WO2018076403A1 - 一种预测水泥回转窑熟料质量的一维仿真方法 - Google Patents

一种预测水泥回转窑熟料质量的一维仿真方法 Download PDF

Info

Publication number
WO2018076403A1
WO2018076403A1 PCT/CN2016/105388 CN2016105388W WO2018076403A1 WO 2018076403 A1 WO2018076403 A1 WO 2018076403A1 CN 2016105388 W CN2016105388 W CN 2016105388W WO 2018076403 A1 WO2018076403 A1 WO 2018076403A1
Authority
WO
WIPO (PCT)
Prior art keywords
kiln
rotary kiln
clinker
model
pulverized coal
Prior art date
Application number
PCT/CN2016/105388
Other languages
English (en)
French (fr)
Inventor
王俊杰
梁逸敏
刘小蒙
陈天明
欧丹林
莱恩斯·布莱恩
Original Assignee
浙江邦业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江邦业科技股份有限公司 filed Critical 浙江邦业科技股份有限公司
Publication of WO2018076403A1 publication Critical patent/WO2018076403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention belongs to the field of cement production and relates to a one-dimensional simulation method for predicting the quality of clinker in cement rotary kiln.
  • the method is applicable to various cement calcination processes involving rotary kiln, such as a new dry rotary kiln and a wet rotary kiln.
  • the cement industry is an important basic raw material industry in China. In 2015, China's cement output reached 2.35 billion tons, which provided an important guarantee for China's infrastructure construction and urban-rural integration development. Among them, the quality of cement products directly affects the safety and long-term performance of infrastructure such as related buildings.
  • the criteria for evaluating cement quality include fineness, insolubles, magnesium oxide content, strength at different ages, and the like. Among them, the strength of cement at different ages (including 3 days, 28 days) is a key indicator. The quality of clinker calcination is a direct factor affecting the strength of cement at different ages.
  • Clinker is an intermediate product in the cement production process.
  • the prepared raw materials after being ground and homogenized, they are fed into the preheater, and after being heated by the preheater, they are decomposed and decomposed in the decomposition furnace.
  • the hot raw material with a rate of about 95% then enters the rotary kiln for solid phase reaction, liquid phase sintering, etc., and the calcined clinker runs into the cooling machine with the rotary kiln to be rapidly cooled, and the clinker from the cooler enters.
  • the rotary kiln is the key thermal equipment for the quality of clinker calcination.
  • the clinker four minerals such as tricalcium silicate (hereinafter referred to as “C3S”), dicalcium silicate (hereinafter referred to as “C2S”), and tricalcium aluminate. (hereinafter referred to as "C3A”), the formation of tetracalcium aluminoferrite (hereinafter referred to as "C4AF”) occurs in the rotary kiln, and these four minerals are the key factors affecting the development of clinker strength.
  • C3S tricalcium silicate
  • C2S dicalcium silicate
  • C4AF tricalcium aluminate
  • cement companies usually use free calcium oxide (hereinafter referred to as "f-CaO”) content to characterize the clinker calcination process.
  • f-CaO free calcium oxide
  • the parameters characterizing the calcination quality of clinker include the content of four minerals and f-CaO content of C3S, C2S, C3A and C4AF.
  • cement companies generally use chemical analysis methods (glycerol-ethanol method) to detect f-CaO content in clinker, using fluorescence analyzer or chemical analysis method.
  • the above methods involve processes such as sampling, grinding, detection, and calculation, and the process is complicated.
  • Cement companies generally test the f-CaO content every two hours or more, and test the clinker chemical composition every four hours or more to convert the mature mineral components.
  • the clinker calcination is adjusted accordingly based on the operator's experience.
  • the quality of the clinker calcination depends largely on the individual experience and responsibility of the operator. To this end, it is important to develop a method for predicting the quality of clinker calcination in real time.
  • a rotary kiln clinker calcination model is an early attempt to predict the quality of clinker.
  • the rotary kiln calcination process includes combustion, heat transfer, mass transfer, momentum transfer, chemical reaction and other processes, and the related models are complex.
  • Croockewit The Passage of Granular Solids Through Inclined Rotary Kilns, 1952
  • Allan Sass Simulation of the Heat Transfer Phenomena in a Rotary Kiln, 1967
  • the heat transfer model in the cement rotary kiln is established, including the process of radiation, convection and conduction between gas phase, material, wall and environment
  • Spang III A Dynamic Model of a Cement Kiln, 1972
  • JPGorog TNAdams et al.
  • the above-mentioned cement rotary kiln model includes two categories, namely one-dimensional model and three-dimensional model.
  • the one-dimensional model ignores the difference between the radial and circumferential directions of gas, material and wall in the rotary kiln, and only considers the change in the axial direction.
  • the 3D model is usually calculated by means of existing software such as Fluent, CFX, and the like.
  • the coincidence of the pulverized coal combustion model with the actual situation is one of the important factors affecting the simulation results.
  • the following models are mainly studied at home and abroad: 1 Based on the empirical formula of flame length, it is assumed that the heat released by pulverized coal combustion is evenly distributed within the length; 2 assuming that the combustion reaction is controlled by diffusion, the degree of combustion is solved based on the diffusion law, and It is assumed that the calorific value of combustion is proportional to the degree of reaction; 3 It is assumed that the combustion of pulverized coal particles includes stages of heating, volatilization, combustion, cooling, etc., and mathematical formulas are given for each stage.
  • the existing pulverized coal particle movement modes mainly include the following: 1 Assumed pulverized coal particles The speed of motion is equal to the speed of gas phase motion; 2 is expressed by an empirical formula in the form of an exponent.
  • 1 Assumed pulverized coal particles The speed of motion is equal to the speed of gas phase motion; 2 is expressed by an empirical formula in the form of an exponent.
  • the existing one-dimensional mathematical model assumes that the fineness and industrial analysis of the pulverized coal particles remain unchanged, and in actual conditions, the fineness, moisture content, and volatile matter content of the pulverized coal are all changing. Therefore, the existing model for pulverized coal combustion cannot be consistent with the actual situation.
  • the present invention proposes a simple and effective one-dimensional mathematical model of rotary kiln clinker calcination, innovatively applying a pulverized coal combustion model, and applying it to the prediction of the clinker quality of the cement rotary kiln, and the results are consistent with the actual situation. It helps to achieve on-line prediction of the quality of clinker calcination, which in turn guides the operation of the rotary kiln.
  • the invention provides a simple and effective simulation method for predicting the calcination quality of cement rotary kiln clinker, and establishes a one-dimensional mathematical model for heat transfer, material bed movement, pulverized coal combustion and clinker mineral reaction in the rotary kiln, and the rotary kiln
  • the clinker quality is predicted.
  • the one-dimensional model of pulverized coal combustion is based on the actual production situation of the cement enterprise, which improves the accuracy of the simulation and solves the problem that the one-dimensional mathematical model of the existing rotary kiln pulverized coal combustion has a large deviation.
  • a one-dimensional simulation method for predicting the quality of clinker burning in a cement rotary kiln includes the following steps:
  • the pulverized coal combustion model is innovatively proposed, including heat transfer model, material bed motion model and clinker mineral chemical reaction model, which are used to simulate the slewing Heat and mass transfer between gas phase, material, kiln wall and environment in kiln, material movement in rotary kiln, combustion of pulverized coal in kiln and chemical reaction process of clinker mineral;
  • the predicted clinker quality is the f-CaO content of the kiln head position and the C3S, C2S, C3A, C4AF mineral content, and the actual production operation is optimized and adjusted according to the prediction result. .
  • the heat transfer model in the step (2) is as follows:
  • T s , T g , T w , T i , T o represent the temperature of the material, gas, inner wall surface, outer wall surface and environment, respectively; K; m s , m g respectively represent the mass of the material and gas, kg/s Cp s and Cp g respectively represent the specific heat capacity of materials and gases, J/(kg ⁇ K); ⁇ s , ⁇ g , ⁇ w represent the emissivity of materials, gases and walls, respectively; ⁇ g is the absorption rate of gas; cgs, h cgw, h cws, h cio respectively between the gas and the material between the gas and the inner wall surface, and the material between the inner wall surface, the convective heat transfer coefficient between the wall surface and the outer environment, J / (m 2 ⁇ K); Q c and Q f are the exothermic heat of the clinker mineral formation process and the calorific value of the pulverized coal combustion, respectively;
  • the bed motion model in the step (2) is as follows:
  • the pulverized coal combustion model in the step (2) is as follows:
  • the flame length is the length of the kiln skin.
  • the normalized pulverized coal particle quality satisfies the following formula:
  • C f is the normalized pulverized coal mass
  • a and b are the constants in the model and are determined according to the following boundary conditions:
  • m f is the coal feeding amount of kiln head, kg / s;
  • ⁇ H f is the low calorific value of coal pulverized coal industry analysis, J / kg.
  • the clinker mineral formation model in the step (2) is as follows:
  • Ca2O3, SiO2, Al2O3, Fe2O3, CaO are the mass fraction of calcium carbonate, silicon oxide, aluminum oxide, iron oxide and calcium oxide in raw materials, respectively;
  • C2S, C3A, C4AF, C3S are silicic acid in clinker respectively.
  • Dicalcium , tricalcium aluminate , tetracalcium iron aluminate, tricalcium silicate mass fraction, %; M CaCO3 , M SiO2 , M Al2O3 , M Fe2O3 , M CaO , M C2S , M C3A , M C4AF , M C3S They are the molar masses of calcium carbonate, silica, alumina, iron oxide, calcium oxide, dicalcium silicate, tricalcium aluminate, tetracalcium iron aluminate, tricalcium silicate, g/mol; k CaCO3 , k C2S , k C3A , k C4AF , and k C3S are the rates of reaction of calcium carbonate, dicalcium silicate, tricalcium aluminate , tetracalcium aluminosilicate , and tricalcium silicate, respectively, 1/s.
  • the heat released by the reaction is as follows:
  • ⁇ H CaCO3 , ⁇ H C2S , ⁇ H C3A , ⁇ H C4AF , and ⁇ H C3S are reaction heats of calcium carbonate, dicalcium silicate, tricalcium aluminate , tetracalcium aluminate , and tricalcium silicate, respectively, J/kg .
  • reaction rate expression of each reaction is as follows:
  • the present invention has the following advantages:
  • the one-dimensional mathematical model of the cement rotary kiln proposed by the invention comprises a heat transfer model, a material motion model, a pulverized coal combustion model, a mineral chemical reaction model, and substantially covers all physical and chemical processes carried out in the rotary kiln;
  • the pulverized coal combustion model applied to the cement rotary kiln is proposed. Based on the research knowledge of domestic and foreign researchers, the thermal discharge of coal powder in the rotary kiln is theoretically distributed, combined with each cement production enterprise.
  • the length of the kiln skin in the rotary kiln that is, the length of the pulverized coal combustion flame, thus abandoning the assumption that the original coal powder in the original rotary kiln has uniform heat release, the pulverized coal movement speed and the gas phase movement speed are the same, and the accuracy of the result is greatly improved.
  • the pulverized coal combustion model proposed by the invention has strong practicability in addition to high accuracy, and is controlled by diffusion based on conventional combustion reaction, considering the staged process of heating, volatilization, combustion, cooling, etc. of pulverized coal particles. Compared with the model, the model is more concise; at the same time, the one-dimensional mathematical model proposed by the present invention is more practical than the computational grid required for the calculation of the three-dimensional model of the cement rotary kiln.
  • 1 is a schematic diagram showing a one-dimensional temperature field of a rotary kiln according to the calculation result of the embodiment
  • FIG. 2 is a schematic diagram showing changes in calorific value of pulverized coal combustion by calculation results of the embodiment
  • Figure 3 is a schematic view showing the change of chemical composition of the clinker of the rotary kiln according to the calculation result of the embodiment
  • Fig. 4 is a schematic view showing the change of mineral composition of the clinker in the rotary kiln according to the calculation result of the embodiment.
  • the solution of the invention is to propose a one-dimensional simulation method for predicting the quality of clinker burning of a cement rotary kiln, and the simulation method comprises the following steps:
  • the pulverized coal combustion model is innovatively proposed, including heat transfer model, material bed motion model and clinker mineral chemical reaction model, which are used to simulate the slewing Heat and mass transfer between gas phase, material, kiln wall (refractory insulation layer) and environment, material movement in rotary kiln, combustion of pulverized coal in kiln and chemical reaction process of clinker mineral;
  • the predicted clinker quality is the f-CaO content of the kiln head (clinker outlet) position and the C3S, C2S, C3A, C4AF mineral content, and the actual production according to the prediction result.
  • the operation is optimized and adjusted.
  • the heat transfer model in the step (2) is as follows:
  • T s , T g , T w , T i , T o represent the temperature of the material, gas, inner wall surface, outer wall surface and environment, respectively; K; m s , m g respectively represent the mass of the material and gas, kg/s Cp s and Cp g respectively represent the specific heat capacity of materials and gases, J/(kg ⁇ K); ⁇ s , ⁇ g , ⁇ w represent the emissivity of materials, gases and walls, respectively; ⁇ g is the absorption rate of gas; cgs, h cgw, h cws, h cio respectively between the gas and the material between the gas and the inner wall surface, and the material between the inner wall surface, the convective heat transfer coefficient between the wall surface and the outer environment, J / (m 2 ⁇ K); Q c and Q f are the exothermic heat of the clinker mineral formation process and the calorific value of the pulverized coal combustion, respectively;
  • the bed motion model in the step (2) is as follows:
  • the pulverized coal combustion model in the step (2) is as follows:
  • the flame length is the length of the kiln skin.
  • the normalized pulverized coal particle quality satisfies the following formula:
  • C f is the normalized pulverized coal mass
  • a and b are the constants in the model and are determined according to the following boundary conditions:
  • m f is the coal feeding amount of kiln head, kg / s;
  • ⁇ H f is the low calorific value of coal pulverized coal industry analysis, J / kg.
  • the clinker mineral formation model in the step (2) is as follows:
  • Ca2O3, SiO2, Al2O3, Fe2O3, CaO are the mass fraction of calcium carbonate, silicon oxide, aluminum oxide, iron oxide and calcium oxide in raw materials, respectively;
  • C2S, C3A, C4AF, C3S are silicic acid in clinker respectively.
  • Dicalcium , tricalcium aluminate , tetracalcium iron aluminate, tricalcium silicate mass fraction, %; M CaCO3 , M SiO2 , M Al2O3 , M Fe2O3 , M CaO , M C2S , M C3A , M C4AF , M C3S They are the molar masses of calcium carbonate, silica, alumina, iron oxide, calcium oxide, dicalcium silicate, tricalcium aluminate, tetracalcium iron aluminate, tricalcium silicate, g/mol; k CaCO3 , k C2S , k C3A , k C4AF , and k C3S are the rates of reaction of calcium carbonate, dicalcium silicate, tricalcium aluminate , tetracalcium aluminosilicate , and tricalcium silicate, respectively, 1/s.
  • ⁇ H CaCO3 , ⁇ H C2S , ⁇ H C3A , ⁇ H C4AF , and ⁇ H C3S are reaction heats of calcium carbonate, dicalcium silicate, tricalcium aluminate , tetracalcium aluminate , and tricalcium silicate, respectively, J/kg .
  • reaction rate expression for each reaction is as follows:
  • the above model especially the pulverized coal combustion model, combined with the actual situation of each cement enterprise, predicted the change of pulverized coal quality and the change of heat release.
  • the bed motion model and the mineral reaction model Combined with the heat transfer model, the bed motion model and the mineral reaction model, the temperature trends of the gas phase, material, inner wall surface and outer wall surface in the rotary kiln, the moving speed, residence time and height of the material in the kiln, the quality of the coal powder and Simulation of heat release trends, clinker chemical composition and mineral content trends.
  • the boundary conditions involved in all model calculation processes in the present invention can be obtained by on-site detection, and part of the model parameters are empirical constants. All model equations are differential equations and belong to the process simulation model. The content of variable multi-references is related to the specific physical location.
  • the main equipment, process parameters and boundary conditions of a 2,500 ton/day cement clinker production line in China are shown in Table 1.
  • the mathematical model described in the present invention is applied to calculate a one-dimensional temperature field distribution diagram of the rotary kiln of the production line, a schematic diagram of the change of pulverized coal combustion heat release, and a rotary kiln clinker.
  • a schematic diagram of the chemical composition change and a schematic diagram of the changes in the mineral composition of the rotary kiln clinker are shown in Figures 1 to 4, respectively. The results are compared with actual test results to verify the accuracy of the method described in the present invention.
  • Table 1 shows the basic parameters and boundary conditions.
  • Figure 1 is a schematic diagram showing the one-dimensional temperature field of the rotary kiln in the calculation results of the embodiment.
  • the pair of calculated parameters and actual detection parameters are shown in Table 2. It can be seen from Table 2 that the error between the temperature and the actual value obtained by the embodiment is within 2%, and has very high accuracy. This indirectly indicates the accuracy of the schematic diagram of the change in the calorific value of the pulverized coal combustion shown in Fig. 2, indicating that the pulverized coal combustion model proposed by the present invention has high accuracy.
  • Figure 3 shows the change trend of the chemical composition of the clinker in the rotary kiln.
  • the main concern is the content of calcium oxide in the kiln head, that is, the value of free calcium oxide in the clinker.
  • the calculation result of the embodiment shown in Figure 4 is the rotary kiln clinker mineral.
  • the trend of composition changes, mainly concerned with the content of four minerals in the kiln head.
  • the calculated values and actual test values of the above five parameters are shown in Table 3. It can be seen from Table 3 that the above calculated values of the five parameters characterizing the clinker quality of the cement rotary kiln are very close to the actual values, indicating that the accuracy of the model, based on the above model formation method, can be fully used for accurate prediction of clinker quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

一种预测水泥回转窑熟料煅烧质量的一维仿真方法,(1)采集拟预测熟料煅烧质量的回转窑的相关信息;(2)建立水泥回转窑内的一维数学模型,包括煤粉燃烧模型、传热模型、料床运动模型和熟料矿物化学反应模型;(3)采集水泥回转窑实际生产部分数据作为数学模型的边界条件;(4)根据所述一维数学模型和边界条件,计算得到回转窑内烟气温度、物料温度、料床高度、壁面温度、物料化学成分、熟料矿物含量等随回转窑长度的变化情况;(5)根据步骤(4)中的仿真结果,所预测的熟料质量为窑头位置的f‑CaO和C3S、C2S、C3A、C4AF矿物含量,根据预测结果对实际生产操作进行优化和调整。

Description

一种预测水泥回转窑熟料质量的一维仿真方法 技术领域
本发明属于水泥生产领域,涉及一种对水泥回转窑熟料质量进行预测的一维仿真方法,该方法适用于新型干法回转窑、湿法回转窑等各种涉及回转窑的水泥煅烧工艺。
背景技术
水泥行业是我国重要的基础原材料产业,2015年我国水泥产量达到23.5亿吨,为我国基础设施建设和城乡一体化发展提供了重要保障。其中,水泥产品质量直接影响到相关建筑物等基础设施的安全和长期使用性能。评价水泥质量的标准包括细度、不溶物、氧化镁含量、不同龄期的强度等。其中,水泥不同龄期(包括3天、28天)强度是关键指标。熟料煅烧质量则是影响水泥不同龄期强度的直接因素。
熟料是水泥生产过程的中间产物。现有新型干法水泥生产中,按照一定比例配好的生料经过粉磨、均化等过程,被喂入预热器内,经过预热器换热后,在分解炉内进行分解,分解率在95%左右的热生料继而进入回转窑内进行固相反应、液相烧结等过程,煅烧好的熟料随回转窑运转掉到冷却机内进行快速冷却,出冷却机的熟料进入熟料库中储存,并用于后续的水泥粉磨过程。此过程中,回转窑是熟料煅烧质量的关键热工设备,熟料四种矿物硅酸三钙(以下简称“C3S”)、硅酸二钙(以下简称“C2S”)、铝酸三钙(以下简称“C3A”)、铁铝酸四钙(以下简称“C4AF”)的形成都在回转窑内发生,这四种矿物是影响熟料强度发展的关键因素。因为无法直接对这四种矿物进行精确的定量分析,水泥企业通常用游离氧化钙(以下简称“f-CaO”)含量来表征熟料煅烧进程。简单来说,如果生料化学成分相同,f-CaO含量越高表明熟料煅烧质量越差,f-CaO含量越低表明熟料煅烧质量越好。因此,表征熟料煅烧质量的参数包括C3S、C2S、C3A、C4AF四种矿物的含量及f-CaO含量。
目前,参照国家通用硅酸盐水泥国家标准(GB 175-2007),水泥企业普遍采用化学分析方法(甘油-乙醇法)对熟料中f-CaO含量进行检测,利用荧光分析仪或化学分析方法对熟料中氧化钙(CaO)、氧化硅(SiO2)、氧化铝(Al2O3)、 氧化铁(Fe2O3)含量进行测定,并根据相关换算方法,计算C3S、C2S、C3A、C4AF矿物含量。上述方法涉及取样、研磨、检测、计算等流程,过程较为复杂。水泥企业一般每两个小时或更长时间进行一次f-CaO含量的测试,每四个小时或更长时间进行一次熟料化学成分的测试进而换算成熟料矿物成分。在上述间隔时间内则完全凭借操作员的经验对熟料煅烧进行相应调整,熟料煅烧质量很大程度上取决于操作员的个人经验和责任心。为此,开发一种对熟料煅烧质量进行实时预测的方法非常重要。
建立回转窑熟料煅烧模型是人们较早尝试的一种对熟料质量进行预测的方法。回转窑煅烧过程包括燃烧、传热、传质、动量传递、化学反应等过程,相关模型较为复杂。上世纪50年代,H.Kramers,P.Croockewit(The Passage of Granular Solids Through Inclined Rotary Kilns,1952)阐述了回转窑内物料的运动模型;Allan Sass(Simulation of the Heat Transfer Phenomena in a Rotary Kiln,1967)建立了水泥回转窑内的传热模型,包括气相、物料、壁面、环境之间的辐射、对流、传导等过程;Spang III(A Dynamic Model of a Cement Kiln,1972)建立了水泥回转窑的动态模型,在传热的基础上同时考虑煤粉燃烧和化学反应过程;J.P.Gorog,T.N.Adams等(Heat Transfer from Flames in a Rotary Kiln,1983)详细阐述了火焰的长度、放热量及回转窑内的传热模型;之后随着计算流体动力学(CFD)的发展,应用CFD模型来模拟三维条件下回转窑内流动、传热等过程成为研究的重点,Mastorakos等(CFD Predictions for Cement Kiln Including Flame Modeling,Heat Transfer and Clinker Chemistry,1999)应用CFD中的气相流动、传热模型,并结合矿物形成模型对窑筒体温度等进行预测;国内也有关于CFD在水泥回转窑中应用的诸多研究,包括武汉理工大学、华中科技大学等高校具有较多的研究成果。此后,更为复杂的一维数学模型被建立,如Kaustubh S等(Modeling of Rotary Cement Kilns:Applications to Reduction in Energy Consumption,2006)综合考虑了传热、物料运动、煤粉燃烧、化学反应、熟料结皮等,所得结果与实际也更为吻合;除此,考虑CFD等三维仿真无法对料床运动进行模拟,国外部分研究将三维仿真模拟与一维模型相结合,或考虑模拟结果准确性将气体最高温度设定为未知数,并根据熟料煅烧质量进行相应调整使其与实际情况相吻合,如 Christopher Csernyei(Numerical Modeling of a Rotary Cement Kiln with Improvements to Shell Cooling,2016)根据熟料矿物反应调整回转窑气体峰值温度,并假设气体温度在回转窑内的变化为线性变化等。
总体来讲,上述水泥回转窑模型包括两大类,即一维模型和三维模型,一维模型忽略回转窑内气体、物料、壁面在径向和周向上的差异而只考虑轴向上的变化;三维模型通常借助于现有的软件,如Fluent、CFX等进行计算。然而,上述模型应用到实际中均存在一定问题。
对于一维模型来说,煤粉燃烧模型与实际情况的吻合度是影响模拟结果的重要因素之一。国内外重点研究了以下几种模型:①基于火焰长度经验计算公式,假定煤粉燃烧放出的热量在该长度内均匀分布;②假定燃烧反应受扩散控制,基于扩散定律对燃烧程度进行求解,并假定燃烧放热量与反应程度正比例变化;③假定煤粉颗粒燃烧包括加热、挥发、燃烧、冷却等阶段,并针对每个阶段分别给出数学公式等。除此,煤粉颗粒的运动速度及轨迹直接影响了煤粉在回转窑内的停留时间,继而影响其放热情况,现有的煤粉颗粒运动模式主要包括以下几种:①假定煤粉颗粒运动速度与气相运动速度相等;②通过指数形式的经验公式表达等。然而实际情况下煤粉通过多通道喷煤管喷出后在轴流风、旋流风作用下的运动形式非常复杂,绝不仅仅是一维问题。除此,现有一维数学模型假定煤粉颗粒的细度、工业分析均保持不变,而实际情况下煤粉的细度、水分含量、挥发分含量等都在变化。因此,现有关于煤粉燃烧的模型无法与实际情况相吻合。
对于三维模型来说,虽然可以考虑煤粉颗粒在喷煤管各风道作用下的复杂运动与燃烧形式,但存在两个主要问题,一是无法对料床运动进行直接表述,需要与料床运动的一维模型相结合,这增加了模型的复杂性;二是三维模型需要对回转窑进行网格划分等处理,操作复杂、计算时间较长,且现阶段下无法直接用于在线仿真计算,只能用于离线结果分析等。
由上述分析可知,由于回转窑内熟料煅烧过程非常复杂,影响因素较多,现有的数学模型无法对实际过程进行准确描述。在此,本发明提出一种简单、有效的回转窑熟料煅烧一维数学模型,创新应用了煤粉燃烧模型,将其应用于水泥回转窑熟料质量的预测,结果与实际情况相吻合。有助于实现熟料煅烧质量的在线预测,进而指导回转窑的操作。
发明内容
本发明提出一种简单、有效的预测水泥回转窑熟料煅烧质量的仿真方法,通过建立回转窑内传热、料床运动、煤粉燃烧和熟料矿物反应的一维数学模型,对回转窑熟料质量进行预测,所用煤粉燃烧一维模型基于水泥企业的实际生产情况,提高了模拟的精确度,可解决现有回转窑煤粉燃烧一维数学模型与实际偏差较大的问题。
为实现上述目的,本发明的技术方案如下:
一种预测水泥回转窑熟料煅烧质量的一维仿真方法,包括如下步骤:
(1)采集拟预测熟料煅烧质量的回转窑的相关信息,包括回转窑长度、外径、耐火保温材料厚度、斜度、转速等作为建立相关回转窑数学模型的基础;
(2)建立水泥回转窑内的一维数学模型,该过程中创新性地提出了煤粉燃烧模型,并包括传热模型、料床运动模型和熟料矿物化学反应模型,分别用以模拟回转窑内气相、物料、窑壁以及环境之间的传热传质情况,回转窑内物料运动情况,窑内煤粉燃烧情况和熟料矿物化学反应过程;
(3)采集水泥回转窑实际生产部分数据,包括喂料量、喂煤量、入窑生料温度、入窑生料化学组分、二次风温度、回转窑转速、窑皮长度作为数学模型的边界条件;
(4)根据所述一维数学模型和边界条件,计算得到回转窑内烟气温度、物料温度、料床高度、壁面温度、物料化学成分、熟料矿物含量等随回转窑长度的变化情况;
(5)根据步骤(4)中的仿真结果,所预测的熟料质量为窑头位置的f-CaO含量和C3S、C2S、C3A、C4AF矿物含量,根据预测结果对实际生产操作进行优化和调整。
进一步的,所述的步骤(2)中的传热模型如下所示:
Figure PCTCN2016105388-appb-000001
Figure PCTCN2016105388-appb-000002
Figure PCTCN2016105388-appb-000003
Figure PCTCN2016105388-appb-000004
其中,Ts、Tg、Tw、Ti、To分别表示物料、气体、内壁面、外壁面和环境的温度,K;ms、mg分别表示物料和气体的质量,kg/s;Cps、Cpg分别表示物料和气体的比热容,J/(kg·K);εs、εg、εw分别表示物料、气体和壁面的辐射系数;αg为气体的吸收率;hcgs、hcgw、hcws、hcio分别为气体和物料之间、气体和内壁面之间、内壁面和物料之间、外壁面和环境之间的对流换热系数,J/(m2·K);Qc和Qf分别是熟料矿物形成过程反应放热量和煤粉燃烧放热量,J;Args、Acgs、Argw、Acgw、Arws、Acws、Ai分别为气体和固体间的辐射换热面积、气体和固体间的对流换热面积、气体和内壁面之间的辐射换热面积、气体和内壁面之间的对流换热面积、内壁面和固体之间的辐射换热面积、内壁面和固体之间的对流换热面积及外截面积,m2;kr为耐火材料的导热系数,W/(m·K);σ为斯蒂芬-玻尔兹曼常数,其值为5.676×10-8W/(m2·K4);R为回转窑内径的半径,m;er为耐火材料的厚度,m;Ω是与窑内壁面和料床有关的空间系数;x为回转窑的轴向距离,m。
进一步的,所述的步骤(2)中的料床运动模型如下所示:
Figure PCTCN2016105388-appb-000005
Figure PCTCN2016105388-appb-000006
其中,h为物料形成的料床高度,m;us为物料的运动速度,m/s;α为回转窑斜度,rad;β为回转窑内物料的休止角,rad;φv为物料的体积流量,m3/s; n为回转窑转速,rad/s;K为料床运动的特征系数。
进一步的,所述的步骤(2)中的煤粉燃烧模型如下所示:
认为在水泥回转窑内,火焰长度为窑皮长度。在火焰长度范围内,归一化后的煤粉颗粒质量满足如下公式:
Cf=ea(60-x)+b
其中,Cf为归一化后的煤粉质量;a、b为模型中的常数,根据如下边界条件来确定:
在窑头处(即熟料出口处)认为Cf=1;根据所采集的窑皮长度,认为在该位置处Cf=煤粉中的灰分;从窑尾(即热生料入窑处)到窑皮长度所在的位置,认为Cf始终等于煤粉中的灰分。
根据煤粉颗粒质量变化公式,认为在对应的x处,煤粉放热量如下所示:
Figure PCTCN2016105388-appb-000007
其中,mf为窑头喂煤量,kg/s;ΔHf为煤粉工业分析的低位放热量,J/kg。
进一步的,所述的步骤(2)中的熟料矿物形成模型如下所示:
Figure PCTCN2016105388-appb-000008
Figure PCTCN2016105388-appb-000009
Figure PCTCN2016105388-appb-000010
Figure PCTCN2016105388-appb-000011
Figure PCTCN2016105388-appb-000012
Figure PCTCN2016105388-appb-000013
Figure PCTCN2016105388-appb-000014
Figure PCTCN2016105388-appb-000015
Figure PCTCN2016105388-appb-000016
其中,Ca2O3、SiO2、Al2O3、Fe2O3、CaO分别是生料中碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙的质量分数,%;C2S、C3A、C4AF、C3S分别是熟料中硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的质量分数,%;MCaCO3、MSiO2、MAl2O3、MFe2O3、MCaO、MC2S、MC3A、MC4AF、MC3S分别是碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的摩尔质量,g/mol;kCaCO3、kC2S、kC3A、kC4AF、kC3S分别是碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的速率,1/s。
进一步的,根据矿物反应进程,反应放出的热量如下所示:
Figure PCTCN2016105388-appb-000017
其中,ΔHCaCO3、ΔHC2S、ΔHC3A、ΔHC4AF、ΔHC3S分别为碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的反应热,J/kg。
进一步的,各反应的反应速率表达式如下:
kj=Ajexp(-Ej/RTs);
其中,Aj为反应j指前因子,s-1;Ej为反应j的活化能,J/(mol·K);j则代表了碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙五个反应。
有益效果
相比于现有的技术,本发明具有如下优点:
(1)准确性
本发明提出的水泥回转窑一维数学模型包括传热模型、物料运动模型、煤粉燃烧模型、矿物化学反应模型,基本涵盖了回转窑内进行的所有物理化学过程;除此,本发明创造性的提出了应用于水泥回转窑的煤粉燃烧模型,基于国内外学者研究认为回转窑内煤粉放热量呈指数分布的理论知识,结合每个水泥生产企业 回转窑中窑皮长度,即煤粉燃烧火焰长度,从而摒弃原有的假定回转窑内煤粉均匀放热、煤粉运动速度与气相运动速度相同等假设,大大提高了结果的准确性。
(2)实用性
本发明所提出的煤粉燃烧模型除了具有较高的准确性外也具有很强的实用性,与传统基于燃烧反应受扩散控制,考虑煤粉颗粒加热、挥发、燃烧、冷却等分阶段过程等模型相比,本模型更为简洁;同时,与水泥回转窑三维模型计算所要求非常多的计算网格相比,本发明提出的一维数学模型更具有实用性。
附图说明
图1为实施例计算结果回转窑一维温度场示意图;
图2为实施例计算结果煤粉燃烧放热量变化示意图;
图3为实施例计算结果回转窑熟料化学成分变化示意图;
图4为实施例计算结果回转窑熟料矿物成分变化示意图。
具体实施方式
本发明的方案是:提出一种预测水泥回转窑熟料煅烧质量的一维仿真方法,所述的仿真方法包括如下步骤:
(1)采集拟预测熟料煅烧质量的回转窑的相关信息,包括回转窑长度、外径、耐火保温材料厚度、斜度、转速等作为建立相关回转窑数学模型的基础。
(2)建立水泥回转窑内的一维数学模型,该过程中创新性地提出了煤粉燃烧模型,并包括传热模型、料床运动模型和熟料矿物化学反应模型,分别用以模拟回转窑内气相、物料、窑壁(耐火保温层)以及环境之间的传热传质情况,回转窑内物料运动情况,窑内煤粉燃烧情况和熟料矿物化学反应过程等;
(3)采集水泥回转窑实际生产部分数据,包括喂料量、喂煤量(回转窑)、入窑生料温度、入窑生料化学组分、二次风温度、回转窑转速、窑皮长度作为数学模型的边界条件;
(4)根据所述一维数学模型和边界条件,计算得到回转窑内烟气温度、物料温度、料床高度、壁面温度、物料化学成分、熟料矿物含量等随回转窑长度的变化情况;
(5)根据步骤(4)中的仿真结果,所预测的熟料质量为窑头(熟料出口)位置的f-CaO含量和C3S、C2S、C3A、C4AF矿物含量,根据预测结果对实际生产 操作进行优化和调整。
根据本发明所述的仿真方法,所述的步骤(2)中的传热模型如下所示:
Figure PCTCN2016105388-appb-000018
Figure PCTCN2016105388-appb-000019
Figure PCTCN2016105388-appb-000020
Figure PCTCN2016105388-appb-000021
其中,Ts、Tg、Tw、Ti、To分别表示物料、气体、内壁面、外壁面和环境的温度,K;ms、mg分别表示物料和气体的质量,kg/s;Cps、Cpg分别表示物料和气体的比热容,J/(kg·K);εs、εg、εw分别表示物料、气体和壁面的辐射系数;αg为气体的吸收率;hcgs、hcgw、hcws、hcio分别为气体和物料之间、气体和内壁面之间、内壁面和物料之间、外壁面和环境之间的对流换热系数,J/(m2·K);Qc和Qf分别是熟料矿物形成过程反应放热量和煤粉燃烧放热量,J;Args、Acgs、Argw、Acgw、Arws、Acws、Ai分别为气体和固体间的辐射换热面积、气体和固体间的对流换热面积、气体和内壁面之间的辐射换热面积、气体和内壁面之间的对流换热面积、内壁面和固体之间的辐射换热面积、内壁面和固体之间的对流换热面积及外截面积,m2;kr为耐火材料的导热系数,W/(m·K);σ为斯蒂芬-玻尔兹曼常数,其值为5.676×10-8W/(m2·K4);R为回转窑内径的半径,m;er为耐火材料的厚度,m;Ω是与窑内壁面和料床有关的空间系数;x为回转窑的轴向距离,m。
根据本发明所述的仿真方法,所述的步骤(2)中的料床运动模型如下所示:
Figure PCTCN2016105388-appb-000022
Figure PCTCN2016105388-appb-000023
其中,h为物料形成的料床高度,m;us为物料的运动速度,m/s;α为回转窑斜度,rad;β为回转窑内物料的休止角,rad;φv为物料的体积流量,m3/s;n为回转窑转速,rad/s;K为料床运动的特征系数。
根据本发明所述的仿真方法,所述的步骤(2)中的煤粉燃烧模型如下所示:
认为在水泥回转窑内,火焰长度为窑皮长度。在火焰长度范围内,归一化后的煤粉颗粒质量满足如下公式:
Cf=ea(60-x)+b
其中,Cf为归一化后的煤粉质量;a、b为模型中的常数,根据如下边界条件来确定:
在窑头处(即熟料出口处)认为Cf=1;根据所采集的窑皮长度,认为在该位置处Cf=煤粉中的灰分;从窑尾(即热生料入窑处)到窑皮长度所在的位置,认为Cf始终等于煤粉中的灰分。
根据煤粉颗粒质量变化公式,认为在对应的x处,煤粉放热量如下所示:
Figure PCTCN2016105388-appb-000024
其中,mf为窑头喂煤量,kg/s;ΔHf为煤粉工业分析的低位放热量,J/kg。
根据本发明所述的仿真方法,所述的步骤(2)中的熟料矿物形成模型如下所示:
Figure PCTCN2016105388-appb-000025
Figure PCTCN2016105388-appb-000026
Figure PCTCN2016105388-appb-000027
Figure PCTCN2016105388-appb-000028
Figure PCTCN2016105388-appb-000029
Figure PCTCN2016105388-appb-000030
Figure PCTCN2016105388-appb-000031
Figure PCTCN2016105388-appb-000032
Figure PCTCN2016105388-appb-000033
其中,Ca2O3、SiO2、Al2O3、Fe2O3、CaO分别是生料中碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙的质量分数,%;C2S、C3A、C4AF、C3S分别是熟料中硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的质量分数,%;MCaCO3、MSiO2、MAl2O3、MFe2O3、MCaO、MC2S、MC3A、MC4AF、MC3S分别是碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的摩尔质量,g/mol;kCaCO3、kC2S、kC3A、kC4AF、kC3S分别是碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的速率,1/s。
根据矿物反应进程,反应放出的热量如下所示:
Figure PCTCN2016105388-appb-000034
其中,ΔHCaCO3、ΔHC2S、ΔHC3A、ΔHC4AF、ΔHC3S分别为碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的反应热,J/kg。
各反应的反应速率表达式如下:
kj=Ajexp(-Ej/RTs)
其中,Aj为反应j指前因子,s-1;Ej为反应j的活化能,J/(mol·K);j 则代表了碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙五个反应。
五个反应的Aj和Ej分别如下表所示。
顺序 反应 Aj Ej ΔHj
1 CaCO3=CaO+CO2 1.18E+06 1.85E+05 1.78E+06
2 2CaO+SiO2=C2S 1E+07 2.34E+05 -1.124E+06
3 C2S+CaO=C3S 1E+08 4.2E+05 8.01E+04
4 3CaO+Al2O3=C3A 1E+08 3.1E+05 -4.34E+04
5 C3A+Fe2O3+CaO=C4AF 1E+08 3.3E+05 -2.278E+05
上述模型,尤其是煤粉燃烧模型,结合每个水泥企业的实际情况,对煤粉质量变化和放热量的变化进行了预测。再结合传热模型、料床运动模型和矿物反应模型,实现对回转窑内气相、物料、内壁面、外壁面温度变化趋势,窑内物料运动速度、停留时间、高度变化趋势,煤粉质量及放热量变化趋势,熟料化学成分及矿物含量变化趋势等模拟仿真。
本发明中所有模型计算过程所涉及的边界条件都是可以通过现场检测获取,部分的模型参数,则是经验常数。所有模型方程都是微分方程,属于过程模拟模型,变量多指代的内容与具体物理位置有关。
实施例
国内某2500吨/天水泥熟料生产线,主要设备和工艺参数、边界条件如表1所示。基于表1所示参数和本发明所阐述的仿真方法计算步骤,应用本发明所阐述的数学模型,计算该生产线回转窑一维温度场分布示意图、煤粉燃烧放热量变化示意图、回转窑熟料化学成分变化示意图和回转窑熟料矿物成分变化示意图,分别如图1~图4所示。分别和实际测试结果进行比较,以对本发明所阐述方法的准确性进行验证。
表1实施例基本参数和边界条件。
Figure PCTCN2016105388-appb-000035
Figure PCTCN2016105388-appb-000036
图1为实施例计算结果回转窑一维温度场示意图。计算所得参数和实际检测参数的对比如表2所示。由表2可知,实施例所求得温度与实际值的误差均在2%以内,具有非常高的准确性。这间接表明图2所示煤粉燃烧放热量变化示意图的准确性,说明本发明所提出的煤粉燃烧模型具有较高的准确性。
表2实施例计算回转窑温度与实际检测温度的对比
参数 计算值/K 实际值/K 差值
窑尾气体温度 1313 1330 17
窑头物料温度 1697 1703 6
外壁面最高温度 489.8 493 3.2
图3为实施例计算结果回转窑熟料化学成分变化趋势,主要关注氧化钙在窑头的含量,即熟料中游离氧化钙的值;结合图4所示实施例计算结果回转窑熟料矿物成分变化趋势,主要关注四个矿物在窑头的含量。上述五个参数的计算值与实际测试值如表3所示。由表3可知,上述表征水泥回转窑熟料质量的五个参数的计算值与实际值非常接近,表明所述模型的准确性,基于上述模型形成的方法完全可用于熟料质量的准确预测。
表3实施例计算结果熟料质量计算值与实际值的对比。
参数 计算值/% 实际值/% 差值/%
游离氧化钙 1.196 1.10 0.096
硅酸三钙 54.77 55.10 0.33
硅酸二钙 19.58 19.82 0.24
铝算三钙 7.883 7.87 0.013
铁铝酸四钙 10.59 10.58 0.01

Claims (7)

  1. 一种预测水泥回转窑熟料煅烧质量的一维仿真方法,包括如下步骤:
    (1)采集拟预测熟料煅烧质量的回转窑的相关信息,包括回转窑长度、外径、耐火保温材料厚度、斜度、转速等作为建立相关回转窑数学模型的基础;
    (2)建立水泥回转窑内的一维数学模型,该过程中创新性地提出了煤粉燃烧模型,并包括传热模型、料床运动模型和熟料矿物化学反应模型,分别用以模拟回转窑内气相、物料、窑壁以及环境之间的传热传质情况,回转窑内物料运动情况,窑内煤粉燃烧情况和熟料矿物化学反应过程;
    (3)采集水泥回转窑实际生产部分数据,包括喂料量、喂煤量、入窑生料温度、入窑生料化学组分、二次风温度、回转窑转速、窑皮长度作为数学模型的边界条件;
    (4)根据所述一维数学模型和边界条件,计算得到回转窑内烟气温度、物料温度、料床高度、壁面温度、物料化学成分、熟料矿物含量等随回转窑长度的变化情况;
    (5)根据步骤(4)中的仿真结果,所预测的熟料质量为窑头位置的f-CaO含量和C3S、C2S、C3A、C4AF矿物含量,根据预测结果对实际生产操作进行优化和调整。
  2. 如权利要求1所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    所述的步骤(2)中的传热模型如下所示:
    Figure PCTCN2016105388-appb-100001
    Figure PCTCN2016105388-appb-100002
    Figure PCTCN2016105388-appb-100003
    Figure PCTCN2016105388-appb-100004
    其中,Ts、Tg、Tw、Ti、To分别表示物料、气体、内壁面、外壁面和环境的温度,K;ms、mg分别表示物料和气体的质量,kg/s;Cps、Cpg分别表示物料和气体的比热容,J/(kg·K);εs、εg、εw分别表示物料、气体和壁面的辐射系数;αg为气体的吸收率;hcgs、hcgw、hcws、hcio分别为气体和物料之间、气体和内壁面之间、内壁面和物料之间、外壁面和环境之间的对流换热系数,J/(m2·K);Qc和Qf分别是熟料矿物形成过程反应放热量和煤粉燃烧放热量,J;Args、Acgs、Argw、Acgw、Arws、Acws、Ai分别为气体和固体间的辐射换热面积、气体和固体间的对流换热面积、气体和内壁面之间的辐射换热面积、气体和内壁面之间的对流换热面积、内壁面和固体之间的辐射换热面积、内壁面和固体之间的对流换热面积及外截面积,m2;kr为耐火材料的导热系数,W/(m·K);σ为斯蒂芬-玻尔兹曼常数,其值为5.676×10-8W/(m2·K4);R为回转窑内径的半径,m;er为耐火材料的厚度,m;Ω是与窑内壁面和料床有关的空间系数;x为回转窑的轴向距离,m。
  3. 如权利要求1所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    所述的步骤(2)中的料床运动模型如下所示:
    Figure PCTCN2016105388-appb-100005
    Figure PCTCN2016105388-appb-100006
    其中,h为物料形成的料床高度,m;us为物料的运动速度,m/s;α为回转窑斜度,rad;β为回转窑内物料的休止角,rad;φv为物料的体积流量,m3/s;n为回转窑转速,rad/s;K为料床运动的特征系数。
  4. 如权利要求1所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    所述的步骤(2)中的煤粉燃烧模型如下所示:
    认为在水泥回转窑内,火焰长度为窑皮长度。在火焰长度范围内,归一化后的煤粉颗粒质量满足如下公式:
    Cf=ea(60-x)+b
    其中,Cf为归一化后的煤粉质量;a、b为模型中的常数,根据如下边界条件来确定:
    在窑头处(即熟料出口处)认为Cf=1;根据所采集的窑皮长度,认为在该位置处Cf=煤粉中的灰分;从窑尾(即热生料入窑处)到窑皮长度所在的位置,认为Cf始终等于煤粉中的灰分。
    根据煤粉颗粒质量变化公式,认为在对应的x处,煤粉放热量如下所示:
    Figure PCTCN2016105388-appb-100007
    其中,mf为窑头喂煤量,kg/s;ΔHf为煤粉工业分析的低位放热量,J/kg。
  5. 如权利要求1所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    所述的步骤(2)中的熟料矿物形成模型如下所示:
    Figure PCTCN2016105388-appb-100008
    Figure PCTCN2016105388-appb-100009
    Figure PCTCN2016105388-appb-100010
    Figure PCTCN2016105388-appb-100011
    Figure PCTCN2016105388-appb-100012
    Figure PCTCN2016105388-appb-100013
    Figure PCTCN2016105388-appb-100014
    Figure PCTCN2016105388-appb-100015
    Figure PCTCN2016105388-appb-100016
    其中,Ca2O3、SiO2、Al2O3、Fe2O3、CaO分别是生料中碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙的质量分数,%;C2S、C3A、C4AF、C3S分别是熟料中硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的质量分数,%;MCaCO3、MSiO2、MAl2O3、MFe2O3、MCaO、MC2S、MC3A、MC4AF、MC3S分别是碳酸钙、氧化硅、氧化铝、氧化铁、氧化钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙的摩尔质量,g/mol;kCaCO3、kC2S、kC3A、kC4AF、kC3S分别是碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的速率,1/s。
  6. 如权利要求1所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    根据矿物反应进程,反应放出的热量如下所示:
    Figure PCTCN2016105388-appb-100017
    其中,ΔHCaCO3、ΔHC2S、ΔHC3A、ΔHC4AF、ΔHC3S分别为碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙进行反应的反应热,J/kg。
  7. 如权利要求6所述的预测水泥回转窑熟料煅烧质量的一维仿真方法,其特征在于:
    各反应的反应速率表达式如下:
    kj=Ajexp(-Ej/RTs);
    其中,Aj为反应j指前因子,s-1;Ej为反应j的活化能,J/(mol·K);j则代表了碳酸钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硅酸三钙五个反应。
PCT/CN2016/105388 2016-10-25 2016-11-11 一种预测水泥回转窑熟料质量的一维仿真方法 WO2018076403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610941444.4 2016-10-25
CN201610941444.4A CN106570244B (zh) 2016-10-25 2016-10-25 一种预测水泥回转窑熟料质量的一维仿真方法

Publications (1)

Publication Number Publication Date
WO2018076403A1 true WO2018076403A1 (zh) 2018-05-03

Family

ID=58534806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105388 WO2018076403A1 (zh) 2016-10-25 2016-11-11 一种预测水泥回转窑熟料质量的一维仿真方法

Country Status (2)

Country Link
CN (1) CN106570244B (zh)
WO (1) WO2018076403A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214053A (zh) * 2018-08-06 2019-01-15 华南理工大学 一种外热式回转窑污泥热解系统的传热模型计算方法
CN111177914A (zh) * 2019-12-25 2020-05-19 中国建材检验认证集团北京天誉有限公司 一种基于系统工程的水泥工艺预热器建模方法
CN111833970A (zh) * 2020-06-18 2020-10-27 湖北博华自动化系统工程有限公司 一种水泥熟料质量表征参数预测模型构建方法及其应用
CN111859669A (zh) * 2020-07-21 2020-10-30 合肥水泥研究设计院有限公司 一种基于热工分析-数据驱动模型的分解炉温度控制方法
CN112100916A (zh) * 2020-09-10 2020-12-18 北京百度网讯科技有限公司 用于构建强化学习模型的方法、装置、电子设备及介质
CN112562793A (zh) * 2020-12-10 2021-03-26 北京理工大学 一种针对燃料爆震燃烧的两步反应模型计算方法
CN112712861A (zh) * 2021-01-07 2021-04-27 北京明略软件系统有限公司 模型构建方法、装置、设备及计算机可读介质
CN112800652A (zh) * 2021-01-27 2021-05-14 中车长春轨道客车股份有限公司 一种耐火数据的确定方法、装置及电子设备
CN113045229A (zh) * 2021-03-09 2021-06-29 文县祁连山水泥有限公司 一种提高熟料28天强度的工艺
CN113177332A (zh) * 2021-03-09 2021-07-27 广东工业大学 一种基于机理和数据相结合的回转窑烧结温度预测方法
CN114970343A (zh) * 2022-05-24 2022-08-30 燕山大学 一种基于搜索空间变动的水泥粉磨过程多目标优化方法
CN116151022A (zh) * 2023-03-07 2023-05-23 浙江大学 一种基于热平衡计算的水泥回转窑温度实时估计方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109190175B (zh) * 2018-08-06 2023-03-31 华南理工大学 一种内插直肋回转窑污泥热解系统的传热模型计算方法
CN109583087B (zh) * 2018-11-30 2023-05-30 重庆邮电大学 一种基于多方位融合的回转窑表面温度补偿方法
CN109761517B (zh) * 2019-03-13 2021-09-14 安徽海螺集团有限责任公司 一种基于游离钙预测数据控制熟料生产的方法
CN111477284B (zh) * 2020-04-02 2021-01-15 盐城工学院 一种交互式水泥生产仿真方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629104A (zh) * 2011-12-01 2012-08-08 燕山大学 一种水泥回转窑煅烧预测控制系统及方法
CN103399779A (zh) * 2013-07-02 2013-11-20 中国科学院沈阳自动化研究所 一种水泥熟料煅烧过程半实物仿真平台及其仿真方法
CN103400196A (zh) * 2013-07-02 2013-11-20 中国科学院沈阳自动化研究所 一种水泥熟料烧成过程清洁生产的建模优化方法
US20150186772A1 (en) * 2012-05-30 2015-07-02 Taiheiyo Cement Corporation Method for predicting quality or manufacturing condition of cement
CN104794263A (zh) * 2015-03-31 2015-07-22 济南大学 基于ls_svm软测量的水泥回转窑烧成带温度的混杂建模方法
CN105159235A (zh) * 2015-01-08 2015-12-16 北方工业大学 回转窑煅烧过程综合协调控制方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434902C (zh) * 2006-03-30 2008-11-19 湖南大学 回转窑烧结熟料质量的计算机检测方法及检测装置
CN104480300B (zh) * 2014-11-20 2016-09-28 中南大学 一种基于预测回转窑内球团矿抗压强度的球团生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629104A (zh) * 2011-12-01 2012-08-08 燕山大学 一种水泥回转窑煅烧预测控制系统及方法
US20150186772A1 (en) * 2012-05-30 2015-07-02 Taiheiyo Cement Corporation Method for predicting quality or manufacturing condition of cement
CN103399779A (zh) * 2013-07-02 2013-11-20 中国科学院沈阳自动化研究所 一种水泥熟料煅烧过程半实物仿真平台及其仿真方法
CN103400196A (zh) * 2013-07-02 2013-11-20 中国科学院沈阳自动化研究所 一种水泥熟料烧成过程清洁生产的建模优化方法
CN105159235A (zh) * 2015-01-08 2015-12-16 北方工业大学 回转窑煅烧过程综合协调控制方法及系统
CN104794263A (zh) * 2015-03-31 2015-07-22 济南大学 基于ls_svm软测量的水泥回转窑烧成带温度的混杂建模方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214053B (zh) * 2018-08-06 2023-03-31 华南理工大学 一种外热式回转窑污泥热解系统的传热模型计算方法
CN109214053A (zh) * 2018-08-06 2019-01-15 华南理工大学 一种外热式回转窑污泥热解系统的传热模型计算方法
CN111177914A (zh) * 2019-12-25 2020-05-19 中国建材检验认证集团北京天誉有限公司 一种基于系统工程的水泥工艺预热器建模方法
CN111177914B (zh) * 2019-12-25 2024-05-14 中存大数据科技有限公司 一种基于系统工程的水泥工艺预热器建模方法
CN111833970A (zh) * 2020-06-18 2020-10-27 湖北博华自动化系统工程有限公司 一种水泥熟料质量表征参数预测模型构建方法及其应用
CN111833970B (zh) * 2020-06-18 2023-06-20 湖北博华自动化系统工程有限公司 一种水泥熟料质量表征参数预测模型构建方法及其应用
CN111859669A (zh) * 2020-07-21 2020-10-30 合肥水泥研究设计院有限公司 一种基于热工分析-数据驱动模型的分解炉温度控制方法
CN111859669B (zh) * 2020-07-21 2023-07-25 合肥水泥研究设计院有限公司 一种基于热工分析-数据驱动模型的分解炉温度控制方法
CN112100916A (zh) * 2020-09-10 2020-12-18 北京百度网讯科技有限公司 用于构建强化学习模型的方法、装置、电子设备及介质
CN112100916B (zh) * 2020-09-10 2023-07-25 北京百度网讯科技有限公司 用于构建强化学习模型的方法、装置、电子设备及介质
CN112562793A (zh) * 2020-12-10 2021-03-26 北京理工大学 一种针对燃料爆震燃烧的两步反应模型计算方法
CN112562793B (zh) * 2020-12-10 2023-01-03 北京理工大学 一种针对燃料爆震燃烧的两步反应模型计算方法
CN112712861A (zh) * 2021-01-07 2021-04-27 北京明略软件系统有限公司 模型构建方法、装置、设备及计算机可读介质
CN112800652A (zh) * 2021-01-27 2021-05-14 中车长春轨道客车股份有限公司 一种耐火数据的确定方法、装置及电子设备
CN113177332B (zh) * 2021-03-09 2023-02-24 广东工业大学 一种基于机理和数据相结合的回转窑烧结温度预测方法
CN113177332A (zh) * 2021-03-09 2021-07-27 广东工业大学 一种基于机理和数据相结合的回转窑烧结温度预测方法
CN113045229A (zh) * 2021-03-09 2021-06-29 文县祁连山水泥有限公司 一种提高熟料28天强度的工艺
CN114970343A (zh) * 2022-05-24 2022-08-30 燕山大学 一种基于搜索空间变动的水泥粉磨过程多目标优化方法
CN116151022A (zh) * 2023-03-07 2023-05-23 浙江大学 一种基于热平衡计算的水泥回转窑温度实时估计方法
CN116151022B (zh) * 2023-03-07 2024-04-23 浙江大学 一种基于热平衡计算的水泥回转窑温度实时估计方法

Also Published As

Publication number Publication date
CN106570244A (zh) 2017-04-19
CN106570244B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018076403A1 (zh) 一种预测水泥回转窑熟料质量的一维仿真方法
Sardeshpande et al. Model based energy benchmarking for glass furnace
Csernyei et al. Numerical modeling of a rotary cement kiln with improvements to shell cooling
Pieper et al. Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns
Mujumdar et al. Modeling of rotary cement kilns: applications to reduction in energy consumption
Pieper et al. Interaction of the combustion of refuse derived fuel with the clinker bed in rotary cement kilns: A numerical study
CN105259335B (zh) 水泥熟料性能的评价方法及煅烧工艺优化方法
Yin et al. Design requirements and performance optimization of waste heat recovery systems for rotary kilns
Mujumdar et al. CFD modeling of rotary cement kilns
CN111665809B (zh) 一种水泥回转窑的分段机理建模方法及系统
CN104480300A (zh) 一种基于预测回转窑内球团矿抗压强度的球团生产方法
Sadighi et al. Rotary cement kiln coating estimator: Integrated modelling of kiln with shell temperature measurement
Verma et al. Thermal energy consumption and its conservation for a cement production unit
Wirtz et al. Impact of coating layers in rotary cement kilns: Numerical investigation with a blocked-off region approach for radiation and momentum
US10131576B2 (en) Method for operating cement plant
WO2015141412A1 (ja) 粉塵が存在する雰囲気中の物体の温度を計測する方法
Filkoski et al. Energy optimisation of vertical shaft kiln operation in the process of dolomite calcination
Yi et al. Mathematic simulation of heat transfer and operating optimization in alumina rotary kiln
Khare et al. Pilot scale production of novel calcium sulfoaluminate cement clinkers and development of thermal model
Urbano et al. Dynamic modeling of the heat transfer process in rotary kilns with indirect oil heating: Parametric analysis of gypsum calcination case
Rodrigues et al. Dynamic analysis of the temperature and the concentration profiles of an industrial rotary kiln used in clinker production
CN116151022B (zh) 一种基于热平衡计算的水泥回转窑温度实时估计方法
CN102305805A (zh) 一种球团生产过程中链篦机料层水分分布的检测方法
Mogaji et al. Development of a Small-Scale Oil Fired Furnace for Refractory Lining Temperature Distribution Evaluation
Wydrych et al. Numerical calculations of limestone calcination in cement industry with use of shrink core model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920431

Country of ref document: EP

Kind code of ref document: A1