WO2018076914A1 - 一种显示装置及其显示方法 - Google Patents

一种显示装置及其显示方法 Download PDF

Info

Publication number
WO2018076914A1
WO2018076914A1 PCT/CN2017/098835 CN2017098835W WO2018076914A1 WO 2018076914 A1 WO2018076914 A1 WO 2018076914A1 CN 2017098835 W CN2017098835 W CN 2017098835W WO 2018076914 A1 WO2018076914 A1 WO 2018076914A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
refractive index
liquid crystal
optical unit
image data
Prior art date
Application number
PCT/CN2017/098835
Other languages
English (en)
French (fr)
Inventor
高健
陈小川
杨亚峰
张粲
王维
孟宪芹
王灿
卢鹏程
王倩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/758,981 priority Critical patent/US10642222B2/en
Publication of WO2018076914A1 publication Critical patent/WO2018076914A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/22Electrically addressed SLM [EA-SLM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device and a display method thereof.
  • the holographic dry plate records the amplitude and phase information in the object beam in the form of contrast and light and dark variations of the interference fringes to form irregular interference fringes.
  • the hologram of the photosensitive holographic dry plate which is processed by development, fixing, etc., is equivalent to a diffraction grating, and the thickness of the grating groove is related to the shape of the object to be observed.
  • a disadvantage of the related art is that the holographic dry plate records a static image, and a dynamic holographic image cannot be viewed through the holographic dry plate.
  • the technical problem to be solved by the present disclosure is to provide a display device and a display method thereof, which can realize dynamic display of a holographic image.
  • a display device comprising:
  • a laser light source located on a light incident side of the optical device for emitting a laser beam corresponding to the hologram image to be displayed;
  • a holographic image data storage unit coupled to the drive circuit
  • the optical device comprises a plurality of optical units independent of each other, the optical unit capable of Refracting the incident linearly polarized laser light, the refractive index of the optical unit is adjustable, and the refractive index of the adjacent optical unit is changed to a sinusoidal distribution;
  • the driving circuit is for obtaining from the holographic image data storage unit The image data of the holographic image to be displayed adjusts the refractive index of each optical unit based on the image data.
  • the optical device includes:
  • liquid crystal cell located between the first transparent substrate and the second transparent substrate
  • the liquid crystal cell is divided into a plurality of mutually independent liquid crystal cells
  • first electrode and a second electrode are respectively located on different transparent substrates or on the same transparent substrate, and the liquid crystal unit can be driven between the first electrode and the second electrode The electric field deflected by the liquid crystal molecules;
  • Each of the liquid crystal cells and their corresponding first and second electrodes constitute the optical unit.
  • the display device further includes:
  • a polarizer attached to a light incident side of the optical device, wherein an initial alignment direction of liquid crystal molecules in the liquid crystal cell is parallel to a light transmission axis of the polarizer.
  • the driving circuit is specifically configured to determine a refractive index of each optical unit according to the image data, and drive liquid crystal molecule deflection in the optical unit according to the determined refractive index.
  • the driving circuit includes:
  • the holographic dry plate corresponding to the holographic image to be displayed is divided into m parts in the width direction, each part includes 2N-1 grating grooves, and the depth of adjacent grating grooves in each part is different, the 2N-1 In the grating groove, the depth from the 1st to the Nth grating grooves gradually becomes larger, and the depth from the Nth to the 2nd to N-1th grating grooves gradually becomes smaller; the optical device includes m and holograms in the width direction.
  • each part of the dry plate corresponds to an optical unit, each optical unit is divided into 2N-1 regions, d j is the depth of the jth grating groove in each portion, d is the cell thickness of the liquid crystal cell, and n j is each optical
  • the refractive index of the j-th region in the unit, m and N are integers greater than 1, and j is an integer greater than 0 and not greater than 2N-1.
  • the laser light source is specifically configured to emit a reference corresponding to the holographic image to be displayed a light beam; or a conjugate beam of a reference beam corresponding to the holographic image to be displayed.
  • the laser light source is specifically configured to emit a linearly polarized laser light, and a vibration direction of the laser beam is parallel to an initial alignment direction of the liquid crystal molecules in the optical unit.
  • the embodiment of the present disclosure further provides a display method, which is applied to the display device as described above, and the display method includes:
  • the refractive index of each optical unit is adjusted based on the image data.
  • adjusting the refractive index of each optical unit according to the image data includes:
  • a refractive index of each optical unit is determined based on the image data, and liquid crystal molecule deflection in the optical unit is driven according to the determined refractive index.
  • determining the refractive index of each optical unit according to the image data includes:
  • the holographic dry plate corresponding to the holographic image to be displayed is divided into m parts in the width direction, each part includes 2N-1 grating grooves, and the depth of adjacent grating grooves in each part is different, and the 2N-1 grating grooves The depth from the 1st to the Nth grating grooves gradually becomes larger, and the depth from the Nth to the 2nd to N-1th grating grooves gradually becomes smaller; the optical device includes m and holographic dry plates in the width direction.
  • each part corresponds to an optical unit, each optical unit is divided into 2N-1 regions, d j is the depth of the jth grating groove in each portion, d is the cell thickness of the liquid crystal cell, and n j is in each optical unit
  • the refractive index of the j-th region, m and N are integers greater than 1, and j is an integer greater than 0 and not greater than 2N-1.
  • FIG. 1 is a schematic view showing imaging of a holographic dry plate in the related art
  • Figure 2 is a schematic cross-sectional view of a holographic dry plate
  • FIG. 3 and 4 are schematic cross-sectional views of an optical device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic view showing different refractive indices of different optical units according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of performing virtual image display according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of real image display according to an embodiment of the present disclosure.
  • the holographic dry plate in the related art records the amplitude and phase information in the object beam in the form of contrast and shading of the interference fringes to form irregular interference fringes.
  • is the angle between the reference beam and the object beam when it hits the dry plate
  • is the beam wavelength.
  • the hologram obtained by the holographic dry plate after being subjected to development, fixing, etc. is equivalent to an amplitude type diffraction grating whose transmittance coefficient is changed in a sinusoidal form, and the bleaching process conversion and ion etching technique are performed on the amplitude type diffraction grating.
  • a photolithography technique can obtain a phase type diffraction grating as shown in FIG.
  • the thickness dj of the grating groove is related to the shape of the object (where j is an integer greater than 1), and it can be seen that the thickness of the grating groove Change to a sinusoidal distribution. Then, when the holographic dry plate is irradiated with the reference beam, the human eye can view the holographic dry plate in the projected light, and the reproduced image having the same shape as the original can be viewed.
  • a disadvantage of the related art is that the holographic dry plate records a static image, and a dynamic holographic image cannot be viewed through the holographic dry plate.
  • embodiments of the present disclosure provide a display device and a display method thereof, which are capable of realizing dynamic display of a holographic image.
  • Embodiments of the present disclosure provide a display device including an optical device, a laser light source on a light incident side of the optical device, a drive circuit connected to the optical device, and a holographic image data storage unit connected to the drive circuit.
  • the optical device comprises a plurality of mutually independent optical units capable of refracting incident linearly polarized laser light, the refractive index of the optical unit being adjustable, and refractive index changes of adjacent optical units Sinusoidal distribution.
  • the laser source is used to emit a laser beam corresponding to the holographic image to be displayed.
  • the driving circuit is configured to acquire image data of a holographic image to be displayed from the holographic image data storage unit, and adjust a refractive index of each optical unit according to the image data.
  • the laser light source when the holographic image is displayed, the laser light source emits a hologram to be displayed.
  • the optical unit is capable of refracting the incident linearly polarized laser light, and the refractive index of the optical unit is adjustable, so that by controlling the refractive index of the optical unit, the optical path difference generated by the laser beam in the optical device can be
  • the optical path difference of the laser beam in the ordinary holographic dry plate is equivalent, so that the display of the holographic image can be realized, and at the same time, since the refractive index of the optical unit can be dynamically adjusted, the dynamic hologram can be presented when the optical device is illuminated by the reference beam. image.
  • the optical device comprises:
  • liquid crystal cell located between the first transparent substrate and the second transparent substrate; the liquid crystal cell is divided into a plurality of mutually independent liquid crystal cells;
  • first electrode and a second electrode are respectively located on different transparent substrates or on the same transparent substrate, and the liquid crystal unit can be driven between the first electrode and the second electrode The electric field deflected by the liquid crystal molecules.
  • Each of the liquid crystal cells and their corresponding first and second electrodes constitute the optical unit.
  • optical device further includes:
  • a polarizer attached to a light incident side of the optical device, wherein an initial alignment direction of liquid crystal molecules in the liquid crystal cell is parallel to a light transmission axis of the polarizer. Since the optical unit can only refract the linearly polarized laser light, a polarizer is attached to the light incident side of the optical device, and the initial alignment direction of the liquid crystal molecules in the liquid crystal cell is parallel to the transmission axis of the polarizer.
  • the sheet is capable of converting the incident laser light into a linearly polarized laser such that the optical unit refracts the incident laser light.
  • the driving circuit is specifically configured to determine a refractive index of each optical unit according to the image data, and drive liquid crystal molecule deflection in the optical unit according to the determined refractive index.
  • the driving circuit includes:
  • the holographic dry plate corresponding to the holographic image to be displayed is divided into m parts in the width direction, each part includes 2N-1 grating grooves, and the depth of adjacent grating grooves in each part is different, and the 2N-1 grating grooves The depth from the 1st to the Nth grating grooves gradually becomes larger, and the depth from the Nth to the 2nd to N-1th grating grooves gradually becomes smaller; the optical device includes m and holographic dry plates in the width direction.
  • each optical unit is divided into 2N-1 regions, d j is the depth of the jth grating groove in each portion, d is the cell thickness of the liquid crystal cell, and n j is in each optical unit
  • the refractive index of the j-th region, m, N is an integer greater than 1, and j is an integer greater than 0 and not greater than 2N-1.
  • the laser light source is specifically configured to emit a reference beam corresponding to the hologram image to be displayed; or to emit a conjugate beam of the reference beam corresponding to the hologram image to be displayed.
  • the laser light source emits a reference beam corresponding to the holographic image to be displayed
  • the human eye can see the virtual image of the holographic image located on the light incident side of the optical device; and the laser light source emits a reference beam corresponding to the holographic image to be displayed
  • a real image of the holographic image can be seen on the viewing screen on the light exit side of the optical device.
  • the laser light source is specifically configured to emit a linearly polarized laser light, and a vibration direction of the laser beam is parallel to an initial alignment direction of the liquid crystal molecules in the optical unit.
  • the laser source emits a linearly polarized laser, it is possible to omit the attachment of the polarizer to the optical device.
  • the embodiment of the present disclosure further provides a display method, which is applied to the display device as described above, and the display method includes:
  • the refractive index of each optical unit is adjusted based on the image data.
  • the laser light source when performing holographic image display, emits a laser beam corresponding to the holographic image to be displayed, and the optical unit can refract the incident linearly polarized laser light, and the refractive index of the optical unit is adjustable, so that The refractive index of the optical unit can make the optical path difference generated by the laser beam in the optical device equivalent to the optical path difference of the laser beam in the ordinary holographic dry plate, thereby enabling display of the holographic image and at the same time due to the refractive index of the optical unit Dynamic adjustment is possible so that when the optics are illuminated with the reference beam, a dynamic holographic image is presented.
  • adjusting the refractive index of each optical unit according to the image data includes:
  • the deflection of the liquid crystal molecules in the optical unit is driven according to the determined refractive index.
  • determining the refractive index of each optical unit according to the image data includes:
  • the holographic dry plate corresponding to the holographic image to be displayed is divided into m parts in the width direction, each part includes 2N-1 grating grooves, and the depth of adjacent grating grooves in each part is different, and the 2N-1 grating grooves The depth from the 1st to the Nth grating grooves gradually becomes larger, and the depth from the Nth to the 2nd to N-1th grating grooves gradually becomes smaller; the optical device includes m and holographic dry plates in the width direction.
  • each part corresponds to an optical unit, each optical unit is divided into 2N-1 regions, d j is the depth of the jth grating groove in each portion, d is the cell thickness of the liquid crystal cell, and n j is in each optical unit
  • the refractive index of the j-th region, m, N is an integer greater than 1, and j is an integer greater than 0 and not greater than 2N-1.
  • the optical device is composed of a plurality of optical units that are independent of each other.
  • the optical unit is capable of refracting incident linearly polarized laser light, the refractive index of the optical unit is adjustable, and adjacent The refractive index of the optical unit changes into a sinusoidal distribution.
  • the optical device sequentially includes a polarizer 1, a base substrate 2, a first electrode 5, a liquid crystal cell 3, a second electrode 6, and a base substrate 4.
  • the upper surface of the base substrate 2 is provided with a first electrode 5, and the lower surface of the base substrate 4 is provided with a second electrode 6, and the first electrode 5 and the second electrode 6 are both transparent electrodes, wherein the first electrode 5 is a strip
  • the electrode, the second electrode 6 is a planar electrode; or the first electrode 5 is a planar electrode, and the second electrode 6 is a strip electrode. It suffices that an electric field for driving deflection of liquid crystal molecules in the liquid crystal layer can be formed between the first electrode 5 and the second electrode 6.
  • the initial alignment direction of the liquid crystal molecules in the liquid crystal layer 3 is parallel to the transmission axis of the polarizer 1.
  • the linearly polarized laser passes through the liquid crystal cell, its different liquid crystal deflection states correspond to different refractive indices. If the long axis direction of the liquid crystal is parallel to the polarization direction of the light beam, the refractive index of the light beam in the liquid crystal cell is ne; It is perpendicular to the polarization direction of the beam, and the refractive index of the beam in the liquid crystal cell is no, where ne>no.
  • the beam also has a plurality of refractive indices between ne and no in the cell propagation.
  • the optical path difference between the adjacent light beams is equal to the optical path difference of the light beam propagating in the holographic dry plate, so that the modulation equivalent of the liquid crystal cell to the geometric direction of the light beam is obtained.
  • the modulation of the geometrical direction of the beam by a holographic dry plate allows the liquid crystal cell to be equivalent in nature to the holographic dry plate.
  • the liquid crystal cell By applying a voltage to the first electrode 5 and the second electrode 6 to drive the liquid crystal, the liquid crystal cell can be made equivalent to the holographic dry plate, and the deflection state of the liquid crystal is similar to that shown in FIG.
  • the equivalent principle of a liquid crystal cell equivalent holographic dry plate is the optical path difference and light generated by the light beam in the liquid crystal cell.
  • the beam path difference in the ordinary holographic dry plate is equivalent.
  • the holographic dry plate corresponding to the holographic image to be displayed is divided into m parts in the width direction, as shown in FIG. 2, each part includes 2N-1 grating grooves, and the depth of adjacent grating grooves in each part is different.
  • the depth from the 1st to the Nth grating grooves gradually becomes larger, and the depth from the Nth to the 2nd N-1th grating grooves becomes smaller; the optical device includes in the width direction.
  • the optical device equivalent holographic dry plate can be realized by driving the liquid crystal molecules in the optical unit according to the determined refractive index.
  • the optical device 15 of the equivalent holographic dry plate when the optical device 15 of the equivalent holographic dry plate is irradiated with the same light beam 10 as the reference beam, the light beam 10 enters the optical device 15 through the beam expander 11 and enters the human eye through the light beam 13 of the optical device.
  • the human eye sees the optics of the equivalent holographic dry plate in the transmitted light, the same reconstructed image as the original equivalent of the equivalent holographic dry plate can be seen behind the optical device 15, and the image is a virtual image, 14 of which is The inverse extension of the reference beam of the optics.
  • the refractive index of the optical unit can be adjusted by adjusting the voltage applied to the first electrode and the second electrode, the light generated by the reference beam in the optical device can be made by controlling the refractive index of the optical unit.
  • the path difference is equivalent to the optical path difference of the reference beam in the ordinary holographic dry plate, so that the display of the holographic image can be realized, and at the same time, since the refractive index of the optical unit can be dynamically adjusted, the conjugate beam of the reference beam or the reference beam is irradiated. When the optics are in place, a dynamic holographic image can be presented.
  • the light beam of the optical device that illuminates the equivalent holographic dry plate is a linearly polarized laser beam, and the vibration direction of the light beam is parallel to the initial alignment direction of the liquid crystal molecules in the optical device, it is possible to omit the provision of the polarizer on the optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置及其显示方法。显示装置包括:光学器件(15)、位于光学器件(15)的入光测的激光光源、与光学器件(15)连接的驱动电路、以及与驱动电路连接的全息图像数据存储单元。光学器件(15)包括多个相互独立的光学单元,光学单元能够对入射的线偏振的激光进行折射,光学单元的折射率可调,相邻的光学单元的折射率变化成正弦曲线分布。驱动电路用于从全息图像数据存储单元获取待显示的全息图像的图像数据,根据图像数据调整每一光学单元的折射率,激光光源用于发出与待显示的全息图像对应的激光光束。

Description

一种显示装置及其显示方法
相关申请的交叉引用
本申请主张在2016年10月31日在中国提交的中国专利申请号No.201610928501.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是指一种显示装置及其显示方法。
背景技术
全息干板是将物光束中的振幅和位相信息以干涉条纹的反差和明暗变化的形式记录下来,形成不规则的干涉条纹。感光后的全息干板,经显影、定影等处理得到的全息照片,相当于一个衍射光栅,光栅槽的厚度与被摄物体形貌有关。在利用参考光束照射全息干板时,人眼在投射光中观看全息干板,便可观看到与原物形状相同的再现图像。
相关技术的不足之处在于全息干板记录的是静态的图像,无法通过全息干板观看到动态的全息图像。
发明内容
本公开要解决的技术问题是提供一种显示装置及其显示方法,能够实现全息图像的动态显示。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种显示装置,包括:
光学器件;
位于所述光学器件的入光侧的激光光源,用于发出与待显示的全息图像对应的激光光束;
与所述光学器件连接的驱动电路;
与所述驱动电路连接的全息图像数据存储单元;
其中,所述光学器件包括多个相互独立的光学单元,所述光学单元能够 对入射的线偏振的激光进行折射,所述光学单元的折射率可调,且相邻的光学单元的折射率变化成正弦曲线分布;所述驱动电路用于从所述全息图像数据存储单元获取待显示的全息图像的图像数据,根据所述图像数据调整每一光学单元的折射率。
进一步地,所述光学器件包括:
相对设置的第一透明基板和第二透明基板;
位于所述第一透明基板和所述第二透明基板之间的液晶盒;
所述液晶盒划分为多个相互独立的液晶单元;
第一电极和第二电极,所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场;
每一液晶单元及其对应的第一电极和第二电极组成所述光学单元。
进一步地,所述显示装置还包括:
贴附在所述光学器件的入光侧的偏光片,所述液晶单元中液晶分子的初始配向方向与所述偏光片的透光轴平行。
进一步地,所述驱动电路具体用于根据所述图像数据确定每一光学单元的折射率,根据所确定的折射率驱动光学单元中的液晶分子偏转。
进一步地,所述驱动电路包括:
计算单元,用于根据所述图像数据确定待显示的全息图像对应的全息干板,并根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
其中,待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m和N为大于1的整数,j为大于0不大于2N-1的整数。
进一步地,所述激光光源具体用于发出与待显示的全息图像对应的参考 光束;或发出与待显示的全息图像对应的参考光束的共轭光束。
进一步地,所述激光光源具体用于发出线偏振的激光,且激光的光束的振动方向与所述光学单元中液晶分子的初始配向方向平行。
本公开实施例还提供了一种显示方法,应用于如上所述的显示装置,所述显示方法包括:
获取待显示的全息图像的图像数据;
根据所述图像数据调整每一光学单元的折射率。
进一步地,所述根据所述图像数据调整每一光学单元的折射率包括:
根据所述图像数据确定每一光学单元的折射率,根据所确定的折射率驱动光学单元中的液晶分子偏转。
进一步地,所述根据所述图像数据确定每一光学单元的折射率包括:
根据所述图像数据确定待显示的全息图像对应的全息干板;
根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m和N为大于1的整数,j为大于0不大于2N-1的整数。
附图说明
图1为相关技术中全息干板进行成像的示意图;
图2为全息干板的截面示意图;
图3和图4为本公开实施例光学器件的截面示意图;
图5为本公开实施例不同光学单元的折射率不同的示意图;
图6为本公开实施例进行虚像显示的示意图;
图7为本公开实施例进行实像显示的示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,相关技术中的全息干板是将物光束中的振幅和位相信息以干涉条纹的反差和明暗变化的形式记录下来,形成不规则的干涉条纹。
Figure PCTCN2017098835-appb-000001
其中,θ为参考光束与物光束射到干板时两者的夹角,λ为光束波长。感光后的全息干板,经显影、定影等处理得到的全息照片,相当于一个透过率系数按正弦形式变化的振幅型衍射光栅,对该振幅型衍射光栅进行漂白工艺转变、离子刻蚀技术或者光刻技术能够得到如图2所示的相位型衍射光栅,其中,光栅槽的厚度dj与被摄物体形貌有关(其中,j为大于1的整数),可以看出,光栅槽的厚度变化成正弦曲线分布。之后再利用参考光束照射全息干板时,人眼在投射光中观看全息干板,便可观看到与原物形状相同的再现图像。
相关技术的不足之处在于全息干板记录的是静态的图像,无法通过全息干板观看到动态的全息图像。
为了解决上述问题,本公开的实施例提供一种显示装置及其显示方法,能够实现全息图像的动态显示。
本公开实施例提供一种显示装置,包括光学器件、位于所述光学器件的入光侧的激光光源、与所述光学器件连接的驱动电路以及与所述驱动电路连接的全息图像数据存储单元。
其中,所述光学器件包括多个相互独立的光学单元,所述光学单元能够对入射的线偏振的激光进行折射,所述光学单元的折射率可调,且相邻的光学单元的折射率变化成正弦曲线分布。
所述激光光源用于发出与待显示的全息图像对应的激光光束。
所述驱动电路用于从所述全息图像数据存储单元获取待显示的全息图像的图像数据,根据所述图像数据调整每一光学单元的折射率。
本实施例中,在进行全息图像显示时,激光光源发出与待显示的全息图 像对应的激光光束,光学单元能够对入射的线偏振的激光进行折射,光学单元的折射率可调,这样通过控制光学单元的折射率,能够使激光光束在光学器件中产生的光程差与激光光束在普通全息干板中的光程差等效,从而能够实现全息图像的显示,同时由于光学单元的折射率可进行动态调节,这样利用参考光束照射光学器件时,即可呈现动态的全息图像。
具体实施例中,所述光学器件包括:
相对设置的第一透明基板和第二透明基板;
位于所述第一透明基板和所述第二透明基板之间的液晶盒;所述液晶盒划分为多个相互独立的液晶单元;
第一电极和第二电极,所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场。
每一液晶单元及其对应的第一电极和第二电极组成所述光学单元。
进一步地,所述光学器件还包括:
贴附在所述光学器件的入光侧的偏光片,所述液晶单元中液晶分子的初始配向方向与所述偏光片的透光轴平行。由于光学单元仅能对线偏振的激光进行折射,因此,在光学器件的入光侧还贴附有偏光片,液晶单元中液晶分子的初始配向方向与该偏光片的透光轴平行,该偏光片能够将入射的激光转换成线偏振的激光,以使得光学单元对入射的激光进行折射。
进一步地,所述驱动电路具体用于根据所述图像数据确定每一光学单元的折射率,根据所确定的折射率驱动光学单元中的液晶分子偏转。
进一步地,所述驱动电路包括:
计算单元,用于根据所述图像数据确定待显示的全息图像对应的全息干板,并根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分 中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m,N为大于1的整数,j为大于0不大于2N-1的整数。
进一步地,所述激光光源具体用于发出与待显示的全息图像对应的参考光束;或发出与待显示的全息图像对应的参考光束的共轭光束。在激光光源发出与待显示的全息图像对应的参考光束时,人眼能够看到位于光学器件的入光侧的全息图像的虚像;在激光光源发出与待显示的全息图像对应的参考光束的共轭光束时,能够在位于光学器件的出光侧的观察屏上看到全息图像的实像。
进一步地,所述激光光源具体用于发出线偏振的激光,且激光的光束的振动方向与所述光学单元中液晶分子的初始配向方向平行。在激光光源发出线偏振的激光时,可以省去在光学器件上贴附偏光片。
本公开实施例还提供了一种显示方法,应用于如上所述的显示装置,所述显示方法包括:
获取待显示的全息图像的图像数据;
根据所述图像数据调整每一光学单元的折射率。
本实施例中,在进行全息图像显示时,激光光源发出与待显示的全息图像对应的激光光束,光学单元能够对入射的线偏振的激光进行折射,光学单元的折射率可调,这样通过控制光学单元的折射率,能够使激光光束在光学器件中产生的光程差与激光光束在普通全息干板中的光程差等效,从而能够实现全息图像的显示,同时由于光学单元的折射率可进行动态调节,这样利用参考光束照射光学器件时,即可呈现动态的全息图像。
进一步地,根据所述图像数据调整每一光学单元的折射率包括:
根据所述图像数据确定每一光学单元的折射率;
根据所确定的折射率驱动光学单元中的液晶分子偏转。
进一步地,所述根据所述图像数据确定每一光学单元的折射率包括:
根据所述图像数据确定待显示的全息图像对应的全息干板;
根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1 个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m,N为大于1的整数,j为大于0不大于2N-1的整数。
下面结合附图对本公开的显示装置进行进一步介绍:
图3为本公开实施例光学器件的结构示意图,光学器件由多个相互独立的光学单元组成,光学单元能够对入射的线偏振的激光进行折射,光学单元的折射率可调,且相邻的光学单元的折射率变化成正弦曲线分布。如图3所示,光学器件依次包括:偏光片1、衬底基板2、第一电极5、液晶盒3、第二电极6和衬底基板4。
衬底基板2的上表面设置有第一电极5,衬底基板4的下表面设置有第二电极6,第一电极5和第二电极6都是透明电极,其中,第一电极5为条形电极,第二电极6为面形电极;或第一电极5为面形电极,第二电极6为条形电极。只要,第一电极5和第二电极6之间能够形成驱动液晶层中液晶分子偏转的电场即可。
本实施例中,液晶层3中液晶分子的初始配向方向与偏光片1的透光轴平行。
线偏振的激光经过液晶盒时,其不同的液晶偏转状态对应不同的折射率,若液晶长轴方向与光束偏振方向平行,此时光束在液晶盒内的折射率为ne;若液晶长轴方向与光束偏振方向垂直,此时光束在液晶盒内的折射率为no,其中ne>no。光束在液晶盒传播中还有介于ne和no之间的多种折射率。利用这一特性,可使光束在液晶盒中传播时,相邻光束间的光程差与该光束在全息干板中传播的光程差相等,从而使液晶盒对光束几何方向的调制等效于一个全息干板对光束几何方向的调制,利用这一性质,可使得液晶盒在性质上等效于全息干板。
通过在第一电极5和第二电极6上施加电压对液晶进行驱动,能够使液晶盒等效于全息干板,其液晶的偏转状态类似如图4所示。
液晶盒等效全息干板的等效原则是使光束在液晶盒中产生的光程差与光 束在普通全息干板中的光程差等效。
将待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,如图2所示,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,如图5所示,每个光学单元划分为2N-1个区域,dj为第j个光栅槽的深度,d为液晶盒的盒厚,nj为光学单元中第j个区域的折射率,m,N为大于1的整数,j为大于0不大于2N-1的整数,在液晶盒等效全息干板时,可以根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率。
在显示装置进行全息图像的动态显示时,首先获取待显示的全息图像的图像数据,再根据所述图像数据确定待显示的全息图像对应的全息干板,利用上述公式计算每一光学单元的折射率,再根据所确定的折射率驱动光学单元中的液晶分子偏转,即可实现光学器件等效全息干板。
如图6所示,当利用与参考光束相同的光束10照射等效全息干板的光学器件15时,光束10经过扩束镜11进入光学器件15,经过光学器件的光束13进入人眼,则人眼在透射光中观看到等效全息干板的光学器件,便可在光学器件15后观看到与等效全息干板原物相同的再现像,此时该像属于虚像,其中14为经过光学器件的参考光束的反向延长线。
如图7所示,当利用与参考光束的共轭光束相同的光束17照射等效全息干板的光学器件15时,可在等效全息干板的光学器件15的出光侧射出汇聚一点的球面光束,在汇聚点处放置一观察屏16即可呈现与等效全息干板原物相同的再现像,此时该像属于实像。
本实施例中,由于通过调整施加在第一电极和第二电极上的电压可以实现光学单元的折射率可调,这样通过控制光学单元的折射率,能够使参考光束在光学器件中产生的光程差与参考光束在普通全息干板中的光程差等效,从而能够实现全息图像的显示,同时由于光学单元的折射率可进行动态调节,这样利用参考光束或者参考光束的共轭光束照射光学器件时,即可呈现动态的全息图像。
此外,在照射等效全息干板的光学器件的光束为线偏振激光光束,且光束的振动方向与光学器件中液晶分子的初始配向方向平行时,可以省去在光学器件上设置偏光片。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (10)

  1. 一种显示装置,包括:
    光学器件;
    位于所述光学器件的入光侧的激光光源,用于发出与待显示的全息图像对应的激光光束;
    与所述光学器件连接的驱动电路;
    与所述驱动电路连接的全息图像数据存储单元;
    其中,所述光学器件包括多个相互独立的光学单元,所述光学单元能够对入射的线偏振的激光进行折射,所述光学单元的折射率可调,且相邻的光学单元的折射率变化成正弦曲线分布
    所述驱动电路用于从所述全息图像数据存储单元获取待显示的全息图像的图像数据,根据所述图像数据调整每一光学单元的折射率。
  2. 根据权利要求1所述的显示装置,其中,所述光学器件具体包括:
    相对设置的第一透明基板和第二透明基板;
    位于所述第一透明基板和所述第二透明基板之间的液晶盒;所述液晶盒包括多个相互独立的液晶单元;
    第一电极和第二电极,所述第一电极和所述第二电极分别位于不同透明基板上或位于同一透明基板上,所述第一电极和第二电极之间能够产生驱动所述液晶单元中的液晶分子偏转的电场;
    其中,每一液晶单元及其对应的第一电极和第二电极组成所述光学单元。
  3. 根据权利要求2所述的显示装置,还包括:
    贴附在所述光学器件的入光侧的偏光片,所述液晶单元中液晶分子的初始配向方向与所述偏光片的透光轴平行。
  4. 根据权利要求2所述的显示装置,其中,所述驱动电路具体用于根据所述图像数据确定每一光学单元的折射率,根据所确定的折射率驱动光学单元中的液晶分子偏转。
  5. 根据权利要求4所述的显示装置,其中,所述驱动电路包括:
    计算单元,用于根据所述图像数据确定待显示的全息图像对应的全息干 板,并根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
    其中,待显示的全息图像对应的全息干板在宽度方向上划分为m个部分,每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m和N为大于1的整数,j为大于0不大于2N-1的整数。
  6. 根据权利要求2所述的显示装置,其中,所述激光光源具体用于发出与待显示的全息图像对应的参考光束;或发出与待显示的全息图像对应的参考光束的共轭光束。
  7. 根据权利要求6所述的显示装置,其中,所述激光光源具体用于发出线偏振的激光,且激光的光束的振动方向与所述光学单元中液晶分子的初始配向方向平行。
  8. 一种显示方法,应用于如权利要求1-7中任一项所述的显示装置,所述显示方法包括:
    获取待显示的全息图像的图像数据;
    根据所述图像数据调整每一光学单元的折射率。
  9. 根据权利要求8所述的显示方法,其中,在所述显示装置包括如权利要求2所述的光学器件时,所述根据所述图像数据调整每一光学单元的折射率包括:
    根据所述图像数据确定每一光学单元的折射率,根据所确定的折射率驱动光学单元中的液晶分子偏转。
  10. 根据权利要求9所述的显示方法,其中,所述根据所述图像数据确定每一光学单元的折射率包括:
    根据所述图像数据确定待显示的全息图像对应的全息干板;
    根据公式(dj-dj-1)*(n-1)=d*(nj-nj-1)计算每一光学单元的折射率;
    其中,待显示的全息图像对应的全息干板在宽度方向上划分为m个部分, 每一部分包括有2N-1个光栅槽,每一部分中相邻光栅槽的深度不同,所述2N-1个光栅槽中,从第1个到第N个光栅槽的深度逐渐变大,从第N个到第2N-1个光栅槽的深度逐渐变小;光学器件在宽度方向上包括有m个与全息干板的每一部分对应的光学单元,每个光学单元划分为2N-1个区域,dj为每一部分中第j个光栅槽的深度,d为液晶盒的盒厚,nj为每一光学单元中第j个区域的折射率,m和N为大于1的整数,j为大于0不大于2N-1的整数。
PCT/CN2017/098835 2016-10-31 2017-08-24 一种显示装置及其显示方法 WO2018076914A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/758,981 US10642222B2 (en) 2016-10-31 2017-08-24 Display apparatus and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610928501.5 2016-10-31
CN201610928501.5A CN106338905B (zh) 2016-10-31 2016-10-31 一种显示装置及其显示方法

Publications (1)

Publication Number Publication Date
WO2018076914A1 true WO2018076914A1 (zh) 2018-05-03

Family

ID=57840548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098835 WO2018076914A1 (zh) 2016-10-31 2017-08-24 一种显示装置及其显示方法

Country Status (3)

Country Link
US (1) US10642222B2 (zh)
CN (1) CN106338905B (zh)
WO (1) WO2018076914A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338905B (zh) * 2016-10-31 2017-11-14 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN106940486B (zh) * 2017-04-25 2022-06-24 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN108196437B (zh) 2018-01-04 2020-11-10 京东方科技集团股份有限公司 一种全息成像显示方法、装置、设备及存储介质
CN116413909A (zh) * 2021-12-30 2023-07-11 比亚迪股份有限公司 显示装置、车辆及车辆的控制方法
CN114578579B (zh) * 2022-04-25 2024-01-12 合肥京东方光电科技有限公司 显示装置、vr设备、显示方法、计算机存储介质和设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591238A (zh) * 2003-08-25 2005-03-09 株式会社Ntt都科摩 立体图像显示装置和立体图像显示系统
CN101065713A (zh) * 2004-11-25 2007-10-31 皇家飞利浦电子股份有限公司 动态液晶凝胶全息图
CN101614836A (zh) * 2009-07-08 2009-12-30 中国科学院上海光学精密机械研究所 石英透射偏振分束光栅
US20120154715A1 (en) * 2010-12-16 2012-06-21 Samsung Electronics Co., Ltd. Active optical device employing refractive index variable regions
CN103838125A (zh) * 2013-12-04 2014-06-04 上海交通大学 一种三维影像显示系统
CN104204916A (zh) * 2012-01-25 2014-12-10 剑桥企业有限公司 光学设备与方法
US20150331297A1 (en) * 2014-05-16 2015-11-19 Samsung Electronics Co., Ltd. Spatial light modulator including nano-antenna electrode and display apparatus including the spatial light modulator
CN106338905A (zh) * 2016-10-31 2017-01-18 京东方科技集团股份有限公司 一种显示装置及其显示方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981010B1 (ko) 2006-02-23 2010-09-07 후지쯔 가부시끼가이샤 홀로그래픽 기록 장치
RU2378673C1 (ru) * 2008-04-03 2010-01-10 Владимир Исфандеярович Аджалов Способ визуализации изображений и устройство для его реализации
WO2011053279A1 (en) * 2009-10-27 2011-05-05 Hewlett-Packard Development Company, L.P. Display for 3d holographic images
KR101507202B1 (ko) * 2011-11-16 2015-04-08 엘지디스플레이 주식회사 투과형 액정표시패널을 이용한 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
KR102251896B1 (ko) * 2014-12-31 2021-05-13 엘지디스플레이 주식회사 홀로그램 표시 장치 및 그 제어 방법
US10620511B2 (en) * 2015-06-23 2020-04-14 Nec Corporation Projection device, projection system, and interface apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1591238A (zh) * 2003-08-25 2005-03-09 株式会社Ntt都科摩 立体图像显示装置和立体图像显示系统
CN101065713A (zh) * 2004-11-25 2007-10-31 皇家飞利浦电子股份有限公司 动态液晶凝胶全息图
CN101614836A (zh) * 2009-07-08 2009-12-30 中国科学院上海光学精密机械研究所 石英透射偏振分束光栅
US20120154715A1 (en) * 2010-12-16 2012-06-21 Samsung Electronics Co., Ltd. Active optical device employing refractive index variable regions
CN104204916A (zh) * 2012-01-25 2014-12-10 剑桥企业有限公司 光学设备与方法
CN103838125A (zh) * 2013-12-04 2014-06-04 上海交通大学 一种三维影像显示系统
US20150331297A1 (en) * 2014-05-16 2015-11-19 Samsung Electronics Co., Ltd. Spatial light modulator including nano-antenna electrode and display apparatus including the spatial light modulator
CN106338905A (zh) * 2016-10-31 2017-01-18 京东方科技集团股份有限公司 一种显示装置及其显示方法

Also Published As

Publication number Publication date
US10642222B2 (en) 2020-05-05
CN106338905B (zh) 2017-11-14
US20190339648A1 (en) 2019-11-07
CN106338905A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2018076914A1 (zh) 一种显示装置及其显示方法
US9270978B2 (en) Method and device for 3-D display based on random constructive interference
CN108351089B (zh) 用于改进强度分布的波导涂层或基板
US10856057B2 (en) Optical device and methods
CN108351516B (zh) 用于改进强度分布的波导光栅
KR102355452B1 (ko) 홀로그래픽 재구성을 위한 디스플레이 디바이스
US9720375B2 (en) Spatial light modulating panel using transmittive liquid crystal display panel and 3D display device using the same
US9785114B2 (en) Method and device for the layered production of thin volume grid stacks, and beam combiner for a holographic display
US20160349508A1 (en) Display apparatus
US10409084B2 (en) Alignment method
TW201107791A (en) Three-dimensional light modulation arrangement for modulating a wave field having complex information
EP1089117A1 (en) Spatial light modulator and spatial light modulating method
US10795191B2 (en) Display device including optical element having adjustable refractive index and display method
US11320785B2 (en) Holographic optical element and manufacturing method thereof, image reconstruction method and augmented reality glasses
US11143812B2 (en) Display panel and display device
JP2010060906A (ja) 液晶表示素子、および液晶表示装置
KR100664872B1 (ko) 1차원 홀로그램을 이용한 영상 표시장치
WO2019018745A1 (en) TELESCOPE NETWORKS AND LOW VOLUMES NETWORKS FOR THE GENERATION OF LUMINOUS FIELDS
Nakamura et al. Field of view enlargement with line symmetric image input technique of volumetric hologram waveguide for head mounted displays
CN113950643A (zh) 空间光调制
CN111373305A (zh) 偏振分光器、面光源装置以及显示装置
JP2964467B2 (ja) 多重反射素子
US20220253017A1 (en) Beam expanding film and holographic display apparatus including the same
Gneiting Improved leaky-mode waveguide spatial light modulators for three dimensional displays
Chen et al. High-efficient liquid crystal polarization gratings for autostereoscopic 3D display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866139

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17866139

Country of ref document: EP

Kind code of ref document: A1