WO2018076295A1 - 舵机控制系统以及机器人 - Google Patents

舵机控制系统以及机器人 Download PDF

Info

Publication number
WO2018076295A1
WO2018076295A1 PCT/CN2016/103828 CN2016103828W WO2018076295A1 WO 2018076295 A1 WO2018076295 A1 WO 2018076295A1 CN 2016103828 W CN2016103828 W CN 2016103828W WO 2018076295 A1 WO2018076295 A1 WO 2018076295A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
module
main control
communication interface
control module
Prior art date
Application number
PCT/CN2016/103828
Other languages
English (en)
French (fr)
Inventor
柳冬
熊友军
Original Assignee
深圳市优必选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技有限公司 filed Critical 深圳市优必选科技有限公司
Priority to PCT/CN2016/103828 priority Critical patent/WO2018076295A1/zh
Priority to US15/321,727 priority patent/US10279472B2/en
Publication of WO2018076295A1 publication Critical patent/WO2018076295A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34013Servocontroller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • Y10S901/06Communication with another machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/19Drive system for arm
    • Y10S901/23Electric motor

Definitions

  • the present invention relates to the field of automatic control, and more particularly to a steering gear control system and a robot.
  • the robot usually includes a number of steering gears, which are important components of the robot and control the robot to perform various movements and operations.
  • the ID information of each servo of the robot is fixed, that is, after the servo ID information is set, the position of the steering gear is also fixed, such as the order of the shoulder/leg steering gear, and cannot be assembled at will after the disassembly, Assembly is inconvenient.
  • the ID information of the steering gear is redistributed through the communication interface after the servo is reassembled, and usually two communication interfaces are simultaneously connected to the controller through the electronic switch circuit, but the input of the electronic switch circuit The two terminals are connected at the same time, so that the controller cannot determine which communication interface is the input end, and which communication interface is the output end, so that the corresponding ID information cannot be normally assigned to the steering gear.
  • the present invention provides a steering gear control system and a robot capable of assigning an identification number to a steering gear when the steering gear is initialized, thereby preventing the steering gear identification number from being fixed and causing assembly inconvenience.
  • the steering gear control system includes: a main control module including two enabling ends; and a communication module including a first communication interface and a second a communication interface and a control switch unit, the control switch unit includes a first communication end, a second communication end, a first enable port, a second enable port, a first communication end and a second communication end, and a first communication interface and a second The communication interface is connected, and the first enable port and the second enable port are connected to the two enabled ends of the main control module;
  • the main control module receives the identification number or the identification number and the operation instruction information of the upper-level steering gear connected to the steering gear through the first enabling port, the first communication terminal and the first communication interface, and passes the second The port, the second communication end and the second communication interface transmit the identification number or identification number and the operation instruction information of the first-stage steering gear connected to the steering gear.
  • the first communication interface and the second communication interface are level detection ports, and when the main control module detects that the first communication interface is high, the first enable signal is output to the first enable port, and the control switch unit passes the first A communication interface communicates with the upper-level servo, and transmits a corresponding identification number or identification number and motion instruction information to the main control module; when the main control module detects that the second communication interface is high, the second enable signal is output to the first The second enable port, the control switch unit communicates with the next-stage servo through the second communication interface, and transmits the corresponding identification number or identification number and the motion instruction information to the next-stage servo.
  • the steering gear control system further includes a power module and a power detecting module connected to the main control module, wherein the power module is used to supply power to the steering gear, and the power detecting module is configured to collect the power of a battery inside the steering gear.
  • the steering gear control system further includes an angle acquisition module connected to the main control module, the angle acquisition module is configured to obtain the angle information of the steering rotation, and the main control module further controls the movement of the steering gear according to the angle information.
  • the steering gear control system further includes a driving module connected to the main control module, wherein the driving module is configured to receive a control signal transmitted by the main control module and output a driving pulse signal according to the control signal to drive a motor rotation set in the steering gear. .
  • the control signal includes an angle control signal, a speed control signal, and an enable signal.
  • the steering gear control system further includes at least one filter circuit, and at least one filter circuit is connected between the driving module and the motor, and is used for filtering the driving pulse signal.
  • the driving module is further configured to detect the current working current of the motor, and feed back the current working current of the motor to the main control module, so that the main control module adjusts the waveform of the driving pulse signal according to the current working current of the motor.
  • the steering gear control system further includes a temperature acquisition module connected to the main control module and configured to collect the temperature of the motor. If the temperature of the collected motor is greater than a predetermined threshold, the main control module controls the motor to stop rotating, or reduce The speed at which the motor rotates.
  • the present invention also provides a robot including a central processing unit, a plurality of first-stage steering gears connected to the central processing unit, and other stages of steering gears sequentially connected to the first-stage steering gears, each of the steering gears.
  • the machine includes a steering gear control system
  • the steering gear control system comprises: a main control module comprising two enabling ends; and a communication module comprising a first communication interface, a second communication interface and a control switch unit, the control switch unit comprising the first The communication end, the second communication end, the first enable port, and the second enable port, the first communication end and the second communication end are correspondingly connected with the first communication interface and the second communication interface, the first enable port and the second The enable port is connected to the two enabled ends of the main control module; wherein the main control module receives a first-level servo from the servo through the first enable port, the first communication end, and the first communication interface.
  • the first communication interface and the second communication interface are level detection ports, and when the main control module detects that the first communication interface is high, the first enable signal is output to the first enable port, and the control switch unit passes the first A communication interface communicates with the upper-level servo, and transmits a corresponding identification number or identification number and motion instruction information to the main control module; when the main control module detects that the second communication interface is high, the second enable signal is output to the first The second enable port, the control switch unit communicates with the next-stage servo through the second communication interface, and transmits the corresponding identification number or identification number and the motion instruction information to the next-stage servo.
  • the steering gear control system further includes a power module and a power detecting module connected to the main control module, wherein the power module is used to supply power to the steering gear, and the power detecting module is configured to collect the power of a battery inside the steering gear.
  • the steering gear control system further includes an angle acquisition module connected to the main control module, the angle acquisition module is configured to obtain the angle information of the steering rotation, and the main control module further controls the movement of the steering gear according to the angle information.
  • the steering gear control system further includes a driving module connected to the main control module, wherein the driving module is configured to receive a control signal transmitted by the main control module and output a driving pulse signal according to the control signal to drive a motor rotation set in the steering gear. .
  • the control signal includes an angle control signal, a speed control signal, and an enable signal.
  • the steering gear control system further includes at least one filter circuit, and at least one filter circuit is connected between the driving module and the motor, and is used for filtering the driving pulse signal.
  • the driving module is further configured to detect the current working current of the motor, and feed back the current working current of the motor to the main control module, so that the main control module adjusts the waveform of the driving pulse signal according to the current working current of the motor.
  • the steering gear control system further includes a temperature acquisition module connected to the main control module and configured to collect the temperature of the motor. If the temperature of the collected motor is greater than a predetermined threshold, the main control module controls the motor to stop rotating, or reduce The speed at which the motor rotates.
  • the main control module includes two enable terminals;
  • the communication module includes a first communication interface, a second communication interface, and a control switch unit, and the main control module Receiving, by the first enabling port, the first communication end, and the first communication interface, an identification number or an identification number and an operation instruction information from a first-level steering gear connected to the steering gear, and passing the second enabling port, the second
  • the communication end and the second communication interface transmit the identification number or identification number and the operation instruction information of the first-stage steering gear connected with the steering gear; the identification number can be assigned to the steering gear when the steering gear is initialized, so as to avoid the fixed identification number of the steering gear Inconvenient assembly.
  • Figure 1 is a block diagram showing a steering gear control system according to a first embodiment of the present invention
  • FIG. 2 is a circuit diagram of a communication module according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the steering gear control system of the second embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a power module according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a filter circuit according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a temperature detecting module according to an embodiment of the present invention.
  • Figure 7 is a block schematic diagram of a robot in accordance with an embodiment of the present invention.
  • FIG. 1 is a block schematic diagram of a steering gear control system according to a first embodiment of the present invention
  • FIG. 2 is a circuit diagram of a communication module according to an embodiment of the present invention.
  • the steering gear control system 10 is applied to a steering gear 50 that includes a main control module 11 and a communication module 12.
  • the main control module 11 includes two enable terminals.
  • the communication module 12 includes a first communication interface 120, a second communication interface 121, and a control switch unit 122.
  • the control switch unit 122 includes a first communication terminal COM1, a second communication terminal COM2, a first enable port EN_SW1, a second enable port EN_SW2, a first communication terminal COM1 and a second communication terminal COM2, and a first communication interface 120 and a
  • the two communication interfaces 121 are connected to each other, and the first enable port EN_SW1 and the second enable port EN_SW2 are correspondingly connected to the two enabled ends of the main control module 11.
  • the main control module 11 receives the identification number or identification number and the operation instruction information from a first-level servo connected to the steering gear through the first enable port EN_SW1, the first communication terminal COM1, and the first communication interface 120, and The two enable ports EN_SW2, the second communication terminal COM2, and the second communication interface 121 transmit the identification number or identification number and the operation instruction information of the next-stage servo connected to the steering gear.
  • the first end 1 of the first communication interface 120 and the second communication interface 121 transmits an identification number or an identification number and an operation instruction information via fuses FB1 and FB2, respectively.
  • the first end 1 of the first communication interface 120 and the second communication interface 121 are also grounded through the first diode D1 and the second diode D2, respectively.
  • the second end 2 of the first communication interface 120 and the second communication interface 121 are connected to the power supply of 8.4V through the fuse FB3, and the third end 3 of the first communication interface 120 and the second communication interface 121 are grounded via the fuse FB4.
  • the first communication interface 120 and the second communication interface 121 are level detection ports.
  • the main control module 11 detects that the first communication terminal COM1 is at a high level, that is, when the first communication interface 120 is at a high level, outputs a first enable signal to the first enable port EN_SW1, and controls the switch unit 122 to pass the first communication interface.
  • the 120 communicates with the upper-level servo, and transmits a corresponding identification number or identification number and action instruction information to the main control module 11.
  • the main control module 11 detects that the second communication terminal COM2 is at a high level, that is, when the second communication interface 121 is at a high level, outputs a second enable signal to the second enable port EN_SW2, and controls the switch unit 122 to pass the second communication interface.
  • the identification code is a unique serial code that represents a certain steering gear that is different from other steering gears.
  • the first communication terminal COM1 is connected to the first end of the first communication interface 120
  • the second communication terminal COM2 is connected to the first end of the second communication interface 121.
  • the first enable port is connected.
  • the EN_SW1 and the second enable port EN_SW2 are respectively connected to two enable terminals (not shown) of the main control module 11.
  • the main control module 11 outputs the first enable signal to the first enable port EN_SW1 when the first communication terminal COM1 is detected to be high level by the first enable terminal EN_SW1, and controls the switch unit 122 to pass through the first communication interface 120 and the previous one.
  • the rudder communication communicates the corresponding identification number or identification number and drive instruction information to the main control module 11.
  • the main control module 11 When the second control terminal EN2 detects that the second communication terminal COM2 is at a high level, the main control module 11 outputs a second enable signal to the second enable port EN_SW2, and controls the switch unit 122 to pass through the second communication interface 121 and the next.
  • the rudder servo communication transmits the corresponding identification number or identification number and action command information to the next-stage servo. That is, the communication module 12 uses half-duplex asynchronous serial communication.
  • the more specific working principle of the communication module 12 is as follows:
  • the main control module 11 detects that the first communication terminal COM1 is at a high level, the second communication terminal COM2 is at a low level, and outputs a first enable signal to the first enable port EN_SW1,
  • the control switch unit 122 receives the identification number assigned by the upper-stage steering gear to the steering gear of the first stage through the first communication interface 120, and receives the operation instruction information, and transmits the operation instruction information to the main control module 11 through the signal line WIRE1.
  • the main control module 11 When the main control module 11 detects that the second communication terminal COM2 is at a high level, the first communication terminal COM1 is at a low level, and outputs a second enable signal to the second enable port EN_SW2, and the main control module 11 passes the signal line.
  • the WIRE2 transmits the identification number to the control switch unit 122, and the control switch unit 122 transmits the corresponding identification number assigned to the next-stage servo through the second communication interface 121, and simultaneously outputs the operation instruction information.
  • the present embodiment corresponds to the first communication terminal COM1 or the second communication terminal COM2 of the control switch unit 122 respectively.
  • the second communication interface 121 transmits the identification number assigned to the next-stage steering gear, thereby realizing assigning a corresponding identification number to each steering gear.
  • the main control module 11 can automatically recognize that the first communication interface 120 is an input port and the second communication interface 121 is an output port, so that the identification numbers of all the servos during the initialization process can be sequentially assigned, and the identification number of the steering gear is fixed.
  • the assembly is inconvenient.
  • the steering gear of the current stage communicates with the upper first steering gear through the first communication interface 120 and the first communication terminal COM1 of the control switch unit 122, and Transmitting corresponding identification number and action instruction information; communicating with the next-stage servo through the second communication interface 121 and the second communication terminal COM2 of the control switch unit 122, and transmitting the corresponding identification number and action instruction information to make the corresponding rudder
  • the machine executes the corresponding action instruction.
  • the operation of the steering gear of this stage interacts with the upper steering gear or the lower first steering gear.
  • only the action command information may be transmitted between the first-stage steering gear and the upper-stage steering gear or the next-stage steering gear, and the action command information carries the same-level rudder.
  • the servo control system 10 further includes a power module 13 and a power detecting module 14 connected to the main control module 11.
  • the power module 13 is used to supply power to the servos of this stage.
  • the power detecting module 14 is configured to collect the power of a battery inside the steering gear.
  • the power module 13 includes a first low dropout linear regulator 131, a first capacitor C1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a fifth capacitor C5, and a sixth capacitor C6.
  • a second low dropout linear regulator 132 A second low dropout linear regulator 132.
  • the first capacitor C1 and the second capacitor C2 are connected in parallel between the first voltage terminal P_12.6V and the ground, wherein the first voltage terminal P_12.6V provides a reference power voltage of 12.6V.
  • the reference power supply 12.6V is converted into a 5V first power supply voltage by the first low dropout linear regulator 131, and the third capacitor C3 and the fourth capacitor C4 are connected in parallel between the second voltage terminal P_5V and the ground, and the 5V first power supply voltage
  • the second low-voltage difference linear regulator 132 converts to a second power supply voltage of 3.3V
  • the fifth capacitor C5 and the sixth capacitor C6 are connected in parallel between the third voltage terminal P_3.3V and the ground, wherein the second voltage terminal P_5V A second power supply voltage of 5V is output, and a third power supply voltage of 3.3V is outputted by the third voltage terminal P_3.3V.
  • the power module 13 passes through the first low dropout linear regulator 131 and the second low dropout linear regulator 132.
  • the first supply voltage of 5V and the second supply voltage of 3.3V are output, thereby providing a stable and reliable power supply voltage for the servo of this stage.
  • the steering control system 10 further includes an angle acquisition module 15 coupled to the main control module 11.
  • the angle collecting module 15 is configured to obtain angle information of the steering of the steering gear, and the main control module 11 further controls the motion of the steering gear according to the angle information.
  • the angle acquisition module 15 can apply a potentiometer or a magnetic encoder chip to obtain angle information of the steering rotation. Specifically, the angle of rotation of the motor in the steering gear is obtained to determine whether the motor is rotating forward or backward.
  • the steering gear control system 10 further includes a driving module 16 and at least one filtering circuit 17, the driving module 16 is connected to the main control module 11, and the filtering circuit 17 is connected between the driving module 16 and the motor.
  • the driving module 16 is configured to receive a control signal transmitted by the main control module 11 and output a driving pulse signal according to the control signal to drive a motor rotation disposed in the steering gear.
  • the control signal includes an angle control signal, a speed control signal, and an enable signal.
  • the driving module 16 outputs two driving pulse signals according to the angle control signal, the speed control signal, and the enable signal to the two ends of the motor.
  • the filter circuit 17 is for filtering the drive pulse signal.
  • the driving module 16 is further configured to detect a current operating current of the motor, and feed back the current operating current of the motor to the main control module 11, so that the main control module 11 adjusts the waveform of the driving pulse signal according to the current.
  • the filter circuit 17 outputs two driving pulse signals OUT1 and OUT2, wherein the driving pulse signal OUT1 is connected to the M- terminal of the motor through the fuse FB5, and the driving pulse signal OUT2 is connected to the M+ of the motor through the fuse FB6. end.
  • the seventh capacitor C7 is connected in parallel at both ends of the motor, and the driving pulse signal OUT1 is also grounded through the eighth capacitor C8, and the driving pulse signal OUT2 is also grounded through the ninth capacitor C9.
  • the steering control system 10 further includes a temperature acquisition module 18 coupled to the main control module 11 for collecting the temperature of the motor. If the temperature of the collected motor is greater than a predetermined threshold, the main control module 11 controls the motor to stop rotating or reduce the speed of the motor rotation.
  • the preset threshold can be set as needed, and is not limited herein.
  • the temperature acquisition module 18 includes a first resistor R1, a second resistor R2, a third resistor R3, a seventh capacitor C7, and an eighth capacitor C8.
  • the third resistor R3 is grounded at one end, the other end is connected to the output terminal AIN via the first resistor R1, and the other end of the third resistor R3 is connected to the third voltage terminal P_3.3V via the second resistor R2.
  • the output terminal AIN is connected to the main control module 11, the seventh capacitor C7 is connected in parallel between the output terminal AIN and the ground, and the eighth capacitor C8 is connected in parallel at both ends of the third resistor R3.
  • the third resistor R3 is a negative temperature coefficient thermistor whose resistance changes with temperature, is divided by the second resistor R2, and then output to the main control module 11 through the first resistor R1.
  • the invention also provides a robot.
  • the robot 20 includes a central processing unit 21, a plurality of first-stage steering gears 22 connected to the central processing unit 21, and other stages of steering gears 23 sequentially connected to the first-stage steering gear 22, each of which has a rudder.
  • the machines 22, 23 each include a steering control system.
  • the steering gear control system includes the aforementioned steering gear control system 10, that is, all the components of the steering gear control system 10 described above, and corresponding connection relationships, which are not described herein.
  • any one of the steering gears is connected to at most one upper steering gear and/or one lower first steering gear.
  • the main control module 11 communicates with the central processing unit 21 via the first communication interface 120 in the communication module 12, and receives the central processing unit when the first stage steering gear 22 is initialized.
  • the assigned identification number of 21, if there is a lower-level steering gear transmits the identification number assigned to the next-stage steering gear through the second communication interface 121 in the communication module 120.
  • the identification number assigned by the central processing unit 21 to the next-stage steering gear is transmitted through the second communication interface 121 in the communication module 120, or the identification number assigned by the first-stage steering gear 22 to the next-stage steering gear is transmitted. .
  • the main control module 11 communicates with the upper-level steering gear only through the first communication interface 120 in the communication module 12, and receives the identification number assigned by the upper-level steering gear during initialization.
  • the main control module 11 communicates with the upper-level steering gear through the first communication interface 120 in the communication module 12 to receive the previous one during initialization.
  • the identification number assigned by the rudder servo; the main control module 11 also communicates with the next rudder servo through the second communication interface 121 in the communication module 12 to transmit the identification number assigned to the next rudder servo during initialization.
  • the identification number of each of the steering gears can be assigned when the robot 20 is initialized, that is, when the servos are initialized, and the inconvenience of assembly of the steering gear due to the fixed identification number can be avoided.
  • the first communication interface 120 and the second communication interface 121 in the communication module 12 can be interchanged, that is, the main control module 11 can also pass through the first communication interface 120 in the communication module 12 and the next-stage servo.
  • the communication communicates with the upper-level servo through the second communication interface 121, and is not limited herein.
  • the communication module 12 is configured to communicate with other servos of different stages than the steering gear of the present stage to receive or assign an identification number and transmit motion instruction information;
  • the main control module 11 recognizes one of the two communication interfaces as an input interface to receive and set the identification number of the current steering gear through the communication module, and the other is an output interface to transmit the corresponding identification number to the next-stage steering gear, and
  • the control signal is output according to the identification number and the motion instruction information to control the movement of the steering gear of the current stage; thus, the corresponding identification number can be assigned to the steering gear when the steering gear is initialized, so as to prevent the identification number of the steering gear from being fixed and causing inconvenience in assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Electric Motors In General (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种舵机控制系统(10)以及机器人(20)。舵机控制系统(10)包括主控模块(11)、通讯模块(12),通讯模块(12)包括第一通讯接口(120)、第二通讯接口(121)以及控制开关单元(122),控制开关单元(122)的第一通讯端及第二通讯端与第一通讯接口(120)及第二通讯接口(121)对应相连,控制开关单元(122)的第一使能端口及第二使能端口与主控模块(11)的两个使能端对应相连;主控模块(11)通过第一使能端口、第一通讯端及第一通讯接口(120)接收来自上一级舵机的识别号或识别号及动作指令信息,通过第二使能端口、第二通讯端及第二通讯接口(121)传递下一级舵机的识别号或识别号及动作指令信息。通过以上方式,能够在舵机(50)初始化时给舵机(50)分配识别号,避免舵机(50)识别号固定而导致组装不便。

Description

舵机控制系统以及机器人
【技术领域】
本发明涉及自动控制领域,尤其涉及一种舵机控制系统以及机器人。
【背景技术】
随着科技的进步,机器人技术得到了极大地发展,其已经逐渐地走进了人们的日常生活中。机器人通常包括若干舵机,舵机是机器人的重要组件,控制着机器人执行各种运动及操作。
现有的,机器人每个舵机的ID信息固定,即舵机ID信息设定好后,舵机的位置也固定,比如肩部/腿部舵机的顺序,拆卸后不能随意组接,给组装带来不便。在相关技术的舵机控制系统中,舵机的ID信息在舵机重新组装后通过通讯接口被重新分配,通常采用两个通讯接口同时通过电子开关电路与控制器连接,然而电子开关电路的输入端同时连接所述两个通讯接口,导致控制器无法判断哪一通讯接口为输入端,哪一通讯接口为输出端,以致无法给舵机正常分配相应的ID信息。
【发明内容】
有鉴于此,本发明提供一种舵机控制系统以及机器人,能够在舵机初始化时给舵机分配识别号,避免舵机识别号固定而导致组装不便。
为解决上述问题,本发明提供一种舵机控制系统,应用于一舵机,舵机控制系统包括:主控模块,包括两个使能端;及通讯模块,包括第一通讯接口、第二通讯接口以及控制开关单元,控制开关单元包括第一通讯端、第二通讯端、第一使能端口、第二使能端口,第一通讯端及第二通讯端与第一通讯接口及第二通讯接口对应相连,第一使能端口及第二使能端口与主控模块的两个使能端对应相连; 其中,主控模块通过第一使能端口、第一通讯端及第一通讯接口接收来自与舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口、第二通讯端及第二通讯接口传递与舵机相连的一下一级舵机的识别号或识别号及动作指令信息。
其中,第一通讯接口及第二通讯接口均为电平检测端口,主控模块检测到第一通讯接口为高电平时,输出第一使能信号至第一使能端口,控制开关单元通过第一通讯接口与上一级舵机通讯,传输对应的识别号或识别号及动作指令信息至主控模块;主控模块检测到第二通讯接口为高电平时,输出第二使能信号至第二使能端口,控制开关单元通过第二通讯接口与下一级舵机通讯,将对应的识别号或识别号及动作指令信息传输至下一级舵机。
其中,舵机控制系统还包括与主控模块相连的电源模块和电量检测模块,电源模块用于为舵机提供电源,电量检测模块用于采集舵机内部一电池的电量。
其中,舵机控制系统还包括与主控模块相连的角度采集模块,角度采集模块用于获取舵机旋转的角度信息,主控模块进一步根据角度信息控制舵机的运动。
其中,舵机控制系统还包括一驱动模块,与主控模块连接,驱动模块用于接收主控模块传输的控制信号并根据控制信号输出一驱动脉冲信号以驱动设置在舵机内的一电机旋转。
其中,控制信号包括角度控制信号、速度控制信号以及使能信号。
其中,舵机控制系统还包括至少一滤波电路,至少一滤波电路连接在驱动模块与电机之间,并用于对驱动脉冲信号进行滤波处理。
其中,驱动模块还用以侦测电机的当前工作电流,且向主控模块反馈电机的当前工作电流,使主控模块根据电机的当前工作电流调整驱动脉冲信号的波形。
其中,舵机控制系统还包括温度采集模块,与主控模块连接,并用于采集电机的温度,若所采集到的电机的温度大于一预设阈值,则主控模块控制电机停止旋转,或降低电机旋转的速度。
为解决上述问题,本发明还提供一种机器人,包括中央处理器、与中央处理器连接的多个第一级舵机以及与第一级舵机顺次连接的其他级舵机,每个舵机包括一舵机控制系统,舵机控制系统包括:主控模块,包括两个使能端;及通讯模块,包括第一通讯接口、第二通讯接口以及控制开关单元,控制开关单元包括第一通讯端、第二通讯端、第一使能端口、第二使能端口,第一通讯端及第二通讯端与第一通讯接口及第二通讯接口对应相连,第一使能端口及第二使能端口与主控模块的两个使能端对应相连;其中,主控模块通过第一使能端口、第一通讯端及第一通讯接口接收来自与舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口、第二通讯端及第二通讯接口传递与舵机相连的一下一级舵机的识别号或识别号及动作指令信息。
其中,第一通讯接口及第二通讯接口均为电平检测端口,主控模块检测到第一通讯接口为高电平时,输出第一使能信号至第一使能端口,控制开关单元通过第一通讯接口与上一级舵机通讯,传输对应的识别号或识别号及动作指令信息至主控模块;主控模块检测到第二通讯接口为高电平时,输出第二使能信号至第二使能端口,控制开关单元通过第二通讯接口与下一级舵机通讯,将对应的识别号或识别号及动作指令信息传输至下一级舵机。
其中,舵机控制系统还包括与主控模块相连的电源模块和电量检测模块,电源模块用于为舵机提供电源,电量检测模块用于采集舵机内部一电池的电量。
其中,舵机控制系统还包括与主控模块相连的角度采集模块,角度采集模块用于获取舵机旋转的角度信息,主控模块进一步根据角度信息控制舵机的运动。
其中,舵机控制系统还包括一驱动模块,与主控模块连接,驱动模块用于接收主控模块传输的控制信号并根据控制信号输出一驱动脉冲信号以驱动设置在舵机内的一电机旋转。
其中,控制信号包括角度控制信号、速度控制信号以及使能信号。
其中,舵机控制系统还包括至少一滤波电路,至少一滤波电路连接在驱动模块与电机之间,并用于对驱动脉冲信号进行滤波处理。
其中,驱动模块还用以侦测电机的当前工作电流,且向主控模块反馈电机的当前工作电流,使主控模块根据电机的当前工作电流调整驱动脉冲信号的波形。
其中,舵机控制系统还包括温度采集模块,与主控模块连接,并用于采集电机的温度,若所采集到的电机的温度大于一预设阈值,则主控模块控制电机停止旋转,或降低电机旋转的速度。
通过上述方案,本发明的有益效果是:本发明的舵机控制系统中,主控模块包括两个使能端;通讯模块包括第一通讯接口、第二通讯接口以及控制开关单元,主控模块通过第一使能端口、第一通讯端及第一通讯接口接收来自与舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口、第二通讯端及第二通讯接口传递与舵机相连的一下一级舵机的识别号或识别号及动作指令信息;能够在舵机初始化时给舵机分配识别号,避免舵机识别号固定而导致组装不便。
【附图说明】
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明第一实施例的舵机控制系统的方框示意图;
图2是本发明实施例的通讯模块的电路示意图;
图3是本发明第二实施例的舵机控制系统的方框示意图;
图4是本发明实施例的电源模块的电路示意图;
图5是本发明实施例的滤波电路的电路示意图;
图6是本发明实施例的温度检测模块的电路示意图;
图7是本发明实施例的机器人的方框示意图。
【具体实施方式】
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一区域分实施方式,而不是全区域实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
参见图1和图2,图1是本发明第一实施例的舵机控制系统的方框示意图,图2是本发明实施例的通讯模块的电路示意图。舵机控制系统10应用于一舵机50,该舵机控制系统10包括主控模块11和通讯模块12。主控模块11包括两个使能端。通讯模块12包括第一通讯接口120、第二通讯接口121以及控制开关单元122。控制开关单元122包括第一通讯端COM1、第二通讯端COM2、第一使能端口EN_SW1、第二使能端口EN_SW2,第一通讯端COM1及第二通讯端COM2与第一通讯接口120及第二通讯接口121对应相连,第一使能端口EN_SW1及第二使能端口EN_SW2与主控模块11的两个使能端对应相连。主控模块11通过第一使能端口EN_SW1、第一通讯端COM1及第一通讯接口120接收来自与舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口EN_SW2、第二通讯端COM2及第二通讯接口121传递与舵机相连的一下一级舵机的识别号或识别号及动作指令信息。
第一通讯接口120和第二通讯接口121的第一端1分别经过保险丝FB1和FB2传输识别号或识别号及动作指令信息。第一通讯接口120和第二通讯接口121的第一端1还分别通过第一二极管D1和第二二极管D2接地。第一通讯接口120和第二通讯接口121的第二端2经过保险丝FB3接8.4V的电源,第一通讯接口120和第二通讯接口121的第三端3经过保险丝FB4接地。第一通讯接口120及第二通讯接口121均为电平检测端口。主控模块11检测到第一通讯端COM1为高电平,即第一通讯接口120为高电平时,输出第一使能信号至第一使能端口EN_SW1,控制开关单元122通过第一通讯接口120与上一级舵机通讯,传输对应的识别号或识别号及动作指令信息至主控模块11。主控模块11检测到第二通讯端COM2为高电平,即第二通讯接口121为高电平时,输出第二使能信号至第二使能端口EN_SW2,控制开关单元122通过第二通讯接口121与下一级舵机通讯,将对应的识别号或识别号及动作指令信息传输至下一级舵机。在本实施例中,所述识别码是代表某一舵机区别于其他舵机的唯一序列码。
在本发明实施例中,更具体地,第一通讯端COM1与第一通讯接口120的第一端连接,第二通讯端COM2与第二通讯接口121的第一端连接,第一使能端口EN_SW1和第二使能端口EN_SW2分别与主控模块11的两个使能端(未示出)相连。主控模块11通过第一使能端EN_SW1检测到第一通讯端COM1为高电平时,输出第一使能信号至第一使能端口EN_SW1,控制开关单元122通过第一通讯接口120与上一级舵机通讯,传输对应的识别号或识别号及驱动指令信息至主控模块11。主控模块11通过第二使能端EN_SW2检测到第二通讯端COM2为高电平时,输出第二使能信号至第二使能端口EN_SW2,控制开关单元122通过第二通讯接口121与下一级舵机通讯,传输对应的识别号或识别号及动作指令信息传输至下一级舵机。即通讯模块12采用半双工异步串行通信。
通讯模块12更具体的工作原理如下:
本级舵机初始化时,当主控模块11检测到第一通讯端COM1为高电平,此时第二通讯端COM2为低电平,输出第一使能信号至第一使能端口EN_SW1,控制开关单元122通过第一通讯接口120接收上一级舵机向本级舵机分配的识别号,同时接收动作指令信息,并通过信号线WIRE1传输至主控模块11。当主控模块11检测到第二通讯端COM2为高电平,此时第一通讯端COM1为低电平,输出第二使能信号至第二使能端口EN_SW2,主控模块11通过信号线WIRE2传输识别号至控制开关单元122,控制开关单元122通过第二通讯接口121传递向下一级舵机分配的相应的识别号,同时输出动作指令信息。由于在拆卸重装后,舵机的顺序很容易发生变化,如原来安装的腿部的舵机顺序改变,本实施例通过控制开关单元122的第一通讯端COM1或第二通讯端COM2分别对应与所述第一通讯接口120或第二通讯接口121通讯以传输识别号或识别号及动作指令信息。即在本实施例中,在本级舵机初始化时,通过第一通讯接口120及第一通讯端COM1接收上一级舵机分配给本级舵机的识别号,并通过第二通讯端COM2及第二通讯接口121传递向下一级舵机分配的识别号,进而实现给每个舵机分配相应的识别号。如此,主控模块11可自动识别第一通讯接口120为输入端口及第二通讯接口121为输出端口,从而可以完成所有舵机初始化过程中的识别号的依次分配,避免舵机的识别号固定而导致组装不便。
完成本级舵机的初始化后,在本级舵机的正常工作时,本级舵机通过第一通讯接口120和控制开关单元122的第一通讯端COM1与上一级舵机进行通讯,并传输相应识别号和动作指令信息;通过第二通讯接口121和控制开关单元122的第二通讯端COM2与下一级舵机进行通讯,并传输相应识别号和动作指令信息,以使相应的舵机执行对应的动作指令。本级舵机的工作与上一级舵机或下一级舵机相互影响。当然在本发明其他实施例中,正常工作时,本级舵机与上一级舵机或下一级舵机之间也可以只传输动作指令信息,该动作指令信息中携带与该本级舵机相连的上一级舵机或下一级舵机的识别号。
请参见图3,舵机控制系统10还包括与主控模块11相连的电源模块13和电量检测模块14。电源模块13用于为本级舵机提供电源。电量检测模块14用于采集舵机内部一电池的电量。如图4所示,电源模块13包括第一低压差线性稳压器131、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5、第六电容C6以及第二低压差线性稳压器132。第一电容C1和第二电容C2并联在第一电压端P_12.6V和地之间,其中,第一电压端P_12.6V提供基准电源电压12.6V。基准电源12.6V通过第一低压差线性稳压器131转换成5V的第一电源电压,第三电容C3和第四电容C4并联在第二电压端P_5V和地之间,5V的第一电源电压通过第二低压差线性稳压器132转换成3.3V的第二电源电压,第五电容C5和第六电容C6并联在第三电压端P_3.3V和地之间,其中,第二电压端P_5V输出5V的第二电源电压,第三电压端P_3.3V输出3.3V的第二电源电压。电源模块13通过第一低压差线性稳压器131和第二低压差线性稳压器132 输出5V的第一电源电压和3.3V的第二电源电压,从而为本级舵机提供稳定可靠的电源电压。
在本发明实施例中,继续参见图3,舵机控制系统10还包括与主控模块11相连的角度采集模块15。角度采集模块15用于获取舵机旋转的角度信息,主控模块11进一步根据角度信息控制舵机的运动。角度采集模块15可以应用电位器或磁编码芯片来获取舵机旋转的角度信息。具体是获取舵机中的电机旋转角度,以确定电机是正转还是反转。
在本发明实施例中,舵机控制系统10还包括驱动模块16和至少一滤波电路17,驱动模块16与主控模块11连接,滤波电路17连接在驱动模块16与电机之间。驱动模块16用于接收主控模块11传输的控制信号并根据控制信号输出一驱动脉冲信号以驱动设置在舵机内的一电机旋转。其中,控制信号包括角度控制信号、速度控制信号以及使能信号。具体地,驱动模块16根据角度控制信号、速度控制信号以及使能信号输出两路驱动脉冲信号,分别传输至电机的两端。滤波电路17用于对驱动脉冲信号进行滤波处理。驱动模块16还用以侦测电机的当前工作电流,且向主控模块11反馈电机的当前工作电流,使主控模块11根据电流调整驱动脉冲信号的波形。
滤波电路17参见图5,驱动模块16输出的两路驱动脉冲信号OUT1和OUT2,其中,驱动脉冲信号OUT1通过保险丝FB5连接在电机的M-端,驱动脉冲信号OUT2通过保险丝FB6连接在电机的M+端。第七电容C7并联在电机的两端,驱动脉冲信号OUT1还通过第八电容C8接地,驱动脉冲信号OUT2还通过第九电容C9接地。
进一步参见图3,舵机控制系统10还包括温度采集模块18,与主控模块11连接,用于采集电机的温度。若采集到的电机的温度大于一预设阈值,则主控模块11控制电机停止旋转,或降低电机旋转的速度。其中,预设阈值可以根据需要设置,在此不作限制。参见图6,温度采集模块18包括第一电阻R1、第二电阻R2、第三电阻R3、第七电容C7以及第八电容C8。第三电阻R3一端接地,另一端经过第一电阻R1与输出端AIN连接,第三电阻R3的另一端还经过第二电阻R2接第三电压端P_3.3V。输出端AIN与主控模块11连接,第七电容C7并联在输出端AIN和地之间,第八电容C8并联在第三电阻R3的两端。在本实施例中,第三电阻R3为负温度系数热敏电阻,其阻值随温度变化,与第二电阻R2进行分压,然后经过第一电阻R1输出至主控模块11。
本发明还提供一种机器人。如图7所示,机器人20包括中央处理器21、与中央处理器21连接的多个第一级舵机22以及与第一级舵机22顺次连接的其他级舵机23,每个舵机22、23分别包括一舵机控制系统。而舵机控制系统包括前述的舵机控制系统10,亦即包括了前文所述的舵机控制系统10所有的元件,以及对应的连接关系,在此不再赘述。
在本发明实施例中,任一级舵机最多与一个上一级舵机和/或一个下一级舵机连接。在第一级舵机22的舵机控制系统中,主控模块11通过通讯模块12中的第一通讯接口120与中央处理器21通讯,在该第一级舵机22初始化时接收中央处理器21分配的识别号,如果有下一级舵机,则还通过通讯模块120中的第二通讯接口121传递向下一级舵机分配的识别号。具体地,通过通讯模块120中的第二通讯接口121传递中央处理器21向下一级舵机分配的识别号,或者是传递该第一级舵机22向下一级舵机分配的识别号。在末级舵机的舵机控制系统中,主控模块11只通过通讯模块12中的第一通讯接口120与上一级舵机通讯,初始化时接收上一级舵机分配的识别号。在位于第一级舵机与末级舵机之间的中间级舵机中,主控模块11通过通讯模块12中的第一通讯接口120与上一级舵机通讯以在初始化时接收上一级舵机分配的识别号;主控模块11还通过通讯模块12中的第二通讯接口121与下一级舵机通讯以在初始化时传递向下一级舵机分配的识别号。如此,可在机器人20初始化,即各舵机初始化时分配每个舵机的识别号,能够避免舵机因识别号固定而导致组装不便。
在以上各实施例,通讯模块12中的第一通讯接口120和第二通讯接口121可以互换,即主控模块11也可以通过通讯模块12中的第一通讯接口120与下一级舵机通讯,通过第二通讯接口121与上一级舵机通讯,在此不作限制。
综上所述,本发明的舵机控制系统中,通讯模块12用于与不同于本级舵机的其它级舵机进行通讯以接收或分配识别号并传输动作指令信息;在舵机初始化时,主控模块11通过通讯模块识别两通讯接口的其中一个为输入接口以接收并设定本级舵机的识别号,及另一个为输出接口以传递相应识别号至下一级舵机,并根据识别号和动作指令信息输出控制信号以控制本级舵机的运动;从而,能够在舵机初始化时给舵机分配相应的识别号,避免舵机识别号固定而导致组装不便。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种舵机控制系统,应用于一舵机,其特征在于,所述舵机控制系统包括:
    主控模块,包括两个使能端;及
    通讯模块,包括第一通讯接口、第二通讯接口以及控制开关单元,控制开关单元包括第一通讯端、第二通讯端、第一使能端口、第二使能端口,所述第一通讯端及第二通讯端与所述第一通讯接口及第二通讯接口对应相连,所述第一使能端口及第二使能端口与主控模块的两个使能端对应相连; 其中,
    所述主控模块通过所述第一使能端口、第一通讯端及第一通讯接口接收来自与所述舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口、第二通讯端及第二通讯接口传递与所述舵机相连的一下一级舵机的识别号或识别号及动作指令信息。
  2. 根据权利要求1所述的舵机控制系统,其特征在于,所述第一通讯接口及所述第二通讯接口均为电平检测端口,所述主控模块检测到所述第一通讯接口为高电平时,输出第一使能信号至所述第一使能端口,所述控制开关单元通过所述第一通讯接口与所述上一级舵机通讯,传输对应的识别号或识别号及动作指令信息至所述主控模块;
    所述主控模块检测到所述第二通讯接口为高电平时,输出第二使能信号至所述第二使能端口,所述控制开关单元通过所述第二通讯接口与所述下一级舵机通讯,将对应的识别号或识别号及动作指令信息传输至所述下一级舵机。
  3. 根据权利要求1所述的舵机控制系统,其特征在于,所述舵机控制系统还包括与主控模块相连的电源模块和电量检测模块,所述电源模块用于为所述舵机提供电源,所述电量检测模块用于采集舵机内部一电池的电量。
  4. 根据权利要求1所述的舵机控制系统,其特征在于,所述舵机控制系统还包括与主控模块相连的角度采集模块,所述角度采集模块用于获取所述舵机旋转的角度信息,所述主控模块进一步根据所述角度信息控制所述舵机的运动。
  5. 根据权利要求4所述的舵机控制系统,其特征在于,所述舵机控制系统还包括一驱动模块,与所述主控模块连接,所述驱动模块用于接收所述主控模块传输的控制信号并根据所述控制信号输出一驱动脉冲信号以驱动设置在所述舵机内的一电机旋转。
  6. 根据权利要求5所述的舵机控制系统,其特征在于,所述控制信号包括角度控制信号、速度控制信号以及使能信号。
  7. 根据权利要求5所述的舵机控制系统,其特征在于,所述舵机控制系统还包括至少一滤波电路,所述至少一滤波电路连接在所述驱动模块与所述电机之间,并用于对所述驱动脉冲信号进行滤波处理。
  8. 根据权利要求5所述的舵机控制系统,其特征在于,所述驱动模块还用以侦测所述电机的当前工作电流,且向所述主控模块反馈所述电机的当前工作电流,使所述主控模块根据所述电机的当前工作电流调整所述驱动脉冲信号的波形。
  9. 根据权利要求1所述的舵机控制系统,其特征在于,所述舵机控制系统还包括温度采集模块,与所述主控模块连接,并用于采集所述电机的温度,若所采集到的电机的温度大于一预设阈值,则所述主控模块控制所述电机停止旋转,或降低所述电机旋转的速度。
  10. 一种机器人,其特征在于,所述机器人包括中央处理器、与所述中央处理器连接的多个第一级舵机以及与所述第一级舵机顺次连接的其他级舵机,每个所述舵机包括一舵机控制系统,所述舵机控制系统包括:
    主控模块,包括两个使能端;及
    通讯模块,包括第一通讯接口、第二通讯接口以及控制开关单元,控制开关单元包括第一通讯端、第二通讯端、第一使能端口、第二使能端口,所述第一通讯端及第二通讯端与所述第一通讯接口及第二通讯接口对应相连,所述第一使能端口及第二使能端口与主控模块的两个使能端对应相连;其中,
    所述主控模块通过所述第一使能端口、第一通讯端及第一通讯接口接收来自与所述舵机相连的一上一级舵机的识别号或识别号及动作指令信息,及通过第二使能端口、第二通讯端及第二通讯接口传递与所述舵机相连的一下一级舵机的识别号或识别号及动作指令信息。
  11. 根据权利要求10所述的机器人,其特征在于,所述第一通讯接口及所述第二通讯接口均为电平检测端口,所述主控模块检测到所述第一通讯接口为高电平时,输出第一使能信号至所述第一使能端口,所述控制开关单元通过所述第一通讯接口与所述上一级舵机通讯,传输对应的识别号或识别号及动作指令信息至所述主控模块;
    所述主控模块检测到所述第二通讯接口为高电平时,输出第二使能信号至所述第二使能端口,所述控制开关单元通过所述第二通讯接口与所述下一级舵机通讯,将对应的识别号或识别号及动作指令信息传输至所述下一级舵机。
  12. 根据权利要求10所述的机器人,其特征在于,所述舵机控制系统还包括与主控模块相连的电源模块和电量检测模块,所述电源模块用于为所述舵机提供电源,所述电量检测模块用于采集舵机内部一电池的电量。
  13. 根据权利要求10所述的机器人,其特征在于,所述舵机控制系统还包括与主控模块相连的角度采集模块,所述角度采集模块用于获取所述舵机旋转的角度信息,所述主控模块进一步根据所述角度信息控制所述舵机的运动。
  14. 根据权利要求13所述的机器人,其特征在于,所述舵机控制系统还包括一驱动模块,与所述主控模块连接,所述驱动模块用于接收所述主控模块传输的控制信号并根据所述控制信号输出一驱动脉冲信号以驱动设置在所述舵机内的一电机旋转。
  15. 根据权利要求14所述的机器人,其特征在于,所述控制信号包括角度控制信号、速度控制信号以及使能信号。
  16. 根据权利要求14所述的机器人,其特征在于,所述舵机控制系统还包括至少一滤波电路,所述至少一滤波电路连接在所述驱动模块与所述电机之间,并用于对所述驱动脉冲信号进行滤波处理。
  17. 根据权利要求14所述的机器人,其特征在于,所述驱动模块还用以侦测所述电机的当前工作电流,且向所述主控模块反馈所述电机的当前工作电流,使所述主控模块根据所述电机的当前工作电流调整所述驱动脉冲信号的波形。
  18. 根据权利要求10所述的机器人,其特征在于,所述舵机控制系统还包括温度采集模块,与所述主控模块连接,并用于采集所述电机的温度,若所采集到的电机的温度大于一预设阈值,则所述主控模块控制所述电机停止旋转,或降低所述电机旋转的速度。
PCT/CN2016/103828 2016-10-28 2016-10-28 舵机控制系统以及机器人 WO2018076295A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/103828 WO2018076295A1 (zh) 2016-10-28 2016-10-28 舵机控制系统以及机器人
US15/321,727 US10279472B2 (en) 2016-10-28 2016-10-28 Servo control system and robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103828 WO2018076295A1 (zh) 2016-10-28 2016-10-28 舵机控制系统以及机器人

Publications (1)

Publication Number Publication Date
WO2018076295A1 true WO2018076295A1 (zh) 2018-05-03

Family

ID=62023166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103828 WO2018076295A1 (zh) 2016-10-28 2016-10-28 舵机控制系统以及机器人

Country Status (2)

Country Link
US (1) US10279472B2 (zh)
WO (1) WO2018076295A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354514B (zh) * 2021-12-24 2024-02-09 南昌大学 一种非接触式多模态材料感知与识别装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026940A (ja) * 2000-07-13 2002-01-25 Mitsubishi Heavy Ind Ltd 多地点の機器稼動用データ通信装置
US20060145647A1 (en) * 2005-01-05 2006-07-06 Kawasaki Jukogyo Kabushiki Kaisha Robot controller
CN201449530U (zh) * 2008-11-26 2010-05-05 湖南航天近空间飞行器研发中心 一种新型数字舵机控制器
CN202794931U (zh) * 2012-08-22 2013-03-13 中国航天科技集团公司烽火机械厂 一种舵机控制器
CN203094429U (zh) * 2013-01-08 2013-07-31 中国船舶重工集团公司第七一○研究所 一种舵机控制器
CN103273980A (zh) * 2013-06-17 2013-09-04 吉林大学 可自组装为多足轮腿式机器人的模块机器人
CN103753535A (zh) * 2014-01-08 2014-04-30 深圳市优必选科技有限公司 一种机器人单总线模块化数字舵机控制装置及控制方法
CN105974890A (zh) * 2016-06-30 2016-09-28 深圳市优必选科技有限公司 一种伺服器
CN105988404A (zh) * 2016-06-30 2016-10-05 深圳市优必选科技有限公司 一种伺服器控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854053B2 (en) * 2000-10-25 2005-02-08 Signet Scientific Company Method for identifying and communicating with a plurality of slaves in a master-slave system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026940A (ja) * 2000-07-13 2002-01-25 Mitsubishi Heavy Ind Ltd 多地点の機器稼動用データ通信装置
US20060145647A1 (en) * 2005-01-05 2006-07-06 Kawasaki Jukogyo Kabushiki Kaisha Robot controller
CN201449530U (zh) * 2008-11-26 2010-05-05 湖南航天近空间飞行器研发中心 一种新型数字舵机控制器
CN202794931U (zh) * 2012-08-22 2013-03-13 中国航天科技集团公司烽火机械厂 一种舵机控制器
CN203094429U (zh) * 2013-01-08 2013-07-31 中国船舶重工集团公司第七一○研究所 一种舵机控制器
CN103273980A (zh) * 2013-06-17 2013-09-04 吉林大学 可自组装为多足轮腿式机器人的模块机器人
CN103753535A (zh) * 2014-01-08 2014-04-30 深圳市优必选科技有限公司 一种机器人单总线模块化数字舵机控制装置及控制方法
CN105974890A (zh) * 2016-06-30 2016-09-28 深圳市优必选科技有限公司 一种伺服器
CN105988404A (zh) * 2016-06-30 2016-10-05 深圳市优必选科技有限公司 一种伺服器控制系统

Also Published As

Publication number Publication date
US20180257222A1 (en) 2018-09-13
US10279472B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2018076296A1 (zh) 舵机控制系统以及机器人
CN103248293A (zh) 基于tms320f2812的直流无刷电机调速控制器
CN102087334B (zh) 一种高可靠性数字量采集系统
CN101231526B (zh) 感应电机运行状态的分布式监控系统
CN105103061A (zh) 控制和数据传输设备、处理装置和具有分散冗余的用于冗余的过程控制的方法
WO2018076295A1 (zh) 舵机控制系统以及机器人
CN109951113A (zh) 电机驱动器、自动化设备及自动化控制系统
CN206455666U (zh) 舵机控制系统以及机器人
CN206044918U (zh) 一种手术床系统及其控制装置
CN109029798A (zh) 柔性电容型应力传感器信号采集及控制系统和方法
CN206311929U (zh) 一种机械手抓取物体控制装置
CN218446445U (zh) 一种新型的多协议编码器及io数据的数据采集器
CN206296911U (zh) 一种总线型智能伺服驱动系统及机器人
CN100458630C (zh) 智能空压机控制系统
CN108802446A (zh) 一种工业机器人控制器母线电压检测电路
WO2018076297A1 (zh) 舵机控制系统以及机器人
CN209151033U (zh) 一种应用于防爆高低压变频器的多功能拖动功率平衡装置
CN208323395U (zh) 驱动器以及带有该驱动器的机器人灵巧手
CN208962012U (zh) 分板机机械手自动上下料控制装置
WO2018076292A1 (zh) 舵机控制系统以及机器人
CN206020973U (zh) 一种用于出标机的驱动控制器
CN220340342U (zh) 用于控制台电路板的测试系统
CN206021053U (zh) 刀库控制电路
CN206331281U (zh) 一种运动系统控制电路
CN2605817Y (zh) 全自动血细胞成分采集机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15321727

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920213

Country of ref document: EP

Kind code of ref document: A1