WO2018076288A1 - 一种通过用户设备接入网络的方法、装置及系统 - Google Patents

一种通过用户设备接入网络的方法、装置及系统 Download PDF

Info

Publication number
WO2018076288A1
WO2018076288A1 PCT/CN2016/103809 CN2016103809W WO2018076288A1 WO 2018076288 A1 WO2018076288 A1 WO 2018076288A1 CN 2016103809 W CN2016103809 W CN 2016103809W WO 2018076288 A1 WO2018076288 A1 WO 2018076288A1
Authority
WO
WIPO (PCT)
Prior art keywords
mme
base station
message
identifier
uplink
Prior art date
Application number
PCT/CN2016/103809
Other languages
English (en)
French (fr)
Inventor
何岳
金辉
欧阳国威
窦凤辉
杨皓睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680083334.7A priority Critical patent/CN108713347B/zh
Priority to PCT/CN2016/103809 priority patent/WO2018076288A1/zh
Publication of WO2018076288A1 publication Critical patent/WO2018076288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, device, and system for accessing a network through a user equipment.
  • the wearable device that can install the subscriber identity module (English) is more and more widely used.
  • the WD with the SIM card installed can communicate directly with the base station.
  • the WD battery has a small volume, and the battery capacity of the WD is small due to the limitation of the battery volume.
  • the WD When the WD communicates directly with the base station, since the WD is generally far away from the base station, the transmission power required when the WD transmits data to the base station is large, thereby causing a large power consumption of the WD, and the standby time of the WD is higher. short.
  • the present application provides a method, device and system for accessing a network through a user equipment, which solves the problem that the power consumption of the WD is large and the standby time of the WD is short in the prior art.
  • a first aspect provides a method for accessing a network by using a user equipment, where the method includes: a first base station (ie, a base station serving a UE) receives a first MME (ie, an MME of a UE), and is sent by the first MME to the first MME.
  • the first base station requests the WD to access the first message of the network through the UE, where the first message carries the uplink S1 information of the WD; and the first base station allocates, according to the first message, the WD for identifying the uplink data to be transmitted as the WD.
  • the first base station establishes a first mapping relationship according to the uplink S1 information of the WD carried in the first message and the PDCP identifier (ie, the DRB between the UE and the first base station and the first base station and the WD The mapping relationship between S1 bearers between SGWs).
  • the WD can access the network through the UE. That is, the WD can send the uplink data of the WD to the UE, and the UE forwards the uplink data to the SGW of the WD according to the first mapping relationship, so that the SWG of the WD forwards the uplink data again.
  • the first MME (ie, the MME of the UE) may send a first message requesting the WD to access the network through the UE by using the first base station (ie, the base station serving the UE), so that the first base station is configured according to the first message.
  • the first base station ie, the base station serving the UE
  • the WD can access the network through the UE (ie, the UE can provide relay service for the WD), and the WD can forward the uplink data of the WD to the first base station by using the UE, and the uplink data is sent by the first base station to the SGW of the WD.
  • the SWG of the WD forwards the uplink data again, that is, the uplink data of the WD can be forwarded to the SGW of the WD through the UE and the first base station.
  • the WD since the distance between the WD and the UE is normally close, the WD needs less transmission power when transmitting uplink data through the UE, so the WD The power consumption is small, which can extend the standby time of the WD.
  • the method for the first base station to establish a first mapping relationship according to the uplink S1 information and the PDCP identifier of the WD includes: Obtaining, by the first base station, the first S1 interface tunnel endpoint identifier and the first QoS value corresponding to the first EPS bearer identifier (one of the multiple EPS bearer identifiers) according to the uplink S1 information of the WD; and the first base station according to the identifier of the DRB Corresponding relationship with the QoS value, determining an identifier of the first DRB corresponding to the first QoS value; and then the first base station, according to the identifier of the first DRB, the PDCP identifier, the IP address of the SGW in the uplink S1 information of the WD, and The endpoint identifier of the first S1 interface tunnel establishes a first mapping relationship.
  • the first base station obtaining, by the first base station, the first S1 interface tunnel endpoint identifier and the first QoS value corresponding
  • the foregoing first base station receives After the first message sent by the MME, the method for accessing the network by using the user equipment provided by the application further includes: the first base station saves the identifier of the MME and the WD of the WD for transmitting the uplink signaling of the WD in the first message.
  • MME S1 interface user equipment identifier.
  • the first base station may save the identifier of the MME and the MME of the WD for transmitting the uplink signaling of the WD carried in the first message.
  • the S1 interface user equipment identifier after the UE sends the uplink signaling sent by the WD to the first base station, the first base station may send the uplink signaling to the MME according to the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD.
  • the MME of the WD may send the uplink signaling of the WD to the MME of the WD through the UE and the first base station, thereby completing the transmission of the uplink signaling after the WD accesses the network through the UE.
  • the first base station may first find the identifier of the MME and the MME S1 of the WD saved in the first base station according to the PDCP identifier carried in the uplink signaling.
  • the interface user equipment is identified, and then the first base station sends the uplink signaling to the MME of the WD according to the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD.
  • the first base station receives the second message sent by the first MME; and the second message is used when the MME of the WD is changed from the current second MME to the third MME.
  • the second message updates the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD, or updates the first mapping relationship.
  • the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD may be unavailable, and the first base station may update the identifier of the MME of the WD.
  • WD's MME The S1 interface user equipment identifier enables the first base station to still successfully forward the uplink signaling for the WD.
  • the SGW of the WD is changed, the first mapping relationship established by the first base station may be unavailable. The first base station may still update the first mapping relationship, so that the first base station can still successfully forward the uplink data for the WD.
  • the method for accessing the network by using the user equipment provided by the present application further includes: receiving, by the first base station, a request sent by the UE The first base station deletes the third message of the first mapping relationship; and the first base station deletes the first mapping relationship according to the third message.
  • the WD after the first mapping relationship is established by the first base station, when the quality of the link between the WD and the UE (generally referred to as a PC5 link) is deteriorated, the WD cannot continue to access the network through the UE, so The storage resource of a base station improves the utilization of network resources, and the first base station may delete the first mapping relationship established above.
  • the method for accessing the network by using the user equipment provided by the application further includes: the second base station The first mapping relationship saved in the second base station is deleted.
  • the first base station when the base station serving the UE is changed from the first base station to the second base station, the first base station sends the context of the UE in the first base station (including the first mapping relationship described above) to the second base station.
  • the changed second base station and the SGW of the WD may not satisfy the network connection relationship, so the UE cannot continue to provide the relay service for the WD, so that the storage resources of the second base station are saved.
  • the second base station may delete the first mapping relationship.
  • the method for accessing the network by using the user equipment provided by the present application further includes: sending, by the first base station, the UE to indicate the UE And establishing a fourth message of the second mapping relationship, where the second mapping relationship is a mapping relationship between the PC5 bearer between the WD and the UE and the DRB between the UE and the first base station.
  • the fourth base station sends a fourth message to the UE to instruct the UE to establish the second
  • the mapping relationship ie, the mapping relationship between the PC5 bearer between the WD and the UE and the DRB between the UE and the first base station
  • the mapping relationship enables the WD to transmit the uplink data of the WD to the UE, and the UE may use the second mapping relationship according to the second mapping relationship.
  • the uplink data is forwarded to the first base station.
  • the first base station may learn, according to the third message, that the mapping relationship between the UE and the WD has been deleted by the UE. Therefore, the first base station may delete the first mapping relationship established according to the third message. Further, after the first base station deletes the first mapping relationship according to the third message, the method for accessing the network by using the user equipment provided by the first base station further includes: the first base station sending, to the first MME, the first MME, the UE and the UE The mapping relationship between the WD has been deleted by the WD information update message.
  • the first base station notifies the first MME that the mapping relationship between the UE and the WD has been deleted, so that the first MME can know that the mapping relationship between the UE and the WD has been deleted, so that the first MME can Allow other WDs to access the network through the UE.
  • the method for accessing the network by using the user equipment is further included:
  • the UE sends an RRC reconfiguration message for notifying the UE that the UE cannot continue to provide relay services for the WD.
  • the second base station may notify the UE by using the RRC reconfiguration message, and the UE may not continue to provide the relay service for the WD, so that the UE may delete the mapping relationship between the UE and the WD after receiving the RRC reconfiguration message.
  • the storage resources of the UE are saved, the utilization of network resources is improved, and the UE can also provide relay services for other WDs.
  • a second aspect provides a method for accessing a network by using a user equipment, where the method includes: receiving, by the UE, a fifth message sent by the WD for the WD to request the UE to switch the direct path to the indirect path, where the direct path is WD and a path between the base stations serving the WD, the indirect path is a path between the WD, the UE, and the base station serving the UE; and the UE sends a request for the MME of the UE to the UE to the MME of the UE according to the fifth message.
  • the sixth message that the WD accesses the network through the UE.
  • the UE may send the sixth message to the MME of the UE to request the WD to access the network through the UE, thereby implementing the WD. Access the network through the UE.
  • the UE since the distance between the WD and the UE is normally close, the WD needs less transmission power when transmitting uplink data through the UE, so the WD The power consumption is small, which can extend the standby time of the WD.
  • the method for accessing the network by using the user equipment provided by the application further includes: the UE receiving the first base station, that is, the UE a fourth message sent by the serving base station to instruct the UE to establish a second mapping relationship, where the second mapping relationship is a mapping relationship between the PC5 bearer between the WD and the UE and the DRB between the UE and the first base station; and the UE According to the fourth message, a second mapping relationship is established.
  • the fourth message carries the identifier of the WD, the identifier carried by the PC5, the PDCP identifier allocated by the first base station for the WD, and the identifier of the first DRB.
  • the method for establishing the second mapping relationship by the UE according to the fourth message includes: the UE establishes a second mapping relationship according to the identifier of the WD, the identifier of the PC5, the PDCP identifier, and the identifier of the first DRB.
  • the method for accessing the network by using the user equipment provided by the application further includes:
  • the UE sends a seventh message to the WD indicating that the indirect path is switched to the direct path.
  • the UE may request the MME of the UE to access the network through the UE, that is, the transmission path of the WD is switched from the direct path to the indirect path.
  • the UE may indicate that the WD will indirectly pass the seventh message to the WD. Switch to direct path, thus ensuring the positive data of the WD and the uplink signaling Often transmitted.
  • the method for accessing a network by using a user equipment provided by the application further includes: deleting, between the UE and the WD, when the UE detects that the PC5 link is disconnected. Mapping relations.
  • the UE when the UE detects that the PC5 link is disconnected (for example, the UE does not receive the heartbeat packet sent by the WD within a certain period of time), the UE may delete the mapping relationship between the WD and the UE, so that the UE may be saved. Storage resources improve the utilization of network resources.
  • the method for accessing the network by using the user equipment provided by the application further includes: sending, by the UE, the first base station, And requesting the first base station to delete the third message of the first mapping relationship.
  • a third aspect provides a method for accessing a network by using a user equipment, where the method includes: receiving, by an MME (ie, an MME of a UE), an eighth MME that carries the uplink S1 information of the WD sent by the second MME (ie, the MME of the WD) And the first MME determines, according to the uplink S1 information, that the first base station (ie, the base station serving the UE) and the SGW of the second MME and the WD satisfy the network connection relationship; then the first MME sends the first MME to the first base station. And used by the first MME to request, by the first base station, a first message that the WD accesses the network through the UE.
  • an MME ie, an MME of a UE
  • an eighth MME that carries the uplink S1 information of the WD sent by the second MME (ie, the MME of the WD)
  • the first MME determines, according to the uplink S1 information
  • the first MME (ie, the MME of the UE) may determine the first base station (ie, the base station serving the UE) and the second MME according to the uplink S1 information of the WD sent by the second MME (ie, the MME of the WD).
  • the network connection relationship is satisfied between the serving gateway SGW and the WD.
  • the first MME can determine, according to the uplink S1 information of the WD, that the first base station can forward the uplink signaling of the WD to the second MME, and can forward the uplink data of the WD.
  • the station sends the first message to the first base station to request the WD to access the network through the UE, thereby implementing the WD accessing the network through the UE.
  • the WD needs less transmission power when transmitting uplink data through the UE, so the WD The power consumption is small, which can extend the standby time of the WD.
  • the method for accessing the network by using the user equipment provided by the application further includes: receiving, by the first MME, the UE The sixth message for the UE to request the MME to access the network through the UE to the first MME; after the first MME receives the sixth message sent by the UE, the first MME sends the uplink S1 information for requesting the WD to the second MME.
  • the ninth message before the first MME receives the eighth message sent by the second MME, the method for accessing the network by using the user equipment provided by the application further includes: receiving, by the first MME, the UE The sixth message for the UE to request the MME to access the network through the UE to the first MME; after the first MME receives the sixth message sent by the UE, the first MME sends the uplink S1 information for requesting the WD to the second MME.
  • the ninth message before the first MME receives the eighth message sent by the second MME, the method for accessing the network by using the user equipment provided by the application further includes
  • the first MME may send the MME's uplink S1 information to the second MME by sending a ninth message to the second MME, so that the first MME may perform the uplink according to the uplink.
  • the S1 information determines whether the network connection relationship is satisfied between the first base station and the second MME and the serving gateway SGW of the WD, thereby determining whether the UE can provide the relay service for the WD.
  • the user equipment accesses the network provided by the application.
  • the method further includes: receiving, by the first MME, a tenth message sent by the third MME or the second MME to notify the first MME that the uplink S1 information of the WD has been updated.
  • the uplink S1 information of the WD may be changed. Therefore, when the MME or the SGW of the WD is changed, the second MME or the third MME (that is, after the change)
  • the MME may notify the first MME by sending a tenth message to the first MME (ie, the MME of the UE) that the uplink S1 information of the WD has been updated, so that the first MME may determine the first base station according to the updated uplink S1 information.
  • the third MME or the SGW satisfies the network connection relationship, and the first MME may determine whether the UE can continue to provide the relay service for the WD.
  • the third MME may send the tenth message to the first MME.
  • the SGW of the WD that is, the MME of the WD is not changed
  • the tenth message may be sent by the second MME to the first MME.
  • the method for accessing the network by using the user equipment, where the base station serving the UE is switched from the first base station to the second base station further includes: Determining, by the MME, that the second base station does not satisfy the network connection relationship between the second MME or the SGW of the WD according to the context of the UE; and the first MME sends, to the second eNB, the first MME to indicate to the second base station that the WD cannot pass the UE.
  • An indication message for accessing the network further includes: Determining, by the MME, that the second base station does not satisfy the network connection relationship between the second MME or the SGW of the WD according to the context of the UE; and the first MME sends, to the second eNB, the first MME to indicate to the second base station that the WD cannot pass the UE.
  • An indication message for accessing the network further includes: Determining, by the MME, that the second base station does not satisfy the network connection relationship between the second MME or the SGW of the WD
  • the first MME may indicate to the second base station that the WD cannot continue to pass by sending an indication message to the second base station.
  • the UE accesses the network, so that the second base station can delete the first mapping relationship saved in the second base station in time, so that resources of the second base station can be saved.
  • a fourth aspect provides a method for accessing a network by using a user equipment, where the method includes: acquiring, by the second MME (ie, the MME of the WD), the uplink S1 information of the WD; and the second MME to the first MME (ie, the MME of the UE) Sending an eighth message carrying the uplink S1 information.
  • the foregoing second MME acquires uplink S1 information of the WD, where the second MME obtains according to the context of the WD. WD's upstream S1 information.
  • the method for accessing the network by using the user equipment provided by the application further includes: receiving, by the second MME, the WD The eleventh message for the WD to request the second MME to switch the direct path of the WD to the indirect path of the WD, the eleventh message
  • the identifier of the UE is carried in; and the second MME determines the first MME according to the identifier of the UE.
  • the second MME may determine the MME of the UE, that is, the first MME, according to the identifier of the UE carried in the eleventh message.
  • the method for accessing the network by using the user equipment provided by the application further includes: receiving, by the second MME, the first MME A ninth message for requesting uplink S1 information of the WD. Further, the method for the second MME to send the eighth message to the first MME includes: after the second MME receives the ninth message sent by the first MME, the second MME sends an eighth message to the first MME.
  • the method for accessing the network by using the user equipment provided by the present application further includes: sending, by the third MME or the second MME, a tenth message for notifying the first MME that the uplink S1 information of the WD has been updated to the first MME.
  • a fifth aspect provides a method for accessing a network by using a user equipment, where the method includes: after the WD and the UE discover each other, the WD sends a fifth message for the WD to request the MME to switch the direct path to the indirect path, Or the WD sends an eleventh message to the second MME (ie, the MME of the WD) for the WD to request the second MME to switch the direct path of the WD to the indirect path of the WD.
  • the direct path is a path between the WD and a base station serving the WD
  • the indirect path is a path between the WD, the UE, and a base station serving the UE.
  • the foregoing WD sends to the UE After the WD is used to request the MME to switch the direct path to the indirect path, the method for accessing the network by the user equipment provided by the BT further includes: receiving, by the WD, the UE to indicate that the indirect path is switched to the direct path.
  • the seventh message is transmitted.
  • a base station is provided, where the base station is a first base station (that is, a base station serving the UE), the base station includes: a receiving module, an allocating module, and an establishing module, where the receiving module is configured to receive the first MME (ie, The first MME sent by the MME of the UE to the first eNB to request the WD to access the network through the UE, the first message carries the uplink S1 information of the WD, and the allocation module is configured to receive the first message according to the receiving module.
  • the base station is a first base station (that is, a base station serving the UE)
  • the base station includes: a receiving module, an allocating module, and an establishing module, where the receiving module is configured to receive the first MME (ie, The first MME sent by the MME of the UE to the first eNB to request the WD to access the network through the UE, the first message carries the uplink S1 information of the WD, and the allocation module is configured to receive the
  • the establishing module is configured to establish a first mapping relationship according to the uplink S1 information received by the receiving module and the PDCP identifier allocated by the allocation module for the WD (ie, Mapping relationship between the DRB between the UE and the first base station and the S1 bearer between the first base station and the SGW of the WD).
  • the base station provided by the present application includes, but is not limited to, the receiving module, the allocating module, and the establishing module in the foregoing sixth aspect, and the functions of the receiving module, the allocating module, and the establishing module in the foregoing sixth aspect include but not Limited to the functions described above.
  • the base station may comprise a unit/module for performing the method for accessing a network through a user equipment according to the first aspect or any one of its possible implementations, the units/modules being configured to perform the above first aspect or any
  • a possible implementation manner is a logical division of a base station by a method in which a user equipment accesses a network.
  • a UE in a seventh aspect, includes: a receiving module and a sending module, where the receiving module is configured to receive, by the WD, a direct path for the WD to request the UE to the UE The path is switched to the fifth message of the indirect path, the direct path is the path between the WD and the base station serving the WD, the indirect path is the path between the WD, the UE, and the base station serving the UE; the sending module is configured to receive according to the path The fifth message received by the module sends a sixth message for the UE to the MME of the UE to request the WD to access the network through the UE.
  • the UE provided by the present application includes, but is not limited to, the receiving module and the sending module in the foregoing seventh aspect, and the functions of the receiving module and the sending module in the foregoing seventh aspect include, but are not limited to, the functions described above.
  • the UE may comprise a unit/module for performing the method for accessing a network by a user equipment according to the second aspect or any one of its possible implementations, the units/modules being configured to perform the above second aspect or any thereof In a possible implementation manner, the method for accessing a network by a user equipment, and logically dividing the UE.
  • an MME is provided, where the MME is a first MME, and the MME includes: a receiving module, a determining module, and a sending module, where the receiving module is configured to receive an eighth message sent by the second MME, where the eighth message is carried
  • the uplink S1 information of the WD the first MME is the MME of the UE, and the second MME is the MME of the WD.
  • the determining module is configured to determine, according to the uplink S1 information received by the receiving module, the first base station and the second MME and the serving gateway SGW of the WD.
  • the first base station provides a service for the UE
  • the sending module is configured to send, to the first base station, a first message that is sent by the first MME to the first base station to request the WD to access the network through the UE.
  • the MME (ie, the first MME) provided by the present application includes, but is not limited to, the receiving module, the determining module, and the sending module in the foregoing eighth aspect, and the receiving module, the determining module, and the sending module in the foregoing eighth aspect.
  • Functions that are included include, but are not limited to, the functions described above.
  • the MME may comprise a unit/module for performing the method for accessing a network through a user equipment as described in the above third aspect or any one of its possible implementations, the units/modules being for performing the above third aspect or any thereof A method for accessing a network by a user equipment according to a possible implementation manner, and for the MME The logical division made.
  • the ninth aspect provides an MME, where the MME is a second MME, the MME includes: an obtaining module and a sending module, where the acquiring module is configured to acquire uplink S1 information of the WD, and the second MME is an MME of the WD; The first MME sends an eighth message, where the eighth message carries the uplink S1 information, and the first MME is the MME of the UE.
  • the MME (ie, the second MME) provided by the present application includes, but is not limited to, the obtaining module and the sending module in the foregoing ninth aspect, and the functions of the acquiring module and the sending module in the foregoing ninth aspect include but not Limited to the functions described above.
  • the MME may comprise a unit/module for performing the method for accessing a network by a user equipment according to the above fourth aspect or any one of its possible implementation manners, the units/modules being for performing the above fourth aspect or any thereof In a possible implementation manner, the method for accessing a network by a user equipment, and logically dividing the MME.
  • a WD includes: a sending module, configured to send, to the UE, a fifth message for the WD to request the UE to switch the direct path to the indirect path, or to send to the second MME.
  • the MME of the WD transmits an eleventh message for the WD to request the second MME to switch the direct path of the WD to the indirect path of the WD.
  • the direct path is a path between the WD and a base station serving the WD
  • the indirect path is a path between the WD, the UE, and a base station serving the UE.
  • the uplink S1 information of the foregoing WD in the present application includes: an identifier of the MME of the WD, an MME S1 interface user equipment identifier of the WD, a plurality of evolved packet system EPS bearer identifiers of the WD, and Each EPS bearer identifies an Internet Protocol IP address, an S1 interface tunnel endpoint identifier, and a Quality of Service QoS value of the corresponding SGW.
  • the WD provided by the present application includes, but is not limited to, the sending module in the above tenth aspect, and the function of the sending module in the above tenth aspect includes but It is not limited to the functions described above.
  • the WD may comprise a unit/module for performing the method of accessing a network through a user equipment as described in the fifth aspect or any one of its possible implementations, the units/modules being for performing the above fifth aspect or any thereof A possible implementation of the method for accessing a network by a user equipment, and logically dividing the WD.
  • a base station in an eleventh aspect, includes a processor, a transceiver, and a memory; wherein the memory is configured to store a computer to execute instructions, and when the base station is running, the processor executes a computer-executed instruction of the memory storage to cause the base station to execute
  • the method for accessing a network by a user equipment according to the foregoing first aspect and any possible implementation manner thereof.
  • the processor executes a computer-executed instruction of the memory storage to cause the base station to execute
  • a twelfth aspect a computer readable storage medium having one or more programs stored therein, the one or more programs including computer execution instructions, when a processor of a base station executes the computer to execute an instruction,
  • the base station performs the method for accessing a network by using a user equipment according to the foregoing first aspect and any possible implementation manner thereof.
  • a UE includes: a processor, a transceiver, and a memory; wherein the memory is configured to store a computer to execute an instruction, and when the UE is running, the processor executes a computer-executed instruction of the memory to enable the UE
  • the method for accessing a network by using a user equipment according to the foregoing second aspect and any possible implementation manner thereof.
  • a specific method for accessing the network by using the user equipment refer to the related description in the foregoing second aspect and any possible implementation manner, and details are not described herein again.
  • a computer readable storage medium storing one or more programs, the one or more programs including computer execution instructions, when a processor of the UE executes the computer to execute an instruction, The UE performs the second above And a method of accessing a network by a user equipment as described in any one of the possible implementation manners.
  • an MME includes: a processor, a transceiver, and a memory; wherein the memory is configured to store a computer execution instruction, and when the MME is running, the processor executes a computer-executed instruction of the memory storage to enable the MME
  • the method for accessing a network by using a user equipment according to the foregoing third aspect and any possible implementation manner thereof.
  • the processor executes a computer-executed instruction of the memory storage to enable the MME
  • a computer readable storage medium storing one or more programs, the one or more programs including computer execution instructions, when a processor of the MME executes the computer to execute an instruction,
  • the MME performs the method for accessing a network by using a user equipment according to the foregoing third aspect and any possible implementation manner thereof.
  • an MME includes: a processor, a transceiver, and a memory; wherein the memory is configured to store a computer execution instruction, and when the MME is running, the processor executes a computer-executed instruction of the memory storage to enable the MME
  • a method for accessing a network by using a user equipment according to the foregoing fourth aspect and any possible implementation manner thereof.
  • the processor executes a computer-executed instruction of the memory storage to enable the MME
  • An eighteenth aspect a computer readable storage medium having one or more programs stored therein, the one or more programs including computer execution instructions, when a processor of the MME executes the computer to execute an instruction,
  • the MME performs the accessing of the network through the user equipment according to the foregoing fourth aspect and any possible implementation manner thereof.
  • the method of the network is not limited to the foregoing fourth aspect and any possible implementation manner thereof.
  • a WD comprising: a processor, a transceiver, and a memory; wherein the memory is configured to store a computer execution instruction, and when the WD is running, the processor executes a memory execution computer execution instruction to enable the WD.
  • a computer readable storage medium storing one or more programs, the one or more programs including computer execution instructions, when the processor of the WD executes the computer to execute the instructions
  • the WD performs the method for accessing a network through a user equipment according to the fifth aspect and any one of the possible implementation manners described above.
  • a twenty-first aspect a wireless communication system, comprising: the base station in the sixth aspect or the eleventh aspect, the UE in the seventh aspect or the thirteenth aspect, the eighth aspect, or The MME in the fifteenth aspect (ie, the MME of the UE), the MME in the above ninth aspect or the seventeenth aspect (ie, the MME of the WD), and the WD in the above tenth or nineteenth aspect.
  • FIG. 1 is a schematic diagram of a network architecture of an EPS according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of hardware of a mobile phone according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of hardware of a smart watch according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of hardware of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a hardware of a server according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram 1 of a method for accessing a network by using a UE according to an embodiment of the present disclosure
  • FIG. 7 is a second schematic diagram of a method for accessing a network by using a UE according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 3 of a method for accessing a network by using a UE according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 4 of a method for accessing a network by using a UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 5 of a method for accessing a network by using a UE according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram 6 of a method for accessing a network by using a UE according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram 1 of a first base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 2 of a first base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 1 of a UE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 2 of a UE according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 1 of a first MME according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 2 of a first MME according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram 1 of a second MME according to an embodiment of the present disclosure.
  • FIG. 19 is a second schematic structural diagram of a second MME according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram 3 of a second MME according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram 4 of a second MME according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram 1 of a WD according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram 2 of a WD according to an embodiment of the present invention.
  • first”, “second”, “third” and the like in the embodiments of the present invention are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first message, the second message, the third message, and the like are used to distinguish different messages, rather than to describe a particular order of messages.
  • a plurality means two or more unless otherwise indicated.
  • multiple EPS bearer logos refer to two or more EPS bearers. Contains the logo.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the invention should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • the direct path (also referred to as the direct path of the WD, which may be interchanged herein) in embodiments of the present invention is the path between the WD and the base station serving the WD.
  • the indirect path (also referred to as the indirect path of the WD, which may be interchanged herein) in the embodiments of the present invention is the path between the WD, the user equipment (UE), and the base station serving the UE.
  • the WD in the embodiment of the present invention can be understood as the UE providing the relay service for the WD through the UE accessing the network.
  • the WD battery has a small volume, and the battery capacity of the WD is small due to the limitation of the battery volume.
  • the transmission power required when the WD transmits data to the base station is large, thereby causing a large power consumption of the WD, and the standby time of the WD is higher. short.
  • the embodiment of the present invention provides a method for accessing the network by using the UE, where the WD can access the network through the UE. Transmitting uplink data and uplink signaling to the base station. Since the distance between the WD and the UE is normally close, the WD needs less transmission power when transmitting uplink data and uplink signaling to the base station by the UE, so the WD is The power consumption is small, which can extend the standby time of the WD.
  • the method for accessing a network by using a UE is for a more detailed description of the technical solution of the embodiment of the present invention, in the embodiment of the present invention, only one WD accesses the network through the UE as an example for exemplary description.
  • the method for the WD to access the network by the UE is applied to the wireless communication system.
  • the network architecture diagram of the evolved packet system (EPS) shown in FIG. 1 shows the present invention.
  • the network architecture of the EPS shown in FIG. 1 includes: WD, UE, base station 1, base station 2, MME1, MME2, SGW1, and SGW2, wherein the base station 1 provides services for the UE, the base station 2 provides services for the WD, and the MME1 is The MME of the UE, SGW1 is the SGW of the UE, MME2 is the MME of the WD, and SGW2 is the SGW of the WD.
  • the connection between the multiple devices is a wireless connection. In order to conveniently and intuitively represent the connection relationship between the devices, a solid line is illustrated in FIG.
  • the WD when the WD transmits the uplink data and the uplink signaling of the WD, the WD directly sends the uplink data and the uplink signaling of the WD to the base station 2, and the base station 2 After receiving the uplink data and the uplink signaling of the WD, the uplink data of the WD is sent to the SGW2, and the uplink signaling is sent to the MME2.
  • the WD may first send the uplink data and the uplink signaling of the WD to the UE, and after receiving the uplink data and the uplink signaling of the WD, the UE may send the uplink of the WD to the base station 1.
  • Data and uplink signaling after the base station 1 receives the uplink data and the uplink signaling of the WD, sends the uplink data of the WD to the SGW2, and sends the uplink signaling of the WD to the MME2, that is, the WD can uplink data of the WD.
  • the uplink signaling is first sent to the UE, and then the uplink data and the uplink signaling of the WD are transmitted by the UE, and the WD directly transmits the uplink data and the uplink signaling of the WD to the second base station in the prior art, because the normal situation
  • the distance between the WD and the UE is relatively close. Therefore, when the WD transmits uplink data and uplink signaling through the UE, the required transmission power is small, so the power consumption of the WD is small, thereby extending the standby time of the WD.
  • the UE in the embodiment of the present invention may be: a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), and Netbook, personal digital assistant (PDA), etc.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • the UE shown in FIG. 1 may be a mobile phone.
  • the mobile phone includes: a processor 11, a radio frequency (RF) circuit 12, a power source 13, a memory 14, an input unit 15, a display unit 16, an audio circuit 17, and the like.
  • RF radio frequency
  • FIG. 2 the structure of the mobile phone shown in FIG. 2 does not constitute a limitation to the mobile phone, and may include more or less components such as those shown in FIG. 2, or may be combined as shown in FIG. Some of the components may be different from the components shown in Figure 2.
  • the processor 11 is the control center of the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 14, and recalling data stored in the memory 14, executing The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 11 may include one or more processing units; preferably, the processor 11 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 11.
  • the RF circuit 12 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 11; in addition, the uplink data is transmitted to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 12 can also communicate with the network and other devices via wireless communication.
  • Wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple Access, CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short messaging service (SMS), and the like.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA code division multiple Access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • SMS short messaging service
  • the mobile phone includes a power source 13 (such as a battery) that supplies power to various components.
  • a power source can be logically connected to the processor 11 through a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the memory 14 can be used to store software programs and modules, and the processor 11 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 14.
  • the memory 14 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, image data, phone book, etc.).
  • memory 14 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 15 can be used to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the handset.
  • the input unit 15 may include a touch screen 151 and other input devices 152.
  • the touch screen 151 also referred to as a touch panel, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory on the touch screen 151 or near the touch screen 151 using a finger, a stylus, etc.), and according to The preset program drives the corresponding connection device.
  • the touch screen 151 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 11 is provided and can receive commands from the processor 11 and execute them.
  • the touch screen 151 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • Other input devices 152 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, power switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 16 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 16 can include a display panel 161.
  • a liquid crystal display (LCD) or an organic light emitting diode can be used.
  • the display panel 161 is configured in the form of an organic light-emitting diode (OLED) or the like.
  • the touch screen 151 may cover the display panel 161, and when the touch screen 151 detects a touch operation thereon or nearby, it is transmitted to the processor 11 to determine the type of the touch event, and then the processor 11 displays the panel according to the type of the touch event.
  • a corresponding visual output is provided on the 161.
  • the touch screen 151 and the display panel 161 are used as two separate components to implement the input and output functions of the mobile phone, in some embodiments, the touch screen 151 can be integrated with the display panel 161 to implement the input of the mobile phone. And output function.
  • the audio circuit 17, the speaker 171 and the microphone 172 are used to provide an audio interface between the user and the handset.
  • the audio circuit 17 can transmit the converted electrical data of the received audio data to the speaker 171, and convert it into a sound signal output by the speaker 171; on the other hand, the microphone 172 converts the collected sound signal into an electrical signal, and the audio circuit 17 After receiving, it is converted into audio data, and the audio data is output to the RF circuit 12 for transmission to, for example, another mobile phone, or the audio data is output to the memory 14 for further processing.
  • the phone can also include a variety of sensors.
  • sensors For example, a gyro sensor, a hygrometer sensor, an infrared sensor, a magnetometer sensor, and the like are not described herein.
  • the mobile phone may further include a wireless fidelity (WiFi) module, a Bluetooth module, and the like, and details are not described herein.
  • WiFi wireless fidelity
  • Bluetooth Bluetooth
  • the WD in the embodiment of the present invention may be a smart watch, a smart bracelet, virtual reality (VR) glasses, or the like.
  • VR virtual reality
  • the WD shown in FIG. 1 may be a smart watch.
  • the smart watch includes a processor 21, a radio frequency (RF) circuit 22, a power source 23, a memory 24, an input unit 25, a display unit 26, and the like.
  • RF radio frequency
  • the structure of the smart watch shown in FIG. 3 does not constitute a limitation to the smart watch, and may include more or less components such as those shown in FIG. 3, or may be combined as shown in FIG. 3. Some of the components shown may be different than the components shown in FIG.
  • the hardware structures of the base station 1 and the base station 2 shown in FIG. 1 are similar.
  • the hardware structure of the base station 1 and the base station 2 shown in FIG. 1 can be referred to the constituent components of the base station as shown in FIG.
  • the base station includes: a radio remote unit (RRU), a baseband unit (BBU), and an antenna.
  • RRU radio remote unit
  • BBU baseband unit
  • the RRU and the BBU can be connected by using an optical fiber, and the RRU is coaxial. Cables and splitters (couplers) are connected to the antenna.
  • one BBU can connect multiple RRUs.
  • the RRU can include four modules: a digital intermediate frequency module, a transceiver module, a power amplifier module, and a filtering module.
  • the digital intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-conversion, digital-to-analog conversion, etc.; the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal; and after the amplification of the power amplifier module and the filtering of the filtering module, the RF signal is transmitted through the antenna.
  • a digital intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-conversion, digital-to-analog conversion, etc.
  • the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal
  • the RF signal is transmitted through the antenna.
  • the BBU is used to complete the baseband processing functions (encoding, multiplexing, modulation, and spreading) of the Uu interface (ie, the interface between the UE and the base station), the logic between the radio network controller (RNC), and the base station. Interface functions of the interface, signaling processing, local and remote operation and maintenance functions, and monitoring of the working status of the base station system and reporting of alarm information.
  • MME1, SGW1, MME2, and SGW2 shown in FIG. 1 may be implemented by integrating respective functional modules of MME1, SGW1, MME2, and SGW2 on a server, respectively.
  • Each component of the server is specifically described.
  • the server includes components such as a processor 31, a memory 32, an I/O interface 33, and a bus 34.
  • the processor 31 is the control center of the server, which connects various parts of the entire server using various interfaces and lines, executes by executing or executing software programs and/or modules stored in the memory 32, and recalls data stored in the memory 32.
  • the processor 31 may include one or more processing units; preferably, the processor 31 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. Can reason It is understood that the above modem processor may not be integrated into the processor 31.
  • the memory 32 can be used to store software programs and modules, and the processor 31 executes various functional applications and data processing of the server by running software programs and modules stored in the memory 32.
  • Memory 32 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the I/O interface 33 is also an input/output interface.
  • the processor 31 is connected to the I/O interface 33 through the bus 34 of the server, and the I/O interface 33 is connected to other devices to finally realize information transmission of the processor 31 and other devices.
  • the method for accessing a network by using a UE according to an embodiment of the present invention may be applied to five scenarios.
  • the scenario 1 is: the WD is switched from the direct path to the indirect path;
  • the scenario 2 is: the WD is switched from the indirect path to the direct path;
  • the scenario 3 is: the MME of the WD is changed (for example, the MME of the WD is changed from the current second MME to The third MME) or the SGW of the WD is changed;
  • scenario 4 is: the base station serving the UE is changed (for example, the base station serving the UE is changed from the first base station to the second base station).
  • the method for accessing the network by using the UE according to the embodiment of the present invention is exemplarily described in the following.
  • Scenario 1 WD switches direct path to indirect path
  • the switching of the WD from the direct path to the indirect path in the scene 1 includes two possible implementation manners, and the following two possible implementation manners are respectively Carry out detailed instructions.
  • scenario 1 The first possible implementation of scenario 1:
  • An embodiment of the present invention provides a method for accessing a network by using a UE. As shown in FIG. 6, the method may include the following steps:
  • the process of mutually discovering the WD and the UE may be: the UE sends a first broadcast message, where the first broadcast message may carry the identifier of the UE, and after the WD receives the first broadcast message sent by the UE, the WD may know that there is a surrounding broadcast message.
  • the UE exists ie, the WD discovers the UE
  • the corresponding WD sends a second broadcast message, which can be carried in the second broadcast message.
  • the WD identifies that after the UE receives the second broadcast message sent by the WD, the UE can know that there is a WD existing (ie, the UE finds the WD).
  • the identifier of the UE may be a globally unique temporary user equipment identity (GUTI) of the UE, and the identifier of the WD may be a GUTI of the WD.
  • GUI globally unique temporary user equipment identity
  • the WD may start executing the following S102.
  • the WD sends an eleventh message to the second MME.
  • the second MME is the MME of the WD, and the eleventh message is used by the WD to request the second MME to switch the direct path of the WD to the indirect path of the WD.
  • the identifier of the UE and the identifier of the WD may be carried in the eleventh message.
  • the eleventh message may be an indirect path switch request message, or may be a non-access-strata (NAS) message, and may be determined according to actual usage requirements. limited.
  • NAS non-access-strata
  • the second MME receives the eleventh message, and determines the first MME according to the identifier of the UE carried in the eleventh message.
  • the first MME is an MME of the UE.
  • the second MME after receiving the eleventh message sent by the WD, the second MME obtains the identifier of the UE carried in the eleventh message, and determines the MME of the UE, that is, the first MME, according to the identifier of the UE.
  • the second MME acquires uplink S1 information of the WD.
  • the second MME may obtain the uplink S1 information of the WD according to the context of the WD.
  • the second MME After receiving the eleventh message sent by the WD, the second MME acquires the identifier of the WD carried in the eleventh message, and acquires the context of the WD corresponding to the identifier of the WD according to the identifier of the WD, and according to the context of the WD. , get the uplink S1 information of the WD.
  • the uplink S1 information of the WD may include: an identifier of the second MME, and an MME S1 interface user equipment identifier of the WD (uniquely identifying the UE) Association over the S1 interface within the MME, MME UE S1-AP ID), multiple EPS bearer identifiers (EPS bearer IDs) of the WD, and the Internet Protocol address of the SGW corresponding to each EPS bearer ID (SGW internet) The protocol address (SGW IP address), the S1 interface tunnel endpoint identifier (S1-TEID), and the quality of service (QoS) value.
  • MME S1 interface user equipment identifier of the WD (uniquely identifying the UE) Association over the S1 interface within the MME, MME UE S1-AP ID), multiple EPS bearer identifiers (EPS bearer IDs) of the WD, and the Internet Protocol address of the SGW corresponding to each EPS bearer ID (SGW internet)
  • SGW IP address The protocol address
  • the SGW IP address corresponding to each EPS bearer ID is the IP address of the SGW of the WD in the uplink S1 information of the WD. Address. That is to say, in the uplink S1 information of the WD, the SGW IP address corresponding to each EPS bearer ID may be the same.
  • the identifier of the second MME may be used to identify the MME of the WD.
  • the above MME UE S1-AP ID may be used to identify the WD on the S1-AP interface (ie, the signaling plane interface).
  • the plurality of EPS bearer identifiers of the WD may be used to identify multiple EPS bearers between the WD and the WD's Packet Data Network Gateway (PGW) (wherein the SGW of the WD and the PGW of the WD are S5/8) Bearer, the S5/8 bearer is part of the EPS bearer).
  • PGW Packet Data Network Gateway
  • the above SGW IP address can be used to identify the SGW of the WD.
  • the above S1 interface tunnel endpoint identifier may be used to identify a tunnel between the base station of the WD and the SGW of the WD on the S1-U interface (ie, the user plane interface).
  • the above QoS value can be used to identify the quality of service of the EPS bearer.
  • the specific identifier may be applied to the method for accessing the network by using the UE according to the embodiment of the present invention.
  • the identifier of the second MME and the MME UE S1-AP ID may be used after the first base station identifies the second MME and the WD, and forwards the uplink signaling of the WD to the second MME.
  • the method for the first base station to obtain the identifier of the second MME and the MME UE S1-AP ID, and the method for forwarding the uplink signaling of the WD to the second MME according to the identifier of the second MME and the MME UE S1-AP ID Will be detailed in the following examples Describe in detail.
  • the multiple EPS bearer IDs of the WD, the SGW IP address, the S1-TEID, and the QoS value corresponding to each EPS bearer ID are used by the first base station to establish a first mapping relationship (ie, the UE and the first base station) The mapping relationship between the DRB and the S1 bearer between the first base station and the SGW of the WD).
  • a method for acquiring, by the first base station, a plurality of EPS bearer IDs of the WD, an SGW IP address, an S1-TEID, and a QoS value corresponding to each EPS bearer ID, and a plurality of EPS bearer IDs of the first base station according to the WD A method of establishing a first mapping relationship between the SGW IP address, the S1-TEID, and the QoS value corresponding to each EPS bearer ID will be described in detail in the following embodiments.
  • the identifier of the second MME (that is, the identifier of the MME of the WD) is further used by the first MME to determine whether the first base station and the second MME meet the network connection relationship.
  • the network connection relationship between the first base station and the second MME may be understood as: signaling may be performed between the first base station and the second MME.
  • the SGW IP address corresponding to each EPS bearer ID is an SGW IP address of the WD, and is used by the first MME to determine whether the SGW of the first base station and the WD meets a network connection relationship.
  • the network connection relationship between the first base station and the SGW of the WD can be understood as data transmission between the first base station and the SGW of the WD.
  • the second MME sends an eighth message to the first MME.
  • the eighth message may carry the identifier of the WD, the identifier of the UE, and the uplink S1 information of the WD.
  • the eighth message may be a relay access request message, or may be a general packet radio service tunneling protocol for control plane (GTP-C) message, which may be specifically The actual use requirement is determined, and the embodiment of the present invention is not limited.
  • GTP-C general packet radio service tunneling protocol for control plane
  • the first MME receives the eighth message, and determines that the network connection relationship is satisfied between the first base station and the second MME and the SGW of the WD according to the uplink S1 information of the WD carried in the eighth message.
  • the first base station provides services for the UE.
  • the network connection relationship between the first base station and the second MME and the SGW of the WD is satisfied: the signaling between the first base station and the second MME may be performed, and the first base station and the SGW of the WD are configured. Data transfer is possible between.
  • the first MME may obtain the identifier of the WD carried in the eighth message, the identifier of the UE, and the uplink S1 information of the WD, and then the first MME may determine that the WD request passes the UE according to the identifier of the WD and the identifier of the UE. Access to the network.
  • the first MME determines, according to the identifier of the second MME in the uplink S1 information of the WD carried in the eighth message, and the SGW IP address of the WD (that is, the SGW IP address corresponding to each EPS bearer ID).
  • the first MME may determine The first base station can be connected to the SGW of the second MME and the WD, that is, the first MME can determine that the first base station can transmit the uplink signaling of the WD to the MME of the WD after receiving the uplink signaling of the WD, and can determine the first After receiving the uplink data of the WD, a base station can transmit the foregoing data of the WD to the SGW of the WD, so that the first MME can determine that the UE can provide a relay service for the WD.
  • the first MME may determine that the first base station cannot connect to the SGW of the second MME or the WD, That is, the first MME may determine that the first base station cannot transmit the foregoing data of the WD to the SGW of the WD after receiving the uplink data of the WD, or the first MME may determine that the first base station cannot receive the uplink signaling of the WD.
  • the uplink signaling of the WD is transmitted to the MME of the WD, so that the first MME can determine that the UE cannot provide a relay service for the WD.
  • step S106 if the UE is in the connected state, the step S107 is directly performed; if the UE is in the idle state, the MME of the UE (that is, the first MME) performs paging (Paging) on the UE. After entering the connected state, step S106 is performed.
  • the first MME sends a first message to the first base station, where the first message carries the uplink S1 information of the WD.
  • the first base station provides services for the UE.
  • the first message is used by the first MME to request the PDCCH from the first base station to access the network through the UE.
  • the first message carries the uplink S1 information of the WD.
  • the first message may carry the identifier of the WD and the uplink S1 information of the WD.
  • the first message may be a WD access request message, or may be another S1 interface application protocol message, and may be determined according to actual usage requirements, which is not limited in the embodiment of the present invention.
  • the first base station receives the first message, and allocates a PDCP identifier to the WD according to the first message.
  • the first base station After receiving the first message, acquires the identifier of the WD carried in the first message, determines, according to the identifier of the WD, the WD request to access the network through the UE, and the first base station allocates a PDCP identifier to the WD.
  • the PDCP identifier may be an identifier that is allocated by the first base station to the WD on the PDCP layer.
  • the PDCP identifier may be used to identify that the uplink data to be transmitted is the data of the WD, and may also be used to identify that the uplink signaling to be transmitted is the signaling of the WD.
  • the first base station establishes a first mapping relationship according to the uplink S1 information of the WD and the PDCP identifier.
  • the first mapping relationship is a mapping relationship between a data radio bearer (DRB) between the UE and the first base station and an S1 bearer between the first base station and the SGW of the WD.
  • DRB data radio bearer
  • the first base station may obtain the uplink S1 information of the WD carried in the first message, and establish the first according to the uplink S1 information of the WD and the PDCP identifier allocated by the first base station to the WD. Mapping relations.
  • the method for establishing the first mapping relationship by the first base station according to the uplink S1 information of the WD and the PDCP identifier allocated by the first base station to the WD may include: S109a-S109c:
  • the first base station acquires a first S1-TEID and a first QoS value corresponding to the first EPS bearer ID according to the uplink S1 information of the WD, where the first EPS bearer ID is one of multiple EPS bearer IDs.
  • the first base station determines, according to the correspondence between the identifier of the DRB and the QoS value, the identifier of the first DRB corresponding to the first QoS value.
  • the first base station establishes a first mapping relationship according to the identifier of the first DRB, the PDCP identifier, the SGW IP address of the WD, and the first S1-TEID.
  • the identifier of the first DRB is represented as a UE DRB ID
  • the PDCP identifier is represented as a WD PDCP ID
  • the SGW IP address of the WD ie, the above-mentioned SGW IP address corresponding to each EPS bearer ID
  • the first S1-TEID is represented as WD S1-TEID
  • the first mapping relationship established by the first base station may be expressed as: UE DRB ID+WD PDCP ID ⁇ WD S1-TEID+WD SGW IP address.
  • the first base station sends a fourth message to the UE.
  • the UE receives the fourth message, and establishes a second mapping relationship according to the fourth message.
  • the fourth message is used to indicate that the UE establishes a second mapping relationship, where the second mapping relationship is a mapping relationship between the PC5 bearer between the WD and the UE and the DRB between the UE and the first base station.
  • the first possible implementation manner is that the foregoing fourth message may carry the identifier of the WD, the identifier carried by the PC5, the PDCP identifier, and the identifier of the first DRB.
  • the UE may establish a second mapping relationship according to the identifier of the WD carried in the fourth message, the identifier of the PC5, the PDCP identifier, and the identifier of the first DRB.
  • the identifier that is carried by the PC5 may be an identifier of the PC5 to be established corresponding to the identifier of the first DRB that is specified by the first base station according to the identifier of the first DRB.
  • the second possible implementation manner is: the foregoing fourth message may carry the identifier of the WD, the PDCP identifier, and the identifier of the first DRB, and after the UE receives the fourth message, may be carried in the fourth message.
  • the identifier of the first DRB is generated, and the identifier of the PC5 to be established corresponding to the identifier of the first DRB is generated.
  • the UE may then establish a second mapping relationship according to the identifier of the WD, the identifier of the PC5 bearer, the PDCP identifier, and the identifier of the first DRB.
  • the fourth message may be a radio resource control (RRC) reconfiguration message, or may be another RRC message, and may be determined according to actual usage requirements, which is not limited in the embodiment of the present invention.
  • RRC radio resource control
  • the identifier of the WD is represented as a WD ID
  • the identifier carried by the PC5 is represented as a PC5 bear ID
  • the PDCP identifier is represented as a WD PDCP ID
  • the identifier of the first DRB is represented as a UE DRB ID
  • the UE is based on the identifier of the WD
  • the PC5 The second mapping relationship between the bearer identifier, the PDCP identifier, and the identifier of the first DRB may be expressed as: WD ID+PC5bearer ID ⁇ UE DRB ID+WD PDCP ID.
  • the first base station sends a fourth message to the UE to instruct the UE to establish a second mapping relationship (ie, the mapping relationship between the PC5 bearer between the WD and the UE and the DRB between the UE and the first base station), which can enable
  • the UE may forward the uplink data to the first base station according to the second mapping relationship.
  • the UE may establish a PC5 bearer between the UE and the WD according to the identifier of the PC5 carried in the second mapping relationship, where the identifier of the PC5 is carried.
  • the identifier carried by the PC5 in the foregoing second mapping relationship is carried.
  • the first base station sends a response message of the first message to the first MME.
  • the UE may notify the first base station that the UE establishes the second mapping relationship, so that the first base station may send a response message of the first message to the first MME, where the response message of the first message is used to
  • the first MME confirms that the UE allows the WD to access the network through the UE, so that the first MME can confirm that the UE allows the WD to access the network through the UE.
  • the embodiment of the present invention does not limit the execution order of the foregoing S112 and S113. That is, in the embodiment of the present invention, S112 may be performed first, and then S113 may be performed; S113 may be performed first, and then S112 may be performed; S112 and S113 may also be performed at the same time.
  • the first MME sends a response message of the eighth message to the second MME.
  • the first MME receives the response message of the first message
  • the first MME A response message of the eighth message may be sent to the second MME.
  • the second MME sends a response message of the eleventh message to the WD.
  • the second MME sends a response message of the eleventh message to the WD.
  • the first MME (ie, the MME of the UE) may send a first message requesting the WD to access the network through the UE by using the first base station (ie, the base station serving the UE)
  • the first base station allocates a PDCP identifier to the WD according to the first message, and establishes a DRB between the UE and the first base station and the first base station and the WD according to the uplink S1 information of the WD carried in the first message and the PDCP identifier.
  • the mapping relationship of the S1 bearers between the SGWs so that the WD can access the network through the UE, and the WD can forward the uplink data of the WD to the first base station by using the UE, and the uplink data is sent by the first base station to the SGW of the WD. Therefore, the SWG of the WD forwards the uplink data again, that is, the uplink data of the WD can be forwarded to the SGW of the WD through the UE and the first base station.
  • the WD Compared with the direct communication between the WD and the base station serving the WD in the prior art, since the distance between the WD and the UE is normally close, the WD needs less transmission power when transmitting uplink data through the UE, so the WD The power consumption is small, which can extend the standby time of the WD.
  • a method for accessing a network by using a UE according to an embodiment of the present invention as shown in FIG. 7, S102 and S103 shown in FIG. 6 may be replaced with S202-S206 described below, and S115 shown in FIG. 6 may be replaced.
  • steps S215 and S216 only the replacement steps S202-S206 and S215 and S216 are described below.
  • the WD sends a fifth message to the UE.
  • the fifth message is used by the WD to request the UE to switch the direct path of the WD to the indirect path of the WD.
  • the fifth message may carry the identifier of the WD.
  • the WD logo can be the GUTI of WD.
  • the fifth message may be an indirect path switch request message, or Other PC5 interface messages may be determined according to actual usage requirements, which are not limited in the embodiment of the present invention.
  • the UE receives the fifth message.
  • the UE may determine, according to the identifier of the WD carried in the fifth message, that the WD requests to switch the direct path of the WD to the indirect path of the WD.
  • step S204 After the UE receives the fifth message sent by the WD, the UE proceeds to step S204.
  • the UE sends a sixth message to the first MME.
  • the sixth message is used by the UE to request the MME to access the network through the UE.
  • the sixth message may also carry the identifier of the WD.
  • the sixth message may be a WD access request message, or may be a non-access stratum (NAS) message, and may be determined according to actual usage requirements, which is not limited by the embodiment of the present invention.
  • NAS non-access stratum
  • the UE may send the sixth message to the MME of the UE to request the WD to access the network through the UE, thereby The WD is implemented to access the network through the UE.
  • the first MME receives the sixth message.
  • the first MME may obtain the identifier of the WD carried in the sixth message, and determine the second MME according to the identifier of the WD.
  • the first MME may continue to perform step S206.
  • the first MME sends a ninth message to the second MME.
  • the ninth message may carry the identifier of the WD.
  • the ninth message is used by the first MME to request the uplink MME information of the WD from the second MME.
  • the ninth message may be an uplink S1 information request message of the WD, or may be a general packet radio service tunneling protocol for control plane (GTP-C) message.
  • GTP-C general packet radio service tunneling protocol for control plane
  • the second MME receives the ninth message.
  • the second MME may determine, according to the nin message, that the MME that sends the ninth message is the first MME, that is, the MME of the UE.
  • the first MME sends a response message of the sixth message to the UE.
  • the execution order of the foregoing S114 and S215 is not limited, that is, in the embodiment of the present invention, S114 may be executed first, and then S215 may be performed; S215 may be executed first, then S114 may be executed; or S114 may be simultaneously executed. And S215.
  • the UE sends a response message of the fifth message to the WD.
  • the UE may send a response message of the fifth message to the WD.
  • the WD may further send uplink data to the UE, where the uplink data includes a PDCP identifier, and the PDCP identifier is used.
  • the uplink data used to identify the uplink data is the WD.
  • the UE After receiving the uplink data, the UE sends the uplink data to the first base station according to the bearer indicated by the second mapping relationship.
  • the first base station may And transmitting, according to the bearer indicated by the PDCP identifier and the first mapping relationship, the uplink data to the SGW of the WD, so that after the WD accesses the network by using the UE, the uplink data of the WD may be transmitted.
  • the method for accessing the network by using the UE according to the embodiment of the present invention may further include:
  • the first base station saves the identifier of the second MME in the first message and the MME UE S1-AP ID of the WD.
  • the identifier of the second MME and the MME UE S1-AP ID of the WD are used to send the uplink signaling of the WD.
  • the first base station may obtain the uplink S1 information of the WD carried in the first message, and save the identifier and WD of the second MME in the uplink S1 information of the WD.
  • MME UE S1-AP ID for use in The uplink signaling of the WD is forwarded to the MME of the WD (ie, the second MME).
  • the first base station may save the identifier of the MME and the WD of the WD for transmitting the uplink signaling of the WD carried in the first message.
  • the MME S1 interface user equipment identifier after the UE sends the uplink signaling sent by the WD to the first base station, the uplink signaling may be performed by the first base station according to the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD.
  • the MME that is sent to the WD that is, the WD, can send the uplink signaling of the WD to the MME of the WD through the UE and the first base station, thereby completing the transmission of the uplink signaling after the WD accesses the network through the UE.
  • the embodiment of the present invention does not limit the execution order of S116 and S109-S115.
  • S116 may be executed first, then S109-S115 may be executed; or S109-S115 may be executed first.
  • S116 is performed; S116 and S109-S115 can also be performed simultaneously.
  • the embodiment of the present invention does not limit the execution order of S116 and S109-S216. That is, in the embodiment of the present invention, S116 may be performed first, and then S109-S216 may be executed; S109-S216 may be executed first, then S116 may be performed; S116 and S109-S216 may also be executed at the same time.
  • the WD may further send the uplink signaling to the UE, where the uplink signaling includes a PDCP identifier, where the PDCP identifier is used to identify the uplink signaling as the uplink signaling of the WD, and receive the uplink signaling in the UE.
  • the UE may send the uplink signaling to the first base station.
  • the first base station may obtain the identifier of the PDCP carried in the uplink signaling, and then the first base station finds the second MME saved in the first base station according to the PDCP identifier, that is, the MME of the WD.
  • the identifier of the MME and the MME UE S1-AP ID of the WD and then the first base station sends the uplink signaling to the second MME according to the identifier of the second MME and the MME UE S1-AP ID of the WD, so that the WD accesses through the UE After the network, the uplink signaling of the WD can be transmitted.
  • the uplink data of the WD can be forwarded to the SGW of the WD by the UE and the first base station, so that the WD can access the network through the UE.
  • the distance between the WD and the UE is relatively close. Therefore, when the WD transmits uplink data and uplink signaling to the base station by the UE, the required transmission power is small, so the power consumption of the WD is small, thereby extending the WD. Standby time.
  • Scenario 2 WD switches from indirect path to direct path
  • the WD can also switch from the indirect path of the WD to the direct path of the WD.
  • the quality of the PC5 link between the WD and the UE deteriorates (eg, the channel quality of the PC5 link between the WD and the UE is less than a preset channel quality threshold, where the signal quality can be measured by the signal strength)
  • the WD's indirect path may not continue to be used, so the WD can switch from the WD's indirect path to the WD's direct path.
  • An embodiment of the present invention provides a method for accessing a network by using a UE. As shown in FIG. 8, the method may include the following steps:
  • the WD uses the direct path of the WD to transmit uplink data and uplink signaling.
  • the UE when the WD requests to access the network through the UE, the UE may save the mapping relationship between the WD and the UE.
  • the UE may delete the mapping between the WD and the UE. relationship.
  • the UE may also delete the second mapping relationship established by the UE in the scenario 1 (ie, the PC5 bearer between the WD and the UE, in the case that the UE detects that the PC5 is disconnected. Mapping relationship with the DRB between the UE and the first base station).
  • the UE when multiple WDs access the network through the UE, the UE may save a mapping relationship between the multiple WDs and the UE.
  • S302 may be performed first, and then S303 may be performed; S303 may be performed first and then S302 may be performed; and S302 and S303 may be simultaneously executed.
  • the UE sends a third message to the first base station.
  • the first base station provides services for the UE.
  • the third message may carry the identifier of the WD, where the third message is used to request the first base station to delete the first mapping relationship established by the first base station in the scenario 1 (that is, the DRB between the UE and the first base station and the first base station) The mapping relationship between the S1 bearer and the SGW of the WD).
  • the third message may be an indirect path release request message, or may be another S1 application protocol (S1-AP) message, and may be determined according to actual usage requirements, which is not limited in the embodiment of the present invention.
  • S1-AP S1 application protocol
  • the first base station receives the third message, and deletes the first mapping relationship according to the third message.
  • the first base station may send the uplink data of the WD to the SGW of the WD according to the bearer indicated by the first mapping relationship.
  • the first base station cannot continue to transmit the uplink data of the WD to the SGW of the WD according to the first mapping relationship. Therefore, in order to save the storage resources of the first base station, the first mapping relationship may be deleted.
  • the first base station may obtain the identifier of the WD carried in the third message, and delete the first mapping relationship corresponding to the identifier of the WD according to the identifier of the WD.
  • the first base station may be configured according to the PDCP identifier and the first base station.
  • the identifier of the MME of the saved WD and the MME UE S1-AP ID of the WD transmit the uplink signaling to the second MME.
  • the eNB cannot use the indirect path to transmit the uplink signaling, so the first base station cannot continue to use the MME identity of the WD saved in the first base station and the MME UE S1-AP ID of the WD to send to the second MME.
  • the uplink signaling Therefore, in order to save the storage space of the first base station, the label of the MME of the WD saved in the first base station may be deleted. Know the MME UE S1-AP ID of the WD.
  • the first base station sends a response message of the third message to the UE.
  • the first base station sends a WD information update message to the first MME.
  • the WD information update message is used to notify the first MME that the mapping relationship between the UE and the WD has been deleted.
  • the first base station may learn, according to the third message, that the mapping relationship between the UE and the WD has been deleted by the UE, so that the first base station may be according to the third The message deletes the first mapping relationship established above. Further, after the first base station deletes the first mapping relationship according to the third message, the first base station sends, to the first MME, a WD information update message for notifying the first MME that the mapping relationship between the UE and the WD has been deleted.
  • the first base station Since the first base station notifies the first MME that the mapping relationship between the UE and the WD has been deleted, the first MME can know in time that the mapping relationship between the UE and the WD has been deleted, so that the first MME can allow other The WD accesses the network through the UE.
  • the first MME sends an indirect path release notification message to the second MME.
  • the indirect path release notification message is used to notify the second MME that the indirect path of the WD has been released.
  • the embodiment of the present invention does not limit the execution order of the foregoing S306 and S307. That is, in the embodiment of the present invention, S306 may be performed first, and then S307 may be performed; S307 may be performed first, then S306 may be performed; and S306 and S307 may be simultaneously executed.
  • the method for accessing the network by the UE after the WD switches from the direct path to the indirect path, if the PC5 link quality of the WD is deteriorated, the WD can switch from the indirect path to the direct path, and use the direct
  • the path transmits the uplink data and the uplink signaling of the WD, that is, in the case that the quality of the PC5 link is deteriorated, the normal transmission of the uplink data and the uplink signaling of the WD can still be guaranteed.
  • Scenario 3 The MME of the WD is changed (for example, changed from the current second MME to the third MME) or the SGW of the WD is changed.
  • a scenario occurs in which the MME of the WD is changed (for example, the MME of the WD is changed from the current second MME to the third MME) or the SGW of the WD is changed.
  • scenario 3 There are two specific cases in scenario 3. In the first case, when the serving cell of the WD changes, the MME of the WD is changed from the current second MME to the third MME. In the second case, when the serving cell of the WD is changed, the SGW of the WD is changed. The following describes the method for accessing the network by using the UE according to the embodiment of the present invention in the foregoing two cases.
  • the embodiment of the present invention provides a method for accessing a network by using a UE.
  • a serving cell of a WD is changed, when the MME of the WD is changed from the current second MME to the third MME, as shown in FIG.
  • the method can include the following steps:
  • the process of changing the serving cell of the WD may include:
  • the WD When the WD detects that the link quality between the WD and the source base station is deteriorated, the WD sends a measurement report to the source base station.
  • the link quality deterioration between the WD and the source base station may be that the channel quality between the WD and the source base station is less than a preset channel quality threshold, and the channel quality may be measured by the signal strength.
  • the source base station is a base station serving the WD before the change of the serving cell of the WD.
  • the measurement report may carry the identifier of the serving cell of the UE and the identifier of the cell adjacent to the source serving cell of the WD that meets the measurement threshold.
  • the source serving cell is a cell serving the WD before the change of the serving cell of the WD.
  • the identifier of the serving cell of the UE and the identifier of the neighboring cell may be an E-UTRAN Cell Global Identifier (ECGI) of the Evolved Universal Mobile Telecommunications System.
  • ECGI E-UTRAN Cell Global Identifier
  • the WD may obtain the identifier of the serving cell of the UE in the process that the WD and the UE discover each other (for example, S101 described in the foregoing scenario 1).
  • the source base station After receiving the measurement report, the source base station determines that the target service of the WD is small. Area.
  • the target serving cell is a serving cell to which the WD is to be handed over, that is, the target serving cell is a cell serving the WD after the serving cell of the WD is changed.
  • the source base station may obtain the identifier of the serving cell of the UE carried in the measurement report, and the cell that meets the measurement threshold and is adjacent to the source serving cell of the WD.
  • An identifier (hereinafter referred to as a plurality of first identifiers), and determining whether the plurality of first identifiers include an identifier of a serving cell of the UE, and if the plurality of first identifiers include an identifier of the serving cell of the UE, the source base station includes the UE
  • the serving cell is determined to be the target serving cell of the WD; if the plurality of first identifiers do not include the identifier of the serving cell of the UE, the source base station may arbitrarily select one of the plurality of cells indicated by the plurality of first identifiers as the WD.
  • the target serving cell may also select one cell with the best channel quality from the plurality of cells indicated by the plurality of first identifiers as the target serving cell of the WD.
  • the source serving cell and the target serving cell of the WD may be served by the same base station, for example, the source serving cell and the target serving cell of the WD are all served by the source base station; or the source serving cell and target service of the WD.
  • the cell may be served by different base stations, for example, the source serving cell of the WD is served by the source base station, the target serving cell of the WD is served by the target base station, and the target base station may be the base station serving the WD after the serving cell of the WD is changed. .
  • the source base station instructs the WD to switch to the target serving cell.
  • the WD switches to the target serving cell according to the indication of the source base station.
  • the third MME sends an uplink S1 path update notification message to the WD.
  • the uplink path update notification message of the WD is used to notify the WD that the uplink S1 path of the WD needs to be updated. After the WD receives the uplink S1 path update notification message sent by the third MME, and the WD needs to send the uplink signaling, Use WD's direct path to send.
  • the uplink S1 path update notification message may also be other NAS messages, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the third MME updates the uplink S1 information of the WD.
  • the third MME sends a tenth message to the first MME.
  • the first MME is an MME of the UE.
  • the tenth message is used to notify the first MME that the uplink S1 information of the WD has been updated.
  • the tenth message may carry the identifier of the WD, the identifier of the UE, and the updated uplink S1 information of the WD.
  • the tenth message may be an uplink S1 information update message of the WD, or may be another GTP-C message, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the first MME receives the tenth message, and determines that the network connection relationship is satisfied between the first base station and the third MME according to the updated S1 information of the updated WD carried in the tenth message.
  • the first MME may determine that the uplink S1 information of the WD has been updated according to the identifier of the WD carried in the tenth message and the identifier of the UE.
  • the first MME after receiving the tenth message, obtains the uplink S1 information of the updated WD carried in the tenth message, and determines the first according to the identifier of the third MME in the uplink S1 information of the updated WD. Whether the first MME can determine that the first base station can connect to the third MME, if the first MME determines that the network connection relationship is satisfied between the first base station and the third MME. That is, the first base station may transmit the uplink signaling of the received WD to the third MME, so that the first MME may determine that the UE may continue to provide the relay service for the WD.
  • the first MME may determine that the first base station cannot connect to the third MME, that is, the first base station cannot receive the The uplink signaling of the WD is transmitted to the third MME, and the first MME may determine that the UE cannot continue to provide the relay service for the WD.
  • the network connection relationship between the first base station and the third MME may be understood as: signaling may be performed between the first base station and the third MME.
  • the first MME sends a second message to the first base station.
  • the second message is used to request the first base station to update the identifier of the MME of the WD saved in the first base station and the MME S1 interface user equipment identifier of the WD.
  • the second message may carry the updated S1 information of the WD and the identifier of the WD.
  • the second message may be a WD S1 link update request message, or may be a different S1 interface application protocol message, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the first base station receives the second message, and updates the identifier of the MME of the WD saved in the first base station and the MME S1 interface user equipment identifier of the WD according to the second message.
  • the first base station After receiving the second message sent by the first MME, acquires the uplink S1 information of the updated WD carried in the second message, and updates the information of the WD according to the updated S1 information of the updated WD. And identifying an identifier of the MME of the WD saved in the corresponding first base station and an MME S1 interface user equipment identifier of the WD.
  • the first base station may update the identifier of the MME of the WD saved in the first base station by the identifier of the second MME saved by the current first base station to the identifier of the third MME.
  • the identifier of the MME of the WD and the MME S1 interface user equipment identifier of the WD may be unavailable, and the first base station may update the MME of the WD.
  • the identifier of the MME and the MME S1 interface user equipment identifier enable the first base station to still successfully forward the uplink signaling for the WD.
  • the first base station sends a response message of the second message to the first MME.
  • the first base station after the first base station updates the identifier of the MME of the WD saved in the first base station and the MME S1 interface user equipment identifier of the WD according to the updated uplink S1 information of the WD, the first base station sends the first MME to the first MME.
  • the response message of the second message After the first base station updates the identifier of the MME of the WD saved in the first base station and the MME S1 interface user equipment identifier of the WD according to the updated uplink S1 information of the WD, the first base station sends the first MME to the first MME.
  • the response message of the second message is the response message of the second message.
  • the first MME sends a response message of the tenth message to the third MME.
  • the first MME sends a response message of the tenth message to the third MME.
  • the third MME sends an uplink S1 path update complete message to the WD.
  • the first MME sends a response message of the tenth message to the third MME.
  • the third MME sends an uplink S1 path update complete message to the WD for responding to the uplink S1 path update notification message in S402, that is, the third MME instructs the WD to use the indirect path to transmit the uplink signaling.
  • the WD of the first base station is saved.
  • the identifier of the MME and the MME S1 interface user equipment identifier of the WD may be unavailable.
  • the third MME may update the uplink S1 information of the WD and send a tenth message to the first MME. After receiving the tenth message, the first MME receives the tenth message.
  • the identifier of the MME of the WD saved in the first base station and the MME S1 interface user equipment identifier of the WD are updated according to the uplink S1 information of the updated WD carried in the second message. That is, in the embodiment of the present invention, when the MME of the WD is changed, and the network connection relationship is satisfied between the first base station and the third MME, the identifier of the MME and the MME S1 interface of the WD saved in the first base station are updated in time. The user equipment identifier, so that in the case where the MME of the WD is changed, the uplink signaling of the WD can still be transmitted through the indirect path.
  • the embodiment of the present invention provides a method for accessing a network by using a UE.
  • the method may include the following steps:
  • the second MME sends an uplink S1 path update notification message to the WD.
  • the uplink S1 path update notification message is used to notify the WD that the uplink path of the WD needs to be updated, so that after the WD receives the uplink path update notification message sent by the second MME, the WD uses the WD in the case that the WD needs to send the uplink data. Straight The path is sent.
  • the uplink S1 path update notification message may also be other NAS messages, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the second MME updates the uplink S1 information of the WD.
  • the second MME sends a tenth message to the first MME.
  • the first MME is an MME of the UE.
  • the tenth message is used to notify the first MME that the uplink S1 information of the WD has been updated.
  • the tenth message may carry the identifier of the WD, the identifier of the UE, and the updated uplink S1 information of the WD.
  • the tenth message may be an uplink S1 information update message of the WD, or may be another GTP-C message, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the first MME receives the tenth message, and determines that the network connection relationship is satisfied between the first base station and the SGW of the changed WD according to the updated S1 information of the updated WD carried in the tenth message.
  • the first MME after receiving the tenth message, obtains the updated uplink S1 information of the WD carried in the tenth message, and determines, according to the updated SGW IP address of the WD in the uplink S1 information of the WD. Whether the first base station can connect to the SGW of the changed WD, and if the first MME determines that the network connection relationship is satisfied between the first base station and the SGW of the changed WD, the first MME may determine that the first base station can be connected to The SGW of the changed WD, that is, the first base station can transmit the received uplink data of the WD to the SGW of the changed WD, so that the first MME can determine that the UE can continue to provide the relay service for the WD.
  • the first MME may determine that the first base station cannot connect to the changed GW of the WD, that is, the first A base station cannot transmit the uplink data of the received WD to the SGW of the changed WD, so that the first MME can determine that the UE cannot continue to provide the relay service for the WD.
  • the network between the first base station and the changed SGW of the WD is satisfied.
  • the connection relationship can be understood as data transmission between the first base station and the SGW of the changed WD.
  • the first MME sends a second message to the first base station.
  • the second message is used to request the first base station to update the first mapping relationship.
  • the second message may carry the updated S1 information of the WD and the identifier of the WD.
  • the second message may be a WD S1 link update request message, or may be a different S1 interface application protocol message, and may be determined according to actual usage requirements, which is not limited by the present invention.
  • the first base station receives the second message, and updates the first mapping relationship according to the second message.
  • the first base station after receiving the second message sent by the first MME, acquires the uplink S1 information of the updated WD carried in the second message, and updates the information of the WD according to the updated S1 information of the updated WD. Identify the corresponding first mapping relationship.
  • the first mapping relationship established by the first base station may be unavailable, and the first base station may update the first mapping relationship, so that the first base station can still succeed.
  • WD forwards upstream data.
  • the first base station sends a response message of the second message to the first MME.
  • the first base station after the first base station updates the first mapping relationship according to the updated uplink information of the WD, the first base station sends a response message of the second message to the first MME.
  • the first MME sends a response message of the tenth message to the second MME.
  • the first MME sends a response message of the tenth message to the second MME.
  • the second MME sends an uplink S1 path update complete message to the WD.
  • the second MME sends an uplink path update complete message to the WD.
  • the second MME sends an uplink path update complete message to the WD for response.
  • the uplink path update notification message in S502 that is, the second MME instructs the WD to transmit the uplink data using the indirect path.
  • the first mapping relationship established by the first base station may be unavailable when the WD SGW is changed after the WD is switched from the direct path to the indirect path.
  • the second MME may update the uplink S1 information of the WD, and send a tenth message to the first MME.
  • the first MME may determine, according to the uplink S1 information of the updated WD carried in the tenth message.
  • a network connection relationship is satisfied between the first base station and the changed SGW of the WD, and the second message is sent to the first base station; and after the first base station receives the second message, according to the updated WD carried in the second message Upstream S1 information, updating the first mapping relationship.
  • the first mapping relationship is updated in time, so that the SGW of the WD is changed.
  • the uplink data of the WD can still be transmitted through the indirect path.
  • Scenario 4 The base station serving the UE is changed from the first base station to the second base station.
  • the base station serving the UE may be first.
  • the embodiment of the present invention provides a method for accessing a network by using a UE.
  • a serving cell of a UE is changed, the base station serving the UE is changed from the first base station to the second base station, as shown in FIG.
  • the method can include the following steps:
  • the first mapping relationship may be saved in the first base station.
  • the first base station sends the context (including the first mapping relationship) of the UE in the first base station to the second base station in the process of changing the serving cell of the UE.
  • the second base station sends a path switch request message to the first MME.
  • the path switch request message is used to notify the first MME that the base station serving the UE is changed from the first base station to the second base station.
  • the first MME receives the path switch request message, and determines, according to the context of the UE, that the network connection relationship is not satisfied between the second base station and the second MME or the SGW of the WD.
  • the first MME may determine, according to the identifier of the UE carried in the tenth message, that the serving base station of the UE is changed from the first base station to the second base station.
  • the first MME obtains uplink S1 information of the WD from the context of the UE (the context information of the UE stores all uplink S1 information of the WD that accesses the network through the UE), and according to the WD Determining, by the identifier of the second MME in the uplink S1 information, and the IP address of the SGW of the WD, determining whether the second base station can connect to the SGW of the second MME or the WD, and determining, by the first MME, the second base station and the second MME or the WD If the SGW does not satisfy the network connection relationship, the first MME may determine that the second base station cannot connect to the SGW of the second MME or the WD, that is, the second base station cannot transmit the received uplink signaling of the WD to the second MME. Or the second base station cannot transmit the uplink data of the received WD to the SGW of the WD, so that the first MME can determine that the UE cannot provide the relay
  • the first MME may determine that the second base station may connect to the second MME and the SGW of the WD. That is, the second base station may transmit the uplink signaling of the received WD to the second MME, and the second base station may transmit the uplink data of the received WD to the SGW of the WD, so that the first MME may determine that the UE may continue to be
  • the WD provides a relay service.
  • the network connection relationship between the second base station and the second MME or the SGW of the WD is not satisfied: the signaling between the second base station and the second MME is not possible, or the SGW of the second base station and the WD is performed. Data transfer is not possible between.
  • the first MME sends a path switch response message to the second base station.
  • the first MME may send, to the second base station, the first MME to the second.
  • the base station indicates an indication message that the WD cannot access the network through the UE.
  • the indication message may be the path switch response message in the above S604, or may be another S1 interface application protocol message.
  • the path switch response message may carry the identifier of the WD.
  • the second base station receives the path switch response message, and deletes the first mapping relationship.
  • the WD carried in the path switch response message may be acquired. And identifying, from the second base station, a first mapping relationship corresponding to the identifier of the WD.
  • the first base station when the base station serving the UE is changed from the first base station to the second base station, the first base station sends the context of the UE in the first base station (including the first mapping relationship described above) to the second Base station.
  • the second base station may delete the second base station corresponding to the identifier of the WD.
  • the identity of the MME of the WD and the MME S1 interface user equipment identity of the WD.
  • the path switch response message may carry the identifiers of the multiple WDs.
  • the second base station After receiving the path switch response message, acquires the identifiers of the plurality of WDs carried in the path switch response message, and deletes the first mapping relationship corresponding to the identifier of each of the plurality of WDs.
  • the second base station sends an RRC reconfiguration message to the UE.
  • the RRC reconfiguration message is used to notify the UE that the relay service cannot be continued for the WD.
  • the RRC reconfiguration message may carry the identifier of the WD.
  • the UE receives the RRC reconfiguration message, and deletes the mapping relationship between the UE and the WD.
  • the UE may save the mapping relationship between the UE and the WD. If the serving cell of the UE is changed, and the UE is unable to continue to provide the relay service for the WD after receiving the RRC reconfiguration message sent by the second base station, the UE may acquire the WD carried in the RRC reconfiguration message. Identify and delete the mapping relationship between the UE and the WD.
  • the UE may save the second mapping relationship, and the UE changes the serving cell of the UE, and after receiving the RRC reconfiguration message sent by the second base station, the UE learns that the information cannot be continued.
  • the second mapping relationship can also be deleted.
  • the RRC reconfiguration message may carry the identifier of the multiple WDs, and after receiving the RRC reconfiguration message, the UE receives the RRC reconfiguration message.
  • the identifiers of the multiple WDs carried in the RRC reconfiguration message may be obtained, and the first mapping relationship corresponding to the identifier of each WD of the identifiers of the multiple WDs is deleted.
  • the second base station may notify the UE by using the RRC reconfiguration message that the UE cannot continue to provide the relay service for the WD, so that the UE may delete the mapping between the UE and the WD after receiving the RRC reconfiguration message.
  • the relationship saves the storage resources of the UE, improves the utilization of network resources, and the UE can also provide relay services for other WDs.
  • the UE sends a seventh message to the WD.
  • the seventh message is used to indicate that the WD switches the indirect path to the direct path.
  • the seventh message may be a direct path switching indication message, or may be another PC5 interface message, and may be determined according to actual usage requirements. The invention is not limited.
  • the WD receives the seventh message.
  • the WD After receiving the seventh message, the WD abandons the use of the indirect path to transmit the uplink data and signaling, and starts to use the direct path to transmit the uplink data and signaling.
  • the WD sends a response message of the seventh message to the UE.
  • the WD may send a response message of the seventh message to the UE.
  • the first MME may send a modify bearer request message to the SGW of the UE.
  • the modify bearer request message is used to notify the SGW of the UE, and the base station serving the UE has changed.
  • the SGW of the UE may go to the first after receiving the modify bearer request message.
  • the MME sends a modify bearer response message.
  • the method for accessing a network by a UE after the WD is switched from a direct path to an indirect path, the base station serving the UE (the UE providing the relay service for the WD) is changed from the first base station to the first base station.
  • the second base station sends a path switch request message to the first MME.
  • the first MME determines the second base station and the second MME or the SGW of the WD according to the context of the UE.
  • the first MME sends a path switch response message to the second base station, the second base station receives the path switch response message, and deletes the first mapping relationship; and the second base station sends an RRC reconfiguration message to the UE.
  • the UE receives the RRC reconfiguration message to notify the UE that the UE cannot continue to provide the relay service for the WD, and deletes the mapping relationship between the UE and the WD.
  • the second base station may be deleted in time.
  • a mapping relationship and a mapping relationship between the UE and the WD saved in the UE saves storage resources of the base station and the UE, and improves utilization of network resources.
  • the base station serving the WD and the base station serving the UE may be the same base station, or may be different.
  • Base station In the method for accessing a network by using a UE, the base station serving the WD and the base station serving the UE (that is, the foregoing first base station) may be the same base station, or may be different. Base station.
  • the base station serving the WD and the base station serving the UE are the same base station
  • the base station serving the WD and serving the UE may be caused.
  • the base station becomes a different base station, as shown in the following case a; when the serving cell of the UE is changed, the base station serving the WD and the base station serving the UE may also become different base stations, specifically As shown in case b below.
  • Case a The base station serving the WD has changed.
  • Case b The base station serving the UE changes.
  • the method for accessing the network by the UE according to the embodiment of the present invention is implemented, and the WD is independent of the base station serving the WD when the UE accesses the network, that is, whether the base station serving the WD changes or not,
  • the method for accessing the network through the UE can implement the WD accessing the network through the UE, that is, after the base station serving the WD is changed, before the base station serving the WD is changed, that is, the WD is provided.
  • the serving base station and the base station serving the UE are the same base station, the UE serving the WD can still continue to provide services for the WD.
  • the UE that previously served the WD cannot continue to provide services for the WD after the base station serving the WD in the conventional technology is changed (in the conventional technology, the WD provides the service to the WD when the UE accesses the network through the UE).
  • the base station and the base station serving the UE are usually the same base station).
  • the MME that serves the WD may change, and the MME may also change the MME.
  • the method for accessing the network through the UE may exist in the embodiment of the present invention.
  • Two possibilities One possibility is that the UE that provides relay service for the WD before (ie, before the change of the MME of the WD) can still continue to provide relay service for the WD; another possibility is that the previous (ie, before the change of the MME of the WD) is WD. UEs that provide relay services cannot continue to provide relay services for WD. For details, refer to the related description in the first case of scenario 3 in the foregoing embodiment, and details are not described herein again.
  • the method for accessing the network through the UE may exist when the base station serving the WD is changed, and the SGW of the WD may also be changed.
  • the SGW of the WD When the SGW of the WD is changed, the method for accessing the network through the UE may exist in the embodiment of the present invention.
  • Two possibilities One possibility is that the UE that provides relay service for the WD before (ie, before the WD's SGW changes) can still continue to provide relay service for the WD; the other possibility is that the previous (ie, before the WD SGW changes) is WD UEs that provide relay services cannot continue to provide relay services for WD.
  • the related description in the second case of scenario 3 in the foregoing embodiment and details are not described herein again.
  • the embodiments of the present invention may divide the function modules of the base station, the UE, the MME, the WD, and the like according to the foregoing method embodiments.
  • each function module may be divided according to each function, or two or more functions may be integrated into one.
  • Processing module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 12 a schematic structural diagram of a base station (that is, a first base station in the embodiment of the present invention) provided by the embodiment of the present invention is shown in FIG. 12, in FIG. 12, in a case where each function module is divided by using a corresponding function.
  • the first base station includes: a receiving module 41, an allocating module 42, an establishing module 43, a saving module 44, an updating module 45, a deleting module 46, and a sending module 47.
  • the receiving module 41 and the allocating module 42 are configured to support the first base station to execute S108 in the foregoing method embodiment, and the receiving module 41 and the deleting module 46 are configured to support the first base station to execute S305 in the foregoing method embodiment, and the receiving module 41 And updating module 45 is configured to support the first base station to perform S407 and S507 in the foregoing method embodiment.
  • the establishing module 43 is configured to support the first base station to execute S109 in the foregoing method embodiment.
  • the saving module 44 is configured to support the first base station to save the identifier of the second MME and the MME UE S1-AP ID of the WD saved in the first base station in S116 in the foregoing method embodiment.
  • the sending module 47 is configured to support the first base station to perform S110, S306, S408, and S508 in the foregoing method embodiments.
  • the receiving module 41, the assigning module 42, the building module 43, the saving module 44, the updating module 45, the deleting module 46, and the transmitting module 47 may also be used to perform other processes of the techniques described herein.
  • the first base station provided by the embodiment of the present invention further includes other functional modules for supporting the first base station to perform other method steps in the foregoing method embodiments, for example, the first base station further includes an embodiment for performing the foregoing method.
  • the first base station includes a processing module 401 and a communication module 402.
  • the processing module 401 is configured to control and manage the actions of the first base station, for example, perform the steps performed by the foregoing allocation module 42, the establishing module 43, the updating module 45, and the deleting module 46, and/or for performing the techniques described herein. Other processes.
  • the communication module 402 is configured to support interaction between the first base station and other devices, for example, performing the steps performed by the receiving module 41 and the transmitting module 47 described above.
  • the first base station may further include a storage module 403 and a bus 404.
  • the storage module 403 is configured to store program codes and data of the first base station, for example, store the content saved by the saving module 44.
  • the processing module 401 may be a processor or a controller in the first base station, where the processor or controller may be a baseband processing unit in the base station as shown in FIG. 4, and the processor or controller may implement or Various exemplary logical blocks, modules and circuits are described in connection with the present disclosure.
  • the processor or controller may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and an on-site A field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 402 can be a transceiver, a transceiver circuit or a communication interface in the first base station, and the transceiver, the transceiver circuit or the communication interface, etc. can be the antenna in the base station as shown in FIG. 4 above.
  • the storage module 403 may be a memory or the like in the first base station.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory Non-volatile memory, such as read-only memory (ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); The memory may also include a combination of the above types of memories.
  • the bus 404 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 404 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs include computer execution instructions, when the processor or controller in the first base station When the computer executes the instruction, the first base station performs the steps performed by the first base station in the method flow shown in the foregoing method embodiment.
  • the schematic diagram of the structure of the UE provided by the embodiment of the present invention is as shown in FIG. 14.
  • the UE includes: a receiving module 51, a sending module 52, and A module 53 is created.
  • the receiving module 51 and the establishing module 53 are configured to support the UE to execute S111 and S112 in the foregoing method embodiment, and the receiving module and the deleting module 55 are used to support the execution of S607 in the foregoing method embodiment.
  • the sending module 52 is configured to support the UE to perform S204, S216, S304, and S608 in the foregoing method embodiments.
  • the receiving module 51, the transmitting module 52, and the building module 53 described above can also be used to perform other processes of the techniques described herein.
  • the UE provided by the embodiment of the present invention further includes other function modules for supporting the UE to perform other method steps in the foregoing method embodiments, for example, the UE further includes S101, S112, Functional modules of S303 and S601.
  • FIG. 15 a schematic structural diagram of a UE provided by an embodiment of the present invention is shown in FIG. 15.
  • the UE includes a processing module 501 and a communication module 502.
  • the processing module 501 is configured to control and manage the actions of the UE, for example, to perform the steps performed by the above-described building module 53, and/or to perform other processes of the techniques described herein.
  • the communication module 502 is configured to support interaction between the UE and other devices, for example, performing the steps performed by the receiving module 51 and the transmitting module 52 described above.
  • the UE may further include a storage module 503 and a bus 504 for storing program codes and data of the UE.
  • the processing module 501 may be a processor or a controller in the UE, and the processor or controller may be the processor 11 in the mobile phone as shown in FIG. 2, and the processor or controller may implement or perform the combination.
  • the processor or controller can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 502 can be a transceiver, a transceiver circuit or a communication interface in the UE, and the transceiver, the transceiver circuit or the communication interface, etc. can be the RF circuit in the mobile phone as shown in FIG. 2 above.
  • the storage module 503 may be a memory or the like in the UE, and the memory may be the memory 14 in the mobile phone as shown in FIG. 2 described above.
  • the memory may include volatile memory, such as random access memory; the memory may also include non-volatile memory, such as read only memory, flash memory, hard disk or solid state hard disk; the memory may also include a memory of the kind described above combination.
  • Bus 504 can be an EISA bus or the like.
  • the bus 504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs include computer execution instructions, when the processor in the UE executes the computer to execute the instructions.
  • the UE performs the steps performed by the UE in the method flow shown in the foregoing method embodiment.
  • FIG. 16 a schematic structural diagram of a first MME according to an embodiment of the present invention is shown in FIG. 16 in a case where each functional module is divided by using corresponding functions.
  • the first MME includes: a receiving module 61, a determining module 62, and a sending module 63.
  • the receiving module 61 is configured to support the first MME to perform S113 in the foregoing method embodiment.
  • the receiving module 61 and the determining module 62 are configured to support the first MME to perform S106, S405, S505, and S603 in the foregoing method embodiments.
  • the sending module 63 is configured to support the first MME to execute S107, S114, S206, S107, S114, S215, S308, S406, S506, and S604 in the foregoing method embodiment.
  • the above receiving module 61, determining module 62 and transmitting module 63 may also be used to perform other processes of the techniques described herein.
  • the first MME that is provided by the embodiment of the present invention further includes other functional modules for supporting the first MME to perform other method steps in the foregoing method embodiment, for example, the first MME further includes an embodiment for performing the foregoing method.
  • the first MME includes a processing module 601 and a communication module 602.
  • the processing module 601 is configured to control and manage the actions of the first MME, for example, perform the steps performed by the determining module 62 described above, and/or other processes for performing the techniques described herein.
  • the communication module 602 is configured to support interaction between the UE and other devices, for example, performing the steps performed by the receiving module 61 and the transmitting module 63 described above.
  • the first MME may further include a storage module 603 and a bus 604, where the storage module 603 is configured to store program codes and data of the first MME.
  • the processing module 601 may be a processor or a controller in the first MME, and the processor or controller may be a processor 31 integrated in the server shown in FIG. 5, and the processor or controller may be Various exemplary logical blocks, modules, and circuits are described in conjunction with the present disclosure.
  • the processor or controller can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 602 may be a transceiver, a transceiver circuit, or a communication interface in the first MME.
  • the transceiver, the transceiver circuit, or the communication interface may be an I/O interface 33 integrated in the server shown in FIG.
  • the storage module 603 may be a memory or the like in the first MME, and the memory may be the memory 32 integrated in the server shown in FIG. 5 described above.
  • the memory may include volatile memory, such as random access memory; the memory may also include non-volatile memory, such as read only memory, flash memory, hard disk or solid state hard disk; the memory may also include a memory of the kind described above combination.
  • the bus 604 described above may be an EISA bus or the like in the first MME.
  • the bus 604 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs include computer execution instructions, when the processor in the first MME executes the computer When the command is executed, the first MME performs the steps performed by the first MME in the method flow shown in the foregoing method embodiment.
  • FIG. 18 a schematic structural diagram of a second MME provided by an embodiment of the present invention is shown in FIG. 18 in a case where each functional module is divided by using corresponding functions.
  • the second MME includes: an obtaining module 71 and a sending module 72.
  • the obtaining module 71 is configured to support the second MME to perform S104 in the foregoing method embodiment.
  • the sending module 72 is configured to support the second MME to perform S105, S115, S105, S504, and S509 in the foregoing method embodiment.
  • the second MME provided by the embodiment of the present invention further includes a receiving module 73 and a determining module 74.
  • the receiving module 73 and the determining module 74 are configured to support the second MME to execute S103 in the foregoing method embodiment.
  • the second MME provided by the embodiment of the present invention further includes a receiving module 73.
  • the receiving module 73 is configured to support the second MME to perform S207 in the foregoing method embodiment.
  • the acquisition module 71, the transmitting module 72, the receiving module 73, and the determining module 74 described above can also be used to perform other processes of the techniques described herein.
  • the second MME that is provided by the embodiment of the present invention further includes another function module for supporting the second MME to perform other method steps in the foregoing method embodiment, where, for example, the second MME further includes an embodiment for performing the foregoing method.
  • the functional modules of S401 and S501 are provided by the embodiment of the present invention.
  • the second MME includes a processing module 701 and a communication module 702.
  • the processing module 701 is configured to control and manage the actions of the second MME, for example, perform the steps performed by the obtaining module 71 and the determining module 74, and/or other processes for performing the techniques described herein.
  • the communication module 702 is configured to support interaction between the UE and other devices, for example, performing the steps performed by the sending module 72 and the receiving module 73 described above.
  • the second MME may further include a storage module 703 and a bus 704, where the storage module 703 is configured to store program codes and data of the second MME.
  • the processing module 701 may be a processor or a control in the second MME.
  • the processor or controller may be a processor 31 integrated in the server as shown in FIG. 5 above, which may implement or perform various exemplary logic described in connection with the present disclosure. Boxes, modules and circuits.
  • the processor or controller can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 702 may be a transceiver, a transceiver circuit, or a communication interface in the second MME.
  • the transceiver, the transceiver circuit, or the communication interface may be an I/O interface 33 integrated in the server shown in FIG.
  • the storage module 703 may be a memory or the like in the second MME, and the memory may be the memory 32 integrated in the server shown in FIG. 5 described above.
  • the memory may include volatile memory, such as random access memory; the memory may also include non-volatile memory, such as read only memory, flash memory, hard disk or solid state hard disk; the memory may also include a memory of the kind described above combination.
  • the bus 704 described above may be an EISA bus or the like in the second MME.
  • the bus 704 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 21, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the invention further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs include instructions, when the processor in the second MME executes the instruction, The second MME performs the steps performed by the second MME in the method flow shown in the foregoing method embodiment.
  • FIG. 22 a schematic structural diagram of a WD provided by an embodiment of the present invention is shown in FIG. 22 in a case where each functional module is divided by a corresponding function.
  • the WD includes a transmitting module 81 and a receiving module 82.
  • the sending module 81 is configured to support the WD to perform S102, S202, and S610 in the foregoing method embodiments.
  • the receiving module 82 is configured to support the WD to perform S609 in the foregoing method embodiment.
  • the above described transmitting module 81 and receiving module 82 can also be used to perform other processes of the techniques described herein.
  • the WD provided by the embodiment of the present invention further includes other functional modules for supporting the WD to perform other method steps in the foregoing method embodiments, for example, the WD further includes S101, S112, Functional modules of S301, S401 and S501.
  • FIG. 23 a schematic structural diagram of a WD provided by an embodiment of the present invention is shown in FIG.
  • the WD includes a processing module 801 and a communication module 802.
  • the processing module 801 is configured to control and manage the action of the WD.
  • the communication module 802 is configured to support interaction between the UE and other devices, for example, performing the steps performed by the sending module 81 and the receiving module 82 described above.
  • the WD may also include a storage module 803 and a bus 804 for storing program codes and data of the WD.
  • the processing module 801 may be a processor or controller in the WD, and the processor may be the processor 21 in the smart watch shown in FIG. 3, and the processor or controller may implement or perform the present invention.
  • the processor or controller can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 802 may be a transceiver, a transceiver circuit or a communication interface in the WD.
  • the transceiver, the transceiver circuit or the communication interface may be the RF circuit 22 in the smart watch as shown in FIG.
  • the storage module 803 may be a memory or the like in the WD, and the memory may be the memory 24 in the smart watch as shown in FIG. 3 described above.
  • the memory may include volatile memory, such as random access memory; the memory may also include non-volatile memory such as read only memory, flash memory, hard disk or solid state hard disk; Combinations of the above types of memory may also be included.
  • the bus 804 described above may be an EISA bus or the like in the WD.
  • the bus 804 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in Figure 23, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores one or more programs, and the one or more programs include computer execution instructions, when the processor in the WD executes the computer to execute the instructions. At this time, the WD performs the steps performed by the WD in the method flow shown in the above method embodiment.
  • the embodiment of the present invention provides a wireless communication system, which may include a base station (ie, the first base station described in the foregoing embodiment), a UE, and an MME of the UE (that is, the foregoing embodiment) MME), MME of WD and WD (ie, the second MME described in the above embodiment).
  • a base station ie, the first base station described in the foregoing embodiment
  • UE ie, the first base station described in the foregoing embodiment
  • MME MME of WD
  • WD ie, the second MME described in the above embodiment.
  • the first base station may be the base station 1 as shown in FIG. 1;
  • the foregoing UE may be the UE as shown in FIG. 1;
  • the first MME may be the MME1 as shown in FIG. 1; MME2 shown in FIG.
  • the above WD may be a WD as shown in FIG. 1.
  • the descriptions of the first base station, the UE, the first MME, the second MME, and the WD refer to the related description in the foregoing method embodiments and device embodiments, and details are not described herein again.
  • the first MME (ie, the MME of the UE) may send a first message requesting the WD to access the network through the UE by using the first base station (ie, the base station serving the UE), so that the first message is
  • the base station allocates a PDCP identifier to the WD according to the first message, and establishes between the DRB between the UE and the first base station and the SGW of the first base station and the WD according to the uplink S1 information of the WD carried in the first message and the PDCP identifier.
  • the mapping relationship carried by the S1 so that the WD can access the network through the UE, and the WD can forward the uplink data of the WD to the first base station by using the UE, and the uplink data is sent by the first base station to the SGW of the WD, so that the WD SWG
  • the uplink data is forwarded again, that is, the uplink data of the WD can be forwarded to the SGW of the WD by the UE and the first base station.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented by means of hardware or by means of a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, easable programmable read ROM (EPROM), electrically erasable programmable read only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically divided
  • the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.

Abstract

本发明实施例提供一种通过用户设备接入网络的方法、装置及系统,涉及通信技术领域,解决了现有技术中WD的耗电量较大,WD的待机时间较短的问题。该方法包括:第一基站接收第一MME发送的第一消息,第一消息中携带WD的上行S1信息,第一消息用于第一MME向第一基站请求WD通过用户设备UE接入网络,第一基站为UE提供服务,第一MME为UE的MME;第一基站根据第一消息,为WD分配PDCP标识,PDCP标识用于标识待传输的上行数据为WD的数据;第一基站根据上行S1信息和PDCP标识,建立第一映射关系,第一映射关系为UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系。

Description

一种通过用户设备接入网络的方法、装置及系统 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通过用户设备接入网络的方法、装置及系统。
背景技术
随着通信技术的不断发展,可安装客户识别模块(英文:subscriber identity module,SIM)卡的可穿戴设备(英文:wearable device,WD)的应用越来越广泛。安装了SIM卡的WD可以直接与基站通信。
目前,由于WD一般体积比较小,且形状特殊,使得WD的电池体积较小,由于电池体积的限制,使得WD的电池容量较小。
当WD与基站直接通信时,由于WD与基站之间一般距离较远,因此当WD向基站传输数据时所需的发射功率较大,从而导致WD的耗电量较大,WD的待机时间较短。
发明内容
本申请提供一种通过用户设备接入网络的方法、装置及系统,解决了现有技术中WD的耗电量较大,WD的待机时间较短的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通过用户设备接入网络的方法,该方法包括:第一基站(即为UE提供服务的基站)接收第一MME(即UE的MME)发送的用于第一MME向第一基站请求WD通过UE接入网络的第一消息,该第一消息中携带WD的上行S1信息;并且第一基站根据该第一消息,为WD分配用于标识待传输的上行数据为WD的数据的PDCP标识;以及第一基站根据该第一消息中携带的WD的上行S1信息和该PDCP标识,建立第一映射关系(即UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系)。
其中,第一基站建立上述第一映射关系之后,即可认为WD可以通过UE接入网络。即WD可以将WD的上行数据发送给UE,并且由UE根据上述第一映射关系将该上行数据转发给WD的SGW,从而WD的SWG再将该上行数据转发出去。
本申请中,第一MME(即UE的MME)可以通过向第一基站(即为UE提供服务的基站)发送请求WD通过UE接入网络的第一消息,使得第一基站根据该第一消息为WD分配PDCP标识,并且根据第一消息中携带的WD的上行S1信息和该PDCP标识建立UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系,如此WD可以通过UE接入网络(即UE可以为WD提供中继服务),并且WD可以通过UE将WD的上行数据转发给第一基站,且由第一基站将该上行数据发送给WD的SGW,从而WD的SWG再将该上行数据转发出去,即WD的上行数据可以通过UE和第一基站转发至WD的SGW。与现有技术中WD与为WD提供服务的基站直接通信相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
在第一方面的第一种可能的实现方式中,本申请提供的通过用户设备接入网络的方法中,上述第一基站根据WD的上行S1信息和PDCP标识,建立第一映射关系的方法包括:第一基站根据WD的上行S1信息,获取第一EPS承载标识(多个EPS承载标识中的一个)对应的第一S1接口隧道端点标识和第一QoS值;并且第一基站根据DRB的标识和QoS值的对应关系,确定与该第一QoS值对应的第一DRB的标识;然后第一基站根据该第一DRB的标识、该PDCP标识,WD的上行S1信息中的SGW的IP地址以及第一S1接口隧道端点标识,建立第一映射关系。如此,第一基站通过上述方式可以建立第一映射关系(即UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系)。
在第一方面的第二种可能的实现方式中,上述第一基站接收第 一MME发送的第一消息之后,本申请提供的通过用户设备接入网络的方法还包括:第一基站保存第一消息中的用于发送WD的上行信令的WD的MME的标识和WD的MME S1接口用户设备标识。
本申请中,第一基站在接收到第一MME发送的第一消息之后,由于第一基站可以保存第一消息中携带的用于发送WD的上行信令的WD的MME的标识和WD的MME S1接口用户设备标识,因此在UE将WD发送的上行信令发送给第一基站之后,可以由第一基站根据WD的MME的标识和WD的MME S1接口用户设备标识将该上行信令发送给WD的MME,即WD可以通过UE和第一基站将WD的上行信令发送给WD的MME,从而完成WD通过UE接入网络后上行信令的发送。
其中,第一基站接收到UE发送的WD的上行信令之后,第一基站首先可以根据该上行信令中携带的PDCP标识,找到第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识,然后第一基站再根据该WD的MME的标识和WD的MME S1接口用户设备标识将该上行信令发送给WD的MME。
在第一方面的第三种可能的实现方式中,如果WD的MME由当前的第二MME变更为第三MME,或者WD的SGW发生变更,那么上述第一基站建立第一映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:第一基站接收第一MME发送的第二消息;该第二消息用于在WD的MME由当前的第二MME变更为第三MME的情况下,更新WD的MME的标识和WD的MME S1接口用户设备标识;或者第二消息用于在WD的SGW发生变更的情况下,请求第一基站更新第一映射关系;然后第一基站根据第二消息,更新WD的MME的标识和WD的MME S1接口用户设备标识,或者更新第一映射关系。
本申请中,当WD的MME发生变更时,第一基站保存的WD的MME的标识和WD的MME S1接口用户设备标识可能会无法使用,此时第一基站可以通过更新该WD的MME的标识和WD的MME  S1接口用户设备标识,使得第一基站仍然能够成功为WD转发上行信令。当WD的SGW发生变更时,第一基站建立的第一映射关系可能会无法使用,此时第一基站可以通过更新该第一映射关系,使得第一基站仍然能够成功为WD转发上行数据。
在第一方面的第四种可能的实现方式中,上述第一基站建立第一映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:第一基站接收UE发送的用于请求第一基站删除第一映射关系的第三消息;并且第一基站根据该第三消息,删除第一映射关系。
本申请中,在第一基站建立第一映射关系之后,当WD与UE之间的链路(通常称为PC5链路)质量恶化时,由于WD无法继续通过UE接入网络,因此为了节省第一基站的存储资源,提高网络资源的利用率,第一基站可以删除上述建立的第一映射关系。
在第一方面的第五种可能的实现方式中,如果为UE提供服务的基站由第一基站变更为第二基站,那么本申请提供的通过用户设备接入网络的方法还包括:第二基站删除第二基站中保存的第一映射关系。
本申请中,当为UE提供服务的基站由第一基站变更为第二基站时,第一基站会将第一基站中的UE的上下文(包括上述的第一映射关系)发送给第二基站,而为UE提供服务的基站变更后,变更后的第二基站与WD的SGW之间可能不满足网络连接关系,因此UE无法继续为WD提供中继服务,从而为了节省第二基站的存储资源,提高网络资源的利用率,第二基站可以删除上述的第一映射关系。
在第一方面的第六种可能的实现方式中,上述第一基站建立第一映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:第一基站向UE发送用于指示UE建立第二映射关系的第四消息,第二映射关系为WD和UE之间的PC5承载与UE和第一基站之间的DRB的映射关系。
本申请中,通过第一基站向UE发送第四消息指示UE建立第二 映射关系(即WD和UE之间的PC5承载与UE和第一基站之间的DRB的映射关系),能够使得WD将WD的上行数据发送给UE之后,UE可以根据该第二映射关系,将该上行数据转发给第一基站。
在第一方面的第七种可能的实现方式中,上述第一基站接收到UE发送的第三消息之后,第一基站可以根据第三消息获知UE和WD之间的映射关系已经被UE删除,从而第一基站可以根据第三消息,删除上述建立的第一映射关系。进一步的,第一基站根据第三消息,删除第一映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:第一基站向第一MME发送用于通知第一MME,UE和WD之间的映射关系已经被删除的WD信息更新消息。
本申请中,第一基站通过通知第一MME,UE和WD之间的映射关系已经被删除,可以使得第一MME及时获知该UE与WD之间的映射关系已经被删除,从而第一MME可以允许其他WD通过该UE接入网络。
在第一方面的第八种可能的实现方式中,上述第二基站删除第二基站中保存的第一映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:第二基站向UE发送用于通知UE,UE无法继续为WD提供中继服务的RRC重配置消息。
本申请中,第二基站可以通过RRC重配置消息通知UE,UE无法继续为WD提供中继服务,从而使得UE在接收到该RRC重配置消息之后,可以删除UE与WD之间的映射关系,从而节省了UE的存储资源,提高了网络资源的利用率,并且UE还可以为其他WD提供中继服务。
第二方面,提供一种通过用户设备接入网络的方法,该方法包括:UE接收WD发送的用于WD向UE请求将直接路径切换为间接路径的第五消息,其中,直接路径为WD和为WD提供服务的基站之间的路径,间接路径为WD、UE和为UE提供服务的基站之间的路径;并且UE根据该第五消息,向UE的MME发送用于UE向UE的MME请求WD通过UE接入网络的第六消息。
本申请中,在UE接收到WD发送的WD请求将直接路径切换为间接路径的第五消息之后,UE可以通过向UE的MME发送第六消息,以请求WD通过UE接入网络,从而实现WD通过UE接入网络。与现有技术中WD与为WD提供服务的基站直接通信相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
在第二方面的第一种可能的实现方式中,在UE向UE的MME发送第六消息之后,本申请提供的通过用户设备接入网络的方法还包括:UE接收第一基站(即为UE提供服务的基站)发送的用于指示UE建立第二映射关系的第四消息,第二映射关系为WD和UE之间的PC5承载与UE和第一基站之间的DRB的映射关系;并且UE根据该第四消息,建立第二映射关系。
在第二方面的第二种可能的实现方式中,上述第四消息中携带WD的标识、PC5承载的标识、第一基站为WD分配的PDCP标识,以及第一DRB的标识。上述UE根据该第四消息,建立第二映射关系的方法包括:UE根据WD的标识、PC5承载的标识、PDCP标识,以及第一DRB的标识,建立第二映射关系。
在第二方面的第三种可能的实现方式中,在UE接收WD发送的第五消息之后,本申请提供的通过用户设备接入网络的方法还包括:
UE向WD发送用于指示将间接路径切换为直接路径的第七消息。
本申请中,UE接收WD发送的第五消息之后,UE可以向UE的MME请求WD通过UE接入网络,即WD的传输路径由直接路径切换为间接路径。而在UE确定WD的间接路径不可用(例如上述为UE提供服务的基站发生变更可能会导致UE无法继续为WD提供中继服务)时,UE可以通过向WD发送第七消息指示WD将间接路径切换为直接路径,从而能够保证WD的上行数据和上行信令的正 常传输。
在第二方面的第四种可能的实现方式中,本申请提供的通过用户设备接入网络的方法还包括:在UE检测到PC5链路断开的情况下,UE删除UE和WD之间的映射关系。
本申请中,在UE检测到PC5链路断开(如UE在一段时间内没有收到WD发送的心跳包)的情况下,UE可以删除WD和UE之间的映射关系,如此可以节省UE的存储资源,提高了网络资源的利用率。
在第二方面的第五种可能的实现方式中,在UE删除UE和WD之间的映射关系之后,本申请提供的通过用户设备接入网络的方法还包括:UE向第一基站发送用于请求第一基站删除第一映射关系的第三消息。
对于第二方面、第二方面的技术效果、第二方面的其他可能的实现方式以及第二方面的其他可能的实现方式的技术效果的描述具体可以参见上述对第一方面或其任意一种可能的实现方式的相关描述,此处不再赘述。
第三方面,提供一种通过用户设备接入网络的方法,该方法包括:第一MME(即UE的MME)接收第二MME(即WD的MME)发送的携带WD的上行S1信息的第八消息;并且第一MME根据该上行S1信息,确定第一基站(即为UE提供服务的基站)与第二MME和WD的SGW之间均满足网络连接关系;然后第一MME向第一基站发送用于第一MME向第一基站请求WD通过UE接入网络的第一消息。
本申请中,由于第一MME(即UE的MME)可以根据第二MME(即WD的MME)发送的WD的上行S1信息,确定第一基站(即为UE提供服务的基站)与第二MME和WD的服务网关SGW之间均满足网络连接关系,即第一MME可以根据WD的上行S1信息确定第一基站能够将WD的上行信令转发至第二MME,以及能够将WD的上行数据转发至WD的SGW,从而第一MME通过向第一基 站发送第一消息可以向第一基站请求WD通过UE接入网络,从而实现WD通过UE接入网络。与现有技术中WD与为WD提供服务的基站直接通信相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
在第三方面的第一种可能的实现方式中,在第一MME接收第二MME发送的第八消息之前,本申请提供的通过用户设备接入网络的方法还包括:第一MME接收UE发送的用于UE向第一MME请求WD通过UE接入网络的第六消息;第一MME接收UE发送的该第六消息之后,第一MME向第二MME发送用于请求WD的上行S1信息的第九消息。
本申请中,第一MME接收到UE发送的第六消息之后,第一MME可以通过向第二MME发送第九消息,向第二MME请求WD的上行S1信息,从而第一MME可以根据该上行S1信息判断第一基站与第二MME和WD的服务网关SGW之间是否满足网络连接关系,进而确定UE是否能够为WD提供中继服务。
在第三方面的第二种可能的实现方式中,在WD的MME由当前的第二MME变更为第三MME,或者WD的SGW发生变更的情况下,本申请提供的通过用户设备接入网络的方法还包括:第一MME接收第三MME或者第二MME发送的用于通知第一MME,WD的上行S1信息已更新的第十消息。
本申请中,由于当WD的MME或者SGW发生变更时,可能会导致WD的上行S1信息发生变更,因此在WD的MME或者SGW发生变更的情况下,第二MME或者第三MME(即变更后的MME)可以通过向第一MME(即UE的MME)发送第十消息通知第一MME,WD的上行S1信息已更新,从而使得第一MME可以根据更新后的上行S1信息判断第一基站与第三MME或者SGW是否满足网络连接关系,进而第一MME可以确定UE是否可以继续为WD提供中继服务。
其中,当WD的MME发生变更时,可以由第三MME向第一MME发送第十消息。当WD的SGW发生变更时(即WD的MME没有发生变更),可以由第二MME向第一MME发送第十消息。
在第三方面的第三种可能的实现方式中,在为UE提供服务的基站由第一基站切换为第二基站的情况下,本申请提供的通过用户设备接入网络的方法还包括:第一MME根据UE的上下文,确定第二基站与第二MME或WD的SGW之间不满足网络连接关系;并且第一MME向第二基站发送用于第一MME向第二基站指示WD无法通过UE接入网络的指示消息。
本申请中,在第一MME确定第二基站与第二MME或WD的SGW之间不满足网络连接关系时,第一MME可以通过向第二基站发送指示消息向第二基站指示WD无法继续通过UE接入网络,从而第二基站可以及时删除第二基站中保存的第一映射关系,如此可以节省第二基站的资源。
对于第三方面、第三方面的技术效果、第三方面的其他可能的实现方式以及第三方面的其他可能的实现方式的技术效果的描述具体可以参见上述对第一方面或其任意一种可能的实现方式,或者第二方面或其任意一种可能的实现方式的相关描述,此处不再赘述。
第四方面,提供一种通过用户设备接入网络的方法,该方法包括:第二MME(即WD的MME)获取WD的上行S1信息;并且第二MME向第一MME(即UE的MME)发送携带该上行S1信息的第八消息。
在第四方面的第一种可能的实现方式中,本申请提供的通过用户设备接入网络的方法中,上述第二MME获取WD的上行S1信息,包括:第二MME根据WD的上下文,获取WD的上行S1信息。
在第四方面的第二种可能的实现方式中,在第二MME向第一MME发送第八消息之前,本申请提供的通过用户设备接入网络的方法还包括:第二MME接收WD发送的用于WD向第二MME请求将WD的直接路径切换为WD的间接路径的第十一消息,第十一消息 中携带UE的标识;并且第二MME根据该UE的标识,确定第一MME。
本申请中,第二MME接收到第十一消息之后,第二MME可以根据第十一消息中携带的UE的标识,确定UE的MME,即第一MME。
在第四方面的第三种可能的实现方式中,在第二MME获取WD的上行S1信息之前,本申请提供的通过用户设备接入网络的方法还包括:第二MME接收第一MME发送的用于请求WD的上行S1信息的第九消息。进一步的,上述第二MME向第一MME发送第八消息的方法包括:第二MME接收第一MME发送的第九消息之后,第二MME向第一MME发送第八消息。
在第四方面的第四种可能的实现方式中,在WD的MME由第二MME变更为第三MME,或者WD的SGW发生变更的情况下,本申请提供的通过用户设备接入网络的方法还包括:第三MME或者第二MME向第一MME发送用于通知第一MME,WD的上行S1信息已更新的第十消息。
对于第四方面、第四方面的技术效果、第四方面的其他可能的实现方式以及第四方面的其他可能的实现方式的技术效果的描述具体可以参见上述对第一方面或其任意一种可能的实现方式,或者第二方面或其任意一种可能的实现方式,或者第三方面或其任意一种可能的实现方式的相关描述,此处不再赘述。
第五方面,提供一种通过用户设备接入网络的方法,该方法包括:在WD与UE相互发现之后,WD向UE发送用于WD向UE请求将直接路径切换为间接路径的第五消息,或者WD向第二MME(即WD的MME)发送用于WD向第二MME请求将WD的直接路径切换为WD的间接路径的第十一消息。其中,直接路径为WD和为WD提供服务的基站之间的路径,间接路径为WD、UE和为UE提供服务的基站之间的路径。
在第五方面的第一种可能的实现方式中,在上述WD向UE发 送用于WD向UE请求将直接路径切换为间接路径的第五消息之后,本申请提供的通过用户设备接入网络的方法还包括:WD接收UE发送的用于指示将间接路径切换为直接路径的第七消息。
对于第五方面、第五方面的技术效果、第五方面的其他可能的实现方式以及第五方面的其他可能的实现方式的技术效果的描述具体可以参见上述对第一方面或其任意一种可能的实现方式,或者第二方面或其任意一种可能的实现方式,或者第三方面或其任意一种可能的实现方式,或者第三方面或其任意一种可能的实现方式的相关描述,此处不再赘述。
第六方面,提供一种基站,该基站为第一基站(即为UE提供服务的基站),该基站包括:接收模块、分配模块和建立模块,其中,接收模块用于接收第一MME(即UE的MME)发送的用于第一MME向第一基站请求WD通过UE接入网络的第一消息,第一消息中携带WD的上行S1信息;分配模块用于根据接收模块接收的第一消息,为WD分配用于标识待传输的上行数据为WD的数据的PDCP标识;建立模块用于根据接收模块接收的该上行S1信息和分配模块为WD分配的PDCP标识,建立第一映射关系(即UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系)。
需要说明的是,本申请提供的基站包括但不限于上述第六方面中的接收模块、分配模块和建立模块,并且上述第六方面中的接收模块、分配模块和建立模块具有的功能包括但不限于上述描述的功能。该基站可以包括用于执行上述第一方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法的单元/模块,这些单元/模块是为了执行上述第一方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法,而对基站进行的逻辑上的划分。
上述第六方面的技术效果的描述具体可参见上述对第一方面或其任意一种可能的实现方式的技术效果的相关描述,此处不再赘述。
第七方面,提供一种UE,该UE包括:接收模块和发送模块,其中,接收模块用于接收WD发送的用于WD向UE请求将直接路 径切换为间接路径的第五消息,直接路径为WD和为WD提供服务的基站之间的路径,间接路径为WD、UE和为UE提供服务的基站之间的路径;发送模块用于根据接收模块接收的第五消息,向UE的MME发送用于UE向UE的MME请求WD通过UE接入网络的第六消息。
需要说明的是,本申请提供的UE包括但不限于上述第七方面中的接收模块和发送模块,并且上述第七方面中的接收模块和发送模块具有的功能包括但不限于上述描述的功能。该UE可以包括用于执行上述第二方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法的单元/模块,这些单元/模块是为了执行上述第二方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法,而对UE进行的逻辑上的划分。
上述第七方面的技术效果的描述具体可参见上述对第二方面或其任意一种可能的实现方式的技术效果的相关描述,此处不再赘述。
第八方面,提供一种MME,该MME为第一MME,该MME包括:接收模块、确定模块和发送模块,其中,接收模块用于接收第二MME发送的第八消息,第八消息中携带WD的上行S1信息,第一MME为UE的MME,第二MME为WD的MME;确定模块用于根据接收模块接收的上行S1信息,确定第一基站与第二MME和WD的服务网关SGW之间均满足网络连接关系,第一基站为UE提供服务;发送模块用于向第一基站发送用于第一MME向第一基站请求WD通过UE接入网络的第一消息。
需要说明的是,本申请提供的MME(即第一MME)包括但不限于上述第八方面中的接收模块、确定模块和发送模块,并且上述第八方面中的接收模块、确定模块和发送模块具有的功能包括但不限于上述描述的功能。该MME可以包括用于执行上述第三方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法的单元/模块,这些单元/模块是为了执行上述第三方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法,而对该MME 进行的逻辑上的划分。
上述第八方面的技术效果的描述具体可参见上述对第三方面或其任意一种可能的实现方式的技术效果的相关描述,此处不再赘述。
第九方面,提供一种MME,该MME为第二MME,该MME包括:获取模块和发送模块,获取模块用于获取WD的上行S1信息,第二MME为WD的MME;发送模块用于向第一MME发送第八消息,第八消息中携带上行S1信息,第一MME为UE的MME。
需要说明的是,本申请提供的MME(即第二MME)包括但不限于上述第九方面中的获取模块和发送模块,并且上述第九方面中的获取模块和发送模块具有的功能包括但不限于上述描述的功能。该MME可以包括用于执行上述第四方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法的单元/模块,这些单元/模块是为了执行上述第四方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法,而对该MME进行的逻辑上的划分。
上述第九方面的技术效果的描述具体可参见上述对第四方面或其任意一种可能的实现方式的技术效果的相关描述,此处不再赘述。
第十方面,提供一种WD,该WD包括:发送模块,发送模块用于向UE发送用于WD向UE请求将直接路径切换为间接路径的第五消息,或者用于向第二MME(即WD的MME)发送用于WD向第二MME请求将WD的直接路径切换为WD的间接路径的第十一消息。其中,直接路径为WD和为WD提供服务的基站之间的路径,间接路径为WD、UE和为UE提供服务的基站之间的路径。
在上述第一方面至第十方面中,本申请中上述WD的上行S1信息包括:WD的MME的标识、WD的MME S1接口用户设备标识、WD的多个演进分组系统EPS承载标识,以及与每个EPS承载标识对应的SGW的互联网协议IP地址、S1接口隧道端点标识和服务质量QoS值。
需要说明的是,本申请提供的WD包括但不限于上述第十方面中的发送模块,并且上述第十方面中的发送模块具有的功能包括但 不限于上述描述的功能。该WD可以包括用于执行上述第五方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法的单元/模块,这些单元/模块是为了执行上述第五方面或其任意一种可能的实现方式所述的通过用户设备接入网络的方法,而对该WD进行的逻辑上的划分。
上述第十方面的技术效果的描述具体可参见上述对第五方面或其任意一种可能的实现方式的技术效果的相关描述,此处不再赘述。
第十一方面,提供一种基站,该基站包括处理器、收发器和存储器;其中,存储器用于存储计算机执行指令,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行上述第一方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。具体的通过用户设备接入网络的方法可以参见上述对第一方面及其任意一种可能的实现方式中的相关描述,此处不再赘述。
第十二方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当基站的处理器执行该计算机执行指令时,该基站执行上述第一方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。
第十一方面和第十二方面的技术效果具体可以参见上述对第一方面的技术效果的相关描述,此处不再赘述。
第十三方面,提供一种UE,该UE包括:处理器、收发器和存储器;其中,存储器用于存储计算机执行指令,当UE运行时,处理器执行存储器存储的计算机执行指令,以使UE执行上述第二方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。具体的通过用户设备接入网络的方法可以参见上述对第二方面及其任意一种可能的实现方式中的相关描述,此处不再赘述。
第十四方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当UE的处理器执行该计算机执行指令时,该UE执行上述第二 方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。
第十三方面和第十四方面的技术效果具体可以参见上述对第二方面的技术效果的相关描述,此处不再赘述。
第十五方面,提供一种MME,该MME包括:处理器、收发器和存储器;其中,存储器用于存储计算机执行指令,当MME运行时,处理器执行存储器存储的计算机执行指令,以使MME执行上述第三方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。具体的通过用户设备接入网络的方法可以参见上述对第三方面及及其任意一种可能的实现方式中的相关描述,此处不再赘述。
第十六方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当MME的处理器执行该计算机执行指令时,该MME执行上述第三方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。
第十五方面和第十六方面的技术效果具体可以参见上述对第三方面的技术效果的相关描述,此处不再赘述。
第十七方面,提供一种MME,该MME包括:处理器、收发器和存储器;其中,存储器用于存储计算机执行指令,当MME运行时,处理器执行存储器存储的计算机执行指令,以使MME执行上述第四方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。具体的通过用户设备接入网络的方法可以参见上述对第四方面及其任意一种可能的实现方式中的相关描述,此处不再赘述。
第十八方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当MME的处理器执行该计算机执行指令时,该MME执行上述第四方面及其任意一种可能的实现方式所述的通过用户设备接入网 络的方法。
第十七方面和第十八方面的技术效果具体可以参见上述对第四方面的技术效果的相关描述,此处不再赘述。
第十九方面,提供一种WD,该WD包括:处理器、收发器和存储器;其中,存储器用于存储计算机执行指令,当WD运行时,处理器执行存储器存储的计算机执行指令,以使WD执行上述第五方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。具体的通过用户设备接入网络的方法可以参见上述对第五方面及其任意一种可能的实现方式中的相关描述,此处不再赘述。
第二十方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当WD的处理器执行该计算机执行指令时,该WD执行上述第五方面及其任意一种可能的实现方式所述的通过用户设备接入网络的方法。
第二十一方面,提供一种无线通信系统,该无线通信系统包括:上述第六方面或第十一方面中的基站、上述第七方面或第十三方面中的UE、上述第八方面或第十五方面中的MME(即UE的MME)、上述第九方面或第十七方面中的MME(即WD的MME)以及上述第十方面或第十九方面中的WD。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1为本发明实施例提供的EPS的网络架构的示意图;
图2为本发明实施例提供的手机的硬件结构示意图;
图3为本发明实施例提供的智能手表的硬件结构示意图;
图4为本发明实施例提供的基站的硬件结构示意图;
图5为本发明实施例提供的服务器的硬件结构示意图;
图6为本发明实施例提供的通过UE接入网络的方法示意图一;
图7为本发明实施例提供的通过UE接入网络的方法示意图二;
图8为本发明实施例提供的通过UE接入网络的方法示意图三;
图9为本发明实施例提供的通过UE接入网络的方法示意图四;
图10为本发明实施例提供的通过UE接入网络的方法示意图五;
图11为本发明实施例提供的通过UE接入网络的方法示意图六;
图12为本发明实施例提供的第一基站的结构示意图一;
图13为本发明实施例提供的第一基站的结构示意图二;
图14为本发明实施例提供的UE的结构示意图一;
图15为本发明实施例提供的UE的结构示意图二;
图16为本发明实施例提供的第一MME的结构示意图一;
图17为本发明实施例提供的第一MME的结构示意图二;
图18为本发明实施例提供的第二MME的结构示意图一;
图19为本发明实施例提供的第二MME的结构示意图二;
图20为本发明实施例提供的第二MME的结构示意图三;
图21为本发明实施例提供的第二MME的结构示意图四;
图22为本发明实施例提供的WD的结构示意图一;
图23为本发明实施例提供的WD的结构示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明实施例中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于描述对象的特定顺序。例如,第一消息、第二消息和第三消息等是用于区别不同消息,而不是用于描述消息的特定顺序。
在本发明的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个EPS承载标识是指两个或两个以上的EPS承 载标识。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先对本发明实施例中可能涉及到的一些概念进行介绍。
本发明实施例中的直接路径(也可以称为WD的直接路径,两者在本文中可以互换)为WD和为WD提供服务的基站之间的路径。
本发明实施例中的间接路径(也可以称为WD的间接路径,两者在本文中可以互换)为WD、用户设备(user equipment,UE)和为UE提供服务的基站之间的路径。
本发明实施例中的WD通过UE接入网络可以理解为UE为WD提供中继服务。
目前,由于WD一般体积比较小,且形状特殊,使得WD的电池体积较小,由于电池体积的限制,使得WD的电池容量较小。当WD与基站直接通信时,由于WD与基站之间一般距离较远,因此当WD向基站传输数据时所需的发射功率较大,从而导致WD的耗电量较大,WD的待机时间较短。
上述问题主要是在WD向基站传输上行数据和上行信令时产生的,因此为了解决上述问题,本发明实施例提供一种通过UE接入网络的方法,该方法中WD可以通过UE接入网络,向基站传输上行数据和上行信令,由于通常情况下WD与UE之间距离较近,因此WD通过UE向基站传输上行数据和上行信令时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
需要说明的是,本发明实施例提供的通过UE接入网络的方法, 可以支持多个WD通过UE接入网络,为了更加清楚地描述本发明实施例的技术方案,本发明实施例中仅以一个WD通过UE接入网络为例进行示例性的描述。
本发明实施例中WD通过UE接入网络的方法,应用于无线通信系统,示例性的,如图1所示的演进分组系统(evolued packet system,EPS)的网络架构示意图中示出了本发明实施例中的一种无线通信系统的网络架构。在图1中所示的EPS的网络架构中包括:WD、UE、基站1、基站2、MME1、MME2、SGW1和SGW2,其中,基站1为UE提供服务,基站2为WD提供服务,MME1为UE的MME,SGW1为UE的SGW,MME2为WD的MME,SGW2为WD的SGW。在实际应用中上述多个设备之间的连接为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用实线示意。
现有技术中,在如图1所示的EPS的网络架构中,当WD传输该WD的上行数据和上行信令时,WD会直接向基站2发送WD的上行数据和上行信令,基站2在接收到WD的上行数据和上行信令之后,将WD的上行数据发送给SGW2,上行信令发送给MME2。使用本发明实施例提供的通过UE接入网络的方法,WD可以先向UE发送WD的上行数据和上行信令,UE接收WD的上行数据和上行信令之后,可以向基站1发送WD的上行数据和上行信令,在基站1接收到WD的上行数据和上行信令之后,将WD的上行数据发送给SGW2,将WD的上行信令发送给MME2,即该WD可以将该WD的上行数据和上行信令先发送给UE,再通过UE传输该WD的上行数据和上行信令,与现有技术中WD直接传输该WD的上行数据和上行信令至第二基站相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据和上行信令时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
本发明实施例中的UE可以为:手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上 网本、个人数字助理(personal digital assistant,PDA)等。
示例性的,在本发明实施例中,图1所示的UE可以为手机,下面结合图2对本发明实施例中的手机的各个构成部件进行具体的介绍。如图2所示,手机包括:处理器11,射频(radio frequency,RF)电路12、电源13、存储器14、输入单元15、显示单元16、音频电路17等部件。本领域技术人员可以理解,图2中示出的手机的结构并不构成对手机的限定,其可以包括比如图2所示的部件更多或更少的部件,或者可以组合如图2所示的部件中的某些部件,或者可以与如图2所示的部件布置不同。
处理器11是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器14内的软件程序和/或模块,以及调用存储在存储器14内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器11可包括一个或多个处理单元;优选的,处理器11可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器11中。
RF电路12可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器11处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路12还可以通过无线通信与网络和其他设备通信。无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
手机包括给各个部件供电的电源13(比如电池),可选的,电源可以通过电源管理系统与处理器11逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
存储器14可用于存储软件程序以及模块,处理器11通过运行存储在存储器14的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器14可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器14可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元15可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元15可包括触摸屏151以及其他输入设备152。触摸屏151,也称为触摸面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏151上或在触摸屏151附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏151可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器11,并能接收处理器11发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏151。其他输入设备152可以包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元16可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元16可包括显示面板161,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极 管(organic light-emitting diode,OLED)等形式来配置显示面板161。进一步的,触摸屏151可覆盖显示面板161,当触摸屏151检测到在其上或附近的触摸操作后,传送给处理器11以确定触摸事件的类型,随后处理器11根据触摸事件的类型在显示面板161上提供相应的视觉输出。虽然在图2中,触摸屏151与显示面板161是作为两个独立的部件来实现手机的输入和输出功能,但是在某些实施例中,可以将触摸屏151与显示面板161集成而实现手机的输入和输出功能。
音频电路17、扬声器171和麦克风172,用于提供用户与手机之间的音频接口。音频电路17可将接收到的音频数据转换后的电信号,传输到扬声器171,由扬声器171转换为声音信号输出;另一方面,麦克风172将收集的声音信号转换为电信号,由音频电路17接收后转换为音频数据,再将音频数据输出至RF电路12以发送给比如另一手机,或者将音频数据输出至存储器14以便进一步处理。
手机还可以包括各种传感器。例如陀螺仪传感器、湿度计传感器、红外线传感器、磁力计传感器等,在此不再赘述。
尽管未示出,手机还可以包括无线保真(wireless fidelity,WiFi)模块、蓝牙模块等,在此不再赘述。
本发明实施例中的WD可以为智能手表、智能手环、虚拟现实(virtual reality,VR)眼镜等。
示例性的,在本发明实施例中,图1所示的WD可以为智能手表。如图3所示,智能手表包括:处理器21,射频(radio frequency,RF)电路22、电源23、存储器24、输入单元25、显示单元26等部件。本领域技术人员可以理解,图3中示出的智能手表的结构并不构成对智能手表的限定,其可以包括比如图3所示的部件更多或更少的部件,或者可以组合如图3所示的部件中的某些部件,或者可以与如图3所示的部件布置不同。本发明实施例中,对于图3所示的智能手表中的各个构成部件的具体介绍可以参照上述对图2所示的手机中相应的构成部件的介绍,此处不再赘述。
本发明实施例中上述如图1所示的基站1和基站2的硬件结构类似。示例性的,如图1所示的基站1和基站2的硬件结构可以参见如图4中所示的基站的构成部件。如图4所示,基站包括:射频拉远单元(radio remote unit,RRU)、基带处理单元(building base band unit,BBU)和天线,RRU和BBU之间可以用光纤连接,RRU再通过同轴电缆及功分器(耦合器)连接至天线,一般一个BBU可以连接多个RRU。
RRU可以包括4个模块:数字中频模块、收发信机模块、功放模块和滤波模块。数字中频模块用于光传输的调制解调、数字上下变频、数模转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放模块放大以及滤波模块滤波后,将射频信号通过天线发射出去。
BBU用于完成Uu接口(即UE与基站之间的接口)的基带处理功能(编码、复用、调制和扩频等)、无线网络控制器(radio network controller,RNC)和基站之间的逻辑接口的接口功能、信令处理、本地和远程操作维护功能,以及基站系统的工作状态监控和告警信息上报功能等。
示例性的,在本发明实施例中,图1所示的MME1、SGW1、MME2和SGW2,可以通过分别在服务器上集成MME1、SGW1、MME2和SGW2的各个功能模块来实现,下面结合图5对服务器的各个构成部件进行具体的介绍。如图5所示,服务器包括:处理器31、存储器32、I/O接口33和总线34等部件。
处理器31是服务器的控制中心,利用各种接口和线路连接整个服务器的各个部分,通过运行或执行存储在存储器32内的软件程序和/或模块,以及调用存储在存储器32内的数据,执行服务器的各种功能和处理数据,从而对服务器进行整体监控。可选的,处理器31可包括一个或多个处理单元;优选的,处理器31可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理 解的是,上述调制解调处理器也可以不集成到处理器31中。
存储器32可用于存储软件程序以及模块,处理器31通过运行存储在存储器32的软件程序以及模块,从而执行服务器的各种功能应用以及数据处理。存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
I/O接口33也就是输入输出接口,处理器31通过服务器的总线34与I/O接口33相连,I/O接口33再和其他设备连接,最终实现处理器31和其他设备的信息传输。
在实际应用中,本发明实施例提供的通过UE接入网络的方法可以应用于五个场景中。其中,场景1为:WD从直接路径切换为间接路径;场景2为:WD从间接路径切换为直接路径;场景3为:WD的MME发生变更(例如WD的MME由当前的第二MME变更为第三MME)或者WD的SGW发生变更;场景4为:为UE提供服务的基站发生变更(例如为UE提供服务的基站由第一基站变更为第二基站)。下面分别在不同场景下,对本发明实施例提供的通过UE接入网络的方法进行示例性的说明。
场景1:WD将直接路径切换为间接路径
在场景1中,由于WD触发从直接路径切换为间接路径的过程不同,使得在场景1中WD从直接路径切换为间接路径包括两种可能的实现方式,下面分别对这两种可能的实现方式进行详细的说明。
场景1的第一种可能的实现方式:
本发明实施例提供一种通过UE接入网络的方法,如图6所示,该方法可以包括以下步骤:
S101、WD与UE相互发现的过程。
可选的,WD与UE相互发现的过程可以为:UE发送第一广播消息,该第一广播消息中可以携带UE的标识,在WD接收UE发送的第一广播消息之后,WD可以获知周围有UE存在(即WD发现UE);相应的WD发送第二广播消息,该第二广播消息中可以携带 WD的标识,在UE接WD发送的第二广播消息之后,UE可以获知周围有WD存在(即UE发现WD)。
上述UE的标识可以为UE的全球唯一临时用户设备标识(globally unique temporary user equipment identity,GUTI),WD的标识可以为WD的GUTI。
可选的,WD与UE相互发现之后,WD可以开始执行下述S102。
S102、WD向第二MME发送第十一消息。
其中,第二MME为WD的MME,第十一消息用于WD向第二MME请求将WD的直接路径切换为WD的间接路径。
上述第十一消息中可以携带UE的标识和WD的标识。
示例性的,第十一消息可以为间接路径切换请求消息,也可以为其他的非接入层(Non-Access-Stratum,NAS)消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
S103、第二MME接收第十一消息,并根据第十一消息中携带的该UE的标识确定第一MME。
其中,第一MME为UE的MME。
可选的,第二MME接收WD发送的第十一消息之后,获取该第十一消息中携带的UE的标识,并根据UE的标识确定UE的MME,即第一MME。
S104、第二MME获取WD的上行S1信息。
可选的,第二MME可以根据WD的上下文,获取WD的上行S1信息。
第二MME接收WD发送的第十一消息之后,获取该第十一消息中携带的WD的标识,并根据该WD的标识获取与该WD的标识对应的WD的上下文,并根据该WD的上下文,获取WD的上行S1信息。
可选的,上述WD的上行S1信息可以包括:第二MME的标识、WD的MME S1接口用户设备标识(uniquely identifies the UE  association over the S1interface within the MME,MME UE S1-AP ID)、WD的多个EPS承载标识(EPS bearer identifier,EPS bearer ID),以及与每个EPS bearer ID对应的SGW的互联网协议地址(SGW internet protocol address,SGW IP address)、S1接口隧道端点标识(S1tunnel endpoint identifier,S1-TEID)和服务质量(Quality of Service,QoS)值。
需要说明的是,本发明实施例中,由于通常情况下,每个WD只有一个SGW,因此上述WD的上行S1信息中,与每个EPS bearer ID对应的SGW IP address即为WD的SGW的IP address。也就是说,上述WD的上行S1信息中,与每个EPS bearer ID对应的SGW IP address可以是相同的。
本发明实施例中,上述WD的上行S1信息中,第二MME的标识可以用于标识WD的MME。上述MME UE S1-AP ID可以用于在S1-AP接口(即信令面接口)上标识WD。上述WD的多个EPS承载标识可以用于标识WD与WD的分组数据网关(Packet Data Network Gateway,PGW)之间的多个EPS承载(其中,WD的SGW和WD的PGW之间为S5/8承载,该S5/8承载为EPS承载的一部分)。上述SGW IP address可以用于标识WD的SGW。上述S1接口隧道端点标识可以用于在S1-U接口(即用户面接口)上标识WD的基站和WD的SGW之间的隧道。上述QoS值可以用于标识EPS承载的服务质量。
结合上述WD的上行S1信息中各个标识的作用,具体的,上述各个标识应用在本发明实施例提供的通过UE接入网络的方法中时,具体可以为:
上述第二MME的标识和MME UE S1-AP ID,可以用于第一基站识别出第二MME和WD之后,向第二MME转发该WD的上行信令。具体的第一基站获取上述第二MME的标识和MME UE S1-AP ID的方法,以及根据上述第二MME的标识和MME UE S1-AP ID向第二MME转发该WD的上行信令的方法,将在下述实施例中进行详 细地描述。
可选的,上述WD的多个EPS bearer ID、与每个EPS bearer ID对应的SGW IP address、S1-TEID和QoS值,用于第一基站建立第一映射关系(即UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系)。具体的第一基站获取上述WD的多个EPS bearer ID、与每个EPS bearer ID对应的SGW IP address、S1-TEID和QoS值的方法,以及第一基站根据上述WD的多个EPS bearer ID、与每个EPS bearer ID对应的SGW IP address、S1-TEID和QoS值建立第一映射关系的方法,将在下述实施例中进行详细的描述。
可选的,上述第二MME的标识(即WD的MME的标识)还用于第一MME确定第一基站与第二MME是否满足网络连接关系。其中,第一基站与第二MME之间满足网络连接关系可以理解为:第一基站与第二MME之间可以进行信令传输。
可选的,上述与每个EPS bearer ID对应的SGW IP address为WD的SGW IP address,用于第一MME确定第一基站与WD的SGW是否满足网络连接关系。第一基站与WD的SGW之间满足网络连接关系可以理解为:第一基站与WD的SGW之间可以进行数据传输。
S105、第二MME向第一MME发送第八消息。
其中,该第八消息中可以携带WD的标识、UE的标识以及WD的上行S1信息。
示例性的,第八消息可以为中继接入请求消息,也可以为其他的通用分组无线服务隧道协议控制面(general packet radio service tunnelling protocol for control plane,GTP-C)消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
S106、第一MME接收第八消息,根据第八消息中携带的WD的上行S1信息,确定第一基站与第二MME和WD的SGW之间均满足网络连接关系。
其中,第一基站为UE提供服务。
可选的,上述第一基站与第二MME和WD的SGW之间均满足网络连接关系可以理解为:第一基站与第二MME之间可以进行信令传输,并且第一基站与WD的SGW之间可以进行数据传输。
第一MME接收第八消息之后,可以获取第八消息中携带的WD的标识、UE的标识以及WD的上行S1信息,然后第一MME根据WD的标识和UE的标识,可以确定WD请求通过UE接入网络。
可选的,第一MME根据第八消息中携带的WD的上行S1信息中的第二MME的标识和WD的SGW IP address(即与每个EPS bearer ID对应的SGW IP address)判断第一基站与第二MME和WD的SGW之间是否均满足网络连接关系,并且在第一MME确定第一基站与第二MME和WD的SGW之间均满足网络连接关系的情况下,第一MME可以确定第一基站能够连接到第二MME和WD的SGW,即第一MME可以确定第一基站在接收到WD的上行信令之后,能够将WD的上行信令传输至WD的MME,以及可以确定第一基站在接收到WD的上行数据之后,能够将WD的上述数据传输至WD的SGW,从而第一MME可以确定UE可以为WD提供中继服务。
可选的,在第一MME确定第一基站与第二MME或WD的SGW之间不满足网络连接关系的情况下,第一MME可以确定第一基站无法连接到第二MME或WD的SGW,即第一MME可以确定第一基站在接收到WD的上行数据之后,无法将WD的上述数据传输至WD的SGW,或者第一MME可以确定第一基站在接收到WD的上行信令之后,无法将WD的上行信令传输至WD的MME,从而第一MME可以确定UE无法为WD提供中继服务。
进一步的,在步骤S106之后,若UE处于连接态,则直接执行步骤S107;若UE处于空闲态,则UE的MME(即上述的第一MME)对该UE进行寻呼(paging),在UE进入连接态之后,执行步骤S106。
S107、第一MME向第一基站发送第一消息,第一消息中携带WD的上行S1信息。
其中,第一基站为UE提供服务。
上述第一消息用于第一MME向第一基站请求WD通过UE接入网络。第一消息中携带WD的上行S1信息。
可选的,该第一消息中可以携带WD的标识和WD的上行S1信息。
示例性的,第一消息可以为WD接入请求消息,也可以为其他的S1接口应用协议消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
S108、第一基站接收第一消息,并根据第一消息,为WD分配PDCP标识。
第一基站接收第一消息之后,获取第一消息中携带的WD的标识,并根据该WD的标识确定该WD请求通过UE接入网络,以及第一基站为该WD分配PDCP标识。
可选的,该PDCP标识可以为第一基站在PDCP层上为WD分配的标识。该PDCP标识可以用于标识待传输的上行数据为该WD的数据,还可以用于标识待传输的上行信令为该WD的信令。
S109、第一基站根据WD的上行S1信息和该PDCP标识,建立第一映射关系。
第一映射关系为UE和第一基站之间的数据无线承载(data radio bearer,DRB)与第一基站和WD的SGW之间的S1承载的映射关系。
可选的,第一基站接收第一消息之后,可以获取第一消息中携带的WD的上行S1信息,并根据该WD的上行S1信息和第一基站为该WD分配的PDCP标识,建立第一映射关系。
可选的,上述第一基站根据该WD的上行S1信息和第一基站为该WD分配的PDCP标识,建立第一映射关系的方法可以包括S109a-S109c:
S109a、第一基站根据该WD的上行S1信息,获取第一EPS bearer ID对应的第一S1-TEID和第一QoS值,第一EPS bearer ID为多个EPS bearer ID中的一个。
S109b、第一基站根据DRB的标识和QoS值的对应关系,确定与第一QoS值对应的第一DRB的标识。
S109c、第一基站根据第一DRB的标识、PDCP标识,WD的SGW IP address以及第一S1-TEID,建立第一映射关系。
示例性的,假设第一DRB的标识表示为UE DRB ID,PDCP标识表示为WD PDCP ID,WD的SGW IP address(即上述与每个EPS bearer ID对应的SGW IP address)表示为WD SGW IP address,第一S1-TEID表示为WD S1-TEID,则上述第一基站建立的第一映射关系可以表示为:UE DRB ID+WD PDCP ID←→WD S1-TEID+WD SGW IP address。
S110、第一基站向UE发送第四消息。
S111、UE接收第四消息,并根据第四消息,建立第二映射关系。
其中,第四消息用于指示该UE建立第二映射关系,第二映射关系为WD和该UE之间的PC5承载与该UE和第一基站之间的DRB的映射关系。
可选的,第一种可能的实现方式是:上述第四消息中可以携带WD的标识、PC5承载的标识、PDCP标识以及第一DRB的标识。UE接收到第四消息之后,UE可以根据第四消息中携带的WD的标识、PC5承载的标识、PDCP标识以及第一DRB的标识建立第二映射关系。
在第一种可能的实现方式中,上述PC5承载的标识可以为第一基站根据第一DRB的标识为UE指定的与该第一DRB的标识对应的待建立的PC5承载的标识。
可选的,第二种可能的实现方式是:上述第四消息中可以携带WD的标识、PDCP标识以及第一DRB的标识,在UE接收到第四消息之后,可以通过第四消息中携带的第一DRB的标识,生成与该第一DRB的标识对应的待建立的PC5承载的标识。然后UE可以根据WD的标识、PC5承载的标识、PDCP标识以及第一DRB的标识建立第二映射关系。
可选的,上述第四消息可以为无线资源控制(radio resource control,RRC)重配置消息,也可以为其他的RRC消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
示例性的,假设WD的标识表示为WD ID,PC5承载的标识表示为PC5bear ID,PDCP标识表示为WD PDCP ID,第一DRB的标识表示为UE DRB ID,则上述UE根据WD的标识、PC5承载的标识、PDCP标识以及第一DRB的标识建立的第二映射关系可以表示为:WD ID+PC5bearer ID←→UE DRB ID+WD PDCP ID。
本发明实施例中,通过第一基站向UE发送第四消息指示UE建立第二映射关系(即WD和UE之间的PC5承载与UE和第一基站之间的DRB的映射关系),能够使得WD将WD的上行数据发送给UE之后,UE可以根据该第二映射关系,将该上行数据转发给第一基站。
S112、UE与WD之间建立PC5承载的过程。
可选的,在该UE建立上述第二映射关系之后,该UE可以根据上述第二映射关系中的PC5承载的标识,建立该UE与该WD之间的PC5承载,其中,该PC5承载的标识为上述第二映射关系中的PC5承载的标识。
S113、第一基站向第一MME发送第一消息的响应消息。
可选的,在上述S111之后,UE可以告知第一基站UE建立了第二映射关系,从而第一基站可以向第一MME发送第一消息的响应消息,该第一消息的响应消息用于向第一MME确认UE允许WD通过该UE接入网络,从而第一MME可以确认UE允许WD通过该UE接入网络。
需要说明的是,本发明实施例不限定上述S112和S113的执行顺序。即本发明实施例可以先执行S112,后执行S113;也可以先执行S113,后执行S112;还可以同时执行S112和S113。
S114、第一MME向第二MME发送第八消息的响应消息。
可选的,在第一MME接收第一消息的响应消息之后,第一MME 可以向第二MME发送第八消息的响应消息。
S115、第二MME向WD发送第十一消息的响应消息。
可选的,在第二MME接收到第八消息的响应消息之后,第二MME向该WD发送第十一消息的响应消息。
本发明实施例提供的通过UE接入网络的方法,第一MME(即UE的MME)可以通过向第一基站(即为UE提供服务的基站)发送请求WD通过UE接入网络的第一消息,使得第一基站根据该第一消息为WD分配PDCP标识,并且根据第一消息中携带的WD的上行S1信息和该PDCP标识建立UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系,如此WD可以通过UE接入网络,并且WD可以通过UE将WD的上行数据转发给第一基站,且由第一基站将该上行数据发送给WD的SGW,从而WD的SWG再将该上行数据转发出去,即WD的上行数据可以通过UE和第一基站转发至WD的SGW。与现有技术中WD与为WD提供服务的基站直接通信相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
场景1的第二种可能的实现方式:
本发明实施例提供的一种通过UE接入网络的方法,如图7所示,可以将图6所示的S102和S103,替换为下述S202-S206,以及将图6所示的S115替换为下述S215和S216,以下仅对替换的步骤S202-S206以及S215和S216进行说明,对于其他步骤和过程均可以参见上述第一种可能的实现方式中的相关描述,此处不再赘述。
S202、WD向UE发送第五消息。
其中,第五消息用于WD向UE请求将WD的直接路径切换为WD的间接路径。
上述第五消息中可以携带WD的标识。WD的标识可以为WD的GUTI。
示例性的,第五消息可以为间接路径切换请求消息,也可以为 其他的PC5接口消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
S203、UE接收第五消息。
可选的,该UE接收该第五消息之后,可以根据第五消息中携带的该WD的标识,确定该WD请求将该WD的直接路径切换为该WD的间接路径。
该UE接收WD发送的第五消息之后,该UE继续执行步骤S204。
S204、UE向第一MME发送第六消息。
上述第六消息用于UE向第一MME请求WD通过该UE接入网络。可选的,该第六消息中还可以携带该WD的标识。
示例性的,第六消息可以为WD接入请求消息,也可以为其他的非接入层(Non-Access Stratum,NAS)消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,在UE接收到WD发送的WD请求将直接路径切换为间接路径的第五消息之后,UE可以通过向UE的MME发送第六消息,以请求WD通过UE接入网络,从而实现WD通过UE接入网络。
S205、第一MME接收第六消息。
可选的,第一MME接收UE发送的第六消息之后,第一MME可以获取第六消息中携带的WD的标识,并根据该WD的标识确定第二MME。
在第一MME确定第二MME之后,第一MME可以继续执行步骤S206。
S206、第一MME向第二MME发送第九消息。
其中,该第九消息中可以携带WD的标识。该第九消息用于第一MME向第二MME请求该WD的上行S1信息。
示例性的,上述第九消息可以为WD的上行S1信息请求消息,也可以为其他的通用分组无线服务隧道协议控制面(general packet radio service tunnelling protocol for control plane,GTP-C)消息,具 体的可以根据实际使用需求确定,本发明实施例不作限定。
S207、第二MME接收第九消息。
可选的,在第二MME接收第一MME发送的第九消息之后,第二MME可以根据第九消息确定发送第九消息的MME为第一MME,即UE的MME。
S215、第一MME向UE发送第六消息的响应消息。
需要说明的是,本发明实施例中不限定上述S114与S215的执行顺序,即本发明实施例中可以先执行S114,后执行S215;也可以先执行S215,后执行S114;还可以同时执行S114和S215。
S216、UE向WD发送第五消息的响应消息。
可选的,UE接收第一MME发送的第六消息的响应消息之后,UE可以向WD发送第五消息的响应消息。
可选的,结合图6或图7,在上述S112之后,本发明实施例提供的通过UE接入网络的方法中,WD还可以向UE发送上行数据,该上行数据包括PDCP标识,该PDCP标识用于标识该上行数据为该WD的上行数据,在该UE接收该上行数据之后,根据第二映射关系指示的承载向第一基站发送该上行数据,第一基站接收到该上行数据后,可以再根据该PDCP标识和第一映射关系指示的承载向WD的SGW发送该上行数据,从而使得WD通过UE接入网络之后,可以传输WD的上行数据。
可选的,结合图6或图7,在上述S108之后,本发明实施例提供的通过UE接入网络的方法还可以包括:
S116、第一基站保存第一消息中的第二MME的标识和WD的MME UE S1-AP ID。
其中,第二MME的标识和WD的MME UE S1-AP ID用于发送该WD的上行信令。
可选的,第一基站接收第一MME发送的第一消息之后,可以获取该第一消息中携带的WD的上行S1信息,并保存该WD的上行S1信息中的第二MME的标识和WD的MME UE S1-AP ID,以用于 向WD的MME(即上述第二MME)转发该WD的上行信令。
本发明实施例中,第一基站在接收到第一MME发送的第一消息之后,由于第一基站可以保存第一消息中携带的用于发送WD的上行信令的WD的MME的标识和WD的MME S1接口用户设备标识,因此在UE将WD发送的上行信令发送给第一基站之后,可以由第一基站根据WD的MME的标识和WD的MME S1接口用户设备标识将该上行信令发送给WD的MME,即WD可以通过UE和第一基站将WD的上行信令发送给WD的MME,从而完成WD通过UE接入网络后上行信令的发送。
需要说明的是,结合图6,本发明实施例不限定S116和S109-S115的执行顺序,即本发明实施例中可以先执行S116,后执行S109-S115;也可以先执行S109-S115,后执行S116;还可以同时执行S116和S109-S115。
进一步的,结合图7,本发明实施例不限定S116和S109-S216的执行顺序。即本发明实施例中可以先执行S116,后执行S109-S216;也可以先执行S109-S216,后执行S116;还可以同时执行S116和S109-S216。
可选的,在上述步骤S116之后,WD还可以向UE发送上行信令,该上行信令包括PDCP标识,该PDCP标识用于标识该上行信令为该WD的上行信令,在该UE接收该上行信令之后,该UE可以向第一基站发送该上行信令。第一基站接收到该上行信令后,可以获取该上行信令中携带的该PDCP的标识,然后第一基站再根据该PDCP标识,找到第一基站中保存的第二MME(即WD的MME)的标识和WD的MME UE S1-AP ID,然后第一基站再根据第二MME的标识和WD的MME UE S1-AP ID向第二MME发送该上行信令,从而使得WD通过UE接入网络之后,可以传输WD的上行信令。
本发明实施例提供的通过UE接入网络的方法中,WD的上行数据可以通过UE和第一基站转发至WD的SGW,如此能够实现WD通过UE接入网络。与现有技术中WD与基站直接通信相比,由 于通常情况下WD与UE之间距离较近,因此WD通过UE向基站传输上行数据和上行信令时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
场景2:WD从间接路径切换到直接路径
可选的,在该WD从该WD的直接路径切换到该WD的间接路径之后,该WD还可以从该WD的间接路径切换到该WD的直接路径。例如,当WD和UE之间的PC5链路质量恶化(如WD和UE之间的PC5链路的信道质量小于预设的信道质量阈值,其中,信号质量可以用信号强度来衡量)时,由于该WD的间接路径可能无法继续使用,所以该WD可以从该WD的间接路径切换到该WD的直接路径。
本发明实施例提供一种通过UE接入网络的方法,如图8所示,该方法可以包括以下步骤:
S301、WD和UE之间的PC5链路质量恶化。
S302、在WD检测到PC5链路质量恶化的情况下,WD使用WD的直接路径传输上行数据和上行信令。
S303、在UE检测到PC5链路断开的情况下,删除UE和WD之间的映射关系。
本发明实施例中,WD请求通过UE接入网络时,UE可以保存WD和UE之间的映射关系。可选的,为了节省UE的存储资源,在UE检测到PC5链路断开(如UE在一段时间内没有收到WD发送的心跳包)的情况下,UE可以删除WD和UE之间的映射关系。
可选的,为了进一步节省UE的存储资源,在UE检测到PC5链路断开的情况下,UE还可以删除上述场景1中UE建立的第二映射关系(即WD和UE之间的PC5承载与UE和第一基站之间的DRB的映射关系)。
可选的,本发明实施例中,当多个WD通过该UE接入网络时,该UE可以保存该多个WD和该UE之间的映射关系。
需要说明的是,本发明实施例不限定上述S302和S303的执行 顺序,即本发明实施例中可以先执行S302,后执行S303;也可以先执行S303再执行S302;还可以同时执行S302和S303。
S304、UE向第一基站发送第三消息。
其中,第一基站为该UE提供服务。上述第三消息中可以携带WD的标识,该第三消息用于请求第一基站删除上述场景1中第一基站建立的第一映射关系(即UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系)。
示例性的,第三消息可以为间接路径释放请求消息,也可以为其他的S1应用协议(S1Application Protocol,S1-AP)消息,具体的可以根据实际使用需求确定,本发明实施例不作限定。
S305、第一基站接收第三消息,并根据第三消息,删除第一映射关系。
可选的,在上述场景1中第一基站建立第一映射关系之后,第一基站可以根据第一映射关系指示的承载向WD的SGW发送WD的上行数据。当PC5链路质量恶化时,由于WD无法使用间接路径传输上行数据,因此第一基站无法继续根据第一映射关系向WD的SGW发送WD的上行数据。所以为了节省第一基站的存储资源可以删除第一映射关系。
可选的,在第一基站接收第三消息之后,第一基站可以获取第三消息中携带的WD的标识,并根据该WD的标识,删除与该WD的标识对应的第一映射关系。
可选的,在上述场景1中第一基站保存WD的MME的标识(即第二MME的标识)和WD的MME UE S1-AP ID之后,第一基站可以根据该PDCP标识、第一基站中保存的WD的MME的标识以及WD的MME UE S1-AP ID向第二MME发送该上行信令。当PC5链路恶化时,由于WD无法使用间接路径传输上行信令,因此第一基站无法继续采用第一基站中保存的WD的MME的标识和WD的MME UE S1-AP ID向第二MME发送该上行信令。所以为了节省第一基站的存储空间还可以删除第一基站中保存的WD的MME的标 识和WD的MME UE S1-AP ID。
S306、第一基站向UE发送第三消息的响应消息。
S307、第一基站向第一MME发送WD信息更新消息。
其中,该WD信息更新消息用于通知第一MME,UE和WD之间的映射关系已经被删除。
本发明实施例中,上述第一基站接收到UE发送的第三消息之后,第一基站可以根据第三消息获知UE和WD之间的映射关系已经被UE删除,从而第一基站可以根据第三消息,删除上述建立的第一映射关系。进一步的,第一基站根据第三消息,删除第一映射关系之后,第一基站向第一MME发送用于通知第一MME,UE和WD之间的映射关系已经被删除的WD信息更新消息。由于第一基站通过通知第一MME,UE和WD之间的映射关系已经被删除,因此使得第一MME可以及时获知该UE与WD之间的映射关系已经被删除,从而第一MME可以允许其他WD通过该UE接入网络。
S308、第一MME向第二MME发送间接路径释放通知消息。
其中,该间接路径释放通知消息用于通知第二MME,WD的间接路径已经被释放。
需要说明的是,本发明实施例不限定上述S306和S307的执行顺序。即本发明实施例可以先执行S306,后执行S307;也可以先执行S307,后执行S306;还可以同时执行S306和S307。
本发明实施例提供的通过UE接入网络的方法,在WD从直接路径切换到间接路径之后,如果该WD的PC5链路质量恶化,那么该WD可以从间接路径切换到直接路径,并使用直接路径传输该WD的上行数据和上行信令,即在PC5链路质量恶化的情况下,仍然能够保证WD的上行数据和上行信令的正常传输。
场景3:WD的MME发生变更(例如由当前的第二MME变更为第三MME)或者WD的SGW发生变更
可选的,在WD从该WD的直接路径切换到该WD的间接路径之后,示例性的,在该WD的服务小区发生变更的场景下,可能会 出现该WD的MME发生变更(例如该WD的MME由当前的第二MME变更为第三MME)或者该WD的SGW发生变更的场景。
场景3中包括两种具体的情况,第一种情况为:在WD的服务小区发生变更时,该WD的MME由当前的第二MME变更为第三MME。第二种情况为:在WD的服务小区发生变更时,该WD的SGW发生变更。下面分别对上述两种情况下本发明实施例提供的通过UE接入网络的方法进行示例性的说明。
场景3的第一种情况:
本发明实施例提供一种通过UE接入网络的方法,在WD的服务小区发生变更时,在WD的MME由当前的第二MME变更为第三MME的情况下,如图9所示,该方法可以包括以下步骤:
S401、WD的服务小区发生变更的过程。
可选的,WD的服务小区发生变更的过程可以包括:
S401a、在WD检测到WD与源基站之间的链路质量恶化的情况下,WD向源基站发送测量报告。
本发明实施例中,WD与源基站之间的链路质量恶化可以为WD与源基站之间的信道质量小于预设的信道质量阈值,信道质量可以用信号强度来衡量。该源基站为WD的服务小区发生变更之前为该WD提供服务的基站。
其中,该测量报告中可以携带UE的服务小区的标识和满足测量门限的与WD的源服务小区相邻的小区的标识。该源服务小区为WD的服务小区发生变更之前为该WD提供服务的小区。
可选的,该UE的服务小区的标识和上述相邻的小区的标识均可以为演进型通用移动通信系统陆地无线接入网小区全局标识符(E-UTRAN Cell Global Identifier,ECGI)。
可选的,本发明实施例中,WD可以在该WD与UE相互发现(例如上述场景1中描述的S101)的过程中获取该UE的服务小区的标识。
S401b、源基站接收该测量报告之后,确定WD的目标服务小 区。
其中,目标服务小区为WD即将切换到的服务小区,即该目标服务小区为WD的服务小区发生变更之后为该WD提供服务的小区。
本发明实施例中,源基站接收到WD发送的测量报告后,源基站可以获取该测量报告中携带的UE的服务小区的标识和满足测量门限、且与WD的源服务小区相邻的小区的标识(以下称为多个第一标识),并判断多个第一标识中是否包括UE的服务小区的标识,若多个第一标识中包括UE的服务小区的标识,则源基站将该UE的服务小区确定为WD的目标服务小区;若多个第一标识中不包括UE的服务小区的标识,则源基站可以从多个第一标识指示的多个小区中任意选择一个小区作为WD的目标服务小区;或者源基站也可以从多个第一标识指示的多个小区中选择信道质量最好的一个小区作为WD的目标服务小区。
需要说明的是,上述WD的源服务小区和目标服务小区可以由同一个基站提供服务,例如WD的源服务小区和目标服务小区都由源基站提供服务;或者上述WD的源服务小区和目标服务小区可以由不同的基站提供服务,例如WD的源服务小区由源基站提供服务,WD的目标服务小区由目标基站提供服务,目标基站可以为WD的服务小区发生变更后为该WD提供服务的基站。
S401c、源基站指示WD切换到目标服务小区。
S401d、WD根据源基站的指示切换到目标服务小区。
S402、第三MME向WD发送上行S1路径更新通知消息。
其中,该WD的上行路径更新通知消息用于通知WD,WD的上行S1路径需要更新,在WD接收到第三MME发送的上行S1路径更新通知消息之后,WD需要发送上行信令的情况下,使用WD的直接路径进行发送。
可选的,上行S1路径更新通知消息,也可以为其他的NAS消息,具体的可以根据实际使用需求确定,本发明不作限定。
S403、第三MME更新WD的上行S1信息。
S404、第三MME向第一MME发送第十消息。
其中,第一MME为该UE的MME。上述第十消息用于通知第一MME,WD的上行S1信息已更新。
可选的,第十消息中可以携带WD的标识、UE的标识以及更新后的该WD的上行S1信息。
示例性的,第十消息可以为WD的上行S1信息更新消息,也可以为其他的GTP-C消息,具体的可以根据实际使用需求确定,本发明不作限定。
S405、第一MME接收第十消息,并根据第十消息中携带的更新后的WD的上行S1信息,确定第一基站和第三MME之间满足网络连接关系。
第一MME可以根据第十消息中携带的WD的标识和UE的标识,确定该WD的上行S1信息已经更新。
可选的,第一MME接收第十消息之后,获取第十消息中携带的更新后的WD的上行S1信息,并根据更新后的WD的上行S1信息中的第三MME的标识,判断第一基站与第三MME之间是否满足网络连接关系,在第一MME确定第一基站和第三MME之间满足网络连接关系的情况下,第一MME可以确定第一基站能够连接到第三MME,即第一基站可以将接收到的WD的上行信令传输至第三MME,从而第一MME可以确定UE可以继续为WD提供中继服务。
可选的,在第一MME确定第一基站和第三MME之间不满足网络连接关系的情况下,第一MME可以确定第一基站无法连接到第三MME,即第一基站无法将接收到的WD的上行信令传输至第三MME,第一MME可以确定UE无法继续为WD提供中继服务。
可选的,上述第一基站和第三MME之间满足网络连接关系可以理解为:第一基站和第三MME之间可以进行信令传输。
S406、第一MME向第一基站发送第二消息。
其中,第二消息用于请求第一基站更新第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识。
可选的,第二消息中可以携带更新后的WD的上行S1信息和WD的标识。
示例性的,第二消息可以为WD S1链路更新请求消息,也可以为其他的S1接口应用协议消息,具体的可以根据实际使用需求确定,本发明不作限定。
S407、第一基站接收第二消息,并根据第二消息,更新第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识。
可选的,第一基站接收第一MME发送的第二消息之后,获取第二消息中携带的更新后的WD的上行S1信息,并根据更新后的WD的上行S1信息,更新与该WD的标识对应的第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识。
可选的,第一基站可以将第一基站中保存的WD的MME的标识由当前第一基站保存的第二MME的标识更新为第三MME的标识。
本发明实施例中,当WD的MME发生变更时,第一基站保存的WD的MME的标识和WD的MME S1接口用户设备标识可能会无法使用,此时第一基站可以通过更新该WD的MME的标识和WD的MME S1接口用户设备标识,使得第一基站仍然能够成功为WD转发上行信令。
S408、第一基站向第一MME发送第二消息的响应消息。
可选的,在第一基站根据更新后的WD的上行S1信息,更新第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识之后,第一基站向第一MME发送第二消息的响应消息。
S409、第一MME向第三MME发送第十消息的响应消息。
可选的,在第一基站向第一MME发送第二消息的响应消息之后,第一MME向第三MME发送第十消息的响应消息。
S410、第三MME向WD发送上行S1路径更新完成消息。
可选的,在第一MME向第三MME发送第十消息的响应消息之 后,第三MME向WD发送上行S1路径更新完成消息,以用于响应S402中的上行S1路径更新通知消息,即第三MME指示WD使用间接路径传输上行信令。
本发明实施例提供的通过UE接入网络的方法,在WD从直接路径切换到间接路径之后,WD的MME由当前的第二MME变更为第三MME的情况下,第一基站保存的WD的MME的标识和WD的MME S1接口用户设备标识可能会无法使用,此时第三MME可以更新该WD的上行S1信息,并向第一MME发送第十消息;在第一MME接收第十消息后,可以根据第十消息中携带的更新后的WD的上行S1信息,确定第一基站与第三MME之间满足网络连接关系,并向第一基站发送第二消息;以及在第一基站接收第二消息之后,根据第二消息中携带的更新后的WD的上行S1信息,更新第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识。即本发明实施例可以在WD的MME发生变更,且第一基站与第三MME之间满足网络连接关系的情况下,及时更新第一基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识,从而在WD的MME发生变更的情况下,仍然可以通过间接路径传输该WD的上行信令。
场景3的第二种情况:
本发明实施例提供一种通过UE接入网络的方法,在WD的服务小区发生变更时,WD的SGW发生变更的情况下,如图10所示,该方法可以包括以下步骤:
S501、WD的服务小区发生变更的过程。
对于上述S501的描述具体可以参照S401中的相关描述,此处不再赘述。
S502、第二MME向该WD发送上行S1路径更新通知消息。
其中,该上行S1路径更新通知消息用于通知WD,WD的上行路径需要更新,以便于WD接收到第二MME发送的上行路径更新通知消息之后,在WD需要发送上行数据的情况下,使用WD的直 接路径进行发送。
可选的,上行S1路径更新通知消息,也可以为其他的NAS消息,具体的可以根据实际使用需求确定,本发明不作限定。
S503、第二MME更新WD的上行S1信息。
S504、第二MME向第一MME发送第十消息。
其中,第一MME为该UE的MME。上述第十消息用于通知第一MME,WD的上行S1信息已更新。
可选的,第十消息中可以携带WD的标识、UE的标识以及更新后的该WD的上行S1信息。
示例性的,第十消息可以为WD的上行S1信息更新消息,也可以为其他的GTP-C消息,具体的可以根据实际使用需求确定,本发明不作限定。
S505、第一MME接收第十消息,并根据第十消息中携带的更新后的WD的上行S1信息,确定第一基站和变更后的WD的SGW之间满足网络连接关系。
可选的,第一MME接收第十消息之后,获取第十消息中携带的更新后的该WD的上行S1信息,并根据更新后的该WD的上行S1信息中的WD的SGW IP address,判断第一基站是否能够连接到变更后的WD的SGW,在第一MME确定第一基站和变更后的WD的SGW之间满足网络连接关系的情况下,第一MME可以确定第一基站能够连接到变更后的WD的SGW,即第一基站可以将接收到的WD的上行数据传输至变更后的WD的SGW,从而第一MME可以确定UE可以继续为WD提供中继服务。
可选的,在第一MME确定第一基站和变更后的WD的SGW之间不满足网络连接关系的情况下,第一MME可以确定第一基站无法连接到变更后的WD的SGW,即第一基站无法将接收到的WD的上行数据传输至变更后的WD的SGW,从而第一MME可以确定UE无法继续为WD提供中继服务。
可选的,上述第一基站和变更后的WD的SGW之间满足网络 连接关系可以理解为:第一基站和变更后的WD的SGW之间可以进行数据传输。
S506、第一MME向第一基站发送第二消息。
其中,第二消息用于请求第一基站更新第一映射关系。
可选的,第二消息中可以携带更新后的WD的上行S1信息和WD的标识。
示例性的,第二消息可以为WD S1链路更新请求消息,也可以为其他的S1接口应用协议消息,具体的可以根据实际使用需求确定,本发明不作限定。
S507、第一基站接收第二消息,并根据第二消息,更新第一映射关系。
可选的,第一基站接收第一MME发送的第二消息之后,获取第二消息中携带的更新后的WD的上行S1信息,并根据更新后的WD的上行S1信息,更新与该WD的标识对应的第一映射关系。
本发明实施例中,当WD的SGW发生变更时,第一基站建立的第一映射关系可能会无法使用,此时第一基站可以通过更新该第一映射关系,使得第一基站仍然能够成功为WD转发上行数据。
S508、第一基站向第一MME发送第二消息的响应消息。
可选的,在第一基站根据更新后的WD的上行S1信息,更新第一映射关系之后,第一基站向第一MME发送第二消息的响应消息。
S509、第一MME向第二MME发送第十消息的响应消息。
可选的,在第一基站向第一MME发送第二消息的响应消息之后,第一MME向第二MME发送第十消息的响应消息。
S510、第二MME向WD发送上行S1路径更新完成消息。
可选的,在第一MME向第二MME发送第十消息的响应消息之后,第二MME向WD发送上行路径更新完成消息。
可选的,在第一MME向第二MME发送第十消息的响应消息之后,第二MME向该WD发送上行路径更新完成消息,以用于响应 S502中的上行路径更新通知消息,即第二MME指示WD使用间接路径传输上行数据。
本发明实施例提供的通过UE接入网络的方法,在WD从直接路径切换到间接路径之后,WD的SGW发生变更的情况下,第一基站建立的第一映射关系可能会无法使用,此时第二MME可以更新该WD的上行S1信息,并向第一MME发送第十消息;在第一MME接收第十消息后,可以根据第十消息中携带的更新后的WD的上行S1信息,确定第一基站和变更后的WD的SGW之间满足网络连接关系,并向第一基站发送第二消息;以及在第一基站接收第二消息之后,根据第二消息中携带的更新后的WD的上行S1信息,更新第一映射关系。即本发明实施例可以在该WD的SGW发生变更,且第一基站和变更后的WD的SGW之间满足网络连接关系的情况下,及时更新第一映射关系,从而在WD的SGW发生变更的情况下,仍然可以通过间接路径传输该WD的上行数据。
场景4:为UE提供服务的基站由第一基站变更为第二基站
可选的,在该WD从直接路径切换至间接路径之后,示例性的,在为该WD提供中继服务的UE的服务小区发生变更时,可能会出现为该UE提供服务的基站由第一基站变更为第二基站的场景。
本发明实施例提供一种通过UE接入网络的方法,在UE的服务小区发生变更时,为该UE提供服务的基站由第一基站变更为第二基站的情况下,如图11所示,该方法可以包括以下步骤:
S601、UE的服务小区发生变更的过程。
在场景1中,第一基站建立第一映射关系之后,可以将第一映射关系保存在第一基站中。而在上述UE的服务小区发生变更的过程中,第一基站会将第一基站中的UE的上下文(包括第一映射关系)发送给第二基站。
S602、第二基站向第一MME发送路径切换请求消息。
其中,该路径切换请求消息用于通知第一MME,为UE提供服务的基站由第一基站变更为第二基站。
S603、第一MME接收路径切换请求消息,根据UE的上下文,确定第二基站与第二MME或WD的SGW之间不满足网络连接关系。
第一MME可以根据第十消息中携带的UE的标识,确定UE的服务基站由第一基站变更为第二基站。
可选的,第一MME接收路径切换请求消息之后,从UE的上下文中获取WD的上行S1信息(UE的上下文信息中保存了所有通过UE接入网络的WD的上行S1信息),并根据WD的上行S1信息中的第二MME的标识和WD的SGW的IP address,判断第二基站是否能够连接到第二MME或WD的SGW,在第一MME确定第二基站与第二MME或WD的SGW之间不满足网络连接关系的情况下,第一MME可以确定第二基站无法连接到第二MME或WD的SGW,即第二基站无法将接收到的WD的上行信令传输至第二MME,或者第二基站无法将接收到的WD的上行数据传输至WD的SGW,从而第一MME可以确定该UE无法为继续该WD提供中继服务。
可选的,在第一MME确定第二基站与第二MME和WD的SGW之间均满足网络连接关系的情况下,第一MME可以确定第二基站可以连接到第二MME和WD的SGW,即第二基站可以将接收到的WD的上行信令传输至第二MME,且第二基站可以将接收到的WD的上行数据传输至WD的SGW,从而第一MME可以确定该UE可以继续为该WD提供中继服务。
可选的,上述第二基站与第二MME或WD的SGW之间不满足网络连接关系可以理解为:第二基站与第二MME之间无法进行信令传输,或者第二基站与WD的SGW之间无法进行数据传输。
S604、第一MME向第二基站发送路径切换响应消息。
可选的,在第一MME确定UE无法为WD提供中继服务(即该WD无法通过该UE接入网络)的情况下,第一MME可以向第二基站发送用于第一MME向第二基站指示WD无法通过UE接入网络的指示消息。其中,该指示消息可以为上述S604中的路径切换响应消息,也可以为其他的S1接口应用协议消息。
可选的,该路径切换响应消息中可以携带该WD的标识。
S605、第二基站接收路径切换响应消息,并删除第一映射关系。
可选的,在第二基站接收路径切换响应消息之后,获知UE无法继续为WD提供中继服务的情况下,为了节省第二基站的存储空间,可以获取该路径切换响应消息中携带的该WD的标识,并从第二基站中删除与该WD的标识对应的第一映射关系。
本发明实施例中,当为UE提供服务的基站由第一基站变更为第二基站时,第一基站会将第一基站中的UE的上下文(包括上述的第一映射关系)发送给第二基站。
可选的,在UE无法继续为WD提供中继服务之后,为了节省第二基站的存储资源,提高网络资源的利用率,第二基站可以删除与该WD的标识对应的第二基站中保存的WD的MME的标识和WD的MME S1接口用户设备标识。
可选的,在该路径切换响应消息用于向第二基站指示,该UE无法为多个WD提供中继服务的情况下,该路径切换响应消息中可以携带该上述多个WD的标识,第二基站接收到路径切换响应消息之后,获取该路径切换响应消息中携带的多个WD的标识,并删除与该多个WD的标识中的每一个WD的标识对应的第一映射关系。
S606、第二基站向UE发送RRC重配置消息。
其中,该RRC重配置消息用于通知UE无法继续为WD提供中继服务。
可选的该RRC重配置消息中可以携带该WD的标识。
S607、UE接收RRC重配置消息,并删除UE与WD之间的映射关系。
可选的,在场景1中UE建立第二映射关系之后,UE可以保存UE与WD之间的映射关系。在UE的服务小区发生变更,且UE在接收第二基站发送的RRC重配置消息之后,获知无法继续为WD提供中继服务的情况下,UE可以获取该RRC重配置消息中携带的该WD的标识,并删除UE与该WD之间的映射关系。
可选的,在场景1中UE建立第二映射关系之后,UE可以保存第二映射关系,在UE的服务小区发生变更,且UE在接收第二基站发送的RRC重配置消息之后获知无法继续为WD提供中继服务的情况下,还可以删除第二映射关系。
可选的,在该RRC重配置消息用于通知UE无法继续为多个WD提供服务的情况下,该RRC重配置消息中可以携带上述多个WD的标识,UE接收到该RRC重配置消息之后,可以获取该RRC重配置消息中携带的多个WD的标识,并删除与该多个WD的标识中的每一个WD的标识对应的第一映射关系。
本发明实施例中,第二基站可以通过RRC重配置消息通知UE,UE无法继续为WD提供中继服务,从而使得UE在接收到该RRC重配置消息之后,可以删除UE与WD之间的映射关系,从而节省了UE的存储资源,提高了网络资源的利用率,并且UE还可以为其他WD提供中继服务。
S608、UE向WD发送第七消息。
其中,第七消息用于指示WD将间接路径切换为直接路径,示例性的,第七消息可以为直接路径切换指示消息,也可以为其他的PC5接口消息,具体的可以根据实际使用需求确定,本发明不作限定。
S609、WD接收第七消息。
WD接收第七消息之后,放弃使用间接路径传输上行数据和信令,开始使用直接路径传输上行数据和信令。
S610、WD向UE发送第七消息的响应消息。
可选的,在WD接收到第七消息之后,WD可以向UE发送第七消息的响应消息。
可选的,在上述S602之后,S603之前,本发明实施例中,第一MME可以向该UE的SGW发送修改承载请求消息。该修改承载请求消息用于通知该UE的SGW,为该UE提供服务的基站发生了变更。该UE的SGW在接收到修改承载请求消息之后可以向第一 MME发送修改承载响应消息。
本发明实施例提供的通过UE接入网络的方法,在该WD从直接路径切换至间接路径之后,为该UE(为WD提供中继服务的UE)提供服务的基站由第一基站变更为第二基站的情况下,通过第二基站向第一MME发送路径切换请求消息,第一MME接收该路径切换请求消息之后,根据该UE的上下文,确定第二基站与第二MME或该WD的SGW之间不满足网络连接关系,第一MME向第二基站发送路径切换响应消息,第二基站接收路径切换响应消息,并删除第一映射关系;以及第二基站向该UE发送RRC重配置消息该UE接收RRC重配置消息通知该UE无法继续为该WD提供中继服务,并删除该UE与该WD之间的映射关系。即本发明实施例中,在为该UE提供服务的基站由第一基站变更为第二基站之后,该UE无法为该WD提供中继服务的情况下,可以及时删除第二基站中保存的第一映射关系和UE中保存的UE与WD之间的映射关系,节省了基站和UE的存储资源,提高了网络资源的利用率。
需要说明的是,本发明实施例提供的通过UE接入网络的方法中,为WD提供服务的基站和为UE提供服务的基站(即上述第一基站)可以为同一个基站,也可以为不同的基站。
可选的,在为WD提供服务的基站和为UE提供服务的基站为同一个基站的情况下,当WD的服务小区发生变更时,可能会导致为WD提供服务的基站和为UE提供服务的基站变为不同的基站,具体的如以下情况a所示;当UE的服务小区发生变更时,可能也会导致为WD提供服务的基站和为UE提供服务的基站变为不同的基站,具体的如以下情况b所示。
情况a:为WD提供服务的基站发生变更。
情况b:为UE提供服务的基站发生变更。
针对上述情况a,由于采用本发明实施例提供的通过UE接入网络的方法实现WD通过UE接入网络时与为WD提供服务的基站无关,即无论为WD提供服务的基站是否发生变更,采用本发明实施 例提供的通过UE接入网络的方法都能够实现WD通过UE接入网络,即在为WD提供服务的基站发生变更之后,之前(即为WD提供服务的基站发生变更之前,也就是为WD提供服务的基站和为UE提供服务的基站为同一个基站的情况下)为WD提供服务的UE仍然可以继续为WD提供服务。如此,能够避免传统技术中为WD提供服务的基站发生变更之后,之前为WD提供服务的UE无法继续为WD提供服务的问题(传统技术中,WD通过UE接入网络时,为WD提供服务的基站和为UE提供服务的基站通常为同一个基站)。
可选的,由于为WD提供服务的基站发生变更时,可能会导致WD的MME也发生变更,而当WD的MME发生变更时,本发明实施例提供的通过UE接入网络的方法可能会存在两种可能。一种可能是,之前(即WD的MME发生变更之前)为WD提供中继服务的UE仍然可以继续为WD提供中继服务;另一种可能是之前(即WD的MME发生变更之前)为WD提供中继服务的UE无法继续为WD提供中继服务。具体的,这两种可能的描述可以参见上述实施例中场景3的第一种情况中的相关描述,此处不再赘述。
可选的,由于为WD提供服务的基站发生变更时,可能会导致WD的SGW也发生变更,而当WD的SGW发生变更时,本发明实施例提供的通过UE接入网络的方法可能会存在两种可能。一种可能是,之前(即WD的SGW发生变更之前)为WD提供中继服务的UE仍然可以继续为WD提供中继服务;另一种可能是之前(即WD的SGW发生变更之前)为WD提供中继服务的UE无法继续为WD提供中继服务。具体的,这两种可能的描述可以参见上述实施例中场景3的第二种情况中的相关描述,此处不再赘述。
针对上述情况b:由于为UE提供服务的基站发生变更时,本发明实施例提供的通过UE接入网络的方法可能会存在两种可能:一种可能是,UE仍然可以继续为WD提供中继服务;另一种可能是UE无法继续为WD提供中继服务。具体的,这两种可能的描述可以参见上述实施例中场景4中的相关描述,此处不再赘述。
本发明实施例可以根据上述方法实施例对基站、UE、MME和WD等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,在采用对应各个功能划分各个功能模块的情况下,本发明实施例提供的基站(即本发明实施例中的第一基站)的结构示意图如图12所示,在图12中,该第一基站包括:接收模块41、分配模块42、建立模块43、保存模块44、更新模块45、删除模块46和发送模块47。
其中,接收模块41和分配模块42,用于支持第一基站执行上述方法实施例中的S108,接收模块41和删除模块46用于支持第一基站执行上述方法实施例中的S305,接收模块41和更新模块45用于支持第一基站执行上述方法实施例中的S407和S507。
建立模块43,用于支持第一基站执行上述方法实施例中的S109。
保存模块44,用于支持第一基站保存上述方法实施例中的S116中第一基站中保存的第二MME的标识和WD的MME UE S1-AP ID。
发送模块47,用于支持第一基站执行上述方法实施例中的S110、S306、S408和S508。
上述接收模块41、分配模块42、建立模块43、保存模块44、更新模块45、删除模块46和发送模块47还可以用于执行本文所描述的技术的其它过程。
可选的,本发明实施例提供的第一基站还包括其他用于支持第一基站执行上述方法实施例中的其他方法步骤的功能模块,例如:第一基站还包括用于执行上述方法实施例中的S601的功能模块。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容 均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本发明实施例提供的第一基站的结构示意图如图13所示。在图13中,该第一基站包括:处理模块401和通信模块402。处理模块401用于对第一基站的动作进行控制管理,例如,执行上述分配模块42、建立模块43、更新模块45和删除模块46执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块402用于支持第一基站与其他设备之间的交互,例如,执行上述接收模块41和发送模块47执行的步骤。如图13所示,第一基站还可以包括存储模块403和总线404,存储模块403用于存储第一基站的程序代码和数据,例如存储上述保存模块44所保存的内容。
其中,上述处理模块401可以是第一基站中的处理器或控制器,该处理器或控制器可以为上述如图4所示的基站中的基带处理单元,该处理器或控制器可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
通信模块402可以是第一基站中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为上述如图4所示的基站中的天线。
存储模块403可以是第一基站中的存储器等。该存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);该存储器也可以包括非易失性存 储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);该存储器还可以包括上述种类的存储器的组合。
总线404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线404可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当上述第一基站中的处理器或控制器执行该计算机执行指令时,该第一基站执行上述方法实施例所示的方法流程中第一基站执行的各个步骤。
示例性的,在采用对应各个功能划分各个功能模块的情况下,本发明实施例提供的UE的结构示意图如图14所示,在图14中,该UE包括:接收模块51、发送模块52和建立模块53。
其中,接收模块51和建立模块53,用于支持UE执行上述方法实施例中的S111和S112,接收模块和删除模块55用于支持执行上述方法实施例中的S607。
发送模块52,用于支持UE执行上述方法实施例中的S204、S216、S304和S608。
上述接收模块51、发送模块52和建立模块53还可以用于执行本文所描述的技术的其它过程。
可选的,本发明实施例提供的UE还包括其他用于支持UE执行上述方法实施例中的其他方法步骤的功能模块,例如:UE还包括用于执行上述方法实施例中的S101、S112、S303和S601的功能模块。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本发明实施例提供的UE的结构示意图如图15所示。在图15中,该UE包括:处理模块501和通信模块502。处理模块501用于对UE的动作进行控制管理,例如,执行上述建立模块53执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块502用于支持UE与其他设备之间的交互,例如,执行上述接收模块51和发送模块52执行的步骤。UE还可以包括存储模块503和总线504,存储模块503用于存储UE的程序代码和数据。
其中,上述处理模块501可以是UE中的处理器或控制器,该处理器或控制器可以为上述如图2所示的手机中的处理器11,该处理器或控制器可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
通信模块502可以是UE中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为上述如图2所示的手机中的RF电路。
存储模块503可以是UE中的存储器等,该存储器可以为上述如图2所示的手机中的存储器14。该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器还可以包括上述种类的存储器的组合。
总线504可以是EISA总线等。总线504可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当上述UE中的处理器执行该计算机执行指令时,该UE执行上述方法实施例所示的方法流程中UE执行的各个步骤。
示例性的,在采用对应各个功能划分各个功能模块的情况下,本发明实施例提供的第一MME的结构示意图如图16所示。在图16中,该第一MME包括:接收模块61、确定模块62和发送模块63。
其中,接收模块61用于支持第一MME执行上述方法实施例中的S113。
接收模块61和确定模块62,用于支持第一MME执行上述方法实施例中的S106、S405、S505和S603。
发送模块63,用于支持第一MME执行上述方法实施例中的S107、S114、S206、S107、S114、S215、S308、S406、S506和S604。
上述接收模块61、确定模块62和发送模块63还可以用于执行本文所描述的技术的其它过程。
可选的,本发明实施例提供的第一MME还包括其他用于支持第一MME执行上述方法实施例中的其他方法步骤的功能模块,例如:第一MME还包括用于执行上述方法实施例中的S601的功能模块。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本发明实施例提供的第一MME的结构示意图如图17所示。在图17中,第一MME包括:处理模块601和通信模块602。处理模块601用于对第一MME的动作进行控制管理,例如,执行上述确定模块62执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块602用于支持UE与其他设备之间的交互,例如执行上述接收模块61和发送模块63执行的步骤。第一MME还可以包括存储模块603和总线604,存储模块603用于存储第一MME的程序代码和数据。
其中,上述处理模块601可以是第一MME中的处理器或控制器,该处理器或控制器可以为集成在上述如图5所示的服务器中的处理器31,该处理器或控制器可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
上述通信模块602可以是第一MME中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为集成在上述如图5所示服务器中的I/O接口33。
上述存储模块603可以是第一MME中的存储器等,该存储器可以为集成在上述如图5所示的服务器中的存储器32。该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器还可以包括上述种类的存储器的组合。
上述总线604可以是第一MME中的EISA总线等。总线604可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅使用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当上述第一MME中的处理器执行该计算机执行指令时,该第一MME执行上述方法实施例所示的方法流程中第一MME执行的各个步骤。
示例性的,在采用对应各个功能划分各个功能模块的情况下,本发明实施例提供的第二MME的结构示意图如图18所示。在图18中,该第二MME包括:获取模块71和发送模块72。
获取模块71,用于支持第二MME执行上述方法实施例中的S104。
发送模块72,用于支持第二MME执行上述方法实施例中的S105、S115、S105、S504和S509。
可选的,结合图18,如图19所示,本发明实施例提供的第二MME还包括接收模块73和确定模块74。
其中,接收模块73和确定模块74,用于支持第二MME执行上述方法实施例中的S103。
可选的,结合图18,如图20所示,本发明实施例提供的第二MME还包括接收模块73。
接收模块73,用于支持第二MME执行上述方法实施例中的S207。
上述获取模块71、发送模块72、接收模块73和确定模块74还可以用于执行本文所描述的技术的其它过程。
可选的,本发明实施例提供的第二MME还包括其他用于支持第二MME执行上述方法实施例中的其他方法步骤的功能模块,例如:第二MME还包括用于执行上述方法实施例中的S401和S501的功能模块。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本发明实施例提供的第二MME的结构示意图如图21所示。在图21中,第二MME包括:处理模块701和通信模块702。处理模块701用于对第二MME的动作进行控制管理,例如,执行上述获取模块71和确定模块74执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块702用于支持UE与其他设备之间的交互,例如执行上述发送模块72和接收模块73执行的步骤。第二MME还可以包括存储模块703和总线704,存储模块703用于存储第二MME的程序代码和数据。
其中,上述处理模块701可以是第二MME中的处理器或控制 器,该处理器或控制器可以为集成在上述如图5所示的服务器中的处理器31,该处理器或控制器可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
上述通信模块702可以是第二MME中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为集成在上述如图5所示服务器中的I/O接口33。
上述存储模块703可以是第二MME中的存储器等,该存储器可以为集成在上述如图5所示的服务器中的存储器32。该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器还可以包括上述种类的存储器的组合。
上述总线704可以是第二MME中的EISA总线等。总线704可以分为地址总线、数据总线、控制总线等。为便于表示,图21中仅使用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括指令,当上述第二MME中的处理器执行该指令时,该第二MME执行上述方法实施例所示的方法流程中第二MME执行的各个步骤。
示例性的,在采用对应各个功能划分各个功能模块的情况下,本发明实施例提供的WD的结构示意图如图22所示。在图22中,该WD包括:发送模块81和接收模块82。
其中,发送模块81用于支持WD执行上述方法实施例中的S102、S202和S610。
接收模块82用于支持WD执行上述方法实施例中的S609。
上述发送模块81和接收模块82还可以用于执行本文所描述的技术的其它过程。
可选的,本发明实施例提供的WD还包括其他用于支持WD执行上述方法实施例中的其他方法步骤的功能模块,例如:WD还包括用于执行上述方法实施例中的S101、S112、S301、S401和S501的功能模块。
示例性的,在采用集成的单元的情况下,本发明实施例提供的WD的结构示意图如图23所示。在图23中,WD包括:处理模块801和通信模块802。处理模块801用于对WD的动作进行控制管理。通信模块802用于支持UE与其他设备之间的交互,例如执行上述发送模块81和接收模块82执行的步骤。WD还可以包括存储模块803和总线804,存储模块803用于存储WD的程序代码和数据。
其中,上述处理模块801可以是WD中的处理器或控制器,该处理器可以为上述如图3所示的智能手表中的处理器21,该处理器或控制器可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器或控制器可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
上述通信模块802可以是WD中的收发器、收发电路或通信接口等,该收发器、收发电路或通信接口等可以为上述如图3所示的智能手表中的RF电路22。
上述存储模块803可以是WD中的存储器等,该存储器可以为上述如图3所示的智能手表中的存储器24。该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器 还可以包括上述种类的存储器的组合。
上述总线804可以是WD中的EISA总线等。总线804可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅使用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一个或多个程序,一个或多个程序包括计算机执行指令,当上述WD中的处理器执行该计算机执行指令时,该WD执行上述方法实施例所示的方法流程中WD执行的各个步骤。
本发明实施例提供一种无线通信系统,该无线通信系统可以包括为UE提供服务的基站(即上述实施例所述的第一基站)、UE、UE的MME(即上述实施例所述的第一MME)、WD和WD的MME(即上述实施例所述的第二MME)。本发明实施例提供的无线通信系统的网络架构具体可以参见上述如图1所示的EPS的网络架构的示意图。上述第一基站可以为如图1所示的基站1;上述UE可以为如图1中所示的UE;上述第一MME可以为如图1中所示的MME1;上述第二MME可以为如图1中所示的MME2;上述WD可以为如图1中所示的WD。对于第一基站、UE、第一MME、第二MME和WD的描述具体可以参见上述方法实施例和装置实施例中的相关描述,此处不再赘述。
本发明实施例提供的无线通信系统,第一MME(即UE的MME)可以通过向第一基站(即为UE提供服务的基站)发送请求WD通过UE接入网络的第一消息,使得第一基站根据该第一消息为WD分配PDCP标识,并且根据第一消息中携带的WD的上行S1信息和该PDCP标识建立UE和第一基站之间的DRB与第一基站和WD的SGW之间的S1承载的映射关系,如此WD可以通过UE接入网络,并且WD可以通过UE将WD的上行数据转发给第一基站,且由第一基站将该上行数据发送给WD的SGW,从而WD的SWG再将该上行数据转发出去,即WD的上行数据可以通过UE和第一基站转发至WD的SGW。与现有技术中WD与为WD提供服务的基站直接 通信相比,由于通常情况下WD与UE之间距离较近,因此WD通过UE传输上行数据时,所需要的发射功率较小,所以WD的耗电量较小,从而可以延长WD的待机时间。
结合本发明公开内容所描述的方法或者算法的步骤可以由硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(easable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (48)

  1. 一种通过用户设备接入网络的方法,其特征在于,包括:
    第一基站接收第一移动管理实体MME发送的第一消息,所述第一消息中携带可穿戴设备WD的上行S1信息,所述第一消息用于所述第一MME向所述第一基站请求所述WD通过用户设备UE接入网络,所述第一基站为所述UE提供服务,所述第一MME为所述UE的MME;
    所述第一基站根据所述第一消息,为所述WD分配分组数据汇聚协议PDCP标识,所述PDCP标识用于标识待传输的上行数据为所述WD的数据;
    所述第一基站根据所述上行S1信息和所述PDCP标识,建立第一映射关系,所述第一映射关系为所述UE和所述第一基站之间的数据无线承载DRB与所述第一基站和所述WD的服务网关SGW之间的S1承载的映射关系。
  2. 根据权利要求1所述的方法,其特征在于,
    所述上行S1信息包括:所述WD的MME的标识、所述WD的MME S1接口用户设备标识、所述WD的多个演进分组系统EPS承载标识,以及与每个EPS承载标识对应的SGW的互联网协议IP地址、S1接口隧道端点标识和服务质量QoS值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一基站根据所述上行S1信息和所述PDCP标识,建立第一映射关系,包括:
    所述第一基站根据所述上行S1信息,获取第一EPS承载标识对应的第一S1接口隧道端点标识和第一QoS值,所述第一EPS承载标识为所述多个EPS承载标识中的一个;
    所述第一基站根据DRB的标识和QoS值的对应关系,确定与所述第一QoS值对应的第一DRB的标识;
    所述第一基站根据所述第一DRB的标识、所述PDCP标识,SGW的IP地址以及所述第一S1接口隧道端点标识,建立所述第一映射关系。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一基站接收第一MME发送的第一消息之后,所述方法还包括:
    所述第一基站保存所述第一消息中的所述WD的MME的标识和所述WD的MME S1接口用户设备标识,所述WD的MME的标识和所述WD的MME S1接口用户设备标识用于发送所述WD的上行信令。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述WD的MME由当前的第二MME变更为第三MME,或者所述WD的SGW发生变更,
    所述第一基站建立第一映射关系之后,所述方法还包括:
    所述第一基站接收所述第一MME发送的第二消息,所述第二消息用于在所述WD的MME由当前的第二MME变更为第三MME的情况下,更新所述WD的MME的标识和所述WD的MME S1接口用户设备标识,或者所述第二消息用于在所述WD的SGW发生变更的情况下,请求所述第一基站更新所述第一映射关系;
    所述第一基站根据所述第二消息,更新所述WD的MME的标识和所述WD的MME S1接口用户设备标识,或者更新所述第一映射关系。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述第一基站建立第一映射关系之后,所述方法还包括:
    所述第一基站接收所述UE发送的第三消息,所述第三消息用于请求所述第一基站删除所述第一映射关系;
    所述第一基站根据所述第三消息,删除所述第一映射关系。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,为所述UE提供服务的基站由所述第一基站变更为第二基站,所述方法还包括:
    所述第二基站删除所述第二基站中保存的所述第一映射关系。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述第一基站建立第一映射关系之后,所述方法还包括:
    所述第一基站向所述UE发送第四消息,所述第四消息用于指示所述UE建立第二映射关系,所述第二映射关系为所述WD和所述UE之间的PC5承载与所述UE和所述第一基站之间的DRB的映射关系。
  9. 一种通过用户设备接入网络的方法,其特征在于,包括:
    用户设备UE接收可穿戴设备WD发送的第五消息,所述第五消息用于所述WD向所述UE请求将直接路径切换为间接路径,所述直接路径为所述WD和为所述WD提供服务的基站之间的路径,所述间接路径为所述WD、所述UE和为所述UE提供服务的基站之间的路径;
    所述UE根据所述第五消息,向所述UE的移动管理实体MME发送第六消息,所述第六消息用于所述UE向所述UE的MME请求所述WD通过所述UE接入网络。
  10. 根据权利要求9所述的方法,其特征在于,所述UE向所述UE的MME发送第六消息之后,所述方法还包括:
    所述UE接收第一基站发送的第四消息,所述第四消息用于指示所述UE建立第二映射关系,所述第二映射关系为所述WD和所述UE之间的PC5承载与所述UE和所述第一基站之间的数据无线承载DRB的映射关系,所述第一基站为所述UE提供服务;
    所述UE根据所述第四消息,建立所述第二映射关系。
  11. 根据权利要求10所述的方法,其特征在于,所述第四消息中携带所述WD的标识、所述PC5承载的标识、所述第一基站为所述WD分配的分组数据汇聚协议PDCP标识,以及第一DRB的标识;
    所述UE根据所述第四消息,建立所述第二映射关系,包括:
    所述UE根据所述WD的标识、所述PC5承载的标识、所述PDCP标识,以及所述第一DRB的标识,建立所述第二映射关系。
  12. 根据权利要求9至11任意一项所述的方法,其特征在于,所述UE接收WD发送的第五消息之后,所述方法还包括:
    所述UE向所述WD发送第七消息,所述第七消息用于指示将所 述间接路径切换为所述直接路径。
  13. 一种通过用户设备接入网络的方法,其特征在于,包括:
    第一移动管理实体MME接收第二MME发送的第八消息,所述第八消息中携带可穿戴设备WD的上行S1信息,所述第一MME为所述UE的MME,所述第二MME为所述WD的MME;
    所述第一MME根据所述上行S1信息,确定第一基站与所述第二MME和所述WD的服务网关SGW之间均满足网络连接关系,所述第一基站为所述UE提供服务;
    所述第一MME向所述第一基站发送第一消息,所述第一消息用于所述第一MME向所述第一基站请求所述WD通过所述UE接入网络。
  14. 根据权利要求13所述的方法,其特征在于,所述上行S1信息包括所述第二MME的标识和所述WD的SGW的互联网协议IP地址。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一MME接收第二MME发送的第八消息之前,所述方法还包括:
    所述第一MME接收所述UE发送的第六消息,所述第六消息用于所述UE向所述第一MME请求所述WD通过所述UE接入网络;
    所述第一MME接收所述UE发送的第六消息之后,所述第一MME向所述第二MME发送第九消息,所述第九消息用于请求所述WD的上行S1信息。
  16. 根据权利要求13至15任意一项所述的方法,其特征在于,所述WD的MME由当前的第二MME变更为第三MME,或者所述WD的SGW发生变更,所述方法还包括:
    所述第一MME接收所述第三MME或者所述第二MME发送的第十消息,所述第十消息用于通知所述第一MME,所述WD的上行S1信息已更新。
  17. 根据权利要求13至16任意一项所述的方法,其特征在于,为所述UE提供服务的基站由所述第一基站切换为第二基站,所述方 法还包括:
    所述第一MME根据所述UE的上下文,确定所述第二基站与所述第二MME或所述WD的SGW之间不满足网络连接关系;
    所述第一MME向所述第二基站发送指示消息,所述指示消息用于所述第一MME向所述第二基站指示所述WD无法通过所述UE接入网络。
  18. 一种通过用户设备接入网络的方法,其特征在于,包括:
    第二移动管理实体MME获取可穿戴设备WD的上行S1信息,所述第二MME为所述WD的MME;
    所述第二MME向第一MME发送第八消息,所述第八消息中携带所述上行S1信息,所述第一MME为用户设备UE的MME。
  19. 根据权利要求18所述的方法,其特征在于,所述第二MME获取WD的上行S1信息,包括:
    所述第二MME根据所述WD的上下文,获取所述上行S1信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第二MME向第一MME发送第八消息之前,所述方法还包括:
    所述第二MME接收所述WD发送的第十一消息,所述第十一消息中携带所述UE的标识;
    所述第二MME根据所述UE的标识,确定所述第一MME。
  21. 根据权利要求18或19所述的方法,其特征在于,所述第二MME获取所述WD的上行S1信息之前,所述方法还包括:
    所述第二MME接收所述第一MME发送的第九消息,所述第九消息用于请求所述WD的上行S1信息;
    所述第二MME向第一MME发送第八消息,包括:
    所述第二MME接收所述第一MME发送的所述第九消息之后,所述第二MME向所述第一MME发送第八消息。
  22. 根据权利要求18至21任意一项所述的方法,其特征在于,所述WD的MME由所述第二MME变更为第三MME,或者所述WD的服务网关SGW发生变更,所述方法还包括:
    所述第三MME或者所述第二MME向所述第一MME发送第十消息,所述第十消息用于通知所述第一MME,所述WD的上行S1信息已更新。
  23. 一种基站,其特征在于,所述基站为第一基站,所述基站包括:
    接收模块,用于接收第一移动管理实体MME发送的第一消息,所述第一消息中携带可穿戴设备WD的上行S1信息,所述第一消息用于所述第一MME向所述第一基站请求所述WD通过用户设备UE接入网络,所述第一基站为所述UE提供服务,所述第一MME为所述UE的MME;
    分配模块,用于根据所述接收模块接收的所述第一消息,为所述WD分配分组数据汇聚协议PDCP标识,所述PDCP标识用于标识待传输的上行数据为所述WD的数据;
    建立模块,用于根据所述接收模块接收的所述上行S1信息和所述分配模块为所述WD分配的所述PDCP标识,建立第一映射关系,所述第一映射关系为所述UE和所述第一基站之间的数据无线承载DRB与所述第一基站和所述WD的服务网关SGW之间的S1承载的映射关系。
  24. 根据权利要求23所述的基站,其特征在于,
    所述上行S1信息包括:所述WD的MME的标识、所述WD的MME S1接口用户设备标识、所述WD的多个演进分组系统EPS承载标识,以及与每个EPS承载标识对应的SGW的互联网协议IP地址、S1接口隧道端点标识和服务质量QoS值。
  25. 根据权利要求24所述的基站,其特征在于,
    所述建立模块,具体用于根据所述上行S1信息,获取第一EPS承载标识对应的第一S1接口隧道端点标识和第一QoS值,所述第一EPS承载标识为所述多个EPS承载标识中的一个;并根据DRB的标识和QoS值的对应关系,确定与所述第一QoS值对应的第一DRB的标识;以及根据所述第一DRB的标识、所述PDCP标识,SGW的IP 地址以及所述第一S1接口隧道端点标识,建立所述第一映射关系。
  26. 根据权利要求24或25所述的基站,其特征在于,所述基站还包括保存模块,
    所述保存模块,用于保存所述接收模块接收的第一消息中的所述WD的MME的标识和所述WD的MME S1接口用户设备标识,所述WD的MME的标识和所述WD的MME S1接口用户设备标识用于发送所述WD的上行信令。
  27. 根据权利要求23至26任意一项所述的基站,其特征在于,所述WD的MME由当前的第二MME变更为第三MME,或者所述WD的SGW发生变更,所述基站还包括更新模块,
    所述接收模块,还用于在所述建立模块建立第一映射关系之后,接收所述第一MME发送的第二消息,所述第二消息用于在所述WD的MME由当前的第二MME变更为第三MME的情况下,更新所述WD的MME的标识和所述WD的MME S1接口用户设备标识,或者所述第二消息用于在所述WD的SGW发生变更的情况下,请求所述第一基站更新所述第一映射关系;
    所述更新模块,用于根据所述接收模块接收的所述第二消息,更新所述WD的MME的标识和所述WD的MME S1接口用户设备标识,或者更新所述第一映射关系。
  28. 根据权利要求23至27任意一项所述的基站,其特征在于,所述基站还包括删除模块,
    所述接收模块,还用于在所述建立模块建立第一映射关系之后,接收所述UE发送的第三消息,所述第三消息用于请求所述第一基站删除所述第一映射关系;
    所述删除模块,用于根据所述接收模块接收的所述第三消息,删除所述第一映射关系。
  29. 根据权利要求23至28任意一项所述的基站,其特征在于,所述基站还包括发送模块,
    所述发送模块,用于在所述建立模块建立第一映射关系之后,向 所述UE发送第四消息,所述第四消息用于指示所述UE建立第二映射关系,所述第二映射关系为所述WD和所述UE之间的PC5承载与所述UE和所述第一基站之间的DRB的映射关系。
  30. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收可穿戴设备WD发送的第五消息,所述第五消息用于所述WD向所述UE请求将直接路径切换为间接路径,所述直接路径为所述WD和为所述WD提供服务的基站之间的路径,所述间接路径为所述WD、所述UE和为所述UE提供服务的基站之间的路径;
    发送模块,用于根据所述接收模块接收的第五消息,向所述UE的移动管理实体MME发送第六消息,所述第六消息用于所述UE向所述UE的MME请求所述WD通过所述UE接入网络。
  31. 根据权利要求30所述的UE,其特征在于,所述UE还包括建立模块;
    所述接收模块,还用于在所述发送模块向所述UE的MME发送第六消息之后,接收第一基站发送的第四消息,所述第四消息用于指示所述UE建立第二映射关系,所述第二映射关系为所述WD和所述UE之间的PC5承载与所述UE和所述第一基站之间的数据无线承载DRB的映射关系,所述第一基站为所述UE提供服务;
    所述建立模块,用于根据所述接收模块接收的所述第四消息,建立所述第二映射关系。
  32. 根据权利要求31所述的UE,其特征在于,所述第四消息中携带所述WD的标识、所述PC5承载的标识、所述第一基站为所述WD分配的分组数据汇聚协议PDCP标识,以及第一DRB的标识;
    所述建立模块,具体用于根据所述WD的标识、所述PC5承载的标识、所述PDCP标识,以及所述第一DRB的标识,建立所述第二映射关系。
  33. 根据权利要求30-32任意一项所述的UE,其特征在于,
    所述发送模块,还用于在所述接收模块接收所述WD发送的第五 消息之后,向所述WD发送第七消息,所述第七消息用于指示将所述间接路径切换为所述直接路径。
  34. 一种移动管理实体MME,其特征在于,所述MME为第一MME,所述MME包括:
    接收模块,用于接收第二MME发送的第八消息,所述第八消息中携带可穿戴设备WD的上行S1信息,所述第一MME为所述UE的MME,所述第二MME为所述WD的MME;
    确定模块,用于根据所述接收模块接收的所述上行S1信息,确定第一基站与所述第二MME和所述WD的服务网关SGW之间均满足网络连接关系,所述第一基站为所述UE提供服务;
    发送模块,用于向所述第一基站发送第一消息,所述第一消息用于所述第一MME向所述第一基站请求所述WD通过所述UE接入网络。
  35. 根据权利要求34所述的MME,其特征在于,
    所述上行S1信息包括所述第二MME的标识和所述WD的SGW的互联网协议IP地址。
  36. 根据权利要求34或35所述的MME,其特征在于,
    所述接收模块,还用于在接收所述第二MME发送的所述第八消息之前,接收所述UE发送的第六消息,所述第六消息用于所述UE向所述第一MME请求所述WD通过所述UE接入网络;
    所述发送模块,还用于在所述接收模块接收所述UE发送的第六消息之后,向所述第二MME发送第九消息,所述第九消息用于请求所述WD的上行S1信息。
  37. 根据权利要求34至36任意一项所述的MME,其特征在于,所述WD的MME由当前的第二MME变更为第三MME,或者所述WD的SGW发生变更,
    所述接收模块,还用于接收所述第三MME或者所述第二MME发送的第十消息,所述第十消息用于通知所述第一MME,所述WD的上行S1信息已更新。
  38. 根据权利要求34至37任意一项所述的MME,其特征在于,为所述UE提供服务的基站由所述第一基站切换为第二基站,
    所述确定模块,还用于用于根据所述UE的上下文,确定所述第二基站与所述第二MME或所述WD的SGW不满足网络连接关系;
    所述发送模块,还用于向所述第二基站发送指示消息,所述指示消息用于所述第一MME向所述第二基站指示所述WD无法通过所述UE接入网络。
  39. 一种移动管理实体MME,其特征在于,所述MME为第二MME,所述MME包括:
    获取模块,用于获取可穿戴设备WD的上行S1信息,所述第二MME为所述WD的MME;
    发送模块,用于向第一MME发送第八消息,所述第八消息中携带所述上行S1信息,所述第一MME为用户设备UE的MME。
  40. 根据权利要求39所述的MME,其特征在于,
    所述获取模块,具体用于根据所述WD的上下文,获取所述上行S1信息。
  41. 根据权利要求39或40所述的MME,其特征在于,所述MME还包括接收模块和确定模块,
    所述接收模块,用于在所述发送模块向所述第一MME发送第八消息之前,接收所述WD发送的第十一消息,所述第十一消息中携带所述UE的标识;
    所述确定模块,用于根据所述接收模块接收的所述UE的标识,确定所述第一MME。
  42. 根据权利要求39或40所述的MME,其特征在于,所述MME还包括接收模块,
    所述接收模块,用于接收所述第一MME发送的第九消息,所述第九消息用于请求所述WD的上行S1信息;
    所述发送模块,具体用于在所述接收模块接收所述第一MME发送的所述第九消息之后,向所述第一MME发送第八消息。
  43. 根据权利要求39至42任意一项所述的MME,其特征在于,所述WD的MME由所述第二MME变更为第三MME,或者所述WD的服务网关SGW发生变更,
    所述发送模块,还用于向所述第一MME发送第十消息,所述第十消息用于通知所述第一MME,所述WD的上行S1信息已更新。
  44. 一种基站,其特征在于,包括处理器、收发器和存储器;
    所述存储器用于存储计算机执行指令,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1至8任意一项所述的通过用户设备接入网络的方法。
  45. 一种用户设备UE,其特征在于,包括:处理器、收发器和存储器;
    所述存储器用于存储计算机执行指令,当所述UE运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述UE执行如权利要求9至12任意一项所述的通过用户设备接入网络的方法。
  46. 一种移动管理实体MME,其特征在于,包括:处理器、收发器和存储器;
    所述存储器用于存储计算机执行指令,当所述MME运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述MME执行如权利要求13至17任意一项所述的通过用户设备接入网络的方法。
  47. 一种移动管理实体MME,其特征在于,包括:处理器、收发器和存储器;
    所述存储器用于存储计算机执行指令,当所述MME运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述MME执行如权利要求18至22任意一项所述的通过用户设备接入网络的方法。
  48. 一种无线通信系统,其特征在于,包括:如权利要求23至29任意一项或44所述的基站、如权利要求30至33任意一项或45所述的UE、如权利要求34至38任意一项或46所述的MME、如权 利要求39至43任意一项或47所述的MME以及可穿戴设备WD,其中,所述如权利要求34至38任意一项所述的MME为所述UE的MME,所述如权利要求39至43任意一项所述的MME为所述WD的MME。
PCT/CN2016/103809 2016-10-28 2016-10-28 一种通过用户设备接入网络的方法、装置及系统 WO2018076288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680083334.7A CN108713347B (zh) 2016-10-28 2016-10-28 一种通过用户设备接入网络的方法、装置及系统
PCT/CN2016/103809 WO2018076288A1 (zh) 2016-10-28 2016-10-28 一种通过用户设备接入网络的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103809 WO2018076288A1 (zh) 2016-10-28 2016-10-28 一种通过用户设备接入网络的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018076288A1 true WO2018076288A1 (zh) 2018-05-03

Family

ID=62023164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103809 WO2018076288A1 (zh) 2016-10-28 2016-10-28 一种通过用户设备接入网络的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN108713347B (zh)
WO (1) WO2018076288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726841A (zh) * 2019-03-22 2020-09-29 启碁科技股份有限公司 用于物联网的通信方法及其系统
EP4142354A4 (en) * 2020-04-20 2023-10-04 Datang Mobile Communications Equipment Co., Ltd. INFORMATION TRANSMISSION METHOD, NETWORK DEVICE AND TERMINAL

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385830B (zh) * 2018-12-29 2022-07-22 华为技术有限公司 通信方法和装置
EP3970417B1 (en) * 2019-07-29 2022-11-30 British Telecommunications public limited company Initiation of transfer of user equipment to base station according to visual data
CN116744401A (zh) * 2022-03-02 2023-09-12 华为技术有限公司 用户设备的聚合方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029524A1 (en) * 2009-09-11 2011-03-17 Panasonic Corporation Improved data forwarding during handovers involving a relay node
CN102438277A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 一种终端接入方法及系统
CN105357757A (zh) * 2015-09-25 2016-02-24 宇龙计算机通信科技(深圳)有限公司 一种通信资源配置方法和装置
CN105450546A (zh) * 2015-11-12 2016-03-30 北京奇虎科技有限公司 可穿戴设备及其局域网接入方法、智能终端
CN105553612A (zh) * 2015-12-10 2016-05-04 上海华为技术有限公司 一种d2d通信链路的传输方法和基站以及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569031B1 (ko) * 2009-03-23 2015-11-13 엘지전자 주식회사 Home (e)NodeB에 대한 단말의 접속을 제어하는 방법
MX2014014898A (es) * 2012-06-06 2015-03-04 Procter & Gamble Sistemas y metodos de identificacion de agentes cosmeticos para composiciones para el cuidado del cabello/cuero cabelludo.
WO2014107135A1 (en) * 2013-01-07 2014-07-10 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for non-access stratum signaling
EP2939456B1 (en) * 2014-01-17 2021-03-03 Samsung Electronics Co., Ltd. Dual connectivity mode of operation of a user equipment in a wireless communication network
US9801044B2 (en) * 2014-05-13 2017-10-24 Samsung Electronics Co., Ltd. Apparatus and method for accessing wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029524A1 (en) * 2009-09-11 2011-03-17 Panasonic Corporation Improved data forwarding during handovers involving a relay node
CN102438277A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 一种终端接入方法及系统
CN105357757A (zh) * 2015-09-25 2016-02-24 宇龙计算机通信科技(深圳)有限公司 一种通信资源配置方法和装置
CN105450546A (zh) * 2015-11-12 2016-03-30 北京奇虎科技有限公司 可穿戴设备及其局域网接入方法、智能终端
CN105553612A (zh) * 2015-12-10 2016-05-04 上海华为技术有限公司 一种d2d通信链路的传输方法和基站以及终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726841A (zh) * 2019-03-22 2020-09-29 启碁科技股份有限公司 用于物联网的通信方法及其系统
EP4142354A4 (en) * 2020-04-20 2023-10-04 Datang Mobile Communications Equipment Co., Ltd. INFORMATION TRANSMISSION METHOD, NETWORK DEVICE AND TERMINAL

Also Published As

Publication number Publication date
CN108713347B (zh) 2021-02-09
CN108713347A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
US10624146B2 (en) Radio link failure handling method, related device, and communications system
US11463937B2 (en) Data transmission method and apparatus
WO2018076288A1 (zh) 一种通过用户设备接入网络的方法、装置及系统
US11606731B2 (en) Communication method and communications apparatus and system
WO2018205351A1 (zh) 一种通信系统间移动方法及装置
CN109792662B (zh) 一种频谱资源的指示方法、装置及系统
WO2018127092A1 (zh) 一种免授权资源分配的方法、用户设备以及网络设备
JP2022095859A (ja) 測定配置方法及び関連製品
CN110574485B (zh) 网络连接配置方法及相关产品
CN110140385B (zh) 一种通信系统间移动方法及装置
CN110381608B (zh) 一种中继网络的数据传输方法及装置
WO2019144768A1 (zh) 一种网络注册模式切换的方法及终端
WO2018201414A1 (zh) 一种配置传输资源的方法、装置及系统
WO2019096073A1 (zh) 一种随机接入方法及装置
JP6751717B2 (ja) 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法
JP6854764B2 (ja) 無線通信システム、無線基地局、移動管理エンティティ、ユーザ装置及び通信制御方法
CN113455096B (zh) 重配置方法、终端设备和通信系统
WO2018170746A1 (zh) 通信方法、辅网络节点和终端
CN111263424B (zh) 一种接入网络的控制方法及通信设备
CN111182590A (zh) 一种小区切换方法、终端和通信节点
WO2018120195A1 (zh) 一种终端接入网络的方法、装置及系统
WO2022257926A1 (zh) 基于旁链路的中继服务方法及装置、终端及网络侧设备
JP7392106B2 (ja) データ送信方法及びユーザ機器
WO2018186270A1 (ja) 通信システム
WO2018216435A1 (ja) 通信システム及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919798

Country of ref document: EP

Kind code of ref document: A1