WO2018074356A1 - Speed measuring device, position measuring device, speed measuring method, and program - Google Patents

Speed measuring device, position measuring device, speed measuring method, and program Download PDF

Info

Publication number
WO2018074356A1
WO2018074356A1 PCT/JP2017/037183 JP2017037183W WO2018074356A1 WO 2018074356 A1 WO2018074356 A1 WO 2018074356A1 JP 2017037183 W JP2017037183 W JP 2017037183W WO 2018074356 A1 WO2018074356 A1 WO 2018074356A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
acceleration
calculation unit
variation amount
vector
Prior art date
Application number
PCT/JP2017/037183
Other languages
French (fr)
Japanese (ja)
Inventor
興梠 正克
Original Assignee
サイトセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイトセンシング株式会社 filed Critical サイトセンシング株式会社
Publication of WO2018074356A1 publication Critical patent/WO2018074356A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/50Devices characterised by the use of electric or magnetic means for measuring linear speed

Definitions

  • the present invention relates to a speed measurement device that measures the speed of a vehicle, a position measurement device that measures the position of the vehicle, a speed measurement method, and a program.
  • the measuring device described in Patent Document 1 is a device that measures the speed of a railway vehicle, irradiates laser beam onto objects on the rail laying side, receives scattered light from these objects, and extracts a Doppler signal. It is described that the ground speed can be measured from this Doppler signal.
  • the gait measuring device described in Patent Document 2 is a device that measures a user's moving speed using a portable terminal carried by the user. It is explained that the speed measurement unit can calculate the user's moving speed based on the change amount of the user's position information and the length of the unit measurement period when the integrated value of acceleration exceeds the threshold value. ing.
  • Patent Document 3 As another method, in order to measure the speed of the moving body, a method of measuring by frequency analysis of vibration detected by the acceleration sensor has been proposed (for example, Patent Document 3).
  • the speed detection device described in Patent Document 3 attaches an acceleration sensor to a metal part of a moving body, and extracts a high-frequency component from vibration spectrum components of the moving body detected by the acceleration sensor. It is described that the speed of the moving body can be detected based on this high frequency component.
  • Transportation vehicles such as handcarts, carry carts, and forklifts that move in a relatively small area often do not have pulse meters on their wheels.
  • a conventional method of irradiating light outside and measuring the reflected wave, or a method of measuring based on the amount of change in position information can be considered.
  • these methods require a device such as a light-emitting device, a light-receiving device, and an antenna to be installed, and there is a problem that costs increase.
  • location information cannot be received in the building.
  • the method of measuring the speed based on the vibration spectrum detected by the acceleration sensor has many factors in the vibration of the vehicle, and it is difficult to select a frequency component having a uniform correspondence with the speed. Therefore, there is a problem that the speed cannot be measured accurately.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a speed measuring device and the like that can accurately measure the speed of a vehicle with a simple and inexpensive configuration.
  • a speed measuring device provides: An acceleration sensor provided in the vehicle; An acceleration acquisition unit for acquiring information of acceleration output by the acceleration sensor; A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit; A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit by traveling the vehicle in advance and a speed; A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information; It is characterized by providing.
  • the acceleration acquisition unit acquires an acceleration vector from the acceleration sensor,
  • the magnitude of the acceleration with which the variation amount calculation unit calculates the variation amount may be a magnitude of a vertical component of the acceleration vector.
  • a posture acquisition unit that acquires the posture of the acceleration sensor
  • a vertical direction acquisition unit that acquires a vertical direction vector with respect to the measurement axis of the acceleration sensor based on the posture acquired by the posture acquisition unit
  • the variation amount calculation unit may calculate the variation amount of the magnitude of the vertical direction component of the acceleration vector using the vertical direction vector acquired by the vertical direction acquisition unit.
  • An angular velocity sensor provided in the vehicle; A posture acquisition unit that acquires postures of the acceleration sensor and the angular velocity sensor; An orientation acquired by the orientation acquisition unit; and a traveling direction acquisition unit that acquires a traveling direction vector based on the angular velocity vector output by the angular velocity sensor;
  • the variation amount calculation unit may calculate the variation amount of the magnitude of the traveling direction component of the acceleration vector using the traveling direction vector acquired by the traveling direction acquisition unit.
  • An angular velocity sensor provided in the vehicle; An attitude calculation unit for calculating the attitude of the acceleration sensor and the angular velocity sensor; A vertical direction calculation unit that calculates a vertical direction vector with respect to the measurement axis of the acceleration sensor, based on the posture calculated by the posture calculation unit; An orientation calculated by the orientation calculator, and a traveling direction calculator that calculates a traveling direction vector for the measurement axis of the acceleration sensor based on the angular velocity vector output by the angular velocity sensor;
  • the variation amount calculation unit includes a vertical direction component variation amount of the magnitude of the vertical direction component of the acceleration vector calculated using the vertical direction vector, and a traveling direction component of the acceleration vector calculated using the traveling direction vector. You may calculate the said variation
  • the variation amount may be a standard deviation.
  • the dispersion amount may be a dispersion value.
  • the position measuring device includes: The position of the vehicle provided with the speed measuring device is output by integrating the speed measured by the speed measuring device according to the first aspect.
  • the speed measuring method includes: A speed measurement method for measuring a speed of the vehicle based on an output of an acceleration sensor provided in the vehicle, An acceleration acquisition step of acquiring acceleration information output by the acceleration sensor; A variation amount calculating step of calculating a variation amount of the magnitude of the acceleration acquired in the acceleration acquiring step; A storage step for storing function information indicating a relationship between the variation amount calculated in the variation amount calculation step and the speed by running the vehicle in advance; A speed output step of outputting the speed by substituting the variation amount calculated in the variation amount calculation step at the time of actual measurement into a function indicated by the function information; It is characterized by having.
  • a program is: A computer connected to an acceleration sensor included in the vehicle so as to be communicable; an acceleration acquisition unit configured to acquire information on acceleration output from the acceleration sensor; A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit; A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit and the speed by running the vehicle in advance; A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information; It is made to function as.
  • the vehicle speed can be accurately measured with a simple and inexpensive configuration.
  • FIG. 1 It is a figure which shows the vehicle which installed the speed measurement apparatus which concerns on Embodiment 1 of this invention. It is a block diagram which shows the hardware constitutions of the speed measuring device which concerns on Embodiment 1 of this invention. It is a block diagram which shows the function structure of a speed measuring device. It is a flowchart of a function derivation process. It is a flowchart of a speed measurement process. It is a block diagram which shows the function structure of a position measuring device. It is a block diagram which shows the function structure of the speed measuring device which concerns on Embodiment 2 of this invention. It is a flowchart of a speed measurement process.
  • FIG. 1 is a diagram illustrating a vehicle in which a speed measurement device 1 according to the first embodiment is installed.
  • a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
  • the speed measurement device 1 is composed of an arbitrary information processing apparatus in which a speed measurement processing program is installed.
  • the speed measurement device 1 is an information processing device that measures a speed based on an output of an acceleration sensor.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the speed measuring device 1.
  • the speed measurement device 1 includes a control unit 11, a storage unit 12, a display unit 13, a communication unit 14, and an acceleration sensor 15.
  • the control unit 11 is connected to the storage unit 12, the display unit 13, and the communication unit 14, and the acceleration sensor 15 is connected to the control unit 11 via the communication unit 14.
  • the communication part 14 can be connected with an external apparatus by arbitrary communication means.
  • the calibration apparatus 2 is connected.
  • the control unit 11 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit).
  • the ROM stores an initial program for performing various initial settings, hardware inspection, program loading, and the like.
  • the RAM functions as a work area for temporarily storing various software programs executed by the CPU and data necessary for executing these software programs.
  • the CPU is a central processing unit that executes various processes and operations.
  • the storage unit 12 is composed of a nonvolatile memory such as a flash memory.
  • a part of the storage area is used as a measurement value buffer 121 that overwrites and saves the measurement value of the acceleration sensor 15, and the function data 122 for calculating the speed in the other storage area, the speed measurement processing program, etc.
  • the various programs are memorized.
  • the measurement value buffer 121 is, for example, a one-dimensional buffer that stores a predetermined number of scalar values (real numbers), and stores the measurement values of the acceleration sensor 15. When the number of inputs exceeds a predetermined number, the oldest data among the already stored data is sequentially overwritten and saved.
  • the display unit 13 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display unit 13 acquires a signal indicating the speed measurement result from the control unit 11 and outputs a number or an image on the screen of the display device.
  • the communication unit 14 includes a plurality of wired or wireless communication means.
  • the communication unit 14 acquires acceleration vector data output from the acceleration sensor 15 and outputs the data to the control unit 11.
  • the communication unit 14 transmits the calculation result output from the control unit 11 to the calibration device 2, receives the calibration result from the calibration device 2, and outputs it to the control unit 11.
  • the acceleration sensor 15 is a sensor that measures a three-dimensional acceleration vector having three measurement axes orthogonal to each other.
  • it is composed of an acceleration sensor of MEMS (Micro Electro Mechanical System).
  • MEMS Micro Electro Mechanical System
  • the acceleration sensor 15 outputs three components of each measurement axis direction of a three-dimensional acceleration vector, and outputs a time difference ⁇ t between output data.
  • control unit 11 of the speed measurement device 1 executes the speed measurement processing program stored in the storage unit 12, and as illustrated in FIG. 3, the acceleration measurement unit 111, the standard deviation calculation unit 112, and the speed calculation unit 113. Function as.
  • the acceleration measuring unit 111 acquires three-component data of each acceleration axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14, and measures the magnitude of the acceleration vector from the acquired data. Then, the acceleration measuring unit 111 stores the obtained measurement value in the measurement value buffer 121. Since a predetermined number of pieces of data are stored in the measurement value buffer 121, when the predetermined number of pieces of data are input, the oldest data among the already stored data is sequentially overwritten and saved. That is, the measurement value buffer 121 always stores a predetermined number or less of measurement values.
  • the standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values.
  • the standard deviation calculator 112 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
  • the standard deviation ⁇ calculated by the standard deviation calculator 112 is expressed by the following formula (1).
  • the change in acceleration detected by the acceleration sensor 15 is caused by various events.
  • a wheel rotates smoothly by having a bearing structure in which balls are arranged around an axle that is a rotating shaft. Vibration due to rotation of the ball constituting the bearing occurs in a high frequency band.
  • the variation amount of the vibration changes uniformly with respect to the speed of the vehicle 100. Therefore, the speed can be expressed by a function having the standard deviation ⁇ of acceleration as an argument.
  • the calibration device 2 causes the vehicle 100 to travel several times at a constant speed during calibration before actual measurement.
  • the speed measurement device 1 obtains the standard deviation of the magnitude of the acceleration detected by the acceleration sensor 15 at that time, and transmits it to the calibration device 2.
  • the calibration apparatus 2 that has received the standard deviation obtains a function representing the relationship between the speed and the standard deviation, and transmits function data 122 indicating the function to the speed measurement apparatus 1.
  • the standard deviation calculator 112 outputs the calculated standard deviation to the speed calculator 113 when the speed measuring device 1 is actually measured.
  • the communication unit 14 receives the function data 122 used for calculating the speed from the calibration device 2, and the storage unit 12 stores the function data 122.
  • the speed calculation unit 113 calculates the speed by substituting the standard deviation input from the standard deviation calculation unit 112 into a function indicated by the function data 122 and having the standard deviation as an argument. And the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
  • FIG. 4 is a flowchart of a function derivation process for deriving a function used in the speed measurement process.
  • FIG. 5 is a flowchart of the speed measurement process.
  • the calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at a pre-adjustment stage before actual measurement, and the standard deviation data calculated and transmitted by the speed measuring device 1 at that time is used. Obtain a function that represents the relationship between speed and standard deviation.
  • Step S101 Measure the speed of the vehicle 100 during calibration by any conventional method.
  • the vehicle 100 is traveled at a constant speed between two points whose distances have been measured in advance (step S101), and the speed is calculated from the time required to pass between the two points and the distance between the two points. (Step S102).
  • the acceleration measuring unit 111 of the speed measuring device 1 acquires and acquires data of three components of each acceleration axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14. Measure the magnitude of the acceleration vector from the data. Then, the acceleration measuring unit 111 stores the obtained measurement value in the measurement value buffer 121.
  • the standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values. The calculated standard deviation is output to the communication unit 14, and the communication unit 14 transmits it to the calibration device 2.
  • the calibration device 2 receives the standard deviation of the magnitude of the acceleration calculated by the standard deviation calculation unit 112 from the speed measurement device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
  • step S105 determines whether or not the predetermined number of measurements has been completed (step S105), and the measurement of the number of schedules has not been completed. In this case (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed.
  • step S105: Yes the measurement of the planned number is completed (step S105: Yes)
  • step S106 a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step).
  • the method for deriving the linear function may be any conventional method, for example, using the least square method.
  • the communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2 and stores it in the storage unit 12.
  • the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration measuring unit 111 of the speed measuring device 1 acquires three-component data in each measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14, and the magnitude of the acceleration vector from the acquired data. Measure. Then, the acceleration measurement unit 111 stores the obtained measurement value in the measurement value buffer 121 (step S201).
  • the standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values (step S202).
  • the speed calculation unit 113 reads the function data 122, and calculates the speed by substituting the standard deviation of the magnitude of the acceleration calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122 (step S203). .
  • the speed calculated in step S203 is displayed on the display unit 13 (step S204).
  • the speed can be calculated and displayed based on the output of the acceleration sensor 15.
  • FIG. 6 is a block diagram showing a functional configuration of the position measuring device 3. As shown in FIG. 6, the position measuring device 3 further includes a position calculating unit 114 that integrates the speed calculated by the speed calculating unit 113 and calculates the position of the vehicle 100 with respect to the speed measuring device 1. The position information calculated by the position calculation unit 114 is displayed on the display unit 13.
  • the measured value of the magnitude of acceleration measured by the acceleration measuring unit 111 of the velocity measuring device 1 is stored in the measured value buffer 121, and the standard deviation calculating unit 112 is measured by the magnitude of acceleration. Calculate the standard deviation of.
  • the calibration device 2 acquires a standard deviation when the vehicle 100 on which the speed measuring device 1 is installed is traveled at an arbitrary constant speed, and derives a function representing a relationship between the speed and the standard deviation.
  • the function data 122 is stored in the storage unit 12.
  • the speed calculation unit 113 calculates the speed by substituting the standard deviation calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122.
  • the speed of the vehicle can be accurately measured with a simple and inexpensive configuration in which a module including an acceleration sensor is mounted. Further, the position of the vehicle can be measured based on the measured speed.
  • Embodiment 2 of the present invention will be described in detail with reference to the drawings. Also in this embodiment, the case where the speed measuring device 1 is installed in a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
  • the speed measurement apparatus 1 is an information processing apparatus that measures speed based on the output of the acceleration sensor 15 as in the first embodiment, and the hardware configuration is the same as that in the first embodiment. Since the functional configuration of the control unit 11 and the speed measurement process executed by the control unit 11 are different from those in the first embodiment, these will be described in detail with reference to FIGS.
  • control unit 11 of the speed measurement device 1 executes a speed measurement processing program stored in the storage unit 12, so that an acceleration vector measurement unit 211 and an attitude calculation unit 212 are illustrated. , Function as vertical direction calculation unit 213, vertical direction component calculation unit 214, standard deviation calculation unit 112, and speed calculation unit 113.
  • the storage unit 12 of the speed measurement device 1 includes the measurement value buffer 121 as in the first embodiment, and stores the function data 122.
  • the attitude of the acceleration sensor 15 input by the operator is stored.
  • the posture setting value 123 is stored.
  • the posture setting value 123 includes installation information for the vehicle 100, for example. Specifically, information indicating the attitude relationship between the local coordinate system of the acceleration sensor 15 and the local coordinate system of the vehicle 100 (for example, a transformation matrix (3 ⁇ 3 execution sequence) between coordinate systems is stored.
  • the acceleration vector measurement unit 211 of the control unit 11 acquires the three-component data in the measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14 and the time difference ⁇ t between the output data.
  • the posture calculation unit 212 is based on the acceleration vector data input from the acceleration vector measurement unit 211, the time difference ⁇ t, and information indicating the posture relationship between the acceleration sensor 15 and the vehicle 100 included in the posture setting value 123.
  • the attitude of the local coordinate system indicated by the measurement axis of the sensor 15 is calculated.
  • the posture calculation unit 212 outputs a rotation matrix that converts the local coordinate system indicated by the measurement axis of the acceleration sensor 15 into the world coordinate system.
  • the dynamic calculation in the vertical direction can be performed by any conventional method.
  • Non-Patent Document 1 Masakatsu Oki, Takashi Otsuki, Takeshi Kurata, “Indoor using a self-contained sensor module for pedestrian navigation Positioning System and its Evaluation ”, Symposium“ Mobile 08 ”Proceedings, pp. 151-156, 2008.
  • the vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 212 and outputs a vertical direction vector.
  • the vertical direction vector in the world coordinate system is converted using the inverse matrix of the rotation matrix that converts the local coordinate system of the acceleration sensor 15 input from the posture calculation unit 212 into the world coordinate system, and the vertical direction vector in the local coordinate system. Is calculated.
  • the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 211. Specifically, the motion obtained by subtracting the gravitational acceleration (1G ⁇ 9.8 [m / s]) from the component (scalar value) obtained by projecting the acceleration vector with respect to the vertical vector input from the vertical calculation unit 213. The acceleration component is calculated and output as the vertical component.
  • the projection vector of the acceleration vector in the vertical direction can be calculated based on the following equation (2).
  • the size of the projection vector is calculated by the following equation (3).
  • the value obtained by subtracting 1G of gravitational acceleration from this value is the vertical component.
  • the vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 214 is sequentially stored in the measurement value buffer 121. Since a predetermined number of pieces of data are stored in the measurement value buffer 121, when the predetermined number of pieces of data are input, the oldest data among the already stored data is sequentially overwritten and saved. That is, the measurement value buffer 121 always stores a predetermined number or less of measurement values.
  • the standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values.
  • the standard deviation calculator 112 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
  • the standard deviation ⁇ calculated by the standard deviation calculator 112 is expressed by the following formula (4).
  • the standard deviation calculator 112 outputs the calculated standard deviation to the speed calculator 113 when the speed measuring device 1 is actually measured.
  • the communication unit 14 acquires function data 122 used for calculating the speed from the calibration device 2, and the storage unit 12 stores the function data 122.
  • the speed calculation unit 113 calculates the speed by substituting the standard deviation input from the standard deviation calculation unit 112 into a function indicated by the function data 122 and having the standard deviation as an argument. And the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
  • FIG. 8 is a flowchart of the speed measurement process.
  • the calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at an arbitrary speed in a pre-adjustment stage before actual measurement. At that time, the calibration device 2 obtains standard deviation data calculated and transmitted by the speed measuring device 1, and obtains a function representing the relationship between the speed and the standard deviation.
  • the function derivation process will be described with reference to FIG.
  • the calibration device 2 causes the vehicle 100 to travel at a constant speed between two predetermined points during calibration (step S101), and calculates the speed (step S102).
  • the acceleration vector measurement unit 211 of the speed measurement device 1 uses the acceleration vector input from the acceleration sensor 15 via the communication unit 14 between the three component data in each measurement axis direction and each output data.
  • the time difference ⁇ t is acquired.
  • the posture calculation unit 212 calculates the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data input from the acceleration vector measurement unit 211, the time difference ⁇ t, and the posture setting value 123.
  • the vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 212.
  • the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 211.
  • the vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 214 is sequentially stored in the measurement value buffer 121.
  • the standard deviation calculator 112 calculates the standard deviation of the measurement values stored in the measurement value buffer 121. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
  • the calibration device 2 receives the standard deviation of the vertical component of the acceleration vector calculated by the standard deviation calculation unit 112 of the speed measurement device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
  • step S105 determines whether or not the predetermined number of measurements has been completed (step S105), and the measurement of the number of schedules has not been completed. In this case (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed.
  • step S105: Yes the measurement of the planned number is completed (step S105: Yes)
  • step S106 a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step).
  • the calibration device 2 since the speed and the standard deviation have a linear relationship, the calibration device 2 obtains a linear function that approximates a plot of the speed and the standard deviation.
  • the method for deriving the linear function may be any conventional method, for example, using the least square method.
  • the communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2, and the storage unit 12 stores the function data 122.
  • the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration vector measurement unit 211 of the speed measurement device 1 acquires an acceleration vector input from the acceleration sensor 15 via the communication unit 14 (step S301). At this time, data of three components of the acceleration vector in each measurement axis direction and a time difference ⁇ t between the output data are acquired.
  • the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector based on the acquired acceleration vector data, its time difference ⁇ t, and the posture setting value 123, and stores it in the measured value buffer 121 (step S302). Specifically, as in the calibration, the posture calculation unit 212 determines the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data, the time difference ⁇ t, and the posture setting value 123. calculate. Then, the vertical direction calculation unit 213 calculates a vertical direction vector in the local coordinate system of the acceleration sensor based on the calculated posture.
  • the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector using the vertical direction vector, and sequentially stores it in the measured value buffer 121.
  • the standard deviation calculation unit 112 calculates the standard deviation of the measurement values stored in the measurement value buffer 121 (step S303).
  • the speed calculation unit 113 reads the function data 122, and calculates the speed by substituting the standard deviation of the vertical component of the acceleration vector calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122 (step) S304). Then, the speed calculated in step S304 is displayed on the display unit 13 (step S305).
  • the speed can be calculated and displayed based on the output of the acceleration sensor 15.
  • the position measuring device 3 can be configured by adding the position calculating unit 114 to the speed measuring device 1.
  • the posture calculation unit 212 calculates the posture of the acceleration sensor 15 based on the acceleration vector measured by the acceleration vector measurement unit 211 of the velocity measuring device 1 and the posture setting value 123, and the Based on the posture, the vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor 15. Then, the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector and stores it in the measurement value buffer 121, and the standard deviation calculation unit 112 calculates the standard deviation of the vertical direction component of the acceleration vector. In advance, the calibration device 2 acquires a standard deviation when the vehicle on which the speed measuring device 1 is installed is caused to travel at an arbitrary constant speed, and derives a function representing the relationship between the speed and the standard deviation.
  • the function data 122 is stored in the storage unit 12.
  • the speed calculation unit 113 calculates the speed by substituting the standard deviation calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122. Thereby, the speed of the vehicle can be measured more accurately based on the vertical direction component of the acceleration vector.
  • Embodiment 3 of the present invention will be described in detail with reference to the drawings. Also in this embodiment, the case where the speed measuring device 1 is installed in a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
  • the speed measurement device 1 is an information processing device that measures the speed based on the outputs of the acceleration sensor 15 and the angular velocity sensor 16 similar to those in the first embodiment.
  • FIG. 9 shows a hardware configuration of the speed measurement device 1 according to the present embodiment. As shown in FIG. 9, in the velocity measuring device 1 of the present embodiment, an angular velocity sensor 16 is connected to the communication unit 14 in addition to the configuration of the first embodiment.
  • the angular velocity sensor 16 is a sensor that measures a three-dimensional angular velocity vector having three measurement axes orthogonal to each other.
  • it is composed of an MEMS (Micro Electro Mechanical System) angular velocity sensor or a gyroscope.
  • the angular velocity sensor 16 outputs three components of the three-dimensional angular velocity vector in the respective measurement axis directions and outputs a time difference ⁇ t between the respective output data.
  • acceleration sensor 15 and the angular velocity sensor 16 have the same measurement axes, or the correspondence between the measurement axes is known in advance. Further, an IMU (Inertial Measurement Unit) in which the acceleration sensor 15 and the angular velocity sensor 16 are integrated as one measurement unit may be used.
  • IMU Inertial Measurement Unit
  • FIG. 10 is a block diagram showing a functional configuration of the speed measuring device 1 according to the present embodiment.
  • FIG. 11 is a flowchart of the speed measurement process.
  • the control unit 31 of the speed measurement device 1 executes a speed measurement processing program stored in the storage unit 12, so that an acceleration vector measurement unit 311, an angular velocity vector measurement unit are obtained.
  • the storage unit 12 of the speed measuring device 1 includes two buffers, a measurement value buffer (vertical direction) 124 and a measurement value buffer (traveling direction) 125, and further input by the operator.
  • the posture setting value 123 related to the postures of the acceleration sensor 15 and the angular velocity sensor 16 and the function data 122 are stored.
  • the posture setting value 123 includes, for example, installation information for the acceleration sensor 15 and the angular velocity sensor 16 with respect to the vehicle 100. Specifically, information indicating the posture relationship between the local coordinate system of the acceleration sensor 15 and the angular velocity sensor 16 and the local coordinate system of the vehicle 100 (for example, a transformation matrix between coordinate systems (3 ⁇ 3 execution sequence)) ) Is stored.
  • the acceleration vector measurement unit 311 of the control unit 31 acquires the three-component data in the measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14 and the time difference ⁇ t between the output data.
  • the angular velocity vector measurement unit 312 acquires the time difference ⁇ t between the three component data in the respective measurement axis directions of the angular velocity vector input from the angular velocity sensor 16 via the communication unit 14 and each output data.
  • the posture calculation unit 313 acquires acceleration vector data and its time difference ⁇ t from the acceleration vector measurement unit 311, and acquires angular velocity vector data and its time difference ⁇ t from the angular velocity vector measurement unit 312. Further, the posture calculation unit 313 acquires information on the posture relationship between the acceleration sensor 15 and the angular velocity sensor 16 and the vehicle 100 included in the posture setting value 123. The posture calculation unit 313 calculates the posture of the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angle sensor 16 based on the acquired information. For example, the posture calculation unit 313 calculates and outputs a rotation matrix that converts the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angular velocity sensor 16 into the world coordinate system.
  • the vertical direction calculation unit 314 calculates the vertical direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 313. For example, the vertical direction vector in the world coordinate system is converted using the inverse matrix of the rotation matrix that converts the local coordinate system of the acceleration sensor 15 input from the attitude calculation unit 313 into the world coordinate system, and the vertical direction vector in the local coordinate system. Is calculated.
  • the traveling direction calculation unit 315 calculates the traveling direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 313. Specifically, the traveling direction vector in the local coordinate system is calculated based on the angular velocity vector in the world coordinate system based on the vertical direction calculated by the vertical direction calculation unit 314.
  • the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 311. Specifically, the motion obtained by subtracting the gravitational acceleration (1G ⁇ 9.8 [m / s]) from the component (scalar value) obtained by projecting the acceleration vector with respect to the vertical vector input from the vertical calculation unit 314. The acceleration component is calculated and output as the vertical component.
  • the magnitude of the projection vector in the vertical direction of the acceleration vector that is, the vertical component of the acceleration vector can be calculated in the same manner as in the second embodiment.
  • the vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 316 is sequentially stored in the measurement value buffer (vertical direction) 124. Since a predetermined number of pieces of data are stored in the measurement value buffer (vertical direction) 124, when data exceeding the predetermined number is input, the oldest data among the already stored data is overwritten and saved in order. Is done. That is, the measurement value buffer (vertical direction) 124 always stores a predetermined number or less of measurement values.
  • the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector measured by the acceleration vector measurement unit 311. Specifically, a component (scalar value) obtained by projecting the acceleration vector with respect to the traveling direction vector input from the traveling direction calculation unit 315 is calculated and output as a traveling direction component.
  • the traveling direction component of the acceleration vector calculated by the traveling direction component calculation unit 317 is sequentially stored in the measured value buffer (traveling direction) 125. Since a predetermined number of pieces of data are stored in the measurement value buffer (traveling direction) 125, when data exceeding the predetermined number is input, the oldest data among the already stored data is overwritten and saved in order. Is done. That is, the measurement value buffer (traveling direction) 125 always stores a predetermined number or less of measurement values.
  • the standard deviation calculation unit (vertical direction) 318 reads all the measurement values stored in the measurement value buffer (vertical direction) 124 and calculates the standard deviation of the measurement values.
  • the standard deviation calculation unit (vertical direction) 318 outputs the calculated standard deviation to the communication unit 14 when the speed measurement device 1 is calibrated, and the communication unit 14 transmits the standard deviation to the calibration device 2.
  • the standard deviation calculation unit (traveling direction) 319 reads all the measured values stored in the measured value buffer (traveling direction) 125 and calculates the standard deviation of the measured values.
  • the standard deviation calculation unit (traveling direction) 319 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
  • Standard deviation calculation unit (vertical direction) 318 and standard deviation calculation unit (traveling direction) 319 calculate the standard deviation as in the second embodiment.
  • the calibration device 2 obtains a relational expression of the standard deviations ⁇ g , ⁇ f , and v based on the measurement result obtained by changing the speed. For example, the coefficients p and q of Expression (5) are obtained using a least square method or the like. Then, the calibration device 2 transmits function data 122 including the coefficients p and q to the speed measurement device 1.
  • FIG. 12 is a graph showing the relationship between the speed and the sum of the standard deviations ⁇ g and ⁇ f during calibration. As shown in the graph of FIG. 12, the data plotted by calculating the standard deviation and the speed by running 6 times at a constant speed could be approximated by a linear function represented by a broken line.
  • the calibration device 2 transmits function data 122 related to this linear function to the speed measurement device 1.
  • the communication unit 14 of the speed measuring device 1 receives the function data 122 from the calibration device 2, and the storage unit 12 stores the function data 122.
  • the standard deviation calculation unit (vertical direction) 318 and the standard deviation calculation unit (traveling direction) 319 output the calculated standard deviations to the speed calculation unit 113, respectively.
  • the speed calculation unit 113 is input from the standard deviation calculation unit (vertical direction) 318 and the standard deviation calculation unit (traveling direction) 319 to the functions indicated by the function data 122 and having the standard deviations ⁇ g and ⁇ f as arguments.
  • the speed is calculated by substituting the standard deviations ⁇ g and ⁇ f .
  • the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
  • the calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at an arbitrary speed in a pre-adjustment stage before actual measurement. At that time, the calibration device 2 obtains standard deviation data calculated and transmitted by the speed measuring device 1 and obtains a function representing the relationship between the speed and the standard deviation.
  • the function derivation process will be described with reference to FIG.
  • the calibration device 2 causes the vehicle 100 to travel at a constant speed between two predetermined points during calibration (step S101), and calculates the speed (step S102).
  • the acceleration vector measurement unit 311 of the speed measurement device 1 is configured such that the acceleration vector input from the acceleration sensor 15 via the communication unit 14 includes three component data in each measurement axis direction and each output data. Is obtained.
  • the angular velocity vector measuring unit 312 acquires a time difference ⁇ t between the three component data in each measurement axis direction of the angular velocity vector input from the angular velocity sensor 16 via the communication unit 14 and each output data.
  • the posture calculation unit 313 is based on the acceleration vector data and its time difference ⁇ t, the angular velocity vector data and its time difference ⁇ t, and the posture setting value 123 in the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angular velocity sensor 16. Calculate posture.
  • the vertical direction calculation unit 314 calculates a vertical direction vector in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 313.
  • the traveling direction calculation unit 315 calculates a traveling direction vector in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 313.
  • the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector using the vertical direction vector.
  • the vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 316 is sequentially stored in the measurement value buffer (vertical direction) 124.
  • the standard deviation calculation unit (vertical direction) 318 calculates the standard deviation of the measurement values stored in the measurement value buffer (vertical direction) 124. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
  • the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector using the traveling direction vector.
  • the traveling direction component of the acceleration vector calculated by the traveling direction component calculation unit 317 is sequentially stored in the measured value buffer (traveling direction) 125.
  • the standard deviation calculator (traveling direction) 319 calculates the standard deviation of the measured values stored in the measured value buffer (traveling direction) 125. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
  • the calibration device 2 receives the standard deviation of the vertical component and the standard deviation of the traveling direction component of the acceleration vector from the speed measuring device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
  • step S105 The vehicle repeatedly performs constant speed driving at different speeds, and the calibration device 2 determines whether or not the predetermined number of measurements has been completed (step S105). If the measurement of the planned number is not completed (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed. When the measurement of the planned number is completed (step S105: Yes), a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step). S106).
  • the calibration device 2 since the speed and the standard deviation of the vertical direction component and the sum of the standard deviation of the traveling direction component are linearly related, the calibration device 2 approximates to a plot of the sum of the speed and the standard deviation. Find a linear function.
  • the method for deriving the linear function may be any conventional method, for example, using the least square method.
  • the communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2, and the storage unit 12 stores the function data 122.
  • the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration vector measurement unit 311 of the speed measurement device 1 acquires an acceleration vector input from the acceleration sensor 15 via the communication unit 14 (step S401). At this time, data of three components of the acceleration vector in each measurement axis direction and a time difference ⁇ t between the output data are acquired.
  • the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector based on the acquired acceleration vector data, its time difference ⁇ t, and the posture setting value 123 and stores it in the measurement value buffer (vertical direction) 124 ( Step S402). Specifically, as in the calibration, the posture calculation unit 313 determines the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data, the time difference ⁇ t, and the posture setting value 123. calculate. Then, the vertical direction calculation unit 314 calculates a vertical direction vector in the coordinate system of the acceleration sensor based on the calculated posture.
  • the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector using the vertical direction vector, and sequentially stores it in the measured value buffer (vertical direction) 124.
  • the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector based on the acquired acceleration vector data and its time difference ⁇ t, the angular velocity vector data and its time difference ⁇ t, and the posture setting value 123.
  • the calculated value is stored in the measured value buffer (traveling direction) 125 (step S403).
  • the posture calculation unit 313 performs the acceleration sensor 15 based on the acceleration vector data and its time difference ⁇ t, the angular velocity vector data and its time difference ⁇ t, and the posture setting value 123. Calculate the attitude of the local coordinate system indicated by the measurement axis.
  • the traveling direction calculation unit 315 calculates a traveling direction vector in the coordinate system of the acceleration sensor based on the calculated posture.
  • the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector using the traveling direction vector, and sequentially stores it in the measured value buffer (traveling direction) 125.
  • the standard deviation calculation unit (vertical direction) 318 calculates the standard deviation of the measurement values stored in the measurement value buffer (vertical direction) 124 (step S404).
  • the standard deviation calculator (traveling direction) 319 calculates the standard deviation of the measured values stored in the measured value buffer (traveling direction) 125 (step S405).
  • the speed calculation unit 113 reads the function data 122, and adds the standard deviation of the vertical direction component of the acceleration vector calculated by the standard deviation calculation unit (vertical direction) 318 to the function indicated by the function data 122, and the standard deviation calculation unit. (Advancing direction) The speed is calculated by substituting the standard deviation of the advancing direction component of the acceleration vector calculated by 319 (step S406). Then, the speed calculated in step S406 is displayed on the display unit 13 (step S407).
  • the speed can be calculated and displayed based on the outputs of the acceleration sensor 15 and the angular velocity sensor 16.
  • the position measuring device 3 can be configured by adding a position calculator to the speed measuring device 1.
  • the calibration device 2 acquires a standard deviation in the vertical direction and the traveling direction when the vehicle 100 on which the speed measuring device 1 is mounted is traveled at an arbitrary constant speed, and a function representing a relationship between the speed and the standard deviation. To derive.
  • the function data 122 is stored in the storage unit 12.
  • the speed calculation unit 113 calculates the speed by substituting the standard deviation in the vertical direction and the traveling direction based on the actual measurement value into the function indicated by the function data. Thereby, the speed of the vehicle can be measured more accurately based on the vertical direction component and the traveling direction component of the acceleration vector. Further, the position of the vehicle can be measured based on the measured speed.
  • the variation amount of the acceleration magnitude is calculated from the acceleration information output from the acceleration sensor provided in the vehicle, and the function information indicating the relationship between the variation amount and the speed is stored by driving the vehicle in advance.
  • the speed is calculated by substituting the amount of variation in the magnitude of the acceleration into the function indicated by the function information.
  • the speed measurement device 1 calculates the speed from the magnitude of the acceleration vector or the standard deviation of the vertical component or the traveling direction component of the acceleration vector.
  • the standard deviation instead of the standard deviation, other values and speeds indicating the amount of variation in acceleration are used. You may calculate using the function showing the relationship with. For example, a function representing the relationship between the dispersion value and the speed may be used.
  • the calibration device 2 is provided separately from the speed measurement device 1 and communicates with each other, the speed measurement device 1 may be provided with a calibration function.
  • the velocity is calculated based on the standard deviation of the magnitude of the acceleration vector based on the data of each measurement axis of the acceleration sensor.
  • the acceleration vector is calculated based on the data of one predetermined measurement axis.
  • the speed may be calculated based on the standard deviation of the component in the direction of the measurement axis. The speed can be measured with a simpler configuration and processing.
  • the speed is calculated based on the standard deviations of the vertical direction component and the traveling direction component of the acceleration vector.
  • the speed is calculated based on the standard deviation of only the traveling direction component of the acceleration vector. You may do it.
  • the processing burden on the control unit 11 can be reduced.
  • the information terminal can be caused to function as the speed measuring device 1 or the position measuring device 3 according to the present invention by causing a program of processing executed by the control units 11 and 31 to be executed by an existing information terminal such as a computer. Is possible.
  • Such a program distribution method is arbitrary, for example, a computer-readable recording medium such as a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), an MO (Magneto Optical Disc), a memory card, etc. It may be stored and distributed in the network, or distributed via a communication network such as the Internet.
  • a computer-readable recording medium such as a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), an MO (Magneto Optical Disc), a memory card, etc. It may be stored and distributed in the network, or distributed via a communication network such as the Internet.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A measured value of the magnitude of an acceleration measured by an acceleration measuring unit (111) of a speed measuring device (1) is stored in a measured value buffer (121), and a standard deviation calculating unit (112) calculates the standard deviation of the magnitude of the acceleration. The standard deviation when a vehicle in which the speed measuring device (1) has been installed is caused to travel at an arbitrarily defined constant speed is acquired in advance, a function expressing the speed and the standard deviation is derived, and function data (122) are stored in a storage unit (12). During actual measurement, a speed calculating unit (113) calculates the speed by substituting the standard deviation calculated by the standard deviation calculating unit (112) into the function represented by the function data (122).

Description

速度計測装置、位置計測装置、速度計測方法及びプログラムVelocity measuring device, position measuring device, velocity measuring method and program
 本発明は、車両の速度を計測する速度計測装置、車両の位置を計測する位置計測装置、速度計測方法及びプログラムに関する。 The present invention relates to a speed measurement device that measures the speed of a vehicle, a position measurement device that measures the position of the vehicle, a speed measurement method, and a program.
 従来、様々な車両の速度を計測する装置があり、最も汎用的なものは、車輪に備えたパルスメータにより車輪の回転数を計測し、この回転数と車輪の径から算出するものである。これらに加えて、近年は、外部に照射した光や音の反射波を測定しドップラ効果を利用して速度を求める速度計測装置や、GPS等の位置情報を利用して計測する速度計測装置が提案されている(例えば、特許文献1、2)。 Conventionally, there are devices for measuring the speed of various vehicles, and the most general one is to measure the number of rotations of a wheel with a pulse meter provided on the wheel and to calculate from the number of rotations and the diameter of the wheel. In addition to these, in recent years, there have been speed measurement devices that measure the reflected waves of light and sound radiated to the outside and use the Doppler effect to determine the speed, and speed measurement devices that measure using position information such as GPS. It has been proposed (for example, Patent Documents 1 and 2).
 特許文献1に記載の計測装置は、鉄道車両の速度を計測する装置であって、レーザ光をレール敷設側の物体に照射し、それら物体からの散乱光を受光してドップラ信号を抽出する。このドップラ信号から対地速度を計測できると説明されている。また、特許文献2に記載の歩容計測装置は、ユーザが携帯する携帯端末を利用してユーザの移動速度を計測する装置である。加速度の積算値がしきい値を超えている場合に、速度計測部がユーザの位置情報の変化量と単位計測期間の長さをもとにユーザの移動速度を計算することができると説明されている。 The measuring device described in Patent Document 1 is a device that measures the speed of a railway vehicle, irradiates laser beam onto objects on the rail laying side, receives scattered light from these objects, and extracts a Doppler signal. It is described that the ground speed can be measured from this Doppler signal. Moreover, the gait measuring device described in Patent Document 2 is a device that measures a user's moving speed using a portable terminal carried by the user. It is explained that the speed measurement unit can calculate the user's moving speed based on the change amount of the user's position information and the length of the unit measurement period when the integrated value of acceleration exceeds the threshold value. ing.
 その他の方法として、移動体の速度を計測するために、加速度センサが検出する振動の周波数解析によって計測する方法も提案されている(例えば、特許文献3)。特許文献3に記載の速度検出装置は、移動体の金属部分に加速度センサを取り付け、加速度センサによって検出される移動体の振動スペクトラム成分のうち、高周波成分を抽出する。この高周波成分に基づいて移動体の速度を検出することができると説明されている。 As another method, in order to measure the speed of the moving body, a method of measuring by frequency analysis of vibration detected by the acceleration sensor has been proposed (for example, Patent Document 3). The speed detection device described in Patent Document 3 attaches an acceleration sensor to a metal part of a moving body, and extracts a high-frequency component from vibration spectrum components of the moving body detected by the acceleration sensor. It is described that the speed of the moving body can be detected based on this high frequency component.
特開2014-6161号公報JP 2014-6161 A 特開2013-258505号公報JP 2013-258505 A 特許第2856310号公報Japanese Patent No. 2856310
 比較的狭い領域で移動する手押し台車、キャリーカート、フォークリフト等の運搬車両は、車輪にパルスメータを備えていない場合が多い。このような場合は、従来の光を外部に照射してその反射波を測定する方法、又は、位置情報の変化量に基づいて計測する方法が考えられる。しかし、これらの方法は、発光装置、受光装置、アンテナ等の装置を設置する必要があり、コストが高くなるという問題があった。また、建物内では位置情報を受信できないという問題もあった。 運 搬 Transportation vehicles such as handcarts, carry carts, and forklifts that move in a relatively small area often do not have pulse meters on their wheels. In such a case, a conventional method of irradiating light outside and measuring the reflected wave, or a method of measuring based on the amount of change in position information can be considered. However, these methods require a device such as a light-emitting device, a light-receiving device, and an antenna to be installed, and there is a problem that costs increase. There is also a problem that location information cannot be received in the building.
 また、加速度センサにより検出する振動スペクトラムに基づいて速度を計測する方法も、車両の振動は多くの要因があり、速度に対して一様な対応関係を有する周波数成分を選択するのが困難であるため、正確に速度が計測できないという問題があった。 In addition, the method of measuring the speed based on the vibration spectrum detected by the acceleration sensor has many factors in the vibration of the vehicle, and it is difficult to select a frequency component having a uniform correspondence with the speed. Therefore, there is a problem that the speed cannot be measured accurately.
 本発明は、上記実情に鑑みてなされたものであり、簡易及び安価な構成で、車両の速度を正確に計測することができる速度計測装置等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a speed measuring device and the like that can accurately measure the speed of a vehicle with a simple and inexpensive configuration.
 上記目的を達成するため、本発明の第1の観点に係る速度計測装置は、
 車両に備える加速度センサと、
 前記加速度センサが出力する加速度の情報を取得する加速度取得部と、
 前記加速度取得部が取得した前記加速度の大きさのばらつき量を計算するばらつき量計算部と、
 予め前記車両を走行させることにより前記ばらつき量計算部が計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶部と、
 実測時に前記ばらつき量計算部が計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力部と、
 を備えることを特徴とする。
In order to achieve the above object, a speed measuring device according to the first aspect of the present invention provides:
An acceleration sensor provided in the vehicle;
An acceleration acquisition unit for acquiring information of acceleration output by the acceleration sensor;
A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit;
A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit by traveling the vehicle in advance and a speed;
A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information;
It is characterized by providing.
 前記加速度取得部は、前記加速度センサより加速度ベクトルを取得し、
 前記ばらつき量計算部が前記ばらつき量を計算する前記加速度の大きさは、前記加速度ベクトルの鉛直方向成分の大きさであってもよい。
The acceleration acquisition unit acquires an acceleration vector from the acceleration sensor,
The magnitude of the acceleration with which the variation amount calculation unit calculates the variation amount may be a magnitude of a vertical component of the acceleration vector.
 前記加速度センサの姿勢を取得する姿勢取得部と、
 前記姿勢取得部が取得した姿勢に基づいて、前記加速度センサの計測軸に対する鉛直方向ベクトルを取得する鉛直方向取得部と、を更に備え、
 前記ばらつき量計算部は、前記鉛直方向取得部が取得した前記鉛直方向ベクトルを用いて前記加速度ベクトルの前記鉛直方向成分の大きさの前記ばらつき量を計算してもよい。
A posture acquisition unit that acquires the posture of the acceleration sensor;
A vertical direction acquisition unit that acquires a vertical direction vector with respect to the measurement axis of the acceleration sensor based on the posture acquired by the posture acquisition unit;
The variation amount calculation unit may calculate the variation amount of the magnitude of the vertical direction component of the acceleration vector using the vertical direction vector acquired by the vertical direction acquisition unit.
 車両に備える角速度センサと、
 前記加速度センサ及び前記角速度センサの姿勢を取得する姿勢取得部と、
 前記姿勢取得部が取得した姿勢と、前記角速度センサが出力する角速度ベクトルに基づいて進行方向ベクトルを取得する進行方向取得部と、を更に備え、
 前記ばらつき量計算部は、前記進行方向取得部が取得した前記進行方向ベクトルを用いて加速度ベクトルの進行方向成分の大きさの前記ばらつき量を計算してもよい。
An angular velocity sensor provided in the vehicle;
A posture acquisition unit that acquires postures of the acceleration sensor and the angular velocity sensor;
An orientation acquired by the orientation acquisition unit; and a traveling direction acquisition unit that acquires a traveling direction vector based on the angular velocity vector output by the angular velocity sensor;
The variation amount calculation unit may calculate the variation amount of the magnitude of the traveling direction component of the acceleration vector using the traveling direction vector acquired by the traveling direction acquisition unit.
 車両に備える角速度センサと、
 前記加速度センサ及び前記角速度センサの姿勢を計算する姿勢計算部と、
 前記姿勢計算部が計算した姿勢に基づいて、前記加速度センサの計測軸に対する鉛直方向ベクトルを計算する鉛直方向計算部と、
 前記姿勢計算部が計算した姿勢と、前記角速度センサが出力する角速度ベクトルに基づいて前記加速度センサの計測軸に対する進行方向ベクトルを計算する進行方向計算部と、を更に備え、
 前記ばらつき量計算部は、前記鉛直方向ベクトルを用いて計算した加速度ベクトルの鉛直方向成分の大きさの鉛直方向成分ばらつき量と、前記進行方向ベクトルを用いて計算した前記加速度ベクトルの進行方向成分の大きさの進行方向成分ばらつき量と、の和である前記ばらつき量を計算してもよい。
An angular velocity sensor provided in the vehicle;
An attitude calculation unit for calculating the attitude of the acceleration sensor and the angular velocity sensor;
A vertical direction calculation unit that calculates a vertical direction vector with respect to the measurement axis of the acceleration sensor, based on the posture calculated by the posture calculation unit;
An orientation calculated by the orientation calculator, and a traveling direction calculator that calculates a traveling direction vector for the measurement axis of the acceleration sensor based on the angular velocity vector output by the angular velocity sensor;
The variation amount calculation unit includes a vertical direction component variation amount of the magnitude of the vertical direction component of the acceleration vector calculated using the vertical direction vector, and a traveling direction component of the acceleration vector calculated using the traveling direction vector. You may calculate the said variation | change_quantity which is the sum of the advancing direction component variation | change_quantity of a magnitude | size.
 前記ばらつき量は、標準偏差であってもよい。 The variation amount may be a standard deviation.
 前記ばらつき量は、分散値であってもよい。 The dispersion amount may be a dispersion value.
 また、本発明の第2の観点に係る位置計測装置は、
 第1の観点に係る速度計測装置が計測した速度を積分することにより、前記速度計測装置を備えた前記車両の位置を出力することを特徴とする。
In addition, the position measuring device according to the second aspect of the present invention includes:
The position of the vehicle provided with the speed measuring device is output by integrating the speed measured by the speed measuring device according to the first aspect.
 また、本発明の第3の観点に係る速度計測方法は、
 車両に備える加速度センサの出力に基づいて前記車両の速度を計測する速度計測方法であって、
 前記加速度センサが出力する加速度の情報を取得する加速度取得ステップと、
 前記加速度取得ステップで取得した前記加速度の大きさのばらつき量を計算するばらつき量計算ステップと、
 予め前記車両を走行させることにより前記ばらつき量計算ステップで計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶ステップと、
 実測時に前記ばらつき量計算ステップで計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力ステップと、
 を有することを特徴とする。
Moreover, the speed measuring method according to the third aspect of the present invention includes:
A speed measurement method for measuring a speed of the vehicle based on an output of an acceleration sensor provided in the vehicle,
An acceleration acquisition step of acquiring acceleration information output by the acceleration sensor;
A variation amount calculating step of calculating a variation amount of the magnitude of the acceleration acquired in the acceleration acquiring step;
A storage step for storing function information indicating a relationship between the variation amount calculated in the variation amount calculation step and the speed by running the vehicle in advance;
A speed output step of outputting the speed by substituting the variation amount calculated in the variation amount calculation step at the time of actual measurement into a function indicated by the function information;
It is characterized by having.
 また、本発明の第4の観点に係るプログラムは、
 車両に備える加速度センサに通信可能に接続されたコンピュータを
 前記加速度センサが出力する加速度の情報を取得する加速度取得部、
 前記加速度取得部が取得した前記加速度の大きさのばらつき量を計算するばらつき量計算部、
 予め前記車両を走行させることにより前記ばらつき量計算部が計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶部、
 実測時に前記ばらつき量計算部が計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力部、
 として機能させることを特徴とする。
A program according to the fourth aspect of the present invention is:
A computer connected to an acceleration sensor included in the vehicle so as to be communicable; an acceleration acquisition unit configured to acquire information on acceleration output from the acceleration sensor;
A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit;
A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit and the speed by running the vehicle in advance;
A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information;
It is made to function as.
 本発明によれば、簡易及び安価な構成で、車両の速度を正確に計測することが可能となる。 According to the present invention, the vehicle speed can be accurately measured with a simple and inexpensive configuration.
本発明の実施形態1に係る速度計測装置を設置した車両を示す図である。It is a figure which shows the vehicle which installed the speed measurement apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る速度計測装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the speed measuring device which concerns on Embodiment 1 of this invention. 速度計測装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a speed measuring device. 関数導出処理のフローチャートである。It is a flowchart of a function derivation process. 速度計測処理のフローチャートである。It is a flowchart of a speed measurement process. 位置計測装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a position measuring device. 本発明の実施形態2に係る速度計測装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the speed measuring device which concerns on Embodiment 2 of this invention. 速度計測処理のフローチャートである。It is a flowchart of a speed measurement process. 本発明の実施形態3に係る速度計測装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the speed measurement apparatus which concerns on Embodiment 3 of this invention. 速度計測装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a speed measuring device. 速度計測処理のフローチャートである。It is a flowchart of a speed measurement process. 速度と標準偏差との関係を示すグラフである。It is a graph which shows the relationship between speed and standard deviation.
(実施形態1)
 本発明の実施形態1について図面を参照して詳細に説明する。図1は、実施形態1に係る速度計測装置1を設置した車両を示す図である。本実施形態では、図1に示すように屋内又は狭小な領域で走行するフォークリフト等の車両100に速度計測装置1を設置した場合について説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a vehicle in which a speed measurement device 1 according to the first embodiment is installed. In the present embodiment, a case where the speed measuring device 1 is installed in a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
 速度計測装置1は、速度計測処理のプログラムがインストールされた任意の情報処理装置から構成される。 The speed measurement device 1 is composed of an arbitrary information processing apparatus in which a speed measurement processing program is installed.
 本実施形態に係る速度計測装置1は、加速度センサの出力に基づいて速度を計測する情報処理装置である。図2は、速度計測装置1のハードウェア構成を示すブロック図である。図2に示すように、速度計測装置1は、制御部11と、記憶部12と、表示部13と、通信部14と、加速度センサ15と、を備える。制御部11は、記憶部12、表示部13及び通信部14と互いに接続され、加速度センサ15は、通信部14を介して制御部11に接続されている。また、通信部14は、任意の通信手段により外部機器と接続することができる。本実施形態ではキャリブレーション装置2と接続されている。 The speed measurement device 1 according to the present embodiment is an information processing device that measures a speed based on an output of an acceleration sensor. FIG. 2 is a block diagram illustrating a hardware configuration of the speed measuring device 1. As shown in FIG. 2, the speed measurement device 1 includes a control unit 11, a storage unit 12, a display unit 13, a communication unit 14, and an acceleration sensor 15. The control unit 11 is connected to the storage unit 12, the display unit 13, and the communication unit 14, and the acceleration sensor 15 is connected to the control unit 11 via the communication unit 14. Moreover, the communication part 14 can be connected with an external apparatus by arbitrary communication means. In this embodiment, the calibration apparatus 2 is connected.
 制御部11は、ROM(Read Only Memory)と、RAM(Random Access Memory)と、CPU(Central Processing Unit)と、を備える。ROMは、各種初期設定、ハードウェアの検査、プログラムのロード等を行うための初期プログラム等を記憶する。RAMは、CPUが実行する各種ソフトウェアプログラム、これらのソフトウェアプログラムの実行に必要なデータ等を一時的に記憶するワークエリアとして機能する。CPUは、様々な処理及び演算を実行する中央演算処理部である。 The control unit 11 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit). The ROM stores an initial program for performing various initial settings, hardware inspection, program loading, and the like. The RAM functions as a work area for temporarily storing various software programs executed by the CPU and data necessary for executing these software programs. The CPU is a central processing unit that executes various processes and operations.
 記憶部12は、例えばフラッシュメモリのような不揮発性メモリから構成される。記憶部12は、その一部の記憶領域が加速度センサ15の計測値を上書き保存する計測値バッファ121として用いられ、その他の記憶領域に速度を算出するための関数データ122及び速度計測処理プログラム等の各種プログラムを記憶する。 The storage unit 12 is composed of a nonvolatile memory such as a flash memory. In the storage unit 12, a part of the storage area is used as a measurement value buffer 121 that overwrites and saves the measurement value of the acceleration sensor 15, and the function data 122 for calculating the speed in the other storage area, the speed measurement processing program, etc. The various programs are memorized.
 計測値バッファ121は、例えば、スカラー値(実数)を所定の個数分だけ格納する1次元バッファであり、加速度センサ15の計測値を格納する。所定の個数分を超えて入力された場合は、既に格納されているデータのうち、最も古いデータが順に上書き保存される仕組みを備えている。 The measurement value buffer 121 is, for example, a one-dimensional buffer that stores a predetermined number of scalar values (real numbers), and stores the measurement values of the acceleration sensor 15. When the number of inputs exceeds a predetermined number, the oldest data among the already stored data is sequentially overwritten and saved.
 表示部13は、例えば、液晶ディスプレイ又は有機EL(Electro Luminescence)ディスプレイ等のような表示デバイスを備える。表示部13は、制御部11から速度計測結果を示す信号を取得して表示デバイスの画面に数字又は画像を出力する。 The display unit 13 includes a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display unit 13 acquires a signal indicating the speed measurement result from the control unit 11 and outputs a number or an image on the screen of the display device.
 通信部14は、有線又は無線の複数の通信手段を備える。通信部14は加速度センサ15から出力される加速度ベクトルのデータを取得し、制御部11に出力する。また、通信部14は、制御部11から出力される計算結果をキャリブレーション装置2に送信し、キャリブレーション装置2からキャリブレーション結果を受信し、制御部11に出力する。 The communication unit 14 includes a plurality of wired or wireless communication means. The communication unit 14 acquires acceleration vector data output from the acceleration sensor 15 and outputs the data to the control unit 11. In addition, the communication unit 14 transmits the calculation result output from the control unit 11 to the calibration device 2, receives the calibration result from the calibration device 2, and outputs it to the control unit 11.
 加速度センサ15は、互いに直交する3つの計測軸を有する3次元の加速度ベクトルを計測するセンサである。例えば、MEMS(Micro Electro Mechanical System:微小電子機械システム)の加速度センサから構成される。加速度センサ15は、3次元の加速度ベクトルの各計測軸方向の3成分を出力するとともに、各出力データ間の時間差Δtを出力する。 The acceleration sensor 15 is a sensor that measures a three-dimensional acceleration vector having three measurement axes orthogonal to each other. For example, it is composed of an acceleration sensor of MEMS (Micro Electro Mechanical System). The acceleration sensor 15 outputs three components of each measurement axis direction of a three-dimensional acceleration vector, and outputs a time difference Δt between output data.
 速度計測装置1の制御部11は、記憶部12に記憶している速度計測処理プログラムを実行することにより、図3に示すように、加速度計測部111、標準偏差計算部112、速度計算部113として機能する。 As shown in FIG. 3, the control unit 11 of the speed measurement device 1 executes the speed measurement processing program stored in the storage unit 12, and as illustrated in FIG. 3, the acceleration measurement unit 111, the standard deviation calculation unit 112, and the speed calculation unit 113. Function as.
 加速度計測部111は、加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータを取得し、取得したデータから加速度ベクトルの大きさを計測する。そして、加速度計測部111は得られた計測値を計測値バッファ121に記憶させる。計測値バッファ121には所定の個数分のデータが格納されるため、所定の個数を超えて入力される場合は、既に格納されているデータのうち、最も古いデータが順に上書き保存される。つまり、計測値バッファ121には、常に所定の個数以下の計測値が格納されている。 The acceleration measuring unit 111 acquires three-component data of each acceleration axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14, and measures the magnitude of the acceleration vector from the acquired data. Then, the acceleration measuring unit 111 stores the obtained measurement value in the measurement value buffer 121. Since a predetermined number of pieces of data are stored in the measurement value buffer 121, when the predetermined number of pieces of data are input, the oldest data among the already stored data is sequentially overwritten and saved. That is, the measurement value buffer 121 always stores a predetermined number or less of measurement values.
 標準偏差計算部112は、計測値バッファ121に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する。標準偏差計算部112は、速度計測装置1のキャリブレーション時には、計算した標準偏差を通信部14に出力し、通信部14はキャリブレーション装置2に標準偏差を送信する。 The standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values. The standard deviation calculator 112 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
 標準偏差計算部112が計算する標準偏差σは以下の式(1)で表される。 The standard deviation σ calculated by the standard deviation calculator 112 is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、加速度センサ15が検知する加速度の変化は、様々な事象が要因となっている。車輪は、回転軸である車軸の周りにボールを配置したベアリング構造を有することによりスムーズに回転する。このベアリングを構成するボールの回転による振動が高周波数帯域に生じる。この振動のばらつき量は、車両100の速度に対して一様に変化する。よって、速度は、加速度の標準偏差σを引数とした関数で表すことができる。キャリブレーション装置2は、実測前のキャリブレーション時に車両100を定速度で数回走行させる。速度計測装置1は、そのとき加速度センサ15が検出した加速度の大きさの標準偏差を求め、キャリブレーション装置2に送信する。標準偏差を受信したキャリブレーション装置2は、速度と標準偏差との関係を表す関数を求め、その関数を示す関数データ122を速度計測装置1に送信する。 Here, the change in acceleration detected by the acceleration sensor 15 is caused by various events. A wheel rotates smoothly by having a bearing structure in which balls are arranged around an axle that is a rotating shaft. Vibration due to rotation of the ball constituting the bearing occurs in a high frequency band. The variation amount of the vibration changes uniformly with respect to the speed of the vehicle 100. Therefore, the speed can be expressed by a function having the standard deviation σ of acceleration as an argument. The calibration device 2 causes the vehicle 100 to travel several times at a constant speed during calibration before actual measurement. The speed measurement device 1 obtains the standard deviation of the magnitude of the acceleration detected by the acceleration sensor 15 at that time, and transmits it to the calibration device 2. The calibration apparatus 2 that has received the standard deviation obtains a function representing the relationship between the speed and the standard deviation, and transmits function data 122 indicating the function to the speed measurement apparatus 1.
 標準偏差計算部112は、速度計測装置1の実測時には、計算した標準偏差を速度計算部113に出力する。実測前のキャリブレーション時に、通信部14はキャリブレーション装置2から速度を計算するために用いる関数データ122を受信し、記憶部12は関数データ122を記憶する。速度計算部113は、関数データ122により示される、標準偏差を引数とする関数に、標準偏差計算部112から入力される標準偏差を代入し速度を計算する。そして、計算して得られた速度を表示部13に出力し、表示部13が速度を表示する。 The standard deviation calculator 112 outputs the calculated standard deviation to the speed calculator 113 when the speed measuring device 1 is actually measured. At the time of calibration before actual measurement, the communication unit 14 receives the function data 122 used for calculating the speed from the calibration device 2, and the storage unit 12 stores the function data 122. The speed calculation unit 113 calculates the speed by substituting the standard deviation input from the standard deviation calculation unit 112 into a function indicated by the function data 122 and having the standard deviation as an argument. And the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
 以上のように構成された速度計測装置1の動作について図4、5に示すフローチャートに沿って説明する。図4は、速度計測処理で用いる関数を導出する関数導出処理のフローチャートである。図5は、速度計測処理のフローチャートである。 The operation of the speed measuring device 1 configured as described above will be described with reference to the flowcharts shown in FIGS. FIG. 4 is a flowchart of a function derivation process for deriving a function used in the speed measurement process. FIG. 5 is a flowchart of the speed measurement process.
 図4の関数導出処理は、キャリブレーション装置2で実行する処理である。キャリブレーション装置2は、実測前の事前調整の段階において、速度計測装置1を実装した車両100を任意の速度で定速度走行させ、その際速度計測装置1が計算し送信する標準偏差のデータを取得し、速度と標準偏差の関係を表す関数を求める。 4 is a process executed by the calibration device 2. The calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at a pre-adjustment stage before actual measurement, and the standard deviation data calculated and transmitted by the speed measuring device 1 at that time is used. Obtain a function that represents the relationship between speed and standard deviation.
 キャリブレーション時の車両100の速度の計測は、従来の任意の方法で行う。ここでは、車両100を予め距離を計測しておいた2点間を定速度で走行させ(ステップS101)、2点間を通過するのに要した時間と、2点間の距離から速度を計算する(ステップS102)。 Measure the speed of the vehicle 100 during calibration by any conventional method. Here, the vehicle 100 is traveled at a constant speed between two points whose distances have been measured in advance (step S101), and the speed is calculated from the time required to pass between the two points and the distance between the two points. (Step S102).
 2点間を走行させたとき、速度計測装置1の加速度計測部111は加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータを取得し、取得したデータから加速度ベクトルの大きさを計測する。そして、加速度計測部111は得られた計測値を計測値バッファ121に格納する。 When traveling between two points, the acceleration measuring unit 111 of the speed measuring device 1 acquires and acquires data of three components of each acceleration axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14. Measure the magnitude of the acceleration vector from the data. Then, the acceleration measuring unit 111 stores the obtained measurement value in the measurement value buffer 121.
 標準偏差計算部112は、計測値バッファ121に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する。計算した標準偏差を通信部14に出力し、通信部14はキャリブレーション装置2に送信する。 The standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values. The calculated standard deviation is output to the communication unit 14, and the communication unit 14 transmits it to the calibration device 2.
 キャリブレーション装置2は、速度計測装置1から標準偏差計算部112が計算した加速度の大きさの標準偏差を受信する(ステップS103)。そして、ステップS102で計算した速度とステップS103で受信した標準偏差のデータを記憶する(ステップS104)。 The calibration device 2 receives the standard deviation of the magnitude of the acceleration calculated by the standard deviation calculation unit 112 from the speed measurement device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
 車両100は異なる速度の定速度走行を繰り返し行うが、キャリブレーション装置2は、予め定めた予定数の計測が終了したか否かを判定し(ステップS105)、予定数の計測が終了していない場合には(ステップS105:No)、ステップS101に戻り、ステップS104までの処理を繰り返し実行する。予定数の計測が終了した場合には(ステップS105:Yes)、速度と標準偏差との関係を表す関数を導出し、その関数の係数からなる関数データ122を速度計測装置1へ送信する(ステップS106)。 The vehicle 100 repeatedly performs constant speed driving at different speeds, but the calibration device 2 determines whether or not the predetermined number of measurements has been completed (step S105), and the measurement of the number of schedules has not been completed. In this case (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed. When the measurement of the planned number is completed (step S105: Yes), a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step). S106).
 速度と標準偏差は線形関係があるため、速度と標準偏差をプロットしたものに近似する一次関数を求める。一次関数の導出方法は従来の任意の方法でよく、例えば最小二乗法を用いて導出する。 Since the speed and standard deviation have a linear relationship, a linear function that approximates the plot of speed and standard deviation is obtained. The method for deriving the linear function may be any conventional method, for example, using the least square method.
 速度計測装置1の通信部14は、キャリブレーション装置2から送信された関数データ122を受信し、記憶部12に記憶する。 The communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2 and stores it in the storage unit 12.
 記憶部12に関数データ122が記憶された状態で、速度計測装置1は、図5に示す速度計測処理を実行する。まず、速度計測装置1の加速度計測部111は加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータを取得し、取得したデータから加速度ベクトルの大きさを計測する。そして、加速度計測部111は得られた計測値を計測値バッファ121に格納する(ステップS201)。 In the state where the function data 122 is stored in the storage unit 12, the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration measuring unit 111 of the speed measuring device 1 acquires three-component data in each measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14, and the magnitude of the acceleration vector from the acquired data. Measure. Then, the acceleration measurement unit 111 stores the obtained measurement value in the measurement value buffer 121 (step S201).
 標準偏差計算部112は、計測値バッファ121に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する(ステップS202)。次に、速度計算部113は、関数データ122を読み込み、関数データ122が示す関数に、標準偏差計算部112が計算した加速度の大きさの標準偏差を代入して速度を計算する(ステップS203)。そして、表示部13にステップS203で計算した速度を表示する(ステップS204)。 The standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values (step S202). Next, the speed calculation unit 113 reads the function data 122, and calculates the speed by substituting the standard deviation of the magnitude of the acceleration calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122 (step S203). . Then, the speed calculated in step S203 is displayed on the display unit 13 (step S204).
 このようにして、加速度センサ15の出力に基づいて、速度を計算し表示させることができる。 In this way, the speed can be calculated and displayed based on the output of the acceleration sensor 15.
 なお、速度計測装置1に、速度計算部113で計算した速度に基づいて、車両100の位置を計算して出力する機能を追加して、位置計測装置3を構成することもできる。図6は位置計測装置3の機能構成を示すブロック図である。位置計測装置3は図6に示すように、速度計測装置1に対して、速度計算部113で計算した速度を積分して車両100の位置を計算する位置計算部114を更に備える。位置計算部114で計算した位置情報を表示部13に表示させる。 Note that the position measuring device 3 can be configured by adding a function of calculating and outputting the position of the vehicle 100 based on the speed calculated by the speed calculating unit 113 to the speed measuring device 1. FIG. 6 is a block diagram showing a functional configuration of the position measuring device 3. As shown in FIG. 6, the position measuring device 3 further includes a position calculating unit 114 that integrates the speed calculated by the speed calculating unit 113 and calculates the position of the vehicle 100 with respect to the speed measuring device 1. The position information calculated by the position calculation unit 114 is displayed on the display unit 13.
 以上説明したように、本実施形態においては、速度計測装置1の加速度計測部111が計測した加速度の大きさの計測値を計測値バッファ121に記憶させ、標準偏差計算部112が加速度の大きさの標準偏差を計算する。予め、キャリブレーション装置2が、速度計測装置1を設置した車両100を任意の定速度で走行させたときの標準偏差を取得し、速度と標準偏差との関係を表す関数を導出する。そして、関数データ122は記憶部12に記憶させる。実測時には、速度計算部113が、標準偏差計算部112が計算した標準偏差を、関数データ122が示す関数に代入することにより速度を計算することとした。これにより、加速度センサを含むモジュールを搭載するという簡易及び安価な構成で、車両の速度を正確に計測することができる。また、計測した速度に基づいて、車両の位置を計測することができる。 As described above, in the present embodiment, the measured value of the magnitude of acceleration measured by the acceleration measuring unit 111 of the velocity measuring device 1 is stored in the measured value buffer 121, and the standard deviation calculating unit 112 is measured by the magnitude of acceleration. Calculate the standard deviation of. In advance, the calibration device 2 acquires a standard deviation when the vehicle 100 on which the speed measuring device 1 is installed is traveled at an arbitrary constant speed, and derives a function representing a relationship between the speed and the standard deviation. The function data 122 is stored in the storage unit 12. At the time of actual measurement, the speed calculation unit 113 calculates the speed by substituting the standard deviation calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122. Thereby, the speed of the vehicle can be accurately measured with a simple and inexpensive configuration in which a module including an acceleration sensor is mounted. Further, the position of the vehicle can be measured based on the measured speed.
(実施形態2)
 本発明の実施形態2について図面を参照して詳細に説明する。本実施形態でも、図1に示すような屋内又は狭小な領域で走行するフォークリフト等の車両100に速度計測装置1を設置した場合について説明する。
(Embodiment 2)
Embodiment 2 of the present invention will be described in detail with reference to the drawings. Also in this embodiment, the case where the speed measuring device 1 is installed in a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
 本実施形態に係る速度計測装置1は、実施形態1と同様に加速度センサ15の出力に基づいて速度を計測する情報処理装置であり、ハードウェア構成も実施形態1と同様である。制御部11の機能構成と制御部11が実行する速度計測処理が実施形態1と異なるため、これらについて図7、8を用いて詳細に説明する。 The speed measurement apparatus 1 according to the present embodiment is an information processing apparatus that measures speed based on the output of the acceleration sensor 15 as in the first embodiment, and the hardware configuration is the same as that in the first embodiment. Since the functional configuration of the control unit 11 and the speed measurement process executed by the control unit 11 are different from those in the first embodiment, these will be described in detail with reference to FIGS.
 本実施形態に係る速度計測装置1の制御部11は、記憶部12に記憶している速度計測処理プログラムを実行することにより、図7に示すように、加速度ベクトル計測部211、姿勢計算部212、鉛直方向計算部213、鉛直方向成分計算部214、標準偏差計算部112、速度計算部113として機能する。 As illustrated in FIG. 7, the control unit 11 of the speed measurement device 1 according to the present embodiment executes a speed measurement processing program stored in the storage unit 12, so that an acceleration vector measurement unit 211 and an attitude calculation unit 212 are illustrated. , Function as vertical direction calculation unit 213, vertical direction component calculation unit 214, standard deviation calculation unit 112, and speed calculation unit 113.
 また、速度計測装置1の記憶部12には、実施形態1と同様に計測値バッファ121を備え、関数データ122を記憶するが、これらに加えて、操作者が入力した加速度センサ15の姿勢に係る姿勢設定値123を記憶する。姿勢設定値123は、例えば、車両100に対する設置情報を含む。具体的には、加速度センサ15のローカル座標系と車両100のローカル座標系との間の姿勢関係を示す情報(例えば、座標系間の変換行列(3×3実行列)を記憶する。 Further, the storage unit 12 of the speed measurement device 1 includes the measurement value buffer 121 as in the first embodiment, and stores the function data 122. In addition to these, the attitude of the acceleration sensor 15 input by the operator is stored. The posture setting value 123 is stored. The posture setting value 123 includes installation information for the vehicle 100, for example. Specifically, information indicating the attitude relationship between the local coordinate system of the acceleration sensor 15 and the local coordinate system of the vehicle 100 (for example, a transformation matrix (3 × 3 execution sequence) between coordinate systems is stored.
 制御部11の加速度ベクトル計測部211は、加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータと、各出力データ間の時間差Δtを取得する。 The acceleration vector measurement unit 211 of the control unit 11 acquires the three-component data in the measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14 and the time difference Δt between the output data.
 姿勢計算部212は、加速度ベクトル計測部211から入力される加速度ベクトルのデータとその時間差Δtと、姿勢設定値123に含まれる加速度センサ15と車両100との姿勢関係を示す情報に基づいて、加速度センサ15の計測軸が示すローカル座標系の姿勢を計算する。例えば、姿勢計算部212は加速度センサ15の計測軸が示すローカル座標系を世界座標系に変換する回転行列を出力する。鉛直方向の動的算出は、従来の任意の方法により可能であり、例えば、非特許文献1、興梠正克、大隈隆史、蔵田武志、「歩行者ナビのための自蔵センサモジュールを用いた屋内測位システムとその評価」、シンポジウム「モバイル08」予稿集、pp.151-156,2008に記載の方法を用いて行う。 The posture calculation unit 212 is based on the acceleration vector data input from the acceleration vector measurement unit 211, the time difference Δt, and information indicating the posture relationship between the acceleration sensor 15 and the vehicle 100 included in the posture setting value 123. The attitude of the local coordinate system indicated by the measurement axis of the sensor 15 is calculated. For example, the posture calculation unit 212 outputs a rotation matrix that converts the local coordinate system indicated by the measurement axis of the acceleration sensor 15 into the world coordinate system. The dynamic calculation in the vertical direction can be performed by any conventional method. For example, Non-Patent Document 1, Masakatsu Oki, Takashi Otsuki, Takeshi Kurata, “Indoor using a self-contained sensor module for pedestrian navigation Positioning System and its Evaluation ”, Symposium“ Mobile 08 ”Proceedings, pp. 151-156, 2008.
 鉛直方向計算部213は、姿勢計算部212から入力される姿勢に基づいて、加速度センサの座標系における鉛直方向を計算し、鉛直方向ベクトルを出力する。例えば、姿勢計算部212から入力される加速度センサ15のローカル座標系を世界座標系に変換する回転行列の逆行列を用いて世界座標系における鉛直方向ベクトルを変換し、ローカル座標系における鉛直方向ベクトルを算出する。 The vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 212 and outputs a vertical direction vector. For example, the vertical direction vector in the world coordinate system is converted using the inverse matrix of the rotation matrix that converts the local coordinate system of the acceleration sensor 15 input from the posture calculation unit 212 into the world coordinate system, and the vertical direction vector in the local coordinate system. Is calculated.
 鉛直方向成分計算部214は、加速度ベクトル計測部211が計測した加速度ベクトルの鉛直方向成分を計算する。具体的には、加速度ベクトルを、鉛直方向計算部213から入力される鉛直方向ベクトルに対して射影した成分(スカラー値)から重力加速度(1G≒9.8[m/s])を差し引いた動加速度成分を計算して、鉛直方向成分として出力する。 The vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 211. Specifically, the motion obtained by subtracting the gravitational acceleration (1G≈9.8 [m / s]) from the component (scalar value) obtained by projecting the acceleration vector with respect to the vertical vector input from the vertical calculation unit 213. The acceleration component is calculated and output as the vertical component.
 加速度ベクトルの鉛直方向への射影ベクトルは以下の式(2)に基づいて計算できる。 The projection vector of the acceleration vector in the vertical direction can be calculated based on the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、射影ベクトルの大きさは以下の式(3)により算出される。 Therefore, the size of the projection vector is calculated by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この数値から重力加速度の1Gを減じた値が、鉛直方向成分となる。 The value obtained by subtracting 1G of gravitational acceleration from this value is the vertical component.
 鉛直方向成分計算部214が計算した加速度ベクトルの鉛直方向成分は、順次計測値バッファ121に格納する。計測値バッファ121には所定の個数分のデータが格納されるため、所定の個数を超えて入力される場合は、既に格納されているデータのうち、最も古いデータが順に上書き保存される。つまり、計測値バッファ121には、常に所定の個数以下の計測値が格納されている。 The vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 214 is sequentially stored in the measurement value buffer 121. Since a predetermined number of pieces of data are stored in the measurement value buffer 121, when the predetermined number of pieces of data are input, the oldest data among the already stored data is sequentially overwritten and saved. That is, the measurement value buffer 121 always stores a predetermined number or less of measurement values.
 標準偏差計算部112は、計測値バッファ121に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する。標準偏差計算部112は、速度計測装置1のキャリブレーション時には、計算した標準偏差を通信部14に出力し、通信部14はキャリブレーション装置2に標準偏差を送信する。 The standard deviation calculation unit 112 reads all the measurement values stored in the measurement value buffer 121 and calculates the standard deviation of the measurement values. The standard deviation calculator 112 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
 標準偏差計算部112が計算する標準偏差σは以下の式(4)で表される。 The standard deviation σ calculated by the standard deviation calculator 112 is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 標準偏差計算部112は、速度計測装置1の実測時には、計算した標準偏差を速度計算部113に出力する。実測前のキャリブレーション時に、通信部14はキャリブレーション装置2から速度を計算するために用いる関数データ122を取得し、記憶部12は関数データ122を記憶する。速度計算部113は、関数データ122により示される、標準偏差を引数とする関数に、標準偏差計算部112から入力される標準偏差を代入し速度を計算する。そして、計算して得られた速度を表示部13に出力し、表示部13が速度を表示する。 The standard deviation calculator 112 outputs the calculated standard deviation to the speed calculator 113 when the speed measuring device 1 is actually measured. At the time of calibration before actual measurement, the communication unit 14 acquires function data 122 used for calculating the speed from the calibration device 2, and the storage unit 12 stores the function data 122. The speed calculation unit 113 calculates the speed by substituting the standard deviation input from the standard deviation calculation unit 112 into a function indicated by the function data 122 and having the standard deviation as an argument. And the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
 以上のように構成された速度計測装置1の動作について図8に示すフローチャートに沿って説明する。図8は、速度計測処理のフローチャートである。 The operation of the speed measuring device 1 configured as described above will be described with reference to the flowchart shown in FIG. FIG. 8 is a flowchart of the speed measurement process.
 まず、実施形態1と同様にキャリブレーション装置2が、実測前の事前調整の段階において、速度計測装置1を実装した車両100を任意の速度で定速度走行させる。その際キャリブレーション装置2は速度計測装置1が計算し送信する標準偏差のデータを取得し、速度と標準偏差の関係を表す関数を求める。関数導出処理を図4に沿って説明する。 First, as in the first embodiment, the calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at an arbitrary speed in a pre-adjustment stage before actual measurement. At that time, the calibration device 2 obtains standard deviation data calculated and transmitted by the speed measuring device 1, and obtains a function representing the relationship between the speed and the standard deviation. The function derivation process will be described with reference to FIG.
 キャリブレーション装置2は、キャリブレーション時に車両100を、予め定めた2点間を定速度で走行させ(ステップS101)、速度を計算する(ステップS102)。車両100を走行させたとき、速度計測装置1の加速度ベクトル計測部211は加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータと各出力データ間の時間差Δtを取得する。 The calibration device 2 causes the vehicle 100 to travel at a constant speed between two predetermined points during calibration (step S101), and calculates the speed (step S102). When the vehicle 100 is made to travel, the acceleration vector measurement unit 211 of the speed measurement device 1 uses the acceleration vector input from the acceleration sensor 15 via the communication unit 14 between the three component data in each measurement axis direction and each output data. The time difference Δt is acquired.
 姿勢計算部212は、加速度ベクトル計測部211から入力される加速度ベクトルのデータとその時間差Δtと、姿勢設定値123に基づいて、加速度センサ15の計測軸が示すローカル座標系の姿勢を計算する。鉛直方向計算部213は、姿勢計算部212から入力される姿勢に基づいて、加速度センサ15の座標系における鉛直方向を計算する。 The posture calculation unit 212 calculates the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data input from the acceleration vector measurement unit 211, the time difference Δt, and the posture setting value 123. The vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 212.
 その後、鉛直方向成分計算部214は、加速度ベクトル計測部211が計測した加速度ベクトルの鉛直方向成分を計算する。鉛直方向成分計算部214が計算した加速度ベクトルの鉛直方向成分は、順次計測値バッファ121に格納される。標準偏差計算部112は、計測値バッファ121に格納されている計測値の標準偏差を計算する。そして、通信部14が計算した標準偏差をキャリブレーション装置2に送信する。 Thereafter, the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 211. The vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 214 is sequentially stored in the measurement value buffer 121. The standard deviation calculator 112 calculates the standard deviation of the measurement values stored in the measurement value buffer 121. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
 キャリブレーション装置2は、速度計測装置1の標準偏差計算部112が計算した加速度ベクトルの鉛直方向成分の標準偏差を受信する(ステップS103)。そして、ステップS102で計算した速度とステップS103で受信した標準偏差のデータを記憶する(ステップS104)。 The calibration device 2 receives the standard deviation of the vertical component of the acceleration vector calculated by the standard deviation calculation unit 112 of the speed measurement device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
 車両100は異なる速度の定速度走行を繰り返し行うが、キャリブレーション装置2は、予め定めた予定数の計測が終了したか否かを判定し(ステップS105)、予定数の計測が終了していない場合には(ステップS105:No)、ステップS101に戻り、ステップS104までの処理を繰り返し実行する。予定数の計測が終了した場合には(ステップS105:Yes)、速度と標準偏差との関係を表す関数を導出し、その関数の係数からなる関数データ122を速度計測装置1へ送信する(ステップS106)。 The vehicle 100 repeatedly performs constant speed driving at different speeds, but the calibration device 2 determines whether or not the predetermined number of measurements has been completed (step S105), and the measurement of the number of schedules has not been completed. In this case (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed. When the measurement of the planned number is completed (step S105: Yes), a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step). S106).
 本実施形態でも速度と標準偏差は線形関係があるため、キャリブレーション装置2は、速度と標準偏差をプロットしたものに近似する一次関数を求める。一次関数の導出方法は従来の任意の方法でよく、例えば最小二乗法を用いて導出する。 In this embodiment, since the speed and the standard deviation have a linear relationship, the calibration device 2 obtains a linear function that approximates a plot of the speed and the standard deviation. The method for deriving the linear function may be any conventional method, for example, using the least square method.
 速度計測装置1の通信部14は、キャリブレーション装置2から送信された関数データ122を受信し、記憶部12が関数データ122を記憶する。 The communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2, and the storage unit 12 stores the function data 122.
 記憶部12に関数データ122が記憶された状態で、速度計測装置1は、図8に示す速度計測処理を実行する。まず、速度計測装置1の加速度ベクトル計測部211は加速度センサ15から通信部14を介して入力された加速度ベクトルを取得する(ステップS301)。このとき、加速度ベクトルの各計測軸方向の3成分のデータと、各出力データ間の時間差Δtとを取得する。 In the state where the function data 122 is stored in the storage unit 12, the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration vector measurement unit 211 of the speed measurement device 1 acquires an acceleration vector input from the acceleration sensor 15 via the communication unit 14 (step S301). At this time, data of three components of the acceleration vector in each measurement axis direction and a time difference Δt between the output data are acquired.
 鉛直方向成分計算部214は、取得した加速度ベクトルのデータ及びその時間差Δtと、姿勢設定値123に基づいて、加速度ベクトルの鉛直方向成分を計算し、計測値バッファ121に格納する(ステップS302)。具体的には、キャリブレーション時と同様に、姿勢計算部212が、加速度ベクトルのデータ及びその時間差Δtと、姿勢設定値123に基づいて、加速度センサ15の計測軸が示すローカル座標系の姿勢を計算する。そして、鉛直方向計算部213は計算した姿勢に基づいて、加速度センサのローカル座標系における鉛直方向ベクトルを計算する。 The vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector based on the acquired acceleration vector data, its time difference Δt, and the posture setting value 123, and stores it in the measured value buffer 121 (step S302). Specifically, as in the calibration, the posture calculation unit 212 determines the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data, the time difference Δt, and the posture setting value 123. calculate. Then, the vertical direction calculation unit 213 calculates a vertical direction vector in the local coordinate system of the acceleration sensor based on the calculated posture.
 その後、鉛直方向成分計算部214が、鉛直方向ベクトルを用いて加速度ベクトルの鉛直方向成分を計算し、順次計測値バッファ121に格納する。そして、標準偏差計算部112が、計測値バッファ121に格納されている計測値の標準偏差を計算する(ステップS303)。 Thereafter, the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector using the vertical direction vector, and sequentially stores it in the measured value buffer 121. Then, the standard deviation calculation unit 112 calculates the standard deviation of the measurement values stored in the measurement value buffer 121 (step S303).
 次に、速度計算部113は、関数データ122を読み込み、関数データ122が示す関数に、標準偏差計算部112が計算した加速度ベクトルの鉛直方向成分の標準偏差を代入して速度を計算する(ステップS304)。そして、表示部13にステップS304で計算した速度を表示する(ステップS305)。 Next, the speed calculation unit 113 reads the function data 122, and calculates the speed by substituting the standard deviation of the vertical component of the acceleration vector calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122 (step) S304). Then, the speed calculated in step S304 is displayed on the display unit 13 (step S305).
 このようにして、加速度センサ15の出力に基づいて、速度を計算し表示させることができる。 In this way, the speed can be calculated and displayed based on the output of the acceleration sensor 15.
 なお、本実施形態においても、速度計測装置1に位置計算部114を追加することで位置計測装置3を構成することができる。 In this embodiment as well, the position measuring device 3 can be configured by adding the position calculating unit 114 to the speed measuring device 1.
 以上説明したように、本実施形態においては、速度計測装置1の加速度ベクトル計測部211が計測した加速度ベクトルと姿勢設定値123に基づいて姿勢計算部212が加速度センサ15の姿勢を計算し、その姿勢に基づいて鉛直方向計算部213が加速度センサ15の座標系における鉛直方向を計算する。そして、鉛直方向成分計算部214が加速度ベクトルの鉛直方向成分を計算し、計測値バッファ121に記憶させ、標準偏差計算部112が加速度ベクトルの鉛直方向成分の標準偏差を計算する。予め、キャリブレーション装置2が速度計測装置1を設置した車両を任意の定速度で走行させたときの標準偏差を取得し、速度と標準偏差の関係を表す関数を導出する。そして、関数データ122は記憶部12に記憶させておく。実測時には、速度計算部113が、標準偏差計算部112が計算した標準偏差を、関数データ122が示す関数に代入することにより速度を計算することとした。これにより、加速度ベクトルの鉛直方向成分に基づいて、より正確に車両の速度を計測することができる。 As described above, in this embodiment, the posture calculation unit 212 calculates the posture of the acceleration sensor 15 based on the acceleration vector measured by the acceleration vector measurement unit 211 of the velocity measuring device 1 and the posture setting value 123, and the Based on the posture, the vertical direction calculation unit 213 calculates the vertical direction in the coordinate system of the acceleration sensor 15. Then, the vertical direction component calculation unit 214 calculates the vertical direction component of the acceleration vector and stores it in the measurement value buffer 121, and the standard deviation calculation unit 112 calculates the standard deviation of the vertical direction component of the acceleration vector. In advance, the calibration device 2 acquires a standard deviation when the vehicle on which the speed measuring device 1 is installed is caused to travel at an arbitrary constant speed, and derives a function representing the relationship between the speed and the standard deviation. The function data 122 is stored in the storage unit 12. At the time of actual measurement, the speed calculation unit 113 calculates the speed by substituting the standard deviation calculated by the standard deviation calculation unit 112 into the function indicated by the function data 122. Thereby, the speed of the vehicle can be measured more accurately based on the vertical direction component of the acceleration vector.
(実施形態3)
 本発明の実施形態3について図面を参照して詳細に説明する。本実施形態でも、図1に示すような屋内又は狭小な領域で走行するフォークリフト等の車両100に速度計測装置1を設置した場合について説明する。
(Embodiment 3)
Embodiment 3 of the present invention will be described in detail with reference to the drawings. Also in this embodiment, the case where the speed measuring device 1 is installed in a vehicle 100 such as a forklift that travels indoors or in a narrow area as shown in FIG. 1 will be described.
 本実施形態に係る速度計測装置1は、実施形態1と同様の加速度センサ15と、角速度センサ16の出力に基づいて速度を計測する情報処理装置である。図9は、本実施形態に係る速度計測装置1のハードウェア構成である。図9に示すように、本実施形態の速度計測装置1は、実施形態1の構成に加えて通信部14に角速度センサ16が接続されている。 The speed measurement device 1 according to the present embodiment is an information processing device that measures the speed based on the outputs of the acceleration sensor 15 and the angular velocity sensor 16 similar to those in the first embodiment. FIG. 9 shows a hardware configuration of the speed measurement device 1 according to the present embodiment. As shown in FIG. 9, in the velocity measuring device 1 of the present embodiment, an angular velocity sensor 16 is connected to the communication unit 14 in addition to the configuration of the first embodiment.
 角速度センサ16は、互いに直交する3つの計測軸を有する3次元の角速度ベクトルを計測するセンサである。例えば、MEMS(Micro Electro Mechanical System:微小電子機械システム)の角速度センサ又はジャイロスコープから構成される。角速度センサ16は、3次元の角速度ベクトルの各計測軸方向の3成分を出力するとともに、各出力データ間の時間差Δtを出力する。 The angular velocity sensor 16 is a sensor that measures a three-dimensional angular velocity vector having three measurement axes orthogonal to each other. For example, it is composed of an MEMS (Micro Electro Mechanical System) angular velocity sensor or a gyroscope. The angular velocity sensor 16 outputs three components of the three-dimensional angular velocity vector in the respective measurement axis directions and outputs a time difference Δt between the respective output data.
 なお、加速度センサ15と角速度センサ16は互いに計測軸が一致しているか又は、互いの計測軸の対応関係が予め把握されている。また、加速度センサ15と角速度センサ16が一つの計測ユニットとして一体化されたIMU(Inertial Measurement Unit:慣性測定ユニット)を使用してもよい。 Note that the acceleration sensor 15 and the angular velocity sensor 16 have the same measurement axes, or the correspondence between the measurement axes is known in advance. Further, an IMU (Inertial Measurement Unit) in which the acceleration sensor 15 and the angular velocity sensor 16 are integrated as one measurement unit may be used.
 本実施形態の制御部31の機能構成と制御部31が実行する速度計測処理は実施形態1、2の制御部11と異なるため、これらについて図10、11を用いて詳細に説明する。図10は本実施形態に係る速度計測装置1の機能構成を示すブロック図である。図11は速度計測処理のフローチャートである。 Since the functional configuration of the control unit 31 and the speed measurement process executed by the control unit 31 of the present embodiment are different from those of the control unit 11 of the first and second embodiments, these will be described in detail with reference to FIGS. FIG. 10 is a block diagram showing a functional configuration of the speed measuring device 1 according to the present embodiment. FIG. 11 is a flowchart of the speed measurement process.
 本実施形態に係る速度計測装置1の制御部31は、記憶部12に記憶している速度計測処理プログラムを実行することにより、図10に示すように、加速度ベクトル計測部311、角速度ベクトル計測部312、姿勢計算部313、鉛直方向計算部314、進行方向計算部315、鉛直方向成分計算部316、進行方向成分計算部317、標準偏差計算部(鉛直方向)318、標準偏差計算部(進行方向)319、速度計算部113として機能する。 As shown in FIG. 10, the control unit 31 of the speed measurement device 1 according to the present embodiment executes a speed measurement processing program stored in the storage unit 12, so that an acceleration vector measurement unit 311, an angular velocity vector measurement unit are obtained. 312, posture calculation unit 313, vertical direction calculation unit 314, travel direction calculation unit 315, vertical direction component calculation unit 316, travel direction component calculation unit 317, standard deviation calculation unit (vertical direction) 318, standard deviation calculation unit (travel direction) ) 319, which functions as the speed calculation unit 113.
 また、速度計測装置1の記憶部12は、図10に示すように、計測値バッファ(鉛直方向)124及び計測値バッファ(進行方向)125の2つのバッファを含み、さらに、操作者が入力した加速度センサ15及び角速度センサ16の姿勢に係る姿勢設定値123と、関数データ122と、を記憶する。姿勢設定値123は、例えば、加速度センサ15及び角速度センサ16の車両100に対する設置情報を含む。具体的には、加速度センサ15及び角速度センサ16のそれぞれのローカル座標系と車両100のローカル座標系との間の姿勢関係を示す情報(例えば、座標系間の変換行列(3×3実行列))を記憶する。 Further, as shown in FIG. 10, the storage unit 12 of the speed measuring device 1 includes two buffers, a measurement value buffer (vertical direction) 124 and a measurement value buffer (traveling direction) 125, and further input by the operator. The posture setting value 123 related to the postures of the acceleration sensor 15 and the angular velocity sensor 16 and the function data 122 are stored. The posture setting value 123 includes, for example, installation information for the acceleration sensor 15 and the angular velocity sensor 16 with respect to the vehicle 100. Specifically, information indicating the posture relationship between the local coordinate system of the acceleration sensor 15 and the angular velocity sensor 16 and the local coordinate system of the vehicle 100 (for example, a transformation matrix between coordinate systems (3 × 3 execution sequence)) ) Is stored.
 制御部31の加速度ベクトル計測部311は、加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータと、各出力データ間の時間差Δtを取得する。 The acceleration vector measurement unit 311 of the control unit 31 acquires the three-component data in the measurement axis direction of the acceleration vector input from the acceleration sensor 15 via the communication unit 14 and the time difference Δt between the output data.
 角速度ベクトル計測部312は、角速度センサ16から通信部14を介して入力された角速度ベクトルの各計測軸方向の3成分のデータと、各出力データ間の時間差Δtを取得する。 The angular velocity vector measurement unit 312 acquires the time difference Δt between the three component data in the respective measurement axis directions of the angular velocity vector input from the angular velocity sensor 16 via the communication unit 14 and each output data.
 姿勢計算部313は、加速度ベクトル計測部311から加速度ベクトルのデータとその時間差Δtを取得し、角速度ベクトル計測部312から角速度ベクトルのデータとその時間差Δtを取得する。さらに、姿勢計算部313は、姿勢設定値123に含まれる加速度センサ15及び角速度センサ16と車両100との姿勢関係の情報を取得する。姿勢計算部313は取得したこれらの情報に基づいて、加速度センサ15及び角度センサ16の計測軸が示すローカル座標系の姿勢を計算する。例えば、姿勢計算部313は加速度センサ15及び角速度センサ16の計測軸が示すローカル座標系を世界座標系に変換する回転行列を計算し出力する。 The posture calculation unit 313 acquires acceleration vector data and its time difference Δt from the acceleration vector measurement unit 311, and acquires angular velocity vector data and its time difference Δt from the angular velocity vector measurement unit 312. Further, the posture calculation unit 313 acquires information on the posture relationship between the acceleration sensor 15 and the angular velocity sensor 16 and the vehicle 100 included in the posture setting value 123. The posture calculation unit 313 calculates the posture of the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angle sensor 16 based on the acquired information. For example, the posture calculation unit 313 calculates and outputs a rotation matrix that converts the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angular velocity sensor 16 into the world coordinate system.
 鉛直方向計算部314は、姿勢計算部313から入力される姿勢に基づいて、加速度センサ15の座標系における鉛直方向を計算する。例えば、姿勢計算部313から入力される加速度センサ15のローカル座標系を世界座標系に変換する回転行列の逆行列を用いて世界座標系における鉛直方向ベクトルを変換し、ローカル座標系における鉛直方向ベクトルを算出する。 The vertical direction calculation unit 314 calculates the vertical direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 313. For example, the vertical direction vector in the world coordinate system is converted using the inverse matrix of the rotation matrix that converts the local coordinate system of the acceleration sensor 15 input from the attitude calculation unit 313 into the world coordinate system, and the vertical direction vector in the local coordinate system. Is calculated.
 進行方向計算部315は、姿勢計算部313から入力される姿勢に基づいて、加速度センサ15の座標系における進行方向を計算する。具体的には、鉛直方向計算部314で計算した鉛直方向を基準とした世界座標系における角速度ベクトルに基づいて、ローカル座標系における進行方向ベクトルを算出する。 The traveling direction calculation unit 315 calculates the traveling direction in the coordinate system of the acceleration sensor 15 based on the posture input from the posture calculation unit 313. Specifically, the traveling direction vector in the local coordinate system is calculated based on the angular velocity vector in the world coordinate system based on the vertical direction calculated by the vertical direction calculation unit 314.
 鉛直方向成分計算部316は、加速度ベクトル計測部311が計測した加速度ベクトルの鉛直方向成分を計算する。具体的には、加速度ベクトルを、鉛直方向計算部314から入力される鉛直方向ベクトルに対して射影した成分(スカラー値)から重力加速度(1G≒9.8[m/s])を差し引いた動加速度成分を計算して、鉛直方向成分として出力する。 The vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector measured by the acceleration vector measurement unit 311. Specifically, the motion obtained by subtracting the gravitational acceleration (1G≈9.8 [m / s]) from the component (scalar value) obtained by projecting the acceleration vector with respect to the vertical vector input from the vertical calculation unit 314. The acceleration component is calculated and output as the vertical component.
 加速度ベクトルの鉛直方向への射影ベクトルの大きさ、すなわち加速度ベクトルの鉛直方向成分は実施形態2と同様にして計算できる。 The magnitude of the projection vector in the vertical direction of the acceleration vector, that is, the vertical component of the acceleration vector can be calculated in the same manner as in the second embodiment.
 鉛直方向成分計算部316が計算した加速度ベクトルの鉛直方向成分は、順次計測値バッファ(鉛直方向)124に格納する。計測値バッファ(鉛直方向)124には所定の個数分のデータが格納されるため、所定の個数を超えて入力される場合は、既に格納されているデータのうち、最も古いデータが順に上書き保存される。つまり、計測値バッファ(鉛直方向)124には、常に所定の個数以下の計測値が格納されている。 The vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 316 is sequentially stored in the measurement value buffer (vertical direction) 124. Since a predetermined number of pieces of data are stored in the measurement value buffer (vertical direction) 124, when data exceeding the predetermined number is input, the oldest data among the already stored data is overwritten and saved in order. Is done. That is, the measurement value buffer (vertical direction) 124 always stores a predetermined number or less of measurement values.
 進行方向成分計算部317は、加速度ベクトル計測部311が計測した加速度ベクトルの進行方向成分を計算する。具体的には、加速度ベクトルを、進行方向計算部315から入力される進行方向ベクトルに対して射影した成分(スカラー値)を計算して、進行方向成分として出力する。 The traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector measured by the acceleration vector measurement unit 311. Specifically, a component (scalar value) obtained by projecting the acceleration vector with respect to the traveling direction vector input from the traveling direction calculation unit 315 is calculated and output as a traveling direction component.
 進行方向成分計算部317が計算した加速度ベクトルの進行方向成分は、順次計測値バッファ(進行方向)125に格納する。計測値バッファ(進行方向)125には所定の個数分のデータが格納されるため、所定の個数を超えて入力される場合は、既に格納されているデータのうち、最も古いデータが順に上書き保存される。つまり、計測値バッファ(進行方向)125には、常に所定の個数以下の計測値が格納されている。 The traveling direction component of the acceleration vector calculated by the traveling direction component calculation unit 317 is sequentially stored in the measured value buffer (traveling direction) 125. Since a predetermined number of pieces of data are stored in the measurement value buffer (traveling direction) 125, when data exceeding the predetermined number is input, the oldest data among the already stored data is overwritten and saved in order. Is done. That is, the measurement value buffer (traveling direction) 125 always stores a predetermined number or less of measurement values.
 標準偏差計算部(鉛直方向)318は、計測値バッファ(鉛直方向)124に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する。標準偏差計算部(鉛直方向)318は、速度計測装置1のキャリブレーション時には、計算した標準偏差を通信部14に出力し、通信部14はキャリブレーション装置2に標準偏差を送信する。 The standard deviation calculation unit (vertical direction) 318 reads all the measurement values stored in the measurement value buffer (vertical direction) 124 and calculates the standard deviation of the measurement values. The standard deviation calculation unit (vertical direction) 318 outputs the calculated standard deviation to the communication unit 14 when the speed measurement device 1 is calibrated, and the communication unit 14 transmits the standard deviation to the calibration device 2.
 標準偏差計算部(進行方向)319は、計測値バッファ(進行方向)125に格納されている計測値を全て読み出し、その計測値の標準偏差を計算する。標準偏差計算部(進行方向)319は、速度計測装置1のキャリブレーション時には、計算した標準偏差を通信部14に出力し、通信部14はキャリブレーション装置2に標準偏差を送信する。 The standard deviation calculation unit (traveling direction) 319 reads all the measured values stored in the measured value buffer (traveling direction) 125 and calculates the standard deviation of the measured values. The standard deviation calculation unit (traveling direction) 319 outputs the calculated standard deviation to the communication unit 14 during calibration of the speed measurement device 1, and the communication unit 14 transmits the standard deviation to the calibration device 2.
 標準偏差計算部(鉛直方向)318、標準偏差計算部(進行方向)319は実施形態2と同様に標準偏差を計算する。 Standard deviation calculation unit (vertical direction) 318 and standard deviation calculation unit (traveling direction) 319 calculate the standard deviation as in the second embodiment.
 ここで、標準偏差計算部(鉛直方向)318が計算する鉛直方向成分の標準偏差をσとし、標準偏差計算部(進行方向)319が計算する進行方向成分の標準偏差をσとすると、速度vは計測の結果、以下の式(5)で近似することができた。 Here, when the standard deviation of the vertical direction component calculated by the standard deviation calculation unit (vertical direction) 318 is σ g and the standard deviation of the direction direction component calculated by the standard deviation calculation unit (travel direction) 319 is σ f , As a result of the measurement, the velocity v could be approximated by the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 実測前のキャリブレーション時には、速度を変えて計測した結果に基づいて、キャリブレーション装置2が標準偏差σ、σ、vの関係式を求める。例えば、最小二乗法等を用いて式(5)の係数p、qを求める。そして、キャリブレーション装置2は係数p、qを含む関数データ122を速度計測装置1に送信する。 At the time of calibration before actual measurement, the calibration device 2 obtains a relational expression of the standard deviations σ g , σ f , and v based on the measurement result obtained by changing the speed. For example, the coefficients p and q of Expression (5) are obtained using a least square method or the like. Then, the calibration device 2 transmits function data 122 including the coefficients p and q to the speed measurement device 1.
 図12は、キャリブレーション時における、標準偏差σとσとの和と、速度と、の関係を示したグラフである。図12のグラフに示すように、6回の定速度の走行を行って標準偏差と速度とを計算してプロットしたデータは、破線で表した線形関数で近似することができた。キャリブレーション装置2は、この線形関数に係る関数データ122を速度計測装置1に送信する。速度計測装置1の通信部14はキャリブレーション装置2から関数データ122を受信し、記憶部12は関数データ122を記憶する。 FIG. 12 is a graph showing the relationship between the speed and the sum of the standard deviations σ g and σ f during calibration. As shown in the graph of FIG. 12, the data plotted by calculating the standard deviation and the speed by running 6 times at a constant speed could be approximated by a linear function represented by a broken line. The calibration device 2 transmits function data 122 related to this linear function to the speed measurement device 1. The communication unit 14 of the speed measuring device 1 receives the function data 122 from the calibration device 2, and the storage unit 12 stores the function data 122.
 速度計測装置1の実測時には、標準偏差計算部(鉛直方向)318、標準偏差計算部(進行方向)319は、計算した標準偏差をそれぞれ速度計算部113に出力する。速度計算部113は、関数データ122により示される、標準偏差σ、σを引数とする関数に、標準偏差計算部(鉛直方向)318、標準偏差計算部(進行方向)319から入力される標準偏差σ、σを代入し速度を計算する。そして、計算して得られた速度を表示部13に出力し、表示部13が速度を表示する。 When the speed measuring device 1 is actually measured, the standard deviation calculation unit (vertical direction) 318 and the standard deviation calculation unit (traveling direction) 319 output the calculated standard deviations to the speed calculation unit 113, respectively. The speed calculation unit 113 is input from the standard deviation calculation unit (vertical direction) 318 and the standard deviation calculation unit (traveling direction) 319 to the functions indicated by the function data 122 and having the standard deviations σ g and σ f as arguments. The speed is calculated by substituting the standard deviations σ g and σ f . And the speed obtained by calculation is output to the display part 13, and the display part 13 displays a speed.
 以上のように構成された速度計測装置1の動作について図11に示すフローチャートに沿って説明する。 The operation of the speed measuring device 1 configured as described above will be described with reference to the flowchart shown in FIG.
 まず、実施形態1、2と同様にキャリブレーション装置2が、実測前の事前調整の段階において、速度計測装置1を実装した車両100を任意の速度で定速度走行させる。その際キャリブレーション装置2は、速度計測装置1が計算し送信する標準偏差のデータを取得し、速度と標準偏差の関係を表す関数を求める。関数導出処理を図4に沿って説明する。 First, as in the first and second embodiments, the calibration device 2 causes the vehicle 100 on which the speed measuring device 1 is mounted to travel at a constant speed at an arbitrary speed in a pre-adjustment stage before actual measurement. At that time, the calibration device 2 obtains standard deviation data calculated and transmitted by the speed measuring device 1 and obtains a function representing the relationship between the speed and the standard deviation. The function derivation process will be described with reference to FIG.
 キャリブレーション装置2は、キャリブレーション時に車両100を、予め定めた2点間を定速度で走行させ(ステップS101)、速度を計算する(ステップS102)。車両100を走行させたとき、速度計測装置1の加速度ベクトル計測部311は、加速度センサ15から通信部14を介して入力された加速度ベクトルの各計測軸方向の3成分のデータと各出力データ間の時間差Δtを取得する。また、角速度ベクトル計測部312は、角速度センサ16から通信部14を介して入力された角速度ベクトルの各計測軸方向の3成分のデータと各出力データ間の時間差Δtを取得する。 The calibration device 2 causes the vehicle 100 to travel at a constant speed between two predetermined points during calibration (step S101), and calculates the speed (step S102). When the vehicle 100 is made to travel, the acceleration vector measurement unit 311 of the speed measurement device 1 is configured such that the acceleration vector input from the acceleration sensor 15 via the communication unit 14 includes three component data in each measurement axis direction and each output data. Is obtained. Further, the angular velocity vector measuring unit 312 acquires a time difference Δt between the three component data in each measurement axis direction of the angular velocity vector input from the angular velocity sensor 16 via the communication unit 14 and each output data.
 姿勢計算部313は、加速度ベクトルのデータとその時間差Δtと、角速度ベクトルのデータとその時間差Δtと、姿勢設定値123に基づいて、加速度センサ15及び角速度センサ16の計測軸が示すローカル座標系の姿勢を計算する。鉛直方向計算部314は、姿勢計算部313から入力される姿勢に基づいて、加速度センサの座標系における鉛直方向ベクトルを計算する。進行方向計算部315は、姿勢計算部313から入力される姿勢に基づいて、加速度センサの座標系における進行方向ベクトルを計算する。 The posture calculation unit 313 is based on the acceleration vector data and its time difference Δt, the angular velocity vector data and its time difference Δt, and the posture setting value 123 in the local coordinate system indicated by the measurement axes of the acceleration sensor 15 and the angular velocity sensor 16. Calculate posture. The vertical direction calculation unit 314 calculates a vertical direction vector in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 313. The traveling direction calculation unit 315 calculates a traveling direction vector in the coordinate system of the acceleration sensor based on the posture input from the posture calculation unit 313.
 その後、鉛直方向成分計算部316は、鉛直方向ベクトルを用いて加速度ベクトルの鉛直方向成分を計算する。鉛直方向成分計算部316が計算した加速度ベクトルの鉛直方向成分は、順次計測値バッファ(鉛直方向)124に格納される。標準偏差計算部(鉛直方向)318は、計測値バッファ(鉛直方向)124に格納されている計測値の標準偏差を計算する。そして、通信部14が計算した標準偏差をキャリブレーション装置2に送信する。 Thereafter, the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector using the vertical direction vector. The vertical direction component of the acceleration vector calculated by the vertical direction component calculation unit 316 is sequentially stored in the measurement value buffer (vertical direction) 124. The standard deviation calculation unit (vertical direction) 318 calculates the standard deviation of the measurement values stored in the measurement value buffer (vertical direction) 124. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
 一方、進行方向成分計算部317は、進行方向ベクトルを用いて加速度ベクトルの進行方向成分を計算する。進行方向成分計算部317が計算した加速度ベクトルの進行方向成分は、順次計測値バッファ(進行方向)125に格納される。標準偏差計算部(進行方向)319は、計測値バッファ(進行方向)125に格納されている計測値の標準偏差を計算する。そして、通信部14が計算した標準偏差をキャリブレーション装置2に送信する。 On the other hand, the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector using the traveling direction vector. The traveling direction component of the acceleration vector calculated by the traveling direction component calculation unit 317 is sequentially stored in the measured value buffer (traveling direction) 125. The standard deviation calculator (traveling direction) 319 calculates the standard deviation of the measured values stored in the measured value buffer (traveling direction) 125. Then, the standard deviation calculated by the communication unit 14 is transmitted to the calibration device 2.
 キャリブレーション装置2は、速度計測装置1から加速度ベクトルの鉛直方向成分の標準偏差と、進行方向成分の標準偏差を受信する(ステップS103)。そして、ステップS102で計算した速度とステップS103で受信した標準偏差のデータを記憶する(ステップS104)。 The calibration device 2 receives the standard deviation of the vertical component and the standard deviation of the traveling direction component of the acceleration vector from the speed measuring device 1 (step S103). Then, the data of the speed calculated in step S102 and the standard deviation data received in step S103 are stored (step S104).
 車両は異なる速度の定速度走行を繰り返し行い、キャリブレーション装置2は、予め定めた予定数の計測が終了したか否かを判定する(ステップS105)。予定数の計測が終了していない場合には(ステップS105:No)、ステップS101に戻り、ステップS104までの処理を繰り返し実行する。予定数の計測が終了した場合には(ステップS105:Yes)、速度と標準偏差との関係を表す関数を導出し、その関数の係数からなる関数データ122を速度計測装置1へ送信する(ステップS106)。 The vehicle repeatedly performs constant speed driving at different speeds, and the calibration device 2 determines whether or not the predetermined number of measurements has been completed (step S105). If the measurement of the planned number is not completed (step S105: No), the process returns to step S101, and the process up to step S104 is repeatedly executed. When the measurement of the planned number is completed (step S105: Yes), a function representing the relationship between the speed and the standard deviation is derived, and the function data 122 including the coefficient of the function is transmitted to the speed measuring device 1 (step). S106).
 本実施形態では速度と、鉛直方向成分の標準偏差と進行方向成分の標準偏差の和と、が線形関係にあるため、キャリブレーション装置2は、速度と標準偏差の和をプロットしたものに近似する一次関数を求める。一次関数の導出方法は従来の任意の方法でよく、例えば最小二乗法を用いて導出する。 In the present embodiment, since the speed and the standard deviation of the vertical direction component and the sum of the standard deviation of the traveling direction component are linearly related, the calibration device 2 approximates to a plot of the sum of the speed and the standard deviation. Find a linear function. The method for deriving the linear function may be any conventional method, for example, using the least square method.
 速度計測装置1の通信部14は、キャリブレーション装置2から送信された関数データ122を受信し、記憶部12が関数データ122を記憶する。 The communication unit 14 of the speed measuring device 1 receives the function data 122 transmitted from the calibration device 2, and the storage unit 12 stores the function data 122.
 記憶部12に関数データ122が記憶された状態で、速度計測装置1は、図11に示す速度計測処理を実行する。まず、速度計測装置1の加速度ベクトル計測部311は加速度センサ15から通信部14を介して入力された加速度ベクトルを取得する(ステップS401)。このとき、加速度ベクトルの各計測軸方向の3成分のデータと、各出力データ間の時間差Δtとを取得する。 In a state where the function data 122 is stored in the storage unit 12, the speed measurement device 1 executes the speed measurement process shown in FIG. First, the acceleration vector measurement unit 311 of the speed measurement device 1 acquires an acceleration vector input from the acceleration sensor 15 via the communication unit 14 (step S401). At this time, data of three components of the acceleration vector in each measurement axis direction and a time difference Δt between the output data are acquired.
 鉛直方向成分計算部316は、取得した加速度ベクトルのデータとその時間差Δtと、姿勢設定値123に基づいて、加速度ベクトルの鉛直方向成分を計算し、計測値バッファ(鉛直方向)124に格納する(ステップS402)。具体的には、キャリブレーション時と同様に、姿勢計算部313が、加速度ベクトルのデータとその時間差Δtと、姿勢設定値123に基づいて、加速度センサ15の計測軸が示すローカル座標系の姿勢を計算する。そして、鉛直方向計算部314は計算した姿勢に基づいて、加速度センサの座標系における鉛直方向ベクトルを計算する。 The vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector based on the acquired acceleration vector data, its time difference Δt, and the posture setting value 123 and stores it in the measurement value buffer (vertical direction) 124 ( Step S402). Specifically, as in the calibration, the posture calculation unit 313 determines the posture of the local coordinate system indicated by the measurement axis of the acceleration sensor 15 based on the acceleration vector data, the time difference Δt, and the posture setting value 123. calculate. Then, the vertical direction calculation unit 314 calculates a vertical direction vector in the coordinate system of the acceleration sensor based on the calculated posture.
 その後、鉛直方向ベクトルを用いて鉛直方向成分計算部316が、加速度ベクトルの鉛直方向成分を計算し、順次計測値バッファ(鉛直方向)124に格納する。 Thereafter, the vertical direction component calculation unit 316 calculates the vertical direction component of the acceleration vector using the vertical direction vector, and sequentially stores it in the measured value buffer (vertical direction) 124.
 次に、進行方向成分計算部317が、取得した加速度ベクトルのデータ及びその時間差Δtと、角速度ベクトルのデータ及びその時間差Δtと、姿勢設定値123と、に基づいて、加速度ベクトルの進行方向成分を計算し、計測値バッファ(進行方向)125に格納する(ステップS403)。具体的には、キャリブレーション時と同様に、姿勢計算部313が、加速度ベクトルのデータ及びその時間差Δtと、角速度ベクトルのデータ及びその時間差Δtと、姿勢設定値123に基づいて、加速度センサ15の計測軸が示すローカル座標系の姿勢を計算する。そして、進行方向計算部315は計算した姿勢に基づいて、加速度センサの座標系における進行方向ベクトルを計算する。 Next, the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector based on the acquired acceleration vector data and its time difference Δt, the angular velocity vector data and its time difference Δt, and the posture setting value 123. The calculated value is stored in the measured value buffer (traveling direction) 125 (step S403). Specifically, as in the calibration, the posture calculation unit 313 performs the acceleration sensor 15 based on the acceleration vector data and its time difference Δt, the angular velocity vector data and its time difference Δt, and the posture setting value 123. Calculate the attitude of the local coordinate system indicated by the measurement axis. Then, the traveling direction calculation unit 315 calculates a traveling direction vector in the coordinate system of the acceleration sensor based on the calculated posture.
 その後、進行方向ベクトルを用いて進行方向成分計算部317が、加速度ベクトルの進行方向成分を計算し、順次計測値バッファ(進行方向)125に格納する。 Thereafter, the traveling direction component calculation unit 317 calculates the traveling direction component of the acceleration vector using the traveling direction vector, and sequentially stores it in the measured value buffer (traveling direction) 125.
 そして、標準偏差計算部(鉛直方向)318が、計測値バッファ(鉛直方向)124に格納されている計測値の標準偏差を計算する(ステップS404)。 Then, the standard deviation calculation unit (vertical direction) 318 calculates the standard deviation of the measurement values stored in the measurement value buffer (vertical direction) 124 (step S404).
 そして、標準偏差計算部(進行方向)319が、計測値バッファ(進行方向)125に格納されている計測値の標準偏差を計算する(ステップS405)。 Then, the standard deviation calculator (traveling direction) 319 calculates the standard deviation of the measured values stored in the measured value buffer (traveling direction) 125 (step S405).
 次に、速度計算部113は、関数データ122を読み込み、関数データ122が示す関数に、標準偏差計算部(鉛直方向)318が計算した加速度ベクトルの鉛直方向成分の標準偏差と、標準偏差計算部(進行方向)319が計算した加速度ベクトルの進行方向成分の標準偏差を代入して速度を計算する(ステップS406)。そして、表示部13にステップS406で計算した速度を表示する(ステップS407)。 Next, the speed calculation unit 113 reads the function data 122, and adds the standard deviation of the vertical direction component of the acceleration vector calculated by the standard deviation calculation unit (vertical direction) 318 to the function indicated by the function data 122, and the standard deviation calculation unit. (Advancing direction) The speed is calculated by substituting the standard deviation of the advancing direction component of the acceleration vector calculated by 319 (step S406). Then, the speed calculated in step S406 is displayed on the display unit 13 (step S407).
 このようにして、加速度センサ15及び角速度センサ16の出力に基づいて、速度を計算し表示させることができる。 In this way, the speed can be calculated and displayed based on the outputs of the acceleration sensor 15 and the angular velocity sensor 16.
 なお、本実施形態においても、速度計測装置1に位置計算部を追加することで位置計測装置3を構成することができる。 In this embodiment as well, the position measuring device 3 can be configured by adding a position calculator to the speed measuring device 1.
 以上説明したように、本実施形態においては、速度計測装置1の加速度ベクトル計測部311が計測した加速度ベクトルと角速度ベクトル計測部312が計測した角速度ベクトルと姿勢設定値123に基づいて加速度センサ15の姿勢を計算し、その姿勢に基づいて加速度ベクトルの鉛直方向成分と進行方向成分を計算する。そして、加速度ベクトルの鉛直方向成分の標準偏差と、加速度ベクトルの進行方向成分の標準偏差と、を計算する。予め、キャリブレーション装置2が、速度計測装置1を搭載した車両100を任意の定速度で走行させたときの鉛直方向及び進行方向の標準偏差を取得し、速度と標準偏差の関係を表す関数を導出する。そして、関数データ122は記憶部12に記憶させておく。実測時には、速度計算部113が、実測値に基づく鉛直方向及び進行方向の標準偏差を、関数データが示す関数に代入することにより速度を計算することとした。これにより、加速度ベクトルの鉛直方向成分及び進行方向成分に基づいて、より正確に車両の速度を計測することができる。また、計測した速度に基づいて、車両の位置を計測することができる。 As described above, in the present embodiment, based on the acceleration vector measured by the acceleration vector measuring unit 311 of the speed measuring device 1, the angular velocity vector measured by the angular velocity vector measuring unit 312, and the posture setting value 123, The posture is calculated, and the vertical direction component and the traveling direction component of the acceleration vector are calculated based on the posture. Then, the standard deviation of the vertical component of the acceleration vector and the standard deviation of the traveling direction component of the acceleration vector are calculated. In advance, the calibration device 2 acquires a standard deviation in the vertical direction and the traveling direction when the vehicle 100 on which the speed measuring device 1 is mounted is traveled at an arbitrary constant speed, and a function representing a relationship between the speed and the standard deviation. To derive. The function data 122 is stored in the storage unit 12. At the time of actual measurement, the speed calculation unit 113 calculates the speed by substituting the standard deviation in the vertical direction and the traveling direction based on the actual measurement value into the function indicated by the function data. Thereby, the speed of the vehicle can be measured more accurately based on the vertical direction component and the traveling direction component of the acceleration vector. Further, the position of the vehicle can be measured based on the measured speed.
 このように本発明は、車両に備える加速度センサが出力する加速度の情報から加速度の大きさのばらつき量を計算し、予め車両を走行させることによりばらつき量と速度との関係を示す関数情報を記憶部に記憶しておき、実測時に加速度の大きさのばらつき量を関数情報が示す関数に代入することにより速度を計算することとした。これにより、簡易及び安価な構成で、車両の速度を正確に計測することが可能となる。 As described above, according to the present invention, the variation amount of the acceleration magnitude is calculated from the acceleration information output from the acceleration sensor provided in the vehicle, and the function information indicating the relationship between the variation amount and the speed is stored by driving the vehicle in advance. The speed is calculated by substituting the amount of variation in the magnitude of the acceleration into the function indicated by the function information. This makes it possible to accurately measure the vehicle speed with a simple and inexpensive configuration.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 例えば、速度計測装置1は加速度ベクトルの大きさあるいは加速度ベクトルの鉛直方向成分又は進行方向成分の標準偏差より速度を計算するとしたが、標準偏差に代えて加速度のばらつき量を示す他の値と速度との関係を表す関数を用いて計算してもよい。例えば、分散値と速度との関係を表す関数を用いてもよい。 For example, the speed measurement device 1 calculates the speed from the magnitude of the acceleration vector or the standard deviation of the vertical component or the traveling direction component of the acceleration vector. However, instead of the standard deviation, other values and speeds indicating the amount of variation in acceleration are used. You may calculate using the function showing the relationship with. For example, a function representing the relationship between the dispersion value and the speed may be used.
 また、キャリブレーション装置2を速度計測装置1と別に設けて、相互に通信するとしたが、速度計測装置1がキャリブレーション機能も備えるようにしてもよい。 Further, although the calibration device 2 is provided separately from the speed measurement device 1 and communicates with each other, the speed measurement device 1 may be provided with a calibration function.
 また、実施形態1において、加速度センサの各計測軸のデータに基づく加速度ベクトルの大きさの標準偏差に基づいて速度を計算するとしたが、予め定めた1つの計測軸のデータに基づいて加速度ベクトルの当該計測軸の方向の成分の標準偏差に基づいて速度を計算するようにしてもよい。より簡易な構成及び処理で速度を計測することができる。 In the first embodiment, the velocity is calculated based on the standard deviation of the magnitude of the acceleration vector based on the data of each measurement axis of the acceleration sensor. However, the acceleration vector is calculated based on the data of one predetermined measurement axis. The speed may be calculated based on the standard deviation of the component in the direction of the measurement axis. The speed can be measured with a simpler configuration and processing.
 また、実施形態3において、加速度ベクトルの鉛直方向成分と進行方向成分の、各々の標準偏差に基づいて速度を計算するとしたが、加速度ベクトルの進行方向成分のみの標準偏差に基づいて速度を計算するようにしてもよい。制御部11の処理負担を軽減させることができる。 In the third embodiment, the speed is calculated based on the standard deviations of the vertical direction component and the traveling direction component of the acceleration vector. However, the speed is calculated based on the standard deviation of only the traveling direction component of the acceleration vector. You may do it. The processing burden on the control unit 11 can be reduced.
 また、制御部11,31が実行した処理のプログラムを、既存のコンピュータ等の情報端末で実行させることにより、当該情報端末を本発明に係る速度計測装置1又は位置計測装置3として機能させることも可能である。 Moreover, the information terminal can be caused to function as the speed measuring device 1 or the position measuring device 3 according to the present invention by causing a program of processing executed by the control units 11 and 31 to be executed by an existing information terminal such as a computer. Is possible.
 このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto Optical Disc)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。 Such a program distribution method is arbitrary, for example, a computer-readable recording medium such as a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), an MO (Magneto Optical Disc), a memory card, etc. It may be stored and distributed in the network, or distributed via a communication network such as the Internet.
 本出願は、2016年10月18日に出願された、日本国特許出願特願2016-204679号に基づく。本明細書中に日本国特許出願特願2016-204679号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2016-204679 filed on Oct. 18, 2016. The specification, claims, and entire drawings of Japanese Patent Application No. 2016-204679 are incorporated herein by reference.
 1…速度計測装置
 2…キャリブレーション装置
 11,31…制御部
 12…記憶部
 13…表示部
 14…通信部
 15…加速度センサ
 16…角速度センサ
 100…車両
 111…加速度計測部
 112…標準偏差計算部
 113…速度計算部
 114…位置計算部
 121…計測値バッファ
 122…関数データ
 123…姿勢設定値
 124…計測値バッファ(鉛直方向)
 125…計測値バッファ(進行方向)
 211…加速度ベクトル計測部
 212…姿勢計算部
 213…鉛直方向計算部
 214…鉛直方向成分計算部
 311…加速度ベクトル計測部
 312…角速度ベクトル計測部
 313…姿勢計算部
 314…鉛直方向計算部
 315…進行方向計算部
 316…鉛直方向成分計算部
 317…進行方向成分計算部
 318…標準偏差計算部(鉛直方向)
 319…標準偏差計算部(進行方向)
DESCRIPTION OF SYMBOLS 1 ... Speed measuring device 2 ... Calibration apparatus 11, 31 ... Control part 12 ... Memory | storage part 13 ... Display part 14 ... Communication part 15 ... Acceleration sensor 16 ... Angular velocity sensor 100 ... Vehicle 111 ... Acceleration measuring part 112 ... Standard deviation calculation part DESCRIPTION OF SYMBOLS 113 ... Speed calculation part 114 ... Position calculation part 121 ... Measurement value buffer 122 ... Function data 123 ... Attitude setting value 124 ... Measurement value buffer (vertical direction)
125 ... Measurement value buffer (traveling direction)
DESCRIPTION OF SYMBOLS 211 ... Acceleration vector measurement part 212 ... Attitude calculation part 213 ... Vertical direction calculation part 214 ... Vertical direction component calculation part 311 ... Acceleration vector measurement part 312 ... Angular velocity vector measurement part 313 ... Attitude calculation part 314 ... Vertical direction calculation part 315 ... Progression Direction calculation unit 316 ... Vertical direction component calculation unit 317 ... Travel direction component calculation unit 318 ... Standard deviation calculation unit (vertical direction)
319 ... Standard deviation calculator (traveling direction)

Claims (10)

  1.  車両に備える加速度センサと、
     前記加速度センサが出力する加速度の情報を取得する加速度取得部と、
     前記加速度取得部が取得した前記加速度の大きさのばらつき量を計算するばらつき量計算部と、
     予め前記車両を走行させることにより前記ばらつき量計算部が計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶部と、
     実測時に前記ばらつき量計算部が計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力部と、
     を備える速度計測装置。
    An acceleration sensor provided in the vehicle;
    An acceleration acquisition unit for acquiring information of acceleration output by the acceleration sensor;
    A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit;
    A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit by traveling the vehicle in advance and a speed;
    A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information;
    A speed measuring device comprising:
  2.  前記加速度取得部は、前記加速度センサより加速度ベクトルを取得し、
     前記ばらつき量計算部が前記ばらつき量を計算する前記加速度の大きさは、前記加速度ベクトルの鉛直方向成分の大きさである、
     請求項1に記載の速度計測装置。
    The acceleration acquisition unit acquires an acceleration vector from the acceleration sensor,
    The magnitude of the acceleration with which the variation amount calculation unit calculates the variation amount is a magnitude of a vertical direction component of the acceleration vector.
    The speed measuring device according to claim 1.
  3.  前記加速度センサの姿勢を計算する姿勢計算部と、
     前記姿勢計算部が計算した姿勢に基づいて、前記加速度センサの計測軸に対する鉛直方向ベクトルを計算する鉛直方向計算部と、を更に備え、
     前記ばらつき量計算部は、前記鉛直方向計算部が計算した前記鉛直方向ベクトルを用いて前記加速度ベクトルの前記鉛直方向成分の大きさの前記ばらつき量を計算する、
     請求項2に記載の速度計測装置。
    An attitude calculation unit for calculating the attitude of the acceleration sensor;
    A vertical direction calculation unit that calculates a vertical direction vector with respect to the measurement axis of the acceleration sensor based on the posture calculated by the posture calculation unit;
    The variation amount calculation unit calculates the variation amount of the magnitude of the vertical direction component of the acceleration vector using the vertical direction vector calculated by the vertical direction calculation unit.
    The speed measuring device according to claim 2.
  4.  車両に備える角速度センサと、
     前記加速度センサ及び前記角速度センサの姿勢を計算する姿勢計算部と、
     前記姿勢計算部が計算した姿勢と、前記角速度センサが出力する角速度ベクトルに基づいて進行方向ベクトルを計算する進行方向計算部と、を更に備え、
     前記ばらつき量計算部は、前記進行方向計算部が計算した前記進行方向ベクトルを用いて加速度ベクトルの進行方向成分の大きさの前記ばらつき量を計算する、
     請求項1に記載の速度計測装置。
    An angular velocity sensor provided in the vehicle;
    An attitude calculation unit for calculating the attitude of the acceleration sensor and the angular velocity sensor;
    A posture calculated by the posture calculator, and a traveling direction calculator that calculates a traveling direction vector based on the angular velocity vector output by the angular velocity sensor;
    The variation amount calculation unit calculates the variation amount of the magnitude of the traveling direction component of the acceleration vector using the traveling direction vector calculated by the traveling direction calculation unit.
    The speed measuring device according to claim 1.
  5.  車両に備える角速度センサと、
     前記加速度センサ及び前記角速度センサの姿勢を計算する姿勢計算部と、
     前記姿勢計算部が計算した姿勢に基づいて、前記加速度センサの計測軸に対する鉛直方向ベクトルを計算する鉛直方向計算部と、
     前記姿勢計算部が計算した姿勢と、前記角速度センサが出力する角速度ベクトルに基づいて前記加速度センサの計測軸に対する進行方向ベクトルを計算する進行方向計算部と、を更に備え、
     前記ばらつき量計算部は、前記鉛直方向ベクトルを用いて計算した加速度ベクトルの鉛直方向成分の大きさの鉛直方向成分ばらつき量と、前記進行方向ベクトルを用いて計算した前記加速度ベクトルの進行方向成分の大きさの進行方向成分ばらつき量と、の和である前記ばらつき量を計算する、
     請求項1に記載の速度計測装置。
    An angular velocity sensor provided in the vehicle;
    An attitude calculation unit for calculating the attitude of the acceleration sensor and the angular velocity sensor;
    A vertical direction calculation unit that calculates a vertical direction vector with respect to the measurement axis of the acceleration sensor, based on the posture calculated by the posture calculation unit;
    An orientation calculated by the orientation calculator, and a traveling direction calculator that calculates a traveling direction vector for the measurement axis of the acceleration sensor based on the angular velocity vector output by the angular velocity sensor;
    The variation amount calculation unit includes a vertical direction component variation amount of the magnitude of the vertical direction component of the acceleration vector calculated using the vertical direction vector, and a traveling direction component of the acceleration vector calculated using the traveling direction vector. Calculating the amount of variation, which is the sum of the amount of variation in the traveling direction component of the size,
    The speed measuring device according to claim 1.
  6.  前記ばらつき量は、標準偏差である、
     請求項1から5のいずれか1項に記載の速度計測装置。
    The variation amount is a standard deviation.
    The speed measuring device according to any one of claims 1 to 5.
  7.  前記ばらつき量は、分散値である、
     請求項1から5のいずれか1項に記載の速度計測装置。
    The variation amount is a variance value.
    The speed measuring device according to any one of claims 1 to 5.
  8.  請求部1から7のいずれか1項に記載の速度計測装置が計測した速度を積分することにより、前記速度計測装置を備えた前記車両の位置を出力する、
     位置計測装置。
    The position of the vehicle provided with the speed measurement device is output by integrating the speed measured by the speed measurement device according to any one of claims 1 to 7.
    Position measuring device.
  9.  車両に備える加速度センサの出力に基づいて前記車両の速度を計測する速度計測方法であって、
     前記加速度センサが出力する加速度の情報を取得する加速度取得ステップと、
     前記加速度取得ステップで取得した前記加速度の大きさのばらつき量を計算するばらつき量計算ステップと、
     予め前記車両を走行させることにより前記ばらつき量計算ステップで計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶ステップと、
     実測時に前記ばらつき量計算ステップで計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力ステップと、
     を有する速度計測方法。
    A speed measurement method for measuring a speed of the vehicle based on an output of an acceleration sensor provided in the vehicle,
    An acceleration acquisition step of acquiring acceleration information output by the acceleration sensor;
    A variation amount calculating step of calculating a variation amount of the magnitude of the acceleration acquired in the acceleration acquiring step;
    A storage step for storing function information indicating a relationship between the variation amount calculated in the variation amount calculation step and the speed by running the vehicle in advance;
    A speed output step of outputting the speed by substituting the variation amount calculated in the variation amount calculation step at the time of actual measurement into a function indicated by the function information;
    A speed measuring method.
  10.  車両に備える加速度センサに通信可能に接続されたコンピュータを
     前記加速度センサが出力する加速度の情報を取得する加速度取得部、
     前記加速度取得部が取得した前記加速度の大きさのばらつき量を計算するばらつき量計算部、
     予め前記車両を走行させることにより前記ばらつき量計算部が計算した前記ばらつき量と、速度との関係を示す関数情報を記憶する記憶部、
     実測時に前記ばらつき量計算部が計算した前記ばらつき量を前記関数情報が示す関数に代入することにより前記速度を出力する速度出力部、
     として機能させるプログラム。
    A computer connected to an acceleration sensor included in the vehicle so as to be communicable; an acceleration acquisition unit configured to acquire information on acceleration output from the acceleration sensor;
    A variation amount calculation unit for calculating a variation amount of the magnitude of the acceleration acquired by the acceleration acquisition unit;
    A storage unit for storing function information indicating a relationship between the variation amount calculated by the variation amount calculation unit and the speed by running the vehicle in advance;
    A speed output unit that outputs the speed by substituting the variation amount calculated by the variation amount calculation unit at the time of actual measurement into a function indicated by the function information;
    Program to function as.
PCT/JP2017/037183 2016-10-18 2017-10-13 Speed measuring device, position measuring device, speed measuring method, and program WO2018074356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204679 2016-10-18
JP2016204679A JP6154951B1 (en) 2016-10-18 2016-10-18 Velocity measuring device, position measuring device, velocity measuring method and program

Publications (1)

Publication Number Publication Date
WO2018074356A1 true WO2018074356A1 (en) 2018-04-26

Family

ID=59218551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037183 WO2018074356A1 (en) 2016-10-18 2017-10-13 Speed measuring device, position measuring device, speed measuring method, and program

Country Status (2)

Country Link
JP (1) JP6154951B1 (en)
WO (1) WO2018074356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946483A (en) * 2019-04-15 2019-06-28 北京市计量检测科学研究院 Test the speed standard set-up for a kind of scene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102205B2 (en) * 2018-04-23 2022-07-19 東芝テック株式会社 Positioning device and positioning program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168810A (en) * 1996-12-05 1998-06-23 Pasuko:Kk Road vertically sectional profile measuring device
JP2006194698A (en) * 2005-01-12 2006-07-27 Macnica Inc Device and method for determining stop of car body for speed calculation device
JP2010078595A (en) * 2008-08-29 2010-04-08 Sony Corp Velocity calculating device, velocity calculation method, and navigation device
JP2010287044A (en) * 2009-06-11 2010-12-24 Isuzu Motors Ltd Road information provision device and navigation device
JP2011059065A (en) * 2009-09-14 2011-03-24 Sony Corp Speed calculating device, speed calculating method, and navigation apparatus
JP6139722B1 (en) * 2016-02-19 2017-05-31 ヤフー株式会社 Estimation apparatus, estimation method, and estimation program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978700B2 (en) * 1998-06-05 2007-09-19 光 猪岡 Calorie consumption calculation device
JP3804409B2 (en) * 2000-07-21 2006-08-02 株式会社デンソー Processing device using acceleration
JP2005230340A (en) * 2004-02-20 2005-09-02 Intelligent Cosmos Research Institute Energy consumption estimation apparatus, energy consumption estimation system, and database
JP2007101526A (en) * 2005-09-06 2007-04-19 Sony Corp Apparatus, method, and program for detecting speed and position and navigation system
WO2008099476A1 (en) * 2007-02-14 2008-08-21 Pioneer Corporation Navigation device, navigation method, and navigation program
JP4952444B2 (en) * 2007-08-29 2012-06-13 横浜ゴム株式会社 Vehicle running road surface state estimation system
WO2011010390A1 (en) * 2009-07-24 2011-01-27 パイオニア株式会社 Stop decision device, stop decision method, stop decision program, and storage medium
JP2015004593A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Navigation device
JP2016057836A (en) * 2014-09-09 2016-04-21 株式会社日立製作所 Mobile object analysis system and mobile object directional axis estimation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168810A (en) * 1996-12-05 1998-06-23 Pasuko:Kk Road vertically sectional profile measuring device
JP2006194698A (en) * 2005-01-12 2006-07-27 Macnica Inc Device and method for determining stop of car body for speed calculation device
JP2010078595A (en) * 2008-08-29 2010-04-08 Sony Corp Velocity calculating device, velocity calculation method, and navigation device
JP2010287044A (en) * 2009-06-11 2010-12-24 Isuzu Motors Ltd Road information provision device and navigation device
JP2011059065A (en) * 2009-09-14 2011-03-24 Sony Corp Speed calculating device, speed calculating method, and navigation apparatus
JP6139722B1 (en) * 2016-02-19 2017-05-31 ヤフー株式会社 Estimation apparatus, estimation method, and estimation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946483A (en) * 2019-04-15 2019-06-28 北京市计量检测科学研究院 Test the speed standard set-up for a kind of scene

Also Published As

Publication number Publication date
JP2018066615A (en) 2018-04-26
JP6154951B1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
KR101988786B1 (en) Initial alignment of inertial navigation devices
EP3115745A1 (en) A mobile computer atmospheric barometric pressure system
US20130138264A1 (en) Automotive navigation system and method to utilize internal geometry of sensor position with respect to rear wheel axis
RU2631401C2 (en) Vehicle's geographic location determination
EP3335051B1 (en) Velocity estimation
US20180356227A1 (en) Method and apparatus for calculation of angular velocity using acceleration sensor and geomagnetic sensor
EP3911571A1 (en) Apparatuses, systems, and methods for gas flux measurements with mobile platforms
JP6044971B2 (en) Estimated azimuth angle evaluation apparatus, mobile terminal apparatus, estimated azimuth angle evaluation apparatus control program, computer-readable recording medium, estimated azimuth angle evaluation apparatus control method, and positioning apparatus
US10002469B2 (en) Inclinometer methods and systems for generating and calibrating an in-vehicle inclination angle
JP6785933B1 (en) Porosity estimation device, porosity estimation method and program
WO2018074356A1 (en) Speed measuring device, position measuring device, speed measuring method, and program
US10810861B2 (en) Real-time acceleration sensor calibration apparatus for measuring movement of vehicle and acceleration sensor calibration method using the same
JPWO2018179189A1 (en) On-board unit, arithmetic unit and program
Otegui et al. Performance evaluation of different grade IMUs for diagnosis applications in land vehicular multi-sensor architectures
KR20200010506A (en) Method and apparatus for determining the location of a static object
US11391590B2 (en) Methods and apparatus for selecting a map for a moving object, system, and vehicle/robot
Sánchez et al. High precision indoor positioning by means of LiDAR
JP2006038650A (en) Posture measuring method, posture controller, azimuth meter and computer program
JPH0875442A (en) Simplified length measuring machine
Abolpour et al. GPS-independent navigation using smartphone sensors
JP6839677B2 (en) Travel distance measuring device, travel distance measurement method, and travel distance measurement program
CN114966634A (en) Laser ranging system calibration method, device and computer program product
RU2010132599A (en) METHOD FOR DETERMINING ACCELERATION OF GRAVITY FORCE IN A MOVING OBJECT AND A DEVICE FOR ITS IMPLEMENTATION
KR20210050401A (en) Apparatus and Method for constituting position information
Morales et al. High precision indoor positioning by means of LiDAR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863149

Country of ref document: EP

Kind code of ref document: A1