WO2018076672A1 - 一种光传送网络业务接入方法及装置、计算机存储介质 - Google Patents

一种光传送网络业务接入方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018076672A1
WO2018076672A1 PCT/CN2017/085192 CN2017085192W WO2018076672A1 WO 2018076672 A1 WO2018076672 A1 WO 2018076672A1 CN 2017085192 W CN2017085192 W CN 2017085192W WO 2018076672 A1 WO2018076672 A1 WO 2018076672A1
Authority
WO
WIPO (PCT)
Prior art keywords
otuc
processing
signal
service
otucs
Prior art date
Application number
PCT/CN2017/085192
Other languages
English (en)
French (fr)
Inventor
曾纪瑞
王祯元
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018076672A1 publication Critical patent/WO2018076672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted

Definitions

  • the present invention relates to the field of bearer network communication, and particularly relates to an OTN service access method and apparatus, and a computer storage medium, which can support 100G OTN service access and are compatible with over 100G OTN service access.
  • any one of the multiple 100G services such as an OTUC (Optical Channel Transmission Unit), generates an alarm or an interrupt, and the entire OTUCn service generates an alarm or an interrupt; each OTUC needs to generate a unified insertion, Self-oscillation, alignment, etc.; each OTUC outputs the same frame header indication and data valid signal, making OTUCn appear to present an overall service feature. If OTUCn is distributed, different circuits need to be prepared for different types of services, and the signal connections between the various OTUCs that make up 100G are quite complicated.
  • an embodiment of the present invention provides an OTN service access method and apparatus, and a computer storage medium.
  • the offset between the OTUCs is removed.
  • the collecting the result signals of the OTUCs includes:
  • the result signals of the corresponding N OTUCs are selected from all OTUCs for aggregation, and N is a positive integer.
  • the trigger signal includes one or more of the following: an alarm signal and an interrupt signal, a rate indication signal and a frame header indication signal, a unified statistical signal, and a unified insertion action enable signal and Self-vibration is the enable signal.
  • the removing the signal offset between the OTUCs includes:
  • the de-skew circuit And outputting the offset to the de-skew circuit in synchronization with the OTUC service, and the de-skew circuit sends a unified read frame header instruction to each OTUC according to the duration of the offset delay.
  • the framing processing is MLD framing processing
  • the encoding and decoding processing is forward error correction FEC encoding and decoding processing.
  • a framing unit configured to perform framing processing on each OTUC service
  • a codec unit configured to perform codec processing on each OTUC service
  • the high-order overhead unit is configured to perform high-order overhead processing on each OTUC service
  • the signal central processing unit is configured to remove the offset between the OTUCs after performing the encoding and decoding process on the OTUC services, and perform codec processing and high-order overhead processing on the OTUC services.
  • the result signals of the OTUCs are aggregated, and a unified trigger signal is generated according to the convergence result; the generated trigger signal is sent to each OTUC.
  • the signal central processing unit is specifically configured to select a corresponding N OTUC result signal from all OTUCs to be aggregated according to the OTUCn service type, where N is a positive integer.
  • the trigger signal includes one or more of the following: an alarm signal and an interrupt signal, a rate indication signal and a frame header indication signal, a unified statistical signal, and a unified insertion action enable signal and Self-vibration is the enable signal.
  • the signal centralized processing unit is specifically configured to detect an offset between the earliest arrival and the latest OTUC of the OTUCn; and output the offset to the OTUC service to the depolarization And shifting the circuit, and the de-skew circuit sends a unified read frame header instruction to each OTUC according to the corresponding delay time of the offset delay.
  • the framing processing is MLD framing processing
  • the encoding and decoding processing is FEC encoding and decoding processing.
  • the embodiment of the invention further provides a computer storage medium storing a computer program configured to execute the OTN service access method.
  • adding a small amount of resources on the basis of the original 100G OTN in a flexible manner can support the access of the OTUCn service, realize the alignment between the OTUCs in the OTUCn, and achieve the effect of OTUCn as a whole business, and improve The chip achieves speed.
  • FIG. 1 is a schematic flowchart diagram of an OTN service access method according to an embodiment of the present invention
  • Figure 2 (a) is a flow chart of the two-way processing of single-channel OTU4;
  • 2(b) is a flowchart of processing an OTUCn service according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an OTUCn alarm aggregation according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an OTUCn selecting an OTUC signal according to an embodiment of the present invention.
  • FIG. 5(a) is a block diagram showing the principle of de-offset according to an embodiment of the present invention.
  • Figure 5 (b) is a schematic diagram of the de-offset of the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a de-skew signal connection according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an OTN service access apparatus according to an embodiment of the present invention.
  • the technical solution of the embodiment of the present invention provides a scheme for flexibly accessing an OTN service based on the support of the 100G OTN service processing technology, and generates an alarm signal and an interrupt signal required by each service according to the protocol requirements according to the super 100G service type.
  • the OTUCs are aligned according to different service offsets.
  • the technical solution of the embodiment of the present invention can meet the requirements of the super 100G service processing standard and fully utilize the original 100G OTN service processing circuit to achieve the goals of 100G and over 100G OTN processing at a minimum cost.
  • FIG. 1 is a schematic flowchart of an OTN service access method according to an embodiment of the present invention. As shown in FIG. 1 , the OTN service access method includes the following steps:
  • Step 101 Perform framing processing, codec processing, and high-order overhead processing on each OTUC service for each OTUC service in the OTUCn service that is accessed; where the OTUC service is coded and decoded. After the processing is completed, the offset between the OTUCs is removed.
  • the result signals of the OTUCs are aggregated and generated according to the convergence result. A unified trigger signal; the generated trigger signal is sent to each OTUC.
  • the multiplex OTUC constitutes an OTUCn, wherein the OTUC is an optical channel transmission unit.
  • the collecting the result signals of the OTUCs includes:
  • the result signals of the corresponding N OTUCs are selected from all OTUCs for aggregation, and N is a positive integer.
  • the trigger signal includes one or more of the following: an alarm signal and an interrupt signal, a rate indication signal and a frame header indication signal, a unified statistical signal, and a unified insertion action enable signal and Self-vibration is the enable signal.
  • the removing the signal offset between the OTUCs includes:
  • the de-skew circuit And outputting the offset to the de-skew circuit in synchronization with the OTUC service, and the de-skew circuit sends a unified read frame header instruction to each OTUC according to the duration of the offset delay.
  • the framing processing is MLD framing processing
  • the encoding and decoding processing is Forward Error Correction (FEC) encoding and decoding processing.
  • FEC Forward Error Correction
  • OTUCn is an overall business like OTU4. This requires that the OTUC of each component exhibit the same characteristics in terms of alarm, rate, and the like. In other words, the offset between the OTUC components of the OTUCn can be removed; each component OTUC has the same rate indication and data valid indication signal; each component OTUC will have a corresponding alarm as long as one OTUC has an alarm for the entire OTUCn; The statistical information of each constituent OTUC is read at the same time.
  • the processing of the OTN service in the embodiment of the present invention includes four parts: a fixed frame processing, a codec processing, a high-order overhead processing, and a centralized signal processing.
  • the frame processing is specifically MLD frame
  • the codec process is specifically FEC codec
  • the high-order overhead processing part is added with OTUCn processing
  • the processing of #1 and #2 ⁇ #n in OTUCn is different, and each way OTUC processing is compatible with OTU4 services.
  • different OTUCn service types generate corresponding alarm signals and interrupt signals according to the cpu configuration; rate indication signals and frame header indication signals; unified read statistical signals; unified insertion and other action enable signals; Processing allows OTUCn to present a business-wide overall feature.
  • each OTUC has the same rate indication signal and the frame header indication signal.
  • the embodiment of the present invention adopts a centralized signal processing manner, and can be applied to different OTUCn services according to different cpu configurations, so that the interface has flexibility and reduces a large number of connections between the various OTUCs.
  • the centralized signal processing circuit is also called an OTUCn_PRO module, and the OTUCn_PRO module is an arbiter for collectively processing signal generation.
  • the OTUCn_PRO module receives the alarm signals and interrupt signals separately uploaded by each OTUC, and then, according to the service type.
  • the aggregation of different completion alarm signals is sent to each OTUC, and is delivered to each OTUC according to the type of service: the enable signal of the insertion action, the enable signal of the statistical transfer, and the selection. Select the rate signal, fifo read enable signal, and so on.
  • fifo first in first out circuit in which the output data is evenly distributed in the codec circuit, by which the offset between the OTUCs is removed.
  • the process of de-skewing is as shown in Fig. 5(a): the offset between the earliest arrival and the latest arrival OTUC in OTUCn is detected, and the offset is output to the de-skew circuit in synchronization with the service, and the offset is performed. After the circuit delays for a period of time according to the detected offset value, a unified read frame header instruction is sent to each OTUC. Once the offset or service changes, the offset circuit continuously performs the new offset value according to the detected offset value. Offset processing.
  • the OTN service access method in the embodiment of the present invention is further described in detail below with reference to a specific application scenario.
  • FIG. 2(a) is a flow chart of bidirectional processing of single-channel OTU4, including MLD framing, FEC codec, and high-order overhead processing.
  • OTU_MLD_RX completes the LAN demultiplexing, lane framing, lane ordering, lane de-offset, derotation, and descrambling of the input OTU service;
  • OTU_DFEC completes the OTU decoding;
  • OTU_ROH completes the overhead extraction and processing, and the maintenance signal is inserted according to the CPU configuration or alarm. , self-vibration and so on.
  • the OTU_MLD_TX completes the output OTU service scrambling, lane rotation, and lane multiplexing; the OTU_FEC completes the OTU service coding to enable the OTU service to obtain the coding gain to improve the anti-interference capability; the OTU_TOH performs various overhead processing or maintenance signal insertion.
  • FIG. 2(b) is a flow chart of the OTUCn service processing.
  • the single-channel view is the same as the OTU4 process.
  • OTUCn is an overall service, requiring each.
  • the composed OTUC exhibits the same characteristics in terms of alarms, rates, and the like. That is, the offset between the various components of OTUCn can be removed; each component OTUC has the same rate indication and data valid indication signal; each component OTUC has an alarm for all OTUCs as long as one OTUC is alarmed; each component OTUC The statistics are read at the same time.
  • OTU4/OTUCn includes MLD framing, FEC codec, and high-order overhead processing.
  • the CPU does not configure the OTUCn_RPO module for aggregation and distribution processing.
  • the MLD framing part processing is the same as the OTU4 service, and the OTUCn service is also independent of each other.
  • the FEC codec processing part is also the same as the OTU4 service.
  • the OTUC is aligned and the OTUC is aligned after the encoding is completed; the OTUCn requires each OTUC to be transferred out at the same time to decode the statistical information and sent to the cpu for reading; the OTUC alarm signals are gathered together for cpu reading. .
  • the de-migration process is shown in Figure 5(b): Taking OTUC3 as an example, the data of the first frame header is used as the reference frame header, and then the position of each OTUC frame header can be calculated according to the position of the first OTUC frame header.
  • the value X1 ⁇ X3, find the latest arrival in the frame header of OTUCn, and get the earliest arrival OTUC frame header offset by the value of the earliest arrival.
  • the deviation between the latest arrival and the earliest arrival of OTUC is the offset that needs to be eliminated.
  • De-skapping can be performed by resetting the read address of each OTUC buffer fifo according to the latest arrival of the OTUC frame header.
  • the offset is realized by the output fifo of each OTUC.
  • the OTUC starts to read the cache at a unified time, and each fifo uniformly reads the data output from the 0 address.
  • a de-migration failure alarm is sent to the OTUCn_RPO module, and the module sends the de-biased failure signal back to each OTUC for transmission to the subsequent module.
  • the frame header signal connection method is shown in Figure 6. All de-skews are only completed in #1OTUC, so the signals from #2 to #5OTUC are all sent to #1OTUC.
  • the OTUCn_RPO module completes the OTUCn service alignment failure alarm and the FIFO empty full signal convergence; performs unified transfer of the decoding statistics for cpu reading; ensures that each OTUC adopts a uniform rate indication signal and valid data after the codec is completed. signal.
  • OTUCn processing is added to the high-order overhead part of OTUCn, #1 and #2 ⁇ #n in OTUCn The processing is different.
  • the alarm signals are gathered together for the CPU to read, and the signals such as the insert enable and the severe alarm complete the distribution of #1 to #2 to #n.
  • the OTUCn service is sent to a high-order overhead processing circuit.
  • the transmission direction is that the signal is processed first through high-order overhead processing and then output to the encoding circuit for FEC operation.
  • the aggregation of the alarm signals such as ssf and iae is completed according to the type of the service; the prbs insertion enable, the suppression enable, the insertion enable, and the like are sent to the OTUCs, and the OTUCn service is uniformly sent and the maintenance signals are inserted, and the self-vibration is performed. action.
  • the OTUCn_RPO module performs two aspects of work: OTUCn constitutes the convergence of signals in OTUC, see Figure 3; OTUCn #1 signal is distributed to each component OTUC. In Figure 3, the signals of all the channels are input. The circuit selects different OTUC alarm signals according to different types of OTUCn services to be aggregated, and then aggregates them to each OTUC. The unified rate signal and the lower insertion enable are selected. Select a uniform read enable when aligning, as shown in Figure 4. Each process is performed under the cpu configuration, and the service transformation can change the aggregation object and the delivery object through the cpu configuration, and has a flexible adaptability.
  • FIG. 7 is a schematic structural diagram of an OTN service access apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes:
  • the framing unit 71 is configured to perform framing processing on each OTUC service
  • the codec unit 72 is configured to perform codec processing on each OTUC service
  • the high-order overhead unit 73 is configured to perform high-order overhead processing on each OTUC service.
  • the signal concentration processing unit 74 is configured to remove the offset between the OTUCs after performing the encoding and decoding process on the OTUC services, and perform codec processing and high-order overhead processing on the OTUC services.
  • the result signals of the OTUCs are aggregated, and a unified trigger signal is generated according to the convergence result; the generated trigger signal is sent to each OTUC.
  • the signal central processing unit 74 is specifically configured to select a corresponding N-way OTUC from all OTUCs according to different types of OTUCn services.
  • the resulting signal is aggregated and N is a positive integer.
  • the trigger signal includes one or more of the following: an alarm signal and an interrupt signal, a rate indication signal and a frame header indication signal, a unified statistical signal, and a unified insertion action enable signal and Self-vibration is the enable signal.
  • the signal concentrating processing unit 74 is specifically configured to detect an offset between the earliest arrival and the latest OTUC of the OTUCn; and output the offset to the OTUC service synchronously. And an offset circuit, wherein the de-skew circuit sends a unified read frame header instruction to each OTUC according to the corresponding delay time of the offset delay.
  • the framing processing is MLD framing processing
  • the encoding and decoding processing is FEC encoding and decoding processing.
  • each unit in the OTN service access device may be implemented by a central processing unit (CPU) or a microprocessor (Micro Processor Unit) located in the OTN service access device. , MPU), or Digital Signal Processor (DSP), or Field Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the implementation functions of the units in the OTN service access apparatus shown in FIG. 7 can be understood by referring to the related description of the foregoing OTN service access method.
  • the functions of the units in the OTN service access apparatus shown in FIG. 7 can be implemented by a program running on a processor, or can be implemented by a specific logic circuit.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code. Based on such understanding, the technical solution of the embodiments of the present invention may be essential or part of contributing to the prior art.
  • the computer software product is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention. All or part of the method.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer program is configured to execute the OTN service access method of the embodiment of the present invention.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the technical solution of the embodiment of the present invention performs framing processing, codec processing, and high-order overhead processing on each OTUC service in the OTUC service of the accessed OTUCn service; After the OTUC service performs the codec processing, the offset between the OTUCs is removed.
  • the OTUC services are coded and processed and the high-order overhead processing is performed, the result signals of the OTUCs are aggregated. And generating a unified trigger signal according to the convergence result; sending the generated trigger signal to each OTUC.
  • adding a small amount of resources on the basis of the original 100G OTN in a flexible manner can support the access of the OTUCn service, realize the alignment between the OTUCs in the OTUCn, and achieve the effect of OTUCn as a whole business, and improve The chip achieves speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种OTN业务接入方法及装置、计算机存储介质,包括:针对接入的光通道传输单元OTUCn业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。

Description

一种光传送网络业务接入方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610967153.2、申请日为2016年10月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及承载网通讯领域,尤其涉及一种既能支持100G OTN业务接入也能兼容超100G OTN业务接入的OTN业务接入方法及装置、计算机存储介质。
背景技术
随着网络带宽的急速增加尤其是Pre5G/5G技术的逐步成熟,对承载网网络带宽要求大大提高,为此,超100G OTN(Optical Transport Network,光传送网络)标准被提出。由于超100G OTN标准刚提出不久,因此需要在现有100G OTN业务接入的基础上确定一种灵活的OTN业务接入方法,既能保证100G OTN业务的接入也能处理超100G OTN业务的接入。
在实现超100G协议要求时,多个超100G业务中的任意一路OTUC(光通道传输单元)产生了告警、中断,则整个OTUCn业务要产生告警或中断;各路OTUC需要产生统一的下插、自振、对齐等操作;各路OTUC输出相同的帧头指示和数据有效信号,使OTUCn看起来呈现出一个整体业务特征。如果OTUCn采用分布式,则需要为不同类型业务准备不同的电路,且组成超100G的各路OTUC之间信号连接相当复杂。
发明内容
为解决上述技术问题,本发明实施例提供了一种OTN业务接入方法及装置、计算机存储介质。
本发明实施例提供的OTN业务接入方法,包括:
针对接入的光通道传输单元(OTUCn)业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,
在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;
在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
本发明实施例中,所述对所述各路OTUC的结果信号进行汇聚,包括:
根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的结果信号进行汇聚,N为正整数。
本发明实施例中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
本发明实施例中,所述去除各路OTUC之间的信号偏移量,包括:
检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;
将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
本发明实施例中,所述定帧处理为MLD定帧处理,所述编解码处理为前向纠错FEC编解码处理。
本发明实施例提供的OTN业务接入装置,包括:
定帧单元,配置为对各路OTUC业务进行定帧处理;
编解码单元,配置为对各路OTUC业务进行编解码处理;
高阶开销单元,配置为对各路OTUC业务进行高阶开销处理;
信号集中处理单元,配置为在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
本发明实施例中,所述信号集中处理单元,具体用于根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的结果信号进行汇聚,N为正整数。
本发明实施例中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
本发明实施例中,所述信号集中处理单元,具体用于检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
本发明实施例中,所述定帧处理为MLD定帧处理,所述编解码处理为FEC编解码处理。
本发明实施例还提供一种计算机存储介质,该计算机存储介质存储有计算机程序,该计算机程序配置为执行上述OTN业务接入方法。
本发明实施例的技术方案中,针对接入的元OTUCn业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成 统一的触发信号;将所生成的触发信号下发给各路OTUC。如此,以一种灵活方式在原有100G OTN基础上增加极少的资源就能支持OTUCn业务的接入,实现了OTUCn中各路OTUC之间的对齐,达到了OTUCn作为一个业务整体的效果,提高了芯片实现速度。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本发明实施例的OTN业务接入方法的流程示意图;
图2(a)为单路OTU4的收发双向处理流程图;
图2(b)为本发明实施例的OTUCn业务处理流程图;
图3为本发明实施例的OTUCn告警汇聚示意图;
图4为本发明实施例的OTUCn选择OTUC信号的示意图;
图5(a)为本发明实施例的去偏移原理框图;
图5(b)为本发明实施例的去偏移原理图;
图6为本发明实施例的去偏移信号连接示意图;
图7为本发明实施例的OTN业务接入装置的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例的技术方案,在支持100G OTN业务处理技术的基础上提出一种灵活接入OTN业务的方案,根据超100G业务类型不同,按照协议要求生成各个业务所需要的告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。此外,根据不同业务偏移情况进行对各路OTUC进行对齐。同时, 本发明实施例的技术方案既能符合超100G业务处理标准,又能充分使用原有的100G OTN业务处理电路,以最小代价实现100G和超100G OTN处理的目标。
图1为本发明实施例的OTN业务接入方法的流程示意图,如图1所示,所述OTN业务接入方法包括以下步骤:
步骤101:针对接入的OTUCn业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
这里,多路OTUC组成OTUCn,其中,OTUC为光通道传输单元。
本发明实施例中,所述对所述各路OTUC的结果信号进行汇聚,包括:
根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的结果信号进行汇聚,N为正整数。
本发明实施例中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
本发明实施例中,所述去除各路OTUC之间的信号偏移量,包括:
检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;
将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
本发明实施例中,所述定帧处理为MLD定帧处理,所述编解码处理为前向纠错(FEC,Forward Error Correction)编解码处理。
本发明实施例的技术方案,对OTUCn业务而言有超100G业务的特殊 要求,不管n取值为什么,OTUCn像OTU4一样是一个整体的业务。这就要求各组成的OTUC在告警、速率等等各个方面均呈现出相同的特征。也就要求:OTUCn的各个组成OTUC之间偏移能去除;各个组成OTUC具有完全相同的速率指示、数据有效指示信号;各组成OTUC只要有1个OTUC有告警整个OTUCn就要起相应的告警;各个组成OTUC的统计信息同一时刻读取。
本发明实施例对OTN业务进行处理包括:定帧处理、编解码处理、高阶开销处理、集中信号处理四个部分。其中,定帧处理具体为MLD定帧,编解码处理具体为FEC编解码;高阶开销处理部分加入了OTUCn处理,OTUCn中#1与#2~#n的处理是不相同的,同时每路OTUC的处理都兼容OTU4业务。
在集中信号处理电路中,不同的OTUCn业务类型根据cpu配置生成相应的告警信号和中断信号;速率指示信号和帧头指示信号;统一的读统计信号;统一的下插等动作使能信号;集中处理使得OTUCn呈现出一个业务整体特征。
同时借助去偏移电路去除OTUCn中的各路OTUC之间偏移,只有去偏移成功才能使得各路OTUC具有相同的速率指示信号和帧头指示信号。
综上所述,本发明实施例采用了集中信号处理的方式,可根据cpu配置的不同适用于不同的OTUCn业务,使得接口具有灵活性,同时减少了各个OTUC之间大量的连线。
本发明实施例中,集中信号处理电路又称为OTUCn_PRO模块,OTUCn_PRO模块是一个集中处理信号生成的仲裁器,OTUCn_PRO模块接收各路OTUC单独上传的告警信号和中断信号等,而后,根据业务类型的不同完成告警信号的汇聚并下发到各个OTUC,以及根据业务类型的不同统一向各路OTUC下发:下插动作的使能信号、统计转移的使能信号、选 择速率信号、fifo读使能信号等。
本发明实施例中,在编解码电路中有将输出数据打均匀的fifo(先入先出)电路,借助该电路来将各路OTUC之间的偏移去除。
去偏移的过程如图5(a)所示:检测到OTUCn中最早到达与最晚到达的2路OTUC之间的偏移,将偏移与业务同步输出至去偏移电路,去偏移电路根据检测到的偏移值延时一段时间之后,向各路OTUC下发统一的读帧头指令,一旦偏移或业务发生变化,去偏移电路根据检测的新偏移值不断地进行去偏移处理。
下面结合具体应用场景对本发明实施例的OTN业务接入方法做进一步详细描述。
参照图2,图2(a)是单路OTU4的收发双向处理流程图,包含MLD定帧、FEC编解码、高阶开销处理。OTU_MLD_RX完成输入OTU业务的lane解复用、lane定帧、lane排序、lane去偏移、解旋转、解扰;OTU_DFEC完成OTU解码;OTU_ROH完成开销提取及处理,根据CPU配置或告警下插维护信号、自振等等。OTU_MLD_TX完成输出OTU业务加扰、lane旋转、lane复用;OTU_FEC完成OTU业务编码使OTU业务获取编码增益提高抗干扰能力;OTU_TOH完成各种开销处理或维护信号下插。
图2(b)是OTUCn业务处理流程图,单路来看与OTU4处理过程一样,但是对OTUCn业务而言超100G业务中n×OTUC,不管n取值为什么,OTUCn是个整体的业务,要求各个组成的OTUC在告警、速率等等各个方面均呈现出相同的特征。也就是OTUCn的各个组成OTUC之间偏移能去除;各个组成OTUC具有完全相同的速率指示、数据有效指示信号;各组成OTUC只要1个OTUC有告警整个OTUCn就要起相应的告警;各组成OTUC的统计信息同一时刻读取。
OTU4/OTUCn都包含MLD定帧、FEC编解码、高阶开销处理。
在2(b)中只给出了OTUCn接收方向处理流程、发送方向原理相同。采用的是同一个OTUCn_PRO模块。
由于对OTU4没有对齐要求,因此,cpu不配置OTUCn_RPO模块做汇聚和分发处理。
OTUCn接入时,MLD定帧部分处理与OTU4业务相同,OTUCn业务也是各路OTUC之间相互独立。FEC编解码处理部分也与OTU4业务相同。
与OTU4业务不同的是:解码完成后OTUC对齐和编码完成后OTUC对齐;OTUCn要求各路OTUC同一时刻转移出来解码统计信息送给cpu读取;将各路OTUC的告警信号汇聚一起供cpu读取。
去偏移过程如图5(b)所示:以OTUC3为例,把第一路帧头的数据作为基准帧头,那么可以根据第一路OTUC帧头位置计算出其每路OTUC帧头位置值X1~X3,找到OTUCn中帧头中最晚到达的那个,通过最早到达那路的值得到最早到达那路OTUC帧头偏移。最晚到达和最早到达OTUC之间的偏差就是需要消除的偏移。依据最晚到达OTUC帧头生成实际帧头复位各路OTUC缓存fifo的读地址则可进行去偏移。
去偏移借助每路OTUC的输出fifo实现,输出时各路OTUC统一时刻开始读缓存各个fifo统一从0地址开始读取数据输出。
当超出当前去偏能力时,产生去偏移失败告警送入OTUCn_RPO模块中,该模块将去偏失败信号送回各路OTUC中往后级模块传送。帧头信号连接方式见图6所示,所有去偏移只在#1OTUC中完成,所以#2~#5OTUC的信号全部送往#1OTUC中。
在解码和编码过程中OTUCn_RPO模块完成对OTUCn业务对齐失败告警、FIFO空满信号汇聚;对解码统计信息做统一转移供cpu读取;确保编解码完成后各个OTUC采用统一的速率指示信号、数据有效信号。
对OTUCn高阶开销部分加入了OTUCn处理,OTUCn中#1与#2~#n 的处理是不相同的,告警信号汇聚一起供CPU读取,下插使能、严重告警等信号完成#1到#2~#n的分发。
OTUCn业务在解码后送入高阶开销处理电路,发送方向是信号先行经过高阶开销处理再输出给编码电路做FEC运算。根据业务类型的不同完成ssf、iae等告警信号的汇聚;下发prbs插入使能、抑制使能、下插使能等信号到各个OTUC,完成OTUCn业务统一下发下插维护信号、自振等动作。
基于此,OTUCn_RPO模块完成两个方面的工作:OTUCn各个组成OTUC中信号汇聚,见图3;OTUCn中#1信号分发到各个组成OTUC。图3中,所有路的信号都输入进来,该电路根据不同类型的OTUCn业务选择不同路OTUC的告警信号进行汇聚,汇聚后再统一下发给各个OTUC;选择统一的速率信号、下插使能、对齐时选择统一的读使能等见图4。每个过程都在cpu配置下进行,业务变换通过cpu配置即可改变汇聚对象和下发对象,具有很灵活的适应能力。
图7为本发明实施例的OTN业务接入装置的结构组成示意图,如图7所示,所述装置包括:
定帧单元71,配置为对各路OTUC业务进行定帧处理;
编解码单元72,配置为对各路OTUC业务进行编解码处理;
高阶开销单元73,配置为对各路OTUC业务进行高阶开销处理;
信号集中处理单元74,配置为在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
本发明实施例中,所述信号集中处理单元74,具体用于根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的 结果信号进行汇聚,N为正整数。
本发明实施例中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
本发明实施例中,所述信号集中处理单元74,具体用于检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
本发明实施例中,所述定帧处理为MLD定帧处理,所述编解码处理为FEC编解码处理。
在实际应用中,所述OTN业务接入装置中的各个单元所实现的功能,均可由位于OTN业务接入装置中的中央处理器(Central Processing Unit,CPU)、或微处理器(Micro Processor Unit,MPU)、或数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本领域技术人员应当理解,图7所示的OTN业务接入装置中的各单元的实现功能可参照前述OTN业务接入方法的相关描述而理解。图7所示的OTN业务接入装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可 以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的OTN业务接入方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例的技术方案,针对接入的元OTUCn业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。如此,以一种灵活方式在原有100G OTN基础上增加极少的资源就能支持OTUCn业务的接入,实现了OTUCn中各路OTUC之间的对齐,达到了OTUCn作为一个业务整体的效果,提高了芯片实现速度。

Claims (11)

  1. 一种光传送网络OTN业务接入方法,所述方法包括:
    针对接入的光通道传输单元OTUCn业务中的各路OTUC业务,对所述各路OTUC业务进行定帧处理、编解码处理、高阶开销处理;其中,
    在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;
    在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
  2. 根据权利要求1所述的光传送网络OTN业务接入方法,其中,所述对所述各路OTUC的结果信号进行汇聚,包括:
    根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的结果信号进行汇聚,N为正整数。
  3. 根据权利要求1所述的光传送网络OTN业务接入方法,其中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
  4. 根据权利要求1所述的光传送网络OTN业务接入方法,其中,所述去除各路OTUC之间的信号偏移量,包括:
    检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;
    将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
  5. 根据权利要求1至4任一项所述的光传送网络OTN业务接入方法,其中,所述定帧处理为MLD定帧处理,所述编解码处理为前向纠错FEC编解码处理。
  6. 一种光传送网络OTN业务接入装置,所述装置包括:
    定帧单元,配置为对各路OTUC业务进行定帧处理;
    编解码单元,配置为对各路OTUC业务进行编解码处理;
    高阶开销单元,配置为对各路OTUC业务进行高阶开销处理;
    信号集中处理单元,配置为在对所述各路OTUC业务进行编解码处理完成后,去除各路OTUC之间的偏移;在对所述各路OTUC业务进行编解码处理和高阶开销处理时,对所述各路OTUC的结果信号进行汇聚,并根据汇聚结果生成统一的触发信号;将所生成的触发信号下发给各路OTUC。
  7. 根据权利要求6所述的光传送网络OTN业务接入装置,其中,所述信号集中处理单元,具体用于根据所述OTUCn业务类型的不同,从所有的OTUC中选择出相应的N路OTUC的结果信号进行汇聚,N为正整数。
  8. 根据权利要求6所述的光传送网络OTN业务接入装置,其中,所述触发信号包括如下信号的一种或多种:告警信号和中断信号、速率指示信号和帧头指示信号、统一的统计信号、以及统一的下插动作使能信号和自振动作使能信号。
  9. 根据权利要求6所述的光传送网络OTN业务接入装置,其中,所述信号集中处理单元,具体用于检测所述OTUCn中最早到达与最晚到达的两路OTUC之间的偏移;将所述偏移与OTUC业务同步输出至去偏移电路,所述去偏移电路根据所述偏移延时相应的时长后,向各路OTUC发送统一的读帧头指令。
  10. 根据权利要求6至9任一项所述的光传送网络OTN业务接入装置,其中,所述定帧处理为MLD定帧处理,所述编解码处理为FEC编解码处理。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-5任一项所述的光传送网络OTN业务接入方法。
PCT/CN2017/085192 2016-10-28 2017-05-19 一种光传送网络业务接入方法及装置、计算机存储介质 WO2018076672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967153.2 2016-10-28
CN201610967153.2A CN108023660B (zh) 2016-10-28 2016-10-28 一种光传送网络业务接入方法及装置

Publications (1)

Publication Number Publication Date
WO2018076672A1 true WO2018076672A1 (zh) 2018-05-03

Family

ID=62023191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085192 WO2018076672A1 (zh) 2016-10-28 2017-05-19 一种光传送网络业务接入方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN108023660B (zh)
WO (1) WO2018076672A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112291030A (zh) * 2019-07-24 2021-01-29 深圳市中兴微电子技术有限公司 一种数据接收、数据发送方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247200A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 一种otu信号的复用/解复用系统及方法
EP2106051A1 (en) * 2007-01-17 2009-09-30 Nippon Telegraph and Telephone Corporation Digital transmission system and digital transmission method
CN103997388A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 数据的映射、解映射方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791278B (zh) * 2004-12-14 2010-04-14 华为技术有限公司 光传送网络调度系统及其方法
ES2700233T3 (es) * 2013-04-10 2019-02-14 Huawei Tech Co Ltd Método para ajustar velocidad de interfaz de línea, y nodo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106051A1 (en) * 2007-01-17 2009-09-30 Nippon Telegraph and Telephone Corporation Digital transmission system and digital transmission method
CN101247200A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 一种otu信号的复用/解复用系统及方法
CN103997388A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 数据的映射、解映射方法及装置

Also Published As

Publication number Publication date
CN108023660B (zh) 2019-07-19
CN108023660A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US11296722B2 (en) Integrated physical coding sublayer and forward error correction in networking applications
US11843452B2 (en) Clock synchronization method and apparatus
US8363684B2 (en) Method of multiple lane distribution (MLD) deskew
US10103830B2 (en) Latency-optimized physical coding sublayer
CN106717111B (zh) 接收cpri数据流和接收以太网帧的方法、装置及系统
US11546241B2 (en) Technologies for timestamping with error correction
WO2017063457A1 (zh) 一种速率适配方法和装置、计算机存储介质
CN111988104B (zh) 多路数据同步传输方法、装置、数据端设备、系统和介质
CN101977092B (zh) 前向纠错映射和去映射技术
WO2018076672A1 (zh) 一种光传送网络业务接入方法及装置、计算机存储介质
US20150106679A1 (en) Defect propagation of multiple signals of various rates when mapped into a combined signal
US10764409B2 (en) Data communication device, arithmetic processing device, and control method of data communication device
JP5742461B2 (ja) 信号伝送装置
WO2016106650A1 (zh) 一种数据处理方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863423

Country of ref document: EP

Kind code of ref document: A1