WO2018079138A1 - Lens barrel-integrated lens for ignition plug and production method therefor - Google Patents
Lens barrel-integrated lens for ignition plug and production method therefor Download PDFInfo
- Publication number
- WO2018079138A1 WO2018079138A1 PCT/JP2017/033878 JP2017033878W WO2018079138A1 WO 2018079138 A1 WO2018079138 A1 WO 2018079138A1 JP 2017033878 W JP2017033878 W JP 2017033878W WO 2018079138 A1 WO2018079138 A1 WO 2018079138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- glass
- metal holder
- spark plug
- integrated
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P23/00—Other ignition
- F02P23/04—Other physical ignition means, e.g. using laser rays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
Definitions
- the present invention relates to a spark plug mirror used for optically igniting an air-fuel mixture by concentrating high energy light on the air-fuel mixture filled in a combustion chamber in a combustion internal combustion engine such as an automobile engine.
- the present invention relates to a cylinder-integrated lens.
- an ignition plug of an internal combustion engine such as an automobile engine has been used to ignite with electric discharge or red hot metal.
- the ignition position cannot be controlled, and ignition is performed toward the upper end of the air-fuel mixture, so that it is difficult to efficiently burn.
- laser spark plugs are attracting attention as a method for improving the fuel efficiency of internal combustion engines. Since the laser beam can control the condensing position, it can control the ignition position, and it can also ignite a plurality of places instead of one place, so that the combustion efficiency is increased.
- use of a lens barrel-integrated lens has been studied as a member for condensing laser light (see, for example, Patent Document 1).
- the glass lens and the metal holder are joined with low melting point glass.
- the air-fuel mixture burns and is exposed to high temperatures while the internal combustion engine is driven.
- the low-melting glass is softened, and the position (optical axis) of the glass lens is shifted, resulting in a problem that desired ignition performance cannot be obtained.
- the present invention has been made in view of such circumstances, and a spark plug barrel that can stably fix a glass lens in a metal holder even when exposed to high temperatures during driving of an internal combustion engine.
- An object is to provide an integrated lens.
- a lens barrel-integrated lens for a spark plug according to the present invention includes a cylindrical metal holder having openings at both ends, and a glass lens fixed in the metal holder by a clamping force of the metal holder.
- the coefficient is higher than the thermal expansion coefficient of the glass lens.
- the lens barrel-integrated lens for a spark plug of the present invention is excellent in heat resistance because it does not use a low melting point sealing material.
- “the tightening force of the metal holder” means a force that the metal holder tends to contract in the axial direction (inward).
- the thermal expansion coefficient (30 to 300 ° C.) of the metal holder is 1 to 150 ⁇ 10 ⁇ 7 / ° C. higher than the thermal expansion coefficient (30 to 300 ° C.) of the glass lens. Is preferred.
- the glass lens has a thickness of 1 mm and an internal transmittance of 90% or more in a wavelength range of 400 to 1500 nm. If it does in this way, it will become easy to permeate
- the glass lens preferably has a strain point of 400 ° C. or higher. In this way, the lens shape is difficult to change even when exposed to high temperatures.
- the glass lens preferably has a refractive index (nd) of 1.45 to 2.30 and an Abbe number ( ⁇ d) of 35 to 45.
- the glass lens is preferably made of B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass.
- the glass lens has a composition of B 2 O 3 5 to 45%, ZnO 10 to 45%, La 2 O 3 5 to 25%, Gd 2 O by mass%. 3 It is preferable to contain 0.5 to 24%.
- the lens barrel-integrated lens of the present invention has a La 2 O 3 , Gd 2 O 3, and ZnO content of 0.1 ⁇ (La 2 O 3 + Gd 2 O 3 ) / ZnO on a mass% basis. It is preferable that the relationship is ⁇ 5.0.
- the method for manufacturing a lens barrel-integrated lens for a spark plug includes a step of placing and heating a glass lens glass material having an outer diameter smaller than the inner diameter of the metal holder in the metal holder, and the glass lens glass material is in close contact with the metal holder. And a step of pressing the glass lens glass material so as to have a predetermined lens shape and a step of cooling to room temperature.
- a lens barrel-integrated lens for a spark plug according to the present invention includes a cylindrical metal holder having openings at both ends, and a glass lens fixed in the metal holder.
- a lens barrel-integrated lens capable of stably fixing a glass lens in a metal holder even when exposed to a high temperature during driving of an internal combustion engine.
- FIG. 1 is a schematic cross-sectional view showing an embodiment of a lens barrel-integrated lens for a spark plug according to the present invention. It is typical sectional drawing which shows the manufacturing process of the lens-barrel integrated lens for ignition plugs of this invention.
- the laser light is introduced into the collimating lens 1 as diffused light via, for example, an optical fiber.
- the introduced diffused light is collimated by the collimating lens 1.
- the collimated light transmitted through the collimating lens 1 is emitted after being amplified by resonance by the resonator 2 and is diffused by the diffusion lens 3.
- the diffused light that has passed through the diffusion lens 3 is condensed by the condenser lens 4 and ignited to the air-fuel mixture in the fuel chamber of the internal combustion engine.
- the cover glass 5 protects the condenser lens 4 and the like from heat, dirt, and the like.
- a heat-resistant material such as quartz or sapphire can be used.
- the lens-integrated lens for a spark plug of the present invention can be used for any of the collimating lens 1, the diffusion lens 3, and the condenser lens 4.
- FIG. 2 is a schematic cross-sectional view showing an embodiment of a lens barrel-integrated lens for a spark plug according to the present invention.
- a lens barrel-integrated lens 10 for a spark plug includes a cylindrical metal holder 12 having openings at both ends, and a glass lens 11 fixed in the metal holder 12 by the tightening force of the metal holder 12. It has.
- the metal holder 12 may have a flange portion in order to stably store the glass.
- the glass lens 11 has a lens shape.
- the lens shape is not particularly limited, but considering a light collecting ability, a biconvex shape (for example, a spherical shape), a plano-convex shape, and a meniscus shape are preferable.
- the glass lens 11 is preferably made of B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass.
- B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass has a high refractive index and excellent devitrification resistance.
- B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass has a composition of B 2 O 3 5 to 45% by mass, ZnO 10 to 45%, La 2 O 3 5 to 25% by mass, It preferably contains 0.5 to 24% of Gd 2 O 3 .
- the reason for limiting the glass composition range in this way will be described below. In the description of the content of each component below, “%” means “% by mass” unless otherwise specified.
- B 2 O 3 is a skeletal component of glass and is effective in improving devitrification resistance.
- B 2 O 3 also has an effect of lowering the basicity of the glass, and is effective in preventing fusion between the glass and the mold in mold press molding.
- the content is preferably 5 to 45%, 8 to 29%, 10 to 24%, particularly 12 to 21%.
- B 2 O 3 exceeds 45%, the chemical durability of the glass is lowered, and the weather resistance is remarkably deteriorated. If it is less than 5%, the Abbe number among the optical constants cannot be sufficiently secured, the devitrification resistance is lowered, and it becomes difficult to obtain glass stably.
- ZnO is a component that can increase the refractive index and chemical durability. Further, glass containing a large amount of B 2 O 3 and La 2 O 3 tends to devitrify, but ZnO has an effect of suppressing this. Its content is 10 to 45%, preferably 15.5 to 30%, more preferably 16 to 21%, and still more preferably 16 to 20%. If ZnO exceeds 45%, the phase separation tendency of the glass becomes strong, and it becomes difficult to obtain a homogeneous glass. If it is less than 10%, the refractive index is lowered, the devitrification suppressing effect cannot be obtained, the liquidus temperature rises, and the working temperature range cannot be sufficiently secured.
- La 2 O 3 is a component for securing a sufficient working temperature range, and has an effect of increasing the refractive index. Furthermore, there is an effect of improving weather resistance. However, if a large amount is added in order to obtain a high refractive index, devitrification increases, so that it is necessary to partially replace it with Gd 2 O 3 or the like.
- the content of La 2 O 3 is 5 to 25%, preferably 7 to 24.5%, more preferably 9 to 24.2%.
- La 2 O 3 exceeds 25%, the devitrification becomes high and the liquidus temperature rises, so that workability is greatly reduced. If it is less than 5%, the refractive index tends to decrease and the weather resistance tends to deteriorate.
- Gd 2 O 3 is a component that increases the refractive index, it is not necessary to contain a large amount of La 2 O 3, which is effective in improving devitrification resistance. Gd 2 O 3 also has an effect of improving devitrification resistance, and is a component that can expand the working temperature range. However, when it is contained in a large amount, the phase separation tendency of the glass becomes strong, and a homogeneous glass is obtained. It becomes difficult, that is, the working temperature range is reduced.
- the content of Gd 2 O 3 is 0.5 to 24%, preferably 1 to 21%, 1 to 20%, 1 to 15%, 2 to 10%, more preferably 3 to 9.5%.
- the content of La 2 O 3 and Gd 2 O 3 is limited for the purpose of maintaining high devitrification resistance and ensuring a wide working temperature range, while ZnO is used for the purpose of ensuring a high refractive index. Contains a large amount.
- the values of (La 2 O 3 + Gd 2 O 3 ) / ZnO are 0.1 to 5.0, 0.1 to 4.5, 0.2 to 4.0, 0.3 on a mass% basis. It is preferable to adjust to be in the range of -3.0, particularly 0.5-2.5. By setting this value to 0.1 to 5.0, high devitrification resistance can be maintained without lowering the refractive index. When this ratio increases, the devitrification resistance decreases, and when it decreases, the refractive index tends to decrease.
- SiO 2 is a component constituting the skeleton of the glass, and has the effect of improving the devitrification resistance and expanding the working range. It also has the effect of improving weather resistance.
- the content is preferably 0 to 20%, 1 to 15%, particularly preferably 2 to 10%. When SiO 2 exceeds 20%, the refractive index is remarkably lowered and the strain point tends to be high.
- Li 2 O is effective in improving devitrification resistance, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 4%.
- Li 2 O exceeds 10%, the liquidus temperature is remarkably increased, the working temperature range is narrowed, and the mass productivity is adversely affected. Moreover, there exists a tendency for a weather resistance to deteriorate remarkably.
- Ta 2 O 5 has an effect of increasing the refractive index, chemical durability and resistance to devitrification, and its content is preferably 0 to 20%, 0.5 to 15%, particularly preferably 1 to 10%. . If Ta 2 O 5 exceeds 20%, the Abbe number decreases, making it difficult to obtain desired optical characteristics and increasing the cost.
- ZrO 2 is a component that increases the refractive index. Moreover, since glass is formed as an intermediate oxide, there is an effect of improving devitrification resistance and chemical durability. However, when the content of ZrO 2 increases, the strain point increases and the press formability deteriorates.
- the content of ZrO 2 is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 8%.
- Y 2 O 3 is a component that increases the refractive index. For this reason, devitrification resistance can be improved by substitution with La 2 O 3 . Further, by adding an appropriate amount, there is an effect of suppressing phase separation that tends to occur in the B 2 O 3 —ZnO—La 2 O 3 glass.
- the content is preferably 0 to 15%, 1 to 10%, particularly 2 to 8%. When Y 2 O 3 exceeds 15%, devitrification becomes high and the working temperature range becomes narrow.
- WO 3 has the effect of increasing the refractive index. Further, since glass is formed as an intermediate oxide, there is an effect of improving devitrification resistance.
- the content of WO 3 is preferably 0 to 5%, 0.5 to 4%, particularly 1 to 3.5%. If WO 3 exceeds 5%, the Abbe number decreases, making it difficult to obtain desired optical characteristics. Excessive addition causes a decrease in transmittance, increases the affinity with a press die, and causes fusion with the die during pressing.
- the content of Nb 2 O 5 which is a component for increasing the refractive index is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 8%.
- Nb 2 O 5 exceeds 15%, devitrification becomes high and the working temperature range becomes narrow.
- Sb 2 O 3 can be added as a fining agent.
- the content of Sb 2 O 3 is preferably 1% or less.
- the content of Fe 2 O 3 is preferably 5 to 1000 ppm.
- the content of Fe 2 O 3 is preferably 10,000 ppm or less, 500 ppm or less, 300 ppm or less, 200 ppm or less, 100 ppm or less, 80 ppm or less, and particularly preferably 50 ppm or less.
- it is preferably 5 ppm or more, 10 ppm or more, particularly 15 ppm or more.
- the glass having the above composition has a thermal expansion coefficient (30 to 300 ° C.) of 40 to 140 ⁇ 10 ⁇ 7 / ° C., 50 to 130 ⁇ 10 ⁇ 7 / ° C., particularly 60 to 120 ⁇ 10 ⁇ 7 / ° C. It tends to be °C.
- the glass lens preferably has a thickness of 1 mm and an internal transmittance of 90% or more, 92% or more, particularly 95% or more in a wavelength range of 400 to 1500 nm. If the internal transmittance is low, there is a risk of damage due to heat generated by absorption of laser light.
- the glass lens preferably has a strain point of 400 ° C. or higher, 450 ° C. or higher, particularly 500 ° C. or higher. If the strain point is too low, the shape of the lens may change when exposed to high temperatures, and the optical axis may shift.
- the glass lens has a refractive index of 1.45 or more, 1.46 or more, 1.47 or more, 1.48 or more, 1.49 or more, 1.50 or more, 1.51 or more, particularly 1.52 or more. Is preferred. If the refractive index is too low, the focal length tends to be large, and it is difficult to reduce the size of the spark plug.
- the upper limit of the refractive index is not particularly limited, but considering the stability of the glass, it is preferably 2.30 or less, 2.25 or less, 2.20 or less, 2.15 or less, particularly 2.10 or less.
- the glass lens preferably has an Abbe number of 35 or more, 37 or more, particularly 39 or more. However, it is preferable that the Abbe number is high because the wavelength dispersion of the refractive index is small. However, considering the maintenance of the high refractive index and the stability of the glass, it is preferably 45 or less, 43 or less, particularly 42.5 or less.
- Preform glass can be manufactured with high yield.
- ⁇ T is preferably as large as possible, and the upper limit of the ⁇ T is not particularly limited, but in practice, it is preferably 300 ° C. or less, particularly 200 ° C. or less.
- the temperature corresponding to 10 0.5 poise corresponds to the molding temperature when the droplet forming method is adopted. Since glass is most easily devitrified when performing droplet forming, if the difference ⁇ T between the temperature at 10 0.5 poise and the liquidus temperature is 20 ° C. or more, all including the droplet forming method In this molding method, molding can be performed without causing devitrification.
- the basicity of the glass lens is 11 or less, particularly 9.5 or less. If the basicity is low, it is possible to prevent the glass and the press mold from being fused at the time of molding by the mold press.
- the basicity is defined as (total number of moles of oxygen atoms / total number of positive field strength) ⁇ 100.
- Field Strength hereinafter referred to as FS in the equation is obtained by the following equation.
- the basicity of glass is an index indicating how much oxygen electrons in glass are attracted to cations in glass.
- the attraction of oxygen electrons by cations in the glass is weak. Therefore, when a glass having a high basicity is in contact with a cation (mold component) that has a strong tendency to demand electrons, a cation from the mold is more likely to enter the glass than a glass having a low basicity. .
- the cation which is a mold component penetrates (diffuses) into the glass, the mold component concentration in the glass phase near the interface increases.
- the metal holder 12 has a cylindrical shape and has openings at both ends.
- the material of the metal holder is not particularly limited, but is preferably Hastelloy (registered trademark), Inconel (registered trademark), SUS or the like in view of heat resistance and workability.
- the above metal has a coefficient of thermal expansion (30 to 300 ° C.) of 70 to 200 ⁇ 10 ⁇ 7 / ° C., 80 to 190 ⁇ 10 ⁇ 7 / ° C., particularly 90 to 180 ⁇ 10 ⁇ 7 / ° C. Cheap.
- FIG. 3 is a schematic cross-sectional view showing the manufacturing process of the lens barrel-integrated lens for a spark plug according to the present invention.
- the manufacturing method of the lens barrel-integrated lens for a spark plug according to the present invention will be described with reference to FIG.
- the present invention is not limited to this.
- glass raw materials prepared to have a desired composition are melted to obtain molten glass.
- molten glass is dropped from the nozzle tip and formed into droplets (droplet forming) to obtain a glass material.
- droplet forming droplets
- a glass lens glass material 11 having a predetermined shape is obtained.
- the pressing jig 13 is installed. After heating to near the glass transition point in this state, the glass lens glass material 11 is pressed with a pressing jig 13 and cooled to fix the glass lens glass material 11 in a state where the optical axis coincides with the metal holder 12.
- the glass lens glass material 11 is softened and deformed and is brought into close contact with the metal holder 12 by pressing the glass lens glass material 11 in the heating process. Further, the glass lens glass material 11 becomes a glass lens 14 having a predetermined shape by pressing. Thereafter, by cooling the glass lens 14 and the metal holder 12 in close contact with each other, the metal holder 12 clamps the glass lens 14 due to the difference in thermal shrinkage between the metal holder 12 and the glass lens 14, and the glass lens 14 is fixed. .
- the heating temperature is preferably higher than the temperature to which the glass lens 11 is exposed when the internal combustion engine is driven. Specifically, the heating temperature is preferably 250 ° C. or higher, 280 ° C. or higher, 300 ° C. or higher, 320 ° C. or higher, particularly 340 ° C. or higher. When the heating temperature is too low, the metal holder 12 cannot sufficiently tighten the glass lens 11 when exposed to a high temperature when the internal combustion engine is driven, and the glass lens 11 is not easily fixed.
- the thermal expansion coefficient (30 to 300 ° C.) of the metal holder 12 is 1 to 150 ⁇ 10 ⁇ 7 / ° C. and 5 to 130 ⁇ 10 ⁇ 7 / from the thermal expansion coefficient (30 to 300 ° C.) of the glass lens 11. 10 ° C., 10 to 120 ⁇ 10 ⁇ 7 / ° C., 20 to 110 ⁇ 10 ⁇ 7 / ° C., 30 to 100 ⁇ 10 ⁇ 7 / ° C., 40 to 90 ⁇ 10 ⁇ 7 / ° C., especially 50 to 70 ⁇ 10 ⁇ 7 / C is preferably high. If the difference in thermal expansion coefficient is too small, the metal holder 12 is difficult to fasten the glass lens 11, and the glass lens 11 is difficult to be fixed. On the other hand, if the difference in thermal expansion coefficient is too large, the stress applied to the glass lens 11 is increased, and the glass lens 11 may be damaged.
- Preform glass is put into a precision-processed mold and pressed while heating at the softening point, and the surface shape of the mold is transferred to the preform glass.
- the front curvature radius is 20 mm
- the rear curvature radius is 20 mm
- a biconvex glass lens glass material having a height of 1 mm was obtained.
- the obtained glass lens glass material (thermal expansion coefficient (30 to 300 ° C.) 68 ⁇ 10 ⁇ 7 / ° C.) is placed in a metal holder made of SUS405 (thermal expansion coefficient (30 to 300 ° C.) 108 ⁇ 10 ⁇ 7 / ° C.). After storage, a pressing jig was installed.
- the glass lens was heated to the glass transition point, the glass lens glass material was pressed with a pressing jig, and then cooled to obtain a lens-integrated lens.
- the glass lens was fixed at a predetermined position in the metal holder.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Physics & Mathematics (AREA)
- Glass Compositions (AREA)
- Lens Barrels (AREA)
Abstract
The present invention provides a lens barrel-integrated lens that is capable of stably fixing a glass lens within a metal holder even when exposed to high temperatures while an internal combustion engine is being driven. This lens barrel-integrated lens for a combustion-based internal combustion engine is characterized by being provided with a cylindrical metal holder having openings at both ends; and a glass lens fixed within the metal holder by a clamping force of the metal holder, wherein the metal holder has a heat expansion coefficient higher than that of the glass lens.
Description
本発明は、自動車のエンジン等の燃焼式内燃機関において、燃焼室に満たされた混合気に高エネルギーの光を集光して混合気を光学的に着火させるために使用される点火プラグ用鏡筒一体型レンズに関するものである。
The present invention relates to a spark plug mirror used for optically igniting an air-fuel mixture by concentrating high energy light on the air-fuel mixture filled in a combustion chamber in a combustion internal combustion engine such as an automobile engine. The present invention relates to a cylinder-integrated lens.
従来、自動車のエンジン等の内燃機関の点火プラグには、電気的放電や赤熱した金属等によって点火する手法が用いられていた。しかし、このような点火プラグでは、着火する位置を制御できず、混合気の上端の方での着火となるので、効率的に燃焼させることが困難である。
Conventionally, an ignition plug of an internal combustion engine such as an automobile engine has been used to ignite with electric discharge or red hot metal. However, with such a spark plug, the ignition position cannot be controlled, and ignition is performed toward the upper end of the air-fuel mixture, so that it is difficult to efficiently burn.
そこで、内燃機関の燃費効率の向上の手法としてレーザー点火プラグが注目されている。レーザー光は集光位置を制御できるため、着火する位置を制御でき、また、1箇所ではなく複数箇所に着火することも可能であるため、燃焼効率が高くなる。ここで、レーザー光を集光する部材として、鏡筒一体型レンズの使用が検討されている(例えば、特許文献1参照)。
Therefore, laser spark plugs are attracting attention as a method for improving the fuel efficiency of internal combustion engines. Since the laser beam can control the condensing position, it can control the ignition position, and it can also ignite a plurality of places instead of one place, so that the combustion efficiency is increased. Here, use of a lens barrel-integrated lens has been studied as a member for condensing laser light (see, for example, Patent Document 1).
特許文献1の鏡筒一体型レンズでは、ガラスレンズを金属ホルダー内に固定するために、低融点ガラスにてガラスレンズと金属ホルダーを接合している。当然ながら、鏡筒一体型レンズは、内燃機関の駆動中、混合気が燃焼し高温に曝される。高温に曝されると、低融点ガラスが軟化してしまい、ガラスレンズの位置(光軸)がずれて、所望の着火性能が得られないといった問題があった。
In the lens barrel-integrated lens of Patent Document 1, in order to fix the glass lens in the metal holder, the glass lens and the metal holder are joined with low melting point glass. Of course, in the lens barrel-integrated lens, the air-fuel mixture burns and is exposed to high temperatures while the internal combustion engine is driven. When exposed to high temperatures, the low-melting glass is softened, and the position (optical axis) of the glass lens is shifted, resulting in a problem that desired ignition performance cannot be obtained.
本発明はこのような状況に鑑みてなされたものであり、内燃機関の駆動中、高温に曝されても、金属ホルダー内に安定してガラスレンズを固定することが可能な点火プラグ用鏡筒一体型レンズを提供することを目的とする。
The present invention has been made in view of such circumstances, and a spark plug barrel that can stably fix a glass lens in a metal holder even when exposed to high temperatures during driving of an internal combustion engine. An object is to provide an integrated lens.
本発明の点火プラグ用鏡筒一体型レンズは、両端に開口部を有する筒状の金属ホルダーと、金属ホルダー内に金属ホルダーの締付け力により固定されたガラスレンズとを備え、金属ホルダーの熱膨張係数が、ガラスレンズの熱膨張係数より高いことを特徴とする。本発明の点火プラグ用鏡筒一体型レンズは、低融点封止材料を用いていないため耐熱性に優れる。なお、本発明において「金属ホルダーの締付け力」とは、金属ホルダーが軸方向(内方)へ収縮しようとする力を意味する。
A lens barrel-integrated lens for a spark plug according to the present invention includes a cylindrical metal holder having openings at both ends, and a glass lens fixed in the metal holder by a clamping force of the metal holder. The coefficient is higher than the thermal expansion coefficient of the glass lens. The lens barrel-integrated lens for a spark plug of the present invention is excellent in heat resistance because it does not use a low melting point sealing material. In the present invention, “the tightening force of the metal holder” means a force that the metal holder tends to contract in the axial direction (inward).
本発明の点火プラグ用鏡筒一体型レンズは、金属ホルダーの熱膨張係数(30~300℃)がガラスレンズの熱膨張係数(30~300℃)より1~150×10-7/℃高いことが好ましい。
In the lens barrel-integrated lens of the present invention, the thermal expansion coefficient (30 to 300 ° C.) of the metal holder is 1 to 150 × 10 −7 / ° C. higher than the thermal expansion coefficient (30 to 300 ° C.) of the glass lens. Is preferred.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズが、厚み1mmにて、波長400~1500nmの範囲で内部透過率が90%以上であることが好ましい。このようにすれば、レーザー光を効率よく透過しやすくなる。
In the lens barrel-integrated lens for a spark plug of the present invention, it is preferable that the glass lens has a thickness of 1 mm and an internal transmittance of 90% or more in a wavelength range of 400 to 1500 nm. If it does in this way, it will become easy to permeate | transmit a laser beam efficiently.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズの歪点が400℃以上であることが好ましい。このようにすれば、高温に曝されても、レンズ形状が変化しづらい。
In the lens barrel-integrated lens for a spark plug of the present invention, the glass lens preferably has a strain point of 400 ° C. or higher. In this way, the lens shape is difficult to change even when exposed to high temperatures.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズの屈折率(nd)が1.45~2.30、アッベ数(νd)が35~45であることが好ましい。
In the lens barrel-integrated lens for a spark plug according to the present invention, the glass lens preferably has a refractive index (nd) of 1.45 to 2.30 and an Abbe number (νd) of 35 to 45.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズの△T=(100.5ポイズでの温度-液相温度)が20℃以上であることが好ましい。
In the lens integrated with a spark plug of the present invention, the glass lens preferably has ΔT = (temperature at 10 0.5 poise−liquidus temperature) of 20 ° C. or more.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズがB2O3-ZnO-La2O3-Gd2O3系ガラスからなることが好ましい。
In the spark plug barrel-integrated lens of the present invention, the glass lens is preferably made of B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass.
本発明の点火プラグ用鏡筒一体型レンズは、ガラスレンズが、組成として、質量%でB2O3 5~45%、ZnO 10~45%、La2O3 5~25%、Gd2O3 0.5~24%含有することが好ましい。
In the lens barrel-integrated lens of the present invention, the glass lens has a composition of B 2 O 3 5 to 45%, ZnO 10 to 45%, La 2 O 3 5 to 25%, Gd 2 O by mass%. 3 It is preferable to contain 0.5 to 24%.
本発明の点火プラグ用鏡筒一体型レンズは、La2O3とGd2O3とZnOの含有量が、質量%基準で、0.1≦(La2O3+Gd2O3)/ZnO≦5.0の関係にあることが好ましい。
The lens barrel-integrated lens of the present invention has a La 2 O 3 , Gd 2 O 3, and ZnO content of 0.1 ≦ (La 2 O 3 + Gd 2 O 3 ) / ZnO on a mass% basis. It is preferable that the relationship is ≦ 5.0.
本発明の点火プラグ用鏡筒一体型レンズの製造方法は、金属ホルダー内に、金属ホルダーの内径より小さい外径を有するガラスレンズ硝材を配置して加熱する工程、ガラスレンズ硝材が金属ホルダと密接し、且つ、所定のレンズ形状となるようにガラスレンズ硝材をプレスする工程、常温まで冷却する工程とを有することを特徴とする。
The method for manufacturing a lens barrel-integrated lens for a spark plug according to the present invention includes a step of placing and heating a glass lens glass material having an outer diameter smaller than the inner diameter of the metal holder in the metal holder, and the glass lens glass material is in close contact with the metal holder. And a step of pressing the glass lens glass material so as to have a predetermined lens shape and a step of cooling to room temperature.
本発明の点火プラグ用鏡筒一体型レンズは、両端に開口部を有する筒状の金属ホルダーと、金属ホルダー内に固定されたガラスレンズとを備えることを特徴とする。
A lens barrel-integrated lens for a spark plug according to the present invention includes a cylindrical metal holder having openings at both ends, and a glass lens fixed in the metal holder.
本発明によれば、内燃機関の駆動中、高温に曝されても、金属ホルダー内に安定してガラスレンズを固定することが可能な鏡筒一体型レンズを提供することができる。
According to the present invention, it is possible to provide a lens barrel-integrated lens capable of stably fixing a glass lens in a metal holder even when exposed to a high temperature during driving of an internal combustion engine.
まず、レーザー点火プラグの原理、構造について図1を用いて説明する。レーザー光は、例えば、光ファイバーを介して、拡散光としてコリメートレンズ1に導入される。導入された拡散光はコリメートレンズ1によりコリメートされる。コリメートレンズ1を透過したコリメート光は、共振器2により共振増幅された後出射され、拡散レンズ3により拡散される。拡散レンズ3を透過した拡散光を、集光レンズ4により集光して、内燃機関の燃料室内の混合気に点火を行う。なお、カバーガラス5は、集光レンズ4等を熱、汚れ等から保護する。カバーガラス5には、石英、サファイア等の耐熱材料が使用できる。本発明の点火プラグ用鏡筒一体型レンズは、コリメートレンズ1、拡散レンズ3、集光レンズ4のいずれにも使用することができる。
First, the principle and structure of the laser spark plug will be described with reference to FIG. The laser light is introduced into the collimating lens 1 as diffused light via, for example, an optical fiber. The introduced diffused light is collimated by the collimating lens 1. The collimated light transmitted through the collimating lens 1 is emitted after being amplified by resonance by the resonator 2 and is diffused by the diffusion lens 3. The diffused light that has passed through the diffusion lens 3 is condensed by the condenser lens 4 and ignited to the air-fuel mixture in the fuel chamber of the internal combustion engine. The cover glass 5 protects the condenser lens 4 and the like from heat, dirt, and the like. For the cover glass 5, a heat-resistant material such as quartz or sapphire can be used. The lens-integrated lens for a spark plug of the present invention can be used for any of the collimating lens 1, the diffusion lens 3, and the condenser lens 4.
以下に、本発明の点火プラグ用鏡筒一体型レンズの実施形態について説明する。
Hereinafter, embodiments of a lens barrel-integrated lens for a spark plug according to the present invention will be described.
図2は本発明の点火プラグ用鏡筒一体型レンズの一実施形態を示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing an embodiment of a lens barrel-integrated lens for a spark plug according to the present invention.
本実施形態において、点火プラグ用鏡筒一体型レンズ10は、両端に開口部を有する円筒形状の金属ホルダー12と、金属ホルダー12内に、金属ホルダー12の締付け力により固定されたガラスレンズ11とを備えている。金属ホルダー12は、ガラスを安定に収納するために、フランジ部を有してもよい。
In this embodiment, a lens barrel-integrated lens 10 for a spark plug includes a cylindrical metal holder 12 having openings at both ends, and a glass lens 11 fixed in the metal holder 12 by the tightening force of the metal holder 12. It has. The metal holder 12 may have a flange portion in order to stably store the glass.
以下に各構成要素ごとに説明する。
The following explains each component.
(ガラスレンズ11)
ガラスレンズ11は、レンズ形状である。レンズ形状は、特に限定されないが、集光能力を考慮すると、両凸形状(例えば球状)、平凸形状、メニスカス形状が好ましい。 (Glass lens 11)
Theglass lens 11 has a lens shape. The lens shape is not particularly limited, but considering a light collecting ability, a biconvex shape (for example, a spherical shape), a plano-convex shape, and a meniscus shape are preferable.
ガラスレンズ11は、レンズ形状である。レンズ形状は、特に限定されないが、集光能力を考慮すると、両凸形状(例えば球状)、平凸形状、メニスカス形状が好ましい。 (Glass lens 11)
The
ガラスレンズ11は、B2O3-ZnO-La2O3-Gd2O3系ガラスからなることが好ましい。B2O3-ZnO-La2O3-Gd2O3系ガラスは、高屈折率であり、耐失透性に優れる。
The glass lens 11 is preferably made of B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass. B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass has a high refractive index and excellent devitrification resistance.
B2O3-ZnO-La2O3-Gd2O3系ガラスは、組成として、質量%でB2O3 5~45%、ZnO 10~45%、La2O3 5~25%、Gd2O3 0.5~24%を含有することが好ましい。ガラス組成範囲をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、特に断りがない限り「%」は「質量%」を示す。
B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass has a composition of B 2 O 3 5 to 45% by mass, ZnO 10 to 45%, La 2 O 3 5 to 25% by mass, It preferably contains 0.5 to 24% of Gd 2 O 3 . The reason for limiting the glass composition range in this way will be described below. In the description of the content of each component below, “%” means “% by mass” unless otherwise specified.
B2O3はガラスの骨格成分であり、耐失透性の向上に効果がある。B2O3はガラスの塩基性度を下げる作用もあり、モールドプレス成形におけるガラスと金型の融着防止にも効果がある。その含有量は5~45%、8~29%、10~24%、特に12~21%であることが好ましい。B2O3が45%を超えるとガラスの化学的耐久性が低下し、耐候性が著しく悪化する。5%より少ないと、光学定数のうち特にアッベ数が十分に確保できなくなり、また耐失透性が低下し、安定してガラスを得ることが困難となる。
B 2 O 3 is a skeletal component of glass and is effective in improving devitrification resistance. B 2 O 3 also has an effect of lowering the basicity of the glass, and is effective in preventing fusion between the glass and the mold in mold press molding. The content is preferably 5 to 45%, 8 to 29%, 10 to 24%, particularly 12 to 21%. When B 2 O 3 exceeds 45%, the chemical durability of the glass is lowered, and the weather resistance is remarkably deteriorated. If it is less than 5%, the Abbe number among the optical constants cannot be sufficiently secured, the devitrification resistance is lowered, and it becomes difficult to obtain glass stably.
ZnOは屈折率、化学的耐久性を高めることができる成分である。またB2O3とLa2O3を多量に含むガラスは失透し易いが、ZnOはこれを抑制する効果がある。その含有量は10~45%、好ましくは15.5~30%、さらに好ましくは16~21%、さらに好ましくは16~20%である。ZnOが45%を超えるとガラスの分相傾向が強くなり、均質なガラスを得難くなる。10%より少ないと屈折率が低下し、また失透抑制効果が得られず、液相温度が上昇し、作業温度範囲を十分に確保できなくなる。
ZnO is a component that can increase the refractive index and chemical durability. Further, glass containing a large amount of B 2 O 3 and La 2 O 3 tends to devitrify, but ZnO has an effect of suppressing this. Its content is 10 to 45%, preferably 15.5 to 30%, more preferably 16 to 21%, and still more preferably 16 to 20%. If ZnO exceeds 45%, the phase separation tendency of the glass becomes strong, and it becomes difficult to obtain a homogeneous glass. If it is less than 10%, the refractive index is lowered, the devitrification suppressing effect cannot be obtained, the liquidus temperature rises, and the working temperature range cannot be sufficiently secured.
La2O3は、十分な作業温度範囲を確保するための成分であり、屈折率を高める効果がある。さらに、耐候性を向上させる効果もある。ただし高い屈折率を得るために多量に添加すると失透性が増大するため、Gd2O3等によりその一部を置換する必要がある。La2O3の含有量は5~25%、好ましくは7~24.5%、さらに好ましくは9~24.2%である。La2O3が25%を超えると失透性が高くなり、液相温度が上昇するため、作業性が大幅に低下する。5%より少ないと、屈折率が低下し、また耐候性が悪化する傾向がある。
La 2 O 3 is a component for securing a sufficient working temperature range, and has an effect of increasing the refractive index. Furthermore, there is an effect of improving weather resistance. However, if a large amount is added in order to obtain a high refractive index, devitrification increases, so that it is necessary to partially replace it with Gd 2 O 3 or the like. The content of La 2 O 3 is 5 to 25%, preferably 7 to 24.5%, more preferably 9 to 24.2%. When La 2 O 3 exceeds 25%, the devitrification becomes high and the liquidus temperature rises, so that workability is greatly reduced. If it is less than 5%, the refractive index tends to decrease and the weather resistance tends to deteriorate.
Gd2O3は屈折率を高める成分であるため、多量のLa2O3を含有させる必要がなくなり耐失透性の向上に効果がある。またGd2O3にも耐失透性を向上する効果があり、作業温度範囲を拡大することができる成分であるが、多量に含有するとガラスの分相傾向が強くなり、均質なガラスを得にくくなる、すなわち作業温度範囲の縮小に繋がる。Gd2O3の含有量は0.5~24%、好ましくは1~21%、1~20%、1~15%、2~10%、さらに好ましくは3~9.5%である。
Since Gd 2 O 3 is a component that increases the refractive index, it is not necessary to contain a large amount of La 2 O 3, which is effective in improving devitrification resistance. Gd 2 O 3 also has an effect of improving devitrification resistance, and is a component that can expand the working temperature range. However, when it is contained in a large amount, the phase separation tendency of the glass becomes strong, and a homogeneous glass is obtained. It becomes difficult, that is, the working temperature range is reduced. The content of Gd 2 O 3 is 0.5 to 24%, preferably 1 to 21%, 1 to 20%, 1 to 15%, 2 to 10%, more preferably 3 to 9.5%.
また、高い耐失透性を維持し、広い作業温度範囲を確保する目的でLa2O3とGd2O3の含有量を制限し、その一方で、高屈折率を確保する目的でZnOを多量に含有している。高い耐失透性と高屈折率を両立させるためには、La2O3、Gd2O3及びZnOの含有量を適切なバランスに保つことが重要となる。この観点から、質量%基準で(La2O3+Gd2O3)/ZnOの値が0.1~5.0、0.1~4.5、0.2~4.0、0.3~3.0、特に0.5~2.5の範囲内となるように調節することが好ましい。この値を0.1~5.0とすることで屈折率を低下させることなく、高い耐失透性を維持することができる。この比が大きくなると耐失透性が低下し、小さくなると屈折率が低下する傾向がある。
In addition, the content of La 2 O 3 and Gd 2 O 3 is limited for the purpose of maintaining high devitrification resistance and ensuring a wide working temperature range, while ZnO is used for the purpose of ensuring a high refractive index. Contains a large amount. In order to achieve both high devitrification resistance and a high refractive index, it is important to keep the contents of La 2 O 3 , Gd 2 O 3 and ZnO in an appropriate balance. From this point of view, the values of (La 2 O 3 + Gd 2 O 3 ) / ZnO are 0.1 to 5.0, 0.1 to 4.5, 0.2 to 4.0, 0.3 on a mass% basis. It is preferable to adjust to be in the range of -3.0, particularly 0.5-2.5. By setting this value to 0.1 to 5.0, high devitrification resistance can be maintained without lowering the refractive index. When this ratio increases, the devitrification resistance decreases, and when it decreases, the refractive index tends to decrease.
上記成分以外にも下記の成分を含有させることができる。
In addition to the above components, the following components can be contained.
SiO2はガラスの骨格を構成する成分であり、耐失透性を向上させ、作業範囲を広げる効果がある。また耐候性を向上させる効果もある。その含有量は0~20%、1~15%、特に2~10%であることが好ましい。SiO2が20%を超えると屈折率が著しく低下したり、歪点が高くなりやすくなる。
SiO 2 is a component constituting the skeleton of the glass, and has the effect of improving the devitrification resistance and expanding the working range. It also has the effect of improving weather resistance. The content is preferably 0 to 20%, 1 to 15%, particularly preferably 2 to 10%. When SiO 2 exceeds 20%, the refractive index is remarkably lowered and the strain point tends to be high.
Li2Oは耐失透性の向上に効果があり、その含有量は0~10%、0.1~5%、特に0.5~4%であることが好ましい。Li2Oが10%を超えると液相温度が著しく上昇して作業温度範囲が狭くなり、量産性に悪影響を与える。また耐候性が著しく悪化する傾向がある。
Li 2 O is effective in improving devitrification resistance, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 4%. When Li 2 O exceeds 10%, the liquidus temperature is remarkably increased, the working temperature range is narrowed, and the mass productivity is adversely affected. Moreover, there exists a tendency for a weather resistance to deteriorate remarkably.
Ta2O5は、屈折率、化学的耐久性と耐失透性を高める効果があり、その含有量は0~20%、0.5~15%、特に1~10%であることが好ましい。Ta2O5が20%を超えるとアッベ数が低下してしまい、所望の光学特性を得ることが困難となり、またコストが高くなる。
Ta 2 O 5 has an effect of increasing the refractive index, chemical durability and resistance to devitrification, and its content is preferably 0 to 20%, 0.5 to 15%, particularly preferably 1 to 10%. . If Ta 2 O 5 exceeds 20%, the Abbe number decreases, making it difficult to obtain desired optical characteristics and increasing the cost.
ZrO2は屈折率を高める成分である。また、中間酸化物としてガラスを形成するため、耐失透性と化学的耐久性を向上する効果もある。ただしZrO2の含有量が多くなると歪点が上昇し、プレス成形性が悪化する。ZrO2の含有量は0~15%、0.5~10%、特に1~8%であることが好ましい。
ZrO 2 is a component that increases the refractive index. Moreover, since glass is formed as an intermediate oxide, there is an effect of improving devitrification resistance and chemical durability. However, when the content of ZrO 2 increases, the strain point increases and the press formability deteriorates. The content of ZrO 2 is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 8%.
Y2O3は、屈折率を高める成分である。このためLa2O3との置換により耐失透性を改善することができる。また、適量添加することによって、B2O3-ZnO-La2O3系ガラスに起こりやすい分相を抑制する効果がある。その含有量は、0~15%、1~10%、特に2~8%であることが好ましい。Y2O3が15%を超えると失透性が高くなり、作業温度範囲が狭くなる。
Y 2 O 3 is a component that increases the refractive index. For this reason, devitrification resistance can be improved by substitution with La 2 O 3 . Further, by adding an appropriate amount, there is an effect of suppressing phase separation that tends to occur in the B 2 O 3 —ZnO—La 2 O 3 glass. The content is preferably 0 to 15%, 1 to 10%, particularly 2 to 8%. When Y 2 O 3 exceeds 15%, devitrification becomes high and the working temperature range becomes narrow.
WO3は屈折率を高める効果がある。また、中間酸化物としてガラスを形成するため、耐失透性を向上する効果もある。WO3の含有量は0~5%、0.5~4%、特に1~3.5%であることが好ましい。WO3が5%を超えるとアッベ数が低下してしまい、所望の光学特性を得ることが困難となる。また過剰な添加は透過率の低下を招いたり、プレス金型との親和性が増し、プレス時の金型との融着を招いたりする。
WO 3 has the effect of increasing the refractive index. Further, since glass is formed as an intermediate oxide, there is an effect of improving devitrification resistance. The content of WO 3 is preferably 0 to 5%, 0.5 to 4%, particularly 1 to 3.5%. If WO 3 exceeds 5%, the Abbe number decreases, making it difficult to obtain desired optical characteristics. Excessive addition causes a decrease in transmittance, increases the affinity with a press die, and causes fusion with the die during pressing.
屈折率を高める成分であるNb2O5の含有量は、0~15%、0.5~10%、特に1~8%であることが好ましい。Nb2O5が15%を超えると失透性が高くなり、作業温度範囲が狭くなる。
The content of Nb 2 O 5 which is a component for increasing the refractive index is preferably 0 to 15%, 0.5 to 10%, particularly 1 to 8%. When Nb 2 O 5 exceeds 15%, devitrification becomes high and the working temperature range becomes narrow.
また上記以外にも、種々の成分を添加することが可能である。例えば清澄剤としてSb2O3を添加することができる。なおガラスに対する過度の着色を避けるために、Sb2O3の含有量は1%以下であることが好ましい。
In addition to the above, various components can be added. For example, Sb 2 O 3 can be added as a fining agent. Note To avoid excessive coloring to the glass, the content of Sb 2 O 3 is preferably 1% or less.
Fe2O3の含有量は5~1000ppmであることが好ましい。Fe2O3の含有量が多すぎると、照射されるレーザー光を吸収して発熱により破損する恐れがある。そのため10000ppm以下、500ppm以下、300ppm以下、200ppm以下、100ppm以下、80ppm以下、特に50ppm以下であることが好ましい。一方使用する原料のコストを考慮すると、5ppm以上、10ppm以上、特に15ppm以上であることが好ましい。
The content of Fe 2 O 3 is preferably 5 to 1000 ppm. When the content of Fe 2 O 3 is too large, there is a possibility of damage by heat generated by absorbing the laser light irradiated. Therefore, it is preferably 10,000 ppm or less, 500 ppm or less, 300 ppm or less, 200 ppm or less, 100 ppm or less, 80 ppm or less, and particularly preferably 50 ppm or less. On the other hand, considering the cost of the raw material used, it is preferably 5 ppm or more, 10 ppm or more, particularly 15 ppm or more.
上記のような組成を有するガラスは、熱膨張係数(30~300℃)が、40~140×10-7/℃、50~130×10-7/℃、特に60~120×10-7/℃になりやすい。
The glass having the above composition has a thermal expansion coefficient (30 to 300 ° C.) of 40 to 140 × 10 −7 / ° C., 50 to 130 × 10 −7 / ° C., particularly 60 to 120 × 10 −7 / ° C. It tends to be ℃.
ガラスレンズは、厚み1mmにて、波長400~1500nmの範囲で内部透過率が90%以上、92%以上、特に95%以上であることが好ましい。内部透過率が低いとレーザー光の吸収による発熱で破損する恐れがある。
The glass lens preferably has a thickness of 1 mm and an internal transmittance of 90% or more, 92% or more, particularly 95% or more in a wavelength range of 400 to 1500 nm. If the internal transmittance is low, there is a risk of damage due to heat generated by absorption of laser light.
ガラスレンズは、歪点が400℃以上、450℃以上、特に500℃以上であることが好ましい。歪点が低すぎると、高温に曝された際にレンズの形状が変化し光軸がずれる恐れがある。
The glass lens preferably has a strain point of 400 ° C. or higher, 450 ° C. or higher, particularly 500 ° C. or higher. If the strain point is too low, the shape of the lens may change when exposed to high temperatures, and the optical axis may shift.
ガラスレンズは、屈折率が1.45以上、1.46以上、1.47以上、1.48以上、1.49以上、1.50以上、1.51以上、特に1.52以上であることが好ましい。屈折率が低すぎると焦点距離が大きくなりやすく、点火プラグを小型化しにくくなる。屈折率の上限は特に限定されないが、ガラスの安定性を考慮すると、2.30以下、2.25以下、2.20以下、2.15以下、特に2.10以下であることが好ましい。
The glass lens has a refractive index of 1.45 or more, 1.46 or more, 1.47 or more, 1.48 or more, 1.49 or more, 1.50 or more, 1.51 or more, particularly 1.52 or more. Is preferred. If the refractive index is too low, the focal length tends to be large, and it is difficult to reduce the size of the spark plug. The upper limit of the refractive index is not particularly limited, but considering the stability of the glass, it is preferably 2.30 or less, 2.25 or less, 2.20 or less, 2.15 or less, particularly 2.10 or less.
ガラスレンズは、アッベ数が35以上で、37以上、特に39以上であることが好ましい。ただしアッベ数は高いほど屈折率の波長分散が小さくなるため好ましいが、高屈折率の維持とガラスの安定性を考慮すると、45以下、43以下、特に42.5以下であることが好ましい。
The glass lens preferably has an Abbe number of 35 or more, 37 or more, particularly 39 or more. However, it is preferable that the Abbe number is high because the wavelength dispersion of the refractive index is small. However, considering the maintenance of the high refractive index and the stability of the glass, it is preferably 45 or less, 43 or less, particularly 42.5 or less.
ガラスレンズは、△T=(100.5ポイズでの温度-液相温度)が20℃以上、30℃以上、特に40℃以上であれば、十分な作業温度を確保することが可能となり、プリフォームガラスを歩留まり良く製造することができる。△Tは大きい程よく、その上限は特に限定する必要はないが、現実的には300℃以下、特に200℃以下であることが好ましい。なお100.5ポイズに相当する温度は、液滴成形法を採用した場合の成形温度に該当する。液滴成形を行う場合に最もガラスが失透しやすくなることから、この100.5ポイズでの温度と液相温度の差△Tが20℃以上であれば、液滴成形法を含むすべての成形方法において、失透を生じることなく成形することが可能となる。
If the glass lens has ΔT = (temperature at 10 0.5 poise−liquidus temperature) of 20 ° C. or more, 30 ° C. or more, particularly 40 ° C. or more, a sufficient working temperature can be secured. Preform glass can be manufactured with high yield. ΔT is preferably as large as possible, and the upper limit of the ΔT is not particularly limited, but in practice, it is preferably 300 ° C. or less, particularly 200 ° C. or less. The temperature corresponding to 10 0.5 poise corresponds to the molding temperature when the droplet forming method is adopted. Since glass is most easily devitrified when performing droplet forming, if the difference ΔT between the temperature at 10 0.5 poise and the liquidus temperature is 20 ° C. or more, all including the droplet forming method In this molding method, molding can be performed without causing devitrification.
ガラスレンズの塩基性度が11以下、特に9.5以下であることが好ましい。塩基性度が低ければ、モールドプレスによる成形時にガラスとプレス金型の融着を防止することができる。なお本発明において、塩基性度とは、(酸素原子のモル数の総和/陽イオンのField Strengthの総和)×100として定義される。式中のField Strength(以下F.S.と表記する)は次式により求められる。
It is preferable that the basicity of the glass lens is 11 or less, particularly 9.5 or less. If the basicity is low, it is possible to prevent the glass and the press mold from being fused at the time of molding by the mold press. In the present invention, the basicity is defined as (total number of moles of oxygen atoms / total number of positive field strength) × 100. Field Strength (hereinafter referred to as FS) in the equation is obtained by the following equation.
F.S.=Z/r2 Zはイオン価数、rはイオン半径を示している。ガラス中の元素の配位数、イオン価数はガラス組成によって変化するものであり、それにともなってイオン半径の数値も変化する。そのため正確な塩基性度を算出するにあたって、各元素のイオン価数、イオン半径は組成系ごとに適宜選択することが望ましい。なおZ、rの数値は『化学便覧基礎編 改訂2版(1975年 丸善株式会社発行)』を参照して決定すればよい。本発明においては、同文献を参照して決定した表1の値を用いることが適当である。
F. S. = Z / r 2 Z represents the ion valence, and r represents the ion radius. The coordination number and ionic valence of the elements in the glass change depending on the glass composition, and the numerical value of the ion radius changes accordingly. Therefore, in calculating an accurate basicity, it is desirable to appropriately select the ionic valence and ionic radius of each element for each composition system. The numerical values of Z and r may be determined by referring to “Chemical Handbook Basic Edition 2nd edition (published by Maruzen Co., Ltd., 1975)”. In the present invention, it is appropriate to use the values shown in Table 1 determined with reference to this document.
ガラスの塩基性度はガラス中の酸素の電子がガラス中の陽イオンにどのくらい引きつけられているかを示す指標になる。塩基性度の高いガラスではガラス中の陽イオンによる酸素の電子の引きつけが弱い。したがって、塩基性度の高いガラスは、電子を求める傾向の強い陽イオン(金型成分)と接した際、塩基性度の低いガラスに比べガラス中に金型からの陽イオンの侵入が起きやすい。金型成分である陽イオンがガラス中へ侵入(拡散)すると、界面付近のガラス相中の金型成分濃度が増加する。これによりガラス相と金型相の組成差が減少するため、両者の間の親和性が増し、ガラスが金型に濡れやすくなる。このような機構により、ガラスと金型が融着すると考えられる。従って塩基性度が低くなるにしたがって、ガラス中に金型成分が侵入しにくくなり、ガラスと金型は融着しなくなる。
The basicity of glass is an index indicating how much oxygen electrons in glass are attracted to cations in glass. In a glass having a high basicity, the attraction of oxygen electrons by cations in the glass is weak. Therefore, when a glass having a high basicity is in contact with a cation (mold component) that has a strong tendency to demand electrons, a cation from the mold is more likely to enter the glass than a glass having a low basicity. . When the cation which is a mold component penetrates (diffuses) into the glass, the mold component concentration in the glass phase near the interface increases. Thereby, since the difference in composition between the glass phase and the mold phase is reduced, the affinity between the two is increased, and the glass is easily wetted by the mold. It is considered that the glass and the mold are fused by such a mechanism. Therefore, as the basicity is lowered, the mold components are less likely to enter the glass, and the glass and the mold are not fused.
(金属ホルダー12)
金属ホルダー12は、円筒形状であり、両端に開口部を有している。金属ホルダーの材質は特に限定されないが、耐熱性、加工性の面を考慮するとハステロイ(登録商標)、インコネル(登録商標)、SUS等であることが好ましい。 (Metal holder 12)
Themetal holder 12 has a cylindrical shape and has openings at both ends. The material of the metal holder is not particularly limited, but is preferably Hastelloy (registered trademark), Inconel (registered trademark), SUS or the like in view of heat resistance and workability.
金属ホルダー12は、円筒形状であり、両端に開口部を有している。金属ホルダーの材質は特に限定されないが、耐熱性、加工性の面を考慮するとハステロイ(登録商標)、インコネル(登録商標)、SUS等であることが好ましい。 (Metal holder 12)
The
上記のような金属は、熱膨張係数(30~300℃)が、70~200×10-7/℃、80~190×10-7/℃、特に90~180×10-7/℃になりやすい。
The above metal has a coefficient of thermal expansion (30 to 300 ° C.) of 70 to 200 × 10 −7 / ° C., 80 to 190 × 10 −7 / ° C., particularly 90 to 180 × 10 −7 / ° C. Cheap.
図3は、本発明の点火プラグ用鏡筒一体型レンズの製造工程を示す模式的断面図である。以下、図3を参照しながら、本発明の点火プラグ用鏡筒一体型レンズの製造方法について説明する。ただし、本発明は、これに限られるものではない。
FIG. 3 is a schematic cross-sectional view showing the manufacturing process of the lens barrel-integrated lens for a spark plug according to the present invention. Hereinafter, the manufacturing method of the lens barrel-integrated lens for a spark plug according to the present invention will be described with reference to FIG. However, the present invention is not limited to this.
まず所望の組成を有するように調合したガラス原料を溶融し、溶融ガラスとする。次に溶融ガラスをノズル先端から滴下して液滴状に成形(液滴成形)して硝材を得る。さらに成形した硝材を研磨した後、或いは研磨することなくモールドプレスし、所定形状のガラスレンズ硝材11を得る。なお、液滴成形を行う代わりに、溶融ガラスをインゴットに成形し、これから適当な大きさに切りだした硝材を研磨した後、モールドプレスする方法を採用することもできる。
First, glass raw materials prepared to have a desired composition are melted to obtain molten glass. Next, molten glass is dropped from the nozzle tip and formed into droplets (droplet forming) to obtain a glass material. Further, after the molded glass material is polished or molded without being polished, a glass lens glass material 11 having a predetermined shape is obtained. Instead of performing droplet forming, it is also possible to adopt a method in which molten glass is formed into an ingot, the glass material cut out to an appropriate size is polished, and then mold pressing is performed.
続いて、金属ホルダー12の内径よりも小さい外径を有するガラスレンズ硝材11をガラスレンズ硝材11より熱膨張係数の高い金属ホルダー12内に収容後、プレス用治具13を設置する。この状態でガラス転移点付近まで加熱した後、プレス用治具13にてガラスレンズ硝材11をプレスし、冷却することにより、ガラスレンズ硝材11が金属ホルダー12と光軸が一致した状態で固定される。詳細には、加熱工程にて、ガラスレンズ硝材11をプレスすることにより、ガラスレンズ硝材11が軟化変形し金属ホルダー12に密接する。また、プレスによりガラスレンズ硝材11が所定形状のガラスレンズ14となる。その後、ガラスレンズ14と金属ホルダー12が密接した状態で冷却することにより、金属ホルダー12とガラスレンズ14の熱収縮率差によって、金属ホルダー12がガラスレンズ14を締め付け、ガラスレンズ14が固定される。
Subsequently, after the glass lens glass material 11 having an outer diameter smaller than the inner diameter of the metal holder 12 is accommodated in the metal holder 12 having a higher thermal expansion coefficient than the glass lens glass material 11, the pressing jig 13 is installed. After heating to near the glass transition point in this state, the glass lens glass material 11 is pressed with a pressing jig 13 and cooled to fix the glass lens glass material 11 in a state where the optical axis coincides with the metal holder 12. The Specifically, the glass lens glass material 11 is softened and deformed and is brought into close contact with the metal holder 12 by pressing the glass lens glass material 11 in the heating process. Further, the glass lens glass material 11 becomes a glass lens 14 having a predetermined shape by pressing. Thereafter, by cooling the glass lens 14 and the metal holder 12 in close contact with each other, the metal holder 12 clamps the glass lens 14 due to the difference in thermal shrinkage between the metal holder 12 and the glass lens 14, and the glass lens 14 is fixed. .
なお、加熱温度は、内燃機関駆動時にガラスレンズ11が曝される温度より高いことが好ましい。具体的には、加熱温度は、250℃以上、280℃以上、300℃以上、320℃以上、特に340℃以上であることが好ましい。加熱温度が低すぎると、内燃機関駆動時に高温に曝された際に、金属ホルダー12がガラスレンズ11を十分に締め付けられなくなり、ガラスレンズ11が固定されにくくなる。
It should be noted that the heating temperature is preferably higher than the temperature to which the glass lens 11 is exposed when the internal combustion engine is driven. Specifically, the heating temperature is preferably 250 ° C. or higher, 280 ° C. or higher, 300 ° C. or higher, 320 ° C. or higher, particularly 340 ° C. or higher. When the heating temperature is too low, the metal holder 12 cannot sufficiently tighten the glass lens 11 when exposed to a high temperature when the internal combustion engine is driven, and the glass lens 11 is not easily fixed.
ここで、金属ホルダー12の熱膨張係数(30~300℃)は、ガラスレンズ11の熱膨張係数(30~300℃)より1~150×10-7/℃、5~130×10-7/℃、10~120×10-7/℃、20~110×10-7/℃、30~100×10-7/℃、40~90×10-7/℃、特に50~70×10-7/℃高いことが好ましい。熱膨張係数の差が小さすぎると、金属ホルダー12がガラスレンズ11を締め付けにくくなり、ガラスレンズ11が固定されにくくなる。一方、熱膨張係数の差が大きすぎると、ガラスレンズ11にかかる応力が大きくなり、ガラスレンズ11が破損する恐れがある。
Here, the thermal expansion coefficient (30 to 300 ° C.) of the metal holder 12 is 1 to 150 × 10 −7 / ° C. and 5 to 130 × 10 −7 / from the thermal expansion coefficient (30 to 300 ° C.) of the glass lens 11. 10 ° C., 10 to 120 × 10 −7 / ° C., 20 to 110 × 10 −7 / ° C., 30 to 100 × 10 −7 / ° C., 40 to 90 × 10 −7 / ° C., especially 50 to 70 × 10 −7 / C is preferably high. If the difference in thermal expansion coefficient is too small, the metal holder 12 is difficult to fasten the glass lens 11, and the glass lens 11 is difficult to be fixed. On the other hand, if the difference in thermal expansion coefficient is too large, the stress applied to the glass lens 11 is increased, and the glass lens 11 may be damaged.
以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the following examples.
(実施例)
質量%でB2O3 21%、La2O3 24%、ZnO 19%、Gd2O3 9%、SiO2 5%、Li2O 1%、Ta2O5 7%、ZrO2 6%、WO3 2%及びNb2O5 6%になるようにガラス原料を調合し、白金ルツボを用いて1100~1500℃で1~4時間溶融し、ガラス融液を得た。次に、白金製ノズルからガラス融液を成形型に滴下して、プリフォームガラス(ガラス転移点 554℃、軟化点 635℃)を得た。精密加工を施した金型中にプリフォームガラスを投入して軟化点で加熱しながら加圧成形し、金型の表面形状をプリフォームガラスに転写し、前面曲率半径 20mm、後面曲率半径 20mm、高さ 1mmの両凸ガラスレンズ硝材を得た。得られたガラスレンズ硝材(熱膨張係数(30~300℃) 68×10-7/℃)をSUS405(熱膨張係数(30~300℃) 108×10-7/℃)製の金属ホルダー内に収容後、プレス用治具を設置した。この状態で、ガラス転移点まで加熱し、プレス用治具にてガラスレンズ硝材をプレス後、冷却し、鏡筒一体型レンズを得た。得られた鏡筒一体型レンズは、ガラスレンズが金属ホルダー内の所定の位置に固定されていた。 (Example)
By mass%, B 2 O 3 21%, La 2 O 3 24%, ZnO 19%, Gd 2 O 3 9%,SiO 2 5%, Li 2 O 1%, Ta 2 O 5 7%, ZrO 2 6% Glass raw materials were prepared so as to be 2% WO 3 and 6% Nb 2 O 5 and melted at 1100-1500 ° C. for 1-4 hours using a platinum crucible to obtain a glass melt. Next, a glass melt was dropped into a mold from a platinum nozzle to obtain a preform glass (glass transition point 554 ° C., softening point 635 ° C.). Preform glass is put into a precision-processed mold and pressed while heating at the softening point, and the surface shape of the mold is transferred to the preform glass. The front curvature radius is 20 mm, the rear curvature radius is 20 mm, A biconvex glass lens glass material having a height of 1 mm was obtained. The obtained glass lens glass material (thermal expansion coefficient (30 to 300 ° C.) 68 × 10 −7 / ° C.) is placed in a metal holder made of SUS405 (thermal expansion coefficient (30 to 300 ° C.) 108 × 10 −7 / ° C.). After storage, a pressing jig was installed. In this state, the glass lens was heated to the glass transition point, the glass lens glass material was pressed with a pressing jig, and then cooled to obtain a lens-integrated lens. In the obtained lens barrel-integrated lens, the glass lens was fixed at a predetermined position in the metal holder.
質量%でB2O3 21%、La2O3 24%、ZnO 19%、Gd2O3 9%、SiO2 5%、Li2O 1%、Ta2O5 7%、ZrO2 6%、WO3 2%及びNb2O5 6%になるようにガラス原料を調合し、白金ルツボを用いて1100~1500℃で1~4時間溶融し、ガラス融液を得た。次に、白金製ノズルからガラス融液を成形型に滴下して、プリフォームガラス(ガラス転移点 554℃、軟化点 635℃)を得た。精密加工を施した金型中にプリフォームガラスを投入して軟化点で加熱しながら加圧成形し、金型の表面形状をプリフォームガラスに転写し、前面曲率半径 20mm、後面曲率半径 20mm、高さ 1mmの両凸ガラスレンズ硝材を得た。得られたガラスレンズ硝材(熱膨張係数(30~300℃) 68×10-7/℃)をSUS405(熱膨張係数(30~300℃) 108×10-7/℃)製の金属ホルダー内に収容後、プレス用治具を設置した。この状態で、ガラス転移点まで加熱し、プレス用治具にてガラスレンズ硝材をプレス後、冷却し、鏡筒一体型レンズを得た。得られた鏡筒一体型レンズは、ガラスレンズが金属ホルダー内の所定の位置に固定されていた。 (Example)
By mass%, B 2 O 3 21%, La 2 O 3 24%, ZnO 19%, Gd 2 O 3 9%,
1 コリメートレンズ
2 共振器
3 拡散レンズ
4 集光レンズ
5 カバーガラス
10 鏡筒一体型レンズ
11 ガラスレンズ硝材
12 金属ホルダー
13 プレス用治具
14 ガラスレンズ DESCRIPTION OFSYMBOLS 1 Collimating lens 2 Resonator 3 Diffusing lens 4 Condensing lens 5 Cover glass 10 Lens-integrated lens 11 Glass lens glass material 12 Metal holder 13 Jig for pressing 14 Glass lens
2 共振器
3 拡散レンズ
4 集光レンズ
5 カバーガラス
10 鏡筒一体型レンズ
11 ガラスレンズ硝材
12 金属ホルダー
13 プレス用治具
14 ガラスレンズ DESCRIPTION OF
Claims (11)
- 両端に開口部を有する筒状の金属ホルダーと、
金属ホルダー内に金属ホルダーの締付け力により固定されたガラスレンズとを備え、
金属ホルダーの熱膨張係数が、ガラスレンズの熱膨張係数より高いことを特徴とする
点火プラグ用鏡筒一体型レンズ。 A cylindrical metal holder having openings at both ends;
With a glass lens fixed in the metal holder by the tightening force of the metal holder,
A lens barrel-integrated lens for a spark plug, wherein the thermal expansion coefficient of the metal holder is higher than that of the glass lens. - 金属ホルダーの熱膨張係数(30~300℃)がガラスレンズの熱膨張係数(30~300℃)より1~150×10-7/℃高いことを特徴とする請求項1に記載の点火プラグ用鏡筒一体型レンズ。 2. The spark plug according to claim 1, wherein the thermal expansion coefficient (30 to 300 ° C.) of the metal holder is 1 to 150 × 10 −7 / ° C. higher than the thermal expansion coefficient (30 to 300 ° C.) of the glass lens. A lens barrel integrated lens.
- ガラスレンズが、厚み1mmにて、波長400~1500nmの範囲で内部透過率が90%以上であることを特徴とする請求項1又は2に記載の点火プラグ用鏡筒一体型レンズ。 3. The lens barrel-integrated lens for a spark plug according to claim 1, wherein the glass lens has a thickness of 1 mm and an internal transmittance of 90% or more in a wavelength range of 400 to 1500 nm.
- ガラスレンズの歪点が400℃以上であることを特徴とする請求項1~3のいずれかに記載の点火プラグ用鏡筒一体型レンズ。 4. The lens barrel-integrated lens for a spark plug according to claim 1, wherein a distortion point of the glass lens is 400 ° C. or more.
- ガラスレンズの屈折率(nd)が1.45~2.30、アッベ数(νd)が35~45であることを特徴とする請求項1~4のいずれかに記載の点火プラグ用鏡筒一体型レンズ。 5. The spark plug barrel according to claim 1, wherein the glass lens has a refractive index (nd) of 1.45 to 2.30 and an Abbe number (νd) of 35 to 45. Body lens.
- ガラスレンズの△T=(100.5ポイズでの温度-液相温度)が20℃以上であることを特徴とする請求項1~5のいずれかに記載の点火プラグ用鏡筒一体型レンズ。 6. The lens barrel-integrated lens for a spark plug according to claim 1, wherein ΔT = (temperature at 10 0.5 poise−liquidus temperature) of the glass lens is 20 ° C. or more. .
- ガラスレンズがB2O3-ZnO-La2O3-Gd2O3系ガラスからなることを特徴とする請求項1~6のいずれかに記載の点火プラグ用鏡筒一体型レンズ。 7. The lens barrel-integrated lens for a spark plug according to claim 1, wherein the glass lens is made of B 2 O 3 —ZnO—La 2 O 3 —Gd 2 O 3 glass.
- ガラスレンズが、組成として、質量%でB2O3 5~45%、ZnO 10~45%、La2O3 5~25%、Gd2O3 0.5~24%を含有することを特徴とする請求項7に記載の点火プラグ用鏡筒一体型レンズ。 Wherein the glass lens is a composition, B 2 O 3 5 ~ 45 % by mass%, ZnO 10 ~ 45%, La 2 O 3 5 ~ 25%, in that it contains Gd 2 O 3 0.5 ~ 24% The lens barrel-integrated lens for a spark plug according to claim 7.
- La2O3とGd2O3とZnOの含有量が、質量%基準で、0.1≦(La2O3+Gd2O3)/ZnO≦5.0の関係にあることを特徴とする請求項7又は8に記載の点火プラグ用鏡筒一体型レンズ。 The contents of La 2 O 3 , Gd 2 O 3 and ZnO are in a relationship of 0.1 ≦ (La 2 O 3 + Gd 2 O 3 ) /ZnO≦5.0 on a mass% basis. The lens barrel-integrated lens for a spark plug according to claim 7 or 8.
- 金属ホルダー内に、金属ホルダーの内径より小さい外径を有するガラスレンズ硝材を
配置して加熱する工程、
ガラスレンズ硝材が金属ホルダと密接し、且つ、所定のレンズ形状となるように
ガラスレンズ硝材をプレスする工程、
常温まで冷却する工程とを有することを特徴とする
点火プラグ用鏡筒一体型レンズの製造方法。 Placing and heating a glass lens glass material having an outer diameter smaller than the inner diameter of the metal holder in the metal holder;
A step of pressing the glass lens glass material so that the glass lens glass material is in close contact with the metal holder and has a predetermined lens shape;
And a step of cooling to room temperature. A method of manufacturing a lens barrel-integrated lens for a spark plug. - 両端に開口部を有する筒状の金属ホルダーと、
金属ホルダー内に固定されたガラスレンズとを備えることを特徴とする
点火プラグ用鏡筒一体型レンズ。 A cylindrical metal holder having openings at both ends;
A lens barrel-integrated lens for a spark plug, comprising: a glass lens fixed in a metal holder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-211300 | 2016-10-28 | ||
JP2016211300A JP2018071412A (en) | 2016-10-28 | 2016-10-28 | Lens-barrel built-in type lens for ignition plug and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079138A1 true WO2018079138A1 (en) | 2018-05-03 |
Family
ID=62024763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033878 WO2018079138A1 (en) | 2016-10-28 | 2017-09-20 | Lens barrel-integrated lens for ignition plug and production method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018071412A (en) |
WO (1) | WO2018079138A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237023A (en) * | 1990-02-14 | 1991-10-22 | Alps Electric Co Ltd | Production of optical part |
JP2008239474A (en) * | 2007-02-28 | 2008-10-09 | Nippon Electric Glass Co Ltd | Optical glass |
JP2014031741A (en) * | 2012-08-02 | 2014-02-20 | Nippon Soken Inc | Laser ignition device |
-
2016
- 2016-10-28 JP JP2016211300A patent/JP2018071412A/en active Pending
-
2017
- 2017-09-20 WO PCT/JP2017/033878 patent/WO2018079138A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03237023A (en) * | 1990-02-14 | 1991-10-22 | Alps Electric Co Ltd | Production of optical part |
JP2008239474A (en) * | 2007-02-28 | 2008-10-09 | Nippon Electric Glass Co Ltd | Optical glass |
JP2014031741A (en) * | 2012-08-02 | 2014-02-20 | Nippon Soken Inc | Laser ignition device |
Also Published As
Publication number | Publication date |
---|---|
JP2018071412A (en) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8039408B2 (en) | Optical glass, preform for precision press molding, optical element and method of manufacturing thereof | |
JP6136009B2 (en) | Optical glass | |
EP1433757B1 (en) | Optical glass, press-molding glass gob and optical element | |
JP5748184B2 (en) | Optical glass for mold press molding | |
JP6201605B2 (en) | Optical glass | |
KR101251975B1 (en) | Fluorophosphate optical glass | |
JP4522392B2 (en) | Optical glass and optical product using the same | |
JP6603449B2 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP2002012443A (en) | Optical glass and optical product using it | |
CN102153279B (en) | Optical glass for precision molding | |
CN110770183B (en) | Optical glass, preform, and optical element | |
EP2374764A1 (en) | Optical glass, preform for precision press molding, optical element, methods for manufacturing the same, and image pickup device | |
JP4305940B2 (en) | Optical glass for mold press molding | |
US20150259242A1 (en) | Optical Glass, Preform for Precision Press Molding, and Optical Element | |
JP6628021B2 (en) | Optical glass and manufacturing method thereof | |
TWI791483B (en) | Optical glass | |
JP6075714B2 (en) | Optical glass | |
WO2018079138A1 (en) | Lens barrel-integrated lens for ignition plug and production method therefor | |
JP5442952B2 (en) | Fluorophosphate glass, glass material for press molding, optical element blank, optical element, manufacturing method thereof, and manufacturing method of glass molded body | |
JP4663166B2 (en) | Optical glass, precision press molding materials and optical components | |
JP4533069B2 (en) | Phosphate optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof | |
JP7472562B2 (en) | Optical Glass | |
KR102240206B1 (en) | Optical glass and optical element | |
JP2018039729A (en) | Glass, glass blank for press-forming, optical element blank, and optical element | |
JP5318000B2 (en) | Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17865079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17865079 Country of ref document: EP Kind code of ref document: A1 |