WO2018074628A1 - 건설기계용 로드 센싱 유량 제어 시스템 - Google Patents

건설기계용 로드 센싱 유량 제어 시스템 Download PDF

Info

Publication number
WO2018074628A1
WO2018074628A1 PCT/KR2016/011808 KR2016011808W WO2018074628A1 WO 2018074628 A1 WO2018074628 A1 WO 2018074628A1 KR 2016011808 W KR2016011808 W KR 2016011808W WO 2018074628 A1 WO2018074628 A1 WO 2018074628A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pilot signal
spool valve
signal pressure
electromagnetic proportional
Prior art date
Application number
PCT/KR2016/011808
Other languages
English (en)
French (fr)
Inventor
신흥주
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
신흥주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 신흥주 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2016/011808 priority Critical patent/WO2018074628A1/ko
Publication of WO2018074628A1 publication Critical patent/WO2018074628A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the present invention relates to a load sensing flow rate control system for a construction machine, and more particularly, a load sensing flow rate for a construction machine that enables improved operability of a control lever for controlling the speed of a work machine mounted on an excavator. It relates to a control system.
  • the flow rate of the maximum dischargeable hydraulic fluid is q max ⁇ N. Since q max is fixed, when the input rotation speed of the prime mover is lowered, the flow rate of the maximum dischargeable hydraulic fluid is also reduced. In this case, for example, even if the pilot signal pressure increases due to an increase in the amount of operation of the operation lever for controlling the speed of the work device mounted on the excavator, a section in which the flow rate of the actual hydraulic fluid no longer increases occurs. For this reason, the operation control section of the operation lever is reduced.
  • the present invention has been made to solve the problems of the prior art as described above, an object of the present invention to improve the operability of the control lever for controlling the speed of the work machine mounted on a construction machine, such as an excavator It is to provide a load sensing flow control system for construction machinery.
  • the present invention is a hydraulic actuator connected to the hydraulic pump driven by the prime mover for generating mechanical rotation, discharged from the hydraulic pump supplied by the hydraulic oil driven back to the hydraulic tank;
  • a spool valve installed on the hydraulic pump and the hydraulic actuator and a moving path of the hydraulic oil moving between the hydraulic actuator and the hydraulic tank, for controlling the movement of the hydraulic oil;
  • An electromagnetic proportional pressure reducing valve for applying a pilot signal pressure to the spool valve according to an operation of an operation lever;
  • a control unit for operating the electromagnetic proportional pressure reducing valve, wherein the control unit is an effective pilot signal for opening the spool valve to the maximum when the hydraulic pump outputs a maximum flow rate of hydraulic oil that can be discharged according to the input rotational speed of the prime mover.
  • Determining the pressure detecting an operation amount of the operation lever, and controlling the electromagnetic proportional pressure reducing valve so that the pilot signal pressure is applied to the spool valve proportionally to the effective pilot signal pressure according to the operation amount of the operation lever.
  • one side and the other side of the spool valve may be formed with a port to which the pilot signal pressure is applied.
  • the electromagnetic proportional pressure reducing valve may include a first electromagnetic proportional pressure reducing valve and a second electromagnetic proportional pressure reducing valve connected to each of the ports formed at one side and the other side of the spool valve.
  • the hydraulic actuator may be a hydraulic cylinder for a work device or a hydraulic cylinder for an option device.
  • the present invention it is possible to constantly increase the operation control section of the operation lever for controlling the speed of a work machine mounted on a construction machine, such as an excavator, thereby enabling precise operation of the operation lever.
  • the operability of the operation lever can be improved.
  • FIG. 1 is a block diagram showing a load sensing flow control system for a construction machine according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a spool passage flow rate compared to the pilot signal pressure according to a comparative embodiment of the present invention.
  • FIG 3 is a graph showing the pilot signal pressure versus the manipulated variable according to a comparative embodiment of the present invention.
  • Figure 4 is a graph showing the flow rate through the spool compared to the manipulated variable according to a comparative embodiment of the present invention.
  • FIG. 5 is a graph showing a pilot signal pressure versus a manipulated variable according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the flow rate of the spool passage compared to the manipulated variable according to the embodiment of the present invention.
  • the load sensing flow control system 100 for a construction machine includes a hydraulic actuator 110, a spool valve 120, an electromagnetic proportional pressure reducing valve, and a controller 140. Is formed.
  • the hydraulic actuator 110 is connected with a hydraulic pump 112 driven by the prime mover 111 to produce a mechanical rotation.
  • the hydraulic actuator 110 is discharged from the hydraulic pump 112 and supplied by the hydraulic oil is returned to the hydraulic tank 113 is driven.
  • the hydraulic actuator 110 may be, for example, a hydraulic cylinder for a work device consisting of a boom, an arm, a bucket of an excavator.
  • the hydraulic actuator 110 may be, for example, a hydraulic cylinder for an optional device such as a hammer, a share, a rotator and the like.
  • the hydraulic actuator 110 may be a swing motor for turning the upper swing body mounted on the lower running body of the excavator in the forward or reverse direction.
  • the maximum flow rate of the hydraulic oil capable of discharging the hydraulic pump 112 is q max ⁇ N.
  • q max is the maximum volume of the hydraulic pump 112
  • N is the input rotational speed of the prime mover (111).
  • the operability of the operation lever 131 is improved by compensating the input rotational speed of the prime mover 111 to reflect the pilot signal pressure for switching the spool valve 120, which will be described in more detail below. Let's do it.
  • the spool valve 120 is installed on the hydraulic pump 112 and the hydraulic actuator 110 and on the movement path of the hydraulic oil moving between the hydraulic actuator 110 and the hydraulic tank 113 to control the movement of the hydraulic oil. That is, the spool valve 120 is switched by the pilot signal pressure applied through the operation of the operation lever 131 to enable the supply of hydraulic oil from the hydraulic pump 112 to the hydraulic actuator 110, and the hydraulic actuator 110. It is possible to return the hydraulic oil to the hydraulic tank (113). As a result, when the hydraulic actuator 110 is a boom cylinder, the piston 134 of the boom cylinder is raised or lowered, thereby operating the boom in the up-down form.
  • the first port a and the second port b are formed at one side and the other side in the longitudinal direction of the spool valve 120, respectively.
  • the operation lever 131 is operated to apply a pilot signal pressure to the first port a of the spool valve 120.
  • the stroke of the spool valve 120 is changed according to the applied pilot signal pressure so that the spool valve 120 moves to the left side (based on the drawing).
  • the hydraulic oil discharged from the hydraulic pump 112 is supplied to the large chamber 132 of the hydraulic actuator 110 formed of the boom cylinder via the spool valve 120.
  • the piston 134 is raised.
  • the hydraulic oil filled in the small chamber 133 of the hydraulic actuator 110 is pressurized as the piston 134 is raised, discharged from the small chamber 133, and then the hydraulic tank 113 via the spool valve 120.
  • the hydraulic oil filled in the small chamber 133 of the hydraulic actuator 110 is pressurized as the piston 134 is raised, discharged from the small chamber 133, and then the hydraulic tank 113 via the s
  • the flow rate of the working oil is controlled by a load sensing method.
  • the load sensing method since the pressure difference between the both ends of the spool valve 120 is kept constant, the flow rate of the hydraulic oil is applied to the opening area of the spool valve 120 as long as the torque limit that the hydraulic pump 112 can produce is not applied. Will be proportional. That is, the flow rate of the hydraulic oil is determined in proportion to the opening area of the spool valve 120. At this time, since the opening area of the spool valve 120 is proportional to the pilot signal pressure applied, as a result, the flow rate of the hydraulic oil is proportional to the pilot signal pressure applied.
  • the electromagnetic proportional pressure reducing valve applies a pilot signal pressure to the spool valve 120 according to the operation of the operation lever 131.
  • the electromagnetic proportional pressure reducing valve according to the embodiment of the present invention includes a first electromagnetic proportional pressure reducing valve 135 and a second electromagnetic proportional pressure reducing valve 136.
  • the first electromagnetic proportional pressure reducing valve 135 is connected to the first port a of the spool valve 120 to apply a pilot signal pressure to the first port a of the spool valve 120.
  • the second electromagnetic proportional pressure reducing valve 136 is connected to the second port b of the spool valve 120 to apply a pilot signal pressure to the second port b of the spool valve 120.
  • the controller 140 operates the first electromagnetic proportional pressure reducing valve 135 and the second electromagnetic proportional pressure reducing valve 136.
  • the control unit 140 is connected to the first electromagnetic proportional pressure reducing valve 135 when the operation lever 131 is operated to raise the piston 134.
  • the electrical control signal may be output to control the pilot signal pressure to be applied to the first port a of the spool valve 120.
  • the controller 140 outputs an electrical control signal to the second electromagnetic proportional pressure reducing valve 136, thereby causing the second of the spool valve 120 to be lowered.
  • the pilot signal pressure may be applied to the port (b).
  • the control unit 140 in order to improve the operability of the operation lever 131, first, the hydraulic pump 112 is capable of maximum discharge according to the input rotational speed (N) of the prime mover 111 When the flow rate of the working oil q max x N is determined, the effective pilot signal pressure for opening the spool valve 120 to the maximum is determined. Then, the control unit 140 detects an operation amount of the operation lever 131. Finally, the controller 140 controls the first electromagnetic proportional pressure reducing valve 135 or the second electron so that the pilot signal pressure is applied to the spool valve 120 in proportion to the effective pilot signal pressure according to the operation amount of the operation lever 131. An electrical control signal is output to the proportional pressure reducing valve 136. Through this, the control section of the operation lever 131 for controlling the speed of the work device can be increased regularly, thereby enabling precise operation of the operation lever 131.
  • FIG. 2 is a graph showing the spool passage flow rate compared to the pilot signal pressure according to a comparative embodiment of the present invention
  • Figure 3 is a graph showing the pilot signal pressure versus the manipulated variable according to a comparative embodiment of the present invention
  • Figure 4 is It is a graph showing the flow rate of the spool through the operation amount according to the comparative example.
  • reference numerals of the components refer to FIG. 1.
  • the spool valve 120 may be increased even if the pilot signal pressure is increased from P 2 to P 1 .
  • the control unit according to the comparative embodiment of the present invention controls only the maximum increase or decrease of the pilot signal pressure according to the manipulation amount when generating the pilot signal pressure with the electromagnetic proportional pressure reducing valve. That is, in the comparative embodiment of the present invention, the controller does not control the generation of the pilot signal pressure in consideration of the input rotational speed of the prime mover 111 as a variable.
  • the operation lever ( 131 can be operated by the control section 1 range.
  • the operation lever 131 can be operated by the control section 2 range.
  • FIG 5 is a graph showing the pilot signal pressure versus the manipulated variable according to an embodiment of the present invention
  • Figure 6 is a graph showing the spool passage flow rate compared to the manipulated variable according to an embodiment of the present invention.
  • the control unit 140 determines the effective pilot signal pressure for opening the spool valve 120 to the maximum.
  • P 1 of FIG. 5 is an effective pilot signal pressure that opens the spool valve 120 to the maximum when the input rotational speed of the prime mover 111 is N 1
  • P 2 represents the input rotational speed of the prime mover 111.
  • N 2 the effective pilot signal pressure for opening the spool valve 120 to the maximum.
  • control unit 140 determines the effective pilot signal pressure according to the input rotational speed of the prime mover 111 and then, according to the operation amount of the operation lever 131.
  • the pilot signal pressure is proportionally applied to the effective pilot signal pressure.
  • the controller 140 controls the pilot signal pressure to be proportionally applied to the effective pilot signal pressure according to the manipulation amount of the manipulation lever 131. Even compared to the comparative embodiment of the present invention, the operation range of the operation lever 131 is relatively increased.

Abstract

본 발명은 건설기계용 로드 센싱 유량 제어 시스템에 관한 것으로서 더욱 상세하게는 건설기계, 예컨대, 굴삭기에 장착되어 있는 작업장치의 속도를 제어하는 조작 레버의 조작성 향상을 가능하게 하는 건설기계용 로드 센싱 유량 제어 시스템에 관한 것이다. 이를 위해, 본 발명의 제어부는 원동기의 입력 회전수에 따라 상기 유압펌프가 최대 토출 가능한 작동유의 유량을 낼 때, 스풀 밸브를 최대로 개구시키는 유효 파일럿 신호압을 결정하고, 상기 조작 레버의 조작량을 검출하며, 상기 조작 레버의 조작량에 따라 상기 유효 파일럿 신호압까지 비례적으로 상기 스풀 밸브에 파일럿 신호압이 인가되도록 전자비례감압밸브를 제어하는 건설기계용 로드 센싱 유량 제어 시스템을 제공한다.

Description

건설기계용 로드 센싱 유량 제어 시스템
본 발명은 건설기계용 로드 센싱 유량 제어 시스템에 관한 것으로서 더욱 상세하게는 건설기계, 예컨대, 굴삭기에 장착되어 있는 작업장치의 속도를 제어하는 조작 레버의 조작성 향상을 가능하게 하는 건설기계용 로드 센싱 유량 제어 시스템에 관한 것이다.
상당수의 유압식 건설기계들에는 유량을 제어하는 방식으로 로드 센싱 유량 제어 시스템이 적용되고 있다. 로드 센싱 유량 제어 시스템의 중요한 특징은, 펌프가 낼 수 있는 토크 제한에 걸리지 않는 한, 스풀의 개구 면적에 비례하여 작동유의 유량이 결정되고, 이때, 스풀의 개구 면적은 조작 레버의 조작에 의해 인가되는 파일럿 신호압에 비례하므로, 결과적으로 작동유의 유량은 파일럿 신호압에 비례하게 된다.
여기서, 펌프가 낼 수 있는 용적은 한계가 있으므로, 이 최대 용적을 qmax라 할 때, 펌프에 연결된 원동기의 입력 회전수를 N이라 하면, 최대 토출 가능한 작동유의 유량은 qmax × N이 된다. qmax는 고정이므로, 원동기의 입력 회전수가 낮아지게 되면, 최대 토출 가능한 작동유의 유량 또한 줄어들게 된다. 이 경우, 예컨대, 굴삭기에 장착되어 있는 작업장치의 속도를 제어하는 조작 레버의 조작량이 늘어서 파일럿 신호압이 증가하더라도 실제 작동유의 유량이 더 이상 증가하지 않는 구간이 생겨나게 된다. 이 때문에 조작 레버의 조작 제어 구간이 줄어들게 된다.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 건설기계, 예컨대, 굴삭기에 장착되어 있는 작업장치의 속도를 제어하는 조작 레버의 조작성 향상을 가능하게 하는 건설기계용 로드 센싱 유량 제어 시스템을 제공하는 것이다.
이를 위해, 본 발명은, 기계적인 회전을 생성하는 원동기에 의해 구동되는 유압펌프와 연결되고, 상기 유압펌프로부터 토출되어 공급되고 유압탱크로 귀환하는 작동유에 의해 구동되는 유압 액츄에이터; 상기 유압펌프와 상기 유압 액츄에이터 및 상기 유압 액츄에이터와 상기 유압탱크 사이를 이동하는 작동유의 이동 경로 상에 설치되어, 작동유의 이동을 제어하는 스풀 밸브; 조작 레버의 조작에 따라 상기 스풀 밸브에 파일럿 신호압을 인가하는 전자비례감압밸브; 및 상기 전자비례감압밸브를 동작시키는 제어부를 포함하고, 상기 제어부는 상기 원동기의 입력 회전수에 따라 상기 유압펌프가 최대 토출 가능한 작동유의 유량을 낼 때, 상기 스풀 밸브를 최대로 개구시키는 유효 파일럿 신호압을 결정하고, 상기 조작 레버의 조작량을 검출하며, 상기 조작 레버의 조작량에 따라 상기 유효 파일럿 신호압까지 비례적으로 상기 스풀 밸브에 상기 파일럿 신호압이 인가되도록 상기 전자비례감압밸브를 제어하는 건설기계용 로드 센싱 유량 제어 시스템을 제공한다.
여기서, 상기 스풀 밸브의 일측 및 타측에는 각각, 상기 파일럿 신호압이 인가되는 포트가 형성되어 있을 수 있다.
또한, 상기 전자비례감압밸브는, 상기 스풀 밸브의 일측 및 타측에 형성되어 있는 상기 포트 각각과 연결되는 제1 전자비례감압밸브 및 제2 전자비례감압밸브를 포함할 수 있다.
그리고 상기 유압 액츄에이터는 작업장치용 유압 실린더 또는 옵션장치용 유압 실린더일 수 있다.
본 발명에 따르면, 건설기계, 예컨대, 굴삭기에 장착되어 있는 작업장치의 속도를 제어하는 조작 레버의 조작 제어 구간을 일정하게 늘릴 수 있고, 이를 통해, 조작 레버의 정밀 조작을 가능하게 할 수 있다.
즉, 본 발명에 따르면, 조작 레버의 조작성을 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 건설기계용 로드 센싱 유량 제어 시스템을 나타낸 구성도이다.
도 2는 본 발명의 비교 실시 예에 따른 파일럿 신호압 대비 스풀 통과 유량을 나타낸 그래프이다.
도 3은 본 발명의 비교 실시 예에 따른 조작량 대비 파일럿 신호압을 나타낸 그래프이다.
도 4는 본 발명의 비교 실시 예에 따른 조작량 대비 스풀 통과 유량을 나타낸 그래프이다.
도 5는 본 발명의 실시 예에 따른 조작량 대비 파일럿 신호압을 나타낸 그래프이다.
도 6은 본 발명의 실시 예에 따른 조작량 대비 스풀 통과 유량을 나타낸 그래프이다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 건설기계용 로드 센싱 유량 제어 시스템에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 건설기계용 로드 센싱 유량 제어 시스템(100)은 유압 액츄에이터(110), 스풀 밸브(120), 전자비례감압밸브 및 제어부(140)를 포함하여 형성된다.
유압 액츄에이터(110)는 기계적인 회전을 생성하는 원동기(111)에 의해 구동되는 유압펌프(112)와 연결된다. 이러한 유압 액츄에이터(110)는 유압펌프(112)로부터 토출되어 공급되고 유압탱크(113)로 귀환하는 작동유에 의해 구동된다.
본 발명의 실시 예에서, 유압 액츄에이터(110)는 예컨대, 굴삭기의 붐, 아암, 버켓으로 이루어지는 작업장치용 유압 실린더일 수 있다. 또한, 유압 액츄에이터(110)는 예컨대, 햄머, 쉐어, 로테이터 등과 같은 옵션장치용 유압 실린더일 수 있다. 그리고 유압 액츄에이터(110)는 굴삭기의 하부 주행체 상에 탑재되어 있는 상부 선회체를 정방향 또는 역방향으로 선회시키는 선회모터일 수도 있다.
한편, 유압펌프(112)의 최대 토출 가능한 작동유의 유량은 qmax × N이다. 이때, qmax는 유압펌프(112)의 최대 용적이고, N은 원동기(111)의 입력 회전수이다. 본 발명의 실시 예에서는 원동기(111)의 입력 회전수를 보상하여 스풀 밸브(120)를 절환시키는 파일럿 신호압에 반영함으로써, 조작 레버(131)의 조작성을 향상시키는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.
스풀 밸브(120)는 유압펌프(112)와 유압 액츄에이터(110) 및 유압 액츄에이터(110)와 유압탱크(113) 사이를 이동하는 작동유의 이동 경로 상에 설치되어, 작동유의 이동을 제어한다. 즉, 스풀 밸브(120)는 조작 레버(131) 조작을 통해 인가되는 파일럿 신호압에 의해 절환되어, 유압펌프(112)로부터 유압 액츄에이터(110)로 작동유의 공급을 가능하게 하고, 유압 액츄에이터(110)로부터 유압탱크(113)로 작동유의 귀환을 가능하게 한다. 이를 통해, 유압 액츄에이터(110)가 붐 실린더인 경우, 붐 실린더의 피스톤(134)이 상승하거나 하강하게 되고, 이에 의해 붐이 업다운 형태로 동작하게 된다.
스풀 밸브(120)의 길이방향 일측과 타측에는 각각, 제1 포트(a)와 제2 포트(b)가 형성되어 있다. 예를 들어, 붐 실린더로 이루어진 유압 액츄에이터(110)에서 피스톤(134)을 상승시키기 위해, 조작 레버(131)를 조작하여, 스풀 밸브(120)의 제1 포트(a)에 파일럿 신호압을 인가하면, 인가된 파일럿 신호압에 따라 스풀 밸브(120)의 스트로크가 변화되어 스풀 밸브(120)가 좌측(도면기준)으로 이동하게 된다. 이와 같이, 스풀 밸브(120)가 절환되면, 유압펌프(112)로부터 토출되는 작동유는 스풀 밸브(120)를 경유하여 붐 실린더로 이루어진 유압 액츄에이터(110)의 라지 챔버(132)에 공급되고, 이에 따라, 피스톤(134)이 상승하게 된다. 이때, 유압 액츄에이터(110)의 스몰 챔버(133)에 채워져 있던 작동유는 피스톤(134)이 상승함에 따라 가압되어, 스몰 챔버(133)로부터 배출된 후 스풀 밸브(120)를 경유하여 유압탱크(113)로 귀환하게 된다.
반대로, 피스톤(134)을 하강시키기 위해, 조작 레버(131)를 조작하여, 스풀 밸브(120)의 제2 포트(b)에 파일럿 신호압을 인가하면, 인가된 파일럿 신호압에 따라 스풀 밸브(120)의 스트로크가 변화되어 스풀 밸브(120)가 우측(도면기준)으로 이동하게 된다. 이와 같이, 스풀 밸브(120)가 절환되면, 유압펌프(112)로부터 토출되는 작동유는 스풀 밸브(120)를 경유하여 붐 실린더로 이루어진 유압 액츄에이터(110)의 스몰 챔버(133)에 공급되고, 이에 따라, 피스톤(134)은 하강하게 된다. 이때, 라지 챔버(132)에 채워져 있던 작동유는 피스톤(134)이 하강함에 따라 가압되어, 라지 챔버(132)로부터 배출된 후 스풀 밸브(120)를 경유하여 유압탱크(113)로 귀환하게 된다.
본 발명의 실시 예에서는 로드 센싱 방식으로 작동유의 유량을 제어한다. 로드 센싱 방식의 경우에는 스풀 밸브(120)의 양단의 압력 차가 일정하게 유지되므로, 유압펌프(112)가 낼 수 있는 토크 제한에 걸리지 않는 한, 작동유의 유량은 스풀 밸브(120)의 개구 면적에 비례하게 된다. 즉, 스풀 밸브(120)의 개구 면적에 비례하여 작동유의 유량이 결정된다. 이때, 스풀 밸브(120)의 개구 면적은 인가되는 파일럿 신호압에 비례하므로, 결과적으로, 작동유의 유량은 인가되는 파일럿 신호압에 비례하게 된다.
전자비례감압밸브는 조작 레버(131)의 조작에 따라 스풀 밸브(120)에 파일럿 신호압을 인가한다. 본 발명의 실시 예에 따른 전자비례감압밸브는 제1 전자비례감압밸브(135) 및 제2 전자비례감압밸브(136)을 포함하여 형성된다.
여기서, 제1 전자비례감압밸브(135)는 스풀 밸브(120)의 제1 포트(a)에 연결되어, 스풀 밸브(120)의 제1 포트(a)에 파일럿 신호압을 인가한다. 또한, 제2 전자비례감압밸브(136)는 스풀 밸브(120)의 제2 포트(b)에 연결되어, 스풀 밸브(120)의 제2 포트(b)에 파일럿 신호압을 인가한다.
제어부(140)는 제1 전자비례감압밸브(135) 및 제2 전자비례감압밸브(136)를 동작시킨다. 예를 들어, 유압 액츄에이터(110)가 붐 실린더로 이루어졌을 때, 제어부(140)는 피스톤(134)을 상승시키기 위해 조작 레버(131)가 조작된 경우, 제1 전자비례감압밸브(135)에 전기적 제어 신호를 출력하여, 스풀 밸브(120)의 제1 포트(a)에 파일럿 신호압이 인가되도록 제어할 수 있다. 반대로, 제어부(140)는 피스톤(134)을 하강시키기 위해 조작 레버(131)가 조작된 경우, 제2 전자비례감압밸브(136)에 전기적 제어 신호를 출력하여, 스풀 밸브(120)의 제2 포트(b)에 파일럿 신호압이 인가되도록 제어할 수 있다.
한편, 본 발명의 실시 예에 따른 제어부(140)는 조작 레버(131)의 조작성을 향상시키기 위해, 먼저, 원동기(111)의 입력 회전수(N)에 따라 유압펌프(112)가 최대 토출 가능한 작동유의 유량(qmax × N)을 낼 때, 스풀 밸브(120)를 최대로 개구시키는 유효 파일럿 신호압을 결정한다. 그 다음, 제어부(140)는 조작 레버(131)의 조작량을 검출한다. 마지막으로, 제어부(140)는 조작 레버(131)의 조작량에 따라 유효 파일럿 신호압까지 비례적으로 스풀 밸브(120)에 파일럿 신호압이 인가되도록 제1 전자비례감압밸브(135) 또는 제2 전자비례감압밸브(136)에 전기적 제어 신호를 출력한다. 이를 통해, 작업장치의 속도를 제어하는 조작 레버(131)의 제어 구간을 일정하게 늘릴 수 있어, 조작 레버(131)의 정밀 조작을 가능하게 할 수 있다.
이하, 본 발명의 비교 실시 예에 따른 제어부의 제어 방식에 대하여, 도 2 내지 도 4를 참조하여 설명하기로 한다.
도 2는 본 발명의 비교 실시 예에 따른 파일럿 신호압 대비 스풀 통과 유량을 나타낸 그래프이고, 도 3은 본 발명의 비교 실시 예에 따른 조작량 대비 파일럿 신호압을 나타낸 그래프이며, 도 4는 본 발명의 비교 실시 예에 따른 조작량 대비 스풀 통과 유량을 나타낸 그래프이다. 여기서, 각 구성들의 도면 부호를 도 1을 참조한다.
먼저, 도 2에 도시한 바와 같이, 조작 레버(131)의 조작에 의해 파일럿 신호압 및 스풀 밸브(12)의 개구 면적이 증가하더라도, 원동기(111)의 입력 회전수(N)와 유압펌프(112)의 최대 용적(qmax)의 곱으로 유압펌프(112)의 최대 토출 가능한 작동유의 유량이 제한되므로(qmax × N), 파일럿 신호압을 P2에서 P1로 증가시켜도 스풀 밸브(120)의 통과 유량이 qmax × N2(파일럿 신호압이 P2일 때)에서 qmax × N1으로 증가되는 것이 아니라 파일럿 신호압이 P2일 때의 스풀 밸브(120) 통과 유량으로 제한된다.
도 3에 도시한 바와 같이, 본 발명의 비교 실시 예에 따른 제어부는 전자비례감압밸브로 파일럿 신호압을 생성할 때, 조작량에 따른 따른 파일럿 신호압의 최대값 증감만을 제어한다. 즉, 본 발명의 비교 실시 예에서는 제어부가 원동기(111)의 입력 회전수를 변수로 감안하여 파일럿 신호압 생성을 제어하지 않는다.
도 4에 도시한 바와 같이, 본 발명의 비교 실시 예의 경우에는 원동기(111)의 입력 회전수가 N1일 때, 즉, 스풀 밸브(120) 통과 유량이 qmax × N1인 경우, 조작 레버(131)는 제어구간1 범위만큼 조작 가능하다. 또한, 원동기(111)의 입력 회전수가 N2일 때, 즉, 스풀 밸브(120) 통과 유량이 qmax × N2인 경우, 조작 레버(131)는 제어구간2 범위만큼 조작 가능하다.
여기서, 원동기(111)의 입력 회전수가 N2일 때, 조작 범위를 늘리기 위해 조작 레버(131)의 조작량을 늘리더라도 원동기(111)의 입력 회전수가 N2에서 N1으로 증가된 것이 아니기 때문에 스풀 밸브(120) 통과 유량은 qmax × N2로 제한된다. 즉, 원동기(111)의 입력 회전수의 증가 없이 조작량을 늘리는 경우, 즉, 파일럿 신호압만 증가된 경우, 작동유의 유량이 증가하지 않는 구간만 늘어나게 되므로, 조작 레버(131)는 조작 구간의 손해를 보게 된다. 다시 말해, 원동기(111)의 입력 회전수가 N2인 상태에서 조작량을 늘리는 경우, 조작 레버(131)의 조작 범위는 원동기(111)의 입력 회전수가 N1일 때의 제어구간1 만큼 증가 되는 것이 아니라 제어구간2를 벗어나지 못하게 된다.
이하, 본 발명의 실시 예에 따른 제어부의 제어 방식에 대하여, 도 5 및 도 6을 참조하여 설명하기로 한다.
도 5는 본 발명의 실시 예에 따른 조작량 대비 파일럿 신호압을 나타낸 그래프이고, 도 6은 본 발명의 실시 예에 따른 조작량 대비 스풀 통과 유량을 나타낸 그래프이다.
본 발명의 실시 예에 따른 제어부(140)는 스풀 밸브(120)를 최대로 개구시키는 유효 파일럿 신호압을 결정한다. 예를 들어, 도 5의 P1은 원동기(111)의 입력 회전수가 N1일 때, 스풀 밸브(120)를 최대로 개구시키는 유효 파일럿 신호압이고, P2는 원동기(111)의 입력 회전수가 N2일 때, 스풀 밸브(120)를 최대로 개구시키는 유효 파일럿 신호압이다.
도 5에 도시한 바와 같이, 본 발명의 실시 예에 따른 제어부(140)는 이와 같이, 원동기(111)의 입력 회전수에 따른 유효 파일럿 신호압을 결정한 다음, 조작 레버(131)의 조작량에 따라 유효 파일럿 신호압까지 파일럿 신호압이 비례적으로 인가되도록 제어한다.
그 결과, 도 6에 도시한 바와 같이, 원동기(111)의 입력 회전수가 N2인 경우의 조작 레버(131)의 조작 범위 즉, 제어구간2를 원동기(111)의 입력 회전수가 N1인 경우의 조작 레버(131)의 조작 범위인 제어구간1 만큼 늘릴 수 있게 된다.
즉, 본 발명의 실시 예에 따른 제어부(140)는 조작 레버(131)의 조작량에 따라 유효 파일럿 신호압까지 파일럿 신호압이 비례적으로 인가되도록 제어함으로써, 원동기(111)의 입력 회전수가 낮은 경우에도 본 발명의 비교 실시 예 대비 조작 레버(131)의 조작 범위가 상대적으로 늘어나게 된다.
이와 같이, 원동기(111)의 입력 회전수가 낮은 경우에 조작 레버(131)의 조작 범위가 늘어난다는 것은 조작 레버(131)에 의해 정밀 조작이 가능해진다는 것을 의미한다. 결국, 조작 레버(131)의 조작성은 본 발명의 실시 예에 따른 제어부(140)의 제어 방식에 의해 향상될 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (4)

  1. 기계적인 회전을 생성하는 원동기에 의해 구동되는 유압펌프와 연결되고, 상기 유압펌프로부터 토출되어 공급되고 유압탱크로 귀환하는 작동유에 의해 구동되는 유압 액츄에이터;
    상기 유압펌프와 상기 유압 액츄에이터 및 상기 유압 액츄에이터와 상기 유압탱크 사이를 이동하는 작동유의 이동 경로 상에 설치되어, 작동유의 이동을 제어하는 스풀 밸브;
    조작 레버의 조작에 따라 상기 스풀 밸브에 파일럿 신호압을 인가하는 전자비례감압밸브; 및
    상기 전자비례감압밸브를 동작시키는 제어부;
    를 포함하고,
    상기 제어부는 상기 원동기의 입력 회전수에 따라 상기 유압펌프가 최대 토출 가능한 작동유의 유량을 낼 때, 상기 스풀 밸브를 최대로 개구시키는 유효 파일럿 신호압을 결정하고, 상기 조작 레버의 조작량을 검출하며, 상기 조작 레버의 조작량에 따라 상기 유효 파일럿 신호압까지 비례적으로 상기 스풀 밸브에 상기 파일럿 신호압이 인가되도록 상기 전자비례감압밸브를 제어하는 건설기계용 로드 센싱 유량 제어 시스템.
  2. 제1항에 있어서,
    상기 스풀 밸브의 일측 및 타측에는 각각, 상기 파일럿 신호압이 인가되는 포트가 형성되어 있는 건설기계용 로드 센싱 유량 제어 시스템.
  3. 제2항에 있어서,
    상기 전자비례감압밸브는,
    상기 스풀 밸브의 일측 및 타측에 형성되어 있는 상기 포트 각각과 연결되는 제1 전자비례감압밸브 및 제2 전자비례감압밸브를 포함하는 건설기계용 로드 센싱 유량 제어 시스템.
  4. 제1항에 있어서,
    상기 유압 액츄에이터는 작업장치용 유압 실린더 또는 옵션장치용 유압 실린더인 건설기계용 로드 센싱 유량 제어 시스템.
PCT/KR2016/011808 2016-10-20 2016-10-20 건설기계용 로드 센싱 유량 제어 시스템 WO2018074628A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011808 WO2018074628A1 (ko) 2016-10-20 2016-10-20 건설기계용 로드 센싱 유량 제어 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011808 WO2018074628A1 (ko) 2016-10-20 2016-10-20 건설기계용 로드 센싱 유량 제어 시스템

Publications (1)

Publication Number Publication Date
WO2018074628A1 true WO2018074628A1 (ko) 2018-04-26

Family

ID=62019539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011808 WO2018074628A1 (ko) 2016-10-20 2016-10-20 건설기계용 로드 센싱 유량 제어 시스템

Country Status (1)

Country Link
WO (1) WO2018074628A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412849A (zh) * 2021-12-07 2022-04-29 浙江大学 负载口独立控制的大惯量旋挖钻机上车回转系统控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322134A (ja) * 2005-05-17 2006-11-30 Hitachi Constr Mach Co Ltd 建設機械の制御装置及び建設機械の操作補正制御システム
KR20120070933A (ko) * 2010-12-22 2012-07-02 두산인프라코어 주식회사 굴삭기의 유압 제어장치
KR20120086061A (ko) * 2011-01-25 2012-08-02 두산인프라코어 주식회사 건설기계의 유압 시스템
KR20130075661A (ko) * 2011-12-27 2013-07-05 두산인프라코어 주식회사 건설기계의 유압시스템
KR20150044759A (ko) * 2013-10-17 2015-04-27 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압펌프 토출 유량 제어장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322134A (ja) * 2005-05-17 2006-11-30 Hitachi Constr Mach Co Ltd 建設機械の制御装置及び建設機械の操作補正制御システム
KR20120070933A (ko) * 2010-12-22 2012-07-02 두산인프라코어 주식회사 굴삭기의 유압 제어장치
KR20120086061A (ko) * 2011-01-25 2012-08-02 두산인프라코어 주식회사 건설기계의 유압 시스템
KR20130075661A (ko) * 2011-12-27 2013-07-05 두산인프라코어 주식회사 건설기계의 유압시스템
KR20150044759A (ko) * 2013-10-17 2015-04-27 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압펌프 토출 유량 제어장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412849A (zh) * 2021-12-07 2022-04-29 浙江大学 负载口独立控制的大惯量旋挖钻机上车回转系统控制方法
CN114412849B (zh) * 2021-12-07 2023-01-13 浙江大学 负载口独立控制的大惯量旋挖钻机上车回转系统控制方法

Similar Documents

Publication Publication Date Title
US8701399B2 (en) Hydraulic system for working machine
CN101311020B (zh) 用于履带式重型设备的行进装置
WO2012091187A1 (ko) 건설기계의 붐-선회 복합구동 유압 제어시스템
WO2014017685A1 (ko) 건설기계용 유압시스템
WO2012033233A1 (ko) 건설기계용 가변용량형 유압펌프의 유량제어장치
CN110392789B (zh) 挖土机
US11078646B2 (en) Shovel and control valve for shovel
EP1726723A2 (en) Working machine
US6938535B2 (en) Hydraulic actuator control
WO2017034259A1 (ko) 건설기계 및 건설기계의 제어 방법
EP1088995A1 (en) Hydraulic circuit device
US10487855B2 (en) Electro-hydraulic system with negative flow control
EP3683453B1 (en) Driving device of construction equipment
WO2015093791A1 (ko) 건설 기계의 폐회로 유압 시스템
WO2018074628A1 (ko) 건설기계용 로드 센싱 유량 제어 시스템
WO2016111392A1 (ko) 건설기계의 유압펌프 유량 제어방법
JP7263003B2 (ja) ショベル及びショベル用コントロールバルブ
CN111247296A (zh) 回转式工程机械
WO2017099265A1 (ko) 건설기계용 유압 시스템
CN116097008A (zh) 液压驱动系统
JP2005140153A (ja) 建設機械の油圧制御装置
WO2016035902A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2014200131A1 (ko) 건설기계용 유량 제어밸브
WO2019050064A1 (en) HYDRAULIC MACHINE
WO2013089284A1 (ko) 건설기계의 유압시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919252

Country of ref document: EP

Kind code of ref document: A1