WO2018078888A1 - Zoom lens, imaging device, moving body, and system - Google Patents

Zoom lens, imaging device, moving body, and system Download PDF

Info

Publication number
WO2018078888A1
WO2018078888A1 PCT/JP2016/082366 JP2016082366W WO2018078888A1 WO 2018078888 A1 WO2018078888 A1 WO 2018078888A1 JP 2016082366 W JP2016082366 W JP 2016082366W WO 2018078888 A1 WO2018078888 A1 WO 2018078888A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
negative
refractive power
lenses
Prior art date
Application number
PCT/JP2016/082366
Other languages
French (fr)
Japanese (ja)
Inventor
元太郎 入澤
滋彦 松永
篤 大畑
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to PCT/JP2016/082366 priority Critical patent/WO2018078888A1/en
Priority to JP2017559631A priority patent/JP6443567B2/en
Publication of WO2018078888A1 publication Critical patent/WO2018078888A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a zoom lens, an imaging device, a moving body, and a system.
  • Patent Documents 1 and 2 A zoom lens having a negative, positive, negative and positive five-group configuration is known (for example, Patent Documents 1 and 2).
  • the first lens group located closest to the object moves during zooming.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-114625
  • Patent Document 2 Japanese Patent Laid-Open No. 2016-118658
  • a zoom lens according to an aspect of the present invention includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, 4 lens groups and a fifth lens group having positive refractive power.
  • the distance from the first lens group to the image sensor is constant, the distance between the first lens group and the second lens group decreases, and the second lens group and the third lens group The distance increases, the distance between the third lens group and the fourth lens group decreases, and the fifth lens group moves along a locus of a convex arc toward the image sensor.
  • the first lens group includes four lenses having negative, negative, negative, and positive refractive powers in order from the object side, and the Abbe of the three lenses having the negative refractive power included in the first lens group. If the numbers are v1, v2, and v3, respectively, the conditional expression v1> 60 v2> 60 v3> 60 You may be satisfied.
  • the first lens group may include four lenses having negative, negative, negative, and positive refractive power in order from the object side. Of the three lenses having negative refractive power included in the first lens group, at least one of the two lenses on the object side may be an aspherical lens.
  • the second lens group includes at least three convex lenses, and all the convex lenses included in the second lens group satisfy the conditional expression v> 50. You may be satisfied.
  • At least one of the fourth lens group and the fifth lens group may be composed of a single lens or a cemented lens. At least one of the fourth lens group and the fifth lens group may have a focus function.
  • At least one of the fourth lens group and the fifth lens group may be composed of a single lens or a cemented lens.
  • the at least one of the fourth lens group and the fifth lens group may have an anti-vibration function.
  • the second lens group may include at least one single lens that is an aspheric lens having a positive refractive power.
  • the first lens group includes four lenses having negative, negative, negative, and positive refractive power in order from the object side, and the refractive index of the lens having the positive refractive power of the first lens group is n4,
  • the fourth lens group may have a negative refractive power.
  • the fourth lens group may have a positive refractive power.
  • An imaging apparatus includes the zoom lens and an imaging element.
  • the moving body according to one embodiment of the present invention moves with the zoom lens described above.
  • the moving body may be an unmanned aerial vehicle.
  • a system includes the above zoom lens, a support mechanism that supports the zoom lens so as to be displaceable, and a handle that is attached to the support mechanism.
  • FIG. 1 schematically illustrates an example of a mobile system 10 that includes an unmanned aerial vehicle (UAV) 100 and a controller 50.
  • UAV unmanned aerial vehicle
  • FIG. 1 shows a lens configuration of a lens system 300 in a first example.
  • the movement locus of each lens unit at the time of zooming from the wide angle end to the telephoto end is schematically shown. It shows spherical aberration, astigmatism and distortion at the wide angle end. Spherical aberration, astigmatism, and distortion are shown at an intermediate angle of view. Spherical aberration, astigmatism and distortion at the telephoto end are shown.
  • the spherical aberration diagram of the lens system 300 for three wavelengths of light is shown.
  • the lens structure of the lens system 900 in 2nd Example is shown.
  • the movement locus of each lens unit at the time of zooming from the wide angle end to the telephoto end is schematically shown. It shows spherical aberration, astigmatism and distortion at the wide angle end. Spherical aberration, astigmatism, and distortion are shown at an intermediate angle of view. Spherical aberration, astigmatism and distortion at the telephoto end are shown.
  • the spherical aberration figure about the light of 3 wavelengths of the lens system 900 is shown.
  • 2 is an external perspective view showing an example of a stabilizer 800.
  • FIG. 1 schematically shows an example of a mobile system 10 including an unmanned aerial vehicle (UAV) 100 and a controller 50.
  • the UAV 100 includes a UAV main body 101, a gimbal 110, a plurality of imaging devices 230, and an imaging device 220.
  • the imaging device 220 includes a lens device 160 and an imaging unit 140.
  • the UAV 100 is an example of a moving body that includes an imaging device and moves.
  • the moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
  • the UAV main body 101 includes a plurality of rotor blades.
  • the UAV main body 101 flies the UAV 100 by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 101 causes the UAV 100 to fly using four rotary wings.
  • the number of rotor blades is not limited to four.
  • the UAV 100 may be a fixed wing aircraft that does not have rotating blades.
  • the imaging device 230 is an imaging camera that images a subject included in a desired imaging range.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • the imaging device 230 may be fixed to the UAV main body 101.
  • Two imaging devices 230 may be provided on the front surface which is the nose of the UAV 100.
  • Two other imaging devices 230 may be provided on the bottom surface of the UAV 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230.
  • the distance to the subject imaged by the imaging device 230 can be specified by a stereo camera using a plurality of imaging devices 230.
  • the number of imaging devices 230 provided in the UAV 100 is not limited to four.
  • the UAV 100 only needs to include at least one imaging device 230.
  • the UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • the plurality of imaging devices 230 may be collectively referred to simply as the imaging device 230.
  • the controller 50 includes a display unit 54 and an operation unit 52.
  • the operation unit 52 receives an input operation for controlling the attitude of the UAV 100 from the user.
  • the controller 50 transmits a signal for controlling the UAV 100 based on a user operation received by the operation unit 52.
  • the operation unit 52 receives an operation for changing the magnification of the lens device 160.
  • the controller 50 transmits a signal instructing the change of the magnification to the UAV 100.
  • the controller 50 receives an image captured by at least one of the imaging device 230 and the imaging device 220.
  • the display unit 54 displays an image received by the controller 50.
  • the display unit 54 may be a touch panel.
  • the controller 50 may accept an input operation from the user through the display unit 54.
  • the display unit 54 may accept a user operation or the like in which the user specifies the position of the subject to be imaged by the imaging device 220.
  • the imaging unit 140 generates and records image data of an optical image formed by the lens device 160.
  • the lens device 160 may be provided integrally with the imaging unit 140.
  • the lens device 160 may be a so-called interchangeable lens.
  • the lens device 160 may be provided so as to be detachable from the imaging unit 140.
  • the gimbal 110 has a support mechanism that movably supports the imaging device 220.
  • the imaging device 220 is attached to the UAV main body 101 via the gimbal 110.
  • the gimbal 110 supports the imaging device 220 so as to be rotatable about the pitch axis.
  • the gimbal 110 supports the imaging device 220 so as to be rotatable around a roll axis.
  • the gimbal 110 supports the imaging device 220 so as to be rotatable about the yaw axis.
  • the gimbal 110 may support the imaging device 220 rotatably around at least one of a pitch axis, a roll axis, and a yaw axis.
  • the gimbal 110 may support the imaging device 220 rotatably about each of the pitch axis, the roll axis, and the yaw axis.
  • the gimbal 110 may hold the imaging unit 140.
  • the gimbal 110 may hold the lens device 160.
  • the gimbal 110 may change the imaging direction of the imaging device 220 by rotating the imaging unit 140 and the lens device 160 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • FIG. 2 shows an example of functional blocks of the UAV100.
  • the UAV 100 includes an interface 102, a control unit 104, a memory 106, a gimbal 110, an imaging unit 140, and a lens device 160.
  • the interface 102 communicates with the controller 50.
  • the interface 102 receives various commands from the controller 50.
  • the control unit 104 controls the flight of the UAV 100 according to the command received from the controller 50.
  • the control unit 104 controls the gimbal 110, the imaging unit 140, and the lens device 160.
  • the control unit 104 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the memory 106 stores a program necessary for the control unit 104 to control the gimbal 110, the imaging unit 140, and the lens device 160.
  • the memory 106 may be a computer-readable recording medium.
  • the memory 106 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 106 may be provided in the housing of the UAV 100. It may be provided so as to be removable from the housing of the UAV 100.
  • the gimbal 110 includes a control unit 112, a driver 114, a driver 116, a driver 118, a drive unit 124, a drive unit 126, a drive unit 128, and a support mechanism 130.
  • the drive unit 124, the drive unit 126, and the drive unit 128 may be motors.
  • the support mechanism 130 supports the imaging device 220.
  • the support mechanism 130 movably supports the imaging direction of the imaging device 220.
  • the support mechanism 130 supports the imaging unit 140 and the lens device 160 so as to be rotatable about the yaw axis, the pitch axis, and the roll axis.
  • the support mechanism 130 includes a rotation mechanism 134, a rotation mechanism 136, and a rotation mechanism 138.
  • the rotation mechanism 134 rotates the imaging unit 140 and the lens device 160 around the yaw axis using the drive unit 124.
  • the rotation mechanism 136 rotates the imaging unit 140 and the lens device 160 around the pitch axis using the driving unit 126.
  • the rotation mechanism 138 uses the drive unit 128 to rotate the imaging unit 140 and the lens device 160 around the roll axis.
  • the control unit 112 outputs an operation command indicating each rotation angle to the driver 114, the driver 116, and the driver 118 according to the operation command of the gimbal 110 from the control unit 104.
  • the driver 114, the driver 116, and the driver 118 drive the drive unit 124, the drive unit 126, and the drive unit 128 in accordance with an operation command that indicates a rotation angle.
  • the rotation mechanism 134, the rotation mechanism 136, and the rotation mechanism 138 are driven and rotated by the drive unit 124, the drive unit 126, and the drive unit 128, respectively, and change the postures of the imaging unit 140 and the lens device 160.
  • the imaging unit 140 captures an image with light that has passed through the lens system 300.
  • the imaging unit 140 includes a control unit 222, an imaging element 221, and a memory 223.
  • the control unit 222 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the control unit 222 controls the imaging unit 140 and the lens device 160 in accordance with an operation command for the imaging unit 140 and the lens device 160 from the control unit 104. Based on the signal received from the controller 50, the controller 222 outputs to the lens device 160 a control command that instructs the lens device 160 to change the magnification.
  • the memory 223 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 223 may be provided inside the housing of the imaging unit 140. It may be provided so as to be removable from the housing of the imaging unit 140.
  • the imaging element 221 generates image data of an optical image that is held inside the housing of the imaging unit 140 and is formed via the lens device 160, and outputs the image data to the control unit 222.
  • the control unit 222 stores the image data output from the image sensor 221 in the memory 223.
  • the control unit 222 may output the image data to the memory 106 via the control unit 104 and store it.
  • the lens device 160 is a zoom lens.
  • the lens device 160 is a full length fixed zoom lens.
  • the lens device 160 is a five-group zoom lens.
  • the lens device 160 includes a control unit 162, a memory 163, a drive mechanism 161, and a lens system 300.
  • the lens system 300 includes a first lens group 301, a second lens group 302, a third lens group 303, a fourth lens group 304, and a fifth lens group 305 in order from the object side.
  • the first lens group 301 does not move in the optical axis direction of the lens system 300 when the lens device 160 is zoomed.
  • the first lens group 301 may be a lens fixed in the optical axis direction of the lens system 300.
  • the lens group located closest to the object side that is involved in the image plane movement at the time of zooming does not move at the time of zooming of the lens device 160. Therefore, it is difficult for focus shift, image shift, and the like to occur during zooming.
  • the optical axis of the lens system 300 may be simply referred to as “optical axis”.
  • the “lens group” refers to a group of one or more lenses.
  • the “lens group” may be composed of a single lens.
  • the “lens group” is a concept including a lens composed of a single lens.
  • the control unit 162 moves at least one of the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 along the optical axis in accordance with a control command from the control unit 222.
  • the second control unit 162 moves the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 along the optical axis during zooming. This prevents the movement of the focus position during zooming.
  • An image formed by the lens system 300 of the lens device 160 is captured by the imaging unit 140.
  • the driving mechanism 161 drives the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305.
  • the drive mechanism 161 includes, for example, an actuator and a holding member that holds the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305.
  • Driving pulses are supplied from the control unit 162 to the actuator.
  • the actuator is displaced by a driving amount corresponding to the supplied pulse.
  • the holding member is displaced according to the displacement of the actuator, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are displaced.
  • the lens device 160 may be provided integrally with the imaging unit 140.
  • the lens device 160 may be a so-called interchangeable lens.
  • the lens device 160 may be provided so as to be detachable from the imaging unit 140.
  • the imaging device 230 includes a control unit 232, a control unit 234, an imaging device 231, a memory 233, and a lens 235.
  • the control unit 232 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the control unit 232 controls the image sensor 231 in accordance with an operation command for the image sensor 231 from the control unit 104.
  • the control unit 234 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the control unit 234 controls the focal length of the lens 235 in accordance with an operation command for the lens 235 from the control unit 104.
  • the control unit 234 may control the focal point of the lens 235 in accordance with an operation command for the lens 235.
  • the control unit 234 may control a diaphragm included in the lens 235 in accordance with an operation command for the lens 235.
  • the memory 233 may be a computer-readable recording medium.
  • the memory 233 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the image sensor 231 generates image data of an optical image formed through the lens 235 and outputs the image data to the control unit 232.
  • the control unit 232 stores the image data output from the image sensor 231 in the memory 233.
  • the UAV 100 includes the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162
  • any one of the control units 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the process executed by a plurality of the control units 162 may be executed by any one control unit.
  • Processing executed by the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162 may be executed by one control unit.
  • the UAV 100 includes the memory 106, the memory 223, and the memory 233 will be described.
  • Information stored in at least one of the memory 106, the memory 223, and the memory 233 may be stored in one or more other memories of the memory 106, the memory 223, and the memory 233.
  • the first lens group 301 has negative refractive power.
  • the second lens group 302 has a positive refractive power.
  • the third lens group 303 has negative refractive power.
  • the fifth lens group 305 has positive refractive power.
  • the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are, from the object side, the first lens group 301, the second lens group 302, and the third lens.
  • a group 303, a fourth lens group 304, and a fifth lens group 305 are provided in this order.
  • the distance from the first lens group 301 to the image sensor 221 is constant during zooming from the wide-angle end to the telephoto end.
  • the distance between the first lens group 301 and the second lens group 302 decreases.
  • the distance between the second lens group 302 and the third lens group 303 increases.
  • the distance between the third lens group 303 and the fourth lens group 304 decreases.
  • the fifth lens group 305 moves along a locus of a convex arc toward the image sensor 221.
  • the movement along the locus of the convex arc means, for example, that the fifth lens group 305 moves along a locus that moves away from the image sensor 221 after approaching the image sensor 221.
  • the first lens group 301 does not move with respect to the image sensor 221 at the time of zooming, and moves along a locus that leaves the image sensor 221 after the fifth lens group 305 approaches the image sensor 221 side. Accordingly, it is possible to correct the image plane deviation due to the movement of the second lens group 302 mainly responsible for zooming.
  • the lens group drive mechanism can be simplified. Further, the eccentricity of the first lens group 301 can be suppressed when disturbance such as vibration occurs. For this reason, it is possible to suppress defocusing and resolution degradation during vibration.
  • the image pickup apparatus 220 can be reduced in size and performance.
  • the distance between the fourth lens group 304 and the fifth lens group 305 increases during zooming from the wide-angle end to the telephoto end. Note that, at the time of zooming from the wide-angle end to the telephoto end, the distance between the fourth lens group 304 and the fifth lens group 305 increases between the angle of view at the wide-angle end and a predetermined angle of view. On the other hand, the distance between the fourth lens group 304 and the fifth lens group 305 can be constant or decreased between the angle of view larger than the predetermined angle of view and the angle of view at the telephoto end.
  • the first lens group 301 may include four lenses having negative, negative, negative, and positive refractive power in order from the object side.
  • the Abbe numbers of the three lenses having negative refractive power included in the first lens group 301 are v1, v2, and v3, the following three conditional expressions v1> 60 (conditional expression 1) v2> 60 (conditional expression 2) v3> 60 (conditional expression 3) Is preferably satisfied.
  • the overall negative refractive power of the first lens group 301 can be increased. Further, the overall length of the lens system 300 can be shortened. In addition, imaging characteristics can be improved. Since the three lenses having negative refractive power share the negative power of the first lens group 301, a lens having negative refractive power can be formed using a low dispersion material. Thereby, chromatic aberration can be suppressed more strongly.
  • Conditional expression ⁇ 1.8 ⁇ f1 / fw ⁇ 1.1 (conditional expression 4) where f1 is the focal length of the first lens group 301 and fw is the focal length of the entire system (lens system 300) at the wide angle end. Is preferably satisfied.
  • the lens system 300 can be reduced in size by satisfying the lower limit of conditional expression 4, that is, by making the refractive power of the first lens group 301 higher than a predetermined lower limit threshold.
  • the upper limit of conditional expression 4 that is, by making the refractive power of the first lens group 301 not higher than a predetermined upper limit threshold, it is possible to improve the imaging characteristics.
  • conditional expression 1.0 ⁇ f2 / fw ⁇ 1.8 (conditional expression 5) Is preferably satisfied.
  • the lens system 300 can be reduced in size by satisfying the upper limit of conditional expression 5, that is, by making the refractive power of the second lens group 302 higher than a predetermined lower limit threshold.
  • the lower limit of Conditional Expression 5 that is, by making the refractive power of the second lens group 302 not higher than a predetermined upper limit threshold, it is possible to improve imaging characteristics.
  • the second lens group 302 may include at least three convex lenses. It is preferable that the Abbe number v of all convex lenses included in the second lens group 302 is greater than 50. By setting all Abbe numbers of the convex lenses of the second lens group 302 to 50 or more, chromatic aberration can be suppressed while increasing the refractive power of the second lens group 302. Thereby, the lens system 300 can be reduced in size while improving the imaging characteristics.
  • the fourth lens group 304 and the fifth lens group 305 may be composed of a single lens or a cemented lens. At least one of the fourth lens group 304 and the fifth lens group 305 may have a focus function. At least one of the fourth lens group 304 and the fifth lens group 305 may have an anti-vibration function.
  • the lens driving mechanism can be simplified by using a single lens or a cemented lens as the lens group responsible for the focus function or the image stabilization function.
  • the lens driving element can be reduced in weight. As a result, the entire lens system 300 is reduced in size.
  • At least one of the two lenses on the object side is preferably an aspheric lens.
  • the lens on the object side has a large difference in height between the axial ray and the peripheral ray.
  • at least one of the two lenses on the object side is aspherical, so that distortion and field curvature can be effectively corrected.
  • the second lens group 302 preferably includes at least one single lens that is an aspheric lens having a positive refractive power. It is desirable that the most object side lens included in the second lens group 302 is a single aspherical lens having positive refractive power. In order to increase the positive refractive power of the second lens group 302, it is necessary to increase the refractive power of the positive lens constituting the second lens group 302. The total length of the lens system 300 can be shortened by increasing the positive refractive power of the lens on the object side of the second lens group 302. In addition, aberration can be effectively corrected by using an aspherical surface for a lens having strong power.
  • FIG. 3 shows the lens configuration of the lens system 300 in the first embodiment, together with the image sensor 221.
  • FIG. 3 shows the positions of the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 at the wide-angle end, the intermediate field angle, and the telephoto end, respectively.
  • STO indicates an aperture.
  • the fourth lens group 304 has negative refractive power. That is, the lens system 300 includes five groups of negative positive negative negative positive.
  • a plurality of surfaces of the lens system 300 are identified by a surface number i.
  • the first surface of the lens as viewed from the object side is the first surface, and thereafter the surface numbers are counted up in the order in which the light passes through the surface.
  • “Di” indicates an interval on the optical axis between the i-th surface and the (i + 1) -th surface.
  • F indicates the focal length.
  • Fno indicates an F number.
  • indicates a half angle of view.
  • R indicates a radius of curvature. In the radius of curvature, “INF” indicates a plane.
  • N represents a refractive index.
  • Table 1 shows lens data of lenses included in the lens system 300 in the first example.
  • Di is shown in association with the surface number i.
  • a surface numbered with * is a surface having an aspherical shape.
  • Table 2 shows the surface number of the surface having the aspheric shape and the aspheric parameter.
  • represents a conic constant (conic constant).
  • A”, “B”, “C”, and “D” are fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients, respectively.
  • Ei represents an exponential expression with 10 as the base. That is, “ Ei ” represents “10 ⁇ i ”. For example, “6.04845E-06” represents “6.04845 ⁇ 10 ⁇ 6 ”.
  • the paraxial curvature is the reciprocal of the radius of curvature.
  • Table 3 shows the focal length, F number, and half angle of view of the lens system 300 at each of the wide angle end, the intermediate angle of view, and the telephoto end.
  • the imaging element 221 can change the surface distance D31.
  • Table 4 shows the surface spacing at each of the wide-angle end, the intermediate field angle, and the telephoto end.
  • Table 5 shows focal lengths of the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305.
  • FIG. 4 shows that the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 move during zooming of the lens system 300 from the wide-angle end to the telephoto end.
  • a locus is schematically shown.
  • the arrow indicates that the lens system 300 moves upon zooming.
  • the distance from the first lens group 301 to the image sensor 221 is constant during zooming.
  • the first lens group 301 has four lenses of a negative lens L1, a negative lens L2, a negative lens L3, and a positive lens L4 from the object side.
  • the negative lens L1 is an aspheric lens.
  • two lenses disposed on the object side are preferably concave lenses, and at least one concave lens is preferably an aspheric lens. More preferably, a concave lens is disposed on the object side.
  • the negative power of the first lens group 301 is shared by the three negative lenses L1 to L3, the negative power of the first lens group 301 can be increased while suppressing aberrations. Further, the overall length of the lens system 300 can be shortened.
  • the refractive power and the Abbe number of the positive lens L4 of the first lens group 301 satisfy n> 1.9 and v ⁇ 35.
  • the Abbe numbers of the negative lenses L1 to L3 in the first lens group 301 are all preferably v> 60.
  • the Abbe numbers of the negative lens L2 and the negative lens L3 are v> 70.
  • at least one Abbe number among the three negative lenses L1 to L3 constituting the first lens group 301 is v> 70.
  • the second lens group 302 includes negative and positive cemented lenses L5 and L6 and positive single lenses L7 and L8 from the object side. It is desirable that at least one of the lenses constituting the second lens group 302 is a cemented lens.
  • the Abbe number of the lens L6 constituting the cemented lens is preferably v> 65.
  • the third lens group 303 includes a stop STO, a single lens L10, and negative and positive cemented lenses L11 and L12.
  • the fourth lens group 304 includes negative and positive cemented lenses L13 and L14, positive and negative cemented lenses L15 and L16, and a single lens L17. Both the third lens group 303 and the fourth lens group 304 preferably include at least one or more cemented lenses. By using at least one of the lenses included in the third lens group 303 and the fourth lens group 304 as a cemented lens, axial chromatic aberration can be favorably corrected.
  • the fifth lens group 305 is a single lens.
  • the fifth lens group 305 may be a cemented lens.
  • the fifth lens group 305 functions as a focus lens.
  • the fifth lens group 305 having the focus function as a single lens or a cemented lens, it is possible to reduce the weight load on the drive mechanism of the fifth lens group 305.
  • the holding frame that holds the fifth lens group 305 can be reduced in size.
  • the second lens group 302 moves in one direction from the image plane side to the object side.
  • the first lens group 301 and the second lens group 302 are responsible for the main zooming component
  • the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are sub-magnifying components. Take on.
  • the fifth lens group 305 is also responsible for correcting image plane fluctuations accompanying zooming.
  • the third lens group 303 moves from the image plane side to the object side during zooming from the wide angle end to the telephoto end. At this time, the third lens group 303 moves so as to be spaced from the second lens group 302.
  • the fourth lens group 304 moves from the image plane side to the object side. At this time, the fourth lens group 304 moves so that the distance from the third lens group 303 approaches.
  • the fifth lens group 305 moves toward the image sensor 221 along a convex movement locus.
  • the movement of the lens group in a convex movement locus toward the image sensor 221 means, for example, that the horizontal axis is the angle of view or the focal length, the vertical axis is the amount of displacement of the lens group in the optical axis direction, and the direction toward the image sensor 221 is This means that when the movement locus of the lens group is drawn as the positive direction of the vertical axis, the movement locus of the lens group becomes convex.
  • the distance between the fifth lens group 305 and the fourth lens group 304 increases from the wide angle end until a predetermined angle of view is reached.
  • the distance between the fifth lens group 305 and the fourth lens group 304 can be narrowed until reaching the telephoto end from a predetermined angle of view.
  • FIG. 5 shows spherical aberration, astigmatism and distortion at the wide angle end.
  • FIG. 6 shows spherical aberration, astigmatism and distortion at an intermediate angle of view.
  • FIG. 7 shows spherical aberration, astigmatism and distortion at the telephoto end.
  • the solid line indicates the value of the d-line (587.56 nm), and the broken line indicates the value of the g-line (435.84 nm).
  • the solid line indicates the value of the sagittal image plane of the d line, and the broken line indicates the value of the meridional image plane of the d line.
  • the distortion diagrams shown in FIGS. 5 to 7 show values for the d-line. From the respective aberration diagrams, it can be seen that the lens system 300 is excellent in various aberrations and has excellent imaging performance.
  • FIG. 8 shows a spherical aberration diagram of the lens system 300 for light of three wavelengths.
  • the thick line indicates the value of c-line (656.28 nm)
  • the solid line indicates the value of d-line (587.56 nm)
  • the broken line indicates the value of g-line (435.84 nm).
  • the spherical aberration is within a range of 0.1 mm or less for each wavelength of light. Thereby, it can be seen that the axial chromatic aberration is corrected well.
  • FIG. 9 shows the lens configuration of the lens system 900 in the second embodiment together with the image sensor 221.
  • the lens system 900 includes a first lens group 901, a second lens group 902, a third lens group 903, a fourth lens group 904, and a fifth lens group 905.
  • the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 are respectively the first lens group 301, the second lens group 302, and the like in the lens system 300. This corresponds to the third lens group 303, the fourth lens group 304, and the fifth lens group 305.
  • symbols and the like used in the description of the lens system 900 have the same meanings as symbols and the like described in relation to the lens system 300 unless otherwise specified.
  • the fourth lens group 904 has positive refractive power. That is, the lens system 900 includes five groups of negative positive negative positive positive.
  • FIG. 9 shows the positions of the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 at the wide-angle end, the intermediate field angle, and the telephoto end, respectively. It is shown.
  • Table 6 shows lens data of lenses included in the lens system 900.
  • surfaces with * in the surface number are surfaces having an aspherical shape.
  • Table 7 shows surfaces having an aspheric shape in the lens system 900 and aspheric parameters. “A”, “B”, “C”, “D”, and “E” are fourth-order, sixth-order, eighth-order, tenth-order, and twelfth-order aspheric coefficients, respectively.
  • Table 8 shows the focal length, F-number, and half angle of view of the lens system 900 at the wide angle end, the intermediate field angle, and the telephoto end, respectively.
  • the surface distance D31 between the imaging element 221 can change.
  • Table 9 shows the focal length and the surface interval at the wide angle end, the intermediate field angle, and the telephoto end, respectively.
  • Table 10 shows focal lengths of the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905.
  • FIG. 10 shows that the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 move during zooming of the lens system 900 from the wide-angle end to the telephoto end.
  • a locus is schematically shown.
  • the arrow indicates that the lens system 900 moves upon zooming.
  • the distance from the first lens group 901 to the image sensor 221 is constant at the time of zooming.
  • the first lens group 901 has four lenses, a negative lens L1, a negative lens L2, a negative lens L3, and a positive lens L4, from the object side.
  • Li is a symbol for indicating that the lens is the i-th optical element from the object side.
  • the same symbol as the symbol Li assigned to the lens in the first embodiment does not mean that it is the same lens.
  • the first lens group 901 By configuring the first lens group 901 to include the four lenses of the negative lens L1, the negative lens L2, the negative lens L3, and the positive lens L4, off-axis rays on the wide-angle side where the incident angle is particularly large can be moderated. Can be bent. Therefore, it is possible to satisfactorily correct off-axis aberrations such as distortion, coma, and field curvature. In addition, the spherical aberration on the telephoto side can be corrected well. Further, since the negative power of the first lens group 901 is shared by the three negative lenses L1 to L3, the negative power of the first lens group 901 can be increased while suppressing aberrations. Further, the overall length of the lens system 900 can be shortened.
  • the negative lens L1 is an aspheric lens.
  • two lenses disposed on the object side are preferably concave lenses, and at least one concave lens is preferably an aspherical lens. More preferably, a concave lens is disposed on the object side.
  • the refractive power and Abbe number of the positive lens L4 of the first lens group 901 satisfy n> 1.9 and v ⁇ 35.
  • the Abbe numbers of the negative lenses L1 to L3 in the first lens group 901 are all preferably v> 60.
  • the Abbe numbers of the negative lens L2 and the negative lens L3 are v> 70.
  • at least one Abbe number among the three negative lenses L1 to L3 constituting the first lens group 901 is v> 70.
  • the second lens group 902 includes a positive single lens L5, negative positive cemented lenses L6 and L7, and a positive single lens L8 from the object side. It is desirable that at least one lens among the lenses constituting the second lens group 902 be a cemented lens. It is preferable that the Abbe number v of all convex lenses included in the second lens group 902 is greater than 50. By setting the Abbe numbers of the convex lenses of the second lens group 902 to 50 or more, chromatic aberration can be suppressed while increasing the refractive power of the second lens group 902. Thereby, the lens system 900 can be reduced in size while improving the imaging characteristics.
  • the third lens group 903 includes a stop STO, a negative lens L10, and negative positive cemented lenses L11 and L12.
  • the fourth lens group 904 includes a positive single lens L13, negative and positive cemented lenses L14 and L15, and negative and positive cemented lenses L16 and L17. It is desirable that both the third lens group 903 and the fourth lens group 904 include at least one cemented lens. By using at least one of the lenses included in the third lens group 903 and the fourth lens group 904 as a cemented lens, axial chromatic aberration can be favorably corrected.
  • the fifth lens group 905 is a single lens.
  • the fifth lens group 905 may be a cemented lens.
  • the fifth lens group 905 functions as a focus lens.
  • the fifth lens group 905 having a focus function as a single lens or a cemented lens, it is possible to reduce the weight load on the drive mechanism of the fifth lens group 905.
  • the holding frame that holds the fifth lens group 905 can be reduced in size.
  • the second lens group 902 moves in one direction from the image plane side to the object side.
  • the first lens group 901 and the second lens group 902 are responsible for the main zooming component
  • the third lens group 903, the fourth lens group 904, and the fifth lens group 905 are the sub-magnifying components. Take on.
  • the fifth lens group 905 is also responsible for correcting image plane variation accompanying zooming.
  • the third lens group 903 moves from the image plane side to the object side during zooming from the wide angle end to the telephoto end. At this time, the third lens group 903 moves so as to be spaced from the second lens group 902.
  • the fourth lens group 904 moves from the image plane side to the object side. At this time, the fourth lens group 904 moves so that the distance from the third lens group 903 approaches.
  • the fifth lens group 905 moves along a convex movement locus toward the image sensor 221. The distance between the fifth lens group 905 and the fourth lens group 904 increases from the wide angle end until a predetermined angle of view is reached. The interval between the fifth lens group 905 and the fourth lens group 904 can be narrowed until reaching the telephoto end from a predetermined angle of view.
  • FIG. 11 shows spherical aberration, astigmatism and distortion at the wide angle end.
  • FIG. 12 shows spherical aberration, astigmatism and distortion at an intermediate angle of view.
  • FIG. 13 shows spherical aberration, astigmatism and distortion at the telephoto end.
  • the solid line shows the value of d-line (587.56 nm), and the broken line shows the value of g-line (435.84 nm).
  • the solid line indicates the value of the sagittal image plane of the d line, and the broken line indicates the value of the meridional image plane of the d line.
  • the distortion diagrams shown in FIGS. 11 to 13 show values for the d-line. From each aberration diagram, it can be seen that the lens system 900 has excellent imaging performance with various aberrations corrected well.
  • FIG. 14 is a spherical aberration diagram for the three-wavelength light of the lens system 900.
  • the thick line indicates the value of c-line (656.28 nm)
  • the solid line indicates the value of d-line (587.56 nm)
  • the broken line indicates the value of g-line (435.84 nm).
  • the spherical aberration is within a sufficiently small range for each wavelength of light. It can be seen that the longitudinal chromatic aberration is corrected well.
  • Table 11 collectively shows numerical values according to the conditional expressions of the first and second embodiments.
  • the numerical values associated with Conditional Expression 1, Conditional Expression 2, and Conditional Expression 3 indicate the Abbe numbers of the negative lens L1, the negative lens L2, and the negative lens L3, respectively.
  • the numerical value associated with conditional expression 4 indicates the value of f1 / fw.
  • the numerical value associated with conditional expression 5 indicates the value of f2 / fw.
  • the numerical value associated with conditional expression 6 indicates the refractive index.
  • the numerical value associated with conditional expression 7 indicates the Abbe number.
  • the lens system 300 and the lens system 900 it is possible to provide a zoom lens that does not move the lens located closest to the object side during zooming. Thereby, it is possible to suppress the influence of a manufacturing error, a driving error, and the like regarding the lens located closest to the object side. For example, it is possible to make it difficult for focus shift, image shift, and the like to occur during zooming.
  • FIG. 15 is an external perspective view showing an example of the stabilizer 800.
  • the stabilizer 800 is another example of the moving body.
  • the camera unit 813 included in the stabilizer 800 may include an imaging device having the same configuration as the imaging device 220.
  • the camera unit 813 may include a lens device having the same configuration as the lens device 160.
  • the stabilizer 800 includes a camera unit 813, a gimbal 820, and a handle portion 803.
  • the gimbal 820 supports the camera unit 813 in a rotatable manner.
  • the gimbal 820 has a pan axis 809, a roll axis 810, and a tilt axis 811.
  • the gimbal 820 supports the camera unit 813 so as to be rotatable about a pan axis 809, a roll axis 810, and a tilt axis 811.
  • the gimbal 820 is an example of a support mechanism.
  • the camera unit 813 is an example of an imaging device.
  • the camera unit 813 has a slot 812 for inserting a memory.
  • the gimbal 820 is fixed to the handle portion 803 via the holder 807.
  • the handle portion 803 has various buttons for operating the gimbal 820 and the camera unit 813.
  • the handle portion 803 includes a shutter button 804, a recording button 805, and an operation button 806. By pressing the shutter button 804, a still image can be recorded by the camera unit 813.
  • the recording button 805 is pressed, a moving image can be recorded by the camera unit 813.
  • the device holder 801 is fixed to the handle portion 803.
  • the device holder 801 holds a mobile device 802 such as a smartphone.
  • the mobile device 802 is communicably connected to the stabilizer 800 via a wireless network such as WiFi. Thereby, an image captured by the camera unit 813 can be displayed on the screen of the mobile device 802.
  • the UAV 100 and the stabilizer 800 are taken up as an example of the moving body.
  • An imaging device having a configuration similar to that of the imaging device 220 may be attached to a moving body other than the UAV 100 and the stabilizer.
  • the imaging device attached to the moving body has been described.
  • the imaging device having the same configuration as that of the imaging device 220 is not limited to the imaging device attached to the moving body.
  • a configuration similar to that of the imaging device 220 can be applied to a non-lens interchangeable camera such as a so-called compact digital camera.
  • the same configuration as the lens device 160 can be applied to an interchangeable lens of a lens interchangeable camera such as a single-lens reflex camera.
  • the same configuration as the lens device 160 can be applied to the configurations of various lens devices for imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

The zoom lens according to the present invention is provided with, in order from an object side, a first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, a fourth lens group, and a fifth lens group having positive refractive power, and during power variation from a wide-angle end to a telephoto end, the spacing from the first lens group to an imaging element being constant, the spacing between the first lens group and the second lens group decreasing, the spacing between the second lens group and the third lens group increasing, the spacing between the third lens group and the fourth lens group decreasing, and the fifth lens group moving toward the imaging element in a convex arc trajectory.

Description

ズームレンズ、撮像装置、移動体及びシステムZoom lens, imaging device, moving object, and system
 本発明は、ズームレンズ、撮像装置、移動体及びシステムに関する。 The present invention relates to a zoom lens, an imaging device, a moving body, and a system.
 負正負負正の5群構成のズームレンズが知られている(例えば、特許文献1、2)。当該ズームレンズにおいては、変倍時に、最も物体側に位置する第1レンズ群が移動する。
 特許文献1 特開2015-114625号公報
 特許文献2 特開2016-118658号公報
A zoom lens having a negative, positive, negative and positive five-group configuration is known (for example, Patent Documents 1 and 2). In the zoom lens, the first lens group located closest to the object moves during zooming.
Patent Document 1 Japanese Patent Laid-Open No. 2015-114625 Patent Document 2 Japanese Patent Laid-Open No. 2016-118658
解決しようとする課題Challenges to be solved
 第1レンズ群を変倍時に移動させるズームレンズにおいては、第1レンズ群の製造誤差、取り付け誤差、駆動誤差等の影響により、変倍時にピントずれや像のずれ等が生じ易い。 In a zoom lens that moves the first lens unit at the time of zooming, due to the influence of manufacturing errors, mounting errors, driving errors, etc. of the first lens unit, focus shift and image shift are likely to occur at zooming.
一般的開示General disclosure
 本発明の一態様に係るズームレンズは、物体側より順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群と、第4レンズ群と、正屈折力を有する第5レンズ群とを備える。広角端から望遠端への変倍時に第1レンズ群から撮像素子までの間隔が一定で、第1レンズ群と第2レンズ群との間隔が減少し、第2レンズ群と第3レンズ群の間隔が増加し、第3レンズ群と第4レンズ群の間隔が減少し、第5レンズ群が撮像素子に向けて凸の弧の軌跡で移動する。 A zoom lens according to an aspect of the present invention includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, 4 lens groups and a fifth lens group having positive refractive power. At the time of zooming from the wide-angle end to the telephoto end, the distance from the first lens group to the image sensor is constant, the distance between the first lens group and the second lens group decreases, and the second lens group and the third lens group The distance increases, the distance between the third lens group and the fourth lens group decreases, and the fifth lens group moves along a locus of a convex arc toward the image sensor.
 前記第1レンズ群の焦点距離をf1、全系の広角端の焦点距離をfwとすると、条件式
 -1.8<f1/fw<-1.1
 を満足してよい。
Conditional expression −1.8 <f1 / fw <−1.1 where f1 is the focal length of the first lens unit and fw is the focal length of the entire system at the wide angle end.
You may be satisfied.
 第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含み、前記第1レンズ群に含まれる前記負の屈折力を有する3つのレンズのアッベ数をそれぞれv1、v2及びv3とすると、条件式
 v1>60
 v2>60
 v3>60
 を満足してよい。
The first lens group includes four lenses having negative, negative, negative, and positive refractive powers in order from the object side, and the Abbe of the three lenses having the negative refractive power included in the first lens group. If the numbers are v1, v2, and v3, respectively, the conditional expression v1> 60
v2> 60
v3> 60
You may be satisfied.
 第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含んでよい。第1レンズ群に含まれる前記負の屈折力を有する3つのレンズのうち物体側の2つのレンズの少なくとも1つが、非球面レンズであってよい。 The first lens group may include four lenses having negative, negative, negative, and positive refractive power in order from the object side. Of the three lenses having negative refractive power included in the first lens group, at least one of the two lenses on the object side may be an aspherical lens.
 第2レンズ群は、少なくとも3つの凸レンズを含み、前記第2レンズ群が含む全ての前記凸レンズが条件式
 v>50
 を満足してよい。前記第2レンズ群の焦点距離をf2とすると、条件式
 1.0<f2/fw<1.8
 を満足してよい。
The second lens group includes at least three convex lenses, and all the convex lenses included in the second lens group satisfy the conditional expression v> 50.
You may be satisfied. Conditional expression 1.0 <f2 / fw <1.8, where f2 is the focal length of the second lens group.
You may be satisfied.
 第4レンズ群及び前記第5レンズ群の少なくとも一方は、単一のレンズ又は接合レンズから構成されてよい。第4レンズ群及び前記第5レンズ群の前記少なくとも一方がフォーカス機能を担ってよい。 At least one of the fourth lens group and the fifth lens group may be composed of a single lens or a cemented lens. At least one of the fourth lens group and the fifth lens group may have a focus function.
 第4レンズ群及び前記第5レンズ群の少なくとも一方は、単一のレンズ又は接合レンズから構成されてよい。第4レンズ群及び前記第5レンズ群の前記少なくとも一方が防振機能を担ってよい。 At least one of the fourth lens group and the fifth lens group may be composed of a single lens or a cemented lens. The at least one of the fourth lens group and the fifth lens group may have an anti-vibration function.
 第2レンズ群は、正の屈折力を有する非球面レンズである少なくとも1つの単レンズを含んでよい。 The second lens group may include at least one single lens that is an aspheric lens having a positive refractive power.
 第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含み、前記第1レンズ群の前記正の屈折力を有するレンズの屈折率をn4、アッベ数をv4とすると、条件式
 n4>1.9
 v4<35
 を満足してよい。
The first lens group includes four lenses having negative, negative, negative, and positive refractive power in order from the object side, and the refractive index of the lens having the positive refractive power of the first lens group is n4, When the Abbe number is v4, the conditional expression n4> 1.9
v4 <35
You may be satisfied.
 第4レンズ群は、負屈折力を有してよい。 The fourth lens group may have a negative refractive power.
 第4レンズ群は、正屈折力を有してよい。 The fourth lens group may have a positive refractive power.
 本発明の一態様に係る撮像装置は、上記のズームレンズと、撮像素子とを備える。 An imaging apparatus according to one embodiment of the present invention includes the zoom lens and an imaging element.
 本発明の一態様に係る移動体は、上記のズームレンズを備えて移動する。 The moving body according to one embodiment of the present invention moves with the zoom lens described above.
 移動体は無人航空機であってよい。 The moving body may be an unmanned aerial vehicle.
 本発明の一態様に係るシステムは、上記のズームレンズと、ズームレンズを変位可能に支持する支持機構と、支持機構に取り付けられている持ち手部とを備える。 A system according to an aspect of the present invention includes the above zoom lens, a support mechanism that supports the zoom lens so as to be displaceable, and a handle that is attached to the support mechanism.
 上記のズームレンズによれば、変倍時にピントずれや像のずれ等が生じにくい。 According to the above zoom lens, it is difficult for focus shift and image shift to occur during zooming.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。 The above summary of the invention does not enumerate all the features of the present invention. A sub-combination of these feature groups can also be an invention.
無人航空機(UAV)100及びコントローラ50を備える移動体システム10の一例を概略的に示す。1 schematically illustrates an example of a mobile system 10 that includes an unmanned aerial vehicle (UAV) 100 and a controller 50. UAV100の機能ブロックの一例を示す。An example of the functional block of UAV100 is shown. 第1実施例におけるレンズ系300のレンズ構成を示す。1 shows a lens configuration of a lens system 300 in a first example. 広角端から望遠端への変倍時における各レンズ群の移動軌跡を模式的に示す。The movement locus of each lens unit at the time of zooming from the wide angle end to the telephoto end is schematically shown. 広角端における球面収差、非点収差及び歪曲収差を示す。It shows spherical aberration, astigmatism and distortion at the wide angle end. 中間画角における球面収差、非点収差及び歪曲収差を示す。Spherical aberration, astigmatism, and distortion are shown at an intermediate angle of view. 望遠端における球面収差、非点収差及び歪曲収差を示す。Spherical aberration, astigmatism and distortion at the telephoto end are shown. 3波長の光についてのレンズ系300の球面収差図を示す。The spherical aberration diagram of the lens system 300 for three wavelengths of light is shown. 第2実施例におけるレンズ系900のレンズ構成を示す。The lens structure of the lens system 900 in 2nd Example is shown. 広角端から望遠端への変倍時における各レンズ群の移動軌跡を模式的に示す。The movement locus of each lens unit at the time of zooming from the wide angle end to the telephoto end is schematically shown. 広角端における球面収差、非点収差及び歪曲収差を示す。It shows spherical aberration, astigmatism and distortion at the wide angle end. 中間画角における球面収差、非点収差及び歪曲収差を示す。Spherical aberration, astigmatism, and distortion are shown at an intermediate angle of view. 望遠端における球面収差、非点収差及び歪曲収差を示す。Spherical aberration, astigmatism and distortion at the telephoto end are shown. レンズ系900の3波長の光についての球面収差図を示す。The spherical aberration figure about the light of 3 wavelengths of the lens system 900 is shown. スタビライザ800の一例を示す外観斜視図である。2 is an external perspective view showing an example of a stabilizer 800. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイルまたはレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を留保する。 The claims, the description, the drawings, and the abstract include matters that are subject to copyright protection. The copyright owner will not object to any number of copies of these documents as they appear in the JPO file or record. However, in other cases, all copyrights are reserved.
 図1は、無人航空機(UAV)100及びコントローラ50を備える移動体システム10の一例を概略的に示す。UAV100は、UAV本体101、ジンバル110、複数の撮像装置230、及び撮像装置220を備える。撮像装置220は、レンズ装置160及び撮像部140を備える。UAV100は、撮像装置を備えて移動する移動体の一例である。移動体とは、UAVの他、空中を移動する他の航空機、地上を移動する車両、水上を移動する船舶等を含む概念である。 FIG. 1 schematically shows an example of a mobile system 10 including an unmanned aerial vehicle (UAV) 100 and a controller 50. The UAV 100 includes a UAV main body 101, a gimbal 110, a plurality of imaging devices 230, and an imaging device 220. The imaging device 220 includes a lens device 160 and an imaging unit 140. The UAV 100 is an example of a moving body that includes an imaging device and moves. The moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
 UAV本体101は、複数の回転翼を備える。UAV本体101は、複数の回転翼の回転を制御することでUAV100を飛行させる。UAV本体101は、例えば、4つの回転翼を用いてUAV100を飛行させる。回転翼の数は、4つには限定されない。UAV100は、回転翼を有さない固定翼機でもよい。 The UAV main body 101 includes a plurality of rotor blades. The UAV main body 101 flies the UAV 100 by controlling the rotation of a plurality of rotor blades. For example, the UAV main body 101 causes the UAV 100 to fly using four rotary wings. The number of rotor blades is not limited to four. The UAV 100 may be a fixed wing aircraft that does not have rotating blades.
 撮像装置230は、所望の撮像範囲に含まれる被写体を撮像する撮像用のカメラである。複数の撮像装置230は、UAV100の飛行を制御するためにUAV100の周囲を撮像するセンシング用のカメラである。撮像装置230は、UAV本体101に固定されていてよい。 The imaging device 230 is an imaging camera that images a subject included in a desired imaging range. The plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100. The imaging device 230 may be fixed to the UAV main body 101.
 2つの撮像装置230が、UAV100の機首である正面に設けられてよい。さらに他の2つの撮像装置230が、UAV100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、UAV100の周囲の3次元空間データが生成されてよい。撮像装置230により撮像された被写体までの距離は、複数の撮像装置230によるステレオカメラにより特定され得る。 Two imaging devices 230 may be provided on the front surface which is the nose of the UAV 100. Two other imaging devices 230 may be provided on the bottom surface of the UAV 100. The two imaging devices 230 on the front side may be paired and function as a so-called stereo camera. The two imaging devices 230 on the bottom side may also be paired and function as a stereo camera. Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230. The distance to the subject imaged by the imaging device 230 can be specified by a stereo camera using a plurality of imaging devices 230.
 UAV100が備える撮像装置230の数は4つには限定されない。UAV100は、少なくとも1つの撮像装置230を備えていればよい。UAV100は、UAV100の機首、機尾、側面、底面、及び天井面のそれぞれに少なくとも1つの撮像装置230を備えてもよい。撮像装置230は、単焦点レンズ又は魚眼レンズを有してもよい。UAV100に係る説明において、複数の撮像装置230を、単に撮像装置230と総称する場合がある。 The number of imaging devices 230 provided in the UAV 100 is not limited to four. The UAV 100 only needs to include at least one imaging device 230. The UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100. The imaging device 230 may have a single focus lens or a fisheye lens. In the description related to the UAV 100, the plurality of imaging devices 230 may be collectively referred to simply as the imaging device 230.
 コントローラ50は、表示部54と操作部52を備える。操作部52は、UAV100の姿勢を制御するための入力操作をユーザから受け付ける。コントローラ50は、操作部52が受け付けたユーザの操作に基づいて、UAV100を制御するための信号を送信する。例えば、操作部52は、レンズ装置160の倍率を変更する操作を受け付ける。コントローラ50は、倍率の変更を指示する信号をUAV100に送信する。 The controller 50 includes a display unit 54 and an operation unit 52. The operation unit 52 receives an input operation for controlling the attitude of the UAV 100 from the user. The controller 50 transmits a signal for controlling the UAV 100 based on a user operation received by the operation unit 52. For example, the operation unit 52 receives an operation for changing the magnification of the lens device 160. The controller 50 transmits a signal instructing the change of the magnification to the UAV 100.
 コントローラ50は、撮像装置230及び撮像装置220の少なくとも一方が撮像した画像を受信する。表示部54は、コントローラ50が受信した画像を表示する。表示部54はタッチ式のパネルであってよい。コントローラ50は、表示部54を通じて、ユーザから入力操作を受け付けてよい。表示部54は、撮像装置220に撮像させるべき被写体の位置をユーザが指定するユーザ操作等を受け付けてよい。 The controller 50 receives an image captured by at least one of the imaging device 230 and the imaging device 220. The display unit 54 displays an image received by the controller 50. The display unit 54 may be a touch panel. The controller 50 may accept an input operation from the user through the display unit 54. The display unit 54 may accept a user operation or the like in which the user specifies the position of the subject to be imaged by the imaging device 220.
 撮像部140は、レンズ装置160により結像された光学像の画像データを生成して記録する。レンズ装置160は、撮像部140と一体的に設けられてよい。レンズ装置160は、いわゆる交換レンズであってよい。レンズ装置160は、撮像部140に対して着脱可能に設けられてよい。 The imaging unit 140 generates and records image data of an optical image formed by the lens device 160. The lens device 160 may be provided integrally with the imaging unit 140. The lens device 160 may be a so-called interchangeable lens. The lens device 160 may be provided so as to be detachable from the imaging unit 140.
 ジンバル110は、撮像装置220を可動に支持する支持機構を有する。撮像装置220は、ジンバル110を介してUAV本体101に取り付けられる。ジンバル110は、撮像装置220を、ピッチ軸を中心に回転可能に支持する。ジンバル110は、撮像装置220を、ロール軸を中心に回転可能に支持する。ジンバル110は、撮像装置220を、ヨー軸を中心に回転可能に支持する。ジンバル110は、ピッチ軸、ロール軸、及びヨー軸の少なくとも1つの軸を中心に、撮像装置220を回転可能に支持してよい。ジンバル110は、ピッチ軸、ロール軸、及びヨー軸のそれぞれを中心に、撮像装置220を回転可能に支持してよい。ジンバル110は、撮像部140を保持してもよい。ジンバル110は、レンズ装置160を保持してもよい。ジンバル110は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像部140及びレンズ装置160を回転させることで、撮像装置220の撮像方向を変更してよい。 The gimbal 110 has a support mechanism that movably supports the imaging device 220. The imaging device 220 is attached to the UAV main body 101 via the gimbal 110. The gimbal 110 supports the imaging device 220 so as to be rotatable about the pitch axis. The gimbal 110 supports the imaging device 220 so as to be rotatable around a roll axis. The gimbal 110 supports the imaging device 220 so as to be rotatable about the yaw axis. The gimbal 110 may support the imaging device 220 rotatably around at least one of a pitch axis, a roll axis, and a yaw axis. The gimbal 110 may support the imaging device 220 rotatably about each of the pitch axis, the roll axis, and the yaw axis. The gimbal 110 may hold the imaging unit 140. The gimbal 110 may hold the lens device 160. The gimbal 110 may change the imaging direction of the imaging device 220 by rotating the imaging unit 140 and the lens device 160 about at least one of the yaw axis, the pitch axis, and the roll axis.
 図2は、UAV100の機能ブロックの一例を示す。UAV100は、インタフェース102、制御部104、メモリ106、ジンバル110、撮像部140、及びレンズ装置160を備える。 FIG. 2 shows an example of functional blocks of the UAV100. The UAV 100 includes an interface 102, a control unit 104, a memory 106, a gimbal 110, an imaging unit 140, and a lens device 160.
 インタフェース102は、コントローラ50と通信する。インタフェース102は、コントローラ50から各種の命令を受信する。制御部104は、コントローラ50から受信した命令に従って、UAV100の飛行を制御する。制御部104は、ジンバル110、撮像部140、及びレンズ装置160を制御する。制御部104は、CPU又はMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。メモリ106は、制御部104がジンバル110、撮像部140、及びレンズ装置160を制御するのに必要なプログラムなどを格納する。 The interface 102 communicates with the controller 50. The interface 102 receives various commands from the controller 50. The control unit 104 controls the flight of the UAV 100 according to the command received from the controller 50. The control unit 104 controls the gimbal 110, the imaging unit 140, and the lens device 160. The control unit 104 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The memory 106 stores a program necessary for the control unit 104 to control the gimbal 110, the imaging unit 140, and the lens device 160.
 メモリ106は、コンピュータが可読な記録媒体でよい。メモリ106は、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。メモリ106は、UAV100の筐体に設けられてよい。UAV100の筐体から取り外し可能に設けられてよい。 The memory 106 may be a computer-readable recording medium. The memory 106 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 106 may be provided in the housing of the UAV 100. It may be provided so as to be removable from the housing of the UAV 100.
 ジンバル110は、制御部112、ドライバ114、ドライバ116、ドライバ118、駆動部124、駆動部126、駆動部128、及び支持機構130を有する。駆動部124、駆動部126及び駆動部128は、モータであってよい。 The gimbal 110 includes a control unit 112, a driver 114, a driver 116, a driver 118, a drive unit 124, a drive unit 126, a drive unit 128, and a support mechanism 130. The drive unit 124, the drive unit 126, and the drive unit 128 may be motors.
 支持機構130は、撮像装置220を支持する。支持機構130は、撮像装置220の撮像方向を可動に支持する。支持機構130は、撮像部140及びレンズ装置160をヨー軸、ピッチ軸、及びロール軸を中心に回転可能に支持する。支持機構130は、回転機構134、回転機構136、及び回転機構138を含む。回転機構134は、駆動部124を用いてヨー軸を中心に撮像部140及びレンズ装置160を回転させる。回転機構136は、駆動部126を用いてピッチ軸を中心に撮像部140及びレンズ装置160を回転させる。回転機構138は、駆動部128を用いてロール軸を中心に撮像部140及びレンズ装置160を回転させる。 The support mechanism 130 supports the imaging device 220. The support mechanism 130 movably supports the imaging direction of the imaging device 220. The support mechanism 130 supports the imaging unit 140 and the lens device 160 so as to be rotatable about the yaw axis, the pitch axis, and the roll axis. The support mechanism 130 includes a rotation mechanism 134, a rotation mechanism 136, and a rotation mechanism 138. The rotation mechanism 134 rotates the imaging unit 140 and the lens device 160 around the yaw axis using the drive unit 124. The rotation mechanism 136 rotates the imaging unit 140 and the lens device 160 around the pitch axis using the driving unit 126. The rotation mechanism 138 uses the drive unit 128 to rotate the imaging unit 140 and the lens device 160 around the roll axis.
 制御部112は、制御部104からのジンバル110の動作命令に応じて、ドライバ114、ドライバ116、及びドライバ118に対して、それぞれの回転角度を示す動作命令を出力する。ドライバ114、ドライバ116、及びドライバ118は、回転角度を示す動作命令に従って駆動部124、駆動部126、及び駆動部128を駆動させる。回転機構134、回転機構136、及び回転機構138は、駆動部124、駆動部126、及び駆動部128によりそれぞれ駆動されて回転し、撮像部140及びレンズ装置160の姿勢を変更する。 The control unit 112 outputs an operation command indicating each rotation angle to the driver 114, the driver 116, and the driver 118 according to the operation command of the gimbal 110 from the control unit 104. The driver 114, the driver 116, and the driver 118 drive the drive unit 124, the drive unit 126, and the drive unit 128 in accordance with an operation command that indicates a rotation angle. The rotation mechanism 134, the rotation mechanism 136, and the rotation mechanism 138 are driven and rotated by the drive unit 124, the drive unit 126, and the drive unit 128, respectively, and change the postures of the imaging unit 140 and the lens device 160.
 撮像部140は、レンズ系300を通過した光により撮像する。撮像部140は、制御部222、撮像素子221及びメモリ223を備える。制御部222は、CPU又はMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。制御部222は、制御部104からの撮像部140及びレンズ装置160に対する動作命令に応じて、撮像部140及びレンズ装置160を制御する。制御部222は、コントローラ50から受信した信号に基づいて、レンズ装置160に変倍を指示する制御命令をレンズ装置160に出力する。 The imaging unit 140 captures an image with light that has passed through the lens system 300. The imaging unit 140 includes a control unit 222, an imaging element 221, and a memory 223. The control unit 222 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The control unit 222 controls the imaging unit 140 and the lens device 160 in accordance with an operation command for the imaging unit 140 and the lens device 160 from the control unit 104. Based on the signal received from the controller 50, the controller 222 outputs to the lens device 160 a control command that instructs the lens device 160 to change the magnification.
 メモリ223は、コンピュータが可読な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。メモリ223は、撮像部140の筐体の内部に設けられてよい。撮像部140の筐体から取り外し可能に設けられてよい。 The memory 223 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 223 may be provided inside the housing of the imaging unit 140. It may be provided so as to be removable from the housing of the imaging unit 140.
 撮像素子221は、撮像部140の筐体の内部に保持され、レンズ装置160を介して結像された光学像の画像データを生成して、制御部222に出力する。制御部222は、撮像素子221から出力された画像データをメモリ223に格納する。制御部222は、画像データを、制御部104を介してメモリ106に出力して格納してもよい。 The imaging element 221 generates image data of an optical image that is held inside the housing of the imaging unit 140 and is formed via the lens device 160, and outputs the image data to the control unit 222. The control unit 222 stores the image data output from the image sensor 221 in the memory 223. The control unit 222 may output the image data to the memory 106 via the control unit 104 and store it.
 レンズ装置160は、ズームレンズである。レンズ装置160は、全長固定ズームレンズである。レンズ装置160は、5群ズームレンズである。レンズ装置160は、制御部162、メモリ163、駆動機構161、及びレンズ系300を備える。レンズ系300は、物体側より順に、第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305を備える。第1レンズ群301は、レンズ装置160の変倍時に、レンズ系300の光軸方向に移動しない。第1レンズ群301は、レンズ系300の光軸方向に固定されたレンズであってよい。レンズ装置160が備える複数のレンズ群のうち、変倍時の像面移動に関与する最も物体側に位置するレンズ群は、レンズ装置160の変倍時に移動しない。そのため、変倍時にピントずれや像のずれ等が生じにくい。本実施形態の説明において、レンズ系300の光軸のことを、単に「光軸」と呼ぶ場合がある。また、「レンズ群」とは、1つ以上のレンズのまとまりのことをいう。「レンズ群」は単一のレンズから構成されてよい。「レンズ群」とは、単一のレンズから構成されたレンズも含む概念である。 The lens device 160 is a zoom lens. The lens device 160 is a full length fixed zoom lens. The lens device 160 is a five-group zoom lens. The lens device 160 includes a control unit 162, a memory 163, a drive mechanism 161, and a lens system 300. The lens system 300 includes a first lens group 301, a second lens group 302, a third lens group 303, a fourth lens group 304, and a fifth lens group 305 in order from the object side. The first lens group 301 does not move in the optical axis direction of the lens system 300 when the lens device 160 is zoomed. The first lens group 301 may be a lens fixed in the optical axis direction of the lens system 300. Among the plurality of lens groups included in the lens device 160, the lens group located closest to the object side that is involved in the image plane movement at the time of zooming does not move at the time of zooming of the lens device 160. Therefore, it is difficult for focus shift, image shift, and the like to occur during zooming. In the description of the present embodiment, the optical axis of the lens system 300 may be simply referred to as “optical axis”. The “lens group” refers to a group of one or more lenses. The “lens group” may be composed of a single lens. The “lens group” is a concept including a lens composed of a single lens.
 制御部162は、制御部222からの制御命令に従って、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305の少なくとも一つを光軸に沿って移動させる。例えば、第2制御部162は、変倍時に、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305を光軸に沿って移動させる。これにより、変倍時にピント位置の移動が生じないようにする。レンズ装置160のレンズ系300により結像された像は、撮像部140により撮像される。 The control unit 162 moves at least one of the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 along the optical axis in accordance with a control command from the control unit 222. For example, the second control unit 162 moves the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 along the optical axis during zooming. This prevents the movement of the focus position during zooming. An image formed by the lens system 300 of the lens device 160 is captured by the imaging unit 140.
 駆動機構161は、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305を駆動する。駆動機構161は、例えばアクチュエータと、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305を保持する保持部材とを備える。アクチュエータには、制御部162から駆動用のパルスが供給される。アクチュエータは、供給されたパルスに応じた駆動量だけ変位する。アクチュエータの変位に応じて保持部材が変位することにより、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305が変位する。 The driving mechanism 161 drives the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305. The drive mechanism 161 includes, for example, an actuator and a holding member that holds the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305. Driving pulses are supplied from the control unit 162 to the actuator. The actuator is displaced by a driving amount corresponding to the supplied pulse. When the holding member is displaced according to the displacement of the actuator, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are displaced.
 レンズ装置160は、撮像部140と一体的に設けられてよい。レンズ装置160は、いわゆる交換レンズであってよい。レンズ装置160は、撮像部140に対して着脱可能に設けられてよい。 The lens device 160 may be provided integrally with the imaging unit 140. The lens device 160 may be a so-called interchangeable lens. The lens device 160 may be provided so as to be detachable from the imaging unit 140.
 撮像装置230は、制御部232、制御部234、撮像素子231、メモリ233、及びレンズ235を備える。制御部232は、CPU又はMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。制御部232は、制御部104からの撮像素子231の動作命令に応じて、撮像素子231を制御する。 The imaging device 230 includes a control unit 232, a control unit 234, an imaging device 231, a memory 233, and a lens 235. The control unit 232 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The control unit 232 controls the image sensor 231 in accordance with an operation command for the image sensor 231 from the control unit 104.
 制御部234は、CPU又はMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。制御部234は、制御部104からのレンズ235に対する動作命令に応じて、レンズ235の焦点距離を制御する。制御部234は、レンズ235に対する動作命令に応じて、レンズ235の焦点を制御してよい。制御部234は、レンズ235に対する動作命令に応じて、レンズ235が有する絞りを制御してよい。 The control unit 234 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The control unit 234 controls the focal length of the lens 235 in accordance with an operation command for the lens 235 from the control unit 104. The control unit 234 may control the focal point of the lens 235 in accordance with an operation command for the lens 235. The control unit 234 may control a diaphragm included in the lens 235 in accordance with an operation command for the lens 235.
 メモリ233は、コンピュータが可読な記録媒体であってよい。メモリ233は、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。 The memory 233 may be a computer-readable recording medium. The memory 233 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
 撮像素子231は、レンズ235を介して結像された光学像の画像データを生成して、制御部232に出力する。制御部232は、撮像素子231から出力された画像データをメモリ233に格納する。 The image sensor 231 generates image data of an optical image formed through the lens 235 and outputs the image data to the control unit 232. The control unit 232 stores the image data output from the image sensor 231 in the memory 233.
 本実施形態では、UAV100が、制御部104、制御部112、制御部222、制御部232、制御部234、及び制御部162を備える例について説明する。しかし、制御部104、制御部112、制御部222、制御部232、制御部234、及び制御部162のうちの複数で実行される処理をいずれか1つの制御部が実行してよい。制御部104、制御部112、制御部222、制御部232、制御部234、及び制御部162で実行される処理を1つの制御部で実行してもよい。本実施形態では、UAV100が、メモリ106、メモリ223、及びメモリ233を備える例について説明する。メモリ106、メモリ223、及びメモリ233のうちの少なくとも1つに記憶される情報は、メモリ106、メモリ223、及びメモリ233のうちの他の1つ又は複数のメモリに記憶してよい。 In this embodiment, an example in which the UAV 100 includes the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162 will be described. However, any one of the control units 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the process executed by a plurality of the control units 162 may be executed by any one control unit. Processing executed by the control unit 104, the control unit 112, the control unit 222, the control unit 232, the control unit 234, and the control unit 162 may be executed by one control unit. In the present embodiment, an example in which the UAV 100 includes the memory 106, the memory 223, and the memory 233 will be described. Information stored in at least one of the memory 106, the memory 223, and the memory 233 may be stored in one or more other memories of the memory 106, the memory 223, and the memory 233.
 レンズ系300において、第1レンズ群301は、負屈折力を有する。第2レンズ群302は、正屈折力を有する。第3レンズ群303は、負屈折力を有する。第5レンズ群305は、正屈折力を有する。第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305は、物体側より、第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304、第5レンズ群305の順で設けられる。なお、本実施形態の説明においてレンズ系300の変倍時の挙動を説明する場合、無限遠の被写体に対してレンズ装置160をズームレンズとして機能させる場合の挙動を示す。 In the lens system 300, the first lens group 301 has negative refractive power. The second lens group 302 has a positive refractive power. The third lens group 303 has negative refractive power. The fifth lens group 305 has positive refractive power. The first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are, from the object side, the first lens group 301, the second lens group 302, and the third lens. A group 303, a fourth lens group 304, and a fifth lens group 305 are provided in this order. In the description of the present embodiment, when the behavior of the lens system 300 at the time of zooming is described, the behavior when the lens device 160 functions as a zoom lens with respect to an object at infinity is shown.
 広角端から望遠端への変倍時に、第1レンズ群301から撮像素子221までの間隔は一定である。広角端から望遠端への変倍時に、第1レンズ群301と第2レンズ群302との間隔は減少する。広角端から望遠端への変倍時に、第2レンズ群302と第3レンズ群303の間隔が増加する。広角端から望遠端への変倍時に、第3レンズ群303と第4レンズ群304の間隔が減少する。広角端から望遠端への変倍時に、第5レンズ群305は、撮像素子221に向けて凸の弧の軌跡で移動する。凸の弧の軌跡で移動するとは、例えば、第5レンズ群305が撮像素子221に近づいた後に撮像素子221から離れるような軌跡で移動することを意味する。 The distance from the first lens group 301 to the image sensor 221 is constant during zooming from the wide-angle end to the telephoto end. At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group 301 and the second lens group 302 decreases. At the time of zooming from the wide-angle end to the telephoto end, the distance between the second lens group 302 and the third lens group 303 increases. At the time of zooming from the wide angle end to the telephoto end, the distance between the third lens group 303 and the fourth lens group 304 decreases. At the time of zooming from the wide-angle end to the telephoto end, the fifth lens group 305 moves along a locus of a convex arc toward the image sensor 221. The movement along the locus of the convex arc means, for example, that the fifth lens group 305 moves along a locus that moves away from the image sensor 221 after approaching the image sensor 221.
 レンズ系300において、変倍時に第1レンズ群301は撮像素子221に対して移動せず、第5レンズ群305が撮像素子221側に近づいた後に撮像素子221から離れる軌跡を描いて移動することにより、変倍を主に担う第2レンズ群302の移動による像面ズレを補正できる。変倍時に第1レンズ群301が移動しないようにすることにより、レンズ群の駆動機構を簡素化することができる。また、振動等の外乱発生時に第1レンズ群301の偏芯を抑制することができる。そのため、振動時のピントずれや解像劣化を抑えることができる。また、撮像装置220の小型化と高性能化を実現できる。 In the lens system 300, the first lens group 301 does not move with respect to the image sensor 221 at the time of zooming, and moves along a locus that leaves the image sensor 221 after the fifth lens group 305 approaches the image sensor 221 side. Accordingly, it is possible to correct the image plane deviation due to the movement of the second lens group 302 mainly responsible for zooming. By preventing the first lens group 301 from moving during zooming, the lens group drive mechanism can be simplified. Further, the eccentricity of the first lens group 301 can be suppressed when disturbance such as vibration occurs. For this reason, it is possible to suppress defocusing and resolution degradation during vibration. In addition, the image pickup apparatus 220 can be reduced in size and performance.
 広角端から望遠端への変倍時に、第4レンズ群304と第5レンズ群305の間隔が増加する。なお、広角端から望遠端への変倍時において、広角端における画角から予め定められた画角までの間において、第4レンズ群304と第5レンズ群305の間隔が増加する。一方、当該予め定められた画角より大きい画角から望遠端における画角までの間において、第4レンズ群304と第5レンズ群305の間隔が一定又は減少し得る。 The distance between the fourth lens group 304 and the fifth lens group 305 increases during zooming from the wide-angle end to the telephoto end. Note that, at the time of zooming from the wide-angle end to the telephoto end, the distance between the fourth lens group 304 and the fifth lens group 305 increases between the angle of view at the wide-angle end and a predetermined angle of view. On the other hand, the distance between the fourth lens group 304 and the fifth lens group 305 can be constant or decreased between the angle of view larger than the predetermined angle of view and the angle of view at the telephoto end.
 第1レンズ群301は、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含んでよい。第1レンズ群301に含まれる負の屈折力を有する3つのレンズのアッベ数をv1、v2、v3とすると、次の3つの条件式
 v1>60 (条件式1)
 v2>60  (条件式2)
 v3>60 (条件式3)
 を満足することが好ましい。
The first lens group 301 may include four lenses having negative, negative, negative, and positive refractive power in order from the object side. When the Abbe numbers of the three lenses having negative refractive power included in the first lens group 301 are v1, v2, and v3, the following three conditional expressions v1> 60 (conditional expression 1)
v2> 60 (conditional expression 2)
v3> 60 (conditional expression 3)
Is preferably satisfied.
 第1レンズ群301において、負の屈折力を有する3つのレンズで負屈折力を分担できるので、第1レンズ群301の全体の負屈折力を高めることができる。また、レンズ系300の全長を短くすることができる。また、結像特性を高めることができる。負の屈折力を有する3つのレンズで第1レンズ群301の負のパワーを分担するので、低分散材を用いて負の屈折力を持つレンズを形成することができる。これにより、色収差をより強く抑制することができる。 In the first lens group 301, since the negative refractive power can be shared by the three lenses having negative refractive power, the overall negative refractive power of the first lens group 301 can be increased. Further, the overall length of the lens system 300 can be shortened. In addition, imaging characteristics can be improved. Since the three lenses having negative refractive power share the negative power of the first lens group 301, a lens having negative refractive power can be formed using a low dispersion material. Thereby, chromatic aberration can be suppressed more strongly.
 第1レンズ群301の焦点距離をf1、全系(レンズ系300)の広角端の焦点距離をfwとすると、条件式
 -1.8<f1/fw<-1.1 (条件式4)
 を満足することが好ましい。条件式4の下限を満足する、すなわち、第1レンズ群301の屈折力を所定の下限閾値より高くすることで、レンズ系300を小型化することができる。条件式4の上限を満足する、すなわち第1レンズ群301の屈折力を所定の上限閾値より高くしないことで、結像特性を高めることができる。
Conditional expression −1.8 <f1 / fw <−1.1 (conditional expression 4) where f1 is the focal length of the first lens group 301 and fw is the focal length of the entire system (lens system 300) at the wide angle end.
Is preferably satisfied. The lens system 300 can be reduced in size by satisfying the lower limit of conditional expression 4, that is, by making the refractive power of the first lens group 301 higher than a predetermined lower limit threshold. By satisfying the upper limit of conditional expression 4, that is, by making the refractive power of the first lens group 301 not higher than a predetermined upper limit threshold, it is possible to improve the imaging characteristics.
 第2レンズ群302の焦点距離をf2とすると、条件式
 1.0<f2/fw<1.8 (条件式5)
 を満足することが好ましい。条件式5の上限を満足する、すなわち、第2レンズ群302の屈折力を所定の下限閾値より高くすることで、レンズ系300を小型化することができる。条件式5の下限を満足する、すなわち、第2レンズ群302の屈折力を所定の上限閾値より高くしないことで、結像特性を高めることができる。
When the focal length of the second lens group 302 is f2, conditional expression 1.0 <f2 / fw <1.8 (conditional expression 5)
Is preferably satisfied. The lens system 300 can be reduced in size by satisfying the upper limit of conditional expression 5, that is, by making the refractive power of the second lens group 302 higher than a predetermined lower limit threshold. By satisfying the lower limit of Conditional Expression 5, that is, by making the refractive power of the second lens group 302 not higher than a predetermined upper limit threshold, it is possible to improve imaging characteristics.
 第2レンズ群302は少なくとも3つの凸レンズを含んでよい。第2レンズ群302に含まれる全ての凸レンズのアッベ数vが50より大きいことが好ましい。第2レンズ群302の凸レンズのアッベ数を全て50以上にすることで、第2レンズ群302の屈折力を強めつつ、色収差を抑制することができる。これにより、結像特性を高めつつ、レンズ系300を小型化することができる。 The second lens group 302 may include at least three convex lenses. It is preferable that the Abbe number v of all convex lenses included in the second lens group 302 is greater than 50. By setting all Abbe numbers of the convex lenses of the second lens group 302 to 50 or more, chromatic aberration can be suppressed while increasing the refractive power of the second lens group 302. Thereby, the lens system 300 can be reduced in size while improving the imaging characteristics.
 第1レンズ群301の正レンズの屈折率をn4、アッベ数をv4とすると、2つの条件式
 n4>1.9 (条件式6)
 v4<35  (条件式7)
 を満足することが好ましい。第1レンズ群301が有する正レンズが条件式6及び条件式7を満足することで、第1レンズ群301の光軸方向の厚みを薄くすることができる。これにより、レンズ系300の全長の短縮化に寄与する。
When the refractive index of the positive lens of the first lens group 301 is n4 and the Abbe number is v4, two conditional expressions n4> 1.9 (conditional expression 6)
v4 <35 (Condition 7)
Is preferably satisfied. When the positive lens included in the first lens group 301 satisfies the conditional expressions 6 and 7, the thickness of the first lens group 301 in the optical axis direction can be reduced. This contributes to shortening the overall length of the lens system 300.
 第4レンズ群304及び第5レンズ群305は、単一のレンズ又は接合レンズから構成されてよい。第4レンズ群304及び第5レンズ群305の少なくとも一方が、フォーカス機能を担ってよい。第4レンズ群304及び第5レンズ群305の少なくとも一方が、防振機能を担ってよい。 The fourth lens group 304 and the fifth lens group 305 may be composed of a single lens or a cemented lens. At least one of the fourth lens group 304 and the fifth lens group 305 may have a focus function. At least one of the fourth lens group 304 and the fifth lens group 305 may have an anti-vibration function.
 フォーカス機能を実現したり、レンズ系で防振機能を実現したりするには、いずれかのレンズ群を駆動することが必要となる。レンズ系300においては、フォーカス機能又は防振機能を担うレンズ群を単一のレンズ又は接合レンズとすることで、レンズの駆動機構を簡素化することができる。また、レンズの駆動素子を軽量化することができる。ひいてはレンズ系300全体の小型化に寄与する。 In order to realize the focus function or to realize the image stabilization function in the lens system, it is necessary to drive one of the lens groups. In the lens system 300, the lens driving mechanism can be simplified by using a single lens or a cemented lens as the lens group responsible for the focus function or the image stabilization function. In addition, the lens driving element can be reduced in weight. As a result, the entire lens system 300 is reduced in size.
 第1レンズ群301に含まれる負の屈折力を有する3つのレンズのうち物体側の2つのレンズの少なくとも1つは、非球面レンズであることが好ましい。物体側のレンズは軸上光線と周辺光線の高さの差が大きくなる。レンズ系300においては、物体側の2枚のレンズのうち少なくとも1つを非球面とすることで、歪曲収差や像面湾曲を効果的に補正することができる。 Among the three lenses having negative refractive power included in the first lens group 301, at least one of the two lenses on the object side is preferably an aspheric lens. The lens on the object side has a large difference in height between the axial ray and the peripheral ray. In the lens system 300, at least one of the two lenses on the object side is aspherical, so that distortion and field curvature can be effectively corrected.
 第2レンズ群302は、正の屈折力を有する非球面レンズである少なくとも1つの単レンズを含むことが好ましい。第2レンズ群302が有する最も物体側のレンズが、正の屈折力を有する非球面レンズの単レンズであることが望ましい。第2レンズ群302の正の屈折力を高めるためには、第2レンズ群302を構成する正レンズの屈折力を高める必要がある。第2レンズ群302の物体側のレンズの正の屈折力を高めることで、レンズ系300の全長を短くすることができる。また、強いパワーを持つレンズに非球面を用いることで、収差を効果的に補正することができる。 The second lens group 302 preferably includes at least one single lens that is an aspheric lens having a positive refractive power. It is desirable that the most object side lens included in the second lens group 302 is a single aspherical lens having positive refractive power. In order to increase the positive refractive power of the second lens group 302, it is necessary to increase the refractive power of the positive lens constituting the second lens group 302. The total length of the lens system 300 can be shortened by increasing the positive refractive power of the lens on the object side of the second lens group 302. In addition, aberration can be effectively corrected by using an aspherical surface for a lens having strong power.
 図3は、第1実施例におけるレンズ系300のレンズ構成を、撮像素子221とともに示す。図3は、広角端、中間画角、及び望遠端のそれぞれにおける第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305の位置を示す。なお、STOは絞りを示す。第1実施例において、第4レンズ群304は負屈折力を有する。すなわち、レンズ系300は、負正負負正の5群で構成される。 FIG. 3 shows the lens configuration of the lens system 300 in the first embodiment, together with the image sensor 221. FIG. 3 shows the positions of the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 at the wide-angle end, the intermediate field angle, and the telephoto end, respectively. . Note that STO indicates an aperture. In the first example, the fourth lens group 304 has negative refractive power. That is, the lens system 300 includes five groups of negative positive negative negative positive.
 ここで、レンズ系300の実施例の説明で用いられる記号等の意味を説明する。レンズ系300が有する複数の面は、面番号iで識別される。物体側からみてレンズの最初の面を第1面とし、以降、光線が面を通過する順に面番号をカウントアップする。「Di」は、第i番目の面と第i+1番目の面との間の光軸上の間隔を示す。 Here, the meaning of symbols and the like used in the description of the embodiment of the lens system 300 will be described. A plurality of surfaces of the lens system 300 are identified by a surface number i. The first surface of the lens as viewed from the object side is the first surface, and thereafter the surface numbers are counted up in the order in which the light passes through the surface. “Di” indicates an interval on the optical axis between the i-th surface and the (i + 1) -th surface.
 「f」は焦点距離を示す。「Fno」はFナンバーを示す。「ω」は半画角を示す。「R」は曲率半径を示す。曲率半径において、「INF」は平面であることを示す。「n」は屈折率を示す。vは、アッベ数を示す。屈折率n及びアッベ数vは、d線(λ=587.6nm)における値である。 “F” indicates the focal length. “Fno” indicates an F number. “Ω” indicates a half angle of view. “R” indicates a radius of curvature. In the radius of curvature, “INF” indicates a plane. “N” represents a refractive index. v represents the Abbe number. The refractive index n and the Abbe number v are values at the d-line (λ = 587.6 nm).
 表1は、第1実施例におけるレンズ系300が有するレンズのレンズデータを示す。なお、表1において、Diは面番号iに対応づけて示されている。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows lens data of lenses included in the lens system 300 in the first example. In Table 1, Di is shown in association with the surface number i.
Figure JPOXMLDOC01-appb-T000001
 表1において、面番号に*が付されている面は、非球面形状を有する面である。表2は、非球面形状を有する面の面番号と、非球面パラメータとを示す。表2において、「κ」は、円錐定数(コーニック定数)を示す。「A」、「B」、「C」、及び「D」は、それぞれ4次、6次、8次、及び10次の非球面係数である。また、非球面係数において、「E-i」は10を底とする指数表現を示す。すなわち、「E-i」は、「10-i」を表す。例えば、「6.04845E-06」は、「6.04845×10-6」を表す。
Figure JPOXMLDOC01-appb-T000002
In Table 1, a surface numbered with * is a surface having an aspherical shape. Table 2 shows the surface number of the surface having the aspheric shape and the aspheric parameter. In Table 2, “κ” represents a conic constant (conic constant). “A”, “B”, “C”, and “D” are fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients, respectively. In the aspheric coefficient, “Ei” represents an exponential expression with 10 as the base. That is, “ Ei ” represents “10 −i ”. For example, “6.04845E-06” represents “6.04845 × 10 −6 ”.
Figure JPOXMLDOC01-appb-T000002
 「x」をレンズ面の頂点からの光軸方向における距離とし、「y」を光軸に垂直な方向における高さとし、「c」をレンズの頂点における近軸曲率とした場合、非球面形状は次の式によって定義される。
 x=cy/(1+(1-(1+κ)c1/2)+Ay+By+Cy8+Dy10
 なお、「x」はサグ量とも呼ばれる。「y」は像高とも呼ばれる。近軸曲率は、曲率半径の逆数である。
When “x” is the distance in the optical axis direction from the apex of the lens surface, “y” is the height in the direction perpendicular to the optical axis, and “c” is the paraxial curvature at the apex of the lens, the aspherical shape is It is defined by the following formula.
x = cy 2 / (1+ (1- (1 + κ) c 2 y 2 ) 1/2 ) + Ay 4 + By 6 + Cy 8 + Dy 10
“X” is also called a sag amount. “Y” is also called image height. The paraxial curvature is the reciprocal of the radius of curvature.
 表3は、広角端、中間画角及び望遠端のそれぞれにおけるレンズ系300の焦点距離、Fナンバー及び半画角を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the focal length, F number, and half angle of view of the lens system 300 at each of the wide angle end, the intermediate angle of view, and the telephoto end.
Figure JPOXMLDOC01-appb-T000003
 レンズ系300における広角端と望遠端との間の変倍に際して、第1レンズ群301と第2レンズ群302との間の面間隔D8、第2レンズ群302と第3レンズ群303との間の面間隔D15、第3レンズ群303と第4レンズ群304との間の面間隔D21、第4レンズ群304と第5レンズ群305との間の面間隔D29、及び、第5レンズ群305と撮像素子221との」間の面間隔D31が変化し得る。表4は、広角端、中間画角及び望遠端のそれぞれにおける面間隔を示す。
Figure JPOXMLDOC01-appb-T000004
At the time of zooming between the wide-angle end and the telephoto end in the lens system 300, the surface distance D8 between the first lens group 301 and the second lens group 302, and between the second lens group 302 and the third lens group 303. The surface distance D15, the surface distance D21 between the third lens group 303 and the fourth lens group 304, the surface distance D29 between the fourth lens group 304 and the fifth lens group 305, and the fifth lens group 305. And the imaging element 221 can change the surface distance D31. Table 4 shows the surface spacing at each of the wide-angle end, the intermediate field angle, and the telephoto end.
Figure JPOXMLDOC01-appb-T000004
 表5は、第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305のそれぞれの焦点距離を示す。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows focal lengths of the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305.
Figure JPOXMLDOC01-appb-T000005
 図4は、レンズ系300の広角端から望遠端への変倍時に第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304及び第5レンズ群305が移動する軌跡を模式的に示す。矢印は、レンズ系300の変倍に際して移動することを示す。図3及び図4に示されるように、第1レンズ群301から撮像素子221までの間隔は、変倍時に一定である。 FIG. 4 shows that the first lens group 301, the second lens group 302, the third lens group 303, the fourth lens group 304, and the fifth lens group 305 move during zooming of the lens system 300 from the wide-angle end to the telephoto end. A locus is schematically shown. The arrow indicates that the lens system 300 moves upon zooming. As shown in FIGS. 3 and 4, the distance from the first lens group 301 to the image sensor 221 is constant during zooming.
 第1レンズ群301は、物体側より、負レンズL1、負レンズL2、負レンズL3及び正レンズL4の4枚のレンズを有する。負レンズL1は非球面レンズである。第1レンズ群301を構成するレンズのうち物体側に配置される2つを凹レンズとし、少なくとも1つの凹レンズを非球面レンズとすることが好ましい。物体側に凹レンズを配置することがより好ましい。これにより、特に入射角が大きくなる広角側の軸外光線を緩やかに曲げることができるので、周辺光線に対する結像特性を高めることができる。また、物体側においては周辺光線が他の光線から分離されている。この物体側に非球面レンズを配置することで、歪曲収差及び像面湾曲等の収差を良好に補正することができる。また、第1レンズ群301が持つ負のパワーを3枚の負レンズL1~L3で分担するので、収差を抑えながら第1レンズ群301の負のパワーを強めることができる。また、レンズ系300の全長を短くすることができる。 The first lens group 301 has four lenses of a negative lens L1, a negative lens L2, a negative lens L3, and a positive lens L4 from the object side. The negative lens L1 is an aspheric lens. Of the lenses constituting the first lens group 301, two lenses disposed on the object side are preferably concave lenses, and at least one concave lens is preferably an aspheric lens. More preferably, a concave lens is disposed on the object side. Thereby, since the off-axis light beam on the wide-angle side where the incident angle becomes particularly large can be bent gently, the imaging characteristics with respect to the peripheral light beam can be enhanced. Also, on the object side, the peripheral rays are separated from other rays. By disposing an aspheric lens on the object side, aberrations such as distortion and curvature of field can be favorably corrected. Further, since the negative power of the first lens group 301 is shared by the three negative lenses L1 to L3, the negative power of the first lens group 301 can be increased while suppressing aberrations. Further, the overall length of the lens system 300 can be shortened.
 第1レンズ群301の正レンズL4の屈折力及びアッベ数は、n>1.9、v<35を満たすことが望ましい。第1レンズ群301の負レンズL1~L3のアッベ数は、全てv>60であることが望ましい。特に、第1レンズ群301において、負レンズL2及び負レンズL3のアッベ数は、v>70である。第1レンズ群301を構成する3枚の負レンズL1~L3のうち少なくとも1つのアッベ数は、v>70であることが望ましい。負レンズである第1レンズ群301に含まれる少なくとも1つの負レンズのアッベ数をv>70とすることで、特に広角側の倍率色収差を良好に補正することができる。 It is desirable that the refractive power and the Abbe number of the positive lens L4 of the first lens group 301 satisfy n> 1.9 and v <35. The Abbe numbers of the negative lenses L1 to L3 in the first lens group 301 are all preferably v> 60. In particular, in the first lens group 301, the Abbe numbers of the negative lens L2 and the negative lens L3 are v> 70. It is desirable that at least one Abbe number among the three negative lenses L1 to L3 constituting the first lens group 301 is v> 70. By setting the Abbe number of at least one negative lens included in the first lens group 301, which is a negative lens, to v> 70, it is possible to satisfactorily correct lateral chromatic aberration particularly on the wide angle side.
 第2レンズ群302は、物体側より負正の接合レンズL5及びL6、正の単レンズL7及びL8を有する。第2レンズ群302を構成するレンズのうち少なくとも1つ以上のレンズを接合レンズとすることが望ましい。接合レンズを構成するレンズL6のアッベ数はv>65であることが望ましい。 The second lens group 302 includes negative and positive cemented lenses L5 and L6 and positive single lenses L7 and L8 from the object side. It is desirable that at least one of the lenses constituting the second lens group 302 is a cemented lens. The Abbe number of the lens L6 constituting the cemented lens is preferably v> 65.
 第3レンズ群303は、絞りSTOと、単レンズL10と、負正の接合レンズL11及びL12とを有する。第4レンズ群304は、負正の接合レンズL13及びL14と、正負の接合レンズL15及びL16と、単レンズL17とを有する。第3レンズ群303及び第4レンズ群304はともに、少なくとも1つ以上の接合レンズを含むことが望ましい。第3レンズ群303及び第4レンズ群304が含むレンズの少なくとも1つ以上を接合レンズとすることにより、軸上色収差を良好に補正することができる。 The third lens group 303 includes a stop STO, a single lens L10, and negative and positive cemented lenses L11 and L12. The fourth lens group 304 includes negative and positive cemented lenses L13 and L14, positive and negative cemented lenses L15 and L16, and a single lens L17. Both the third lens group 303 and the fourth lens group 304 preferably include at least one or more cemented lenses. By using at least one of the lenses included in the third lens group 303 and the fourth lens group 304 as a cemented lens, axial chromatic aberration can be favorably corrected.
 第5レンズ群305は、単レンズである。第5レンズ群305は接合レンズであってよい。第5レンズ群305はフォーカスレンズとして機能する。フォーカス機能を有する第5レンズ群305を単レンズ又は接合レンズとすることで、第5レンズ群305の駆動機構への重量負荷を軽減することができる。また、第5レンズ群305を保持する保持枠を小型化することができる。 The fifth lens group 305 is a single lens. The fifth lens group 305 may be a cemented lens. The fifth lens group 305 functions as a focus lens. By using the fifth lens group 305 having the focus function as a single lens or a cemented lens, it is possible to reduce the weight load on the drive mechanism of the fifth lens group 305. In addition, the holding frame that holds the fifth lens group 305 can be reduced in size.
 図3及び図4に示されるように、広角端から望遠端へと変倍する場合、第2レンズ群302は像面側から物体側へと一方向に移動する。レンズ系300の変倍においては、第1レンズ群301及び第2レンズ群302が主変倍成分を担い、第3レンズ群303、第4レンズ群304及び第5レンズ群305が副変倍成分を担う。第5レンズ群305は、変倍に伴う像面変動の補正も担う。 3 and 4, when zooming from the wide-angle end to the telephoto end, the second lens group 302 moves in one direction from the image plane side to the object side. In zooming of the lens system 300, the first lens group 301 and the second lens group 302 are responsible for the main zooming component, and the third lens group 303, the fourth lens group 304, and the fifth lens group 305 are sub-magnifying components. Take on. The fifth lens group 305 is also responsible for correcting image plane fluctuations accompanying zooming.
 第3レンズ群303は、広角端から望遠端への変倍時に、像面側から物体側へ移動する。このとき、第3レンズ群303は、第2レンズ群302との間隔が開くように移動する。広角端から望遠端への変倍時に、第4レンズ群304は、像面側から物体側へ移動する。このとき、第4レンズ群304は、第3レンズ群303との間隔が近づくように移動する。広角端から望遠端への変倍時に、第5レンズ群305は撮像素子221に向けて凸の移動軌跡で移動する。レンズ群が撮像素子221に向けて凸の移動軌跡で移動するとは、例えば横軸を画角又は焦点距離とし、縦軸を光軸方向におけるレンズ群の変位量とし、撮像素子221に向かう方向を縦軸の正方向としてレンズ群の移動軌跡を描いた場合に、レンズ群の移動軌跡が凸となることを意味する。第5レンズ群305と第4レンズ群304との間隔は、広角端から予め定められた画角になるまでの間は広がる。第5レンズ群305と第4レンズ群304との間隔は、予め定められた画角から望遠端に到達するまでの間、狭くなり得る。 The third lens group 303 moves from the image plane side to the object side during zooming from the wide angle end to the telephoto end. At this time, the third lens group 303 moves so as to be spaced from the second lens group 302. At the time of zooming from the wide angle end to the telephoto end, the fourth lens group 304 moves from the image plane side to the object side. At this time, the fourth lens group 304 moves so that the distance from the third lens group 303 approaches. At the time of zooming from the wide-angle end to the telephoto end, the fifth lens group 305 moves toward the image sensor 221 along a convex movement locus. The movement of the lens group in a convex movement locus toward the image sensor 221 means, for example, that the horizontal axis is the angle of view or the focal length, the vertical axis is the amount of displacement of the lens group in the optical axis direction, and the direction toward the image sensor 221 is This means that when the movement locus of the lens group is drawn as the positive direction of the vertical axis, the movement locus of the lens group becomes convex. The distance between the fifth lens group 305 and the fourth lens group 304 increases from the wide angle end until a predetermined angle of view is reached. The distance between the fifth lens group 305 and the fourth lens group 304 can be narrowed until reaching the telephoto end from a predetermined angle of view.
 図5は、広角端における球面収差、非点収差及び歪曲収差を示す。図6は、中間画角における球面収差、非点収差及び歪曲収差を示す。図7は、望遠端における球面収差、非点収差及び歪曲収差を示す。 FIG. 5 shows spherical aberration, astigmatism and distortion at the wide angle end. FIG. 6 shows spherical aberration, astigmatism and distortion at an intermediate angle of view. FIG. 7 shows spherical aberration, astigmatism and distortion at the telephoto end.
 図5から図7に示す球面収差図において、実線はd線(587.56nm)の値を示し、破線はg線(435.84nm)の値を示す。図5から図7に示す非点収差図において、実線はd線のサジタル像面の値を示し、破線はd線のメリディオナル像面の値を示す。図5から図7に示す歪曲収差図は、d線についての値を示す。各収差図から、レンズ系300は諸収差が良好に補正され、優れた結像性能を有していることが分かる。 In the spherical aberration diagrams shown in FIGS. 5 to 7, the solid line indicates the value of the d-line (587.56 nm), and the broken line indicates the value of the g-line (435.84 nm). In the astigmatism diagrams shown in FIGS. 5 to 7, the solid line indicates the value of the sagittal image plane of the d line, and the broken line indicates the value of the meridional image plane of the d line. The distortion diagrams shown in FIGS. 5 to 7 show values for the d-line. From the respective aberration diagrams, it can be seen that the lens system 300 is excellent in various aberrations and has excellent imaging performance.
 図8は、3波長の光についてのレンズ系300の球面収差図を示す。太線はc線(656.28nm)、実線はd線(587.56nm)、破線はg線(435.84nm)の値を示す。広角端、中間画角、望遠端ともに、各波長の光について球面収差が0.1mm以内の範囲に収まっている。これにより、軸上色収差が良好に補正されていることが分かる。 FIG. 8 shows a spherical aberration diagram of the lens system 300 for light of three wavelengths. The thick line indicates the value of c-line (656.28 nm), the solid line indicates the value of d-line (587.56 nm), and the broken line indicates the value of g-line (435.84 nm). At each of the wide-angle end, the intermediate angle of view, and the telephoto end, the spherical aberration is within a range of 0.1 mm or less for each wavelength of light. Thereby, it can be seen that the axial chromatic aberration is corrected well.
 図9は、第2実施例におけるレンズ系900のレンズ構成を、撮像素子221とともに示す。レンズ系900は、第1レンズ群901と、第2レンズ群902と、第3レンズ群903と、第4レンズ群904と、第5レンズ群905とを備える。第1レンズ群901、第2レンズ群902、第3レンズ群903、第4レンズ群904、及び第5レンズ群905は、それぞれ、レンズ系300における第1レンズ群301、第2レンズ群302、第3レンズ群303、第4レンズ群304、及び第5レンズ群305に対応する。レンズ系900に関する説明において、レンズ系900が有する特徴のうち、レンズ系300との相違点のみを説明し、同様の特徴については省略する場合がある。また、レンズ系900の説明で用いられる記号等は、特に説明しない限り、レンズ系300に関連して説明した記号等の意味と同じである。 FIG. 9 shows the lens configuration of the lens system 900 in the second embodiment together with the image sensor 221. The lens system 900 includes a first lens group 901, a second lens group 902, a third lens group 903, a fourth lens group 904, and a fifth lens group 905. The first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 are respectively the first lens group 301, the second lens group 302, and the like in the lens system 300. This corresponds to the third lens group 303, the fourth lens group 304, and the fifth lens group 305. In the description of the lens system 900, only the differences from the lens system 300 among the characteristics of the lens system 900 will be described, and the same characteristics may be omitted. Further, symbols and the like used in the description of the lens system 900 have the same meanings as symbols and the like described in relation to the lens system 300 unless otherwise specified.
 第2実施例において、第4レンズ群904は正屈折力を有する。すなわち、レンズ系900は、負正負正正の5群で構成される。 In the second embodiment, the fourth lens group 904 has positive refractive power. That is, the lens system 900 includes five groups of negative positive negative positive positive.
 図9には、広角端、中間画角、及び望遠端のそれぞれにおける第1レンズ群901、第2レンズ群902、第3レンズ群903、第4レンズ群904及び第5レンズ群905の位置が示されている。 FIG. 9 shows the positions of the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 at the wide-angle end, the intermediate field angle, and the telephoto end, respectively. It is shown.
 表6は、レンズ系900が有するレンズのレンズデータを示す。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows lens data of lenses included in the lens system 900.
Figure JPOXMLDOC01-appb-T000006
 表6において、面番号に*が付されている面は、非球面形状を有する面である。表7は、レンズ系900において非球面形状を有する面と、非球面パラメータとを示す。「A」、「B」、「C」、「D」及び「E」は、それぞれ4次、6次、8次、10次及び12次の非球面係数である。
Figure JPOXMLDOC01-appb-T000007
In Table 6, surfaces with * in the surface number are surfaces having an aspherical shape. Table 7 shows surfaces having an aspheric shape in the lens system 900 and aspheric parameters. “A”, “B”, “C”, “D”, and “E” are fourth-order, sixth-order, eighth-order, tenth-order, and twelfth-order aspheric coefficients, respectively.
Figure JPOXMLDOC01-appb-T000007
 「x」をレンズ面の頂点からの光軸方向における距離とし、「y」を光軸に垂直な方向における高さとし、「c」をレンズの頂点における近軸曲率とした場合、非球面形状は次の式によって定義される。
 x=cy/(1+(1-(1+κ)c1/2)+Ay+By+Cy8+Dy10+Ey12
When “x” is the distance in the optical axis direction from the apex of the lens surface, “y” is the height in the direction perpendicular to the optical axis, and “c” is the paraxial curvature at the apex of the lens, the aspherical shape is It is defined by the following formula.
x = cy 2 / (1+ (1- (1 + κ) c 2 y 2 ) 1/2 ) + Ay 4 + By 6 + Cy 8 + Dy 10 + Ey 12
 表8は、広角端、中間画角及び望遠端のそれぞれにおけるレンズ系900の焦点距離、Fナンバー及び半画角を示す。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows the focal length, F-number, and half angle of view of the lens system 900 at the wide angle end, the intermediate field angle, and the telephoto end, respectively.
Figure JPOXMLDOC01-appb-T000008
 レンズ系900における広角端と望遠端との間の変倍に際して、第1レンズ群901と第2レンズ群902との間の面間隔D8、第2レンズ群902と第3レンズ群903との間の面間隔D15、第3レンズ群903と第4レンズ群904との間の面間隔D21、第3レンズ群903と第4レンズ群904との間の面間隔D29、及び第5レンズ群905と撮像素子221との間の面間隔D31が変化し得る。表9は、広角端、中間画角及び望遠端のそれぞれにおける焦点距離及び面間隔を示す。
Figure JPOXMLDOC01-appb-T000009
Upon zooming between the wide-angle end and the telephoto end in the lens system 900, the surface distance D8 between the first lens group 901 and the second lens group 902, and between the second lens group 902 and the third lens group 903. The surface distance D15, the surface distance D21 between the third lens group 903 and the fourth lens group 904, the surface distance D29 between the third lens group 903 and the fourth lens group 904, and the fifth lens group 905. The surface distance D31 between the imaging element 221 can change. Table 9 shows the focal length and the surface interval at the wide angle end, the intermediate field angle, and the telephoto end, respectively.
Figure JPOXMLDOC01-appb-T000009
 表10は、第1レンズ群901、第2レンズ群902、第3レンズ群903、第4レンズ群904及び第5レンズ群905のそれぞれの焦点距離を示す。
Figure JPOXMLDOC01-appb-T000010
Table 10 shows focal lengths of the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905.
Figure JPOXMLDOC01-appb-T000010
 図10は、レンズ系900の広角端から望遠端への変倍時に第1レンズ群901、第2レンズ群902、第3レンズ群903、第4レンズ群904及び第5レンズ群905が移動する軌跡を模式的に示す。矢印は、レンズ系900の変倍に際して移動することを示す。図9及び図10に示されるように、第1レンズ群901から撮像素子221までの間隔は、変倍時に一定である。 FIG. 10 shows that the first lens group 901, the second lens group 902, the third lens group 903, the fourth lens group 904, and the fifth lens group 905 move during zooming of the lens system 900 from the wide-angle end to the telephoto end. A locus is schematically shown. The arrow indicates that the lens system 900 moves upon zooming. As shown in FIGS. 9 and 10, the distance from the first lens group 901 to the image sensor 221 is constant at the time of zooming.
 第1レンズ群901は、物体側より、負レンズL1、負レンズL2、負レンズL3及び正レンズL4の4枚のレンズを有する。なお、第2実施例において、Liは、物体側からi番目の光学要素のレンズであることを示すための記号である。第1実施例におけるレンズに割り当てられた記号Liと同じ記号であっても、同じレンズであることを意味しない。 The first lens group 901 has four lenses, a negative lens L1, a negative lens L2, a negative lens L3, and a positive lens L4, from the object side. In the second embodiment, Li is a symbol for indicating that the lens is the i-th optical element from the object side. The same symbol as the symbol Li assigned to the lens in the first embodiment does not mean that it is the same lens.
 第1レンズ群901を、負レンズL1、負レンズL2、負レンズL3及び正レンズL4の4枚のレンズを含んで構成することで、特に入射角が大きくなる広角側の軸外光線を緩やかに曲げることができる。したがって、歪曲収差、コマ収差、及び像面湾曲などの軸外収差を良好に補正することができる。また、望遠側の球面収差を良好に補正することができる。また、第1レンズ群901が持つ負のパワーを3枚の負レンズL1~L3で分担するので、収差を抑えながら第1レンズ群901の負のパワーを強めることができる。また、レンズ系900の全長を短くすることができる。 By configuring the first lens group 901 to include the four lenses of the negative lens L1, the negative lens L2, the negative lens L3, and the positive lens L4, off-axis rays on the wide-angle side where the incident angle is particularly large can be moderated. Can be bent. Therefore, it is possible to satisfactorily correct off-axis aberrations such as distortion, coma, and field curvature. In addition, the spherical aberration on the telephoto side can be corrected well. Further, since the negative power of the first lens group 901 is shared by the three negative lenses L1 to L3, the negative power of the first lens group 901 can be increased while suppressing aberrations. Further, the overall length of the lens system 900 can be shortened.
 負レンズL1は非球面レンズである。第1レンズ群901を構成するレンズのうち物体側に配置される2つを凹レンズとし、少なくとも1つの凹レンズを非球面レンズとすることが好ましい。物体側に凹レンズを配置することがより好ましい。これにより、特に入射角が大きくなる広角側の軸外光線を緩やかに曲げることができるので、周辺光線に対する結像特性を高めることができる。また、物体側においては周辺光線が他の光線から分離されている。この物体側に非球面レンズを配置することで、歪曲収差及び像面湾曲等の収差を良好に補正することができる。 The negative lens L1 is an aspheric lens. Of the lenses constituting the first lens group 901, two lenses disposed on the object side are preferably concave lenses, and at least one concave lens is preferably an aspherical lens. More preferably, a concave lens is disposed on the object side. Thereby, since the off-axis light beam on the wide-angle side where the incident angle becomes particularly large can be bent gently, the imaging characteristics with respect to the peripheral light beam can be enhanced. Also, on the object side, the peripheral rays are separated from other rays. By disposing an aspheric lens on the object side, aberrations such as distortion and curvature of field can be favorably corrected.
 第1レンズ群901の正レンズL4の屈折力及びアッベ数は、n>1.9、v<35を満たすことが望ましい。第1レンズ群901の負レンズL1~L3のアッベ数は、全てv>60であることが望ましい。特に、第1レンズ群901において、負レンズL2及び負レンズL3のアッベ数は、v>70である。第1レンズ群901を構成する3枚の負レンズL1~L3のうち少なくとも1つのアッベ数は、v>70であることが望ましい。負レンズである第1レンズ群901に含まれる少なくとも1つの負レンズのアッベ数をv>70とすることで、特に広角側の倍率色収差を良好に補正することができる。 It is desirable that the refractive power and Abbe number of the positive lens L4 of the first lens group 901 satisfy n> 1.9 and v <35. The Abbe numbers of the negative lenses L1 to L3 in the first lens group 901 are all preferably v> 60. In particular, in the first lens group 901, the Abbe numbers of the negative lens L2 and the negative lens L3 are v> 70. It is desirable that at least one Abbe number among the three negative lenses L1 to L3 constituting the first lens group 901 is v> 70. By setting the Abbe number of at least one negative lens included in the first lens group 901, which is a negative lens, to v> 70, it is possible to satisfactorily correct lateral chromatic aberration particularly on the wide angle side.
 第2レンズ群902は、物体側より正の単レンズL5、負正の接合レンズL6及びL7、正の単レンズL8を有する。第2レンズ群902を構成するレンズのうち少なくとも1つ以上のレンズを接合レンズとすることが望ましい。第2レンズ群902に含まれる全ての凸レンズのアッベ数vが50より大きいことが好ましい。第2レンズ群902の凸レンズのアッベ数を全て50以上にすることで、第2レンズ群902の屈折力を強めつつ、色収差を抑制することができる。これにより、結像特性を高めつつ、レンズ系900を小型化することができる。 The second lens group 902 includes a positive single lens L5, negative positive cemented lenses L6 and L7, and a positive single lens L8 from the object side. It is desirable that at least one lens among the lenses constituting the second lens group 902 be a cemented lens. It is preferable that the Abbe number v of all convex lenses included in the second lens group 902 is greater than 50. By setting the Abbe numbers of the convex lenses of the second lens group 902 to 50 or more, chromatic aberration can be suppressed while increasing the refractive power of the second lens group 902. Thereby, the lens system 900 can be reduced in size while improving the imaging characteristics.
 第3レンズ群903は、絞りSTOと、負レンズL10と、負正の接合レンズL11及びL12とを有する。第4レンズ群904は、正の単レンズL13と、負正の接合レンズL14及びL15と、負正の接合レンズL16及びL17とを有する。第3レンズ群903及び第4レンズ群904はともに、少なくとも1つ以上の接合レンズを含むことが望ましい。第3レンズ群903及び第4レンズ群904が含むレンズの少なくとも1つ以上を接合レンズとすることにより、軸上色収差を良好に補正することができる。 The third lens group 903 includes a stop STO, a negative lens L10, and negative positive cemented lenses L11 and L12. The fourth lens group 904 includes a positive single lens L13, negative and positive cemented lenses L14 and L15, and negative and positive cemented lenses L16 and L17. It is desirable that both the third lens group 903 and the fourth lens group 904 include at least one cemented lens. By using at least one of the lenses included in the third lens group 903 and the fourth lens group 904 as a cemented lens, axial chromatic aberration can be favorably corrected.
 第5レンズ群905は、単レンズである。第5レンズ群905は接合レンズであってよい。第5レンズ群905はフォーカスレンズとして機能する。フォーカス機能を有する第5レンズ群905を単レンズ又は接合レンズとすることで、第5レンズ群905の駆動機構への重量負荷を軽減することができる。また、第5レンズ群905を保持する保持枠を小型化することができる。 The fifth lens group 905 is a single lens. The fifth lens group 905 may be a cemented lens. The fifth lens group 905 functions as a focus lens. By using the fifth lens group 905 having a focus function as a single lens or a cemented lens, it is possible to reduce the weight load on the drive mechanism of the fifth lens group 905. In addition, the holding frame that holds the fifth lens group 905 can be reduced in size.
 図9及び図10に示されるように、広角端から望遠端へと変倍する場合、第2レンズ群902は像面側から物体側へと一方向に移動する。レンズ系900の変倍においては、第1レンズ群901及び第2レンズ群902が主変倍成分を担い、第3レンズ群903、第4レンズ群904及び第5レンズ群905が副変倍成分を担う。第5レンズ群905は、変倍に伴う像面変動の補正も担う。 9 and 10, when zooming from the wide-angle end to the telephoto end, the second lens group 902 moves in one direction from the image plane side to the object side. In zooming of the lens system 900, the first lens group 901 and the second lens group 902 are responsible for the main zooming component, and the third lens group 903, the fourth lens group 904, and the fifth lens group 905 are the sub-magnifying components. Take on. The fifth lens group 905 is also responsible for correcting image plane variation accompanying zooming.
 第3レンズ群903は、広角端から望遠端への変倍時に、像面側から物体側へ移動する。このとき、第3レンズ群903は、第2レンズ群902との間隔が開くように移動する。広角端から望遠端への変倍時に、第4レンズ群904は、像面側から物体側へ移動する。このとき、第4レンズ群904は、第3レンズ群903との間隔が近づくように移動する。広角端から望遠端への変倍時に、第5レンズ群905は撮像素子221に向けて凸の移動軌跡で移動する。第5レンズ群905と第4レンズ群904との間隔は、広角端から予め定められた画角になるまでの間は広がる。第5レンズ群905と第4レンズ群904との間隔は、予め定められた画角から望遠端に到達するまでの間、狭くなり得る。 The third lens group 903 moves from the image plane side to the object side during zooming from the wide angle end to the telephoto end. At this time, the third lens group 903 moves so as to be spaced from the second lens group 902. At the time of zooming from the wide angle end to the telephoto end, the fourth lens group 904 moves from the image plane side to the object side. At this time, the fourth lens group 904 moves so that the distance from the third lens group 903 approaches. At the time of zooming from the wide-angle end to the telephoto end, the fifth lens group 905 moves along a convex movement locus toward the image sensor 221. The distance between the fifth lens group 905 and the fourth lens group 904 increases from the wide angle end until a predetermined angle of view is reached. The interval between the fifth lens group 905 and the fourth lens group 904 can be narrowed until reaching the telephoto end from a predetermined angle of view.
 図11は、広角端における球面収差、非点収差及び歪曲収差を示す。図12は、中間画角における球面収差、非点収差及び歪曲収差を示す。図13は、望遠端における球面収差、非点収差及び歪曲収差を示す。 FIG. 11 shows spherical aberration, astigmatism and distortion at the wide angle end. FIG. 12 shows spherical aberration, astigmatism and distortion at an intermediate angle of view. FIG. 13 shows spherical aberration, astigmatism and distortion at the telephoto end.
 図11から図13に示す球面収差図において、実線はd線(587.56nm)の値を示し、破線はg線(435.84nm)の値を示す。図11から図13に示す非点収差図において、実線はd線のサジタル像面の値を示し、破線はd 線のメリディオナル像面の値を示す。図11から図13に示す歪曲収差図は、d線についての値を示す。各収差図から、レンズ系900は諸収差が良好に補正され、優れた結像性能を有していることが分かる。 In the spherical aberration diagrams shown in FIG. 11 to FIG. 13, the solid line shows the value of d-line (587.56 nm), and the broken line shows the value of g-line (435.84 nm). In the astigmatism diagrams shown in FIGS. 11 to 13, the solid line indicates the value of the sagittal image plane of the d line, and the broken line indicates the value of the meridional image plane of the d line. The distortion diagrams shown in FIGS. 11 to 13 show values for the d-line. From each aberration diagram, it can be seen that the lens system 900 has excellent imaging performance with various aberrations corrected well.
 図14は、レンズ系900の3波長の光についての球面収差図を示す。太線はc線(656.28nm)、実線はd線(587.56nm)、破線はg線(435.84nm)の値を示す。広角端、中間画角、望遠端ともに、各波長の光について球面収差が十分小さい範囲に収まっている。軸上色収差が良好に補正されていることが分かる。 FIG. 14 is a spherical aberration diagram for the three-wavelength light of the lens system 900. The thick line indicates the value of c-line (656.28 nm), the solid line indicates the value of d-line (587.56 nm), and the broken line indicates the value of g-line (435.84 nm). At each of the wide-angle end, the intermediate field angle, and the telephoto end, the spherical aberration is within a sufficiently small range for each wavelength of light. It can be seen that the longitudinal chromatic aberration is corrected well.
 表11は、第1実施例及び第2実施例の条件式に係る数値をまとめて示す。表11において条件式1、条件式2及び条件式3に対応づけられた数値は、それぞれ負レンズL1、負レンズL2及び負レンズL3のアッベ数を示す。条件式4に対応づけられた数値は、f1/fwの値を示す。条件式5に対応づけられた数値は、f2/fwの値を示す。条件式6に対応づけられた数値は、屈折率を示す。条件式7に対応づけられた数値は、アッベ数を示す。
Figure JPOXMLDOC01-appb-T000011
Table 11 collectively shows numerical values according to the conditional expressions of the first and second embodiments. In Table 11, the numerical values associated with Conditional Expression 1, Conditional Expression 2, and Conditional Expression 3 indicate the Abbe numbers of the negative lens L1, the negative lens L2, and the negative lens L3, respectively. The numerical value associated with conditional expression 4 indicates the value of f1 / fw. The numerical value associated with conditional expression 5 indicates the value of f2 / fw. The numerical value associated with conditional expression 6 indicates the refractive index. The numerical value associated with conditional expression 7 indicates the Abbe number.
Figure JPOXMLDOC01-appb-T000011
 以上に説明したように、レンズ系300及びレンズ系900によれば、最も物体側に位置するレンズを変倍時に移動させないズームレンズを提供することができる。これにより、最も物体側に位置するレンズに関する製造誤差や駆動誤差等の影響を抑制することができる。例えば、変倍時にピントずれや像のずれ等を生じにくくすることができる。 As described above, according to the lens system 300 and the lens system 900, it is possible to provide a zoom lens that does not move the lens located closest to the object side during zooming. Thereby, it is possible to suppress the influence of a manufacturing error, a driving error, and the like regarding the lens located closest to the object side. For example, it is possible to make it difficult for focus shift, image shift, and the like to occur during zooming.
 図15は、スタビライザ800の一例を示す外観斜視図である。スタビライザ800は、移動体の他の一例である。例えば、スタビライザ800が備えるカメラユニット813が、撮像装置220と同様の構成の撮像装置を備えてよい。カメラユニット813が、レンズ装置160と同様の構成のレンズ装置を備えてよい。 FIG. 15 is an external perspective view showing an example of the stabilizer 800. The stabilizer 800 is another example of the moving body. For example, the camera unit 813 included in the stabilizer 800 may include an imaging device having the same configuration as the imaging device 220. The camera unit 813 may include a lens device having the same configuration as the lens device 160.
 スタビライザ800は、カメラユニット813、ジンバル820、及び持ち手部803を備える。ジンバル820は、カメラユニット813を回転可能に支持する。ジンバル820は、パン軸809、ロール軸810、及びチルト軸811を有する。ジンバル820は、パン軸809、ロール軸810、及びチルト軸811を中心に、カメラユニット813を回転可能に支持する。ジンバル820は、支持機構の一例である。 The stabilizer 800 includes a camera unit 813, a gimbal 820, and a handle portion 803. The gimbal 820 supports the camera unit 813 in a rotatable manner. The gimbal 820 has a pan axis 809, a roll axis 810, and a tilt axis 811. The gimbal 820 supports the camera unit 813 so as to be rotatable about a pan axis 809, a roll axis 810, and a tilt axis 811. The gimbal 820 is an example of a support mechanism.
 カメラユニット813は、撮像装置の一例である。カメラユニット813は、メモリを挿入するためのスロット812を有する。ジンバル820は、ホルダ807を介して持ち手部803に固定される。 The camera unit 813 is an example of an imaging device. The camera unit 813 has a slot 812 for inserting a memory. The gimbal 820 is fixed to the handle portion 803 via the holder 807.
 持ち手部803は、ジンバル820、カメラユニット813を操作するための各種ボタンを有する。持ち手部803は、シャッターボタン804、録画ボタン805、及び操作ボタン806を含む。シャッターボタン804が押下されることで、カメラユニット813により静止画を記録することができる。録画ボタン805が押下されることで、カメラユニット813により動画を記録することができる。 The handle portion 803 has various buttons for operating the gimbal 820 and the camera unit 813. The handle portion 803 includes a shutter button 804, a recording button 805, and an operation button 806. By pressing the shutter button 804, a still image can be recorded by the camera unit 813. When the recording button 805 is pressed, a moving image can be recorded by the camera unit 813.
 デバイスホルダ801が持ち手部803に固定されている。デバイスホルダ801は、スマートフォンなどのモバイルデバイス802を保持する。モバイルデバイス802は、WiFiなどの無線ネットワークを介してスタビライザ800と通信可能に接続される。これにより、カメラユニット813により撮像された画像をモバイルデバイス802の画面に表示させることができる。 The device holder 801 is fixed to the handle portion 803. The device holder 801 holds a mobile device 802 such as a smartphone. The mobile device 802 is communicably connected to the stabilizer 800 via a wireless network such as WiFi. Thereby, an image captured by the camera unit 813 can be displayed on the screen of the mobile device 802.
 スタビライザ800においても、カメラユニット813がスタビライザ800の他の部位と干渉することを抑制できる。 Also in the stabilizer 800, it can suppress that the camera unit 813 interferes with the other site | part of the stabilizer 800. FIG.
 以上、移動体の一例としてUAV100及びスタビライザ800を取り上げて説明した。撮像装置220と同様の構成を有する撮像装置は、UAV100及びスタビライザ以外の移動体に取り付けられてよい。 As described above, the UAV 100 and the stabilizer 800 are taken up as an example of the moving body. An imaging device having a configuration similar to that of the imaging device 220 may be attached to a moving body other than the UAV 100 and the stabilizer.
 以上において、移動体に取り付けられる撮像装置について説明した。しかし、撮像装置220と同様の構成を有する撮像装置は、移動体に取り付けられる撮像装置に限られない。撮像装置220と同様の構成は、いわゆるコンパクトデジタルカメラ等のレンズ非交換式のカメラに適用できる。レンズ装置160と同様の構成は、一眼レフレックスカメラ等のレンズ交換式カメラの交換レンズに適用できる。レンズ装置160と同様の構成は、撮像用の様々なレンズ装置の構成に適用できる。 In the above, the imaging device attached to the moving body has been described. However, the imaging device having the same configuration as that of the imaging device 220 is not limited to the imaging device attached to the moving body. A configuration similar to that of the imaging device 220 can be applied to a non-lens interchangeable camera such as a so-called compact digital camera. The same configuration as the lens device 160 can be applied to an interchangeable lens of a lens interchangeable camera such as a single-lens reflex camera. The same configuration as the lens device 160 can be applied to the configurations of various lens devices for imaging.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. The output of the previous process is not used in the subsequent process, and can be realized in an arbitrary order. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 移動体システム
50 コントローラ
52 操作部
54 表示部
100 UAV
101 UAV本体
102 インタフェース
104 制御部
106 メモリ
110 ジンバル
112 制御部
114、116、118 ドライバ
124、126,128 駆動部
130 支持機構
134、136、138 回転機構
140 撮像部
160 レンズ装置
161 駆動機構
162 制御部
163 メモリ
220、230 撮像装置
221 撮像素子
222 制御部
223 メモリ
231 撮像素子
232 制御部
233 メモリ
234 制御部
235 レンズ
300 レンズ系
301 第1レンズ群
302 第2レンズ群
303 第3レンズ群
304 第4レンズ群
305 第5レンズ群
800 スタビライザ
801 デバイスホルダ
802 モバイルデバイス
803 持ち手部
804 シャッターボタン
805 録画ボタン
806 操作ボタン
807 ホルダ
809 パン軸
810 ロール軸
811 チルト軸
812 スロット
813 カメラユニット
820 ジンバル
900 レンズ系
901 第1レンズ群
902 第2レンズ群
903 第3レンズ群
904 第4レンズ群
905 第5レンズ群
DESCRIPTION OF SYMBOLS 10 Mobile system 50 Controller 52 Operation part 54 Display part 100 UAV
101 UAV main body 102 interface 104 control unit 106 memory 110 gimbal 112 control unit 114, 116, 118 driver 124, 126, 128 drive unit 130 support mechanism 134, 136, 138 rotation mechanism 140 imaging unit 160 lens device 161 drive mechanism 162 control unit 163 Memory 220, 230 Imaging device 221 Imaging device 222 Control unit 223 Memory 231 Imaging device 232 Control unit 233 Memory 234 Control unit 235 Lens 300 Lens system 301 First lens group 302 Second lens group 303 Third lens group 304 Fourth lens Group 305 Fifth lens group 800 Stabilizer 801 Device holder 802 Mobile device 803 Handle 804 Shutter button 805 Record button 806 Operation button 807 Holder 809 Pan axis 810 B Lens axis 811 tilt axis 812 slot 813 camera unit 820 gimbal 900 lens system 901 first lens group 902 second lens group 903 third lens group 904 fourth lens group 905 fifth lens group

Claims (15)

  1.  物体側より順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群と、第4レンズ群と、正屈折力を有する第5レンズ群とを備え、広角端から望遠端への変倍時に前記第1レンズ群から撮像素子までの間隔が一定で、前記第1レンズ群と前記第2レンズ群との間隔が減少し、前記第2レンズ群と前記第3レンズ群の間隔が増加し、前記第3レンズ群と前記第4レンズ群の間隔が減少し、前記第5レンズ群が前記撮像素子に向けて凸の弧の軌跡で移動する
    ズームレンズ。
    In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, a fourth lens group, and a first lens group having a positive refractive power. A distance between the first lens group and the image pickup element is constant at the time of zooming from the wide-angle end to the telephoto end, and the distance between the first lens group and the second lens group is reduced. The distance between the second lens group and the third lens group increases, the distance between the third lens group and the fourth lens group decreases, and the fifth lens group has a convex arc toward the image sensor. A zoom lens that moves along a trajectory.
  2.  前記第1レンズ群の焦点距離をf1、全系の広角端の焦点距離をfwとすると、条件式
     -1.8<f1/fw<-1.1
    を満足する
    請求項1に記載のズームレンズ。
    Conditional expression −1.8 <f1 / fw <−1.1 where f1 is the focal length of the first lens unit and fw is the focal length of the entire system at the wide angle end.
    The zoom lens according to claim 1, wherein:
  3.  前記第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含み、前記第1レンズ群に含まれる前記負の屈折力を有する3つのレンズのアッベ数をそれぞれv1、v2及びv3とすると、条件式
     v1>60
     v2>60
     v3>60
    を満足する
    請求項1又は2に記載のズームレンズ。
    The first lens group includes four lenses having negative, negative, negative, and positive refractive power in order from the object side, and the three lenses having the negative refractive power included in the first lens group. If the Abbe numbers are v1, v2 and v3, respectively, the conditional expression v1> 60
    v2> 60
    v3> 60
    The zoom lens according to claim 1, wherein:
  4.  前記第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含み、前記第1レンズ群に含まれる前記負の屈折力を有する3つのレンズのうち物体側の2つのレンズの少なくとも1つが、非球面レンズである
    請求項1又は2に記載のズームレンズ。
    The first lens group includes four lenses having negative, negative, negative, and positive refractive power in order from the object side, and the three lenses having the negative refractive power included in the first lens group. The zoom lens according to claim 1, wherein at least one of the two lenses on the object side is an aspheric lens.
  5.  前記第2レンズ群は、少なくとも3つの凸レンズを含み、前記第2レンズ群が含む全ての前記凸レンズが条件式
     v>50
     を満足し、
     前記第2レンズ群の焦点距離をf2とすると、条件式
     1.0<f2/fw<1.8
     を満足する
    請求項1又は2に記載のズームレンズ。
    The second lens group includes at least three convex lenses, and all the convex lenses included in the second lens group satisfy the conditional expression v> 50.
    Satisfied,
    Conditional expression 1.0 <f2 / fw <1.8, where f2 is the focal length of the second lens group.
    The zoom lens according to claim 1, wherein:
  6.  前記第4レンズ群及び前記第5レンズ群の少なくとも一方は、単一のレンズ又は接合レンズから構成され、前記第4レンズ群及び前記第5レンズ群の前記少なくとも一方がフォーカス機能を担う
    請求項1又は2に記載のズームレンズ。
    2. The at least one of the fourth lens group and the fifth lens group includes a single lens or a cemented lens, and the at least one of the fourth lens group and the fifth lens group has a focus function. Or the zoom lens of 2.
  7.  前記第4レンズ群及び前記第5レンズ群の少なくとも一方は、単一のレンズ又は接合レンズから構成され、前記第4レンズ群及び前記第5レンズ群の前記少なくとも一方が防振機能を担う
    請求項1又は2に記載のズームレンズ。
    The at least one of the fourth lens group and the fifth lens group is composed of a single lens or a cemented lens, and the at least one of the fourth lens group and the fifth lens group has a vibration-proof function. The zoom lens according to 1 or 2.
  8.  前記第2レンズ群は、正の屈折力を有する非球面レンズである少なくとも1つの単レンズを含む
    請求項1又は2に記載のズームレンズ。
    The zoom lens according to claim 1, wherein the second lens group includes at least one single lens that is an aspherical lens having a positive refractive power.
  9.  前記第1レンズ群が、物体側から順に、それぞれ負、負、負、正の屈折力を有する4つのレンズを含み、前記第1レンズ群の前記正の屈折力を有するレンズの屈折率をn4、アッベ数をv4とすると、条件式
     n4>1.9
     v4<35
     を満足する
    請求項1又は2に記載のズームレンズ。
    The first lens group includes four lenses having negative, negative, negative, and positive refractive power in order from the object side, and the refractive index of the lens having the positive refractive power of the first lens group is n4. If the Abbe number is v4, the conditional expression n4> 1.9
    v4 <35
    The zoom lens according to claim 1, wherein:
  10.  前記第4レンズ群は、負屈折力を有する
    請求項1又は2に記載のズームレンズ。
    The zoom lens according to claim 1, wherein the fourth lens group has negative refractive power.
  11.  前記第4レンズ群は、正屈折力を有する
    請求項1又は2に記載のズームレンズ。
    The zoom lens according to claim 1, wherein the fourth lens group has positive refractive power.
  12.  請求項1又は2に記載のズームレンズと、
     前記撮像素子と
    を備える撮像装置。
    The zoom lens according to claim 1 or 2,
    An imaging apparatus comprising the imaging element.
  13.  請求項1又は2に記載のズームレンズを備えて移動する移動体。 A moving body that moves with the zoom lens according to claim 1.
  14.  前記移動体は無人航空機である
    請求項13に記載の移動体。
    The moving body according to claim 13, wherein the moving body is an unmanned aerial vehicle.
  15.  請求項1又は2に記載のズームレンズと、
     前記ズームレンズを変位可能に支持する支持機構と、
     前記支持機構に取り付けられている持ち手部と
    を備えるシステム。
    The zoom lens according to claim 1 or 2,
    A support mechanism that displaceably supports the zoom lens;
    And a handle portion attached to the support mechanism.
PCT/JP2016/082366 2016-10-31 2016-10-31 Zoom lens, imaging device, moving body, and system WO2018078888A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082366 WO2018078888A1 (en) 2016-10-31 2016-10-31 Zoom lens, imaging device, moving body, and system
JP2017559631A JP6443567B2 (en) 2016-10-31 2016-10-31 Zoom lens, imaging device, moving object, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082366 WO2018078888A1 (en) 2016-10-31 2016-10-31 Zoom lens, imaging device, moving body, and system

Publications (1)

Publication Number Publication Date
WO2018078888A1 true WO2018078888A1 (en) 2018-05-03

Family

ID=62024679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082366 WO2018078888A1 (en) 2016-10-31 2016-10-31 Zoom lens, imaging device, moving body, and system

Country Status (2)

Country Link
JP (1) JP6443567B2 (en)
WO (1) WO2018078888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488473A (en) * 2018-05-15 2019-11-22 嘉兴中润光学科技有限公司 Minimize the high-resolution zoom lens of the big target surface in large aperture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH07140388A (en) * 1993-11-16 1995-06-02 Olympus Optical Co Ltd Zoom lens
US20120268831A1 (en) * 2011-04-19 2012-10-25 Panavision International, L.P. Wide angle zoom lens
WO2016121966A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH07140388A (en) * 1993-11-16 1995-06-02 Olympus Optical Co Ltd Zoom lens
US20120268831A1 (en) * 2011-04-19 2012-10-25 Panavision International, L.P. Wide angle zoom lens
WO2016121966A1 (en) * 2015-01-30 2016-08-04 株式会社ニコン Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488473A (en) * 2018-05-15 2019-11-22 嘉兴中润光学科技有限公司 Minimize the high-resolution zoom lens of the big target surface in large aperture

Also Published As

Publication number Publication date
JPWO2018078888A1 (en) 2018-11-01
JP6443567B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
CN107688227B (en) Zoom lens and image pickup apparatus including the same
US9500842B2 (en) Zoom lens and image pickup apparatus including the same
JP6582315B2 (en) Lens system, imaging device, moving body and system
JP6450950B2 (en) Zoom lens, imaging device, moving object, and system
JP6519890B1 (en) Lens system, imaging device, and moving body
JP6903850B1 (en) Lens system, image pickup device, and moving object
JP6736820B1 (en) Lens system, imaging device, and moving body
JP6720454B1 (en) Lens system, imaging device, and moving body
US20220057601A1 (en) Lens system, photographing apparatus, and moving body
JP6524548B2 (en) Lens system, imaging device, moving body and system
JP6750176B2 (en) Lens system, imaging device, moving body and system
US11143836B2 (en) Zoom lens, imaging device, movable object, and system
JP6561369B2 (en) Lens system, imaging device, moving body and system
JP6443567B2 (en) Zoom lens, imaging device, moving object, and system
JP6844087B2 (en) Lens system, image pickup device, and moving object
JP2021189381A (en) Lens system, imaging apparatus and movable body
JP6911251B1 (en) Lens system, image pickup device, and moving object
JP2022160964A (en) Lens system, image capturing device, and mobile body
JP2021189382A (en) Lens system, imaging apparatus and movable body
CN112334812A (en) Lens system, imaging device, and moving object

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017559631

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919756

Country of ref document: EP

Kind code of ref document: A1