WO2018076203A1 - Water detection and shut-off system and methods - Google Patents

Water detection and shut-off system and methods Download PDF

Info

Publication number
WO2018076203A1
WO2018076203A1 PCT/CN2016/103377 CN2016103377W WO2018076203A1 WO 2018076203 A1 WO2018076203 A1 WO 2018076203A1 CN 2016103377 W CN2016103377 W CN 2016103377W WO 2018076203 A1 WO2018076203 A1 WO 2018076203A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
shut
detection system
detector
sensor
Prior art date
Application number
PCT/CN2016/103377
Other languages
French (fr)
Inventor
Chun Kuen Sze
Larry BEGER
Mateusz Cwiokowski
Original Assignee
Elexa Consumer Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elexa Consumer Products, Inc. filed Critical Elexa Consumer Products, Inc.
Priority to PCT/CN2016/103377 priority Critical patent/WO2018076203A1/en
Priority to US15/334,934 priority patent/US10161115B2/en
Publication of WO2018076203A1 publication Critical patent/WO2018076203A1/en
Priority to US16/131,559 priority patent/US20190017252A1/en
Priority to US16/157,746 priority patent/US10584467B2/en
Priority to US16/162,071 priority patent/US20190048564A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons, valves, in the pipe systems
    • E03B7/071Arrangement of safety devices in domestic pipe systems, e.g. devices for automatic shut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/05Actuating devices; Operating means; Releasing devices electric; magnetic using a motor specially adapted for operating hand-operated valves or for combined motor and hand operation
    • F16K31/055Actuating devices; Operating means; Releasing devices electric; magnetic using a motor specially adapted for operating hand-operated valves or for combined motor and hand operation for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/15Leakage reduction or detection in water storage or distribution

Definitions

  • the present disclosure relates to a water detection and shut-off system and methods. More particularly, the present disclosure relates to a water detector and water shut-off mechanism that are communicatively coupled and work together to detect the presence of water and automatically shut-off a water valve to prevent flooding or water damage.
  • a water detection system includes a water detector with one or more water sensors adapted to detect the presence of water and a water shut-off mechanism that retrofits to an existing water pipe and shut-off valve.
  • the water detection system includes a water detector with a catch basin with an aperture located at a lower portion of the catch basin.
  • the water sensor is located within the aperture and adapted to detect the presence of water.
  • the water detector also includes a wireless transmitter; and a battery operatively coupled to the water sensor and the wireless transmitter.
  • the water detection system includes a water shut-off mechanism adapted to couple a water pipe with a shut-off valve.
  • the water shut-off mechanism includes a chassis adapted to couple to the water pipe via pipe sleeves and pipe clamps.
  • the water shut-off mechanism includes a motor coupled to the chassis, a battery electrically connected to the motor, a sprocket coupled to the motor, and a transmission coupled to the sprocket with two protrusions adapted to fit around a handle of the shut-off valve.
  • the water shut-off mechanism includes a wireless receiver communicatively coupled to the water detector. When the water sensor detects the presence of water, the water detector sends, via the wireless transmitter, an alert. In response to receiving the alert, the water shut-off mechanism turns the shut-off valve to a closed position.
  • Figs. 1A, 1B, 1C, 1D, and 1E are views of a water detector
  • Fig. 1A shows a top perspective view of a water detector
  • Fig. 1B shows a top view of a water detector
  • Fig. 1C shows a bottom view of a water detector
  • Fig. 1D shows a front view of a water detector
  • Fig. 1E shows a side view of a water detector
  • Fig. 2 shows a bottom perspective view of the water detector of Figs. 1A-1E and a bottom perspective view of a satellite water detector;
  • Fig. 3 shows a top perspective view of the satellite water detector of Fig. 2;
  • Fig. 4 shows a perspective and exploded view of a water shut-off mechanism
  • Fig. 5A shows a perspective view of a transmission of the water shut-off mechanism of Fig. 4;
  • Fig. 5B shows a side view of the transmission of Fig. 5A
  • Fig. 6A shows a perspective view of a sprocket of the water shut-off mechanism of Fig. 4 including a cut-out portion showing an example skirt interior;
  • Fig. 6B shows a cross-sectional view of the sprocket along line C-C from Fig. 6A;
  • Fig. 7 shows examples of the valve nut sleeve of Fig. 4.
  • Fig. 8A shows a perspective view of a self-centering chuck
  • Fig. 8B shows a side view of the self-centering chuck of Fig. 8A;
  • Figs. 9A, 9B, and 9C show the self-centering chuck of Fig. 8A with the transmission of Fig. 4 and illustrates how the chuck and transmission can accommodate various ball valve nut sizes.
  • Fig. 10 illustrates a water shut-off mechanism, according to some embodiments.
  • Fig. 11 illustrates an exploded view of the components of a transmission, according to some embodiments.
  • Fig. 12A shows a top view of the transmission of Fig. 11.
  • Fig. 12B shows a cross-sectional view of the transmission of Fig. 11 fitting to a smaller shut-off valve nut.
  • Fig. 12C shows a cross-sectional view of the transmission of Fig. 11 fitting to a larger shut-off valve nut.
  • a water (or other liquid) detection and shut-off system in accordance with the present disclosure may include a water detector 110, as shown and described in reference to Figs. 1A-1E, a satellite water detector 130, as shown and described in reference to Figs. 2 and 3, and/or a water shut-off mechanism 200 as shown and described in reference to Figs. 4, 5A, 5B, 6A, 6B, 7, 8A, 8B, 9A, 9B, and 9C.
  • the water detector 110, satellite water detector 130, and water shut-off mechanism 200 may be communicatively coupled via one or more communication links 170 to a client component 180 (e.g., a smartphone app, a website, a desktop program, or other interface) .
  • a client component 180 e.g., a smartphone app, a website, a desktop program, or other interface
  • the client component 180 may include the ability to control or monitor components of the water detection system.
  • the client component may be a smartphone app that allows the user to open or close the water shut-off valve, to control the volume of an audible alarm, to monitor the remaining battery life of the water detector 110, the satellite water detector 130, and/or the water shut-off mechanism 200, or to provide any other electronically controllable functionality.
  • the water detection system can still communicate with itself (and power itself via batteries) to turn off the water supply in the event unwanted water is detected. For example, if a house loses power, a WiFi-only water detection system might be disabled and unable to operate. In some embodiments according to the present disclosure, RF communication and battery power ensures operation of the water detection system even in the event of a power outage.
  • Figs. 1A, 1B, 1C, 1D, and 1E are views of a water detector in accordance with the present disclosure.
  • Water detector 110 includes a catch basin 112 with an aperture 114 located at a lower portion of the catch basin.
  • the catch basin 112 is sloped downwards towards the aperture 114 to help collect even small amounts of unwanted water.
  • a water sensor 116 is located within the aperture 114.
  • the water sensor 116 may comprise two wires or contacts that are exposed but are not connected. When water is present between the two wires or contacts, the electrical conductivity of water decreases the resistance between the two contacts.
  • the water detector 110 may be encased by a housing 118.
  • the housing 118 may be waterproof (e.g., via an enclosure with an IP67 or comparable rating) .
  • the housing 118 may include an external groove 120. As shown in Fig. 1E, the external groove 120 may correspond to the shape of quarter-round trim to allow the water detector 110 to sit flush against a residential home wall, even where that wall has trim installed.
  • the water detector 110 may include additional water sensors apertures 122.
  • one or more additional water sensors may be located within the apertures 122.
  • the water detector 110 can detect the presence of water in two ways: (1) the water sensor l 16 within the aperture 114 located at the lower portion of the catch basin 118 can detect water from drips (e.g., drips from sink traps, toilet water supplies, or kitchen water supplies) and (2) the one or more additional water sensors located within apertures 122 can detect rising water (e.g., a sump drain, a basement location, etc. ) .
  • apertures 122 may be used to attach stabilizers (e.g., rubber feet) or other devices to the bottom of the water detector 110.
  • the water detector 110 may include additional components 117.
  • the water detector 110 may include additional components 117 such as a speaker (e.g., for an alarm) , lights, a display (such as a touchscreen display or LCD) , a temperature sensor, a humidity sensor, a tilt sensor, networking components, batteries, switches, buttons, and connectors, among others.
  • the temperature and humidity sensors may be used to track temperature and humidity levels and alert or notify a user when a change in temperature or humidity occurs.
  • a water detector 110 may include a tilt sensor to alert a user of a change in orientation of the water detector.
  • a water detector 110 may be placed underneath a sink and, during movement of other objects under the sink, may be knocked over or have an unexpected change in orientation.
  • the tilt sensor can be used to identify that unexpected change in orientation and alert the user (e.g., via an audible alarm from the speaker or via the smartphone app or other networking components) to increase the likelihood of correct operation.
  • the tilt sensor may include one or more gyroscopes or accelerometers.
  • an inertial measurement unit, or IMU may be used that incorporates 3 gyroscopes, 3 accelerometers, and/or other sensors (e.g., pressure, magnetic, or proximity sensors) .
  • the water detector 110 may include networking components 119 such that it can communicate with the satellite water detector 130, the water shut-off mechanism 200, the client component 180, or other objects.
  • the networking components may include wireless radio frequency receivers, transmitters, and/or transceivers, wireless networking (e.g., WiFi, Zigbee, Z-wave, mesh networks, Bluetooth, Bluetooth Low Energy) , or other types of wired, wireless, digital, or analog communications components.
  • wireless networking e.g., WiFi, Zigbee, Z-wave, mesh networks, Bluetooth, Bluetooth Low Energy
  • Various forms of modulation e.g., amplitude, frequency, phase shift, frequency shift, direct sequence, frequency hopping, etc.
  • networking topologies e.g., peer to peer, mesh, star, etc.
  • the additional components 117 may include a battery.
  • a battery For example, in some embodiments using a housing 118 that is waterproof, a 3.6 V, 4,000 mAh battery may be used that is rated, under normal operating conditions, to be able to power the water detector 110 for approximately 10 years without needing replacement.
  • the additional components 117 include a reed switch.
  • a reed switch is a magnetic switch that is normally closed and that opens in the presence ora magnetic field of sufficient strength. This is useful for the purposes of the water detector 110 because it provides a convenient way to save battery life during shipping and storage and to power the device on when a user removes it from its box.
  • the water detector 110 with a reed switch may be placed in a package that contains a magnet at a location that corresponds to the location the water detector 110 will be placed during shipping and storage.
  • the reed switch is open and the water detector 110 remains off to conserve battery life.
  • the reed switch returns to its normal closed position and the water detector 110 powers on.
  • the water detector 110 may be configured to automatically pair or synchronize (e.g., via additional components 117 such as the networking components) to a water shut-off mechanism 200, a satellite water detector 130, other water detectors 110, or the client component 180, among others.
  • the water detector 110 may be removed from its packaging and, without any interaction on behalf of the user, begin to synchronize (e.g., via Bluetooth, wireless mesh, personal area, or other networks) to a software application such as a smartphone app.
  • the water detector 110 may include additional components 117 such as additional connectors.
  • additional connectors such as additional connectors.
  • the water detector 110 may be connected to a satellite water detector 130.
  • magnetic connectors may be utilized.
  • Fig. 2 shows a bottom perspective view of the water detector of Figs. 1A-1E and a bottom perspective view of a satellite water detector.
  • the satellite water detector 130 may include apertures 132, a connector 134, a cable 136, and a housing 138.
  • One or more water sensors, such as water sensor 116, may be located within apertures 132.
  • the housing 138 may be a waterproof housing.
  • the satellite water detector 130 may include the same or similar components as the water detector 110. However, in some embodiments, the satellite water detector 130 may be a simpler version of the water detector 110 in order to keep costs lower while allowing a user to have more opportunities to detect the presence of unwanted water, especially where there are multiple areas of concern within close proximity of each other.
  • the satellite water detector 130 may include a water sensor 116 within one of the apertures 132, a housing 138, a cable 136, and a connector 134.
  • the satellite water detector 130 may rely on the water detector 110 for power and communication, thus having no need of networking components or batteries.
  • Fig. 3 shows a top perspective view of the satellite water detector of Fig. 2.
  • the satellite water detector 130 may include a catch basin 142 with an aperture 144 located at a lower portion of the catch basin 142 and a water sensor 116. Similar to the catch basin 112 of water detector 110, the catch basin 142 is configured to funnel water (or liquid) to the water sensor 116 within aperture 144.
  • Fig. 4 shows a perspective and exploded view of a water shut-off mechanism in accordance with the present disclosure.
  • the water shut-off mechanism 200 is designed to fit any standard quarter-turn ball valve and open or close it using an electric motor powered by a battery.
  • the water shut-off mechanism 200 includes a housing 210, position sensors 211, a chassis 212, pipe sleeves 214, pipe clamps 216, a motor 218, networking components 219, a battery 220, a sprocket 222, a transmission 224, a valve nut sleeve 226, a communication link 170, and a client component 180.
  • Fig. 4 also shows a pipe 250, a shut-off valve 252, a shut-off valve handle 254, and a shut-off valve nut 256, which may be pre-existing components.
  • the water shut-off mechanism 200 is adapted to retrofit on existing pipes, such as a pipe 250.
  • various sizes of pipe sleeves 214 may be used in combination with pipe clamps 216.
  • typical sizes of pre-existing pipes may range from 0.5 inches to 2.5 inches, although others can be used as well.
  • the chassis 212 slides into the pipe clamps 216.
  • a valve nut sleeve 226 can be used to help align the transmission 224 with the shut-off valve 252.
  • the transmission 224 couples to the shut-off valve handle 254 on one side and couples to the sprocket 222 on the other side.
  • the sprocket 222 is connected to the motor 218, and the motor is powered by the battery 220.
  • Networking components 219 may be the same or similar to the networking components 119 of the water detector 110.
  • the water shut-off mechanism 200 is communicatively coupled with the water detector 110.
  • water detector 110 detects the presence of water, it sends a signal (e.g., a wireless alert) to the water shut-off mechanism 200 via networking components 119, 219.
  • networking components 119, 219 include radio frequency transmitters, receivers, and/or transceivers.
  • the water shut-off mechanism 200 turns the shut-off valve 252 to the closed position to shut off the water supply by operating the motor 218 to turn the sprocket 222, which turns the transmission 224, which is coupled to and turns the shut-off valve handle 254.
  • the water detector 100 may include position sensors 211.
  • Position sensors 211 may include photoelectric, Hall effect, proximity, or other sensors.
  • position sensors 211 are installed on the housing 210 or the chassis 212 facing downwards.
  • the position sensors 211 may be installed on components other than the housing 210 or chassis 212 (e.g., Hall effect sensors may be installed on the transmission 224) .
  • the water shut-off mechanism 200 will initially open and close the shut-off valve 252 a number of times to record normal position and timing patterns (e.g., to determine the amount of time it normally takes to fully close the valve from the open position) . This may be stored on memory on the water shut-off mechanism 200 (or elsewhere within the water detection system) or may be provided to the client component 180 via the communication link 170. Thus, if the water shut-off mechanism detects an abnormal position or timing in opening or closing the valve, an alert can be generated (e.g., at the client component 180 or an audible alert via the speaker) . In some embodiments, the water shut-off mechanism may implement a pumping protocol, whereby the motor is rapidly engaged and disengaged in a pumping patter, similar to the action used by an impact drive to drive screws past sticking points.
  • Fig. 5A shows a perspective view
  • Fig. 5B shows a side view of a transmission of the water shut-off mechanism of Fig. 4.
  • the transmission 224 includes protrusions 224a, a sprocket opening 223a, and an annular groove 227a.
  • the protrusions 224a are spaced apart to accommodate a variety of shut-off valve handles.
  • the protrusions 224a flare downward to ensure the protrusions 224a can engage the shut-off valve handle 254 even if the transmission 224 cannot be completely lowered around the shut-off valve handle nut 256.
  • the sprocket opening 223a is configured to correspond to the shape of the connecting end 223 of the sprocket 222.
  • the annular groove 227a may connect to one or more detents 227 (or ball bearing or other component) on the sprocket 222 to provide tactile feedback that the sprocket 222 is properly seated within the transmission 224.
  • Fig. 6A shows a perspective view
  • Fig. 6B shows a cross-sectional view along line C-C of a sprocket of the water shut-off mechanism of Fig. 4 including a cut-out portion showing an example skirt interior.
  • the sprocket 222 includes connecting ends 223, a skirt 225, detents 227, and a spring 229.
  • the sprocket 222 is spring loaded, via spring (s) 229, such that the sprocket 222 will float in the housing 210 to allow for a vertical adjustment (e.g., up to 1.5 inches) in order to allow the water shut-off mechanism 200 to engage a variety of sizes of shut-off valves 252.
  • a vertical adjustment e.g., up to 1.5 inches
  • the skirt 225 may include one or more detents 227 (or ball beatings or other components) that lock into an annular groove 227a on the transmission 224. This allows for a user friendly installation by providing tactile feedback to indicate to the user that the sprocket 222 is properly seated inside the transmission 224.
  • Fig. 7 shows examples of the valve nut sleeve of Fig. 4.
  • Valve nut sleeves 226 may be included with the water detection system that accommodate multiple nut sizes to ensure the water shut-offmechanism can retrofit to many differently sized shut-off valves 252.
  • the valve nut sleeves 226 may help align the axis of the motor 218 with the axis of the shut-off valve 252.
  • the valve nut sleeve 226 may slide around the shut-off valve nut 256 and may fit within the transmission 224.
  • the valve nut sleeves 226 may have a bottom portion with a smaller outside diameter than the top portion to avoid interference with shut-off valve handles 254 in smaller valves.
  • Fig. 8A shows a perspective view
  • Fig. 8B shows a side view of a self-centering chuck in accordance with the present disclosure.
  • a self-centering chuck 826 may be used in place of a valve nut sleeve 226, in place of a valve nut sleeve 226, a self-centering chuck 826 may be used in place of a valve nut sleeve 226, a self-centering chuck 826 may be used.
  • Figs. 9A, 9B, and 9C show the self-centering chuck of Fig. 8A with the transmission of Fig. 4 and illustrate how the chuck and transmission can accommodate various ball valve nut sizes.
  • Figs. 9A, 9B, and 9C show a transmission 224, a self- centering chuck 826, and a shut-off valve nut 256.
  • the self-centering chuck 826 is spring-loaded, configured to spin freely within the transmission 224, forms a snug fit around various shut-offvalve nuts 256, and helps to align the axis of the shut-off valve 252 with that of the motor 218.
  • Fig. 10 illustrates a water shut-offmechanism, according to some embodiments.
  • Fig. 10 shows a housing 210 coupled to a transmission 224 via sprocket.
  • the transmission 224 has protrusions 224a that fit over a portion of the water shut-off valve handle 254.
  • Fig. 11 illustrates an exploded view of the components of a transmission, according to some embodiments.
  • Fig. 11 shows a transmission 224 with four components: a housing 224b, a spring (s) 229, a chuck 826, and a skirt 224c with protrusions.
  • the protrusions may be of differing dimensions, shapes, and/or sizes to enable the transmission to grip or fit on various sized water shut-off valve handles 254.
  • the spring (s) 229 may be two co-axial springs that are cascaded inside housing 224b.
  • Fig. 12A shows a top view of the transmission of Fig. 11.
  • Fig. 12B shows a cross-sectional view of the transmission of Fig. 11 fitting to a smaller shut-off valve nut.
  • Fig. 12C shows a cross-sectional view of the transmission of Fig. 11 fitting to a larger shut-off valve nut.
  • the transmission can fit to various water shut-off valve handles (e.g., via differing dimensions on the skirt 224c) and water shut-off valve nuts (e.g., via the spring (s) 229 and the chuck 826) .

Abstract

A water detection and shut-off system is disclosed. The water detection and shut-off system may be battery powered and include a water detector (110), a satellite water detector (130), and a water shut-off mechanism (200). The detectors (110, 130) and shut-off mechanism (200) may be communicatively coupled via one or more communication links (170) to a client component (180) such as a smartphone app. Upon detecting the presence of unwanted water, the shut-off mechanism (200) may operate an electric motor (218) to close a water shut-off valve (252) to prevent flooding or water damage.

Description

WATER DETECTION AND SHUT-OFF SYSTEM AND METHODS BACKGROUND
The present disclosure relates to a water detection and shut-off system and methods. More particularly, the present disclosure relates to a water detector and water shut-off mechanism that are communicatively coupled and work together to detect the presence of water and automatically shut-off a water valve to prevent flooding or water damage.
SUMMARY
According to the present disclosure, a water detection system includes a water detector with one or more water sensors adapted to detect the presence of water and a water shut-off mechanism that retrofits to an existing water pipe and shut-off valve.
In illustrative embodiments, the water detection system includes a water detector with a catch basin with an aperture located at a lower portion of the catch basin. The water sensor is located within the aperture and adapted to detect the presence of water. The water detector also includes a wireless transmitter; and a battery operatively coupled to the water sensor and the wireless transmitter. The water detection system includes a water shut-off mechanism adapted to couple a water pipe with a shut-off valve. The water shut-off mechanism includes a chassis adapted to couple to the water pipe via pipe sleeves and pipe clamps. The water shut-off mechanism includes a motor coupled to the chassis, a battery electrically connected to the motor, a sprocket coupled to the motor, and a transmission coupled to the sprocket with two protrusions adapted to fit around a handle of the shut-off valve. The water shut-off mechanism includes a wireless receiver communicatively coupled to the water detector. When the water sensor detects the presence of water, the water detector sends, via the wireless transmitter, an alert. In response to receiving the alert, the water shut-off mechanism turns the shut-off valve to a closed position.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
BRIEF DESCRIPTIONS OF THE DRAWINGS
The detailed description particularly refers to the accompanying figures in which:
Figs. 1A, 1B, 1C, 1D, and 1E are views of a water detector;
Fig. 1A shows a top perspective view of a water detector;
Fig. 1B shows a top view of a water detector;
Fig. 1C shows a bottom view of a water detector;
Fig. 1D shows a front view of a water detector;
Fig. 1E shows a side view of a water detector;
Fig. 2 shows a bottom perspective view of the water detector of Figs. 1A-1E and a bottom perspective view of a satellite water detector;
Fig. 3 shows a top perspective view of the satellite water detector of Fig. 2;
Fig. 4 shows a perspective and exploded view of a water shut-off mechanism;
Fig. 5A shows a perspective view of a transmission of the water shut-off mechanism of Fig. 4;
Fig. 5B shows a side view of the transmission of Fig. 5A;
Fig. 6A shows a perspective view of a sprocket of the water shut-off mechanism of Fig. 4 including a cut-out portion showing an example skirt interior;
Fig. 6B shows a cross-sectional view of the sprocket along line C-C from Fig. 6A;
Fig. 7 shows examples of the valve nut sleeve of Fig. 4;
Fig. 8A shows a perspective view of a self-centering chuck;
Fig. 8B shows a side view of the self-centering chuck of Fig. 8A;
Figs. 9A, 9B, and 9C show the self-centering chuck of Fig. 8A with the transmission of Fig. 4 and illustrates how the chuck and transmission can accommodate various ball valve nut sizes.
Fig. 10 illustrates a water shut-off mechanism, according to some embodiments.
Fig. 11 illustrates an exploded view of the components of a transmission, according to some embodiments.
Fig. 12A shows a top view of the transmission of Fig. 11.
Fig. 12B shows a cross-sectional view of the transmission of Fig. 11 fitting to a smaller shut-off valve nut.
Fig. 12C shows a cross-sectional view of the transmission of Fig. 11 fitting to a larger shut-off valve nut.
DETAILED DESCRIPTION
A water (or other liquid) detection and shut-off system in accordance with the present disclosure may include a water detector 110, as shown and described in reference to Figs. 1A-1E, a satellite water detector 130, as shown and described in reference to Figs. 2 and 3, and/or a water shut-off mechanism 200 as shown and described in reference to Figs. 4, 5A, 5B, 6A, 6B, 7, 8A, 8B, 9A, 9B, and 9C. The water detector 110, satellite water detector 130, and water shut-off mechanism 200 may be communicatively coupled via one or more communication links 170 to a client component 180 (e.g., a smartphone app, a website, a desktop program, or other interface) .
The client component 180 may include the ability to control or monitor components of the water detection system. For example, the client component may be a smartphone app that allows the user to open or close the water shut-off valve, to control the volume of an audible alarm, to monitor the remaining battery life of the water detector 110, the satellite water detector 130, and/or the water shut-off mechanism 200, or to provide any other electronically controllable functionality.
Regardless of whether the client component 180 is functioning, the water detection system can still communicate with itself (and power itself via batteries) to turn  off the water supply in the event unwanted water is detected. For example, if a house loses power, a WiFi-only water detection system might be disabled and unable to operate. In some embodiments according to the present disclosure, RF communication and battery power ensures operation of the water detection system even in the event of a power outage.
Figs. 1A, 1B, 1C, 1D, and 1E are views of a water detector in accordance with the present disclosure. Water detector 110 includes a catch basin 112 with an aperture 114 located at a lower portion of the catch basin. The catch basin 112 is sloped downwards towards the aperture 114 to help collect even small amounts of unwanted water.
water sensor 116 is located within the aperture 114. In some embodiments, the water sensor 116 may comprise two wires or contacts that are exposed but are not connected. When water is present between the two wires or contacts, the electrical conductivity of water decreases the resistance between the two contacts.
The water detector 110 may be encased by a housing 118. In some embodiments, the housing 118 may be waterproof (e.g., via an enclosure with an IP67 or comparable rating) .
The housing 118 may include an external groove 120. As shown in Fig. 1E, the external groove 120 may correspond to the shape of quarter-round trim to allow the water detector 110 to sit flush against a residential home wall, even where that wall has trim installed.
As shown in Fig. 1C, the water detector 110 may include additional water sensors apertures 122. In some embodiments, one or more additional water sensors may be located within the apertures 122. In this way, the water detector 110 can detect the presence of water in two ways: (1) the water sensor l 16 within the aperture 114 located at the lower portion of the catch basin 118 can detect water from drips (e.g., drips from sink traps, toilet water supplies, or kitchen water supplies) and (2) the one or more additional water sensors located within apertures 122 can detect rising water (e.g., a sump drain, a  basement location, etc. ) . In some embodiments, apertures 122 may be used to attach stabilizers (e.g., rubber feet) or other devices to the bottom of the water detector 110.
The water detector 110 may include additional components 117. For example, the water detector 110 may include additional components 117 such as a speaker (e.g., for an alarm) , lights, a display (such as a touchscreen display or LCD) , a temperature sensor, a humidity sensor, a tilt sensor, networking components, batteries, switches, buttons, and connectors, among others.
The temperature and humidity sensors may be used to track temperature and humidity levels and alert or notify a user when a change in temperature or humidity occurs. A water detector 110 may include a tilt sensor to alert a user of a change in orientation of the water detector. For example, a water detector 110 may be placed underneath a sink and, during movement of other objects under the sink, may be knocked over or have an unexpected change in orientation. The tilt sensor can be used to identify that unexpected change in orientation and alert the user (e.g., via an audible alarm from the speaker or via the smartphone app or other networking components) to increase the likelihood of correct operation. The tilt sensor may include one or more gyroscopes or accelerometers. For example, an inertial measurement unit, or IMU, may be used that incorporates 3 gyroscopes, 3 accelerometers, and/or other sensors (e.g., pressure, magnetic, or proximity sensors) .
The water detector 110 may include networking components 119 such that it can communicate with the satellite water detector 130, the water shut-off mechanism 200, the client component 180, or other objects. For example, the networking components may include wireless radio frequency receivers, transmitters, and/or transceivers, wireless networking (e.g., WiFi, Zigbee, Z-wave, mesh networks, Bluetooth, Bluetooth Low Energy) , or other types of wired, wireless, digital, or analog communications components. Various forms of modulation (e.g., amplitude, frequency, phase shift, frequency shift, direct sequence, frequency hopping, etc. ) and networking topologies (e.g., peer to peer, mesh, star, etc. ) may be used as well.
The additional components 117 may include a battery. For example, in some embodiments using a housing 118 that is waterproof, a 3.6 V, 4,000 mAh battery may be used that is rated, under normal operating conditions, to be able to power the water detector 110 for approximately 10 years without needing replacement.
In some embodiments, the additional components 117 include a reed switch. A reed switch is a magnetic switch that is normally closed and that opens in the presence ora magnetic field of sufficient strength. This is useful for the purposes of the water detector 110 because it provides a convenient way to save battery life during shipping and storage and to power the device on when a user removes it from its box. For example, the water detector 110 with a reed switch may be placed in a package that contains a magnet at a location that corresponds to the location the water detector 110 will be placed during shipping and storage. Thus, while the water detector 110 is in its packaging for shipping and storage, the reed switch is open and the water detector 110 remains off to conserve battery life. Then, when the water detector 110 is removed from its packaging and the accompanying magnetic field, the reed switch returns to its normal closed position and the water detector 110 powers on.
In some embodiments, the water detector 110 may be configured to automatically pair or synchronize (e.g., via additional components 117 such as the networking components) to a water shut-off mechanism 200, a satellite water detector 130, other water detectors 110, or the client component 180, among others. For example, the water detector 110 may be removed from its packaging and, without any interaction on behalf of the user, begin to synchronize (e.g., via Bluetooth, wireless mesh, personal area, or other networks) to a software application such as a smartphone app.
In some embodiments, the water detector 110 may include additional components 117 such as additional connectors. For example, as discussed further in reference to Figs. 2 and 3 herein, the water detector 110 may be connected to a satellite water detector 130. To maintain substantially waterproof housings for both the water detector 110 and the satellite water detector 130, magnetic connectors may be utilized.
Fig. 2 shows a bottom perspective view of the water detector of Figs. 1A-1E and a bottom perspective view of a satellite water detector. The satellite water detector 130 may include apertures 132, a connector 134, a cable 136, and a housing 138. One or more water sensors, such as water sensor 116, may be located within apertures 132. The housing 138 may be a waterproof housing.
The satellite water detector 130 may include the same or similar components as the water detector 110. However, in some embodiments, the satellite water detector 130 may be a simpler version of the water detector 110 in order to keep costs lower while allowing a user to have more opportunities to detect the presence of unwanted water, especially where there are multiple areas of concern within close proximity of each other. For example, the satellite water detector 130 may include a water sensor 116 within one of the apertures 132, a housing 138, a cable 136, and a connector 134. The satellite water detector 130 may rely on the water detector 110 for power and communication, thus having no need of networking components or batteries.
Fig. 3 shows a top perspective view of the satellite water detector of Fig. 2. The satellite water detector 130 may include a catch basin 142 with an aperture 144 located at a lower portion of the catch basin 142 and a water sensor 116. Similar to the catch basin 112 of water detector 110, the catch basin 142 is configured to funnel water (or liquid) to the water sensor 116 within aperture 144.
Fig. 4 shows a perspective and exploded view of a water shut-off mechanism in accordance with the present disclosure. The water shut-off mechanism 200 is designed to fit any standard quarter-turn ball valve and open or close it using an electric motor powered by a battery.
The water shut-off mechanism 200 includes a housing 210, position sensors 211, a chassis 212, pipe sleeves 214, pipe clamps 216, a motor 218, networking components 219, a battery 220, a sprocket 222, a transmission 224, a valve nut sleeve 226, a communication link 170, and a client component 180. Fig. 4 also shows a pipe 250, a shut-off valve 252, a shut-off valve handle 254, and a shut-off valve nut 256, which may be pre-existing components.
The water shut-off mechanism 200 is adapted to retrofit on existing pipes, such as a pipe 250. To install the water shut-off mechanism 200, various sizes of pipe sleeves 214 may be used in combination with pipe clamps 216. For example, typical sizes of pre-existing pipes may range from 0.5 inches to 2.5 inches, although others can be used as well. The chassis 212 slides into the pipe clamps 216. A valve nut sleeve 226 can be used to help align the transmission 224 with the shut-off valve 252. The transmission 224 couples to the shut-off valve handle 254 on one side and couples to the sprocket 222 on the other side. The sprocket 222 is connected to the motor 218, and the motor is powered by the battery 220. Networking components 219 may be the same or similar to the networking components 119 of the water detector 110.
In operation, the water shut-off mechanism 200 is communicatively coupled with the water detector 110. When water detector 110 detects the presence of water, it sends a signal (e.g., a wireless alert) to the water shut-off mechanism 200 via  networking components  119, 219. In some embodiments,  networking components  119, 219 include radio frequency transmitters, receivers, and/or transceivers. Upon receiving the signal, the water shut-off mechanism 200 turns the shut-off valve 252 to the closed position to shut off the water supply by operating the motor 218 to turn the sprocket 222, which turns the transmission 224, which is coupled to and turns the shut-off valve handle 254.
The water detector 100 may include position sensors 211. Position sensors 211 may include photoelectric, Hall effect, proximity, or other sensors. In some embodiments, position sensors 211 are installed on the housing 210 or the chassis 212 facing downwards. In other embodiments, the position sensors 211 may be installed on components other than the housing 210 or chassis 212 (e.g., Hall effect sensors may be installed on the transmission 224) .
In some embodiments, the water shut-off mechanism 200 will initially open and close the shut-off valve 252 a number of times to record normal position and timing patterns (e.g., to determine the amount of time it normally takes to fully close the valve from the open position) . This may be stored on memory on the water shut-off  mechanism 200 (or elsewhere within the water detection system) or may be provided to the client component 180 via the communication link 170. Thus, if the water shut-off mechanism detects an abnormal position or timing in opening or closing the valve, an alert can be generated (e.g., at the client component 180 or an audible alert via the speaker) . In some embodiments, the water shut-off mechanism may implement a pumping protocol, whereby the motor is rapidly engaged and disengaged in a pumping patter, similar to the action used by an impact drive to drive screws past sticking points.
Fig. 5A shows a perspective view and Fig. 5B shows a side view of a transmission of the water shut-off mechanism of Fig. 4. The transmission 224 includes protrusions 224a, a sprocket opening 223a, and an annular groove 227a. In some embodiments, such as the embodiment shown in Fig. 5B, the protrusions 224a are spaced apart to accommodate a variety of shut-off valve handles. Likewise, in some embodiments where the upward angle of the valve handle may interfere with proper placement of the transmission 224 (such as with smaller ball valves) , the protrusions 224a flare downward to ensure the protrusions 224a can engage the shut-off valve handle 254 even if the transmission 224 cannot be completely lowered around the shut-off valve handle nut 256. The sprocket opening 223a is configured to correspond to the shape of the connecting end 223 of the sprocket 222. The annular groove 227a may connect to one or more detents 227 (or ball bearing or other component) on the sprocket 222 to provide tactile feedback that the sprocket 222 is properly seated within the transmission 224.
Fig. 6A shows a perspective view and Fig. 6B shows a cross-sectional view along line C-C of a sprocket of the water shut-off mechanism of Fig. 4 including a cut-out portion showing an example skirt interior. The sprocket 222 includes connecting ends 223, a skirt 225, detents 227, and a spring 229.
In some embodiments, the sprocket 222 is spring loaded, via spring (s) 229, such that the sprocket 222 will float in the housing 210 to allow for a vertical adjustment (e.g., up to 1.5 inches) in order to allow the water shut-off mechanism 200 to engage a variety of sizes of shut-off valves 252.
The skirt 225 may include one or more detents 227 (or ball beatings or other components) that lock into an annular groove 227a on the transmission 224. This allows for a user friendly installation by providing tactile feedback to indicate to the user that the sprocket 222 is properly seated inside the transmission 224.
Fig. 7 shows examples of the valve nut sleeve of Fig. 4. Valve nut sleeves 226 may be included with the water detection system that accommodate multiple nut sizes to ensure the water shut-offmechanism can retrofit to many differently sized shut-off valves 252. The valve nut sleeves 226 may help align the axis of the motor 218 with the axis of the shut-off valve 252. The valve nut sleeve 226 may slide around the shut-off valve nut 256 and may fit within the transmission 224. As shown in Fig. 7, the valve nut sleeves 226 may have a bottom portion with a smaller outside diameter than the top portion to avoid interference with shut-off valve handles 254 in smaller valves.
Fig. 8A shows a perspective view and Fig. 8B shows a side view of a self-centering chuck in accordance with the present disclosure. In some embodiments, in place of a valve nut sleeve 226, a self-centering chuck 826 may be used.
Figs. 9A, 9B, and 9C show the self-centering chuck of Fig. 8A with the transmission of Fig. 4 and illustrate how the chuck and transmission can accommodate various ball valve nut sizes. Figs. 9A, 9B, and 9C show a transmission 224, a self- centering chuck 826, and a shut-off valve nut 256. In operation, the self-centering chuck 826 is spring-loaded, configured to spin freely within the transmission 224, forms a snug fit around various shut-offvalve nuts 256, and helps to align the axis of the shut-off valve 252 with that of the motor 218.
Fig. 10 illustrates a water shut-offmechanism, according to some embodiments. Fig. 10 shows a housing 210 coupled to a transmission 224 via sprocket. The transmission 224 has protrusions 224a that fit over a portion of the water shut-off valve handle 254.
Fig. 11 illustrates an exploded view of the components of a transmission, according to some embodiments. Fig. 11 shows a transmission 224 with four components: a housing 224b, a spring (s) 229, a chuck 826, and a skirt 224c with  protrusions. The protrusions may be of differing dimensions, shapes, and/or sizes to enable the transmission to grip or fit on various sized water shut-off valve handles 254. In some embodiments, as illustrated in Fig. 11, the spring (s) 229 may be two co-axial springs that are cascaded inside housing 224b.
Fig. 12A shows a top view of the transmission of Fig. 11. Fig. 12B shows a cross-sectional view of the transmission of Fig. 11 fitting to a smaller shut-off valve nut. Fig. 12C shows a cross-sectional view of the transmission of Fig. 11 fitting to a larger shut-off valve nut. As shown in Figs. 12A-12C, the transmission can fit to various water shut-off valve handles (e.g., via differing dimensions on the skirt 224c) and water shut-off valve nuts (e.g., via the spring (s) 229 and the chuck 826) .
Those of skill in the art will appreciate that the herein described systems and methods may be subject to various modifications and alternative constructions. There is no intention to limit the scope of the invention to the specific constructions described herein. Rather, the herein described systems and methods are intended to cover all modifications, alternative constructions, and equivalents falling within the scope and spirit of the invention and its equivalents.

Claims (20)

  1. A water detection system comprising:
    a water detector comprising:
    a catch basin with an aperture located at a lower portion of the catch basin;
    a water sensor located within the aperture and adapted to detect the presence of water;
    a wireless transmitter; and
    a battery operatively coupled to the water sensor and the wireless transmitter; and
    a water shut-off mechanism adapted to couple a water pipe with a shut-off valve comprising:
    a chassis adapted to couple to the water pipe via at least one pipe sleeve and at least one pipe clamp;
    a motor coupled to the chassis;
    a battery electrically connected to the motor;
    a sprocket coupled to the motor;
    a transmission coupled to the sprocket and comprising two protrusions adapted to fit around a handle of the shut-off valve; and
    a wireless receiver communicatively coupled to the water detector;
    wherein the water detector sends, via the wireless transmitter, an alert when the water sensor detects the presence of water; and
    wherein, in response to receiving the alert, the water shut-off mechanism turns the shut-off valve to a closed position.
  2. The water detection system of claim 1, wherein the water sensor comprises two wire leads that extend into the aperture and wherein water is detected when water is present in the aperture such that an electrical connection is established between the two wire leads.
  3. The water detection system of claim 1, wherein the water detector further comprises a temperature sensor.
  4. The water detection system of claim 1, wherein the water detector further comprises a tilt sensor.
  5. The water detection system of claim 4, wherein the tilt sensor is a gyroscope.
  6. The water detection system of claim 4, wherein the tilt sensor is an inertial measurement unit.
  7. The water detection system of claim 4, wherein the water detector comprises a substantially waterproof housing.
  8. The water detection system of claim 1, wherein the water sensor further comprises a housing with an external groove that corresponds to the shape of quarter-round trim.
  9. The water detection system of claim 1, wherein the water sensor further comprises a reed switch.
  10. The water detection system of claim 1, wherein the two protrusions of the transmission flare downward.
  11. The water detection system of claim 1, wherein the transmission further comprises an annular groove and wherein the sprocket further comprises a skirt with at least one ball bearing that is adapted to fit within the annular groove.
  12. The water detection system of claim 1, wherein the water shut-off mechanism further comprises a sleeve adapted to slide over a shut-off valve nut.
  13. The water detection system of claim 1, wherein the water detector further comprises a speaker, and wherein the alert further comprises an audible alert from the speaker.
  14. The water detection system of claim 1, wherein the wireless transmitter is a radio frequency transmitter and the wireless receiver is a radio frequency receiver.
  15. The water detection system of claim 1, wherein the water detector further comprises:
    a second aperture located along a bottom portion of the water detector; and
    a second water sensor located along a bottom portion of the water detector.
  16. The water detection system of claim 15, wherein the second water sensor comprises two wire leads that extend into the second aperture and wherein water is detected when water is present in the aperture such that an electrical connection is established between the two wire leads.
  17. The water detection system of claim 1 further comprising:
    a second water detector comprising:
    a water sensor adapted to detect the presence of water; and
    an electrical connector adapted to connect to a corresponding electrical connector on the water detector.
  18. The water detection system of claim 17, wherein the electrical connector and the corresponding electrical connector are magnetic connectors.
  19. The water detection system of claim 1, wherein the water shut-off mechanism further comprises a position sensor adapted to monitor a position of the shut-off valve.
  20. The water detection system of claim 1, further comprising a client component communicatively coupled to the water detector and the water shut-off mechanism, wherein the water shut-off mechanism is controllable via the client component.
PCT/CN2016/103377 2016-10-26 2016-10-26 Water detection and shut-off system and methods WO2018076203A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/103377 WO2018076203A1 (en) 2016-10-26 2016-10-26 Water detection and shut-off system and methods
US15/334,934 US10161115B2 (en) 2016-10-26 2016-10-26 Water detection and shut-off system and methods
US16/131,559 US20190017252A1 (en) 2016-10-26 2018-09-14 Water detection and shut-off system and methods
US16/157,746 US10584467B2 (en) 2016-10-26 2018-10-11 Water detection and shut-off system and methods
US16/162,071 US20190048564A1 (en) 2016-10-26 2018-10-16 Water detection and shut-off system and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103377 WO2018076203A1 (en) 2016-10-26 2016-10-26 Water detection and shut-off system and methods

Publications (1)

Publication Number Publication Date
WO2018076203A1 true WO2018076203A1 (en) 2018-05-03

Family

ID=61970958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103377 WO2018076203A1 (en) 2016-10-26 2016-10-26 Water detection and shut-off system and methods

Country Status (2)

Country Link
US (4) US10161115B2 (en)
WO (1) WO2018076203A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047761B1 (en) 2018-02-08 2021-06-29 Moen Incorporated Integrated leak detection
US11519814B2 (en) 2019-02-15 2022-12-06 Fb Global Plumbing Group Llc Fluid usage monitoring and control system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105705B1 (en) * 2017-03-31 2021-08-31 Leaksentinel Inc. Non-invasive, independently powered leak detector and valve shut-off apparatus
GB2574881B (en) * 2018-06-22 2021-07-07 Creative Ec Ltd Control valve
US11112132B2 (en) 2018-08-22 2021-09-07 Bao Tran Systems and methods for monitoring water in a building
CN110107723B (en) * 2019-06-12 2020-09-04 施镇乾 Valve manipulator
US11821537B2 (en) 2019-06-12 2023-11-21 Chun Kuen Sze Electro-mechanical valve servo apparatus for tool-free retrofit installation
JP2022543822A (en) * 2019-08-06 2022-10-14 オービタル、システムズ、アクチボラグ leak detector system
US20210215567A1 (en) * 2020-01-13 2021-07-15 Ronald Koo Water leak detection system integrated with indoor map
CN111872969B (en) * 2020-08-05 2021-04-13 诸暨市源浦机械科技有限公司 Mechanical arm device capable of automatically closing valve of fire-catching gas tank and cooling
US20220341804A1 (en) * 2021-04-26 2022-10-27 Therm-O-Disc Incorporated Sensor assembly for refrigerant leak detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648503A (en) * 2005-02-01 2005-08-03 李亮 Radio remote control water sensing automatic closing water-proof valve
CN201202136Y (en) * 2008-05-29 2009-03-04 丁文杰 Household waterpipe explosion and overflow automatic shutdown system
US20110180161A1 (en) * 2010-01-27 2011-07-28 William Bret Boren Distributed control system for a vacuum sewer system
CN202493765U (en) * 2011-12-08 2012-10-17 3M中国有限公司 Wireless water leakage monitoring system
CN103195965A (en) * 2012-01-04 2013-07-10 西安德力工业公司宏大阀门厂 Electric-hydraulic control valve for Internet of Things
CN204029141U (en) * 2014-08-21 2014-12-17 台州通禾流体控制设备有限公司 A kind of wireless water logging Inductance valve
CN205980007U (en) * 2016-08-26 2017-02-22 刘国祥 Warm up leak protection water system

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705063A (en) * 1986-10-30 1987-11-10 The Fulflo Specialties Co., Inc. Motor operated valve assembly
US5058421A (en) * 1990-06-08 1991-10-22 Nec Electronics Inc. Water leak and water level detector
US5334973A (en) * 1992-02-04 1994-08-02 Furr Mark A Leak detection and shut-off apparatus
DE4330819A1 (en) * 1993-09-13 1995-03-16 Richter Chemie Technik Gmbh Connection between a rotary or swivel valve and a rotary actuator
US5546009A (en) * 1994-10-12 1996-08-13 Raphael; Ian P. Detector system using extremely low power to sense the presence or absence of an inert or hazardous fuild
US6025788A (en) * 1995-11-24 2000-02-15 First Smart Sensor Corp. Integrated local or remote control liquid gas leak detection and shut-off system
US5967171A (en) * 1996-08-22 1999-10-19 Dwyer, Jr.; George W. Shut-off system for preventing water damage
US6065735A (en) * 1997-09-04 2000-05-23 Clark; Garry E. Electric valve universal retrofit configuration having misalignment correction
US6186162B1 (en) * 1999-07-06 2001-02-13 Michael J. Purvis Leak detection and shut-off apparatus
CA2292901C (en) * 1999-12-16 2006-04-25 Michael R. G. Freill Oil or water leak detector/alarm system
US6950032B1 (en) * 2000-04-10 2005-09-27 Dry Systems, Inc. Apparatus and method for protection against appliance leaking
US6662821B2 (en) * 2001-01-23 2003-12-16 Rapid Emergency Shutoff Systems, Inc. System and method for closing an existing valve in response to a detected leak
KR100508232B1 (en) * 2001-01-26 2005-08-17 가부시키가이샤 야마다케 Actuator for driving rotary valve and valve device with the actuator
US6530557B1 (en) * 2001-04-11 2003-03-11 Field Controls, L.L.C. Water sentry drive unit
US6489895B1 (en) * 2001-10-15 2002-12-03 Steven P. Apelman Fail-safe leak detection and flood prevention apparatus
US6799607B1 (en) * 2003-06-18 2004-10-05 Pbm, Inc. Sanitary conduit support systems and methods
USD511703S1 (en) * 2004-04-15 2005-11-22 Moyer Daryl R Battery-powered leak detection device with floor-mounted water sensor and automatic shut-off valve
US20050236594A1 (en) * 2004-04-23 2005-10-27 Lilly David J Wireless remotely-operable utility flow-control valve and method
US7218237B2 (en) * 2004-05-27 2007-05-15 Lawrence Kates Method and apparatus for detecting water leaks
US7066192B1 (en) * 2004-08-04 2006-06-27 Brian Delaney Valve shut off device
US20060124171A1 (en) * 2004-12-14 2006-06-15 Ghazarian John D Secure wireless leak detection system
US7948388B2 (en) * 2005-07-20 2011-05-24 Mcginty Joseph Ralph Water detection unit and system
US9016662B2 (en) * 2006-08-29 2015-04-28 Custom Controls, Llc Efficient manual to automatic valve conversion device
US8256742B2 (en) * 2006-08-29 2012-09-04 Custom Controls Llc Manual to automatic valve conversion device
US20080055112A1 (en) * 2006-08-31 2008-03-06 Mcginty Joseph Ralph Water detection unit and system
US9759345B2 (en) * 2006-12-19 2017-09-12 Lalit Savla Systems, methods, and apparatus for leak detection and prevention
US7753071B2 (en) * 2007-01-11 2010-07-13 Altos Limited LC Leak detector pad
US7671754B2 (en) * 2007-11-30 2010-03-02 Amtrol Licensing Inc. Sensor for detecting leakage of a liquid
US20110048555A1 (en) * 2009-09-03 2011-03-03 Sam Malouf Sink alert water leak detector
US8789807B2 (en) * 2011-02-09 2014-07-29 Kmc Controls, Inc. Quick disconnect actuator mounting
US20130248023A1 (en) * 2012-03-22 2013-09-26 William Arnold Estrada, JR. Remotely Activated Fluid Control System
US8590559B1 (en) * 2012-05-23 2013-11-26 Ezequiel Gutierrez Leak detector assembly
US20140264111A1 (en) * 2013-03-15 2014-09-18 Designport, Inc. Automatic valve actuator systems
US9671031B2 (en) * 2015-11-01 2017-06-06 Mordechai Ben Old Wireless electric valve for automatic closing and opening of main fluid pipe
CN108431475B (en) * 2015-12-22 2019-12-20 韦克斯曼消费产品集团有限公司 Water valve closing system
US20170357275A1 (en) * 2016-06-08 2017-12-14 Joshua Mark Smith Wireless system for protecting buildings against water leaks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648503A (en) * 2005-02-01 2005-08-03 李亮 Radio remote control water sensing automatic closing water-proof valve
CN201202136Y (en) * 2008-05-29 2009-03-04 丁文杰 Household waterpipe explosion and overflow automatic shutdown system
US20110180161A1 (en) * 2010-01-27 2011-07-28 William Bret Boren Distributed control system for a vacuum sewer system
CN202493765U (en) * 2011-12-08 2012-10-17 3M中国有限公司 Wireless water leakage monitoring system
CN103195965A (en) * 2012-01-04 2013-07-10 西安德力工业公司宏大阀门厂 Electric-hydraulic control valve for Internet of Things
CN204029141U (en) * 2014-08-21 2014-12-17 台州通禾流体控制设备有限公司 A kind of wireless water logging Inductance valve
CN205980007U (en) * 2016-08-26 2017-02-22 刘国祥 Warm up leak protection water system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047761B1 (en) 2018-02-08 2021-06-29 Moen Incorporated Integrated leak detection
US11519814B2 (en) 2019-02-15 2022-12-06 Fb Global Plumbing Group Llc Fluid usage monitoring and control system

Also Published As

Publication number Publication date
US20190017252A1 (en) 2019-01-17
US10161115B2 (en) 2018-12-25
US20190040610A1 (en) 2019-02-07
US10584467B2 (en) 2020-03-10
US20180112376A1 (en) 2018-04-26
US20190048564A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US10584467B2 (en) Water detection and shut-off system and methods
US20200211797A1 (en) Remote controlled light switch cover
US9759345B2 (en) Systems, methods, and apparatus for leak detection and prevention
US20210363734A1 (en) Shutoff system for water valve
US9245438B2 (en) Water leak detector for a pipe having a retention reservoir
US20210124327A1 (en) Electrical safety device and system
US20180163730A1 (en) Pump communication module, pump system using same and methods related thereto
US20200003217A1 (en) Pump status display module, pump system using same and methods relating thereto
US20190301648A1 (en) Electronic quick connect and quick disconnect system
US10461952B2 (en) Scalable system and methods for monitoring and controlling a sanitary facility using distributed connected devices
JP2006520266A (en) Switching mechanism of batch processing type garbage disposer
KR102065169B1 (en) System and method for leak detection
GB2519643A (en) Flow monitor
US20160197467A1 (en) Power control unit with remote sensor
KR20150136390A (en) Safety receptacle
JP6554762B2 (en) Measurement communication system
EP3400604A1 (en) Remote controlled switch cover
US20140201896A1 (en) Toilet overflow prevention device
KR200460705Y1 (en) Temper switch
CA3081617A1 (en) Connector for a water system
JP5247747B2 (en) Outlet with blocking function
KR200475286Y1 (en) Temper switch
KR101582427B1 (en) A System Box Cover
WO2024028738A1 (en) Shower drain devices, shower drain systems, and methods of manufacturing and using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919888

Country of ref document: EP

Kind code of ref document: A1