WO2018077097A1 - 一种无线路由切换方法、接入路由器及通信终端 - Google Patents

一种无线路由切换方法、接入路由器及通信终端 Download PDF

Info

Publication number
WO2018077097A1
WO2018077097A1 PCT/CN2017/106726 CN2017106726W WO2018077097A1 WO 2018077097 A1 WO2018077097 A1 WO 2018077097A1 CN 2017106726 W CN2017106726 W CN 2017106726W WO 2018077097 A1 WO2018077097 A1 WO 2018077097A1
Authority
WO
WIPO (PCT)
Prior art keywords
access router
terminal
notification message
address
access
Prior art date
Application number
PCT/CN2017/106726
Other languages
English (en)
French (fr)
Inventor
刘大伟
胡士辉
于德雷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018077097A1 publication Critical patent/WO2018077097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0019Control or signalling for completing the hand-off for data sessions of end-to-end connection adapted for mobile IP [MIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of communications, and in particular, to a wireless router switching method, an access router, and a communication terminal.
  • communication terminals such as mobile phones and tablet computers can access the network through wireless access routers.
  • wireless access routers With the development of network communication technologies and user requirements, higher and higher requirements are also imposed on wireless access technologies.
  • a communication terminal or a mobile node (Mobile Node, MN for short) is in the process of moving, it needs to switch between two access points (APs).
  • APs access points
  • IP Internet Protocol
  • MIPv6 The MobileIPv6 protocol, the MIPv6 protocol forwards a data packet by establishing a bidirectional tunnel between the original access router (PAR) and the new access router (NAR) to implement continuous communication.
  • PAR original access router
  • NAR new access router
  • the mobile node moves faster, the accessed NAR is a non-predicted NAR, so that the forwarded data packet is lost, resulting in a handover failure.
  • the embodiment of the invention provides a wireless route switching method, an access router and a communication terminal, so as to prevent terminal data packet loss.
  • the embodiment of the present invention provides a method for switching a wireless router, the method includes: receiving, by a first access router, a first notification message sent by a terminal, where the first notification message is used to notify a first access router to buffer To the terminal data packet of the terminal, the first notification message includes the terminal identifier of the terminal and the first Internet Protocol number IP address of the terminal, where the first notification message is sent when the terminal switches from the first access router to the second access router.
  • the first access router caches the terminal data packet based on the first notification message; then the first access router receives the second notification message sent by the terminal, where the second notification message includes the terminal identifier of the terminal and the second IP address, where the The second IP address is an IP address corresponding to the second access router; the first access router changes the destination IP address of the terminal data packet from the first IP address to the second IP address to obtain an updated Terminal data packet; finally, when the first access router discovers that the terminal switches from the first access router to the second access router, the first access router The terminal sends data packets updated.
  • the first access router buffers the terminal data packet by sending the first notification message by the terminal, so that the first access router can buffer the terminal data packet in the time period of the terminal handover process, and After the terminal handover is completed, the first access router sends the terminal data packet to the terminal, thereby solving the problem of the terminal data packet loss in the terminal handover process.
  • the HI in the foregoing process is reduced in comparison with the control signaling overhead when the bidirectional tunnel is established between the first access router and the second access router in the prior art.
  • the signaling overhead of the HACK message so that the switching delay of the control packet between the access routers can be reduced.
  • the terminal data packet is then sent from the first access router to the second interface through the bidirectional tunnel.
  • the router it is necessary to add a certain length of the header before the terminal data packet, resulting in the actual length of the transmitted terminal data packet.
  • the actual link length is exceeded, so that the fragmentation packet is generated.
  • the length of the terminal data packet is the same before and after the modification, thereby avoiding the possibility of generating a fragmentation packet.
  • the second notification message is further used to notify the first access router to send the terminal data packet to the terminal; at this time, the first access router discovers that the terminal switches from the first access router to the second access router.
  • the method includes: after receiving the second notification message, the first access router determines that the terminal switches from the first access router to the second access router.
  • the first access router is triggered to send the terminal data packet by sending the second notification message by the terminal, so that the first access router can be notified to send the terminal data packet after the terminal is switched, so that the trigger is accurate and timely.
  • the method further includes: the first access router sends a first notification message response message to the terminal, so that the wireless link of the terminal is The first notification message is switched from the first access router to the second access router under the trigger of the message.
  • the wireless link switching of the terminal is triggered by the first notification message response message, so that the terminal can perform the handover in time.
  • an embodiment of the present invention provides a method for switching a wireless router, where the method includes: when a terminal switches from a first access router to a second access router, the terminal acquires access of the second access router. Gateway information, where the access gateway information includes an internet protocol number IP address of the second access router and prefix information of the second access router; and then the terminal sends a first notification message to the first access router, where the first notification message is sent And configured to notify the first access router to buffer the terminal data packet sent to the terminal, where the first notification message includes the terminal identifier of the terminal and the first IP address of the terminal; and then the terminal sets the IP address of the terminal by the first based on the access gateway information.
  • the last terminal receives the updated terminal data packet sent by the first access router, and the terminal data packet is the first access router at the terminal
  • the first access router is buffered before switching to the second access router, and the updated terminal data packet is changed by the first access router from the first IP address to the destination IP address of the terminal data packet. Obtained after the second IP address.
  • the first access router buffers the terminal data packet by sending the first notification message by the terminal, so that the first access router can buffer the terminal data packet in the time period of the terminal handover process, and After the terminal handover is completed, the first access router sends the terminal data packet to the terminal, thereby solving the problem of the terminal data packet loss in the terminal handover process.
  • the HI in the foregoing process is reduced in comparison with the control signaling overhead when the bidirectional tunnel is established between the first access router and the second access router in the prior art.
  • the signaling overhead of the HACK message so that the switching delay of the control packet between the access routers can be reduced.
  • the terminal data packet is then sent from the first access router to the second interface through the bidirectional tunnel.
  • the router enters the router it is required to add a certain length of the packet header before the terminal data packet, so that the actual length of the transmitted terminal data packet may exceed the actual link length, thereby generating a fragmentation packet, and in the embodiment of the present invention, the terminal data packet The length is the same before and after the modification, avoiding the possibility of fragmentation.
  • the second notification message is further configured to notify the first access router to send the terminal data packet to the terminal, and the terminal may send the second notification message to the first access router, where the terminal is connected from the first After the ingress router switches to the second access router, the terminal sends a second notification message to the first access router.
  • the first access router is triggered to send the terminal data packet by sending the second notification message by the terminal, so that the first access router can be notified to send the terminal data packet after the terminal is switched, so that the trigger is accurate and timely.
  • the terminal when the terminal sends the first notification message to the first access router, the terminal may be: When the received access signal strength of the first access router is less than or equal to the first preset threshold, the terminal sends a first notification message to the first access router; or, the second access router received by the terminal When the access signal strength is greater than or equal to the second preset threshold, the terminal sends a first notification message to the first access router.
  • the terminal When the signal strength of the first access router becomes weak or the signal strength of the second access router becomes strong, the terminal is about to switch, so the terminal is triggered by the signal strength of the first access router or the second access router. Sending a first notification message to the first access router to trigger the first access router to buffer data, so that the terminal data packet of the first access router is cached in time.
  • the method further includes: acquiring, by the terminal, an IP address of the first access router; and sending, by the terminal, the second notification message to the first access router, where the terminal is based on the IP address of the first access router An access router sends a second notification message.
  • the terminal sends the second notification message the access router accessed by the terminal is the second access router, and the IP address of the first access router is obtained, and then the IP address is sent based on the IP address, so that the second notification is sent. The message was sent accurately.
  • the method further includes: the terminal receiving the first notification message response message returned by the first access router; the terminal is from the first access router to The second access router switches, and the terminal switches from the first access router to the second access router triggered by the first notification message response message.
  • the wireless link switching of the terminal is triggered by the first notification message response message, so that the terminal can perform the handover in time.
  • an embodiment of the present invention provides an access router, where the access router has the functions of implementing the foregoing first aspect, and the functions may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides an access router, where the access router includes a processor, a receiver, and a transmitter, and the processor is configured to support an access router to perform a corresponding function in the foregoing method.
  • the receiver and transmitter are used to support communication between the access router and the terminal.
  • the access router may further include a memory for coupling with the processor, which stores program instructions and data necessary for accessing the router.
  • an embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing access router for the third aspect, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a communication terminal, where the communication terminal has the functions of implementing the foregoing second aspect, and the functions may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present invention provides a communication terminal, where the communication terminal includes a processor, a receiver, and a transmitter, and the processor is configured to support the communication terminal to perform a corresponding function in the foregoing method.
  • the receiver and transmitter are used to support communication between the communication terminal and the access router.
  • the communication terminal may further include a memory for coupling with the processor, which stores program instructions and data necessary for the communication terminal.
  • an embodiment of the present invention provides a computer storage medium for storing the computer software instructions used in the foregoing communication terminal for the sixth aspect, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a wireless routing switching system, where the system includes the access router, the communication terminal, and the second access router.
  • the first access router buffers the terminal data packet by sending the first notification message by the terminal, so that the first access router can buffer the time period of the terminal handover process.
  • the terminal data packet and after the terminal handover is completed, the first access router sends the terminal data packet to the terminal, thereby solving the problem of the terminal data packet loss during the terminal handover process.
  • FIG. 1 is a network architecture diagram of a wireless routing switching system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a fast mobile IPv6 protocol handover process according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for switching a wireless router according to an embodiment of the present invention
  • FIG. 4 is a network architecture diagram of another wireless routing switching system according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another wireless route switching method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an access router according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another access router according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another communication terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a wireless route switching method, an access router and a communication terminal, so as to prevent terminal data packet loss.
  • terminal Refers to a user equipment with wireless connectivity, also known as a mobile node (MobileNode, MN for short), which refers to the mobile version 6 Internet Protocol IPv6 host, which can change its IPv6 address without changing the access point.
  • the terminal may be, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device, such as a smart watch, a smart bracelet, a pedometer. Wait.
  • MID mobile internet device
  • IP address is a unified address format provided by the IP protocol. It assigns a logical address to each network and each host on the Internet. In the current Internet, the IP address is separated by means of an identity (ID) and a location identifier (Locator), so that the IP can serve as the identity and location identifier of the host at the same time.
  • ID represents the host ID of the terminal and is unique. Locator indicates where the terminal is currently located The location, ie the IP address, the Locator will change as the terminal accesses the different networks.
  • the MN uses two different IPv6 addresses to distinguish between identity and location identity.
  • HoA Home Address
  • the MN uses HoA to identify its identity and uses the care-of address (Care-ofAddress). (hereinafter referred to as CoA) to identify its current location;
  • CoA care-of address
  • FIG. 1 is a network architecture diagram of a wireless routing switching system according to an embodiment of the present invention.
  • the network architecture diagram shown in FIG. 1 includes a terminal 110, a first access router 120, and a second interface. Into the router 130.
  • the terminal 110 accesses from the first access router 120 to the second access router 130 according to the signal strength of the first access router 120 and the second access router 130 during the mobile process.
  • FIG. 2 illustrates a Fast Moving IPv6 (FMIPv6) protocol handover procedure according to an embodiment of the present invention.
  • the handover process is a pre-handover mode based on a Layer 2 trigger (hereinafter referred to as L2), that is, when the L2 trigger predicts that a handover is about to occur, providing a new access to the MN while maintaining communication with the current network.
  • L2 Layer 2 trigger
  • the point information and the corresponding subnet information are used to perform the care-of address configuration and Duplicate Address Detection (DAD) process in advance.
  • DAD Duplicate Address Detection
  • the newly configured CoA can be used for communication, thereby reducing the three-layer handover. Delay, improve the real-time communication.
  • the handover process consists of three phases:
  • the first phase is based on the link layer handover prediction and handover initialization process; in this process, the MN detects that a handover will occur, pre-completes the configuration of the new care-of address and the DAD detection process using the RtSolPr message and the PrRtAdv message, the new care-of address It can be used directly after the MN enters the new access router area;
  • the second phase is the process of performing the binding update and the tunnel establishment between the former Access Router (PAR) and the New Access Router (NAR).
  • the PAR is also shown in Figure 1.
  • the first access router, the NAR is also the second access router shown in FIG. 1; when the MN is about to switch to the new network, the binding update is first performed by using a fast binding update (FBU) message.
  • FBU fast binding update
  • the process then establishes a bidirectional tunnel between the PAR and the NAR through a Handover (HI) message and a Handover Acknowledgement (HACK) message, which is used to forward the binding update process to the MN. data pack.
  • HI Handover
  • HACK Handover Acknowledgement
  • the last stage is the process of forwarding the buffered data packets; the MN notifies the NAR to forward the buffered data packets by sending an Unsolicited Router Advertisements (UNA) message.
  • UAA Unsolicited Router Advertisements
  • the PAR and the NAR interact through two messages to establish a tunnel relationship, and then the PAR sends a Fack message to the MN and forwards the packet addressed to the MN to the NAR1.
  • the MN accesses the NAR2, so that the data packet buffered in the NAR1 is not successfully sent to the NAR2 newly accessed by the NM, thereby causing packet loss.
  • the embodiment of the present invention is based on the ID/Locator separation architecture of the terminal, when the terminal is in the first link established with the PAR.
  • the terminal notifies the PAR to buffer the terminal data packet; after the terminal accesses the NAR, the PAR modifies the destination IP address of the terminal data packet and forwards the destination IP address to the terminal, so as to solve the situation that the terminal loses the packet when the terminal accesses the non-predicted link. And further, the possibility of generating a fragmented packet when forwarding a buffered packet is avoided.
  • the format of the message between the communication devices may be a Mobility Header Message, as shown in FIG. 3, and FIG. 3 is provided in the embodiment of the present invention.
  • FIG. 3 Schematic diagram of the Mobility Header Message message form.
  • IPv6 the value of the next extension header of IPv6
  • the fields of the header are explained as follows:
  • Next Header used to indicate the protocol number of the next extension header. If there is no extension header, it is set to IPPROTO_NONE (59).
  • Header Length in 8-byte units, excluding the first 8 bytes.
  • Checksum is a 16-bit unsigned integer.
  • MessageData is a variable data field for storing different message content.
  • the function of the HS message is to notify the first access router to buffer the data packet, or to notify the second access router to forward the data packet.
  • the specific format of the message is as follows:
  • Sequence indicates a 16-bit unsigned integer.
  • Locator Type 0 indicates that the Locator stores the old IPv6 address (Previous Locator); 1 indicates that the Locator stores the new IPv6 address (New Locator).
  • Lifetime The effective time of the Locator corresponding to the Host Identifier in the access router.
  • Host Identifer The host ID of the terminal.
  • the field MH Type value of the Mobility Header is 2, it is a HACK message.
  • the role of the HACK message as a response message to the HS.
  • the format of the message body is as follows:
  • Traffic Type Business Type. 0 is used to represent control packets; 1 is used to represent data packets; 2 is used to represent control and data packets.
  • Locator Type 0 is used to indicate that the Locator stores the Previous Locator; 1 is used to indicate that the Locator stores the New Locator.
  • Sequence 16-bit unsigned integer. The value of the sequence field in the HS message received.
  • Host Identifier Host ID of the UE. The value of the Host Identifier field in the HS message received.
  • Locator ipv6 address. The value of the Locator field in the received HS message.
  • FIG. 3 is a schematic flowchart diagram of a method for switching a wireless route according to an embodiment of the present invention. As shown in FIG. 3, the method may include the following steps:
  • Step S301 The terminal acquires access gateway information of the second access router.
  • the access gateway information includes an internet protocol number IP address of the second access router, and the The prefix information of the second access router.
  • the terminal first accesses the network through the first access router, and the terminal is in a mobile state.
  • the terminal moves to the overlapping area of the first access router and the second access router, the terminal will receive the terminal.
  • the signal of the second access router at which time the terminal will be able to switch from the first access router to the second access router.
  • the terminal acquires access gateway information of the second access router by using a first radio link established with the first access router.
  • the terminal obtains the information of the access gateway of the second access router by sending an RtSloPr message to the first access router and receiving the PrRtAdr message returned by the first access router.
  • the access gateway information includes an IP address of the second access router, a physical address (Media Access Control, MAC address for short), and prefix information of the second access router, where the prefix information may include the second The IP address prefix of the access router and the IP address prefix length of the second access router.
  • the terminal obtains the gateway information of the second access router, so that when the terminal wants to access the second access router, the IP address of the terminal is configured to correspond to the second access router based on the gateway information. IP address to enable the terminal to access the second access router.
  • Step S302 The terminal sends a first notification message to the first access router, where the first access router receives the first notification message sent by the terminal.
  • the first notification message is used to notify the first access router to buffer a terminal data packet sent to the terminal, where the first notification message includes a terminal identifier ID of the terminal and a first end of the terminal.
  • the Internet Protocol Number IP address the first notification message is sent when the terminal switches from the first access router to the second access router.
  • the first access router is used to trigger the first access router to buffer the terminal data packet sent to the terminal, so that the first access router can receive the router switching and cache the terminal data at the moment.
  • the package is designed to solve the problem that the prior art cannot save the data packet during the handover process and prevent the terminal data packet from being lost.
  • the first IP address is an IP address configured when the terminal accesses the gateway through the first access router.
  • the first IP address of the terminal can be configured as 10::2.
  • the data packet may be cached by the terminal identifier and the first IP address in the first notification message, where the terminal data packet refers to a service data packet when the terminal communicates with the network through the first access router.
  • the first notification message may be the foregoing HS message based on the Mobility Header Message format.
  • the first notification message may also be in the form of other messages.
  • the terminal sends the first notification message to the first access router, including:
  • the terminal When the access signal strength of the first access router received by the terminal is less than or equal to a first preset threshold, the terminal sends a first notification message to the first access router; or
  • the terminal When the access signal strength of the second access router received by the terminal is greater than or equal to a second preset threshold, the terminal sends a first notification message to the first access router.
  • the first preset threshold is used to indicate that the signal strength of the first access router cannot meet the requirement of the terminal access
  • the second preset threshold is used to indicate the signal strength of the second access router.
  • the terminal moves the second location from the first location, wherein the first location is closer to the first access router and the second location is farther away from the second access router Therefore, in the process of the mobile terminal, the access signal strength of the first access router will become weaker and weaker, and the access signal strength of the second access router Will become stronger and stronger, so that when the terminal detects that the access signal strength of the first access router is less than or equal to a preset value, or when the terminal detects that the access signal strength of the second access router is greater than or equal to one When the preset value is received, the triggering terminal sends a first notification message to the first access router.
  • the terminal needs to notify the first access router to buffer the terminal data packet sent to the terminal at this moment, so that the terminal data packet in the process of the terminal switching from the first access router to the second access router is not lost.
  • the first access router after the first access router receives the first notification message sent by the terminal, the first access router sends a first notification message response message to the terminal, so that the The wireless link switches from the first access router to the second access router triggered by the first notification message response message.
  • the terminal receives the first notification message response message returned by the first access router; the radio link of the terminal is triggered by the first notification message response message from the first connection The ingress router switches to the second access router. The terminal may also be triggered by the first notification message response message to perform step S304 and switch.
  • the terminal sends the first notification message after a certain time interval.
  • the terminal sends the first notification message response message after sending the first notification message to the first access router for a preset number of times, the terminal performs the action of switching the link.
  • the first notification message response message may be a HACK message based on the Mobility Header Message format, for responding to the HS message.
  • the first notification message response message may also be in the form of other messages.
  • Step S303 The first access router caches the terminal data packet based on the first notification message.
  • Step S304 The terminal changes the IP address of the terminal from the first IP address to the second IP address based on the access gateway information.
  • the second IP address is an IP address corresponding to the second access router. For example, when the IP address of the second access router is 11::1 and 12::3, the terminal can configure the second IP address to be 11::2, so that the terminal is based on the second IP.
  • the address establishes a network connection through the second access router access gateway to implement router switching of the terminal.
  • the IP address of the terminal needs to be configured as an IP address corresponding to the second access router, so that the second access router can be successfully accessed.
  • DAD Duplicate Address Detection
  • the DAD may not be performed.
  • step S303 may be performed first, and then step S304 may be performed.
  • Step S304 may be performed first, then step S303 may be performed, or step S303 may be performed. It is executed at the same time as step S304, which is not limited in the embodiment of the present invention.
  • Step S305 The terminal sends a second notification message to the first access router, where the first access router receives the second notification message sent by the terminal.
  • the second notification message includes a terminal identifier of the terminal and a second IP address, where the second IP address is an IP address corresponding to the second access router.
  • the second notification message may be an HS message.
  • the second notification message may also be in the form of other messages.
  • Step S306 The first access router changes the destination IP address of the terminal data packet from the first IP address to the second IP address to obtain the updated terminal data packet.
  • the first access router searches, according to the terminal identifier carried in the second notification message, whether the first access router caches the terminal data packet corresponding to the terminal identifier, if not If there is a terminal data packet corresponding to the terminal identifier, the notification message is sent to notify the terminal to respond to the second notification message. If there is a terminal data packet corresponding to the terminal identifier, the destination IP address of the terminal data packet is sent. Modifying to the second IP address to obtain a new terminal data packet, and then transmitting the new data packet to the terminal.
  • the response message of the second notification message may be a HACK message based on the Mobility Header Message format.
  • Step S307 After the first access router discovers that the terminal switches from the first access router to the second access router, the first access router sends the updated terminal data packet to the terminal, and the terminal receives the first access router to send. Updated terminal packet.
  • the terminal IP address adopts an ID/Locator-based separation architecture, so that even if the gateway is low, the implementation of the solution is not affected, and the triangular routing problem is completely eliminated.
  • the second notification message is further configured to notify the first access router to send the terminal data packet to the terminal;
  • the terminal After the terminal switches from the first access router to the second access router, the terminal sends the second notification message to the first access router.
  • the first access router discovering that the terminal switches from the first access router to the second access router includes:
  • the first access router After receiving the second notification message, the first access router determines that the terminal switches from the first access router to the second access router.
  • the first access router discovers that the terminal switches from the first access router to the second access router, and may also detect that the terminal does not access the network through the first access router by using the first access router.
  • the buffered terminal data packet may be sent to the terminal, where the first access router may receive the terminal.
  • the notification message it is confirmed that the terminal has switched, thereby triggering the sending terminal data packet; the first access router may also detect whether the terminal has been switched by itself, thereby determining whether to send the terminal data packet, so that the first access router is triggered to send the terminal data.
  • the package is more flexible.
  • the foregoing method further includes:
  • the terminal acquires an IP address of the first access router
  • the terminal sends a second notification message to the first access router based on an IP address of the first access router.
  • the first access router is notified to send the second notification message, and the first access router and the second connection are The Layer 2 link of the ingress router has been disconnected, so the IP address of the first access router needs to be obtained first, and then the second notification message is sent to the first access router based on the first access router.
  • the IP address of the first access router may be that the terminal is in access. Stored when the first access router.
  • the terminal may obtain the access gateway information of the third access router before the terminal acquires the access gateway information of the second access router, where
  • the third access router can be understood as the access router predicted by the terminal, but in the process of the fast mobile terminal moving, the access router that the terminal actually selects to access is the second access router, so the second access is obtained at this time.
  • the router access gateway information is used to replace the access gateway information of the third access router that was originally acquired.
  • the terminal packet forwarding error occurs, and the terminal data packet is lost, and the present invention
  • the embodiment directly forwards the buffered terminal data packet to the terminal through the first access router to prevent packet loss.
  • the terminal After the terminal switches to the second wireless link established with the second access router, the terminal sends an ID Locator Mapping System (ILMS) and a communication node separated based on the ID/Locator ( The Correspondent Node (CN) sends an ID/Locator update request, telling it that the Locator has changed, and then the terminal and the CN can communicate directly through the NAR.
  • ILMS ID Locator Mapping System
  • CN Correspondent Node
  • the terminal when the terminal switches from the first access router to the second access router, the terminal sends a first notification message to the first access router to trigger the first access router to buffer the terminal data. Packet, and then, after the terminal switches from the first access router to the second access router, the first access router changes the IP address of the buffered terminal data packet from the first IP address to the second IP address, and then passes the first The second access router sends to the terminal.
  • the first access router buffers the terminal data packet by sending the first notification message by the terminal, so that the first access router can buffer the terminal data packet in the time period of the terminal handover process, and after the terminal handover is completed, the first connection
  • the ingress router sends the terminal data packet to the terminal, thereby solving the problem of the loss of the terminal data packet in the terminal handover process.
  • control signaling overhead when establishing a bidirectional tunnel between the first access router and the second access router is reduced in the embodiment of the present invention.
  • the signaling overhead of the HI and HACK messages in the foregoing process can reduce the switching delay of control packets between access routers.
  • the terminal data packet is then sent from the first access router to the second interface through the bidirectional tunnel.
  • the router enters the router it is required to add a certain length of the packet header before the terminal data packet, so that the actual length of the transmitted terminal data packet may exceed the actual link length, thereby generating a fragmentation packet, and in the embodiment of the present invention, the terminal data packet The length is the same before and after the modification, avoiding the possibility of fragmentation.
  • FIG. 4 is a network architecture diagram of another wireless routing switching system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the present invention.
  • a schematic flowchart of another wireless routing switching method provided by the embodiment where the terminal uses the mobile node MN to indicate that the first access router is a PAR, the second access router is a NAR, and the original access point (Previous Access Point, referred to as The PAP is a wireless access point corresponding to the PAR, and the new access point (NAP) is a wireless access point corresponding to the NAR.
  • the PAP is a wireless access point corresponding to the PAR
  • the new access point (NAP) is a wireless access point corresponding to the NAR.
  • the same or similar content as the method shown in FIG. 3 can be referred to the detailed description of the corresponding embodiment of FIG. 3, and details are not described herein again.
  • each entity is configured as follows:
  • IP Locator
  • CN: ID is 2F::2, and IP address (Locator) is 12::1.
  • IP addresses are 11::1 and 12::3.
  • MN The configuration in the PAP link is: ID (identification) is 2F00::1, IP address (Locator) is 10::2; configuration in the NAP link is, ID (identification) is 2F00::1 The IP address (Locator) is 11::2.
  • the method may include the following steps:
  • Step S501 The MN discovers the NAP during the moving process.
  • Step S502 The MN and the PAR acquire the access gateway information of the NAR through the RtSloPr message and the PrRtAdr message.
  • the IP address of the NAR in the access gateway information is 11::1.
  • Step S503 when the MN finds that the PAP signal is getting weaker and weaker, and the NAP signal is getting stronger and stronger, and reaches a certain threshold, the MN sends an HS message to the PAR, requesting the PAR cache terminal identifier to be 2F00::1 terminal data packet. After receiving the HS message, the PAR sends a HACK response message to the MN, and starts to buffer the terminal data packet whose terminal identifier is 2F00::1, and the IP address of the terminal data packet is 10::2.
  • step S504 the MN configures its own IP address to be 11::2 from 10::2.
  • Step S505 The MN disconnects from the PAP, and establishes a connection with the NAP to implement Layer 2 link switching.
  • Step S506 The MN sends an UNA message to the NAR, where the UNA message is used to notify the NAR of the correspondence between the IP address and the MAC address of the MN.
  • Step S507 The MN sends an HS message to the PAR, where the HS message is used to notify the PAR to send the terminal data packet to the MN.
  • Step S508 The PAR finds the terminal data packet by using the terminal identifier 2F00::1, and modifies the destination IP address in the terminal data packet from 10::2 to 11::2, and then forwards the terminal data packet to the MN.
  • Step S509 the MN sends an ID/Locator update request to the ILMS and the CN.
  • the PAR buffers the terminal data packet, and then notifies the PAR to send the terminal data packet after the MN handover.
  • FIG. 6 is a schematic structural diagram of an access router according to an embodiment of the present invention, which is used to implement a wireless router switching method disclosed in an embodiment of the present invention.
  • an access router 600 according to an embodiment of the present invention may include:
  • the receiving module 610 The receiving module 610, the caching module 620, the changing module 630, and the sending module 640.
  • the receiving module 610 is configured to receive a first notification message sent by the terminal, where the first notification message is used to notify the access router to buffer a terminal data packet sent to the terminal, where the first notification message includes the terminal The terminal identifier and the first Internet Protocol number IP address of the terminal, where the first notification message is sent when the terminal switches from the access router to the second access router.
  • the cache module 620 is configured to cache the terminal data packet based on the first notification message.
  • the receiving module 610 is further configured to receive a second notification message that is sent by the terminal, where the second notification message includes a terminal identifier of the terminal and a second IP address, where the second IP address is The IP address corresponding to the second access router.
  • the changing module 630 is configured to change the destination IP address of the terminal data packet from the first IP address to the second IP address to obtain an updated terminal data packet.
  • the sending module 640 is configured to: after the terminal is found to be handed over from the access router to the second access router, send the updated terminal data packet to the terminal.
  • the second notification message is further configured to notify the access router to send the terminal data packet to the terminal;
  • the sending module 640 performs the action of discovering that the terminal switches from the access router to the second access router, specifically:
  • the sending module 640 is further configured to:
  • the terminal when the terminal switches from the access router 600 to the second access router, the terminal sends a first notification message to the access router 600 to trigger the access router to buffer the terminal data packet, and then After the terminal switches from the access router 600 to the second access router, the access router 600 changes the IP address of the buffered terminal data packet from the first IP address to the second IP address, and then sends the IP address through the second access router.
  • the access router is configured to trigger the access router to buffer the terminal data packet by sending the first notification message by the terminal, so that the access router can buffer the terminal data packet in the time period of the terminal handover process, and after the terminal handover is completed, the access router uses the terminal data.
  • the packet is sent to the terminal to solve the problem of the loss of the terminal data packet in the terminal handover process.
  • the HI and HACK in the foregoing process are reduced as compared with the control signaling overhead when the bidirectional tunnel is established between the access router and the second access router.
  • the signaling overhead of the message which can reduce the switching delay of control messages between access routers.
  • the access router by establishing a bidirectional tunnel between the access router and the second access router, and then transmitting the terminal data packet from the access router to the second access router through the bidirectional tunnel, It is necessary to add a certain length of the packet header before the terminal data packet, so that the actual length of the transmitted terminal data packet may exceed the actual link length, thereby generating a fragmentation packet.
  • the length of the terminal data packet is modified. The same before and after, to avoid the possibility of fragmentation.
  • the access router 600 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • FIG. 7 is a schematic structural diagram of another access router according to an embodiment of the present invention. As shown in FIG. 7, the access router 700 includes:
  • the processor 702 can also be a controller, which is represented as "controller/processor 702" in FIG.
  • the transmitter/receiver 701 is configured to support an access router 700 (specifically, a PGW or an edge node) to transmit and receive information between the terminal and the second access router in the foregoing embodiment, and to support the access.
  • the router communicates with other devices.
  • the processor 702 performs various functions for communicating with the access router 700.
  • uplink signals from the terminal and the second access router are received via an antenna, demodulated by the receiver 701 (eg, demodulated into a baseband signal), and further processed by the processor 702 Processing is performed to recover the traffic data and signaling information sent by the access router 700.
  • business data The and signaling messages are processed by the processor 702 and modulated by the transmitter 701 (e.g., modulating the baseband signal into a high frequency signal) to produce a downlink signal for transmission to the terminal and the second access router via the antenna.
  • the above demodulation or modulation function may also be completed by the processor 702.
  • the processor 702 is further configured to perform the corresponding steps in the foregoing method embodiments, and/or other processes of the technical solutions described in the embodiments of the present invention.
  • the access router 700 may further include a memory 703 for storing program codes and data of the access router 700. Further, the access router 700 can also include a communication unit 704.
  • the communication unit 704 is configured to support the access router to communicate with the terminal. For example, in an LTE system, the communication unit 704 may also be an S1-MME interface for supporting an access router to communicate with a Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • FIG. 7 only shows a simplified design of access router 700.
  • the access router 700 can include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all access routers that can implement the embodiments of the present invention are in the embodiment of the present invention. Within the scope of protection.
  • FIG. 8 is a schematic structural diagram of a communication terminal according to an embodiment of the present invention, which is used to implement a wireless router switching method disclosed in an embodiment of the present invention.
  • a communication terminal 800 according to an embodiment of the present invention may include:
  • the obtaining module 810, the sending module 820, the changing module 830, and the receiving module 840 are the obtaining module 810, the sending module 820, the changing module 830, and the receiving module 840.
  • the obtaining module 810 is configured to acquire access gateway information of the second access router, where the communication terminal is switched from the first access router to the second access router, where the access gateway information includes An internet protocol number IP address of the second access router and prefix information of the second access router.
  • the sending module 820 is configured to send a first notification message to the first access router, where the first notification message is used to notify the first access router to buffer a terminal data packet sent to the communication terminal,
  • the first notification message includes a terminal identifier of the communication terminal and a first IP address of the communication terminal.
  • the change module 830 is configured to change, according to the access gateway information, the IP address of the communication terminal from the first IP address to the second IP address, and send a second notification message to the first access router.
  • the second notification message includes a terminal identifier of the communication terminal and a second IP address, and the second IP address is an IP address corresponding to the second access router.
  • the receiving module 840 is configured to receive the updated terminal data packet sent by the first access router, where the terminal data packet is the first access router from the first access router to the second Cached before the access router switches, the updated terminal data packet is changed after the first access router changes the destination IP address of the terminal data packet from the first IP address to the second IP address. owned.
  • the second notification message is further configured to notify the first access router to send the terminal data packet to the communication terminal;
  • the changing module 830 performs the action of sending the second notification message to the first access router, the following is specifically:
  • the communication terminal 800 After the communication terminal 800 switches from the first access router to the second access router, the communication terminal sends the second notification message to the first access router.
  • the sending, by the sending module 820, sending the first notification message to the first access router is specifically:
  • the obtaining module 810 is further configured to acquire an IP address of the first access router.
  • the changing module 830 performs the action of sending the second notification message to the first access router, the following is specifically:
  • the receiving module 840 is further configured to receive a first notification message response message returned by the first access router.
  • the communication terminal 800 When the communication terminal 800 performs an action of switching from the first access router to the second access router, the following is specifically:
  • the communication terminal 800 when the communication terminal 800 is switched from the first access router to the second access router, the communication terminal 800 sends a first notification message to the first access router to trigger the first access.
  • the router caches the terminal data packet, and then after the communication terminal 800 switches from the first access router to the second access router, the first access router changes the IP address of the buffered terminal data packet from the first IP address to the second IP address. After the address, it is sent to the terminal through the second access router.
  • the first access router buffers the terminal data packet by transmitting the first notification message by the communication terminal 800, so that the first access router can buffer the terminal data packet in the time period of the terminal handover procedure, and after the communication terminal 800 completes the handover, The first access router sends the terminal data packet to the terminal, thereby solving the problem of the loss of the terminal data packet in the handover process of the communication terminal 800.
  • control signaling overhead when establishing a bidirectional tunnel between the first access router and the second access router is reduced in the embodiment of the present invention.
  • the signaling overhead of the HI and HACK messages in the foregoing process can reduce the switching delay of control packets between access routers.
  • the terminal data packet is then sent from the first access router to the second interface through the bidirectional tunnel.
  • the router enters the router it is required to add a certain length of the packet header before the terminal data packet, so that the actual length of the transmitted terminal data packet may exceed the actual link length, thereby generating a fragmentation packet, and in the embodiment of the present invention, the terminal data packet The length is the same before and after the modification, avoiding the possibility of fragmentation.
  • the communication terminal 800 is presented in the form of a unit.
  • a "unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the functionality described above. .
  • ASIC application-specific integrated circuit
  • FIG. 9 is a schematic structural diagram of another communication terminal according to an embodiment of the present invention.
  • the communication terminal 900 includes a transmitter 901, a receiver 902, and a processor 903.
  • the processor 903 may also be a controller, and is represented as "controller/processor 903" in FIG.
  • the communication terminal 900 may further include a modem processor 905, wherein the modem processor 905 may include an encoder 906, a modulator 907, a decoder 908, and a demodulator 909.
  • the transmitter 901 conditions (eg, analog transforms, filters, amplifies, upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the first described in the above embodiments.
  • An access router and a second access router On the downlink, the antenna receives the first access router and the second connection in the above embodiment.
  • the downlink signal transmitted into the router.
  • Receiver 902 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 906 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 907 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 909 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 908 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages that are sent to the communication terminal 900.
  • Encoder 906, modulator 907, demodulator 909, and decoder 908 may be implemented by a composite modem processor 905. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems). It should be noted that when the communication terminal 900 does not include the modem processor 905, the above functions of the modem processor 905 can also be completed by the processor 903.
  • the processor 903 controls and manages the operation of the communication terminal 900 for performing the processing performed by the communication terminal 900 in the above-described embodiment of the present invention.
  • the communication terminal 900 may further include a memory 904 for storing program codes and data for the communication terminal 900.
  • the processor for performing the functions of the foregoing first access router or the communication terminal in the embodiment of the present invention may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the invention.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a base station or terminal.
  • the processor and the storage medium may also reside as a discrete component in a base station or terminal.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of any wireless routing switching method described in the foregoing method embodiments.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种无线路由切换方法、接入路由器及通信终端,所述方法包括:第一接入路由器接收终端发送的第一通知消息;所述第一接入路由器基于所述第一通知消息缓存所述终端数据包;所述第一接入路由器接收所述终端发送的第二通知消息;所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址以得到更新后的终端数据包;当所述第一接入路由器发现所述终端从所述第一接入路由器切换至所述第二接入路由器后,所述第一接入路由器向所述终端发送所述更新后的终端数据包。从而解决终端切换过程中终端数据包的丢失问题。

Description

一种无线路由切换方法、接入路由器及通信终端 技术领域
本发明涉及通信领域,具体涉及一种无线路由切换方法、接入路由器及通信终端。
背景技术
为了获得网络服务,手机、平板电脑等通信终端可以通过无线接入路由器接入网络,随着网络通信技术的发展与用户需求,对无线接入技术也提出了越来越高的要求。
当通信终端或移动节点(MobileNode,简称MN)在移动过程中,需要在两个无线接入点(Access Point,简称AP)之间的进行切换,目前,为了实现移动设备的无缝切换,给用户提供更好的无线上网体验,国际互联网工程任务组(The Internet Engineering Task Force,简称IETF)制定了一种能够解决网络协议(Internet Protocol,简称IP)移动性问题的网络传输协议——MIPv6(MobileIPv6)协议,MIPv6协议通过在原接入路由器(Previous Access Router,简称PAR)和新接入路由器(New Access Router,简称NAR)之间建立一个双向隧道来转发数据包,以实现连续通信。但当移动节点移动速度较快,导致所接入的NAR为非预测的NAR,从而使得所转发的数据包丢失,导致切换故障。
发明内容
本发明实施例提供了一种无线路由切换方法、接入路由器及通信终端,以期可以防止终端数据包丢失。
第一方面,本发明实施例提供了一种无线路由切换方法,该方法包括:第一接入路由器接收终端发送的第一通知消息,该第一通知消息用于通知第一接入路由器缓存发往终端的终端数据包,第一通知消息包括终端的终端标识和终端的第一互联网协议号IP地址,第一通知消息为终端从第一接入路由器向第二接入路由器切换的情况下发送;然后第一接入路由器基于第一通知消息缓存终端数据包;然后第一接入路由器接收终端发送的第二通知消息,该第二通知消息包括终端的终端标识和第二IP地址,该第二IP地址为与第二接入路由器对应的IP地址;第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址以得到更新后的终端数据包;最后当第一接入路由器发现终端从第一接入路由器切换至第二接入路由器后,第一接入路由器向终端发送更新后的终端数据包。
本发明实施例提供的方案中,通过由终端发送第一通知消息触发第一接入路由器缓存终端数据包,从而使得第一接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在终端切换完成后,第一接入路由器将该终端数据包发送给终端,从而解决终端切换过程的终端数据包的丢失问题。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道时的控制信令开销,在本发明实施例中,减少了上述流程中的HI、HACK消息的信令开销,从而可以减少接入路由器之间的控制报文的切换时延。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道,然后将终端数据包通过该双向隧道从第一接入路由器发送至第二接入路由器时,需要在该终端数据包之前添加一定长度的包头,导致该发送的终端数据包的实际长度可能 超过实际链路长度,从而产生分片包,而本发明实施例中,终端数据包的长度在修改前后相同,避免产生分片包的可能性。
在一个可能的设计中,该第二通知消息还用于通知第一接入路由器向终端发送终端数据包;此时第一接入路由器发现终端从第一接入路由器切换至第二接入路由器包括:第一接入路由器接收到第二通知消息后确定终端从第一接入路由器切换至第二接入路由器。通过由终端发送第二通知消息来触发第一接入路由器发送终端数据包,从而可以在终端发生切换后主动通知第一接入路由器发送终端数据包,使得触发准确与及时。
在一个可能的设计中,第一接入路由器接收终端发送的第一通知消息之后,该方法还包括:第一接入路由器向终端发送第一通知消息响应消息,以使终端的无线链路在第一通知消息响应消息的触发下从第一接入路由器切换至第二接入路由器。通过由第一通知消息响应消息来触发终端的无线链路切换,从而使得终端能及时进行切换。
第二方面,本发明实施例提供了一种无线路由切换方法,该方法包括:在终端从第一接入路由器向第二接入路由器切换的情况下,终端获取第二接入路由器的接入网关信息,该接入网关信息包括第二接入路由器的互联网络协议号IP地址、第二接入路由器的前缀信息;然后终端向第一接入路由器发送第一通知消息,该第一通知消息用于通知第一接入路由器缓存发往终端的终端数据包,该第一通知消息包括终端的终端标识和终端的第一IP地址;然后终端基于接入网关信息将终端的IP地址由第一IP地址变更为第二IP地址并向第一接入路由器发送第二通知消息,该第二通知消息包括终端的终端标识和第二IP地址,该第二IP地址为与该第二接入路由器对应的IP地址;最后终端接收第一接入路由器发送的更新后的终端数据包,该终端数据包为第一接入路由器在终端从第一接入路由器向第二接入路由器切换之前缓存的,该更新后的终端数据包为所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址后得到的。
本发明实施例提供的方案中,通过由终端发送第一通知消息触发第一接入路由器缓存终端数据包,从而使得第一接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在终端切换完成后,第一接入路由器将该终端数据包发送给终端,从而解决终端切换过程的终端数据包的丢失问题。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道时的控制信令开销,在本发明实施例中,减少了上述流程中的HI、HACK消息的信令开销,从而可以减少接入路由器之间的控制报文的切换时延。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道,然后将终端数据包通过该双向隧道从第一接入路由器发送至第二接入路由器时,需要在该终端数据包之前添加一定长度的包头,导致该发送的终端数据包的实际长度可能超过实际链路长度,从而产生分片包,而本发明实施例中,终端数据包的长度在修改前后相同,避免产生分片包的可能性。
在一个可能的设计中,该第二通知消息还用于通知第一接入路由器向终端发送终端数据包;终端向第一接入路由器发送第二通知消息时可以为,在终端从第一接入路由器切换至第二接入路由器后,终端向第一接入路由器发送第二通知消息。通过由终端发送第二通知消息来触发第一接入路由器发送终端数据包,从而可以在终端发生切换后主动通知第一接入路由器发送终端数据包,使得触发准确与及时。
在一个可能的设计中,终端向第一接入路由器发送第一通知消息时可以为:在终端接 收到的第一接入路由器的接入信号强度少于或等于第一预设阈值时,终端向第一接入路由器发送第一通知消息;或者,在终端接收到的第二接入路由器的接入信号强度大于或等于第二预设阈值时,终端向第一接入路由器发送第一通知消息。由于第一接入路由器的信号强度变弱或者第二接入路由器的信号强度变强时,说明终端即将发生切换,所以通过由第一接入路由器或第二接入路由器的信号强度来触发终端向第一接入路由器发送第一通知消息,以触发第一接入路由器缓存数据,使得第一接入路由器的终端数据包缓存及时。
在一个可能的设计中,该方法还包括:终端获取第一接入路由器的IP地址;终端向第一接入路由器发送第二通知消息,包括:终端基于第一接入路由器的IP地址向第一接入路由器发送第二通知消息。由于终端在发送第二通知消息时,终端所接入的接入路由器为第二接入路由器,此时获取到第一接入路由器的IP地址,再基于该IP地址进行发送,使得第二通知消息发送准确。
在一个可能的设计中,终端向第一接入路由器发送第一通知消息之后,该方法还包括:终端接收第一接入路由器返回的第一通知消息响应消息;终端从第一接入路由器向第二接入路由器切换,包括:终端在第一通知消息响应消息的触发下从第一接入路由器向第二接入路由器切换。通过由第一通知消息响应消息来触发终端的无线链路切换,从而使得终端能及时进行切换。
第三方面,本发明实施例提供一种接入路由器,该接入路由器具有实现上述第一方面的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本发明实施例提供一种接入路由器,该接入路由器包括处理器、接收器和发射器,所述处理器被配置为支持接入路由器执行上述方法中相应的功能。所述接收器和发射器用于支持接入路由器与终端之间的通信。进一步的,接入路由器还可以包括存储器,所述存储器用于与处理器耦合,其保存接入路由器必要的程序指令和数据。
第五方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第三方面所述的接入路由器所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第六方面,本发明实施例提供一种通信终端,该通信终端具有实现上述第二方面的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本发明实施例提供一种通信终端,该通信终端包括处理器、接收器和发射器,所述处理器被配置为支持通信终端执行上述方法中相应的功能。所述接收器和发射器用于支持通信终端与接入路由器之间的通信。进一步的,通信终端还可以包括存储器,所述存储器用于与处理器耦合,其保存通信终端必要的程序指令和数据。
第八方面,本发明实施例提供一种计算机存储介质,用于储存为上述用于第六方面所述的通信终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第九方面,本发明实施例提供一种无线路由切换系统,该系统包括上述方面所述的接入路由器、通信终端以及第二接入路由器。
相较于现有技术,本发明实施例的方案中,通过由终端发送第一通知消息触发第一接入路由器缓存终端数据包,从而使得第一接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在终端切换完成后,第一接入路由器将该终端数据包发送给终端,从而解决终端切换过程中终端数据包的丢失问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的无线路由切换系统的网络架构图;
图2是本发明实施例提供的快速移动IPv6协议切换过程示意图;
图3是本发明实施例提供一种无线路由切换方法的流程示意图;
图4是本发明实施例提供的另一种无线路由切换系统的网络架构图;
图5是本发明实施例提供的另一种无线路由切换方法的流程示意图;
图6是本发明实施例提供的一种接入路由器的结构示意图;
图7为本发明实施例提供的另一种接入路由器的结构示意图;
图8是本发明实施例提供的一种通信终端的结构示意图;
图9是本发明实施例提供的另一种通信终端的结构示意图。
具体实施方式
本发明实施例提供了一种无线路由切换方法、接入路由器及通信终端,以期可以防止终端数据包丢失。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)、终端。是指具有无线连接功能的用户设备,也称为移动节点(MobileNode,简称MN),指移动第6版本互联网协议IPv6主机,能够在接入点改变的情况下不需要改变其IPv6地址,凭借其家乡代理仍然能与其它节点进行通信的移动节点,包括手持式设备、车载设备等。在本发明实施例中,该终端例如可以为:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
(2)、IP地址。IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址。目前互联网络中,IP地址采用身份标识(Identity,简称ID)和位置标识(Locator)分离的方式进行架构,使得IP能同时作为主机的身份标识和位置标识。其中,ID代表终端的主机标识,具有唯一性。Locator表示终端当前所在 的位置,即IP地址,Locator随着终端接入到不同的网络中,会发生变化。
在移动IPv6协议中,MN利用两个不同的IPv6地址来区分身份标识和位置标识。当MN处于本地链路时就与普通IPv6一样,只使用它的家乡地址(HomeAddress,简称HoA),当MN移动到外地链路时,则使用HoA来标识其身份,用转交地址(Care-ofAddress,以下简称CoA)来标识其当前位置;移动IPv6通过网络层实现,对上下层透明,因此应用层和传输层协议不会受到节点位置和地址配置变化的影响。
首先参见图1,图1是本发明实施例提供的无线路由切换系统的网络架构图,其中,在图1所示的网络架构图中,包括终端110、第一接入路由器120以及第二接入路由器130。在本发明实施例中,终端110在移动的过程中根据第一接入路由器120以及第二接入路由器130的信号强度,从第一接入路由器120接入至第二接入路由器130中。
参见图2,图2示出了本发明实施例提供的快速移动IPv6(Fast Moving IPv6,简称FMIPv6)协议切换过程。该切换过程是一种基于二层触发(以下简称L2)的预切换方式,也即当L2触发预测到切换将要发生时,在保持MN与当前网络通信的情况下,为其提供新的接入点信息和相应的子网信息,从而提前进行转交地址配置和重复地址检测(Duplicate Address Detected,简称DAD)过程,MN到达新的网络后可直接使用新配置的CoA进行通信,从而减少三层切换时延,提高通信的实时性。如图2所示,该切换过程包括三个阶段:
第一个阶段是基于链路层的切换预测和切换初始化过程;在此过程中,MN检测到将要发生切换,利用RtSolPr消息和PrRtAdv消息预先完成新转交地址的配置以及DAD检测过程,新转交地址即可在MN进入新接入路由器区域后直接使用;
第二个阶段是执行绑定更新的过程和前接入路由器(Previous Access Router,简称PAR)与新接入路由器(New Access Router,简称NAR)间隧道建立,其中,PAR也即图1所示的第一接入路由器,NAR也即图1所示的第二接入路由器;当MN将要切换到新的网络时,首先利用快速绑定更新(fast binding update,简称FBU)消息执行绑定更新过程,然后通过切换验证(Hand over,简称HI)消息及切换确认消息(hand over acknowledge,简称HACK)消息在PAR与NAR之间建立一条双向隧道,用于转发绑定更新过程中发往MN的数据包。
最后一个阶段则是转发缓存的数据分组的过程;MN通过发送未请求路由器广播(Unsolicited Router Advertisements,简称UNA)消息通知NAR转发已缓存的数据包。
需要说明,通过在PAR和NAR之间建立一条双向隧道来转发数据包,对于MN移动速度较慢或者最终接入到预测的NAR时,是一种有效的方法,能减少在接入路由器之间切换所产生的时延,实现无缝的切换。但对于MN移动速度非常快或者MN最终没有接入到预测的NAR时,就是一种无效的方法,并没有减少接入路由器之间切换所产生的时延,甚至可能产生丢包。例如,当MN移动速度很快时,MN预测可能会接入到NAR1,然后NM向PAR发送FBU消息执行绑定更新过程。PAR与NAR经过两次报文交互,建立了隧道关系,然后PAR向MN发送Fack消息,以及把发往MN的数据包转发给NAR1。而实际上MN接入到NAR2,这样缓存在NAR1的数据包就没有成功地发往NM新接入的NAR2,从而造成数据包丢失。
本发明实施例基于终端采用ID/Locator分离架构,当终端在与PAR建立的第一链路中 时,终端通知PAR缓存终端数据包;当终端接入到NAR后,PAR修改该终端数据包的目的IP地址并转发给终端,以解决终端接入非预测链路时,产生丢包的情况,并且更进一步地,避免了转发缓冲数据包时,产生分片包的可能性。
在本发明的一个优选的实施方式中,在终端的接入路由器切换过程中,各通信设备之间的消息的格式可采用Mobility Header Message,如图3所示,图3是本发明实施例提供的Mobility Header Message消息形式示意图。在IPv6的下一扩展头的值为135时,就是该消息头。该消息头的各字段解释如下:
Figure PCTCN2017106726-appb-000001
其中,对上述消息形式相关内容做如下解释:
1、Next Header,用于表示下一个拓展头的协议号,如果没有扩展头,则设置为IPPROTO_NONE(59)。
2、Header Length,前缀长度,以8字节为单位,不包括前8个字节。
3、MH Type,用于定义具体的消息类型。
4、Reserved,8-bit保留字段,初始值为0。
5、Checksum,为16-bit无符号整数。
6、MessageData,为一可变的数据域,用于存储不同的消息内容。
其中,当Mobility Header的字段MHType值为1时,为HS消息(Handover Solicitation Message)。HS消息的作用为:通知第一接入路由器缓存数据包,或者是通知第二接入路由器转发数据包,此时,该消息的具体格式如下:
Figure PCTCN2017106726-appb-000002
各字段的解释如下:
1、Sequence:表示16-bit无符号整数。
2、‘A’flag:1表示需要接入路由器回复HACK消息。
3、Reserved:保留。初始值为0。
4、Locator Type:0表示Locator存储的是旧IPv6地址(Previous Locator);1表示Locator存储的是新IPv6地址(New Locator)。
5、Lifetime:在接入路由器内,主机标识(Host Identifier)对应的Locator的有效时间。
6、Host Identifer:终端的主机标识。
7、Locator:ipv6地址。
其中,当Mobility Header的字段MH Type值为2时,为HACK消息。HACK消息的作用:作为HS的应答消息。该消息体的格式下所示:
Figure PCTCN2017106726-appb-000003
各字段解释如下:
1、Status:16-bit无符号整数。0用于表示ok,1用于表示Sequence错误;2用于表示Identifier不存在。
2、Reserved:保留。初始值为0。
3、Traffic Type:业务类型。0用于表示控制包;1用于表示数据包;2用于表示控制和数据包。
4、Locator Type:0用于表示Locator存储的是Previous Locator;1用于表示Locator存储的是New Locator。
5、Sequence:16-bit无符号整数。用于接收的HS消息中sequence字段的值。
6、Host Identifier:UE的主机标识。用于接收的HS消息中Host Identifier字段的值。
7、Locator:ipv6地址。用于接收的HS消息中Locator字段的值。
下面结合附图详细描述本发明的实施例,以便本领域技术人员理解。
参见图3,图3示出了本发明实施例提供一种无线路由切换方法的流程示意图,如图3所示,该方法可以包括以下步骤:
步骤S301、终端获取第二接入路由器的接入网关信息。
其中,所述接入网关信息包括所述第二接入路由器的互联网络协议号IP地址、所述 第二接入路由器的前缀信息。
在本发明实施例中,终端首先通过第一接入路由器接入网络,此时终端处于移动状态,当终端移动到第一接入路由器与第二接入路由器的叠加区域时,终端将接收到第二接入路由器的信号,此时终端将有可能从第一接入路由器切换至第二接入路由器。
可选地,终端通过与所述第一接入路由器建立的第一无线链路获取所述第二接入路由器的接入网关信息。
具体地,在本发明实施例中,终端通过向第一接入路由器发送RtSloPr消息,并接收第一接入路由器返回的PrRtAdr消息获得第二接入路由器的接入网关的信息。
更进一步,可选地,该接入网关信息包括第二接入路由器的IP地址,物理地址(Media Access Control,简称MAC地址),第二接入路由器的前缀信息,该前缀信息可以包括第二接入路由器的IP地址前缀以及第二接入路由器的IP地址前缀长度。
在本发明实施例中,终端通过获取第二接入路由器的网关信息,从而可以当终端欲接入第二接入路由器时,基于该网关信息配置终端的IP地址为与第二接入路由器对应IP地址,以使终端接入第二接入路由器。
步骤S302、终端向第一接入路由器发送第一通知消息,第一接入路由器接收终端发送的第一通知消息。
其中,所述第一通知消息用于通知所述第一接入路由器缓存发往所述终端的终端数据包,所述第一通知消息包括所述终端的终端标识ID和所述终端的第一互联网协议号IP地址,所述第一通知消息为所述终端从所述第一接入路由器向第二接入路由器切换时发送。
在本发明实施例中,通过第一通知消息来触发第一接入路由器缓存发往终端的终端数据包,使得第一接入路由器可以在该时刻起接收到终端即将发生路由器切换并缓存终端数据包,以解决现有技术中不能保存切换过程中的数据包,防止终端数据包丢失。
其中,第一IP地址是指终端通过第一接入路由器接入网关时所配置的IP地址,例如,当第一接入路由器的IP地址为IP地址为10::1和12::2,此时终端的第一IP地址可配置为10::2。
具体地,可以通过第一通知消息中的终端标识和第一IP地址然后再缓存数据包,其中,该终端数据包是指终端通过第一接入路由器与网络进行通信时的业务数据包。
具体地,该第一通知消息可以为上述基于Mobility Header Message格式的HS消息。
可选地,该第一通知消息也可以为其它消息形式。
可选地,所述终端向所述第一接入路由器发送第一通知消息,包括:
在所述终端接收到的所述第一接入路由器的接入信号强度少于或等于第一预设阈值时,所述终端向所述第一接入路由器发送第一通知消息;或者,
在所述终端接收到的所述第二接入路由器的接入信号强度大于或等于第二预设阈值时,所述终端向所述第一接入路由器发送第一通知消息。
其中,第一预设阈值是指用于指示第一接入路由器的信号强度无法满足终端接入的需求的信号强度阈值,第二预设阈值是指用于指示第二接入路由器的信号强度能够满足终端的接入需求的信号强度阈值。
举例说明,在本发明的一个示例中,当终端从第一位置移动第二位置时,其中,第一位置与第一接入路由器距离较近,第二位置与第二接入路由器距离较远,从而终端在移动的过程中,第一接入路由器的接入信号强度将越来越弱,第二接入路由器的接入信号强度 将越来越强,从而当终端检测到第一接入路由器的接入信号强度少于或等于一个预设值时,或者当终端检测到第二接入路由器的接入信号强度大于或等于一个预设值时,触发终端向第一接入路由器发送第一通知消息。
可以理解,当第一接入路由器的接入信号强度变弱,或者第二接入路由器的接入信号强度变强,此时表示终端即将从第一接入路由器切换至第二接入路由器,所以此时终端需要在此刻通知第一接入路由器缓存发往该终端的终端数据包,以使得在终端从第一接入路由器切换至第二接入路由器的过程中的终端数据包不丢失。
可选地,所述第一接入路由器接收所述终端发送的第一通知消息之后,所述第一接入路由器向所述终端发送第一通知消息响应消息,以使所述终端的所述无线链路在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
此时,所述终端接收所述第一接入路由器返回的第一通知消息响应消息;所述终端的所述无线链路在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。也即可由第一通知消息响应消息触发终端执行步骤S304并切换。
可选地,若终端未收到第一接入路由器返回的第一通知消息响应消息,则终端间隔一定的时间后再发送第一通知消息。
更进一步地,若终端向第一接入路由器发送预设次数的第一通知消息后仍为接收到第一通知消息响应消息,此时终端执行切换链路的动作。
具体地,若该第一通知消息为上述基于Mobility Header Message格式的HS消息,该第一通知消息响应消息可以为基于Mobility Header Message格式的HACK消息,用于应答HS消息。
可选地,该第一通知消息响应消息也可以为其它消息形式。
步骤S303、第一接入路由器基于第一通知消息缓存终端数据包。
步骤S304、终端基于接入网关信息将终端的IP地址由第一IP地址变更为第二IP地址。
其中,所述第二IP地址为与所述第二接入路由器对应的IP地址。例如,当第二接入路由器的IP地址为IP地址为11::1和12::3,此时终端可配置第二IP地址可配置为11::2,从而使终端基于该第二IP地址通过第二接入路由器接入网关建立网络连接,以实现终端的路由器切换。
可以理解,当终端需要接入第二接入路由器之前,首先需要将终端的IP地址配置为与第二接入路由器对应的IP地址,从而能使得顺利接入第二接入路由器。
更进一步地,可选地,在终端配置第二IP地址后,可以执行重复地址检测(Duplicate Address Detection,简称DAD),以防止第二IP地址配置错误。
可选地,也可以不执行DAD。
需要说明,步骤S303和步骤S304之间没有必然的先后顺序,具体实施例中,可以先执行步骤S303,再执行步骤S304,也可以先执行步骤步骤S304,再执行步骤S303,也可以为步骤S303和步骤S304同时执行,本发明实施例不做限制。
步骤S305、终端向第一接入路由器发送第二通知消息,第一接入路由器接收终端发送的第二通知消息。
其中,所述第二通知消息包括所述终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址。
具体地,该第二通知消息可以为HS消息。
可选地,该第二通知消息也可以其它消息形式。
步骤S306、第一接入路由器将终端数据包的目的IP地址从第一IP地址变更为第二IP地址以得到更新后的终端数据包。
可选地,当第一接入路由器接收到第二通知消息后,会根据第二通知消息中所携带的终端标识查找第一接入路由器是否缓存与该终端标识对应的终端数据包,如果不存在与该终端标识对应的终端数据包,则发送一通知消息通知终端以作为第二通知消息的响应消息,如果存在与该终端标识对应的终端数据包,则把该终端数据包的目的IP地址修改为第二IP地址得到新的终端数据包,再将该新的数据包发送给终端。
具体地,该第二通知消息的响应消息可以为基于Mobility Header Message格式的HACK消息。
步骤S307、当第一接入路由器发现终端从第一接入路由器切换至第二接入路由器后,第一接入路由器向终端发送更新后的终端数据包,终端接收第一接入路由器发送的更新后的终端数据包。
更进一步地,本发明实施例中终端IP地址采用基于ID/Locator分离架构,从而网关即使很低也不影响该方案的实现,完全消除三角路由问题。
可选地,所述所述第二通知消息还用于通知所述第一接入路由器向所述终端发送所述终端数据包;
在所述终端从所述第一接入路由器切换至所述第二接入路由器后,所述终端向所述第一接入路由器发送所述第二通知消息。
所述第一接入路由器发现所述终端从所述第一接入路由器切换至所述第二接入路由器包括:
所述第一接入路由器接收到所述第二通知消息后确定所述终端从所述第一接入路由器切换至所述第二接入路由器。
可选地,第一接入路由器发现终端从第一接入路由器切换至第二接入路由器,还可以是通过第一接入路由器检测到终端不再通过第一接入路由器接入网络。
在本发明实施例中,当第一接入路由器发现终端已经切换至第二接入路由器后,即可以将缓存的终端数据包发送至终端中,第一接入路由器可以是通过接收到终端的通知消息后确认终端已切换,从而触发其发送终端数据包;第一接入路由器也可以是通过自己检测终端是否已切换,从而确定是否发送终端数据包,使得触发第一接入路由器发送终端数据包的方式较为灵活。
可选地,上述方法还包括:
所述终端获取所述第一接入路由器的IP地址;
所述终端向所述第一接入路由器发送第二通知消息,包括:
所述终端基于所述第一接入路由器的IP地址向所述第一接入路由器发送第二通知消息。
在本发明实施例中,当终端从第一接入路由器切换至第二接入路由器后,则通知第一接入路由器发送第二通知消息,而此时由于第一接入路由器与第二接入路由器的二层链路已断开,所以需要首先获取第一接入路由器的IP地址,然后再基于该第一接入路由器向第一接入路由器发送第二通知消息。具体地,该第一接入路由器的IP地址可以是终端在接入 第一接入路由器时存储的。
可选地,在本发明实施例中,若终端移动速度过快,在终端获取第二接入路由器的接入网关信息之前,该终端还可以获取第三接入路由器的接入网关信息,该第三接入路由器可以理解为终端预测的接入路由器,而实际在终端快速移动的过程中,终端实际选择接入的接入路由器为第二接入路由器,所以此时再获取到第二接入路由器接入网关信息以替换原先获取的第三接入路由器的接入网关信息。可以理解,相较于现在技术通过在预测的第三接入路由与第一接入路由器之间建立双向隧道转发终端数据包,而导致该终端数据包转发错误,产生终端数据包丢失,本发明实施例通过第一接入路由器直接将缓存的终端数据包转发至终端,防止丢包现象。
更进一步地,当终端切换至与第二接入路由器建立的第二无线链路后,终端向标识与位置的映射系统(ID Locator Mapping System,简称ILMS)以及基于ID/Locator分离的通信节点(Correspondent Node,简称CN)发送ID/Locator更新请求,告诉其Locator已经发生变化,然后终端与CN可以直接通过NAR通信。
可以看出,本发明实施例中,当终端在从第一接入路由器切换至第二接入路由器时,终端向第一接入路由器发送第一通知消息以触发第一接入路由器缓存终端数据包,然后当终端从第一接入路由器切换至第二接入路由器后,第一接入路由器将缓存的终端数据包的IP地址从第一IP地址变更为第二IP地址后,再通过第二接入路由器发送至终端。通过由终端发送第一通知消息触发第一接入路由器缓存终端数据包,从而使得第一接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在终端切换完成后,第一接入路由器将该终端数据包发送给终端,从而解决终端切换过程的终端数据包的丢失问题。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道时的控制信令开销(参见图2),在本发明实施例中,减少了上述流程中的HI、HACK消息的信令开销,从而可以减少接入路由器之间的控制报文的切换时延。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道,然后将终端数据包通过该双向隧道从第一接入路由器发送至第二接入路由器时,需要在该终端数据包之前添加一定长度的包头,导致该发送的终端数据包的实际长度可能超过实际链路长度,从而产生分片包,而本发明实施例中,终端数据包的长度在修改前后相同,避免产生分片包的可能性。
为了更好的理解本方案,下面举例一具体实施例进行说明,参见图4和图5,图4是本发明实施例提供的另一种无线路由切换系统的网络架构图,图5是本发明实施例提供的另一种无线路由切换方法的流程示意图,其中,终端用移动节点MN表示,第一接入路由器为PAR,第二接入路由器为NAR,原接入点(Previous Access Point,简称PAP)为与PAR对应的无线接入点,新接入点(New Access Point,简称NAP)为与NAR对应的无线接入点。图5所示的方法中,与图3所示方法相同或类似的内容可以参考图3所对应实施例的详细描述,此处不再赘述。
其中,在该实施例中,各实体配置如下:
ILMS:维护ID与Locator(IP)的对应关系,IP地址为12::4。
CN:ID为2F::2,IP地址(Locator)为12::1。
PAR:IP地址为10::1和12::2。
NAR:IP地址为11::1和12::3。
MN:在PAP链路中的配置是,ID(标识)为2F00::1,IP地址(Locator)为10::2;在NAP链路中的配置是,ID(标识)为2F00::1,IP地址(Locator)为11::2。
如图5所示,该方法可以包括以下步骤:
步骤S501、MN在移动过程中,发现NAP。
步骤S502、MN与PAR通过RtSloPr消息和PrRtAdr消息获取NAR的接入网关信息。该接入网关信息中NAR的IP地址为11::1。
步骤S503、当MN发现PAP的信号越来越弱,而NAP的信号越来越强,并达到一定的阈值,MN向PAR发送HS消息,请求PAR缓存终端标识为2F00::1的终端数据包,PAR接收到HS消息后,向MN发送HACK响应消息,并开始缓存终端标识为2F00::1的终端数据包,该终端数据包的IP地址为10::2。
步骤S504、MN配置自身的IP地址从10::2配置为11::2。
步骤S505、MN与PAP断开连接,并与NAP建立连接,实现二层链路切换。
步骤S506、MN向NAR发送UNA消息,该UNA消息用于向NAR通知MN的IP地址与MAC地址的对应关系。
步骤S507、MN向PAR发送HS消息,该HS消息用于通知PAR向MN发送终端数据包。
步骤S508、PAR通过终端标识2F00::1找到终端数据包,并将终端数据包中目的IP地址从10::2修改为11::2,然后再转发该终端数据包给MN。
步骤S509、MN向ILMS和CN发送ID/Locator更新请求。
可以看出,本发明实施例通过在MN检测到NAP的信号强度达到一定强度或PAP的信号强度低于一定强度时,通知PAR缓存终端数据包,然后在MN切换后通知PAR发送终端数据包,从而解决终端切换过程中的数据包的丢失问题。
参见图6,图6是本发明实施例提供的一种接入路由器的结构示意图,用于实现本发明实施例公开的无线路由切换方法。其中,如图6所示,本发明实施例提供的一种接入路由器600可以包括:
接收模块610、缓存模块620、变更模块630和发送模块640。
接收模块610,用于接收终端发送的第一通知消息,所述第一通知消息用于通知所述接入路由器缓存发往所述终端的终端数据包,所述第一通知消息包括所述终端的终端标识和所述终端的第一互联网协议号IP地址,所述第一通知消息为所述终端从所述接入路由器向第二接入路由器切换的情况下发送。
缓存模块620,用于基于所述第一通知消息缓存所述终端数据包。
所述接收模块610,还用于接收所述终端发送的第二通知消息,所述第二通知消息包括所述终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址。
变更模块630,用于将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址以得到更新后的终端数据包。
发送模块640,用于当发现所述终端从所述接入路由器切换至所述第二接入路由器后,向所述终端发送所述更新后的终端数据包。
可选地,所述第二通知消息还用于通知所述接入路由器向所述终端发送所述终端数据包;
所述发送模块640执行发现所述终端从所述接入路由器切换至所述第二接入路由器的动作时具体为:
接收到所述第二通知消息后确定所述终端从所述接入路由器切换至所述第二接入路由器。
可选地,所述发送模块640还用于:
向所述终端发送第一通知消息响应消息,以使所述终端的所述无线链路在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
可以看出,本实施例的方案中,当终端在从接入路由器600切换至第二接入路由器时,终端向接入路由器600发送第一通知消息以触发接入路由器缓存终端数据包,然后当终端从接入路由器600切换至第二接入路由器后,接入路由器600将缓存的终端数据包的IP地址从第一IP地址变更为第二IP地址后,再通过第二接入路由器发送至终端。通过由终端发送第一通知消息触发接入路由器缓存终端数据包,从而使得接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在终端切换完成后,接入路由器将该终端数据包发送给终端,从而解决终端切换过程的终端数据包的丢失问题。
更进一步地,相较于现有技术的通过在接入路由器与第二接入路由器之间建立双向隧道时的控制信令开销,在本发明实施例中,减少了上述流程中的HI、HACK消息的信令开销,从而可以减少接入路由器之间的控制报文的切换时延。
更进一步地,相较于现有技术的通过在接入路由器与第二接入路由器之间建立双向隧道,然后将终端数据包通过该双向隧道从接入路由器发送至第二接入路由器时,需要在该终端数据包之前添加一定长度的包头,导致该发送的终端数据包的实际长度可能超过实际链路长度,从而产生分片包,而本发明实施例中,终端数据包的长度在修改前后相同,避免产生分片包的可能性。
在本实施例中,接入路由器600是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的接入路由器600的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
参见图7,参见图7,图7为本发明实施例提供的另一种接入路由器的结构示意图,如图7所示,该接入路由器700包括:
发射器/接收器701和处理器702。其中,处理器702也可以为控制器,图7中表示为“控制器/处理器702”。所述发射器/接收器701用于支持接入路由器700(具体可以为PGW或边缘节点)与上述实施例中的所述终端和第二接入路由器之间收发信息,以及支持所述接入路由器与其他设备之间进行无线电通信。所述处理器702执行各种用于与接入路由器700通信的功能。在上行链路,来自所述终端和第二接入路由器的上行链路信号经由天线接收,由接收器701进行解调(例如将高频信号解调为基带信号),并进一步由处理器702进行处理来恢复接入路由器700所发送到业务数据和信令信息。在下行链路上,业务数据 和信令消息由处理器702进行处理,并由发射器701进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端和第二接入路由器。需要说明的是,上述解调或调制的功能也可以由处理器702完成。例如,处理器702还用于执行上述方法实施例中的相应步骤,和/或本发明实施例所描述的技术方案的其他过程。
进一步的,接入路由器700还可以包括存储器703,存储器703用于存储接入路由器700的程序代码和数据。此外,接入路由器700还可以包括通信单元704。通信单元704用于支持接入路由器与终端进行通信。例如,在LTE系统中,该通信单元704也可以是S1-MME接口,用于支持接入路由器与移动性管理实体(Mobility Management Entity,MME)进行通信。
可以理解的是,图7仅仅示出了接入路由器700的简化设计。在实际应用中,接入路由器700可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明实施例的接入路由器都在本发明实施例的保护范围之内。
参见图8,图8是本发明实施例提供的一种通信终端的结构示意图,用于实现本发明实施例公开的无线路由切换方法。其中,如图8所示,本发明实施例提供的一种通信终端800可以包括:
获取模块810、发送模块820、变更模块830和接收模块840。
获取模块810,用于在所述通信终端从第一接入路由器向第二接入路由器切换的情况下,获取所述第二接入路由器的接入网关信息,所述接入网关信息包括所述第二接入路由器的互联网络协议号IP地址、所述第二接入路由器的前缀信息。
发送模块820,用于向所述第一接入路由器发送第一通知消息,所述第一通知消息用于通知所述第一接入路由器缓存发往所述通信终端的终端数据包,所述第一通知消息包括所述通信终端的终端标识和所述通信终端的第一IP地址。
变更模块830,用于基于所述接入网关信息将所述通信终端的IP地址由第一IP地址变更为所述第二IP地址并向所述第一接入路由器发送第二通知消息,所述第二通知消息包括所述通信终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址。
接收模块840,用于接收所述第一接入路由器发送的更新后的终端数据包,所述终端数据包为所述第一接入路由器在所述通信终端从第一接入路由器向第二接入路由器切换之前缓存的,所述更新后的终端数据包为所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址后得到的。
可选地,所述第二通知消息还用于通知所述第一接入路由器向所述通信终端发送所述终端数据包;
所述变更模块830执行向所述第一接入路由器发送所述第二通知消息的动作时具体为:
在所述通信终端800从所述第一接入路由器切换至所述第二接入路由器后,所述通信终端向所述第一接入路由器发送所述第二通知消息。
可选地,所述发送模块820执行向所述第一接入路由器发送第一通知消息具体为:
在所述通信终端接收到的所述第一接入路由器的接入信号强度少于或等于第一预设阈值时,向所述第一接入路由器发送第一通知消息;或者,
在所述通信终端接收到的所述第二接入路由器的接入信号强度大于或等于第二预设阈值时,向所述第一接入路由器发送第一通知消息。
可选地,所述获取模块810还用于获取所述第一接入路由器的IP地址;
所述变更模块830执行向所述第一接入路由器发送所述第二通知消息的动作时具体为:
基于所述第一接入路由器的IP地址向所述第一接入路由器发送第二通知消息。
可选地,所述接收模块840还用于接收所述第一接入路由器返回的第一通知消息响应消息;
所述通信终端800执行从第一接入路由器向第二接入路由器切换的动作时具体为:
在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
可以看出,本发明实施例中,当通信终端800在从第一接入路由器切换至第二接入路由器时,通信终端800向第一接入路由器发送第一通知消息以触发第一接入路由器缓存终端数据包,然后当通信终端800从第一接入路由器切换至第二接入路由器后,第一接入路由器将缓存的终端数据包的IP地址从第一IP地址变更为第二IP地址后,再通过第二接入路由器发送至终端。通过由通信终端800发送第一通知消息触发第一接入路由器缓存终端数据包,从而使得第一接入路由器能缓存终端切换过程的时间段内的终端数据包,并且在通信终端800切换完成后,第一接入路由器将该终端数据包发送给终端,从而解决通信终端800切换过程的终端数据包的丢失问题。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道时的控制信令开销(参见图2),在本发明实施例中,减少了上述流程中的HI、HACK消息的信令开销,从而可以减少接入路由器之间的控制报文的切换时延。
更进一步地,相较于现有技术的通过在第一接入路由器与第二接入路由器之间建立双向隧道,然后将终端数据包通过该双向隧道从第一接入路由器发送至第二接入路由器时,需要在该终端数据包之前添加一定长度的包头,导致该发送的终端数据包的实际长度可能超过实际链路长度,从而产生分片包,而本发明实施例中,终端数据包的长度在修改前后相同,避免产生分片包的可能性。
在本实施例中,通信终端800是以单元的形式来呈现。这里的“单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
可以理解的是,本实施例的通信终端800的各功能单元的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
图9是本发明实施例提供的另一种通信终端的结构示意图。所述通信终端900包括发射器901,接收器902和处理器903。其中,处理器903也可以为控制器,图9中表示为“控制器/处理器903”。可选的,所述通信终端900还可以包括调制解调处理器905,其中,调制解调处理器905可以包括编码器906、调制器907、解码器908和解调器909。
在一个示例中,发射器901调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的第一接入路由器和第二接入路由器。在下行链路上,天线接收上述实施例中第一接入路由器和第二接 入路由器发射的下行链路信号。接收器902调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器905中,编码器906接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器907进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器909处理(例如,解调)该输入采样并提供符号估计。解码器908处理(例如,解交织和解码)该符号估计并提供发送给通信终端900的已解码的数据和信令消息。编码器906、调制器907、解调器909和解码器908可以由合成的调制解调处理器905来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当通信终端900不包括调制解调处理器905时,调制解调处理器905的上述功能也可以由处理器903完成。
处理器903对通信终端900的动作进行控制管理,用于执行上述本发明实施例中由通信终端900进行的处理过程。
进一步的,通信终端900还可以包括存储器904,存储器904用于存储用于通信终端900的程序代码和数据。
用于执行本发明实施例上述第一接入路由器或通信终端的功能的处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何无线路由切换方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明的各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种无线路由切换方法,其特征在于,所述方法包括:
    第一接入路由器接收终端发送的第一通知消息,所述第一通知消息用于通知所述第一接入路由器缓存发往所述终端的终端数据包,所述第一通知消息包括所述终端的终端标识和所述终端的第一互联网协议号IP地址,所述第一通知消息为所述终端从所述第一接入路由器向第二接入路由器切换的情况下发送;
    所述第一接入路由器基于所述第一通知消息缓存所述终端数据包;
    所述第一接入路由器接收所述终端发送的第二通知消息,所述第二通知消息包括所述终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址;
    所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址以得到更新后的终端数据包;
    当所述第一接入路由器发现所述终端从所述第一接入路由器切换至所述第二接入路由器后,所述第一接入路由器向所述终端发送所述更新后的终端数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述第二通知消息还用于通知所述第一接入路由器向所述终端发送所述终端数据包;
    所述第一接入路由器发现所述终端从所述第一接入路由器切换至所述第二接入路由器包括:
    所述第一接入路由器接收到所述第二通知消息后确定所述终端从所述第一接入路由器切换至所述第二接入路由器。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一接入路由器接收所述终端发送的第一通知消息之后,所述方法还包括:
    所述第一接入路由器向所述终端发送第一通知消息响应消息,以使所述终端的所述无线链路在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
  4. 一种无线路由切换方法,其特征在于,所述方法包括:
    在终端从第一接入路由器向第二接入路由器切换的情况下,所述终端获取所述第二接入路由器的接入网关信息,所述接入网关信息包括所述第二接入路由器的互联网络协议号IP地址、所述第二接入路由器的前缀信息;
    所述终端向所述第一接入路由器发送第一通知消息,所述第一通知消息用于通知所述第一接入路由器缓存发往所述终端的终端数据包,所述第一通知消息包括所述终端的终端标识和所述终端的第一IP地址;
    所述终端基于所述接入网关信息将所述终端的IP地址由第一IP地址变更为所述第二IP地址并向所述第一接入路由器发送第二通知消息,所述第二通知消息包括所述终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址;
    接收所述第一接入路由器发送的更新后的终端数据包,所述终端数据包为所述第一接入路由器在所述终端从第一接入路由器向第二接入路由器切换之前缓存的,所述更新后的 终端数据包为所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址后得到的。
  5. 根据权利要求4所述的方法,其特征在于,所述第二通知消息还用于通知所述第一接入路由器向所述终端发送所述终端数据包;
    所述终端向所述第一接入路由器发送所述第二通知消息,包括:
    在所述终端从所述第一接入路由器切换至所述第二接入路由器后,所述终端向所述第一接入路由器发送所述第二通知消息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述终端向所述第一接入路由器发送第一通知消息,包括:
    在所述终端接收到的所述第一接入路由器的接入信号强度少于或等于第一预设阈值时,所述终端向所述第一接入路由器发送第一通知消息;或者,
    在所述终端接收到的所述第二接入路由器的接入信号强度大于或等于第二预设阈值时,所述终端向所述第一接入路由器发送第一通知消息。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,所述方法还包括:
    所述终端获取所述第一接入路由器的IP地址;
    所述终端向所述第一接入路由器发送第二通知消息,包括:
    所述终端基于所述第一接入路由器的IP地址向所述第一接入路由器发送第二通知消息。
  8. 根据权利要求4至7任一项所述的方法,其特征在于,所述终端向所述第一接入路由器发送第一通知消息之后,所述方法还包括:
    所述终端接收所述第一接入路由器返回的第一通知消息响应消息;
    所述终端从第一接入路由器向第二接入路由器切换,包括:
    所述终端在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
  9. 一种接入路由器,其特征在于,所述接入路由器包括:
    接收模块,用于接收终端发送的第一通知消息,所述第一通知消息用于通知所述接入路由器缓存发往所述终端的终端数据包,所述第一通知消息包括所述终端的终端标识和所述终端的第一互联网协议号IP地址,所述第一通知消息为所述终端从所述接入路由器向第二接入路由器切换的情况下发送;
    缓存模块,用于基于所述第一通知消息缓存所述终端数据包;
    所述接收模块,还用于接收所述终端发送的第二通知消息,所述第二通知消息包括所述终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址;
    变更模块,用于将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址以得到更新后的终端数据包;
    发送模块,用于当发现所述终端从所述接入路由器切换至所述第二接入路由器后,向所述终端发送所述更新后的终端数据包。
  10. 根据权利要求9所述的接入路由器,其特征在于,所述第二通知消息还用于通知所述接入路由器向所述终端发送所述终端数据包;
    所述发送模块执行发现所述终端从所述接入路由器切换至所述第二接入路由器的动作时具体为:
    接收到所述第二通知消息后确定所述终端从所述接入路由器切换至所述第二接入路由器。
  11. 根据权利要求9或10所述的接入路由器,所述发送模块还用于:
    向所述终端发送第一通知消息响应消息,以使所述终端的所述无线链路在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
  12. 一种通信终端,其特征在于,所述通信终端包括:
    获取模块,用于在所述通信终端从第一接入路由器向第二接入路由器切换的情况下,获取所述第二接入路由器的接入网关信息,所述接入网关信息包括所述第二接入路由器的互联网络协议号IP地址、所述第二接入路由器的前缀信息;
    发送模块,用于向所述第一接入路由器发送第一通知消息,所述第一通知消息用于通知所述第一接入路由器缓存发往所述通信终端的终端数据包,所述第一通知消息包括所述通信终端的终端标识和所述通信终端的第一IP地址;
    变更模块,用于基于所述接入网关信息将所述通信终端的IP地址由第一IP地址变更为所述第二IP地址并向所述第一接入路由器发送第二通知消息,所述第二通知消息包括所述通信终端的终端标识和第二IP地址,所述第二IP地址为与所述第二接入路由器对应的IP地址;
    接收模块,用于接收所述第一接入路由器发送的更新后的终端数据包,所述终端数据包为所述第一接入路由器在所述通信终端从第一接入路由器向第二接入路由器切换之前缓存的,所述更新后的终端数据包为所述第一接入路由器将所述终端数据包的目的IP地址从所述第一IP地址变更为所述第二IP地址后得到的。
  13. 根据权利要求12所述的通信终端,其特征在于,所述第二通知消息还用于通知所述第一接入路由器向所述通信终端发送所述终端数据包;
    所述变更模块执行向所述第一接入路由器发送所述第二通知消息的动作时具体为:
    在所述通信终端从所述第一接入路由器切换至所述第二接入路由器后,所述通信终端向所述第一接入路由器发送所述第二通知消息。
  14. 根据权利要求12或13所述的通信终端,其特征在于,所述发送模块执行向所述第一接入路由器发送第一通知消息具体为:
    在所述通信终端接收到的所述第一接入路由器的接入信号强度少于或等于第一预设阈值时,向所述第一接入路由器发送第一通知消息;或者,
    在所述通信终端接收到的所述第二接入路由器的接入信号强度大于或等于第二预设阈值时,向所述第一接入路由器发送第一通知消息。
  15. 根据权利要求12至14任一项所述的通信终端,其特征在于,所述获取模块还用于获取所述第一接入路由器的IP地址;
    所述变更模块执行向所述第一接入路由器发送所述第二通知消息的动作时具体为:
    基于所述第一接入路由器的IP地址向所述第一接入路由器发送第二通知消息。
  16. 根据权利要求12至15任一项所述的通信终端,其特征在于,所述接收模块还用于接收所述第一接入路由器返回的第一通知消息响应消息;
    所述通信终端执行从第一接入路由器向第二接入路由器切换的动作时具体为:
    在所述第一通知消息响应消息的触发下从所述第一接入路由器向所述第二接入路由器切换。
  17. 一种无线路由切换系统,其特征在于,所述系统包括:
    权利要求9至11所述的接入路由器,权利要求12至16所述的通信终端,以及第二接入路由器。
PCT/CN2017/106726 2016-10-25 2017-10-18 一种无线路由切换方法、接入路由器及通信终端 WO2018077097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610935058.4 2016-10-25
CN201610935058.4A CN107979854B (zh) 2016-10-25 2016-10-25 一种无线路由切换方法、接入路由器及通信终端

Publications (1)

Publication Number Publication Date
WO2018077097A1 true WO2018077097A1 (zh) 2018-05-03

Family

ID=62004847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106726 WO2018077097A1 (zh) 2016-10-25 2017-10-18 一种无线路由切换方法、接入路由器及通信终端

Country Status (2)

Country Link
CN (1) CN107979854B (zh)
WO (1) WO2018077097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372102B (zh) * 2020-02-06 2022-10-28 视联动力信息技术股份有限公司 一种数据传输方法、装置、终端设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783833A (zh) * 2004-11-29 2006-06-07 北京三星通信技术研究有限公司 移动Ipv6平滑切换系统及方法
CN1832628A (zh) * 2006-04-30 2006-09-13 中国科学院计算技术研究所 一种基于二层预测和触发的三层移动切换实现方法
US20080225800A1 (en) * 2007-03-16 2008-09-18 Samsung Electronics Co., Ltd. Access router and method of processing handover by access router

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043727A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 一种演进网络中目标优选三层快速切换的实现方法
CN101005444B (zh) * 2006-06-24 2011-12-07 华为技术有限公司 一种快速切换的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783833A (zh) * 2004-11-29 2006-06-07 北京三星通信技术研究有限公司 移动Ipv6平滑切换系统及方法
CN1832628A (zh) * 2006-04-30 2006-09-13 中国科学院计算技术研究所 一种基于二层预测和触发的三层移动切换实现方法
US20080225800A1 (en) * 2007-03-16 2008-09-18 Samsung Electronics Co., Ltd. Access router and method of processing handover by access router

Also Published As

Publication number Publication date
CN107979854B (zh) 2021-08-13
CN107979854A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
KR100594950B1 (ko) 억세스 라우터 기반의 모바일 IPv6 패스트 핸드오버 방법
JP5872649B2 (ja) 移動性管理のための擬似配線
CA2803179C (en) Information distribution in a wireless communication system
US9787497B2 (en) Network apparatus and method using link layer routing
TW201212603A (en) Enabling IPV6 mobility with NAT64
JP2009529265A (ja) 動的ルータ広告を使用する高速ハンドオーバのための方法及びシステム
WO2008000133A1 (fr) Procédé, système et appareil de réalisation d'un transfert rapide
Liebsch et al. Transient binding for proxy mobile IPv6
US20100111040A1 (en) Method and apparatus for fast break-before-make media independent handover
WO2010072135A1 (zh) 一种网络切换方法、装置及系统
WO2018077097A1 (zh) 一种无线路由切换方法、接入路由器及通信终端
US11044652B2 (en) Handover method and apparatus
US8768357B2 (en) Changes of forward-link and reverse-link serving access points
US9173153B2 (en) Mobile layer 2 virtual private network over internet protocol networks
JP4823053B2 (ja) 異種通信インタフェース間の切替方法、移動端末および管理装置
WO2013007129A1 (zh) 报文转发处理方法、网元及系统
JP2003179616A (ja) 通信装置、通信端末装置及び通信方法
KR100973994B1 (ko) 이동 무선 망에서 핸드오버 방법
Dong et al. A network-based localized mobility approach for locator/ID separation protocol
KR20050079407A (ko) 무선 인터넷 시스템에서 통신 상태 정보를 이용한 소프트핸드오버 방법
KR20170027045A (ko) 이동통신망에서 핸드오버 동안에 전송 처리량 유지 기법
Park et al. Design of optimized multimedia data streaming management using OMDSM over mobile networks
Kim et al. PMIPv6 with bicasting for IP handover
Hoang et al. Enhancing TCP Performance and Connectivity in Ad Hoc Networks
WO2014000175A1 (zh) 会话路由方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864544

Country of ref document: EP

Kind code of ref document: A1