WO2018076263A1 - 基于调光控制的传输方法及相关设备 - Google Patents

基于调光控制的传输方法及相关设备 Download PDF

Info

Publication number
WO2018076263A1
WO2018076263A1 PCT/CN2016/103708 CN2016103708W WO2018076263A1 WO 2018076263 A1 WO2018076263 A1 WO 2018076263A1 CN 2016103708 W CN2016103708 W CN 2016103708W WO 2018076263 A1 WO2018076263 A1 WO 2018076263A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
terminal device
type
frame
coordinator
Prior art date
Application number
PCT/CN2016/103708
Other languages
English (en)
French (fr)
Inventor
姜彤
罗鹏飞
董晨
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/103708 priority Critical patent/WO2018076263A1/zh
Publication of WO2018076263A1 publication Critical patent/WO2018076263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a transmission method and related device based on dimming control.
  • Optical Wireless Communication refers to all optical communication without using cables (eg, optical fibers).
  • Visible light communication VLC
  • infrared communication etc. are all communication methods in optical wireless communication.
  • VLC refers to a method of performing communication using a visible light spectrum (wavelength of 380 nm to 780 nm).
  • VLC mainly transmits signals by modulating the intensity of a Light Emitting Diode (LED) light source.
  • the transmitter encodes and modulates the transmitted data signal, and the coded modulated data signal is used to modulate the intensity of the LED light source to generate a light intensity modulated signal;
  • PD photodetector
  • An optical camera (OC) detects the received light intensity modulated signal, converts the received light intensity modulated signal into an electrical signal, and then inputs the converted electrical signal to a receiver for demodulation in the receiver. Decode, restore to the transmitted data signal and output.
  • the standard network is called Visible-light communication Personal Area Network (VPAN), and each VPAN can include a service node.
  • VPAN Visible-light communication Personal Area Network
  • a plurality of terminal devices which are also called coordinators, are used to provide network access services for terminal devices in the VPAN and manage the operation of the VPAN.
  • the coordinator After the coordinator establishes a communication connection with the terminal device, when the coordinator sends the downlink signal to the terminal device, the coordinator modulates the downlink signal to obtain the modulated downlink signal and sends the modulated downlink signal to the terminal device, because the terminal device may not know the modulation in advance. After the modulation related parameters of the downlink signal, the terminal device cannot demodulate the modulated downlink signal, so that the downlink signal cannot be acquired.
  • the embodiment of the invention discloses a transmission method based on dimming control and related equipment, and the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • a first aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • the coordinator determines a first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source
  • the coordinator sends a beacon frame or a media access plan MAP frame to the terminal device in a first time interval of the preset period, and sends other downlink signals to the terminal device in a second time interval of the preset period.
  • the beacon frame or the MAP frame carries the first modulation parameter, the beacon frame or the MAP frame is modulated by a second type of modulation, and the other downlink signals are performed by using the first type of modulation modulation;
  • the second type of modulation mode is used by the terminal device to demodulate the received beacon frame or the MAP frame to obtain the first modulation parameter, where the first modulation parameter is used by the terminal.
  • the device demodulates the received other downlink signals.
  • the method for carrying the first modulation parameter in a beacon frame or a Media Access Plan (MAP) frame after the terminal device receives the beacon frame or the MAP frame, the terminal device may use the second type set in advance.
  • the modulation mode demodulates the beacon frame or the MAP frame to obtain the first modulation parameter, and demodulates the received downlink signal by using the first modulation parameter, and the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • the target is dimmed, and the average brightness of the light source in the first time interval.
  • the average brightness with the light source in the second time interval is the target dimming brightness.
  • the average brightness of the light source in the first time interval and the average brightness of the light source in the second time interval are both target dimming brightness, which can ensure the illumination effect of the light source (for example, the light source does not flicker when the coordinator transmits a signal, the brightness changes suddenly, etc.) ), so that the light source can play the role of illumination while transmitting signals.
  • the first time interval includes a time zone occupied by the beacon frame or the MAP frame between;
  • the first time interval further includes a first replenishment time, so that the The average brightness of the light source in the first time interval is the target dimming brightness.
  • the average brightness of the light source in the time interval occupied by the beacon frame or the MAP frame may not be equal to the target dimming brightness.
  • a supplemental time may be added before or after the beacon frame or the MAP frame, or a supplemental time may be added before and after the beacon frame or the MAP frame to ensure that the light source is in the beacon frame or the MAP frame and the supplement time
  • the average brightness is equal to the target dimming brightness, ensuring the illumination effect of the light source when transmitting signals.
  • the first type of modulation mode is a combination of Pulse Width Modulation (PWM) and the second type of modulation mode
  • the second type of modulation mode is a multi-carrier modulation mode
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation mode includes an optical-orthogonal frequency division multiplexing (O-OFDM) modulation method.
  • OFDM optical-orthogonal frequency division multiplexing
  • the first type of modulation mode includes a modulation mode combining a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a discrete multitone (DMT) modulation mode or a non-multi-carrier modulation mode.
  • DMT discrete multitone
  • the non-multi-carrier modulation method may be an On-Off Keying (OOK) modulation method, a Pulse Position Modulation (VPPM) method, or a multi-pulse position modulation (MPPM) method. Any of the modulation methods.
  • OOK On-Off Keying
  • VPPM Pulse Position Modulation
  • MPPM multi-pulse position modulation
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device may perform the received downlink signal modulated by the first type of modulation according to the duty ratio of the PWM signal in the first modulation parameter, the period length of the PWM signal, and the start position of any one or more periods of the PWM signal. Perform demodulation.
  • the first modulation parameter may further include a high level information of the PWM signal and a low level information of the PWM signal, etc., the high level information of the PWM signal and the low level information of the PWM signal may be the voltage value or current value of the high and low levels of the PWM signal, respectively. .
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the terminal device that has been connected to the network is successfully associated with the coordinator or registered, and joins the terminal device on the network where the coordinator is located.
  • the terminal device that is not in the network is the terminal device that has not joined the coordinator.
  • the beacon frame or the MAP frame further carries network information of a network where the coordinator is located, where the network information is used by the terminal device that is not in the network to join the network where the coordinator is located.
  • the network information may be public information of the network, such as the number of the network, the length of the superframe, and the resource scheduling information of the network.
  • the terminal device joins the network where the coordinator is located according to the network information.
  • the preset period is one superframe or one MAC period.
  • a second aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • the coordinator determines the first modulation parameter according to the target dimming brightness of the light source
  • the coordinator sends a current beacon frame or a current MAP frame to the terminal device, where the current beacon frame or the current MAP frame carries the first modulation parameter, and the first modulation parameter is used by the terminal device pair Receiving the downlink signal for demodulation;
  • the coordinator determines the first change modulation parameter according to the changed target dimming brightness
  • the coordinator transmits a next beacon frame or a next MAP frame to the terminal device, and the next beacon frame or the next MAP frame carries the first variation modulation parameter and the first variation modulation
  • the first change modulation parameter is used by the terminal device to demodulate the received downlink signal after the effective time.
  • the modulation parameters can be updated in time to ensure that the terminal device and the coordinator can re-synchronize.
  • the terminal device includes a terminal device that has been connected to the network.
  • a third aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • the coordinator determines a first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source
  • the coordinator sends a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and sends a synchronization frame to the terminal device in a second time interval of the preset period, where the beacon frame or
  • the MAP frame carries network information of a network where the coordinator is located, the synchronization frame carries the first modulation parameter, and the synchronization frame is modulated by a second type of modulation mode, the beacon frame or the MAP frame Modulating by using the first type of modulation method;
  • the second type of modulation mode is used by the terminal device to demodulate the received synchronization frame to obtain the first modulation parameter, where the first modulation parameter is used by the terminal device to receive the received Deriving the beacon frame or the MAP frame to obtain the network information, where the network information is used by the terminal device to join the network where the coordinator is located.
  • the terminal device can synchronize with the coordinator by using the synchronization frame, and enables the unconnected device to join the network where the coordinator is located.
  • the target is dimmed, and the average brightness of the light source in the first time interval and the light source are in the second The average brightness of the time interval is the target dimming brightness.
  • the average brightness of the light source in the first time interval and the average brightness of the light source in the second time interval are both target dimming brightness, which can ensure the illumination effect of the light source (for example, the light source does not flicker when the coordinator transmits a signal, the brightness changes suddenly, etc.) ), so that the light source can play the role of illumination while transmitting signals.
  • the second time interval includes a time interval occupied by the synchronization frame
  • the second time interval further includes a second replenishment time, so that the light source is in the second The average brightness in the time interval is the target dimming brightness.
  • the average brightness of the light source in the time interval occupied by the synchronization frame may not be equal to the target dimming brightness.
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM modulation scheme, or a VPPM modulation scheme.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that is not in the network or a terminal device that is out of synchronization.
  • a fourth aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • the terminal device receives the beacon frame or the MAP frame sent by the coordinator in a first time interval of the preset period, and receives other downlink signals sent by the coordinator in the second time interval of the preset period, where the beacon frame Or the MAP frame carries a first modulation parameter of a first type of modulation mode, where the beacon frame or the MAP frame is modulated by a second type of modulation, and the other downlink signals are performed by using the first type of modulation modulation;
  • the terminal device demodulates the other downlink signals by using the first modulation parameter.
  • the terminal device is preset to demodulate the beacon frame or the MAP frame in the second modulation mode. After the terminal device receives the beacon frame or the MAP frame, the terminal device may perform the second modulation parameter pair. The beacon frame or the MAP frame is demodulated to obtain a first modulation parameter, and the received other downlink signals are demodulated by using the first modulation parameter. In the embodiment of the present invention, the terminal device can quickly obtain the downlink signal sent by the coordinator.
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the preset period is one superframe or one MAC period.
  • a fifth aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • the terminal device demodulates the received downlink signal by using the previous modulation parameter
  • the terminal device demodulates the received downlink signal by using the current modulation parameter after the effective time.
  • the terminal device can acquire the latest modulation parameters in time through the beacon frame or the MAP frame to ensure the terminal.
  • the device and the coordinator can re-synchronize and demodulate the received downlink signal according to the latest modulation parameter after the latest modulation parameter takes effect, so as to avoid the terminal device demodulating the newly received downlink signal by the old modulation mode. Unable to demodulate successful problems.
  • the terminal device includes a terminal device that has been connected to the network.
  • a sixth aspect of the embodiments of the present invention discloses a transmission method based on dimming control, including:
  • a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period receives a synchronization frame sent by the coordinator in a second time interval of the preset period
  • the beacon frame or The MAP frame carries network information of a network where the coordinator is located
  • the synchronization frame carries a first modulation parameter of a first type of modulation mode
  • the synchronization frame is modulated by a second type of modulation mode
  • the beacon frame or The MAP frame is modulated by using the first type of modulation mode
  • the terminal device demodulates the synchronization frame according to the second type of modulation mode set in advance, and acquires the first modulation parameter;
  • the terminal device uses the network information to join the network where the coordinator is located.
  • the terminal device is preset to demodulate the synchronization frame in the second modulation mode. After receiving the synchronization frame, the terminal device may demodulate the synchronization frame according to the second modulation parameter, thereby acquiring the first modulation parameter. Synchronizing the terminal device with the coordinator by using the first modulation parameter, and demodulating the beacon frame or the MAP frame by using the first modulation parameter, according to the network information of the network where the coordinator carried by the beacon frame or the MAP frame is located, so that The terminal device joins the network where the coordinator is located according to the network information. In the embodiment of the present invention, the terminal device can synchronize with the coordinator by using the synchronization frame, and enable the device that is not in the network to join the network where the coordinator is located.
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that is not in the network or a terminal device that is out of synchronization.
  • a seventh aspect of the embodiments of the present invention discloses a coordinator, including:
  • a processing unit configured to determine, according to a target dimming brightness of the light source, a first modulation parameter of the first type of modulation mode
  • a communication unit configured to send a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and send another downlink signal to the terminal device in a second time interval of the preset period, where the beacon
  • the frame or the MAP frame carries the first modulation parameter
  • the beacon frame or the MAP frame is modulated by a second type of modulation
  • the other downlink signals are modulated by the first type of modulation
  • the second type of modulation mode is used by the terminal device to demodulate the received beacon frame or the MAP frame to obtain the first modulation parameter, where the first modulation parameter is used by the terminal device Demodulating the received other downlink signals.
  • An eighth aspect of the embodiments of the present invention discloses a coordinator, including:
  • a processing unit configured to determine a first modulation parameter according to a target dimming brightness of the light source
  • a communication unit configured to send a current beacon frame or a current MAP frame to the terminal device, where the current beacon frame or the current MAP frame carries the first modulation parameter, where the first modulation parameter is used by the terminal device Demodulating the received downlink signal;
  • the processing unit is further configured to: when the target dimming brightness changes, the coordinator determines a first change modulation parameter according to the changed target dimming brightness;
  • the communication unit is further configured to send the next beacon frame or the next MAP to the terminal device a frame, the next beacon frame or the next MAP frame carrying the first change modulation parameter and an effective time of the first change modulation parameter, where the first change modulation parameter is used by the terminal device
  • the received downlink signal is demodulated after the effective time.
  • a ninth aspect of the embodiment of the present invention discloses a coordinator, including:
  • a processing unit configured to determine, according to a target dimming brightness of the light source, a first modulation parameter of the first type of modulation mode
  • a communication unit configured to send a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and send a synchronization frame to the terminal device in a second time interval of the preset period, where the beacon frame Or the MAP frame carries network information of a network where the coordinator is located, the synchronization frame carries the first modulation parameter, and the synchronization frame is modulated by a second type of modulation mode, the beacon frame or the MAP
  • the frame is modulated by the first type of modulation; the second type of modulation is used by the terminal device to demodulate the received synchronization frame to obtain the first modulation parameter, the first modulation
  • the parameter is used by the terminal device to demodulate the received beacon frame or the MAP frame to obtain the network information, where the network information is used by the terminal device to join the network where the coordinator is located.
  • a tenth aspect of the embodiment of the present invention discloses a terminal device, including:
  • a communication unit configured to receive a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period, and receive other downlink signals sent by the coordinator in a second time interval of the preset period, where
  • the beacon frame or the MAP frame carries a first modulation parameter of a first type of modulation mode, and the beacon frame or the MAP frame is modulated by a second type of modulation mode, and the other downlink signals adopt the first type Modulation mode modulation;
  • a processing unit configured to demodulate the beacon frame or the MAP frame according to the preset second type modulation manner, to acquire the first modulation parameter
  • the processing unit is further configured to demodulate the other downlink signals by using the first modulation parameter.
  • An eleventh embodiment of the present invention discloses a terminal device, including:
  • a communication unit configured to receive a current beacon frame or a current MAP frame sent by the coordinator, where the current beacon frame or the current MAP frame carries a current modulation parameter and an effective time of the current modulation parameter;
  • a processing unit configured to determine whether the current modulation parameter is the same as a previous modulation parameter carried in a previous beacon frame or a previous MAP frame;
  • the processing unit is further configured to: when the determination result is yes, demodulate the received downlink signal by using the previous modulation parameter;
  • the demodulation unit is further configured to: when the determination result is no, demodulate the received downlink signal by using the current modulation parameter after the effective time.
  • a twelfth aspect of the embodiment of the present invention discloses a terminal device, including:
  • a communication unit configured to receive a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period, and receive a synchronization frame sent by the coordinator in a second time interval of the preset period, where the The frame frame or the MAP frame carries network information of a network where the coordinator is located, the synchronization frame carries a first modulation parameter of a first type of modulation mode, and the synchronization frame is modulated by a second type of modulation mode, where the message The frame frame or the MAP frame is modulated by the first type of modulation;
  • a processing unit configured to demodulate the synchronization frame according to the preset second modulation mode, to acquire the first modulation parameter
  • the processing unit is further configured to demodulate the beacon frame or the MAP frame according to the first modulation parameter to obtain the network information;
  • the processing unit is further configured to join the network where the coordinator is located by using the network information.
  • a thirteenth aspect of the embodiments of the present invention discloses a coordinator including a processor, a memory, and a communication interface, where the memory is used to store an instruction
  • the processor invoking an instruction stored in the memory performs the following operations:
  • beacon frame or a MAP frame Transmitting, by using the communication interface, a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and sending another downlink signal to the terminal device in a second time interval of the preset period,
  • the beacon frame or the MAP frame carries the first modulation parameter
  • the beacon frame or the MAP frame is modulated by a second type of modulation
  • the other downlink signals adopt the first type of modulation Modulate
  • the second type of modulation mode is used by the terminal device to demodulate the received beacon frame or the MAP frame to obtain the first modulation parameter, where the first modulation parameter is used by the terminal.
  • the device demodulates the received other downlink signals.
  • the average brightness of the light source in the first time interval and the average brightness of the light source in the second time interval are both the target dimming brightness.
  • the first time interval includes a time interval occupied by the beacon frame or the MAP frame;
  • the first time interval further includes a first replenishment time, so that the The average brightness of the light source in the first time interval is the target dimming brightness.
  • the first type of modulation mode is a combination of a pulse width modulation PWM and the second type of modulation mode
  • the second type of modulation mode is a multi-carrier modulation mode
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the beacon frame or the MAP frame further carries network information of a network where the coordinator is located, where the network information is used by the terminal device that is not in the network to join the network where the coordinator is located.
  • the preset period is one superframe or one MAC period.
  • a fourteenth aspect of the embodiments of the present invention discloses a coordinator including a processor, a memory, and a communication interface, where the memory is used to store an instruction.
  • the processor invoking an instruction stored in the memory performs the following operations:
  • the terminal device Transmitting, by the communication interface, a next beacon frame or a next MAP frame to the terminal device, where the next beacon frame or the next MAP frame carries the first change modulation parameter and the first change
  • the effective time of the modulation parameter, the first change modulation parameter is used by the terminal device to demodulate the received downlink signal after the effective time.
  • the terminal device includes a terminal device that has been connected to the network.
  • a fifteenth aspect of the embodiments of the present invention discloses a coordinator, including a processor, a memory, and a communication interface, where the memory is used to store an instruction,
  • the processor invoking an instruction stored in the memory performs the following operations:
  • a beacon frame or a MAP frame Transmitting, by using the communication interface, a beacon frame or a MAP frame to a terminal device in a first time interval of a preset period, and transmitting a synchronization frame to the terminal device in a second time interval of the preset period, where the beacon frame Or the MAP frame carries network information of a network where the coordinator is located, the synchronization frame carries the first modulation parameter, and the synchronization frame is modulated by a second type of modulation mode, the beacon frame or the MAP The frame is modulated by the first type of modulation;
  • the second type of modulation mode is used by the terminal device to demodulate the received synchronization frame to obtain the first modulation parameter, where the first modulation parameter is used by the terminal device to receive the received Deriving the beacon frame or the MAP frame to obtain the network information, where the network information is used by the terminal device to join the network where the coordinator is located.
  • an average brightness of the light source in the first time interval and the light source are in the second The average brightness of the time interval is the target dimming brightness.
  • the second time interval includes a time interval occupied by the synchronization frame
  • the second time interval further includes a second replenishment time, so that the light source is in the second The average brightness in the time interval is the target dimming brightness.
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that is not in the network or a terminal device that is out of synchronization.
  • a sixteenth aspect of the embodiments of the present invention discloses a terminal device, including a processor, a memory, and a communication interface, where the memory is used to store an instruction.
  • a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period and receiving other downlink signals sent by the coordinator in a second time interval of the preset period, where
  • the beacon frame or the MAP frame carries a first modulation parameter of a first type of modulation mode, and the beacon frame or the MAP frame is modulated by a second type of modulation mode, and the other downlink signals adopt the first type Modulation mode modulation;
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the preset period is one superframe or one MAC period.
  • a seventeenth aspect of the embodiments of the present invention discloses a terminal device, including a processor, a memory, and a communication interface, where the memory is used to store an instruction.
  • the received downlink signal is demodulated with the current modulation parameter after the effective time.
  • the terminal device includes a terminal device that has been connected to the network.
  • An eighteenth aspect of the embodiments of the present invention discloses a terminal device, including a processor, a memory, and a communication interface, where the memory is used to store an instruction.
  • the frame frame or the MAP frame carries network information of a network where the coordinator is located, where the synchronization frame carries a first modulation parameter of a first type of modulation mode, and the synchronization frame is modulated by a second type of modulation mode.
  • the beacon frame or the MAP frame is modulated by using the first type of modulation mode;
  • the network information is used to join the network where the coordinator is located.
  • the first type of modulation is a combination of a PWM and the second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the multi-carrier modulation mode includes an O-OFDM modulation mode.
  • the first type of modulation mode includes a modulation mode that combines a PWM and a multi-carrier modulation mode
  • the second type of modulation mode is a DMT modulation mode or a non-multi-carrier modulation mode.
  • the first modulation parameter includes a duty ratio of the PWM signal, a period length of the PWM signal, and a start position of any one or more periods of the PWM signal.
  • the terminal device includes a terminal device that is not in the network or a terminal device that is out of synchronization.
  • a nineteenth aspect of the embodiments of the present invention discloses a computer readable storage medium storing one or more computer programs, the coordinator performing the above by running the one or more computer programs The transmission method based on the dimming control of the first aspect will not be repeated here.
  • a twentieth aspect of an embodiment of the present invention discloses a computer readable storage medium storing one or more computer programs, the coordinator performing the above by running the one or more computer programs The second aspect of the transmission method based on dimming control will not be repeated here.
  • a twenty-first aspect of the embodiments of the present invention discloses a computer readable storage medium storing one or more computer programs, the coordinator being executed by running the one or more computer programs The transmission method based on the dimming control of the above third aspect will not be repeated here.
  • a twenty-second aspect of embodiments of the present invention discloses a computer readable storage medium storing one or more computer programs, the terminal device being executed by running the one or more computer programs The transmission method based on the dimming control of the above fourth aspect will not be repeated here.
  • a twenty-third aspect of embodiments of the present invention discloses a computer readable storage medium storing one or more computer programs, the terminal device being executed by running the one or more computer programs The transmission method based on the dimming control of the above fifth aspect will not be repeated here.
  • a twenty-fourth aspect of the embodiments of the present invention discloses a computer readable storage medium storing one or more computer programs, the terminal device being executed by running the one or more computer programs The transmission method based on the dimming control of the sixth aspect described above will not be repeated here.
  • the coordinator determines the first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source; the coordinator periodically sends the beacon frame or the MAP frame and other downlink signals according to the preset period, for example, And the coordinator sends a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and sends another downlink signal to the terminal device in a second time interval of the preset period, where the beacon frame or the MAP frame carries the first A modulation parameter, a beacon frame or a MAP frame is modulated by a second type of modulation, and other downlink signals are modulated by a first type of modulation; and a second type of modulation is used by the terminal device for a received beacon frame or MAP frame.
  • the terminal device is preset to demodulate the received beacon frame or MAP frame in a second type of modulation manner.
  • the terminal device may perform the second type of modulation according to the preset.
  • the method demodulates the received beacon frame or the MAP frame to obtain the first modulation parameter, and demodulates the received other downlink signals according to the first modulation parameter, and implements the embodiment of the present invention, and the terminal device can quickly acquire The downlink signal sent by the coordinator.
  • FIG. 1 is a schematic diagram of a network structure of a VPAN according to an embodiment of the present invention
  • 1a is a schematic structural diagram of a superframe disclosed in an embodiment of the present invention.
  • FIG. 1b is a schematic structural diagram of a MAC cycle disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a transmission method based on dimming control disclosed in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of brightness of a superframe disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of waveforms of a PWM signal disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a PWM signal disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a synchronization frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of brightness of another superframe disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a coordinator according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of another coordinator disclosed in an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture of a VPAN according to an embodiment of the present invention.
  • a VPAN may include a coordinator and a plurality of terminal devices, and the coordinator and the terminal device perform network access, data transmission, and the like through a visible light communication link.
  • the coordinator is used to provide network access services for terminal devices in the VPAN and manage the operation of the VPAN.
  • the coordinator can schedule network resources and transmissions based on a superframe or a Media Access Control (MAC) cycle.
  • MAC Media Access Control
  • FIG. 1a is a schematic structural diagram of a superframe according to an embodiment of the present invention.
  • a superframe includes an active period and an inactive period, and the active period includes a beacon slot for transmitting a beacon, and a contention access.
  • FIG. 1b is a schematic structural diagram of a MAP frame according to an embodiment of the present invention.
  • each MAC period may be classified into a Contention-Free Transmission Opportunity (CFTXOP) and a shared transmission opportunity ( Shared Transmission Opportunity, STXOP).
  • the STXOP may include a Contention-Free Time Slot (CFTS) and a Contention-Based Time Slot (CBTS).
  • CFTXOP Contention-Free Transmission Opportunity
  • CBTS Contention-Based Time Slot
  • the coordinator periodically broadcasts a beacon frame or a Media Access Plan (MAP) frame, and the beacon frame or MAP frame is used to carry public information of the VPAN (eg, network number, superframe, or MAP frame).
  • the terminal device can access the network according to the received beacon frame or MAP frame, synchronize and communicate with the coordinator, and the like.
  • Terminal devices include, but are not limited to, mobile phones, tablets, laptops, and the like.
  • the VPAN network can support the dimming control of the light source (for example, the LED light source), and realize the brightness adjustment of the LED light source while maintaining communication, and the commonly used methods include analog dimming, digital dimming, and mixed dimming.
  • An optical communication network composed of one VPAN network is in a star mode, and an optical communication network composed of a plurality of VPAN networks is a coordinated mode, and both a star mode and a coordinated mode are applicable to the embodiments of the present invention.
  • FIG. 2 is a schematic flowchart diagram of a transmission method based on dimming control according to an embodiment of the present invention. The method includes the following steps.
  • the coordinator determines a first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source.
  • the coordinator may be associated with a light source (eg, a ceiling mounted LED light) that transmits a signal through the light source, the target dimming brightness being the brightness that the light source is to achieve.
  • the coordinator can determine the first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source.
  • the target dimming brightness is different, and the required first modulation parameters are also different.
  • the first type of modulation is a combination of PWM and multi-carrier modulation, such as Pulse Width Modulation (PWM) and Orthogonal Frequency Division Multiplexing (OFDM).
  • the first modulation parameter may include parameters such as the duty cycle of the PWM signal. In general, the greater the target dimming brightness, the greater the duty cycle of the PWM signal.
  • the modulation method combined with the PWM and the multi-carrier modulation method may be a reverse polarity optical Orthogonal Frequency Division Multiplexing (RPO-OFDM) modulation method.
  • RPO-OFDM reverse polarity optical Orthogonal Frequency Division Multiplexing
  • the coordinator sends a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and sends another downlink signal to the terminal device in a second time interval of the preset period, where the beacon frame or the MAP frame carries the first
  • the modulation parameters, the beacon frame or the MAP frame are modulated by the second type of modulation, and the other downlink signals are modulated by the first type of modulation; the second type of modulation is used by the terminal device for the received beacon frame or MAP frame.
  • Demodulating to obtain a first modulation parameter, the first modulation parameter being used for the terminal The device demodulates other received downlink signals.
  • the coordinator may periodically broadcast a beacon frame or a MAP frame according to a preset period, and the preset period is a super frame or a MAC period.
  • the preset period is a super frame.
  • Length, in Figure 1b, the preset period is the length of one MAC period.
  • Other downlink signals include, but are not limited to, data frames, control frames, command frames, and the like.
  • the terminal device can receive service data, control information, commands, and the like sent by the coordinator.
  • the superframe is used as an example, the coordinator sends a beacon frame to the terminal device in a first time interval of one superframe, and sends other downlink signals to the terminal device in a second time interval of one superframe, where
  • the beacon frame carries the first modulation parameter
  • the beacon frame is modulated by the second type of modulation
  • the other downlink signals are modulated by the first type of modulation
  • the terminal device after the terminal device receives the beacon frame, the terminal device according to the second modulation
  • the method demodulates the beacon frame, acquires a first modulation parameter, and demodulates the received other downlink signals by using the first modulation parameter.
  • the terminal device is preset to demodulate the beacon frame in the second modulation manner.
  • the terminal device may demodulate the beacon frame according to the second modulation parameter, thereby acquiring the first
  • the modulation parameter is used to demodulate the received other downlink signals by using the first modulation parameter, and the terminal device can quickly obtain the downlink signal sent by the coordinator.
  • the coordinator sends a MAP frame to the terminal device in a first time interval of one MAC period, and sends other downlink signals to the terminal device in a second time interval of one MAC period, where MAP
  • the frame carries the first modulation parameter
  • the MAP frame is modulated by the second type of modulation
  • the other downlink signals are modulated by the first type of modulation
  • the terminal device performs the MAP frame according to the second modulation mode.
  • Demodulation is performed to obtain a first modulation parameter, and the received other downlink signals are demodulated by using the first modulation parameter.
  • the terminal device is preset to demodulate the MAP frame in the second modulation mode. After the terminal device receives the MAP frame, the terminal device may demodulate the MAP frame according to the second modulation parameter, thereby acquiring the first modulation. The parameter is used to demodulate the received other downlink signals by using the first modulation parameter. In the embodiment of the present invention, the terminal device can quickly obtain the downlink signal sent by the coordinator.
  • the beacon frame or the MAP frame further carries common information of the VPAN (such as the number of the network, the length of the superframe or the MAP frame, and the like), parameters, and resource scheduling information.
  • common information of the VPAN such as the number of the network, the length of the superframe or the MAP frame, and the like
  • parameters such as the number of the network, the length of the superframe or the MAP frame, and the like
  • resource scheduling information such as the number of the network, the length of the superframe or the MAP frame, and the like
  • the average brightness of the light source in the first time interval and the average brightness of the light source in the second time interval are both target dimming brightness.
  • the coordinator ensures that the light source is in each superframe.
  • the brightness does not change and is still the target dimming brightness.
  • the first time interval includes a time interval occupied by the beacon frame or the MAP frame; when the average brightness of the time interval occupied by the light source frame or the MAP frame is not equal to the target dimming brightness, the first time interval A first supplemental time is also included to cause the average brightness of the light source in the first time interval to be the target dimming brightness.
  • the beacon frame in the process of modulation and transmission, may be in the signal due to the limitation of signal power and DC offset, and the average brightness of the time range occupied by the beacon frame is not equal to the target dimming brightness.
  • the average brightness of the interval sets the brightness of the light source during the supplemental time so that the average brightness of the light source during the beacon frame and the supplement time is equal to the target dimming brightness.
  • FIG. 3 is a schematic diagram of the brightness of a superframe according to an embodiment of the present invention.
  • the target dimming brightness of the light source is N%
  • B represents a beacon frame
  • the time occupied by the beacon frame is N1%
  • the average brightness of the light source in the time interval occupied by the beacon frame is N1%
  • N1% is greater than N%.
  • the first supplementary time (such as CP in FIG. 3) may be inserted after the beacon frame.
  • the first supplemental time is t2, wherein the first supplemental time is continuous in time, the average brightness of the light source at the first supplemental time is N2%, and N2% is less than N%, and the first time interval is t1+t2
  • the first time interval is t1+t2
  • the first time interval is the time interval occupied by the transmitted beacon frame.
  • the first type of modulation is a combination of a pulse width modulated PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the second type of modulation method is a multi-carrier modulation method, for example, an optical-orthogonal frequency division multiplexing (O-OFDM) modulation method
  • the first type of modulation method is pulse width modulation PWM and second.
  • a combination of class modulation methods for example, the second type of modulation method is an O-OFDM modulation method
  • the first type of modulation method is a combination of a PWM and an O-OFDM modulation method, for example, an RPO-OFDM modulation method.
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • RPO-OFDM is a PWM-based ODFM modulation method, and the expression of the PWM signal is as follows:
  • I H is the high level of the LED current
  • I L is the low level of the LED current
  • T PWM is the period of the PWM signal
  • T is the pulse width
  • the waveform of the PWM signal is shown in Figure 4.
  • RPO-OFDM combines PWM and O-OFDM with the following expression:
  • i OFDM(t) is an O-OFDM signal
  • the change of the brightness of the LED dimming can be realized by changing the power of the m, the OFDM signal and the duty ratio of the PWM signal.
  • the first type of modulation is an RPO-OFDM modulation method.
  • the RPO-OFDM signal is a PWM signal
  • an asymmetrically clipped optical Orthogonal Frequency Division Multiplexing (ACO-OFDM) signal is loaded.
  • the beacon frame is modulated by ACO-OFDM, and the other part of the superframe adopts RPO-OFDM modulation mode;
  • the RPO-OFDM signal is a DC offset orthogonal frequency division multiplexing on the PWM signal
  • the DCO-OFDM signal is modulated by DCO-OFDM, and the other parts of the superframe are RPO-OFDM modulated.
  • the beacon frame adopts the same modulation method as the signal loaded on the PWM signal, but the specific parameters of the modulation (for example, the subcarrier spacing) may be different.
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a modulation mode combining PWM and multi-carrier modulation
  • the second type of modulation is a discrete multitone (DMT) modulation method or a non-multi-carrier modulation method.
  • the non-multi-carrier modulation method may be an On-Off Keying (OOK) modulation method, a Pulse Position Modulation (VPPM) method, or a multi-pulse position modulation (MPPM) method. Any of the modulation methods.
  • OOK On-Off Keying
  • VPPM Pulse Position Modulation
  • MPPM multi-pulse position modulation
  • the first type of modulation mode is RPO-OFDM modulation mode
  • the beacon frame or MAP frame adopts any one of DMT modulation mode, OOK modulation mode, and MPPM modulation mode, and other parts of the superframe adopt RPO-OFDM. Modulation.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the second time interval is modulated by the first type of modulation.
  • the duty ratio of the PWM signal in the first modulation parameter of the first type of modulation mode is T/T PWM
  • the period length of the PWM signal is T.
  • the terminal device may perform the received downlink signal modulated by the first type of modulation according to the duty ratio of the PWM signal in the first modulation parameter, the period length of the PWM signal, and the start position of any one or more periods of the PWM signal. Perform demodulation.
  • the first modulation parameter may further include a high level information of the PWM signal and a low level information of the PWM signal, etc.
  • the high level information of the PWM signal and the low level information of the PWM signal may be the voltage value or current value of the high and low levels of the PWM signal, respectively.
  • the terminal device in the embodiment shown in FIG. 2 may be a terminal device that has entered the network or a terminal device that is not in the network.
  • the terminal device that has been connected to the network is successfully associated with the coordinator or registered, and joins the terminal device on the network where the coordinator is located.
  • the terminal device that is not in the network is the terminal device that has not joined the coordinator.
  • the terminal device that has entered the network when receiving the beacon frame or the MAP frame sent by the coordinator, demodulating the beacon frame or the MAP frame to obtain the first modulation parameter, according to the PWM signal in the first modulation parameter
  • the air ratio, the period length of the PWM signal, and the starting position of any one or more periods of the PWM signal can ensure that the terminal device that has entered the network synchronizes with the coordinator, and thus can solve the downlink signal sent by the coordinator. Tune.
  • the beacon frame or the MAP frame further carries network information of the network where the coordinator is located, and the network information is used for the terminal device that is not in the network to join the network where the coordinator is located.
  • the terminal device when receiving the beacon frame or the MAP frame sent by the coordinator, demodulate the beacon frame or the MAP frame, and obtain the network information of the network where the coordinator carried in the beacon frame or the MAP frame is located.
  • the terminal device can join the network where the coordinator is located according to the network information.
  • the network information may be public information of the network, such as the number of the network, the length of the superframe, and the resource scheduling information of the network.
  • FIG. 6 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention. The method includes the following steps.
  • the coordinator determines the first modulation parameter according to the target dimming brightness of the light source.
  • the coordinator sends a current beacon frame or a current MAP frame to the terminal device.
  • the current beacon frame or the current MAP frame carries a first modulation parameter, where the first modulation parameter is used by the terminal device to demodulate the received downlink signal.
  • the coordinator determines the first change modulation parameter according to the changed target dimming brightness.
  • the coordinator sends the next beacon frame or the next MAP frame to the terminal device, where the next beacon frame or the next MAP frame carries the first change modulation parameter and the effective time of the first change modulation parameter, and the first change modulation parameter Used by the terminal device to perform the received downlink signal after the effective time demodulation.
  • the coordinator determines the first change modulation parameter according to the changed target dimming brightness. Taking the beacon frame as an example, the coordinator carries the first change modulation parameter and the effective time of the first change modulation parameter in the next beacon frame sent to the terminal device, when the terminal device acquires the first change modulation parameter and the first change After the effective time of the modulation parameter, the terminal device demodulates the received downlink signal by using the first variation modulation parameter after the effective time.
  • the effective time can be represented by a countdown count. For example, if the effective time is 3, after 3 superframes or 3 MAC cycles, the terminal device demodulates the received downlink signal with the first change modulation parameter.
  • the effective time can also be expressed by the superframe number or the MAC sequence number. For example, if the current superframe or MAC period is 100, the effective time is valid when the superframe or MAC period with the sequence number of 103 is valid. Set to 103. When the sequence number of the superframe or MAC period received by the terminal device is 103, the terminal device demodulates the downlink signal in the received superframe or MAC cycle with the first change modulation parameter.
  • the terminal device includes a terminal device that has entered the network.
  • the coordinator when the target dimming brightness changes, may send the changed first change modulation parameter to the terminal device, so that the terminal device adjusts according to the first change when the first change modulation parameter takes effect.
  • the parameters are used to re-synchronize the terminal device with the coordinator, so that the downlink signal sent by the coordinator can be demodulated.
  • the embodiment of the invention can update the modulation parameters in time after the target dimming brightness changes, so that the terminal device and the coordinator can re-synchronize.
  • FIG. 7 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention. The method includes the following steps.
  • the coordinator determines a first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source.
  • the coordinator sends a beacon frame or a MAP to the terminal device in a first time interval of the preset period.
  • the frame sends a synchronization frame to the terminal device in a second time interval of the preset period, where the beacon frame or the MAP frame carries the network information of the network where the coordinator is located, the synchronization frame carries the first modulation parameter, and the synchronization frame uses the second type modulation mode.
  • the modulation, the beacon frame or the MAP frame is modulated by the first type of modulation; the second type of modulation is used by the terminal device to demodulate the received synchronization frame to obtain a first modulation parameter, and the first modulation parameter is used for the terminal device.
  • the received beacon frame or MAP frame is demodulated to obtain network information, and the network information is used for the terminal device to join the network where the coordinator is located.
  • the network information may be public information of the network, such as the number of the network, the length of the superframe, and the resource scheduling information of the network.
  • the preset period may be one superframe or one MAC period. Taking the superframe as an example, the coordinator sends a beacon frame to the terminal device in a first time interval of one superframe, and to the terminal device in a second time interval of one superframe.
  • the terminal device After the terminal device receives the synchronization frame, the terminal device according to the The second modulation mode demodulates the synchronization frame, acquires the first modulation parameter, demodulates the received beacon frame by using the first modulation parameter, acquires network information of the network where the coordinator is located, and the terminal device joins the coordinator according to the network information. Where the network is.
  • the terminal device is preset to demodulate the synchronization frame in the second modulation mode.
  • the terminal device may demodulate the synchronization frame according to the second modulation parameter, thereby acquiring the first modulation parameter. Synchronizing the terminal device with the coordinator by using the first modulation parameter, and demodulating the beacon frame by using the first modulation parameter, according to the network information of the network where the coordinator is carried in the beacon frame, so that the terminal device according to the network information Join the network where the coordinator is located.
  • the terminal device can synchronize with the coordinator by using the synchronization frame, and enable the device that is not in the network to join the network where the coordinator is located.
  • the synchronization frame is sent in the second time interval. As shown in FIG. 8 , taking the super frame as an example, the synchronization frame is sent in a Guaranteed Time Slot (GTS) of the CFP in the second time interval of the super frame.
  • GTS Guaranteed Time Slot
  • the frame structure of the synchronization frame may include a preamble sequence and a PHY frame header, wherein the PHY frame header carries the first modulation parameter.
  • the average brightness of the light source in the first time interval and the light source are in the second time interval
  • the average brightness is the target dimming brightness
  • the coordinator In order to ensure the illumination effect of the light source, for example, when the light source transmits signals in the coordinator, there is no flicker, sudden change in brightness, etc., so that the light source can play the role of illumination while transmitting the signal, and the coordinator should ensure that the light source is in each super The brightness in the frame does not change and is still the target dimming brightness.
  • the second time interval includes a time interval occupied by the synchronization frame; when the average brightness of the time interval occupied by the light source in the synchronization frame is not equal to the target dimming brightness, the second time interval further includes a second replenishment time.
  • the average brightness of the light source in the second time interval is the target dimming brightness.
  • a complementary time may be added before or after the synchronization frame. Or adding a supplementary time before and after the synchronization frame, wherein the supplementary time and the transmission of the synchronization frame should be uninterrupted, and the coordinator should set the brightness of the light source in the supplementary time according to the average brightness of the time interval occupied by the synchronization frame, The average brightness of the light source during the sync frame and the supplement time is equal to the target dimming brightness.
  • FIG. 9 is a schematic diagram of another superframe brightness according to an embodiment of the present invention.
  • the target dimming luminance of the light source is N%
  • B represents a beacon frame
  • S represents a synchronization frame.
  • the time interval occupied by the synchronization frame is t1
  • the average brightness of the light source in the time interval occupied by the synchronization frame is N1%
  • N1% is greater than N%.
  • the second supplement time may be inserted after the synchronization frame (as shown in FIG. 9).
  • the second supplemental time is t2, wherein the second supplemental time is continuous in time, the average brightness of the light source at the second supplemental time is N2%, and N2% is less than N%, in order to ensure that the light source is throughout
  • the average brightness of the light source in the time interval occupied by the sync frame is equal to the target dimming brightness, then it is not necessary to add a supplement time after the sync frame.
  • the first type of modulation is a combination of PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the second type of modulation method is a multi-carrier modulation method, for example, an OFDM modulation method
  • the first type of modulation method is a combination of a pulse width modulation PWM and a second type modulation method.
  • the system is an O-OFDM modulation method
  • the first type of modulation is a combination of a PWM and an O-OFDM modulation method, for example, an RPO-OFDM modulation method.
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a combination of PWM and multi-carrier modulation
  • the second type of modulation is a DMT modulation or a non-multi-carrier modulation.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first type of modulation mode is an RPO-OFDM modulation mode
  • the synchronization frame adopts any one of a DMT modulation mode, an OOK modulation mode, and an MPPM modulation mode, and other parts of the superframe adopt an RPO-OFDM modulation mode.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the synchronization frame in the second time interval of the superframe is modulated by the second type of modulation, and the other part is modulated by the first type of modulation.
  • the duty ratio of the PWM signal in the first modulation parameter of the first type of modulation is T/T PWM , where T is the pulse width of the PWM signal, T PWM is the period length of the PWM signal, the PWM signal may include multiple periods, and the modulatable parameter may include the start position of any one or more periods of the PWM signal .
  • the terminal device may perform the received downlink signal modulated by the first type of modulation according to the duty ratio of the PWM signal in the first modulation parameter, the period length of the PWM signal, and the start position of any one or more periods of the PWM signal. Perform demodulation.
  • the first modulation parameter may further include a high level information of the PWM signal and a low level information of the PWM signal, etc.
  • the high level information of the PWM signal and the low level information of the PWM signal may be the voltage value or current value of the high and low levels of the PWM signal, respectively.
  • the terminal device includes a terminal device that is not networked or a terminal device that is out of synchronization.
  • a terminal device that is not in the network is a terminal device that has not joined the network where the coordinator is located.
  • the terminal device that is not in the network when receiving the synchronization frame sent by the coordinator, demodulating the synchronization frame to obtain the first modulation parameter, and demodulating the beacon frame or the MAP frame by using the first modulation parameter, according to the signal
  • the network information of the network where the coordinator is carried in the frame or MAP frame so that the terminal device that is not in the network joins the network where the coordinator is located according to the network information.
  • a terminal device that has lost synchronization that is, a terminal device that has joined the network where the coordinator is located, but loses synchronization with the coordinator (for example, a terminal device that loses synchronization with the clock of the coordinator) or a PWM used with the first type of modulation mode.
  • the terminal device whose signal is out of sync.
  • the synchronization frame sent by the coordinator is received, the synchronization frame is demodulated to obtain the first modulation parameter, and the synchronization of the terminal device and the coordinator that lose synchronization is realized by using the first modulation parameter.
  • FIG. 10 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention. The method includes the following steps.
  • the terminal device receives a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period, and receives other downlink signals sent by the coordinator in a second time interval of the preset period, where the beacon frame or the MAP frame carries The first modulation parameter of the first type of modulation mode, the beacon frame or the MAP frame is modulated by the second type of modulation, and the other downlink signals are modulated by the first type of modulation.
  • the coordinator may periodically broadcast a beacon frame or a MAP frame according to a preset period, and the terminal device receives the beacon frame sent by the coordinator in a first time interval of the preset period, in the second of the preset period.
  • the time interval receives other downlink signals sent by the coordinator.
  • the preset period may be one superframe or one MAC period.
  • the preset period is the length of one superframe.
  • the preset period is the length of one MAC period.
  • Other downlink signals include, but are not limited to, data frames, control frames, command frames, and the like.
  • the terminal device may receive the service data, control information, commands, and the like sent by the coordinator in the second time interval.
  • the terminal device demodulates the beacon frame or the MAP frame according to a preset second type modulation mode, to obtain a first modulation parameter.
  • the terminal device After the terminal device receives the beacon frame or the MAP frame, the terminal device follows the preset second The modulation mode demodulates the beacon frame or the MAP frame to obtain the first modulation parameter.
  • the first modulation parameter may include parameters such as the duty cycle of the PWM signal.
  • the terminal device demodulates the other downlink signals by using the first modulation parameter.
  • the terminal device After the terminal device acquires the first modulation parameter, the terminal device demodulates the received other downlink signals by using the first modulation parameter.
  • the terminal device is preset to demodulate the beacon frame or the MAP frame in the second modulation manner. After the terminal device receives the beacon frame or the MAP frame, the terminal device may perform the beacon frame or the MAP according to the second modulation parameter. The frame is demodulated to obtain a first modulation parameter, and the received other downlink signals are demodulated by using the first modulation parameter. In the embodiment of the present invention, the terminal device can quickly obtain the downlink signal sent by the coordinator.
  • the first type of modulation is a combination of PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the second type of modulation method is a multi-carrier modulation method, for example, an OFDM modulation method
  • the first type of modulation method is a combination of a pulse width modulation PWM and a second type modulation method.
  • the second type of modulation method is an O-OFDM modulation method
  • the first type of modulation method is a combination of a PWM and an O-OFDM modulation method, for example, an RPO-OFDM modulation method.
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the first type of modulation is RPO-OFDM modulation. If the RPO-OFDM signal is loaded with ACO-OFDM signals on the PWM signal, the beacon frame is modulated by ACO-OFDM, and other parts of the superframe are RPO. - OFDM modulation mode; if the RPO-OFDM signal is a DCO-OFDM signal loaded on the PWM signal, the beacon frame is modulated by DCO-OFDM, and the other part of the superframe adopts the RPO-OFDM modulation mode. It should be noted that the beacon frame adopts the same modulation method as the signal loaded on the PWM signal, but the specific parameters of the modulation (for example, the subcarrier spacing) may be different.
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a combination of PWM and multi-carrier modulation
  • the second type of modulation is a DMT modulation or a non-multi-carrier modulation.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first type of modulation mode is RPO-OFDM modulation mode
  • the beacon frame or MAP frame adopts any one of DMT modulation mode, OOK modulation mode, and MPPM modulation mode, and other parts of the superframe adopt RPO-OFDM. Modulation.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the first modulation parameter may further include a high level information of the PWM signal and a low level information of the PWM signal, etc.
  • the high level information of the PWM signal and the low level information of the PWM signal may be the voltage value or current value of the high and low levels of the PWM signal, respectively.
  • the terminal device in the embodiment shown in FIG. 10 may be a terminal device that has entered the network or a terminal device that is not in the network.
  • the terminal device that has been connected to the network is successfully associated with the coordinator or registered, and joins the terminal device on the network where the coordinator is located.
  • the terminal device that is not in the network is the terminal device that has not joined the coordinator.
  • the terminal device that has entered the network when receiving the beacon frame or the MAP frame sent by the coordinator, demodulating the beacon frame or the MAP frame to obtain the first modulation parameter, according to the PWM signal in the first modulation parameter
  • the air ratio, the period length of the PWM signal, and the starting position of any one or more periods of the PWM signal can ensure that the terminal device that has entered the network synchronizes with the coordinator, and thus can solve the downlink signal sent by the coordinator. Tune.
  • FIG. 11 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention.
  • the method provides a transmission method when a modulation parameter changes, and the method includes the following steps.
  • the terminal device receives a current beacon frame or a current MAP frame sent by the coordinator, where the current beacon frame or the current MAP frame carries the current modulation parameter and an effective time of the current modulation parameter.
  • the terminal device determines whether the current modulation parameter is the same as the previous modulation parameter carried in the previous beacon frame or the previous MAP frame. If yes, go to step 1103. If no, go to step 1104.
  • the terminal device demodulates the received downlink signal by using a previous modulation parameter.
  • the terminal device When the current modulation parameter is the same as the previous modulation parameter, indicating that the modulation parameter has not changed, the terminal device still demodulates the received downlink signal by using the previously obtained previous modulation parameter.
  • the terminal device demodulates the received downlink signal by using a current modulation parameter after the effective time.
  • the terminal device demodulates the received downlink signal by using the current modulation parameter after the current modulation parameter is valid.
  • the effective time can be represented by a countdown count. For example, if the effective time is 3, the terminal device demodulates the received downlink signal with the current modulation parameter after 3 superframes or 3 MAC cycles.
  • the effective time can also be expressed by the superframe number or the MAC sequence number. For example, if the current superframe or MAC period is 100, the effective time is valid when the superframe or MAC period with the sequence number of 103 is valid. Set to 103. When the sequence number of the superframe or MAC cycle received by the terminal device is 103, the terminal device demodulates the received downlink signal or the downlink signal in the MAC cycle with the current modulation parameter.
  • the terminal device includes a terminal device that has entered the network.
  • the terminal device determines that the current modulation parameter currently received in the current beacon frame or the current MAP frame is different from the previous modulation parameter in the last received beacon frame or the previous MAP frame. After the effective time of the current modulation parameter, the received downlink signal is demodulated using the current modulation parameter.
  • the terminal device can acquire the latest modulation parameters in time through the beacon frame or the MAP frame to ensure that the terminal device and the coordinator can re-synchronize, and demodulate the received downlink signal according to the latest modulation parameter after the latest modulation parameter takes effect. Avoid terminal devices The old modulation method demodulates the newly received downlink signal, resulting in the problem that the demodulation is not successful.
  • FIG. 12 is a schematic flowchart diagram of another transmission method based on dimming control disclosed in an embodiment of the present invention. The method includes the following steps.
  • the terminal device receives a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period, and receives a synchronization frame sent by the coordinator in a second time interval of the preset period, where the beacon frame or the MAP frame carries coordination
  • the network information of the network where the device is located the synchronization frame carries the first modulation parameter of the first type of modulation mode, the synchronization frame is modulated by the second type of modulation mode, and the beacon frame or the MAP frame is modulated by the first type of modulation mode.
  • the terminal device demodulates the synchronization frame according to a preset second type modulation mode, and acquires a first modulation parameter.
  • the terminal device demodulates the beacon frame or the MAP frame according to the first modulation parameter, and acquires network information.
  • the terminal device uses the network information to join the network where the coordinator is located.
  • the network information may be public information of the network, such as the number of the network, the length of the superframe, and the resource scheduling information of the network.
  • the preset period may be one superframe or one MAC period. Taking the superframe as an example, the coordinator sends a beacon frame to the terminal device in a first time interval of one superframe, and to the terminal device in a second time interval of one superframe.
  • the terminal device After the terminal device receives the synchronization frame, the terminal device according to the The second modulation mode demodulates the synchronization frame, acquires the first modulation parameter, demodulates the received beacon frame by using the first modulation parameter, acquires network information of the network where the coordinator is located, and the terminal device joins the coordinator according to the network information. Where the network is.
  • the terminal device is preset to demodulate the synchronization frame in the second modulation mode.
  • the terminal device may demodulate the synchronization frame according to the second modulation parameter, thereby acquiring the first modulation parameter. Synchronizing the terminal device with the coordinator by using the first modulation parameter, and demodulating the beacon frame by using the first modulation parameter, according to the network information of the network where the coordinator is carried in the beacon frame, so that the terminal device according to the network information Join the network where the coordinator is located.
  • the terminal device can synchronize with the coordinator by using the synchronization frame, and enables the unconnected device to join the network where the coordinator is located.
  • the first type of modulation is a combination of PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the second type of modulation method is a multi-carrier modulation method, for example, an OFDM modulation method
  • the first type of modulation method is a combination of a pulse width modulation PWM and a second type modulation method.
  • the second type of modulation method is an O-OFDM modulation method
  • the first type of modulation method is a combination of a PWM and an O-OFDM modulation method, for example, an RPO-OFDM modulation method.
  • the first type of modulation adopts the combination of pulse width modulation PWM and the second type of modulation, which can reduce the complexity and cost of the terminal device.
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a combination of PWM and multi-carrier modulation
  • the second type of modulation is a DMT modulation or a non-multi-carrier modulation.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first type of modulation mode is an RPO-OFDM modulation mode
  • the synchronization frame adopts any one of a DMT modulation mode, an OOK modulation mode, and an MPPM modulation mode, and other parts of the superframe adopt an RPO-OFDM modulation mode.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the synchronization frame in the second time interval of the superframe is modulated by the second type of modulation, and the other part is modulated by the first type of modulation.
  • the duty ratio of the PWM signal in the first modulation parameter of the first type of modulation is T/T PWM , where T is the pulse width of the PWM signal, T PWM is the period length of the PWM signal, the PWM signal may include multiple periods, and the modulatable parameter may include the start position of any one or more periods of the PWM signal .
  • the terminal device may perform the received downlink signal modulated by the first type of modulation according to the duty ratio of the PWM signal in the first modulation parameter, the period length of the PWM signal, and the start position of any one or more periods of the PWM signal. Perform demodulation.
  • the first modulation parameter may further include a high level information of the PWM signal and a low level information of the PWM signal, etc.
  • the high level information of the PWM signal and the low level information of the PWM signal may be the voltage value or current value of the high and low levels of the PWM signal, respectively.
  • the terminal device includes a terminal device that is not networked or a terminal device that is out of synchronization.
  • a terminal device that is not in the network is a terminal device that has not joined the network where the coordinator is located.
  • the terminal device that is not in the network when receiving the synchronization frame sent by the coordinator, demodulating the synchronization frame to obtain the first modulation parameter, and demodulating the beacon frame or the MAP frame by using the first modulation parameter, according to the signal
  • the network information of the network where the coordinator is carried in the frame or MAP frame so that the terminal device that is not in the network joins the network where the coordinator is located according to the network information.
  • a terminal device that has lost synchronization that is, a terminal device that has joined the network where the coordinator is located, but loses synchronization with the coordinator (for example, a terminal device that loses synchronization with the clock of the coordinator) or a PWM signal used with the first modulation mode A terminal device that loses synchronization during the cycle.
  • the synchronization frame sent by the coordinator is received, the synchronization frame is demodulated to obtain the first modulation parameter, and the synchronization of the terminal device and the coordinator that lose synchronization is realized by using the first modulation parameter.
  • FIG. 13 is a schematic structural diagram of a coordinator according to an embodiment of the present invention. As shown in FIG. 13, the coordinator includes a processing unit 1301 and a communication unit 1302.
  • the processing unit 1301 is configured to determine a first modulation parameter of the first type of modulation mode according to the target dimming brightness of the light source.
  • the communication unit 1302 is configured to send a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and send another downlink signal to the terminal device in a second time interval of the preset period, where the beacon frame or the MAP frame carries The first modulation parameter, the beacon frame or the MAP frame is modulated by the second type of modulation, and the other downlink signals are modulated by the first type of modulation; the second type of modulation is used by the terminal device for the received beacon frame or MAP.
  • the frame is demodulated to obtain a first modulation parameter, and the first modulation parameter is used by the terminal device to demodulate the received other downlink signals.
  • the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • the implementation of the coordinator can be implemented by referring to the implementation of the method shown in FIG. Let me repeat.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device includes a communication unit 1401 and a processing unit 1402.
  • the communication unit 1401 is configured to receive a beacon frame or a MAP frame sent by the coordinator in a first time interval of the preset period, and receive other downlink signals, a beacon frame, or a MAP sent by the coordinator in a second time interval of the preset period.
  • the frame carries the first modulation parameter of the first type of modulation mode
  • the beacon frame or the MAP frame is modulated by the second type of modulation mode
  • the other downlink signals are modulated by the first type of modulation mode.
  • the processing unit 1402 is configured to demodulate the beacon frame or the MAP frame according to a preset second type modulation mode to obtain the first modulation parameter.
  • the processing unit 1403 is further configured to demodulate the other downlink signals by using the first modulation parameter.
  • the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • the principle of the terminal device is similar to the transmission method based on the dimming control in the method embodiment of the present application. Therefore, the implementation of the terminal device can be implemented by referring to the method shown in FIG. Let me repeat.
  • FIG. 15 is a schematic structural diagram of another coordinator according to an embodiment of the present invention.
  • the coordinator 150 includes at least one processor 1501, at least one memory 1502, and at least one communication interface 1503.
  • the coordinator 150 may also include general components such as an antenna, which will not be described in detail herein.
  • the processor 1501 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above program.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 1503 is configured to communicate with other devices (such as terminal devices) or a communication network, such as an Ethernet, a Radio Access Network (RAN), a Wireless Local Area Networks (WLAN), and the like.
  • a communication network such as an Ethernet, a Radio Access Network (RAN), a Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 1502 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 1502 is configured to store application code that executes the above solution, and is controlled by the processor 1501 for execution.
  • the processor 1501 is configured to execute the application code stored in the memory 1502, and perform the following operations:
  • beacon frame or MAP frame And transmitting, by the communication interface 1503, a beacon frame or a MAP frame to the terminal device in a first time interval of the preset period, and sending another downlink signal to the terminal device in a second time interval of the preset period, where the beacon frame or the MAP frame carries The first modulation parameter, the beacon frame or the MAP frame is modulated by the second type of modulation, and the other downlink signals are modulated by the first type of modulation;
  • the second type of modulation mode is used by the terminal device to demodulate the received beacon frame or MAP frame to obtain a first modulation parameter
  • the first modulation parameter is used by the terminal device to demodulate the received other downlink signals.
  • the average brightness of the light source in the first time interval and the average brightness of the light source in the second time interval are both target dimming brightness.
  • the first time interval includes a time interval occupied by the beacon frame or the MAP frame;
  • the first time interval is further included in the first time interval, so that the average brightness of the light source in the first time interval is the target. Dimming brightness.
  • the first type of modulation is a combination of a pulse width modulated PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a combination of PWM and multi-carrier modulation
  • the second type of modulation is a DMT modulation or a non-multi-carrier modulation.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the beacon frame or the MAP frame further carries network information of the network where the coordinator is located, and the network information is used for the terminal device that is not in the network to join the network where the coordinator is located.
  • the preset period is one superframe or one MAC period.
  • the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • FIG. 16 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the terminal device 160 includes at least one processor 1601, at least one memory 1602, and at least one communication interface 1603.
  • the terminal device 160 may also include general components such as an antenna, which will not be described in detail herein.
  • the processor 1601 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above program.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a communication interface 1603 configured to communicate with other devices (such as terminal devices) or a communication network, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 1602 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 1602 is configured to store application code that executes the above solution, and is controlled by the processor 1601 for execution.
  • the processor 1601 is configured to execute the application code stored in the memory 1602, and perform the following operations:
  • the terminal device receives the beacon frame or the MAP frame sent by the coordinator in the first time interval of the preset period, and receives other downlink signals sent by the coordinator in the second time interval of the preset period, where the beacon frame or the MAP frame carries the first
  • the first modulation parameter of the modulation mode, the beacon frame or the MAP frame is modulated by the second type of modulation, and the other downlink signals are modulated by the first type of modulation;
  • the terminal device demodulates the beacon frame or the MAP frame according to a preset second modulation mode to obtain a first modulation parameter
  • the terminal device demodulates the other downlink signals by using the first modulation parameter.
  • the first type of modulation is a combination of PWM and a second type of modulation
  • the second type of modulation is a multi-carrier modulation
  • the multi-carrier modulation scheme includes an O-OFDM modulation scheme.
  • the first type of modulation includes a combination of PWM and multi-carrier modulation.
  • Modulation mode the second type of modulation mode is DMT modulation mode or non-multi-carrier modulation mode.
  • the non-multicarrier modulation scheme may be any one of a modulation scheme such as an OOK modulation scheme, an MPPM scheme, or a VPPM scheme.
  • the first modulation parameter includes a duty cycle of the PWM signal, a period length of the PWM signal, and a starting position of any one or more cycles of the PWM signal.
  • the terminal device includes a terminal device that has entered the network or a terminal device that is not in the network.
  • the preset period is one superframe or one MAC period.
  • the terminal device can quickly acquire the downlink signal sent by the coordinator.
  • ROM read only Memory
  • RAM random access memory
  • PROM programmable read only memory
  • EPROM erasable programmable read only memory
  • OTPROM One-time Progr AmmAble ReAd-Only Memory
  • EEPROM Electronic Ally-ErAs Able Progr AmmAble ReAd-Only Memory
  • CD-ROM Compact Disc
  • CD-ROM Compact Disc

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开一种基于调光控制的传输方法及相关设备,该方法包括:协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在预设周期的第二时间区间向终端设备发送其他下行信号,信标帧或MAP帧携带第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;第二类调制方式用于终端设备对接收到的信标帧或MAP帧进行解调以得到第一调制参数,第一调制参数用于终端设备对接收到的其他下行信号进行解调。通过实施本发明实施例,终端设备能够快速获取协调器发送的下行信号。

Description

基于调光控制的传输方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种基于调光控制的传输方法及相关设备。
背景技术
光无线通信(Optical Wireless Communication,OWC)是指所有不使用线缆(如,光纤)的光学通信,可见光通信(visible light communication,VLC)、红外通信等都是光无线通信中的通信方式。其中,VLC是指利用可见光频谱(波长为380nm~780nm)进行通信的方式。VLC主要通过调制发光二极管(Light Emitting Diode,LED)光源的强度来传输信号。在输入端,发射机将传输的数据信号进行编码调制,编码调制后的数据信号用来调制LED光源的强度,生成光强度调制信号;在接收端,使用光电探测器(Photodetector,PD)或者光学镜头(Optical Camera,OC)来检测接收到的光强度调制信号,并将接收到的光强度调制信号转为电信号,然后将转换后的电信号输入到接收机,在接收机中经过解调解码,恢复为传输的数据信号并输出。
IEEE与2011年发布了IEEE 802.15.7标准,该标准适用于VLC,该标准的网络称为可见光通信个域网(Visible-light communication Personal Area Network,VPAN),每个VPAN中可以包括一个服务节点和多个终端设备,服务节点也称为协调器(coordinator),用来为VPAN中的终端设备提供网络接入服务并管理VPAN的运行。
协调器与终端设备建立通信连接之后,协调器向终端设备发送下行信号时,协调器将该下行信号进行调制,得到调制后的下行信号并发送给终端设备,由于终端设备可能无法事先获知该调制后的下行信号的调制相关参数,导致终端设备无法对该调制后的下行信号进行解调,从而无法获取下行信号。
发明内容
本发明实施例公开了一种基于调光控制的传输方法及相关设备,终端设备能够快速获取协调器发送的下行信号。
本发明实施例第一方面公开一种基于调光控制的传输方法,包括:
协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
所述协调器在预设周期的第一时间区间向终端设备发送信标帧或媒体接入计划MAP帧,在所述预设周期的第二时间区间向所述终端设备发送其他下行信号,所述信标帧或所述MAP帧携带所述第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
所述第二类调制方式用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述其他下行信号进行解调。
采用在信标帧或媒体接入计划(Media Access Plan,MAP)帧中携带第一调制参数的方法,当终端设备接收到信标帧或MAP帧之后,终端设备可以利用预先设置的第二类调制方式对信标帧或MAP帧进行解调,从而获取第一调制参数,并利用第一调制参数对接收到的下行信号进行解调,终端设备能够快速获取协调器发送的下行信号。
可选的,为了保证光源在每个超帧或媒体访问控制(Media Access Control,MAC)周期中亮度不发生变化,仍然为目标调光亮度,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
光源在第一时间区间的平均亮度与光源在第二时间区间的平均亮度均为目标调光亮度,可以保证光源的照明效果(比如,光源在协调器传输信号时不发生闪烁、亮度突变等情况),以使光源在传输信号的同时能起到照明的作用。
可选的,所述第一时间区间包括所述信标帧或所述MAP帧占用的时间区 间;
当所述光源在所述信标帧或所述MAP帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第一时间区间内还包括第一补充时间,以使所述光源在所述第一时间区间内的平均亮度为所述目标调光亮度。
信标帧或MAP帧在调制和发送过程中,由于信号功率与直流偏置的限制,光源在信标帧或MAP帧占用的时间区间的平均亮度可能会不等于目标调光亮度,此时,可以在信标帧或MAP帧的之前或者之后加入一段补充时间,或在信标帧或MAP帧的之前及之后各加入一段补充时间,以保证光源在信标帧或MAP帧与该补充时间内的平均亮度等于目标调光亮度,保证光源在传输信号时的照明效果。
可选的,所述第一类调制方式是脉冲宽度调制(Pulse Width Modulation,PWM)与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
可选的,所述多载波调制方式包括光学正交频分复用(Optical-Orthogonal Frequency Division Multiplexing,O-OFDM)调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为离散多音频(Discrete multitone,DMT)调制方式或非多载波调制方式。
其中,非多载波调制方式可以为开关键控(On-Off Keying,OOK)调制方式、脉冲位置调制(Variable Pulse Position Modulation,VPPM)方式、多脉冲位置调制(multi-pulse position modulation,MPPM)方式等调制方式中的任一种。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
终端设备可以根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置对接收到的经过第一类调制方式调制的下行信号进行解调。第一调制参数还可以包括PWM信号高电平信息和PWM信号低电平信息等,PWM信号高电平信息和PWM信号低电平信息可以分别是PWM信号的高低电平的电压值或电流值。
可选的,所述终端设备包括已入网的终端设备或未入网的终端设备。
已入网的终端设备为成功与协调器关联或注册,并加入到协调器所在网络的终端设备,未入网的终端设备为尚未加入协调器所在网络的终端设备。
可选的,所述信标帧或所述MAP帧还携带所述协调器所在网络的网络信息,所述网络信息用于所述未入网的终端设备加入所述协调器所在网络。
网络信息可以是网络的公共信息,例如网络的编号、超帧长度以及网络的资源调度信息等,终端设备根据该网络信息加入协调器所在网络。
可选的,所述预设周期为一个超帧或者一个MAC周期。
本发明实施例第二方面公开一种基于调光控制的传输方法,包括:
协调器根据光源的目标调光亮度确定第一调制参数;
所述协调器向终端设备发送当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的下行信号进行解调;
当所述目标调光亮度发生变化时,所述协调器根据变化后的目标调光亮度确定第一变化调制参数;
所述协调器向所述终端设备发送下一个信标帧或下一个MAP帧,所述下一个信标帧或所述下一个MAP帧携带所述第一变化调制参数以及所述第一变化调制参数的生效时间,所述第一变化调制参数用于所述终端设备在所述生效时间之后对接收到的下行信号进行解调。
当目标调光亮度发生变化时,可以及时更新调制参数,保证终端设备与协调器能够重新进行同步。
可选的,所述终端设备包括已入网的终端设备。
本发明实施例第三方面公开一种基于调光控制的传输方法,包括:
协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
所述协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带所述第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
所述第二类调制方式用于所述终端设备对接收到的所述同步帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述网络信息,所述网络信息用于所述终端设备加入所述协调器所在网络。
终端设备可以利用同步帧实现与协调器的同步,并使得未入网的设备能够加入协调器所在的网络。
可选的,为了保证光源在每个超帧或MAC周期中亮度不发生变化,仍然为目标调光亮度,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
光源在第一时间区间的平均亮度与光源在第二时间区间的平均亮度均为目标调光亮度,可以保证光源的照明效果(比如,光源在协调器传输信号时不发生闪烁、亮度突变等情况),以使光源在传输信号的同时能起到照明的作用。
可选的,所述第二时间区间包括所述同步帧占用的时间区间;
当所述光源在所述同步帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第二时间区间内还包括第二补充时间,以使所述光源在所述第二时间区间内的平均亮度为所述目标调光亮度。
同步帧在调制和发送过程中,由于信号功率与直流偏置的限制,光源在同步帧占用的时间区间的平均亮度可能会不等于目标调光亮度,此时,可以在同 步帧之前或者之后加入一段补充时间,或在同步帧之前及之后各加入一段补充时间,以保证光源在同步帧与该补充时间内的平均亮度等于目标调光亮度,保证光源在传输信号时的照明效果。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
其中,非多载波调制方式可以为OOK调制方式、MPPM调制方式、VPPM调制方式等调制方式中的任一种。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括未入网的终端设备或失去同步的终端设备。
本发明实施例第四方面公开一种基于调光控制的传输方法,包括:
终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的其他下行信号,所述信标帧或所述MAP帧携带第一类调制方式的第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
所述终端设备按照预先设置的所述第二类调制方式对所述信标帧或所述MAP帧进行解调,获取所述第一调制参数;
所述终端设备利用所述第一调制参数对所述其他下行信号进行解调。
本发明实施例中预先设置终端设备以第二调制方式对信标帧或MAP帧进行解调,当终端设备接收到信标帧或MAP帧之后,可以根据第二调制参数对 信标帧或MAP帧进行解调,从而获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调。实施本发明实施例,终端设备可以快速获取协调器发送的下行信号。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括已入网的终端设备或未入网的终端设备。
可选的,所述预设周期为一个超帧或者一个MAC周期。
本发明实施例第五方面公开一种基于调光控制的传输方法,包括:
终端设备接收协调器发送的当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带当前调制参数与所述当前调制参数的生效时间;
所述终端设备判断所述当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;
若相同,则所述终端设备利用所述上一个调制参数对接收到的下行信号进行解调;
若不相同,则所述终端设备在所述生效时间之后利用所述当前调制参数对接收到的下行信号进行解调。
终端设备可以通过信标帧或MAP帧及时获取最新的调制参数,保证终端 设备与协调器能够重新进行同步,并在最新的调制参数生效之后按照最新的调制参数对接收的下行信号进行解调,避免出现终端设备以旧的调制方式对新接收的下行信号进行解调导致无法解调成功的问题。
可选的,所述终端设备包括已入网的终端设备。
本发明实施例第六方面公开一种基于调光控制的传输方法,包括:
终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带第一类调制方式的第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
所述终端设备按照预先设置的所述第二类调制方式对所述同步帧进行解调,获取所述第一调制参数;
所述终端设备根据所述第一调制参数对所述信标帧或所述MAP帧进行解调,获取所述网络信息;
所述终端设备利用所述网络信息加入所述协调器所在网络。
本发明实施例中预先设置终端设备以第二调制方式对同步帧进行解调,当终端设备接收到同步帧之后,可以根据第二调制参数对同步帧进行解调,从而获取第一调制参数,利用第一调制参数实现终端设备与协调器的同步,并利用第一调制参数对信标帧或MAP帧进行解调,根据信标帧或MAP帧携带的协调器所在网络的网络信息,以使终端设备根据该网络信息加入协调器所在网络。实施本发明实施例,终端设备可以利用同步帧实现与协调器的同步,并使得未入网的设备能够加入协调器所在的网络。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括未入网的终端设备或失去同步的终端设备。
本发明实施例第七方面公开一种协调器,包括:
处理单元,用于根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
通信单元,用于在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送其他下行信号,所述信标帧或所述MAP帧携带所述第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;所述第二类调制方式用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述其他下行信号进行解调。
本发明实施例第八方面公开一种协调器,包括:
处理单元,用于根据光源的目标调光亮度确定第一调制参数;
通信单元,用于向终端设备发送当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的下行信号进行解调;
所述处理单元,还用于当所述目标调光亮度发生变化时,所述协调器根据变化后的目标调光亮度确定第一变化调制参数;
所述通信单元,还用于向所述终端设备发送下一个信标帧或下一个MAP 帧,所述下一个信标帧或所述下一个MAP帧携带所述第一变化调制参数以及所述第一变化调制参数的生效时间,所述第一变化调制参数用于所述终端设备在所述生效时间之后对接收到的下行信号进行解调。
本发明实施例第九方面公开一种协调器,包括:
处理单元,用于根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
通信单元,用于在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带所述第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;所述第二类调制方式用于所述终端设备对接收到的所述同步帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述网络信息,所述网络信息用于所述终端设备加入所述协调器所在网络。
本发明实施例第十方面公开一种终端设备,包括:
通信单元,用于在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的其他下行信号,所述信标帧或所述MAP帧携带第一类调制方式的第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
处理单元,用于按照预先设置的所述第二类调制方式对所述信标帧或所述MAP帧进行解调,获取所述第一调制参数;
所述处理单元,还用于利用所述第一调制参数对所述其他下行信号进行解调。
本发明实施例第十一方面公开一种终端设备,包括:
通信单元,用于接收协调器发送的当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带当前调制参数与所述当前调制参数的生效时间;
处理单元,用于判断所述当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;
所述处理单元,还用于当所述判断结果为是时,利用所述上一个调制参数对接收到的下行信号进行解调;
所述解调单元,还用于当所述判断结果为否时,在所述生效时间之后利用所述当前调制参数对接收到的下行信号进行解调。
本发明实施例第十二方面公开一种终端设备,包括:
通信单元,用于在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带第一类调制方式的第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
处理单元,用于按照预先设置的所述第二类调制方式对所述同步帧进行解调,获取所述第一调制参数;
所述处理单元,还用于根据所述第一调制参数对所述信标帧或所述MAP帧进行解调,获取所述网络信息;
所述处理单元,还用于利用所述网络信息加入所述协调器所在网络。
本发明实施例第十三方面公开一种协调器,包括处理器、存储器和通信接口,所述存储器用于存储指令,
所述处理器调用存储在所述存储器中的指令执行如下操作:
根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
利用所述通信接口在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送其他下行信号, 所述信标帧或所述MAP帧携带所述第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
所述第二类调制方式用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述其他下行信号进行解调。
可选的,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
可选的,所述第一时间区间包括所述信标帧或所述MAP帧占用的时间区间;
当所述光源在所述信标帧或所述MAP帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第一时间区间内还包括第一补充时间,以使所述光源在所述第一时间区间内的平均亮度为所述目标调光亮度。
可选的,所述第一类调制方式是脉冲宽度调制PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括已入网的终端设备或未入网的终端设备。
可选的,所述信标帧或所述MAP帧还携带所述协调器所在网络的网络信息,所述网络信息用于所述未入网的终端设备加入所述协调器所在网络。
可选的,所述预设周期为一个超帧或者一个MAC周期。
本发明实施例第十四方面公开一种协调器,包括处理器、存储器和通信接口,所述存储器用于存储指令,
所述处理器调用存储在所述存储器中的指令执行如下操作:
根据光源的目标调光亮度确定第一调制参数;
利用所述通信接口向终端设备发送当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的下行信号进行解调;
当所述目标调光亮度发生变化时,根据变化后的目标调光亮度确定第一变化调制参数;
利用所述通信接口向所述终端设备发送下一个信标帧或下一个MAP帧,所述下一个信标帧或所述下一个MAP帧携带所述第一变化调制参数以及所述第一变化调制参数的生效时间,所述第一变化调制参数用于所述终端设备在所述生效时间之后对接收到的下行信号进行解调。
可选的,所述终端设备包括已入网的终端设备。
本发明实施例第十五方面公开一种协调器,包括处理器、存储器和通信接口,所述存储器用于存储指令,
所述处理器调用存储在所述存储器中的指令执行如下操作:
根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
利用所述通信接口在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带所述第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
所述第二类调制方式用于所述终端设备对接收到的所述同步帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述网络信息,所述网络信息用于所述终端设备加入所述协调器所在网络。
可选的,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二 时间区间的平均亮度均为所述目标调光亮度。
可选的,所述第二时间区间包括所述同步帧占用的时间区间;
当所述光源在所述同步帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第二时间区间内还包括第二补充时间,以使所述光源在所述第二时间区间内的平均亮度为所述目标调光亮度。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括未入网的终端设备或失去同步的终端设备。
本发明实施例第十六方面公开一种终端设备,包括处理器、存储器和通信接口,所述存储器用于存储指令,
调用存储在所述存储器中的指令执行如下操作:
利用所述通信接口在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的其他下行信号,所述信标帧或所述MAP帧携带第一类调制方式的第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
按照预先设置的所述第二类调制方式对所述信标帧或所述MAP帧进行解调,获取所述第一调制参数;
利用所述第一调制参数对所述其他下行信号进行解调。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括已入网的终端设备或未入网的终端设备。
可选的,所述预设周期为一个超帧或者一个MAC周期。
本发明实施例第十七方面公开一种终端设备,包括处理器、存储器和通信接口,所述存储器用于存储指令,
调用存储在所述存储器中的指令执行如下操作:
利用所述通信接口接收协调器发送的当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带当前调制参数与所述当前调制参数的生效时间;
判断所述当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;
若相同,利用所述上一个调制参数对接收到的下行信号进行解调;
若不相同,在所述生效时间之后利用所述当前调制参数对接收到的下行信号进行解调。
可选的,所述终端设备包括已入网的终端设备。
本发明实施例第十八方面公开一种终端设备,包括处理器、存储器和通信接口,所述存储器用于存储指令,
调用存储在所述存储器中的指令执行如下操作:
利用所述通信接口在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带第一类调制方式的第一调制参数,所述同步帧采用第二类调制方式进行调 制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
按照预先设置的所述第二类调制方式对所述同步帧进行解调,获取所述第一调制参数;
根据所述第一调制参数对所述信标帧或所述MAP帧进行解调,获取所述网络信息;
利用所述网络信息加入所述协调器所在网络。
可选的,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
可选的,所述多载波调制方式包括O-OFDM调制方式。
可选的,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
可选的,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
可选的,所述终端设备包括未入网的终端设备或失去同步的终端设备。
本发明实施例第十九方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述协调器通过运行所述一个或多个计算机程序来执行上述第一方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例第二十方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述协调器通过运行所述一个或多个计算机程序来执行上述第二方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例第二十一方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述协调器通过运行所述一个或多个计算机程序来执行上述第三方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例第二十二方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述终端设备通过运行所述一个或多个计算机程序来执行上述第四方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例第二十三方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述终端设备通过运行所述一个或多个计算机程序来执行上述第五方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例第二十四方面公开一种计算机可读存储介质,所述计算机可读存储介质存储有一个或多个计算机程序,所述终端设备通过运行所述一个或多个计算机程序来执行上述第六方面的基于调光控制的传输方法,重复之处不再赘述。
本发明实施例中,协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;协调器按照预设周期周期性的下发信标帧或MAP帧和其他下行信号,例如,协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在预设周期的第二时间区间向终端设备发送其他下行信号,其中,信标帧或MAP帧携带第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;第二类调制方式用于终端设备对接收到的信标帧或MAP帧进行解调以得到第一调制参数,第一调制参数用于终端设备对接收到的其他下行信号进行解调。本发明实施中预先设置终端设备以第二类调制方式对接收到的信标帧或MAP帧进行解调,当终端设备接收到信标帧或MAP帧时,可以根据预先设置的第二类调制方式对接收到的信标帧或MAP帧进行解调,进而获取第一调制参数,并根据第一调制参数对接收到的其他下行信号进行解调,实施本发明实施例,终端设备可以快速获取协调器发送的下行信号。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种VPAN的网络架构示意图;
图1a是本发明实施例公开的一种超帧的结构示意图;
图1b是本发明实施例公开的一种MAC周期的结构示意图;
图2是本发明实施例公开的一种基于调光控制的传输方法的流程示意图;
图3是本发明实施例公开的一种超帧的亮度示意图;
图4是本发明实施例公开的一种PWM信号的波形示意图;
图5是本发明实施例公开的一种PWM信号的示意图;
图6是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图;
图7是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图;
图8是本发明实施例公开的一种同步帧的结构示意图;
图9是本发明实施例公开的另一种超帧的亮度示意图;
图10是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图;
图11是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图;
图12是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图;
图13是本发明实施例公开的一种协调器的结构示意图;
图14是本发明实施例公开的一种终端设备的结构示意图;
图15是本发明实施例公开的另一种协调器的结构示意图;
图16是本发明实施例公开的另一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好的理解本发明实施例,下面先对本发明实施例适用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种VPAN的网络架构示意图。如图1所示,一个VPAN中可以包括一个协调器(coordinator)和多个终端设备,协调器与终端设备通过可见光通信链路进行网络接入、数据传输等。协调器用来为VPAN中的终端设备提供网络接入服务并管理VPAN的运行,协调器可以基于超帧或媒体接入控制(Media Access Control,MAC)周期进行网络资源及传输的调度。图1a是本发明实施例公开的一种超帧的结构示意图,如图1a所示,一个超帧包括活跃期和非活跃期,活跃期包括用于发送信标的信标时隙、竞争接入期间(Contention Access Period,CAP)和免竞争期(Contention Free Period,CFP)。图1b是本发明实施例公开的一种MAP帧的结构示意图,如图1b所示,每个MAC周期可分为无竞争的传输机会(Contention-Free Transmission Opportunity,CFTXOP)和共享的传输机会(Shared Transmission Opportunity,STXOP)。STXOP可包含无竞争时隙(Contention-Free Time Slot,CFTS)和基于竞争的时隙(Contention-Based Time Slot,CBTS)。协调器会周期性地广播发送信标帧或媒体接入计划(Media Access Plan,MAP)帧,信标帧或MAP帧用于携带VPAN的公共信息(例如网络的编号、超帧或MAP帧的长度等)、参数及资源调度信息等,终端设备可以根据接收到信标帧或MAP帧接入网络、与协调器进行同步和通信等。终端设备包括但不限于手机、平板电脑、笔记本电脑等。
VPAN网络中可以支持光源(例如,LED光源)的调光控制,在保持通信的同时,实现LED光源的亮度调节,常用的方法有通过模拟调光、数字调光以及混合调光等。一个VPAN网络组成的光通信网络为星形模式,多个VPAN网络组成的光通信网络为协调模式,星形模式和协调模式均适用于本发明实施例。
请参阅图2,图2是本发明实施例公开的一种基于调光控制的传输方法的流程示意图。该方法包括如下步骤。
201,协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数。
本发明实施例中,协调器可以与光源(例如,安装于天花板的LED灯)相关联,通过光源传输信号,目标调光亮度即光源要达到的亮度。协调器可以根据光源的目标调光亮度确定第一类调制方式的第一调制参数。目标调光亮度不同,需要的第一调制参数也不相同。
举例来说,若第一类调制方式是PWM与多载波调制方式相结合的调制方式,比如,脉冲宽度调制(Pulse Width Modulation,PWM)与正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)结合,则第一调制参数可以包括PWM信号的占空比等参数。一般而言,目标调光亮度越大,PWM信号的占空比越大。
具体来说,PWM与多载波调制方式相结合的调制方式可以为反极性光学正交频分复用(Reverse Polarity Optical-Orthogonal Frequency Division Multiplexing,RPO-OFDM)调制方式。
202,协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在预设周期的第二时间区间向终端设备发送其他下行信号,信标帧或MAP帧携带第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;第二类调制方式用于终端设备对接收到的信标帧或MAP帧进行解调以得到第一调制参数,第一调制参数用于终端 设备对接收到的其他下行信号进行解调。
本发明实施中,协调器可以按照预设周期周期性的广播信标帧或MAP帧,预设周期为一个超帧或一个MAC周期,例如,在图1a中,预设周期为一个超帧的长度,在图1b中,预设周期为一个MAC周期的长度。其他下行信号包括但不限于数据帧、控制帧、命令帧等。终端设备可以接收协调器发送的业务数据、控制信息和命令等。
在一个实施例中,以超帧为例,协调器在一个超帧的第一时间区间向终端设备发送信标帧,在一个超帧的第二时间区间向终端设备发送其他下行信号,其中,信标帧中携带第一调制参数,信标帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;当终端设备接收到信标帧之后,终端设备按照第二调制方式对信标帧进行解调,获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调。本发明实施例中预先设置终端设备以第二调制方式对信标帧进行解调,当终端设备接收到信标帧之后,可以根据第二调制参数对信标帧进行解调,从而获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调,实施本发明实施例,终端设备可以快速获取协调器发送的下行信号。
在另一个实施例中,以MAC周期为例,协调器在一个MAC周期的第一时间区间向终端设备发送MAP帧,在一个MAC周期的第二时间区间向终端设备发送其他下行信号,其中MAP帧中携带第一调制参数,MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;当终端设备接收到MAP帧之后,终端设备根据第二调制方式对MAP帧进行解调,获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调。本发明实施例中预先设置终端设备以第二调制方式对MAP帧进行解调,当终端设备接收到MAP帧之后,终端设备可以根据第二调制参数对MAP帧进行解调,从而获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调,实施本发明实施例,终端设备可以快速获取协调器发送的下行信号。
可选的,信标帧或MAP帧中还携带VPAN的公共信息(例如网络的编号、超帧或MAP帧的长度等)、参数及资源调度信息等。
其中,光源在第一时间区间的平均亮度与光源在第二时间区间的平均亮度均为目标调光亮度。
为了保证光源的照明效果,比如,光源在协调器传输信号时不发生闪烁、亮度突变等情况,以使光源在传输信号的同时能起到照明的作用,协调器保证光源在每个超帧中亮度不发生变化,仍然为目标调光亮度。
在一个实施例中,第一时间区间包括信标帧或MAP帧占用的时间区间;当光源在信标帧或MAP帧占用的时间区间的平均亮度不等于目标调光亮度时,第一时间区间内还包括第一补充时间,以使光源在第一时间区间内的平均亮度为目标调光亮度。
以信标帧为例,信标帧在调制和发送过程中,由于信号功率与直流偏置的限制,光源在信标帧占用的时间区间的平均亮度不等于目标调光亮度时,可以在信标帧之前或者之后加入一段补充时间,或在信标帧之前及之后各加入一段补充时间,其中,补充时间与信标帧的传输时间之间应不间断,协调器应根据信标帧占用的时间区间的平均亮度设置补充时间内的光源亮度,以使光源在信标帧与该补充时间内的平均亮度等于目标调光亮度。
请参阅图3,图3是本发明实施例公开的一种超帧的亮度示意图,如图3所示,光源的目标调光亮度为N%,B表示信标帧,信标帧占用的时间区间为t1,光源在信标帧占用的时间区间的平均亮度为N1%,且N1%大于N%,此时,可以在信标帧之后插入第一补充时间(如图3中的CP),第一补充时间为t2,其中,第一补充时间在时间上是连续的,光源在所述第一补充时间的平均亮度为N2%,且N2%小于N%,第一时间区间为t1+t2,为了保证光源在第一时间区间(第一时间区间为信标帧占用的时间区间与第一补充时间之和)内的平均亮度为目标调光亮度N%,则N%=(N1%*t1+N2%*t2)/(t1+t2)。
如果光源在信标帧占用的时间区间的平均亮度等于目标调光亮度时,则无 需在信标帧之后加入一段补充时间,此时,第一时间区间即为传输信标帧占用的时间区间。
在一个实施例中,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
第二类调制方式为多载波调制方式,例如,可以为光学正交频分复用(Optical-Orthogonal Frequency Division Multiplexing,O-OFDM)调制方式,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合。例如,第二类调制方式为O-OFDM调制方式,第一类调制方式为PWM与O-OFDM调制方式的结合,例如,RPO-OFDM调制方式。第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
其中,RPO-OFDM是基于PWM的ODFM调制方式,PWM信号的表达式如下:
Figure PCTCN2016103708-appb-000001
其中,IH为LED电流的高电平,IL为LED电流的低电平,TPWM为PWM信号的周期,T为脉冲宽度,定义PWM信号的占空比D=T/TPWM
PWM信号的波形如图4所示。
RPO-OFDM结合PWM和O-OFDM,其表达式如下:
Figure PCTCN2016103708-appb-000002
其中,iOFDM(t)为O-OFDM信号,通过改变m、OFDM信号的功率以及PWM信号的占空比,可以实现LED调光亮度的变化。
举例来说,第一类调制方式为RPO-OFDM调制方式,如果RPO-OFDM信号为PWM信号上加载非对称限幅正交频分复用(Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing,ACO-OFDM)信号,则信标帧采用ACO-OFDM进行调制,超帧中的其他部分采用RPO-OFDM调制方式;如果RPO-OFDM信号为PWM信号上加载直流偏置的正交频分复用 DC-biased Orthogonal Frequency Division Multiplexing,DCO-OFDM信号,则信标帧采用DCO-OFDM进行调制,超帧中的其他部分采用RPO-OFDM调制方式。需要注意的是,信标帧采用的调制方式与PWM信号上加载的信号的调制方式相同,但是调制的具体参数(例如子载波间隔)可以不相同。
在一个实施例中,优选的,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为离散多音频(Discrete multitone,DMT)调制方式或非多载波调制方式。其中,非多载波调制方式可以为开关键控(On-Off Keying,OOK)调制方式、脉冲位置调制(Variable Pulse Position Modulation,VPPM)方式、多脉冲位置调制(multi-pulse position modulation,MPPM)方式等调制方式中的任一种。
举例来说,第一类调制方式为RPO-OFDM调制方式,信标帧或MAP帧采用DMT调制方式、OOK调制方式、MPPM调制方式中的任一种,超帧中的其他部分采用RPO-OFDM调制方式。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
如图5所示,第二时间区间采用第一类调制方式进行调制,第一类调制方式的第一调制参数中的PWM信号的占空比为T/TPWM、PWM信号的周期长度为TPWM、PWM信号的任意一个或多个周期(PWM信号可以包括多个周期)的起始位置(如图5中的t1、t2、t3、t4、t5等中的任意一个或多个)。终端设备可以根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置对接收到的经过第一类调制方式调制的下行信号进行解调。
第一调制参数还可以包括PWM信号高电平信息和PWM信号低电平信息等,PWM信号高电平信息和PWM信号低电平信息可以分别是PWM信号的高低电平的电压值或电流值。
在一个实施例中,图2所示实施例中的终端设备可以是已入网的终端设备或未入网的终端设备。已入网的终端设备为成功与协调器关联或注册,并加入到协调器所在网络的终端设备,未入网的终端设备为尚未加入协调器所在网络的终端设备。
对于已入网的终端设备,当接收到协调器发送的信标帧或MAP帧时,对信标帧或MAP帧进行解调,获取第一调制参数,根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置等参数,即可保证已入网的终端设备与协调器进行同步,进而可以对协调器发送的下行信号进行解调。
在一个实施例中,信标帧或MAP帧还携带协调器所在网络的网络信息,网络信息用于未入网的终端设备加入协调器所在网络。
对于未入网的终端设备,当接收到协调器发送的信标帧或MAP帧时,对信标帧或MAP帧进行解调,获取信标帧或MAP帧中携带的协调器所在网络的网络信息,终端设备根据该网络信息即可加入协调器所在网络。网络信息可以是网络的公共信息,例如网络的编号、超帧长度以及网络的资源调度信息等。
请参阅图6,图6是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图。该方法包括如下步骤。
601,协调器根据光源的目标调光亮度确定第一调制参数。
602,协调器向终端设备发送当前信标帧或当前MAP帧,当前信标帧或当前MAP帧携带第一调制参数,第一调制参数用于终端设备对接收到的下行信号进行解调。
603,当目标调光亮度发生变化时,协调器根据变化后的目标调光亮度确定第一变化调制参数。
604,协调器向终端设备发送下一个信标帧或下一个MAP帧,下一个信标帧或下一个MAP帧携带第一变化调制参数以及第一变化调制参数的生效时间,第一变化调制参数用于终端设备在生效时间之后对接收到的下行信号进行 解调。
本发明实施例中,当目标调光亮度发生变化时,例如,用户需要改变目标调光亮度时,协调器根据变化后的目标调光亮度确定第一变化调制参数。以信标帧为例,协调器在向终端设备发送的下一个信标帧中携带第一变化调制参数以及第一变化调制参数的生效时间,当终端设备获取第一变化调制参数以及第一变化调制参数的生效时间之后,终端设备在生效时间之后利用第一变化调制参数对接收到的下行信号进行解调。
生效时间可以以倒计时计数的方式来表示,例如,若生效时间为3,则在3个超帧或3个MAC周期之后,终端设备以第一变化调制参数对接收到的下行信号进行解调。
生效时间还可以以超帧序号或MAC周期序号的方式来表示,例如,若当前超帧或MAC周期的序号为100,生效时间为发送序号为103的超帧或MAC周期时生效,则生效时间设置为103。当终端设备接收到的超帧或MAC周期的序号为103时,终端设备以第一变化调制参数对接收到的超帧或MAC周期中的下行信号进行解调。
在一个实施例中,终端设备包括已入网的终端设备。
本发明实施例中,当目标调光亮度发生变化时,协调器可以将发生变化的第一变化调制参数发送给终端设备,以使终端设备在第一变化调制参数生效时,根据第一变化调制参数以使终端设备与协调器重新进行同步,进而可以对协调器发送的下行信号进行解调。实施本发明实施例,可以在目标调光亮度发生变化后,及时更新调制参数,保证终端设备与协调器能够重新进行同步。
请参阅图7,图7是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图。该方法包括如下步骤。
701,协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数。
702,协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP 帧,在预设周期的第二时间区间向终端设备发送同步帧,信标帧或MAP帧携带协调器所在网络的网络信息,同步帧携带第一调制参数,同步帧采用第二类调制方式进行调制,信标帧或MAP帧采用第一类调制方式进行调制;第二类调制方式用于终端设备对接收到的同步帧进行解调以得到第一调制参数,第一调制参数用于终端设备对接收到的信标帧或MAP帧进行解调以得到网络信息,网络信息用于终端设备加入协调器所在网络。
本发明实施例中,网络信息可以是网络的公共信息,例如网络的编号、超帧长度以及网络的资源调度信息等。预设周期可以为一个超帧或一个MAC周期,以超帧为例,协调器在一个超帧的第一时间区间向终端设备发送信标帧,在一个超帧的第二时间区间向终端设备发送同步帧,其中,同步帧携带第一调制参数,同步帧采用第二类调制方式进行调制,信标帧采用第一类调制方式进行调制;当终端设备接收到同步帧之后,终端设备根据第二调制方式对同步帧进行解调,获取第一调制参数,利用第一调制参数对接收到的信标帧进行解调,获取协调器所在网络的网络信息,终端设备根据该网络信息加入协调器所在网络。本发明实施例中预先设置终端设备以第二调制方式对同步帧进行解调,当终端设备接收到同步帧之后,可以根据第二调制参数对同步帧进行解调,从而获取第一调制参数,利用第一调制参数实现终端设备与协调器的同步,并利用第一调制参数对信标帧进行解调,根据信标帧携带的协调器所在网络的网络信息,以使终端设备根据该网络信息加入协调器所在网络。实施本发明实施例,终端设备可以利用同步帧实现与协调器的同步,并使得未入网的设备能够加入协调器所在的网络。
同步帧在第二时间区间内发送,如图8所示,以超帧为例,同步帧在超帧的第二时间区间的CFP的一个保证时隙(Guaranteed Time Slot,GTS)内发送,该同步帧的帧结构可以包括前导序列和PHY帧头,其中PHY帧头中携带第一调制参数。
在一个实施例中,光源在第一时间区间的平均亮度与光源在第二时间区间 的平均亮度均为目标调光亮度。
为了保证光源的照明效果,比如,光源在协调器传输信号时不发生闪烁、亮度突变等情况,以使光源在传输信号的同时能起到照明的作用,协调器在应该保证光源在每个超帧中亮度不发生变化,仍然为目标调光亮度。
在一个实施例中,第二时间区间包括同步帧占用的时间区间;当光源在同步帧占用的时间区间的平均亮度不等于目标调光亮度时,第二时间区间内还包括第二补充时间,以使光源在第二时间区间内的平均亮度为目标调光亮度。
同步帧在调制和发送过程中,由于信号功率与直流偏置的限制,光源在同步帧占用的时间区间的平均亮度不等于目标调光亮度时,可以在同步帧之前或者之后加入一段补充时间,或在同步帧之前及之后各加入一段补充时间,其中,补充时间与同步帧的传输之间应不间断,协调器应根据同步帧占用的时间区间的平均亮度设置补充时间内的光源亮度,以使光源在同步帧与该补充时间内的平均亮度等于目标调光亮度。
请参阅图9,图9是本发明实施例公开的另一种超帧的亮度示意图,如图9所示,光源的目标调光亮度为N%,B表示信标帧,S表示同步帧,同步帧占用的时间区间为t1,光源在同步帧占用的时间区间的平均亮度为N1%,且N1%大于N%,此时,可以在同步帧之后插入第二补充时间(如图9中的CP),第二补充时间为t2,其中,第二补充时间在时间上是连续的,光源在所述第二补充时间的平均亮度为N2%,且N2%小于N%,为了保证光源在整个第二时间区间内的平均亮度为目标调光亮度N%,则N%=(N1%*t1+N2%*t2)/(t1+t2)。
如果光源在同步帧占用的时间区间的平均亮度等于目标调光亮度时,则无需在同步帧之后加入一段补充时间。
在一个实施例中,第一类调制方式是PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
第二类调制方式为多载波调制方式,例如,可以为OFDM调制方式,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合。例如,第二类调 制方式为O-OFDM调制方式,第一类调制方式为PWM与O-OFDM调制方式的结合,例如,RPO-OFDM调制方式。第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
在一个实施例中,优选的,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,第一类调制方式包括PWM与多载波调制方式相结合的调制方式,第二类调制方式为DMT调制方式或非多载波调制方式。其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
举例来说,第一类调制方式为RPO-OFDM调制方式,同步帧采用DMT调制方式、OOK调制方式、MPPM调制方式中的任一种,超帧中的其他部分采用RPO-OFDM调制方式。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
超帧的第二时间区间内的同步帧采用第二类调制方式进行调制,其他部分采用第一类调制方式进行调制,第一类调制方式的第一调制参数中的PWM信号的占空比为T/TPWM、其中,T为PWM信号的脉冲宽度,TPWM为PWM信号的周期长度,PWM信号可以包括多个周期,可以调制参数可以包括PWM信号的任意一个或多个周期的起始位置。终端设备可以根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置对接收到的经过第一类调制方式调制的下行信号进行解调。
第一调制参数还可以包括PWM信号高电平信息和PWM信号低电平信息等,PWM信号高电平信息和PWM信号低电平信息可以分别是PWM信号的高低电平的电压值或电流值。
在一个实施例中,终端设备包括未入网的终端设备或失去同步的终端设备。
未入网的终端设备为尚未加入协调器所在网络的终端设备。
对于未入网的终端设备,当接收到协调器发送的同步帧时,对同步帧进行解调,从而获取第一调制参数,利用第一调制参数对信标帧或MAP帧进行解调,根据信标帧或MAP帧携带的协调器所在网络的网络信息,以使未入网的终端设备根据该网络信息加入协调器所在网络。
失去同步的终端设备,即已经加入到协调器所在网络,但是失去与协调器的同步的终端设备(例如,与协调器的时钟失去同步的终端设备)或与第一类调制方式所使用的PWM信号失去同步的终端设备。
对于失去同步的终端设备,当接收到协调器发送的同步帧时,对同步帧进行解调,从而获取第一调制参数,利用第一调制参数实现失去同步的终端设备与协调器的同步。
请参阅图10,图10是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图。该方法包括如下步骤。
1001,终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在预设周期的第二时间区间接收协调器发送的其他下行信号,信标帧或MAP帧携带第一类调制方式的第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制。
本发明实施中,协调器可以按照预设周期周期性的广播信标帧或MAP帧,终端设备在预设周期的第一时间区间接收协调器发送的信标帧,在预设周期的第二时间区间接收协调器发送的其他下行信号。其中,预设周期可以为一个超帧或一个MAC周期,例如,在图1a中,预设周期为一个超帧的长度,在图1b中,预设周期为一个MAC周期的长度。其他下行信号包括但不限于数据帧、控制帧、命令帧等。终端设备可以在第二时间区间接收协调器发送的业务数据、控制信息和命令等。
1002,终端设备按照预先设置的第二类调制方式对信标帧或MAP帧进行解调,获取第一调制参数。
当终端设备接收到信标帧或MAP帧之后,终端设备按照预先设置的第二 调制方式对信标帧或MAP帧进行解调,获取第一调制参数。举例来说,若第一类调制方式是PWM与多载波调制方式相结合的调制方式,比如,PWM与OFDM结合,则第一调制参数可以包括PWM信号的占空比等参数。
1003,终端设备利用第一调制参数对其他下行信号进行解调。
当终端设备获取第一调制参数之后,终端设备利用第一调制参数对接收到的其他下行信号进行解调。
本发明实施例中预先设置终端设备以第二调制方式对信标帧或MAP帧进行解调,当终端设备接收到信标帧或MAP帧之后,可以根据第二调制参数对信标帧或MAP帧进行解调,从而获取第一调制参数,利用第一调制参数对接收到的其他下行信号进行解调。实施本发明实施例,终端设备可以快速获取协调器发送的下行信号。
在一个实施例中,第一类调制方式是PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
第二类调制方式为多载波调制方式,例如,可以为OFDM调制方式,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合。例如,第二类调制方式为O-OFDM调制方式,第一类调制方式为PWM与O-OFDM调制方式的结合,例如,RPO-OFDM调制方式。第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
举例来说,第一类调制方式为RPO-OFDM调制方式,如果RPO-OFDM信号为PWM信号上加载ACO-OFDM信号,则信标帧采用ACO-OFDM进行调制,超帧中的其他部分采用RPO-OFDM调制方式;如果RPO-OFDM信号为PWM信号上加载DCO-OFDM信号,则信标帧采用DCO-OFDM进行调制,超帧中的其他部分采用RPO-OFDM调制方式。需要注意的是,信标帧采用的调制方式与PWM信号上加载的信号的调制方式相同,但是调制的具体参数(例如子载波间隔)可以不相同。
在一个实施例中,优选的,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,第一类调制方式包括PWM与多载波调制方式相结合的调制方式,第二类调制方式为DMT调制方式或非多载波调制方式。其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
举例来说,第一类调制方式为RPO-OFDM调制方式,信标帧或MAP帧采用DMT调制方式、OOK调制方式、MPPM调制方式中的任一种,超帧中的其他部分采用RPO-OFDM调制方式。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
第一调制参数还可以包括PWM信号高电平信息和PWM信号低电平信息等,PWM信号高电平信息和PWM信号低电平信息可以分别是PWM信号的高低电平的电压值或电流值。
在一个实施例中,图10所示实施例中的终端设备可以是已入网的终端设备或未入网的终端设备。已入网的终端设备为成功与协调器关联或注册,并加入到协调器所在网络的终端设备,未入网的终端设备为尚未加入协调器所在网络的终端设备。
对于已入网的终端设备,当接收到协调器发送的信标帧或MAP帧时,对信标帧或MAP帧进行解调,获取第一调制参数,根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置等参数,即可保证已入网的终端设备与协调器进行同步,进而可以对协调器发送的下行信号进行解调。
请参阅图11,图11是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图。该方法提供了一种调制参数发生变化时的传输方法,该方法包括如下步骤。
1101,终端设备接收协调器发送的当前信标帧或当前MAP帧,当前信标帧或当前MAP帧携带当前调制参数与当前调制参数的生效时间。
1102,终端设备判断当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;若是,执行步骤1103,若否,执行步骤1104。
1103,终端设备利用上一个调制参数对接收到的下行信号进行解调。
当当前调制参数与上一个调制参数相同时,表明调制参数没有发生变化,则终端设备仍然利用之前获取的上一个调制参数对接收到的下行信号进行解调。
1104,终端设备在生效时间之后利用当前调制参数对接收到的下行信号进行解调。
当当前调制参数与上一个调制参数不相同时,表明调制参数发生了变化,则终端设备在当前调制参数的生效时间之后利用当前调制参数对接收到的下行信号进行解调。
生效时间可以以倒计时计数的方式来表示,例如,若生效时间为3,则在3个超帧或3个MAC周期之后,终端设备以当前调制参数对接收到的下行信号进行解调。
生效时间还可以以超帧序号或MAC周期序号的方式来表示,例如,若当前超帧或MAC周期的序号为100,生效时间为发送序号为103的超帧或MAC周期时生效,则生效时间设置为103。当终端设备接收到的超帧或MAC周期的序号为103时,终端设备以当前调制参数对接收到的超帧或MAC周期中的下行信号进行解调。
其中,终端设备包括已入网的终端设备。
本发明实施例中,终端设备判断当前接收的当前信标帧或当前MAP帧中的当前调制参数与上一次接收的上一个信标帧或上一个MAP帧中的上一个调制参数不相同时,在当前调制参数的生效时间之后,利用当前调制参数对接收到的下行信号进行解调。终端设备可以通过信标帧或MAP帧及时获取最新的调制参数,保证终端设备与协调器能够重新进行同步,并在最新的调制参数生效之后按照最新的调制参数对接收的下行信号进行解调,避免出现终端设备以 旧的调制方式对新接收的下行信号进行解调导致无法解调成功的问题。
请参阅图12,图12是本发明实施例公开的另一种基于调光控制的传输方法的流程示意图。该方法包括如下步骤。
1201,终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在预设周期的第二时间区间接收协调器发送的同步帧,信标帧或MAP帧携带协调器所在网络的网络信息,同步帧携带第一类调制方式的第一调制参数,同步帧采用第二类调制方式进行调制,信标帧或MAP帧采用第一类调制方式进行调制。
1202,终端设备按照预先设置的第二类调制方式对同步帧进行解调,获取第一调制参数。
1203,终端设备根据第一调制参数对信标帧或MAP帧进行解调,获取网络信息。
1204,终端设备利用网络信息加入协调器所在网络。
本发明实施例中,网络信息可以是网络的公共信息,例如网络的编号、超帧长度以及网络的资源调度信息等。预设周期可以为一个超帧或一个MAC周期,以超帧为例,协调器在一个超帧的第一时间区间向终端设备发送信标帧,在一个超帧的第二时间区间向终端设备发送同步帧,其中,同步帧携带第一调制参数,同步帧采用第二类调制方式进行调制,信标帧采用第一类调制方式进行调制;当终端设备接收到同步帧之后,终端设备根据第二调制方式对同步帧进行解调,获取第一调制参数,利用第一调制参数对接收到的信标帧进行解调,获取协调器所在网络的网络信息,终端设备根据该网络信息加入协调器所在网络。本发明实施例中预先设置终端设备以第二调制方式对同步帧进行解调,当终端设备接收到同步帧之后,可以根据第二调制参数对同步帧进行解调,从而获取第一调制参数,利用第一调制参数实现终端设备与协调器的同步,并利用第一调制参数对信标帧进行解调,根据信标帧携带的协调器所在网络的网络信息,以使终端设备根据该网络信息加入协调器所在网络。实施本发明实施例, 终端设备可以利用同步帧实现与协调器的同步,并使得未入网的设备能够加入协调器所在的网络。
在一个实施例中,第一类调制方式是PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
第二类调制方式为多载波调制方式,例如,可以为OFDM调制方式,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合。例如,第二类调制方式为O-OFDM调制方式,第一类调制方式为PWM与O-OFDM调制方式的结合,例如,RPO-OFDM调制方式。第一类调制方式采用脉冲宽度调制PWM与第二类调制方式的结合,可以降低终端设备实现复杂度和成本。
在一个实施例中,优选的,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,第一类调制方式包括PWM与多载波调制方式相结合的调制方式,第二类调制方式为DMT调制方式或非多载波调制方式。其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
举例来说,第一类调制方式为RPO-OFDM调制方式,同步帧采用DMT调制方式、OOK调制方式、MPPM调制方式中的任一种,超帧中的其他部分采用RPO-OFDM调制方式。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
超帧的第二时间区间内的同步帧采用第二类调制方式进行调制,其他部分采用第一类调制方式进行调制,第一类调制方式的第一调制参数中的PWM信号的占空比为T/TPWM、其中,T为PWM信号的脉冲宽度,TPWM为PWM信号的周期长度,PWM信号可以包括多个周期,可以调制参数可以包括PWM信号的任意一个或多个周期的起始位置。终端设备可以根据第一调制参数中的PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置对接收到的经过第一类调制方式调制的下行信号进行解调。
第一调制参数还可以包括PWM信号高电平信息和PWM信号低电平信息等,PWM信号高电平信息和PWM信号低电平信息可以分别是PWM信号的高低电平的电压值或电流值。
在一个实施例中,终端设备包括未入网的终端设备或失去同步的终端设备。
未入网的终端设备为尚未加入协调器所在网络的终端设备。
对于未入网的终端设备,当接收到协调器发送的同步帧时,对同步帧进行解调,从而获取第一调制参数,利用第一调制参数对信标帧或MAP帧进行解调,根据信标帧或MAP帧携带的协调器所在网络的网络信息,以使未入网的终端设备根据该网络信息加入协调器所在网络。
失去同步的终端设备,即已经加入到协调器所在网络,但是失去与协调器的同步的终端设备(例如,与协调器的时钟失去同步的终端设备)或与第一调制方式所使用的PWM信号周期失去同步的终端设备。
对于失去同步的终端设备,当接收到协调器发送的同步帧时,对同步帧进行解调,从而获取第一调制参数,利用第一调制参数实现失去同步的终端设备与协调器的同步。
请参阅图13,图13是本发明实施例公开的一种协调器的结构示意图。如图13所示,该协调器包括处理单元1301和通信单元1302。
处理单元1301,用于根据光源的目标调光亮度确定第一类调制方式的第一调制参数。
通信单元1302,用于在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在预设周期的第二时间区间向终端设备发送其他下行信号,信标帧或MAP帧携带第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;第二类调制方式用于终端设备对接收到的信标帧或MAP帧进行解调以得到第一调制参数,第一调制参数用于终端设备对接收到的其他下行信号进行解调。
通过实施图13所示的协调器,终端设备可以快速获取协调器发送的下行信号。
基于同一发明构思,由于该协调器解决问题的原理与本申请方法实施例中的基于调光控制的传输方法相似,因此该协调器的实施可以参见图2所示方法的实施,重复之处不再赘述。
请参阅图14,图14是本发明实施例公开的一种终端设备的结构示意图。如图14所示,该终端设备包括通信单元1401和处理单元1402。
通信单元1401,用于在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在预设周期的第二时间区间接收协调器发送的其他下行信号,信标帧或MAP帧携带第一类调制方式的第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制。
处理单元1402,用于按照预先设置的第二类调制方式对信标帧或MAP帧进行解调,获取第一调制参数。
处理单元1403,还用于利用第一调制参数对其他下行信号进行解调。
通过实施图14所示的终端设备,终端设备可以快速获取协调器发送的下行信号。
基于同一发明构思,由于该终端设备解决问题的原理与本申请方法实施例中的基于调光控制的传输方法相似,因此该终端设备的实施可以参见图10所示方法的实施,重复之处不再赘述。
请参阅图15,图15是本发明实施例公开的另一种协调器的结构示意图。如图15所示,该协调器150包括至少一个处理器1501,至少一个存储器1502、至少一个通信接口1503。此外,该协调器150还可以包括天线等通用部件,在此不再详述。
处理器1501可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1503,用于与其他设备(如终端设备)或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器1502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1502用于存储执行以上方案的应用程序代码,并由处理器1501来控制执行。所述处理器1501用于执行所述存储器1502中存储的应用程序代码,执行如下操作:
根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
利用所述通信接口1503在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在预设周期的第二时间区间向终端设备发送其他下行信号,信标帧或MAP帧携带第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;
第二类调制方式用于终端设备对接收到的信标帧或MAP帧进行解调以得到第一调制参数,第一调制参数用于终端设备对接收到的其他下行信号进行解调。
在一个实施例中,光源在第一时间区间的平均亮度与光源在第二时间区间的平均亮度均为目标调光亮度。
在一个实施例中,第一时间区间包括信标帧或MAP帧占用的时间区间;
当光源在信标帧或MAP帧占用的时间区间的平均亮度不等于目标调光亮度时,第一时间区间内还包括第一补充时间,以使光源在第一时间区间内的平均亮度为目标调光亮度。
在一个实施例中,第一类调制方式是脉冲宽度调制PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
在一个实施例中,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,第一类调制方式包括PWM与多载波调制方式相结合的调制方式,第二类调制方式为DMT调制方式或非多载波调制方式。其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
在一个实施例中,终端设备包括已入网的终端设备或未入网的终端设备。
在一个实施例中,信标帧或MAP帧还携带协调器所在网络的网络信息,网络信息用于未入网的终端设备加入协调器所在网络。
在一个实施例中,预设周期为一个超帧或者一个MAC周期。
实施图15所示的协调器,终端设备可以快速获取协调器发送的下行信号。
请参阅图16,图16是本发明实施例公开的另一种终端设备的结构示意图。如图16所示,该终端设备160包括至少一个处理器1601,至少一个存储器1602、至少一个通信接口1603。此外,该终端设备160还可以包括天线等通用部件,在此不再详述。
处理器1601可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1603,用于与其他设备(如终端设备)或通信网络通信,如以 太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器1602可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1602用于存储执行以上方案的应用程序代码,并由处理器1601来控制执行。所述处理器1601用于执行所述存储器1602中存储的应用程序代码,执行如下操作:
终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在预设周期的第二时间区间接收协调器发送的其他下行信号,信标帧或MAP帧携带第一类调制方式的第一调制参数,信标帧或MAP帧采用第二类调制方式进行调制,其他下行信号采用第一类调制方式进行调制;
终端设备按照预先设置的第二类调制方式对信标帧或MAP帧进行解调,获取第一调制参数;
终端设备利用第一调制参数对其他下行信号进行解调。
在一个实施例中,第一类调制方式是PWM与第二类调制方式的结合,第二类调制方式为多载波调制方式。
在一个实施例中,多载波调制方式包括O-OFDM调制方式。
在一个实施例中,第一类调制方式包括PWM与多载波调制方式相结合的 调制方式,第二类调制方式为DMT调制方式或非多载波调制方式。其中,非多载波调制方式可以为OOK调制方式、MPPM方式、VPPM方式等调制方式中的任一种。
在一个实施例中,第一调制参数包括PWM信号的占空比、PWM信号的周期长度和PWM信号的任意一个或多个周期的起始位置。
在一个实施例中,终端设备包括已入网的终端设备或未入网的终端设备。
在一个实施例中,预设周期为一个超帧或者一个MAC周期。
实施图16所示的终端设备,终端设备可以快速获取协调器发送的下行信号。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(ReAd-Only Memory,ROM)、随机存储器(RAndom Access Memory,RAM)、可编程只读存储器(ProgrAmmAble ReAd-only Memory,PROM)、可擦除可编程只读存储器(ErAsAble ProgrAmmAble ReAd Only Memory,EPROM)、一次可编程只读存储器(One-time ProgrAmmAble ReAd-Only Memory,OTPROM)、电子抹除式可复写只读存储器(ElectricAlly-ErAsAble ProgrAmmAble ReAd-Only Memory,EEPROM)、只读光盘(CompAct Disc ReAd-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种基于调光控制的传输方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (67)

  1. 一种基于调光控制的传输方法,其特征在于,包括:
    协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
    所述协调器在预设周期的第一时间区间向终端设备发送信标帧或媒体接入计划MAP帧,在所述预设周期的第二时间区间向所述终端设备发送其他下行信号,所述信标帧或所述MAP帧携带所述第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
    所述第二类调制方式用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述其他下行信号进行解调。
  2. 根据权利要求1所述的方法,其特征在于,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时间区间包括所述信标帧或所述MAP帧占用的时间区间;
    当所述光源在所述信标帧或所述MAP帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第一时间区间内还包括第一补充时间,以使所述光源在所述第一时间区间内的平均亮度为所述目标调光亮度。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一类调制方式是脉冲宽度调制PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  5. 根据权利要求4所述的方法,其特征在于,所述多载波调制方式包括光学正交频分复用O-OFDM调制方式。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为离散多音频DMT调制方式或非多载波调制方式。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述终端设备包括已入网的终端设备或未入网的终端设备。
  9. 根据权利要求8所述的方法,其特征在于,所述信标帧或所述MAP帧还携带所述协调器所在网络的网络信息,所述网络信息用于所述未入网的终端设备加入所述协调器所在网络。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述预设周期为一个超帧或者一个媒体访问控制MAC周期。
  11. 一种基于调光控制的传输方法,其特征在于,包括:
    协调器根据光源的目标调光亮度确定第一调制参数;
    所述协调器向终端设备发送当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的下行信号进行解调;
    当所述目标调光亮度发生变化时,所述协调器根据变化后的目标调光亮度确定第一变化调制参数;
    所述协调器向所述终端设备发送下一个信标帧或下一个MAP帧,所述下一个信标帧或所述下一个MAP帧携带所述第一变化调制参数以及所述第一变化调制参数的生效时间,所述第一变化调制参数用于所述终端设备在所述生效时间之后对接收到的下行信号进行解调。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备包括已入网的终端设备。
  13. 一种基于调光控制的传输方法,其特征在于,包括:
    协调器根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
    所述协调器在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带所述第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
    所述第二类调制方式用于所述终端设备对接收到的所述同步帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述网络信息,所述网络信息用于所述终端设备加入所述协调器所在网络。
  14. 根据权利要求13所述的方法,其特征在于,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
  15. 根据权利要求14所述的方法,其特征在于,所述第二时间区间包括所述同步帧占用的时间区间;
    当所述光源在所述同步帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第二时间区间内还包括第二补充时间,以使所述光源在所述第二时间区间内的平均亮度为所述目标调光亮度。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  17. 根据权利要求16所述的方法,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  18. 根据权利要求13-15任一项所述的方法,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述终端设备包括未入网的终端设备或失去同步的终端设备。
  21. 一种基于调光控制的传输方法,其特征在于,包括:
    终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP 帧,在所述预设周期的第二时间区间接收所述协调器发送的其他下行信号,所述信标帧或所述MAP帧携带第一类调制方式的第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
    所述终端设备按照预先设置的所述第二类调制方式对所述信标帧或所述MAP帧进行解调,获取所述第一调制参数;
    所述终端设备利用所述第一调制参数对所述其他下行信号进行解调。
  22. 根据权利要求21所述的方法,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  23. 根据权利要求22所述的方法,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  24. 根据权利要求21所述的方法,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  25. 根据权利要求22-24任一项所述的方法,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  26. 根据权利要求21-25任一项所述的方法,其特征在于,所述终端设备包括已入网的终端设备或未入网的终端设备。
  27. 根据权利要求21-26任一项所述的方法,其特征在于,所述预设周期 为一个超帧或者一个MAC周期。
  28. 一种基于调光控制的传输方法,其特征在于,包括:
    终端设备接收协调器发送的当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带当前调制参数与所述当前调制参数的生效时间;
    所述终端设备判断所述当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;
    若相同,则所述终端设备利用所述上一个调制参数对接收到的下行信号进行解调;
    若不相同,则所述终端设备在所述生效时间之后利用所述当前调制参数对接收到的下行信号进行解调。
  29. 根据权利要求28所述的方法,其特征在于,所述终端设备包括已入网的终端设备。
  30. 一种基于调光控制的传输方法,其特征在于,包括:
    终端设备在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带第一类调制方式的第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
    所述终端设备按照预先设置的所述第二类调制方式对所述同步帧进行解调,获取所述第一调制参数;
    所述终端设备根据所述第一调制参数对所述信标帧或所述MAP帧进行解调,获取所述网络信息;
    所述终端设备利用所述网络信息加入所述协调器所在网络。
  31. 根据权利要求30所述的方法,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  32. 根据权利要求31所述的方法,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  33. 根据权利要求30所述的方法,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  34. 根据权利要求31-33任一项所述的方法,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  35. 根据权利要求30-34任一项所述的方法,其特征在于,所述终端设备包括未入网的终端设备或失去同步的终端设备。
  36. 一种协调器,其特征在于,包括:
    处理单元,用于根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
    通信单元,用于在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送其他下行信号,所述信标帧或所述MAP帧携带所述第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;所述第二类调制方式用于所述终端设备对接收到的所述信标帧或所述 MAP帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述其他下行信号进行解调。
  37. 根据权利要求36所述的协调器,其特征在于,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
  38. 根据权利要求37所述的协调器,其特征在于,所述第一时间区间包括所述信标帧或所述MAP帧占用的时间区间;
    当所述光源在所述信标帧或所述MAP帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第一时间区间内还包括第一补充时间,以使所述光源在所述第一时间区间内的平均亮度为所述目标调光亮度。
  39. 根据权利要求36-38任一项所述的协调器,其特征在于,所述第一类调制方式是脉冲宽度调制PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  40. 根据权利要求39所述的协调器,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  41. 根据权利要求36-38任一项所述的协调器,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  42. 根据权利要求39-41任一项所述的协调器,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  43. 根据权利要求36-42任一项所述的协调器,其特征在于,所述信标帧或所述MAP帧还携带所述协调器所在网络的网络信息,所述网络信息用于未入网的终端设备加入所述协调器所在网络。
  44. 根据权利要求36-43所述的协调器,其特征在于,所述预设周期为一个超帧或者一个MAC周期。
  45. 一种协调器,其特征在于,包括:
    处理单元,用于根据光源的目标调光亮度确定第一调制参数;
    通信单元,用于向终端设备发送当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的下行信号进行解调;
    所述处理单元,还用于当所述目标调光亮度发生变化时,所述协调器根据变化后的目标调光亮度确定第一变化调制参数;
    所述通信单元,还用于向所述终端设备发送下一个信标帧或下一个MAP帧,所述下一个信标帧或所述下一个MAP帧携带所述第一变化调制参数以及所述第一变化调制参数的生效时间,所述第一变化调制参数用于所述终端设备在所述生效时间之后对接收到的下行信号进行解调。
  46. 一种协调器,其特征在于,包括:
    处理单元,用于根据光源的目标调光亮度确定第一类调制方式的第一调制参数;
    通信单元,用于在预设周期的第一时间区间向终端设备发送信标帧或MAP帧,在所述预设周期的第二时间区间向所述终端设备发送同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带所述第一调制参数,所述同步帧采用第二类调制方式进行调制,所述信标帧或 所述MAP帧采用所述第一类调制方式进行调制;所述第二类调制方式用于所述终端设备对接收到的所述同步帧进行解调以得到所述第一调制参数,所述第一调制参数用于所述终端设备对接收到的所述信标帧或所述MAP帧进行解调以得到所述网络信息,所述网络信息用于所述终端设备加入所述协调器所在网络。
  47. 根据权利要求46所述的协调器,其特征在于,所述光源在所述第一时间区间的平均亮度与所述光源在所述第二时间区间的平均亮度均为所述目标调光亮度。
  48. 根据权利要求47所述的协调器,其特征在于,所述第二时间区间包括所述同步帧占用的时间区间;
    当所述光源在所述同步帧占用的时间区间的平均亮度不等于所述目标调光亮度时,所述第二时间区间内还包括第二补充时间,以使所述光源在所述第二时间区间内的平均亮度为所述目标调光亮度。
  49. 根据权利要求46-48任一项所述的协调器,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  50. 根据权利要求49所述的协调器,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  51. 根据权利要求46-48任一项所述的协调器,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  52. 根据权利要求49-51任一项所述的协调器,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  53. 一种终端设备,其特征在于,包括:
    通信单元,用于在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的其他下行信号,所述信标帧或所述MAP帧携带第一类调制方式的第一调制参数,所述信标帧或所述MAP帧采用第二类调制方式进行调制,所述其他下行信号采用所述第一类调制方式进行调制;
    处理单元,用于按照预先设置的所述第二类调制方式对所述信标帧或所述MAP帧进行解调,获取所述第一调制参数;
    所述处理单元,还用于利用所述第一调制参数对所述其他下行信号进行解调。
  54. 根据权利要求53所述的终端设备,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  55. 根据权利要求54所述的终端设备,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  56. 根据权利要求53所述的终端设备,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  57. 根据权利要求54-56任一项所述的终端设备,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信 号的任意一个或多个周期的起始位置。
  58. 根据权利要求53-57任一项所述的终端设备,其特征在于,所述终端设备包括已入网的终端设备或未入网的终端设备。
  59. 根据权利要求53-58任一项所述的终端设备,其特征在于,所述预设周期为一个超帧或者一个MAC周期。
  60. 一种终端设备,其特征在于,包括:
    通信单元,用于接收协调器发送的当前信标帧或当前MAP帧,所述当前信标帧或所述当前MAP帧携带当前调制参数与所述当前调制参数的生效时间;
    处理单元,用于判断所述当前调制参数与上一个信标帧或上一个MAP帧携带的上一个调制参数是否相同;
    所述处理单元,还用于当所述判断结果为是时,利用所述上一个调制参数对接收到的下行信号进行解调;
    所述处理单元,还用于当所述判断结果为否时,在所述生效时间之后利用所述当前调制参数对接收到的下行信号进行解调。
  61. 根据权利要求60所述的终端设备,其特征在于,所述终端设备包括已入网的终端设备。
  62. 一种终端设备,其特征在于,包括:
    通信单元,用于在预设周期的第一时间区间接收协调器发送的信标帧或MAP帧,在所述预设周期的第二时间区间接收所述协调器发送的同步帧,所述信标帧或所述MAP帧携带所述协调器所在网络的网络信息,所述同步帧携带第一类调制方式的第一调制参数,所述同步帧采用第二类调制方式进行调 制,所述信标帧或所述MAP帧采用所述第一类调制方式进行调制;
    处理单元,用于按照预先设置的所述第二类调制方式对所述同步帧进行解调,获取所述第一调制参数;
    所述处理单元,还用于根据所述第一调制参数对所述信标帧或所述MAP帧进行解调,获取所述网络信息;
    所述处理单元,还用于利用所述网络信息加入所述协调器所在网络。
  63. 根据权利要求62所述的终端设备,其特征在于,所述第一类调制方式是PWM与所述第二类调制方式的结合,所述第二类调制方式为多载波调制方式。
  64. 根据权利要求63所述的终端设备,其特征在于,所述多载波调制方式包括O-OFDM调制方式。
  65. 根据权利要求62所述的终端设备,其特征在于,所述第一类调制方式包括PWM与多载波调制方式相结合的调制方式,所述第二类调制方式为DMT调制方式或非多载波调制方式。
  66. 根据权利要求63-65任一项所述的终端设备,其特征在于,所述第一调制参数包括PWM信号的占空比、所述PWM信号的周期长度和所述PWM信号的任意一个或多个周期的起始位置。
  67. 根据权利要求62-66任一项所述的终端设备,其特征在于,所述终端设备包括未入网的终端设备或失去同步的终端设备。
PCT/CN2016/103708 2016-10-28 2016-10-28 基于调光控制的传输方法及相关设备 WO2018076263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103708 WO2018076263A1 (zh) 2016-10-28 2016-10-28 基于调光控制的传输方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103708 WO2018076263A1 (zh) 2016-10-28 2016-10-28 基于调光控制的传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018076263A1 true WO2018076263A1 (zh) 2018-05-03

Family

ID=62022925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103708 WO2018076263A1 (zh) 2016-10-28 2016-10-28 基于调光控制的传输方法及相关设备

Country Status (1)

Country Link
WO (1) WO2018076263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450533A (zh) * 2018-09-12 2019-03-08 深圳清华大学研究院 基于混合调制的可见光组网方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746769A (zh) * 2013-10-08 2014-04-23 上海交通大学 提高可见光通信系统容量的自适应ofdm调制系统
CN104378159A (zh) * 2014-12-01 2015-02-25 中国人民解放军信息工程大学 一种多层调制的可见光通信方法、发射机、接收机和系统
CN104753829A (zh) * 2013-12-30 2015-07-01 中兴通讯股份有限公司 调光方法及调光装置
US20160099773A1 (en) * 2014-10-07 2016-04-07 Abl Ip Holding Llc Use of very high frequency switching power converters for also modulating light output from solid state emitter to communicate data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746769A (zh) * 2013-10-08 2014-04-23 上海交通大学 提高可见光通信系统容量的自适应ofdm调制系统
CN104753829A (zh) * 2013-12-30 2015-07-01 中兴通讯股份有限公司 调光方法及调光装置
US20160099773A1 (en) * 2014-10-07 2016-04-07 Abl Ip Holding Llc Use of very high frequency switching power converters for also modulating light output from solid state emitter to communicate data
CN104378159A (zh) * 2014-12-01 2015-02-25 中国人民解放军信息工程大学 一种多层调制的可见光通信方法、发射机、接收机和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450533A (zh) * 2018-09-12 2019-03-08 深圳清华大学研究院 基于混合调制的可见光组网方法及装置

Similar Documents

Publication Publication Date Title
US9143230B2 (en) Methods and apparatus for communications using visible light communications signaling in combination with wireless radio signaling
US9037750B2 (en) Methods and apparatus for data exchange in peer to peer communications
JP6026675B2 (ja) ワイヤレスネットワークのサイズの監視
JP6433920B2 (ja) Wlan用の低電力ウェイクアップ信号および動作のための方法および装置
JP5356591B2 (ja) 無線端末のビーコン信号の使用を含むタイミングおよび/または同期に関連する方法および装置
JP5237371B2 (ja) ピアツーピア通信における電力スケーリングに対する方法および装置
CN110535542B (zh) 控制信道的监测方法及装置、发送方法及装置、存储介质
US10142765B2 (en) Method and apparatus for sending and receiving data in a machine to machine wireless network
HUE029346T2 (en) System and procedure for improved communication over a wireless network
US10547383B2 (en) Information transmission method, coordinator, and terminal node in optical wireless communications network
US20230269764A1 (en) Apparatuses, methods, and computer-readable medium for communication in a wireless local area network
US20130308524A1 (en) Distributed interference management algorithm
CN110535677A (zh) 一种定时信息配置方法、装置和系统
US9485658B2 (en) System and method for improved communication on a wireless network
WO2018076263A1 (zh) 基于调光控制的传输方法及相关设备
CN103840876A (zh) 可见光通信方法及系统
Alawadhi et al. A Survey on IEEE 802.15. 7 MAC Protocols for Visible Light Communication
US11582692B2 (en) Method for communication in wireless LAN system and wireless terminal using same
Jurczak LiFi: enlightening communications
JP2014017706A (ja) 無線通信装置およびプログラム、通信制御方法
EP4226586B1 (en) Efficient modulation control
KR101009614B1 (ko) Fdd 기반의 가시광 무선 통신을 위한 매체 접근 제어구조 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920122

Country of ref document: EP

Kind code of ref document: A1