WO2018076214A1 - 无线充电线圈对准方法、装置及系统 - Google Patents

无线充电线圈对准方法、装置及系统 Download PDF

Info

Publication number
WO2018076214A1
WO2018076214A1 PCT/CN2016/103439 CN2016103439W WO2018076214A1 WO 2018076214 A1 WO2018076214 A1 WO 2018076214A1 CN 2016103439 W CN2016103439 W CN 2016103439W WO 2018076214 A1 WO2018076214 A1 WO 2018076214A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
charging
supply end
coil
end coil
Prior art date
Application number
PCT/CN2016/103439
Other languages
English (en)
French (fr)
Inventor
周诚智
Original Assignee
深圳市沃尔核材股份有限公司
深圳市沃尔新能源电气科技股份有限公司
深圳市沃尔特种线缆有限公司
常州市沃尔新材有限公司
乐庭电线工业(惠州)有限公司
惠州乐庭电子线缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃尔核材股份有限公司, 深圳市沃尔新能源电气科技股份有限公司, 深圳市沃尔特种线缆有限公司, 常州市沃尔新材有限公司, 乐庭电线工业(惠州)有限公司, 惠州乐庭电子线缆有限公司 filed Critical 深圳市沃尔核材股份有限公司
Priority to PCT/CN2016/103439 priority Critical patent/WO2018076214A1/zh
Publication of WO2018076214A1 publication Critical patent/WO2018076214A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of wireless charging technologies, and in particular, to a wireless charging coil alignment method, apparatus and system.
  • the existing alignment mode is generally that the driver controls the electric vehicle to position and align the wireless charging transmitting coil according to the positioning flag of the charging station, which requires manual control of the driver to achieve alignment between the wireless charging transmitting coil and the wireless charging receiving coil.
  • the alignment process is slow and inefficient.
  • the main object of the present invention is to provide a wireless charging coil alignment method, which aims to speed up the alignment of the wireless charging coil and improve the charging efficiency.
  • the present invention provides a wireless charging coil alignment method, the wireless charging coil alignment method comprising the following steps:
  • the step of “acquiring electrical parameters related to charging of the power supply end coil and/or the vehicle end coil” includes:
  • the step "adjusts the power supply end line according to the preset unit stroke according to the electrical parameter The position of the circle in the horizontal direction” specifically includes:
  • the step of “acquiring electrical parameters related to charging of the power supply end coil and/or the vehicle end coil” includes:
  • the step of “adjusting the position of the power supply end coil in the horizontal direction according to the predetermined unit stroke according to the electrical parameter” specifically includes:
  • the power supply end coil is controlled to move in the second direction by a plurality of preset unit strokes, wherein the second direction is perpendicular to the first direction.
  • the step of “acquiring electrical parameters related to charging of the power supply end coil and/or the vehicle end coil” includes:
  • the charging current and the charging voltage of the vehicle battery are sampled, the charging efficiency or the coupling coefficient of the wireless charging coil is calculated; and the charging current of the coil of the power supply end is obtained.
  • the step of “adjusting the position of the power supply end coil in the horizontal direction according to the predetermined unit stroke according to the electrical parameter” specifically includes:
  • the present invention provides a wireless charging primary side device, including a power supply end coil, a power supply management module, a first driving device, and a second driving device;
  • the power management module acquires electrical parameters related to charging of the power supply coil, and controls the first driving device and the second driving device to adjust a position of the power supply end coil in a horizontal direction according to the electrical parameter;
  • the first driving device and the second driving device stop driving, and if not, the The first drive device and the second drive device continue to adjust the position of the coil in the horizontal direction.
  • the power management module acquires a charging current of the power supply end coil.
  • the power management module substitutes the charging efficiency or the coupling coefficient into a preset efficiency field or a coupling coefficient field; calculates a displacement of the power supply end coil to be moved, and controls the power supply end coil to be along the first direction. Move a number of preset unit strokes;
  • the power management module obtains the charging efficiency or the coupling coefficient again, and substitutes the charging efficiency or the coupling coefficient at this time into a preset efficiency field or a coupling coefficient field; calculates a displacement of the coil to be moved, and controls the The power supply end coil moves a plurality of preset unit strokes in the second direction, wherein the second direction is perpendicular to the first direction.
  • the vehicle management module acquires a charging current and a charging voltage of the vehicle battery, calculates a charging efficiency or a coupling coefficient of the wireless charging coil, and acquires a charging current of the power supply coil.
  • the power management module substitutes at least any two of the charging efficiency, the coupling coefficient, and the charging current into a corresponding preset efficiency field, coupling coefficient field, or current field;
  • the power management module acquires at least any two of the charging efficiency, the coupling coefficient, or the charging current, and respectively substitutes the corresponding preset efficiency field, coupling coefficient field or current field;
  • the present invention also provides a wireless charging system, including a power supply end coil, a power supply management module, a vehicle end coil, a vehicle management module, a first driving device, and a second driving device;
  • the vehicle management module acquires electrical parameters related to charging of the vehicle end coil, and wirelessly transmits relevant electrical parameters to the power supply management module;
  • the power management module respectively controls the first driving device and the second driving device to adjust a position of the power supply end coil in a horizontal direction according to the electrical parameter; and determines whether the electrical parameter value reaches a preset electrical threshold And/or whether the number of adjustments reaches a preset maximum value, if yes, the first driving device and the second driving device stop driving, and if not, the first driving device and the second driving device continue to adjust The position of the coil in the horizontal direction.
  • the vehicle management module acquires a charging current and a charging voltage of the vehicle battery, and calculates a charging efficiency or a coupling coefficient of the wireless charging coil.
  • the power supply management module substitutes the charging current of the power supply end coil into a preset current field; calculates a displacement that the power supply end coil needs to move, and controls the power supply end coil to move in the first direction by a plurality of Preset unit stroke;
  • the power supply management module acquires the charging current of the power supply end coil again, and substitutes the charging current of the power supply end coil into the preset current field to calculate the displacement of the power supply end coil to be moved;
  • the second direction moves a number of preset unit strokes, wherein the second direction is perpendicular to the first direction.
  • the vehicle management module acquires a charging current and a charging voltage of the vehicle battery, calculates a charging efficiency or a coupling coefficient of the wireless charging coil, and acquires a charging current of the power supply coil.
  • the power management module substitutes at least any two of the charging efficiency, the coupling coefficient, and the charging current into a corresponding preset efficiency field, coupling coefficient field, or current field;
  • the power management module acquires at least any two of the charging efficiency, the coupling coefficient, or the charging current, and respectively substitutes the corresponding preset efficiency field, coupling coefficient field or current field;
  • the electrical parameters related to the charging of the power supply end coil and/or the vehicle end coil are obtained, and the position of the power supply end coil in the horizontal direction is adjusted according to the electrical parameter, and the set number of adjustments is reached or after the set electrical threshold is reached. That is, the power supply end coil and the vehicle end coil are aligned to reach the set optimal charging state, and the alignment process ends.
  • the electric vehicle only needs to be driven into the designated charging position, and then the automatic alignment is completely realized without manual intervention, which significantly improves the speed and accuracy of the coil alignment.
  • the technical solution of the invention has the advantages of high coil alignment speed and high charging efficiency.
  • FIG. 1 is a flow chart of an embodiment of a wireless charging coil alignment method according to the present invention.
  • FIG. 2 is a further flow chart of the first embodiment of step S100 of Figure 1;
  • FIG. 3 is a further flow chart of the first embodiment of step S200 of Figure 1;
  • FIG. 4 is a specific flowchart of a first embodiment of a wireless charging coil alignment method according to the present invention.
  • FIG. 5 is a further flow chart of the second embodiment of step S200 of Figure 1;
  • FIG. 6 is a specific flowchart of a second embodiment of a wireless charging coil alignment method according to the present invention.
  • FIG. 7 is a further flow chart of the third embodiment of step S200 of Figure 1.
  • FIG. 8 is a functional block diagram of a wireless charging primary side device of the present invention.
  • FIG. 9 is a functional block diagram of a wireless charging system of the present invention.
  • FIG. 10 is an equivalent schematic diagram of a charging circuit of the wireless charging system of FIG. 9;
  • Figure 11 is a schematic diagram of the coordinate of the horizontal position of the coil end of the power supply end and the corresponding charging coupling coefficient
  • Figure 12 is a schematic diagram of the coordinates of the center of the power supply coil at the horizontal position and the corresponding charging power efficiency.
  • Label name Label name 10 Power supply power conversion module 40 Charging terminal coil 20 Power supply coil 50 Charging end power conversion module 30 Power management module 60 Vehicle management module
  • the invention provides a wireless charging coil alignment method.
  • the wireless charging coil alignment method is applied to a car wireless charging system, see FIG.
  • the system includes a power supply end coil 20, a vehicle end coil 40, a power supply management module 30, a vehicle management module 60, and a driving device for driving the power supply end coil 20 and the vehicle end coil 40.
  • the driving device uses a motor. achieve.
  • the wireless communication is adopted between the power management module 30 and the vehicle management module 60.
  • the power management module 30 is configured to acquire electrical parameters of the power supply end coil 20, such as current, voltage, etc.
  • the vehicle management module 60 is configured to acquire charging current and voltage of the vehicle battery.
  • the power management module 30 and the vehicle management module 60 collectively control the charging of the wireless charging system.
  • the wireless charging coil alignment method includes the following steps:
  • the electrical parameter can be an electrical parameter such as current, charging efficiency, coupling coefficient, and the like.
  • the correspondence data of the current value, the charging efficiency or the coupling coefficient with the horizontal position of the power supply end coil 20 within the set range is obtained by the preliminary experimental data. These data are stored in the power management module 30. During the alignment of the wireless charging coil, based on these data, the direction and distance of the power supply coil 20 that needs to be adjusted can be known, and the correction can be obtained by multiple corrections. Charging efficiency value.
  • the left side is the coordinate of the horizontal position xy
  • the right side of FIG. 11 and FIG. 12 corresponds to the coupling coefficient and the charging efficiency, respectively.
  • the technical solution of the present invention is to make the center position of the power supply end coil infinitely close to the zero point coordinates in FIG. 11 and FIG. 12, so that the state of charge is optimal.
  • the technical solution of the present invention obtains the electrical parameters related to the charging of the power supply end coil 20 and/or the vehicle end coil 40, and adjusts the position of the power supply end coil 20 in the horizontal direction according to the electrical parameter, and reaches the set adjustment number or reaches the setting.
  • the electrical threshold that is, the power supply end coil 20 and the vehicle end coil 40 are aligned to the set optimal state of charge
  • the alignment process ends.
  • the electric vehicle only needs to be driven into the designated charging position, and then the automatic alignment is completely realized without manual intervention, which significantly improves the speed and accuracy of the coil alignment.
  • the technical solution of the present invention has the advantages of high coil alignment speed and high charging efficiency.
  • the step “acquiring the electrical parameters related to charging of the power supply end coil 20 and/or the vehicle end coil 40” includes:
  • the current and voltage of the power supply end coil 20 are known, and the charging efficiency or the coupling coefficient of the wireless charging coil can be calculated according to the charged charging current and the charging voltage of the vehicle battery.
  • the step of “adjusting the position of the power supply end coil 20 in the horizontal direction according to the preset unit stroke according to the electrical parameter” specifically includes:
  • S240a calculates the displacement of the power supply end coil 20 to be moved, and controls the power supply end coil 20 to move in the second direction by a plurality of preset unit strokes, wherein the second direction is perpendicular to the first direction.
  • the first direction and the second direction are the x-axis direction and the y- axis direction of the power supply end coil on the horizontal coordinate system.
  • the obtained charging efficiency or the coupling coefficient itself is a scalar quantity, and the direction in which the power supply end coil 20 should be moved cannot be provided.
  • the obtained charging efficiency it is substituted into the efficiency field, and then the efficiency field is derived, and the orientation of the power supply end coil 20 corresponding to the optimal charging efficiency value can be known.
  • the process of deriving is to change the position of the power supply end coil 20 and obtain the charging efficiency value. The same is true for the technical principle of controlling the movement of the power supply end coil 20 by the coupling coefficient.
  • the derivation formula of charging efficiency can be expressed as:
  • e represents charging efficiency
  • x and y represent positions of the power supply end coil 20 in the first direction and the second direction.
  • the direction after the derivation is the direction in which the power supply coil 20 is to be moved.
  • the movement of each motor can be simple, just moving forward or backward, or it can be a more advanced preset distance movement.
  • Move the specified distance (this distance is an equation for
  • the vehicle management module 60 feeds back the battery charging voltage and the charging current to the power supply end;
  • the power management module 30 calculates and records the charging efficiency e or the coupling coefficient k;
  • the power management module 30 controls the power supply end coil 20 to move along the x-axis direction for a distance, for example 5 mm;
  • the vehicle management module 60 feeds back the battery charging voltage and the charging current to the power supply end;
  • the power management module 30 calculates and records the charging efficiency ex or the coupling coefficient kx;
  • the power management module 30 controls the power supply end coil 20 to move along the y-axis direction for a distance, for example 5 mm;
  • the vehicle management module 60 feeds back the battery charging voltage and the charging current to the power supply end;
  • the power management module 30 calculates and records the charging efficiency ey or the coupling coefficient ky;
  • the second embodiment differs from the first embodiment in that the present embodiment only needs to obtain the current of the power supply end coil 20, and the control process is simpler.
  • the degree of coupling tightness M between the power supply end coil 20 and the vehicle end coil 40 can be expressed as Where L1 and L2 are the self-inductance coefficients of the power supply end coil 20 and the charging end coil, respectively, and k is a coupling coefficient.
  • the power supply end coil 20 current i S and the vehicle end coil 40 current i L expression can be expressed as
  • V L is the battery voltage and V S is the power supply voltage.
  • the step of “acquiring electrical parameters related to charging of the power supply end coil 20 and/or the vehicle end coil 40” includes:
  • the charging current of the power supply terminal coil 20 is obtained.
  • the step of “adjusting the position of the power supply end coil 20 in the horizontal direction according to the predetermined unit stroke according to the electrical parameter” specifically includes:
  • the control power supply end coil 20 is moved in the second direction by a plurality of preset unit strokes, wherein the second direction is perpendicular to the first direction.
  • the alignment process of the power supply end coil 20 in the horizontal plane is to find a process of finding the minimum current of the power supply end coil 20 under the premise that the battery state does not change. Since the alignment process takes a short time, it can be assumed that the state of the battery does not change during the alignment process.
  • the current itself is only a scalar, it does not provide the direction in which the power supply coil 20 should move, but by deriving the current field, the orientation of the maximum value can be known.
  • the process of deriving is by changing the position of the coil and recording the amount of change in the current of the coil 20 at the power supply end.
  • the derivative formula for the current of the power supply coil 20 is:
  • x and y are positions of the power supply end coil 20 in the first direction and the second direction, respectively.
  • the direction after the derivation is the direction in which the power supply end coil 20 moves.
  • the movement of the power supply end coil 20 can be simple, just moving forward or backward, or it can be a more advanced preset distance movement. Moving a specified distance (this distance may be about
  • the vehicle management module 60 obtains the current of the power supply end coil 20;
  • the power management module 30 controls the power supply end coil 20 to move a distance along the x-axis direction, for example, 5 mm;
  • the power management module 30 records the current ix of the power supply coil 20,
  • the power management module 30 controls the power supply end coil 20 to move a distance along the y-axis direction, for example, 5 mm;
  • the power management module 30 records the current end coil 20 current iy;
  • the power management module 30 calculates the amount of change in the current of the power supply coil 20;
  • the step “acquiring the electrical parameters related to the power supply end coil 20 and/or the vehicle end coil charging 40” includes:
  • the charging current and the charging voltage of the vehicle battery are sampled, the charging efficiency or the coupling coefficient of the wireless charging coil is calculated; and the charging current of the power supply end coil 20 is obtained.
  • the step of “adjusting the position of the power supply end coil 20 in the horizontal direction according to the preset unit stroke according to the electrical parameter” specifically includes:
  • the embodiment by acquiring a plurality of electrical parameters, they are respectively substituted into corresponding fields, and the obtained displacements are averaged, and then the position of the power supply end coil 20 is adjusted based on the average value.
  • the embodiment has the advantages of high adjustment accuracy.
  • the present invention provides a wireless charging primary device, including a power supply end coil 20, a power management module 30, a first driving device (not shown), and a second driving device (not shown);
  • both the first drive device and the second drive device are implemented by a motor.
  • the two motors respectively drive the power supply end coil 20 to move in the x-axis or y-axis direction.
  • the wireless charging primary side device further includes a power supply end power conversion module 10, and the power supply end power conversion module 10 is configured to rectify, filter, regulate, and invert the alternating current outputted by the power supply, and then output the same to the vehicle end coil. After the vehicle end power conversion module 50 performs rectification, filtering, voltage regulation, etc., the vehicle battery is charged.
  • the power management module 30 obtains electrical parameters related to charging of the power supply end coil 20, according to the Determining electrical parameters, respectively controlling the first driving device and the second driving device to adjust the position of the power supply end coil 20 in the horizontal direction; determining whether the electrical parameter value reaches a preset electrical threshold and/or whether the number of cycles reaches When the maximum value is preset, if it is, the charging coil is aligned, if not, the above steps are cycled.
  • the power management module 30 acquires a charging current of the power supply end coil 20.
  • the power management module 30 substitutes the charging efficiency or the coupling coefficient into a preset efficiency field or a coupling coefficient field; calculates a displacement that the coil needs to move, and controls the power supply end coil 20 to move in the first direction. Preset unit strokes;
  • the power management module 30 obtains the charging efficiency or the coupling coefficient again, and substitutes the charging efficiency or the coupling coefficient at this time into a preset efficiency field or a coupling coefficient field; calculates a displacement of the coil to be moved, and controls the power supply.
  • the end coil 20 is moved in the second direction by a plurality of predetermined unit strokes, wherein the second direction is perpendicular to the first direction.
  • the vehicle management module 60 acquires a charging current and a charging voltage of the vehicle battery, calculates a charging efficiency or a coupling coefficient of the wireless charging coil, and acquires a charging current of the power supply terminal coil 20.
  • the power management module 30 substitutes at least any two of the charging efficiency, the coupling coefficient, and the charging current into a corresponding preset efficiency field, a coupling coefficient field, or a current field;
  • the power management module 30 again acquires at least any two of the charging efficiency, the coupling coefficient, or the charging current, and respectively substitutes the corresponding preset efficiency field, coupling coefficient field or current field;
  • the present invention further provides a wireless charging system, including a power supply end coil 20, a power supply management module 30, a vehicle end coil 40, a vehicle management module 60, a first driving device, and a second driving device; wherein, in addition, the wireless
  • the charging primary device further includes a power supply end power conversion module 10 and a vehicle end power conversion module 50.
  • the power supply end power conversion module 10 is configured to rectify, filter, regulate, invert, etc. the AC output of the power supply, and then output the same to the vehicle.
  • the end coil is charged to the vehicle battery after being converted, filtered, regulated, etc. by the vehicle end power conversion module 50.
  • the vehicle management module 60 obtains electrical parameters related to the charging of the vehicle end coil 40, and wirelessly transmits relevant electrical parameters to the power supply management module 30;
  • the power management module 30 controls the first driving device and the second driving device to adjust the position of the power supply end coil 20 in the horizontal direction according to the electrical parameter, and determines whether the electrical parameter value reaches a preset electrical threshold and / or whether the number of cycles reaches the preset maximum value, if yes, the charging coil is aligned, if not, the above steps are cycled.
  • the vehicle management module 60 acquires a charging current and a charging voltage of the vehicle battery, and calculates a charging efficiency or a coupling coefficient of the wireless charging coil.
  • the power supply management module 30 substitutes the charging current of the power supply end coil 20 into a preset current field; calculates a displacement that the power supply end coil 20 needs to move, and controls the power supply end coil 20 to move a plurality of positions in the first direction. Preset unit stroke;
  • the power management module 30 again obtains the charging current of the power supply end coil 20, and substitutes the charging current of the power supply end coil 20 into a preset current field to calculate the displacement that the power supply end coil 20 needs to move;
  • the power supply end coil 20 is moved in the second direction by a plurality of predetermined unit strokes, wherein the second direction is perpendicular to the first direction.
  • the vehicle management module 60 acquires a charging current and a charging voltage of the vehicle battery, calculates a charging efficiency or a coupling coefficient of the wireless charging coil, and acquires a charging current of the power supply terminal coil 20.
  • the power management module 30 substitutes at least any two of the charging efficiency, the coupling coefficient, and the charging current into a corresponding preset efficiency field, a coupling coefficient field, or a current field;
  • the power management module 30 again acquires at least any two of the charging efficiency, the coupling coefficient, or the charging current, and respectively substitutes the corresponding preset efficiency field, coupling coefficient field or current field;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电线圈对准方法、装置及系统,其中无线充电线圈对准方法包括以下步骤:获取供电端线圈和/或车辆端线圈充电相关的电气参数(S100);根据电气参数,调整供电端线圈在水平方向上的位置(S200);判断电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值(S300),若是,充电线圈对准完毕,若否,则循环上述步骤。该无线充电线圈对准方法、装置及系统加快了无线充电线圈对准速度,提高了充电效率。

Description

无线充电线圈对准方法、装置及系统 技术领域
本发明涉及无线充电技术领域,特别涉及一种无线充电线圈对准方法、装置及系统。
背景技术
现有的采用无线充电方式的电动汽车在进入无线充电站充电时,需要将车载底部无线充电接收线圈与位于地面的无线充电发射线圈对准才能保证充电效率的最大化。
现有的对准方式一般是司机控制电动汽车根据充电站的定位标志来定位对准无线充电发射线圈,这需要驾驶员的人工控制来实现无线充电发送线圈与无线充电接收线圈的对准,这一对准过程缓慢,同时效率低下。
发明内容
本发明的主要目的是提供一种无线充电线圈对准方法,旨在加快无线充电线圈对准速度,提高充电效率。
为实现上述目的,本发明提出一种无线充电线圈对准方法,所述无线充电线圈对准方法包括以下步骤:
获取供电端线圈和/或车辆端线圈充电相关的电气参数;
根据所述电气参数,调整所述供电端线圈在水平方向上的位置;
判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值,若是,充电线圈对准完毕,若否,则循环上述步骤。
优选地,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
采样车载电池的充电电流和充电电压;
计算无线充电线圈的充电效率或耦合系数。
优选地,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线 圈在水平方向上的位置”具体包括:
将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
计算得到所述供电端线圈需移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
计算得到所述供电端线圈需移动的位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
优选地,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
获取所述供电端线圈的充电电流。
优选地,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈在水平方向上的位置”具体包括:
将所述供电端线圈的充电电流,代入预设的电流场;
计算得到所述供电端线圈需要移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
再次获取所述供电端线圈的充电电流,并将此时的所述供电端线圈的充电电流,代入预设的电流场,计算得到所述供电端线圈需要移动的位移;
控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
优选地,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
采样车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
优选地,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈在水平方向上的位置”具体包括:
将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
再次获取充电效率、耦合系数充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
本发明提出一种无线充电原边装置,包括供电端线圈、供电管理模块、第一驱动装置及第二驱动装置;其中,
所述供电管理模块,获取供电端线圈充电相关的电气参数,根据所述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈在水平方向上的位置;
并判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值时,若是,所述第一驱动装置和所述第二驱动装置停止驱动,若否,则所述第一驱动装置和所述第二驱动装置继续调整线圈在水平方向上的位置。
优选地,所述供电管理模块获取供电端线圈的充电电流。
优选地,所述供电管理模块将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到供电端线圈需移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
所述供电管理模块再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到线圈需移动的位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
优选地,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
优选地,所述供电管理模块将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
所述供电管理模块再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
本发明还提出一种无线充电系统,包括供电端线圈、供电管理模块、车辆端线圈、车辆管理模块、第一驱动装置及第二驱动装置;其中,
所述车辆管理模块,获取所述车辆端线圈充电相关的电气参数,并将相关电气参数无线发射至所述供电管理模块;
所述供电管理模块根据所述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈在水平方向上的位置;并判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值时,若是,所述第一驱动装置和所述第二驱动装置停止驱动,若否,则所述第一驱动装置和所述第二驱动装置继续调整线圈在水平方向上的位置。
优选地,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数。
优选地,所述供电管理模块将所述供电端线圈的充电电流,代入预设的电流场;计算得到所述供电端线圈需要移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
所述供电管理模块再次获取供电端线圈的充电电流,并将此时的所述供电端线圈的充电电流,代入预设的电流场,计算得到供电端线圈需要移动的位移;控制供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
优选地,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
优选地,所述供电管理模块将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
所述供电管理模块再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第 二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
本发明技术方案通过获取供电端线圈和/或车辆端线圈充电相关的电气参数,根据所述电气参数调整供电端线圈在水平方向上的位置,达到设定的调整次数或达到设定电气阈值后,即供电端线圈和车辆端线圈对准达到设定的最优充电状态,则对准过程结束。在供电端线圈与车辆端线圈对准过程中,只需将电动汽车驶入指定充电位置,其后再无需人工干预,完全实现了自动对准,显著提高了线圈对准的速度和精确度,本发明技术方案具有线圈对准速度快,充电效率高的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明无线充电线圈对准方法一实施例的流程图;
图2为图1中步骤S100的第一实施例进一步的流程图;
图3为图1中步骤S200的第一实施例进一步的流程图;
图4为本发明无线充电线圈对准方法第一实施例的具体流程图;
图5为图1中步骤S200的第二实施例进一步的流程图;
图6为本发明无线充电线圈对准方法第二实施例的具体流程图;
图7为图1中步骤S200的第三实施例进一步的流程图
图8为本发明无线充电原边装置的功能模块图;
图9为本发明无线充电系统的功能模块图;
图10为图9中无线充电系统的充电电路等效原理图;
图11为供电端线圈中心在水平位置坐标与所对应充电耦合系数的示意图;
图12为供电端线圈中心在水平位置坐标与所对应充电电效率的示意图。
附图标号说明:
标号 名称 标号 名称
10 供电端电源变换模块 40 充电端线圈
20 供电端线圈 50 充电端电源变换模块
30 供电管理模块 60 车辆管理模块
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。
本发明提出一种无线充电线圈对准方法。该无线充电线圈对准方法应用于汽车无线充电系统上,参照图9。该系统包括供电端线圈20、车辆端线圈40、供电管理模块30、车辆管理模块60、用于驱动供电端线圈20和车辆端线圈40移动的驱动装置,本实施例中,该驱动装置采用电机实现。其中,供电管理模块30和车辆管理模块60之间采用无线通信。供电管理模块30用于获取供电端线圈20的电气参数,例如电流、电压等,车辆管理模块60则用于获取车载电池的充电电流及电压。供电管理模块30和车辆管理模块60共同控制无线充电系统的充电。
参照图1,在本发明实施例中,该无线充电线圈对准方法,所述无线充电线圈对准方法包括以下步骤:
S100、获取供电端线圈20和/或车辆端线圈40充电相关的电气参数。该电气参数可以是电流、充电效率、耦合系数等电气参数。
S200、根据所述电气参数,调整供电端线圈20在水平方向上的位置。应当说明的是,在供电端线圈20和车辆端线圈40高度差不改变的前提下,无线充电线圈的充电效率或供电端线圈20和车辆端线圈40的耦合系数与供电端线圈20和车辆端线圈40的中心距离成负相关。因此,实际充电过程中,需要调整供电端线圈20的位置,使得两线圈之间的中心距离在设定范围内。
S300、判断所述电气参数值是否达到预设电气阈值和/或循环次数是否达 到预设最大值时,若是,充电线圈对准完毕,若否,则循环上述步骤。
参照图11和图12,通过预先的实验数据,得到电流值、充电效率或耦合系数与供电端线圈20在设定范围内水平位置上的对应关系数据。将这些数据存入供电管理模块30中,在无线充电线圈对准过程中,根据这些数据,即可知道供电端线圈20的需要调整的方向和距离,在通过多次的矫正,即可得到理想的充电效率值。图11及图12中左侧为水平位置xy的坐标,图11及图12右侧则分别对应是耦合系数和充电效率。由图中可知,左侧位置坐标颜色较浅的位置则对应右侧颜色较浅的耦合系数值和充电效率值。因此,本发明技术方案就是使得供电端线圈的中心位置无限接近图11及图12中的零点坐标,使得充电状态处于最优。
本发明技术方案通过获取供电端线圈20和/或车辆端线圈40充电相关的电气参数,根据所述电气参数调整供电端线圈20在水平方向上的位置,达到设定的调整次数或达到设定电气阈值后,即供电端线圈20和车辆端线圈40对准达到设定的最优充电状态,则对准过程结束。在供电端线圈20与车辆端线圈40对准过程中,只需将电动汽车驶入指定充电位置,其后再无需人工干预,完全实现了自动对准,显著提高了线圈对准的速度和精确度,本发明技术方案具有线圈对准速度快,充电效率高的优点。
参照图2,实施例一,所述步骤“获取供电端线圈20和/或车辆端线圈40充电相关的电气参数”包括:
S110a、采样车载电池的充电电流和充电电压;
S120a、计算无线充电线圈的充电效率或耦合系数。
其中,已知供电端线圈20的电流和电压,根据采样到的车载电池的充电电流及充电电压,即可计算出无线充电线圈的充电效率或耦合系数。
具体地,参照图3,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈20在水平方向上的位置”具体包括:
S210a、将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
S220a、计算得到供电端线圈20需移动的位移,控制供电端线圈20沿第一方向移动若干个预设单位行程;单位行程是供电端线圈20能够移动的最小 单位距离。
S230a、再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
S240a、计算得到供电端线圈20需移动的位移,控制供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。本实施例中,第一方向和第二方向即为供电端线圈在水平坐标系上的x轴方向和y轴方向。
需要说明的是,获得到的所述充电效率或所述耦合系数本身是个标量,不能提供供电端线圈20应该移动的方向。但是根据得到的充电效率,将其代入效率场,再对效率场进行求导,就能知道最优充电效率值所对应供电端线圈20所在的方位。而求导的过程就是改变供电端线圈20的位置,并获取充电效率值。对于通过耦合系数来控制供电端线圈20移动的技术原理亦是如此。其中充电效率的求导公式可表达为:
Figure PCTCN2016103439-appb-000001
其中,e表示充电效率,x、y表示供电端线圈20在第一方向和第二方向上的位置。
求导后的方向就是供电端线圈20要移动的方向。每个电机的移动可以是简单的,只是前进或者后退的移动,也可以是更高级的预设好距离的移动。移动指定距离(这个距离是有关||▽e||的方程,例如||▽e||越大意味着离中心越远,因此指定距离可以越大)后,求导过程再次发生,并对移动方向做出矫正。这个过程一直循环进行,直到求导结果的绝对值(||▽e||)很小,或者达到预设的循环次数,则对准过程判定完成。
参照图4,现结合具体实施例对本技术方案作进一步说明的:
S10a、开始正常充电,或是用于专门对准过程的小电流充电;
S20a、车辆管理模块60将电池充电电压和充电电流反馈至供电端;
S30a、供电管理模块30计算并记录充电效率e或耦合系数k;
S40a、供电管理模块30控制供电端线圈20移动沿x轴方向移动一段距离,例如5毫米;
S50a、车辆管理模块60将电池充电电压和充电电流反馈至供电端;
S60a、供电管理模块30计算并记录充电效率ex或耦合系数kx;
S70a、供电管理模块30控制供电端线圈20移动沿y轴方向移动一段距离,例如5毫米;
S80a、车辆管理模块60将电池充电电压和充电电流反馈至供电端;
S90a、供电管理模块30计算并记录充电效率ey或耦合系数ky;
S100a、判断循环次数是否达到设定最大值或充电效率达到设定值或耦合系数值达到设定值,若是,则结束;若否,则循环步骤S2~S9。
实施例二,本实施例与实施例一的区别在于,本实施例只需获取供电端线圈20的电流,其控制过程更为简单。
根据现有理论,可以将充电系统的充电电路模型简化为图10所示的电路图。供电端线圈20和车辆端线圈40的之间的耦合松紧程度M可以表示为
Figure PCTCN2016103439-appb-000002
其中L1和L2分别为供电端线圈20和充电端线圈的自感系数,k为耦合系数。
供电端线圈20电流iS和车辆端线圈40电流iL表达式可表示为
Figure PCTCN2016103439-appb-000003
其中VL为电池电压,VS为电源电压,
因此可见,当电池充电属性VL和IL不变时,M值越大,供电端线圈20流过电流越小。为在供电线圈与车辆线圈轴距离(即高度差)不改变的前提下,充电效率(以及耦合系数)与线圈的中心距离成负相关。因此,只需获取供电端线圈20的电流即可。
具体地,所述步骤“获取供电端线圈20和/或车辆端线圈40充电相关的电气参数”包括:
获取供电端线圈20的充电电流。
参照图5,具体地,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈20在水平方向上的位置”具体包括:
S210b、将所述供电端线圈20的充电电流,代入预设的电流场;
S220b、计算得到供电端线圈20需要移动的位移,控制供电端线圈20沿第一方向移动若干个预设单位行程;
S230b、再次获取供电端线圈20的充电电流,并将此时的所述供电端线 圈20的充电电流,代入预设的电流场,计算得到供电端线圈20需要移动的位移;
S240b、控制供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
需要说明的是,供电端线圈20在水平面(即正交平面)的对准过程就是寻找在电池状态不改变的前提下,寻找供电端线圈20电流最小位置的过程。因为对准过程需要的时间较短,所以可以假设对准过程中电池状态不会改变。
虽然电流本身只是一个标量,并不能提供供电端线圈20应该移动的方向,但是通过对电流场的求导,可以得知最大值的方位。求导的过程就是通过改变线圈的位置,并记录供电端线圈20电流的变化量。对供电端线圈20电流的求导公式为:
Figure PCTCN2016103439-appb-000004
其中x、y分别为供电端线圈20在第一方向和第二方向上的位置。
求导后的方向就供电端线圈20移动的方向。供电端线圈20的移动可以是简单的,只是前进或者后退的移动,也可以是更高级的预设好距离的移动。移动指定距离(这个距离可以是有关||▽is||的方程,例如||▽is||越大意味着离中心越远,因此指定距离可以越大)后,求导过程再次发生,并对供电端线圈20的移动方向做出矫正。这个过程一直循环进行,直到求导结果的绝对值(即||▽is||)很小,或者达到预设的循环次数,此时则对准过程判定完成。
参照图6,现结合具体实施例对本技术方案作进一步说明的:
S10b、开始正常充电,或是用于专门对准过程的小电流充电;
S20b、车辆管理模块60获取供电端线圈20电流;
S30b、供电管理模块30控制供电端线圈20移动沿x轴方向移动一段距离,例如5毫米;
S40b、供电管理模块30记录供电端线圈20电流ix,
S50b、供电管理模块30控制供电端线圈20移动沿y轴方向移动一段距离,例如5毫米;
S60b、供电管理模块30记录供电端线圈20电流iy;
S70b、供电管理模块30计算供电端线圈20电流的变化量;
S80b、判断循环次数是否达到设定最大值或充电电流达到设定值,若是,则结束;若否,则循环步骤S2~S7。
实施例三,参照图7,具体地,所述步骤“获取供电端线圈20和/或车辆端线圈充40电相关的电气参数”包括:
采样车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈20的充电电流。
具体地,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈20在水平方向上的位置”具体包括:
S210c、将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
S2210c、计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第一方向移动若干个预设单位行程;
S230c、再次获取充电效率、耦合系数充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
S240c、计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
需要说明的是,实施例三中通过获取多个电气参数,分别代入对应的场中,将得到的位移求平均值,再基于该平均值,调整供电端线圈20的位置。该实施例相对实施例一和实施例二,具有调整精确度高的优点。
参照图8,本发明提出一种无线充电原边装置,包括供电端线圈20、供电管理模块30、第一驱动装置(未示出)及第二驱动装置(未示出);其中,本实施例中,第一驱动装置和第二驱动装置均采用马达实现。两马达分别驱动供电端线圈20沿x轴或y轴方向移动。此外该无线充电原边装置还包括供电端电源变换模块10,供电端电源变换模块10用于将电源输出的交流电进行整流、滤波、调压、逆变等变换后后输出至车辆端线圈,在经车辆端电源变换模块50进行整流、滤波、调压等变换后给车载电池进行充电。
所述供电管理模块30,获取供电端线圈20充电相关的电气参数,根据所 述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈20在水平方向上的位置;判断所述电气参数值是否达到预设电气阈值和/或循环次数是否达到预设最大值时,若是,充电线圈对准完毕,若否,则循环上述步骤。
进一步地,所述供电管理模块30获取供电端线圈20的充电电流。
进一步地,所述供电管理模块30将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到线圈需移动的位移,控制供电端线圈20沿第一方向移动若干个预设单位行程;
所述供电管理模块30再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到线圈需移动的位移,控制供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
进一步地,所述车辆管理模块60获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈20的充电电流。
具体地,所述供电管理模块30将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第一方向移动若干个预设单位行程;
所述供电管理模块30再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
参照图9,本发明还提出一种无线充电系统,包括供电端线圈20、供电管理模块30、车辆端线圈40、车辆管理模块60、第一驱动装置及第二驱动装置;其中,此外该无线充电原边装置还包括供电端电源变换模块10及车辆端电源变换模块50,供电端电源变换模块10用于将电源输出的交流电进行整流、滤波、调压、逆变等变换后后输出至车辆端线圈,在经车辆端电源变换模块50进行整流、滤波、调压等变换后给车载电池进行充电。
车辆管理模块60,获取车辆端线圈40充电相关的电气参数,并将相关电气参数无线发射至供电管理模块30;
供电管理模块30根据所述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈20在水平方向上的位置;判断所述电气参数值是否达到预设电气阈值和/或循环次数是否达到预设最大值时,若是,充电线圈对准完毕,若否,则循环上述步骤。
进一步地,所述车辆管理模块60获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数。
进一步地,所述供电管理模块30将所述供电端线圈20的充电电流,代入预设的电流场;计算得到供电端线圈20需要移动的位移,控制供电端线圈20沿第一方向移动若干个预设单位行程;
所述供电管理模块30再次获取供电端线圈20的充电电流,并将此时的所述供电端线圈20的充电电流,代入预设的电流场,计算得到供电端线圈20需要移动的位移;控制供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
具体地,所述车辆管理模块60获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈20的充电电流。
具体地,所述供电管理模块30将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第一方向移动若干个预设单位行程;
所述供电管理模块30再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
计算得到所述供电端线圈20需移动的平均位移,控制所述供电端线圈20沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (17)

  1. 一种无线充电线圈对准方法,其特征在于,所述无线充电线圈对准方法包括以下步骤:
    获取供电端线圈和/或车辆端线圈充电相关的电气参数;
    根据所述电气参数,调整所述供电端线圈在水平方向上的位置;
    判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值,若是,充电线圈对准完毕,若否,则循环上述步骤。
  2. 如权利要求1所述的无线充电线圈对准方法,其特征在于,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
    采样车载电池的充电电流和充电电压;
    计算无线充电线圈的充电效率或耦合系数。
  3. 如权利要求2所述的无线充电线圈对准方法,其特征在于,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈在水平方向上的位置”具体包括:
    将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
    计算得到所述供电端线圈需移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;
    计算得到所述供电端线圈需移动的位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  4. 如权利要求1所述的无线充电线圈对准方法,其特征在于,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
    获取所述供电端线圈的充电电流。
  5. 如权利要求4所述的无线充电线圈对准方法,其特征在于,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈在水平方向上的位置”具体包括:
    将所述供电端线圈的充电电流,代入预设的电流场;
    计算得到所述供电端线圈需要移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    再次获取所述供电端线圈的充电电流,并将此时的所述供电端线圈的充电电流,代入预设的电流场,计算得到所述供电端线圈需要移动的位移;
    控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  6. 如权利要求1所述的无线充电线圈对准方法,其特征在于,所述步骤“获取供电端线圈和/或车辆端线圈充电相关的电气参数”包括:
    采样车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
  7. 如权利要求6所述的无线充电线圈对准方法,其特征在于,所述步骤“根据所述电气参数,按照预设单位行程调整供电端线圈在水平方向上的位置”具体包括:
    将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    再次获取充电效率、耦合系数充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线 圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  8. 一种无线充电原边装置,其特征在于,包括供电端线圈、供电管理模块、第一驱动装置及第二驱动装置;其中,
    所述供电管理模块,获取供电端线圈充电相关的电气参数,根据所述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈在水平方向上的位置;
    并判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值时,若是,所述第一驱动装置和所述第二驱动装置停止驱动,若否,则所述第一驱动装置和所述第二驱动装置继续调整线圈在水平方向上的位置。
  9. 如权利要求8所述的无线充电原边装置,其特征在于,所述供电管理模块获取供电端线圈的充电电流。
  10. 如权利要求9所述的无线充电原边装置,其特征在于,
    所述供电管理模块将所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到供电端线圈需移动的位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    所述供电管理模块再次获取充电效率或耦合系数,并将此时的所述充电效率或所述耦合系数,代入预设的效率场或耦合系数场;计算得到线圈需移动的位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  11. 如权利要求8所述的无线充电原边装置,其特征在于,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
  12. 如权利要求11所述的无线充电原边装置,其特征在于,所 述供电管理模块将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    所述供电管理模块再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  13. 一种无线充电系统,其特征在于,包括供电端线圈、供电管理模块、车辆端线圈、车辆管理模块、第一驱动装置及第二驱动装置;其中,
    所述车辆管理模块,获取所述车辆端线圈充电相关的电气参数,并将相关电气参数无线发射至所述供电管理模块;
    所述供电管理模块根据所述电气参数,分别控制所述第一驱动装置和所述第二驱动装置调整供电端线圈在水平方向上的位置;并判断所述电气参数值是否达到预设电气阈值和/或调整次数是否达到预设最大值时,若是,所述第一驱动装置和所述第二驱动装置停止驱动,若否,则所述第一驱动装置和所述第二驱动装置继续调整线圈在水平方向上的位置。
  14. 如权利要求13所述的无线充电系统,其特征在于,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数。
  15. 如权利要求14所述的无线充电系统,其特征在于,所述供电管理模块将所述供电端线圈的充电电流,代入预设的电流场;计算得到所述供电端线圈需要移动的位移,控制所述供电端线圈沿第一方 向移动若干个预设单位行程;
    所述供电管理模块再次获取供电端线圈的充电电流,并将此时的所述供电端线圈的充电电流,代入预设的电流场,计算得到供电端线圈需要移动的位移;控制供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
  16. 如权利要求13所述的无线充电系统,其特征在于,所述车辆管理模块获取车载电池的充电电流和充电电压,计算无线充电线圈的充电效率或耦合系数;并获取所述供电端线圈的充电电流。
  17. 如权利要求16所述的无线充电系统,其特征在于,所述供电管理模块将所述充电效率、所述耦合系数及充电电流中的至少任意两者,分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第一方向移动若干个预设单位行程;
    所述供电管理模块再次获取充电效率、耦合系数或充电电流中的至少任意两者,并分别代入对应预设的效率场、耦合系数场或电流场;
    计算得到所述供电端线圈需移动的平均位移,控制所述供电端线圈沿第二方向移动若干个预设单位行程,其中第二方向与第一方向垂直。
PCT/CN2016/103439 2016-10-26 2016-10-26 无线充电线圈对准方法、装置及系统 WO2018076214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103439 WO2018076214A1 (zh) 2016-10-26 2016-10-26 无线充电线圈对准方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103439 WO2018076214A1 (zh) 2016-10-26 2016-10-26 无线充电线圈对准方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018076214A1 true WO2018076214A1 (zh) 2018-05-03

Family

ID=62022934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103439 WO2018076214A1 (zh) 2016-10-26 2016-10-26 无线充电线圈对准方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2018076214A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633697A (zh) * 2013-11-22 2014-03-12 北京航空航天大学 电磁感应式非接触充电系统及其对准方法
CN104283331A (zh) * 2008-07-08 2015-01-14 高通股份有限公司 在规定限制下的无线高电力传送
US20150061590A1 (en) * 2010-05-19 2015-03-05 Qualcomm Incorporated Adaptive wireless energy transfer system
CN104821636A (zh) * 2014-01-31 2015-08-05 丰田自动车株式会社 非接触电力传输系统
CN105940587A (zh) * 2013-12-03 2016-09-14 犹他州立大学 确定磁耦合器之间的物理对准
CN106541844A (zh) * 2016-10-26 2017-03-29 深圳市沃尔核材股份有限公司 无线充电线圈对准方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283331A (zh) * 2008-07-08 2015-01-14 高通股份有限公司 在规定限制下的无线高电力传送
US20150061590A1 (en) * 2010-05-19 2015-03-05 Qualcomm Incorporated Adaptive wireless energy transfer system
CN103633697A (zh) * 2013-11-22 2014-03-12 北京航空航天大学 电磁感应式非接触充电系统及其对准方法
CN105940587A (zh) * 2013-12-03 2016-09-14 犹他州立大学 确定磁耦合器之间的物理对准
CN104821636A (zh) * 2014-01-31 2015-08-05 丰田自动车株式会社 非接触电力传输系统
CN106541844A (zh) * 2016-10-26 2017-03-29 深圳市沃尔核材股份有限公司 无线充电线圈对准方法、装置及系统

Similar Documents

Publication Publication Date Title
CN106541844B (zh) 无线充电线圈对准方法、装置及系统
CN106809188A (zh) 电动车电池更换系统及使用方法
JP5834463B2 (ja) トルク制御装置及び非接触充電システム
CN110254258B (zh) 一种无人机无线充电系统及方法
CN112721705B (zh) 一种移动式反向对准车辆无线充电系统及其公共停车区域
US20100230197A1 (en) Auto-Seek Electrical Connection for a Plug-In Hybrid Electric Vehicle
US9096138B2 (en) Contactless power feeding apparatus and contactless power feeding method
CN106787266A (zh) 一种移动机器人无线充电方法及装置
WO2011114942A1 (ja) 移動体給電装置
CN111204238B (zh) 汽车的无线充电对准方法及装置、存储介质、终端
CN103412568B (zh) 同架次变航高无人机遥感影像获取方法
US20190118663A1 (en) Automatic lateral alignment for wireless charging systems
CN105691218A (zh) 确定充电站的充电装置的充电位置
CN105391145A (zh) 一种电动汽车非接触式充电自动导引与控制系统及方法
CN104578285A (zh) 一种自动充电机器人的定位装置及方法
CN205022384U (zh) 感应电能传输系统
TW201718296A (zh) 自走式電池模組及電動車
CN112208366A (zh) 水下航行器的无线充电系统、装置及充电方法
WO2018076214A1 (zh) 无线充电线圈对准方法、装置及系统
CN112977862A (zh) 一种无人机无线充电停机坪
CN209833410U (zh) 一种电动汽车混合传感器动态校准系统
CN111169292B (zh) 车辆纯电驱动上坡阶段驱动电机温度的控制方法及系统
CN205051396U (zh) 一种电动汽车非接触式充电匹配控制装置
CN210792821U (zh) 水下航行器的无线充电系统及装置
CN114083999A (zh) 一种基于原边电流检测的无线充电对准机构及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920237

Country of ref document: EP

Kind code of ref document: A1