the passenger seat is reduced even if the enlargement ratio of the passenger-side wiper arm 35 is increased.
 本例示的実施形態では、往動時の助手席側ワイパアーム35の拡大率を、ウィンドシールドガラス1上の水量が多くなるほど低下させ、歩行者等への水滴の飛散を防止している。ウィンドシールドガラス1上の水量が多くなるほど復動時に非払拭範囲Xは大きくなるが、次の往動時では拡大率100%で払拭するので、非払拭範囲Xを効果的に払拭することができる。 In this exemplary embodiment, the enlargement ratio of the passenger-side wiper arm 35 at the time of forward movement is reduced as the amount of water on the windshield glass 1 is increased, thereby preventing water droplets from scattering to pedestrians and the like. As the amount of water on the windshield glass 1 increases, the non-wiping range X becomes larger at the time of backward movement, but at the next forward movement, wiping is performed at an enlargement rate of 100%, so that the non-wiping range X can be effectively wiped off. .
 以上説明したように、本例示的実施形態によれば、ウィンドシールドガラス1上の水量に応じて復動時の助手席側ワイパアーム35の拡大率を変更することにより、助手席外側への水滴の飛散を防止すると共に、ウィンドシールドガラス1のより広い範囲を払拭できるようになる。
 尚、本例示的実施形態では、ウィンドシールドガラス1上の水量に応じて、復動時の助手席側ワイパアーム35の拡大率を、90%、80%又は70%となるように払拭動作を行うとしたが、本開示は、これに限定されない。例えば、ウィンドシールドガラス1上の水量に応じて、復動時の助手席側ワイパアーム35の拡大率を、90%、85%又は80%となるように、払拭動作を行ってもよい。
As described above, according to this exemplary embodiment, by changing the enlargement ratio of the passenger side wiper arm 35 during the backward movement according to the amount of water on the windshield glass 1, While preventing scattering, a wider range of the windshield glass 1 can be wiped off.
In the exemplary embodiment, the wiping operation is performed so that the enlargement ratio of the passenger-side wiper arm 35 during the backward movement is 90%, 80%, or 70% according to the amount of water on the windshield glass 1. However, the present disclosure is not limited to this. For example, depending on the amount of water on the windshield glass 1, the wiping operation may be performed so that the enlargement ratio of the passenger-side wiper arm 35 at the time of backward movement is 90%, 85%, or 80%.
 なお、本開示の例示的実施形態の各々は、第1モータ11の第1出力軸11A及び第2モータ12の第2出力軸12Aが正逆(往復)回転可能に制御されていたが、これに限定されることはない。例えば、第1出力軸11A及び第2出力軸12Aの一方が一方向に回転するものでもよい。 In each of the exemplary embodiments of the present disclosure, the first output shaft 11A of the first motor 11 and the second output shaft 12A of the second motor 12 are controlled to be able to rotate forward and backward (reciprocating). It is not limited to. For example, one of the first output shaft 11A and the second output shaft 12A may rotate in one direction.
 なお、本開示の例示的実施形態の各々は、第1モータ11の第1出力軸11Aの回転により、運転席側ワイパブレード18及び助手席側ワイパブレード36を上反転位置P1D、P1Pと下反転位置P2D、P2Pとの間で移動させていたが、これに限定されることはない。例えば、第1モータ11として「運転席側第1モータ」と「助手席側第1モータ」とを備え、運転席側第1モータの回転によって運転席側ワイパブレード18を上反転位置P1Dと下反転位置P2Dとの間で移動させ、助手席側第1モータの回転によって助手席側ワイパブレード36を上反転位置P1Pと下反転位置P2Pとの間で移動させる構造でもよい。 Note that each of the exemplary embodiments of the present disclosure causes the driver seat side wiper blade 18 and the passenger seat side wiper blade 36 to be turned upside down with respect to the upper turning positions P1D and P1P by the rotation of the first output shaft 11A of the first motor 11. Although it moved between position P2D and P2P, it is not limited to this. For example, the first motor 11 includes a “driver's seat side first motor” and a “passenger's seat side first motor”, and the driver seat side wiper blade 18 is moved down to the upper inversion position P1D by the rotation of the driver seat side first motor. The structure may be such that the passenger seat side wiper blade 36 is moved between the upper inversion position P1P and the lower inversion position P2P by moving between the inversion position P2D and rotation of the first passenger seat side motor.
 なお、本開示の例示的実施形態の各々では、運転席側ワイパブレード18と助手席側ワイパブレード36とが下反転位置P2D、P2Pにて車幅方向に重ならない構造になっていたが、これに限定されることはない。例えば、助手席側ワイパブレード36の運転席側ワイパブレード18側を長く設定してもよい。換言すると、助手席側ワイパブレード36の運転席側ワイパブレード18側が、当該運転席側ワイパブレード18の助手席側ワイパブレード36側と重なるように助手席側ワイパブレード36の長さを設定してもよい。これにより、往復動時に払拭範囲Z2を払拭する際に、ウィンドシールドガラスの中央下側に残る払拭不能領域を少なくすることができる。 In each of the exemplary embodiments of the present disclosure, the driver-side wiper blade 18 and the passenger-side wiper blade 36 have a structure that does not overlap in the vehicle width direction at the lower inversion positions P2D and P2P. It is not limited to. For example, the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 may be set longer. In other words, the length of the passenger seat side wiper blade 36 is set so that the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 overlaps the passenger seat side wiper blade 36 side of the driver seat side wiper blade 18. Also good. Thereby, when wiping the wiping range Z2 during the reciprocating motion, it is possible to reduce the non-wiping area that remains on the lower center side of the windshield glass.
 なお、本開示の例示的実施形態の各々では、第1出力軸11Aの所定回転角度における中間角度付近までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を伸長させ、中間角度付近から所定回転角度までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を縮小させる制御を行ったが、これに限定されることはない。例えば、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに向かって払拭する際(往動払拭時)に、助手席側ワイパアーム35が徐々に伸長するように制御してもよい。 In each of the exemplary embodiments of the present disclosure, the passenger-side wiper arm 35 (passenger-side wiper blade 36) is extended to the vicinity of the intermediate angle at the predetermined rotation angle of the first output shaft 11A, and the vicinity of the intermediate angle. The control for reducing the passenger-side wiper arm 35 (passenger-side wiper blade 36) is performed between the first rotation angle and the predetermined rotation angle, but the present invention is not limited to this. For example, when the passenger seat side wiper blade 36 wipes from the lower inversion position P2P toward the upper inversion position P1P (during forward wiping), the passenger seat side wiper arm 35 may be controlled to gradually extend.
 なお、本例示的実施形態では、第1モータ11の第1出力軸11Aの回転角度と第2モータ12の第2出力軸12Aの回転角度とを用いた例示的実施形態を説明したが、これに代えて第1出力軸11Aの回転位置と第2出力軸12Aの回転位置とを用いたものとしてもよい。 In the exemplary embodiment, the exemplary embodiment using the rotation angle of the first output shaft 11A of the first motor 11 and the rotation angle of the second output shaft 12A of the second motor 12 has been described. Instead of this, the rotational position of the first output shaft 11A and the rotational position of the second output shaft 12A may be used.
 なお、本開示の例示的実施形態の各々では、払拭範囲の拡大は、1以上の所定回数行われた後、処理をリターンするとしたが、これに限定されることはない。例えば、払拭範囲の拡大が1以上の所定回数行われたにもかかわらず、非払拭範囲Xの汚れ等が除去されていない場合は、除去不能な状況(凍結又は内面曇り)と判断し、所定期間払拭範囲の拡大を実行しないように制御してもよい。かかる制御により、凍結又は内面曇り等の払拭範囲を拡大しても除去不能な状況の場合に払拭範囲の拡大を実行しないので、ワイパ装置2の動作における違和感を抑制することができる。 In each of the exemplary embodiments of the present disclosure, the expansion of the wiping range is performed after one or more predetermined times, and then the process is returned. However, the present invention is not limited to this. For example, when the wiping range has been expanded a predetermined number of times of 1 or more and the dirt or the like of the non-wiping range X has not been removed, it is determined that the situation cannot be removed (freezing or clouding on the inner surface), You may control not to perform expansion of a period wiping range. By such control, since the expansion of the wiping range is not executed in a situation where removal is not possible even if the wiping range such as freezing or fogging of the inner surface is expanded, the uncomfortable feeling in the operation of the wiper device 2 can be suppressed.
 なお、本開示の例示的実施形態の各々では、助手席側の広い視野を確保すべき状況で、払拭範囲Z2を払拭するように第1モータ11及び第2モータ12を制御したが、上記制御の実行をキャンセルすることができる「自動拡大切替えスイッチ」を別途備えていてもよい。自動拡大切替えスイッチを備えることで、助手席側の広い視野を確保すべき状況でも払拭範囲の拡大を実行せずに払拭範囲Z1の払拭を行うことができる。車両122の乗員が払拭範囲の拡大が不要と考える場合に、払拭範囲の拡大(払拭範囲Z2の払拭)を実行しないため、ワイパ装置2の動作における違和感を抑制することができる。自動拡大切替えスイッチを設ける位置に限定はないが、ハンドル等の運転者に近い位置に設けられることが望ましい。
 尚、上述の本開示の例示的実施形態の各々では、車速、払拭速度、及び水量に応じて往動時の拡大率に対する復動時の拡大率を抑制するように、第2モータ12を制御した例を説明した。しかしながら、本開示は、これに限定されない。例えば、条件(車速、払拭速度、及び水量)に応じて往動時の拡大率に対する動時の拡大率を同じにするように、第2モータ12を制御するモードを備えていてもよい。
In each exemplary embodiment of the present disclosure, the first motor 11 and the second motor 12 are controlled to wipe the wiping range Z2 in a situation where a wide field of view on the passenger seat side should be secured. An “automatic enlargement changeover switch” that can cancel the execution of the above may be separately provided. By providing the automatic enlargement changeover switch, the wiping range Z1 can be wiped without executing the enlargement of the wiping range even in a situation where a wide field of view on the passenger seat side should be secured. When the occupant of the vehicle 122 thinks that it is not necessary to expand the wiping range, the wiping range is not expanded (wiping of the wiping range Z2). The position where the automatic enlargement changeover switch is provided is not limited.
Note that in each of the exemplary embodiments of the present disclosure described above, the second motor 12 is controlled so as to suppress the enlargement rate at the time of reverse movement relative to the enlargement rate at the time of forward movement according to the vehicle speed, the wiping speed, and the amount of water. Explained the example. However, the present disclosure is not limited to this. For example, a mode may be provided in which the second motor 12 is controlled so that the enlargement rate during movement relative to the enlargement rate during movement depends on the conditions (vehicle speed, wiping speed, and water amount).
 尚、本開示の例示的実施形態の各々では、車載センサとしてのミリ波レーダ102又は車載カメラ94で車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定していた。しかしながら、本開示は、これに限定されない。例えば、超音波ソナー等の超音波センサにて車両の左側方向(助手席外側)に歩行者又は二輪車が検出されたか否かを判定してもよい。 In each exemplary embodiment of the present disclosure, it is determined whether a pedestrian or a two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat) by the millimeter wave radar 102 or the in-vehicle camera 94 as the in-vehicle sensor. It was. However, the present disclosure is not limited to this. For example, it may be determined whether a pedestrian or a two-wheeled vehicle is detected in the left direction of the vehicle (outside the passenger seat) with an ultrasonic sensor such as an ultrasonic sonar.
 日本出願特願2016-207845の開示は、その全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese Patent Application No. 2016-207845 is incorporated herein by reference.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (20)

  1.  第1出力軸の回転によりワイパアームの先端部に連結されたワイパブレードをウィンドシールドの上の異なる2つの反転位置間で払拭動作させる第1駆動源と、
     前記第1駆動源の駆動に同期させた第2出力軸の回転により前記ワイパアームに設けられた伸縮機構を作動させて前記ワイパブレードによる前記ウィンドシールドの払拭範囲を可変させる第2駆動源と、
     往路払拭時の払拭範囲より復路払拭時の払拭範囲が小さくなるように前記第1駆動源及び前記第2駆動源を制御する制御部と、
     を備える車両用ワイパ装置。
    A first drive source for wiping the wiper blade connected to the tip of the wiper arm by rotation of the first output shaft between two different inversion positions on the windshield;
    A second drive source for operating a telescopic mechanism provided on the wiper arm by rotating a second output shaft synchronized with the drive of the first drive source to vary the wiping range of the windshield by the wiper blade;
    A control unit that controls the first drive source and the second drive source so that the wiping range at the time of the return path wiping is smaller than the wiping range at the time of the forward path wiping;
    A vehicle wiper device comprising:
  2.  前記制御部は、前記往路払拭時及び前記復路払拭時における前記伸縮機構の各々の拡大率を決定し、前記伸縮機構が決定した拡大率で作動するように前記第1駆動源及び前記第2駆動源を制御する請求項1に記載の車両用ワイパ装置。 The controller determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of wiping the outward path and wiping the return path, and the first drive source and the second drive so that the expansion / contraction mechanism operates at the determined enlargement ratio. The vehicle wiper device according to claim 1, wherein the power source is controlled.
  3.  車両の速度情報を取得する車両速度情報検出部をさらに備え、
     前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項1又は2に記載の車両用ワイパ装置。
    A vehicle speed information detecting unit for acquiring vehicle speed information;
    3. The vehicle wiper according to claim 1, wherein the control unit determines an enlargement rate at the time of the forward wiping and an enlargement rate at the time of the return wiping based on the speed information detected by the vehicle speed information detection unit. apparatus.
  4.  前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両が減速した場合は、前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項3に記載の車両用ワイパ装置。 When the vehicle decelerates based on the speed information detected by the vehicle speed information detection unit, the control unit reduces the enlargement rate during the return pass wiping with respect to the enlargement rate during the forward pass wiping. Item 4. The vehicle wiper device according to Item 3.
  5.  前記制御部は、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両の速度が低いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項3又は4に記載の車両用ワイパ装置。 The control unit, based on the speed information detected by the vehicle speed information detection unit, reduces the enlargement rate during the return pass wiping with respect to the enlargement rate during the forward pass wiping as the vehicle speed is lower. The vehicle wiper device according to 3 or 4.
  6.  前記第1出力軸の回転角度を検出する第1回転角度検出部をさらに備え、
     前記制御部は、前記第1回転角度検出部で検出した前記回転角度に基づいて算出した前記第1出力軸の回転速度に応じて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項1又は2に記載の車両用ワイパ装置。
    A first rotation angle detector for detecting a rotation angle of the first output shaft;
    The control unit determines the enlargement rate during the forward wiping and the enlargement rate during the return wiping according to the rotation speed of the first output shaft calculated based on the rotation angle detected by the first rotation angle detection unit. The vehicle wiper device according to claim 1, wherein the vehicle wiper device is determined.
  7.  前記制御部は、前記第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項6に記載の車両用ワイパ装置。 The vehicle wiper device according to claim 6, wherein the control unit decreases the enlargement ratio at the time of the return path wiping with respect to the enlargement ratio at the time of the forward path wiping as the rotation speed of the first output shaft increases.
  8.  前記ウィンドシールドに付着する水滴を検出する水滴検出部をさらに備え、
     前記制御部は、前記水滴検出部の検知結果に基づいて算出した前記ウィンドシールドの上の水量に応じて前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項1又は2に記載の車両用ワイパ装置。
    A water droplet detection unit for detecting water droplets adhering to the windshield,
    The said control part determines the expansion rate at the time of the said outward wiping, and the expansion rate at the time of the said return wiping according to the amount of water on the said windshield calculated based on the detection result of the said water droplet detection part. The vehicle wiper device described in 1.
  9.  前記制御部は、前記水量が多いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項8に記載の車両用ワイパ装置。 The vehicle wiper device according to claim 8, wherein the control unit reduces the enlargement ratio at the time of the backward wiping with respect to the enlargement ratio at the time of the outward wiping as the amount of water increases.
  10.  歩行者及び二輪車を検出する車載センサをさらに備え、
     前記制御部は、前記車載センサによって歩行者又は二輪車を検知した場合に、前記復路払拭時の拡大率を前記往路払拭時の拡大率よりも小さくする請求項1~9のいずれか1項に記載の車両用ワイパ装置。
    It further comprises an in-vehicle sensor that detects pedestrians and motorcycles,
    The control unit according to any one of claims 1 to 9, wherein when the on-board sensor detects a pedestrian or a two-wheeled vehicle, the control unit reduces an enlargement rate at the time of the backward wiping to be smaller than an enlargement rate at the time of the outward wiping. Vehicle wiper device.
  11.  第1駆動源の第1出力軸の回転によりワイパアームの先端部に連結されたワイパブレードをウィンドシールドの上の異なる2つの反転位置間で払拭動作させる第1駆動源作動ステップと、
     前記第1駆動源の駆動に同期させた第2駆動源の第2出力軸の回転により前記ワイパアームに設けられた伸縮機構を作動させて前記ワイパブレードによる前記ウィンドシールドの払拭範囲を可変させる第2駆動源作動ステップと、
     往路払拭時の払拭範囲より復路払拭時の払拭範囲が小さくなるように前記第1駆動源及び前記第2駆動源を制御する制御ステップと、
     を備える車両用ワイパ装置の制御方法。
    A first drive source actuating step for wiping the wiper blade connected to the tip of the wiper arm by rotation of the first output shaft of the first drive source between two different inversion positions on the windshield;
    A second oscillating mechanism provided on the wiper arm is operated by rotation of the second output shaft of the second drive source synchronized with the drive of the first drive source to vary the wiping range of the windshield by the wiper blade. A drive source actuation step;
    A control step of controlling the first drive source and the second drive source so that the wiping range at the time of the return path wiping is smaller than the wiping range at the time of the forward path wiping;
    A control method for a vehicle wiper device.
  12.  前記制御ステップは、前記往路払拭時及び前記復路払拭時における前記伸縮機構の各々の拡大率を決定し、前記伸縮機構が決定した拡大率で作動するように前記第1駆動源及び前記第2駆動源を制御する請求項11に記載の車両用ワイパ装置の制御方法。 The control step determines an enlargement ratio of each of the expansion / contraction mechanisms at the time of wiping the outward path and wiping the return path, and the first drive source and the second drive so that the expansion / contraction mechanism operates at the determined enlargement ratio. The control method of the wiper device for vehicles according to claim 11 which controls a source.
  13.  前記制御ステップは、車両の速度情報を取得する車両速度情報検出部で検出された速度情報に基づいて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項11又は12に記載の車両用ワイパ装置の制御方法。 13. The control step of determining an enlargement rate at the time of the forward wiping and an enlargement rate at the time of the return wiping based on speed information detected by a vehicle speed information detection unit that acquires vehicle speed information. A control method for a vehicle wiper device according to claim 1.
  14.  前記制御ステップは、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両が減速した場合は、前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項13に記載の車両用ワイパ装置の制御方法。 When the vehicle decelerates based on the speed information detected by the vehicle speed information detection unit, the control step reduces the enlargement rate during the return pass wiping with respect to the enlargement rate during the forward pass wiping. Item 14. A method for controlling a vehicle wiper device according to Item 13.
  15.  前記制御ステップは、前記車両速度情報検出部で検出された速度情報に基づいて、前記車両の速度が低いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項13又は14に記載の車両用ワイパ装置の制御方法。 The control step, based on speed information detected by the vehicle speed information detection unit, lowers the enlargement ratio at the time of the return pass wiping with respect to the enlargement ratio at the time of the forward pass wiping as the speed of the vehicle is lower. 15. A method for controlling a vehicle wiper device according to 13 or 14.
  16.  前記制御ステップは、第1回転角度検出部で検出した前記第1出力軸の回転角度に基づいて算出した前記第1出力軸の回転速度に応じて、前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項11又は12に記載の車両用ワイパ装置の制御方法。 In the control step, the enlargement rate during the forward path wiping and the return path wiping are determined according to the rotation speed of the first output shaft calculated based on the rotation angle of the first output shaft detected by the first rotation angle detection unit. The method of controlling a vehicle wiper device according to claim 11 or 12, wherein an enlargement ratio at the time is determined.
  17.  前記制御ステップは、前記第1出力軸の回転速度が大きいほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項16に記載の車両用ワイパ装置の制御方法。 The method of controlling a vehicle wiper device according to claim 16, wherein the control step decreases the enlargement ratio at the time of the backward wiping with respect to the enlargement ratio at the time of the forward wiping as the rotation speed of the first output shaft increases.
  18.  前記制御ステップは、前記ウィンドシールドに付着する水滴を検出する水滴検出部の検知結果に基づいて算出した前記ウィンドシールドの上の水量に応じて前記往路払拭時の拡大率及び前記復路払拭時の拡大率を決定する請求項11又は12に記載の車両用ワイパ装置の制御方法。 In the control step, the enlargement rate at the time of the forward wiping and the enlargement at the time of the return wiping are calculated according to the amount of water on the windshield calculated based on the detection result of the water droplet detection unit that detects the water droplets adhering to the windshield. The vehicle wiper device control method according to claim 11 or 12, wherein the rate is determined.
  19.  前記制御ステップは、前記水量が多いほど前記往路払拭時の拡大率に対して前記復路払拭時の拡大率を小さくする請求項18に記載の車両用ワイパ装置の制御方法。 19. The control method for a vehicle wiper device according to claim 18, wherein the control step decreases the enlargement rate at the time of the return pass wiping with respect to the enlargement rate at the time of the outward pass wiping as the amount of water increases.
  20.  前記制御ステップは、車載センサによって歩行者又は二輪車を検知した場合に、前記復路払拭時の拡大率を前記往路払拭時の拡大率よりも小さくする請求項11~19のいずれか1項に記載の車両用ワイパ装置の制御方法。 The control step according to any one of claims 11 to 19, wherein, when a pedestrian or a two-wheeled vehicle is detected by an in-vehicle sensor, the enlargement ratio at the time of the backward wiping is smaller than the enlargement ratio at the time of the forward wiping. A control method for a vehicle wiper device.
PCT/JP2017/036676 2016-10-24 2017-10-10 Vehicular wiper device and method for controlling vehicular wiper device WO2018079248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016207845A JP2018069760A (en) 2016-10-24 2016-10-24 Vehicular wiper device and method for controlling vehicular wiper device
JP2016-207845 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018079248A1 true WO2018079248A1 (en) 2018-05-03

Family

ID=62024815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036676 WO2018079248A1 (en) 2016-10-24 2017-10-10 Vehicular wiper device and method for controlling vehicular wiper device

Country Status (2)

Country Link
JP (1) JP2018069760A (en)
WO (1) WO2018079248A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035261A (en) * 1989-06-01 1991-01-11 Nippon Cable Syst Inc Wiper and driving mechanism thereof
JP2003054378A (en) * 2001-08-13 2003-02-26 Jidosha Denki Kogyo Co Ltd Wiper device
JP2012020625A (en) * 2010-07-13 2012-02-02 Kanto Auto Works Ltd Wiper of automobile
US20160016539A1 (en) * 2014-07-21 2016-01-21 Ford Global Technologies, Llc Vehicle window wiper assembly with curvilinear guide rail

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035261A (en) * 1989-06-01 1991-01-11 Nippon Cable Syst Inc Wiper and driving mechanism thereof
JP2003054378A (en) * 2001-08-13 2003-02-26 Jidosha Denki Kogyo Co Ltd Wiper device
JP2012020625A (en) * 2010-07-13 2012-02-02 Kanto Auto Works Ltd Wiper of automobile
US20160016539A1 (en) * 2014-07-21 2016-01-21 Ford Global Technologies, Llc Vehicle window wiper assembly with curvilinear guide rail

Also Published As

Publication number Publication date
JP2018069760A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6790688B2 (en) Vehicle wiper device and control method of vehicle wiper device
WO2019073975A1 (en) Cleaning system for vehicle
US11708052B2 (en) Vehicle cleaning system
WO2018110328A1 (en) Vehicular wiper device and control method for vehicular wiper device
JP2019018614A (en) Vehicular wiper device
WO2017126526A1 (en) Vehicle wiper device and method for controlling vehicle wiper device
WO2018079248A1 (en) Vehicular wiper device and method for controlling vehicular wiper device
JP2019018683A (en) Vehicle wiper device
CN108473111B (en) Wiper device for vehicle and control method for wiper device for vehicle
JP6724376B2 (en) Wiping range variable wiper device and control method of wiping range variable wiper device
WO2017122825A1 (en) Wiper device and method for controlling wiper device
JP6891683B2 (en) Vehicle wiper device
WO2017122826A1 (en) Vehicle wiper device and vehicle wiper control method
JP2018095045A (en) Vehicle wiper device and control method of vehicle wiper device
JP6724469B2 (en) Wiping range variable wiper device and control method of wiping range variable wiper device
JP6724382B2 (en) Wiping range variable wiper device and control method of wiping range variable wiper device
JP2018095044A (en) Vehicle wiper device and control method for vehicle wiper device
JP6665680B2 (en) Wiping range expanding wiper device and method of controlling wiping range expanding wiper device
JP6891679B2 (en) Vehicle wiper device
WO2017164182A1 (en) Vehicle wiper device and method for controlling vehicle wiper device
JP2017159800A (en) Wiping range expansion wiper device and method for controlling wiping range expansion wiper device
JP6922484B2 (en) Vehicle wiper device and vehicle wiper device control method
WO2017183560A1 (en) Vehicular wiper device and method for controlling vehicular wiper device
JP2019018756A (en) Vehicle wiper device
WO2017122643A1 (en) Wiper device for vehicle and method for controlling wiper device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865636

Country of ref document: EP

Kind code of ref document: A1