WO2018074349A1 - Dispersing agent for inorganic nitrides and inorganic nitride dispersion composition - Google Patents

Dispersing agent for inorganic nitrides and inorganic nitride dispersion composition Download PDF

Info

Publication number
WO2018074349A1
WO2018074349A1 PCT/JP2017/037141 JP2017037141W WO2018074349A1 WO 2018074349 A1 WO2018074349 A1 WO 2018074349A1 JP 2017037141 W JP2017037141 W JP 2017037141W WO 2018074349 A1 WO2018074349 A1 WO 2018074349A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
nitride
inorganic
dispersant
Prior art date
Application number
PCT/JP2017/037141
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 岡戸
祥太 大隅
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Publication of WO2018074349A1 publication Critical patent/WO2018074349A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties

Definitions

  • the present invention relates to a novel inorganic nitride dispersant and inorganic nitride dispersion composition.
  • a material in which finely divided substances are uniformly dispersed in a resin or solvent is required in various fields.
  • the substance is made into fine particles, aggregates are generally formed. Therefore, when the fine particles are dispersed in a resin or a solvent, the aggregates must be crushed by some method.
  • a method for crushing the aggregate include mechanical dispersion and a surface chemical method. As one of surface chemical methods, a method using a polymer dispersant is known.
  • a block chain (A) composed of a polymer containing at least one repeating unit selected from the group consisting of a repeating unit having a tertiary amino group and a repeating unit having a quaternary ammonium base
  • a copolymer containing a repeating unit having an oxyalkylene chain and a block chain (B) composed of a copolymer containing a repeating unit having an acidic group has been proposed.
  • the copolymer is described as being useful for pigment dispersion in paints, printing inks, inkjet inks, pigment dispersions for color filters, and the like.
  • R 1 represents a hydrogen atom or a C1-C3 alkyl group
  • R 2 represents an aliphatic hydrocarbon group or an alicyclic hydrocarbon group
  • B) and a copolymer having a copolymerization ratio of the repeating unit represented by the formula (I) of 90% by mass or more in the block chain (B) has been proposed.
  • the copolymer is described as being useful for pigment dispersion in paints, printing inks, inkjet inks, pigment dispersions for color filters, and the like.
  • N represents an integer of 0 to 6, and the following formula (II) (wherein R 4 represents a hydrogen atom, etc., and R 5 represents A block chain (B) containing a repeating unit represented by the following formula (II), wherein the copolymerization ratio of the repeating unit represented by the following formula (II) is: 90% by weight or less in the block chain (B) excluding the repeating unit represented by Copolymers have been proposed are.
  • the copolymer is used for the dispersion of various organic pigments in paints, printing inks, inkjet inks, pigment dispersions for color filters, metal oxides, metal hydroxides, metal carbonates, metal sulfates, metal It is described that it is useful for dispersion of inorganic particles such as silicate and metal nitride, and dispersion of carbon nanotubes.
  • a block copolymer comprising a repeating unit having a polymer block (b) containing at least one repeating unit selected from the group consisting of repeating units having and a repeating unit having a function of capturing radicals generated by oxidation by light
  • Patent Document 5 proposes a mechanical dispersion method in which fine particles such as boron nitride fine particles and silicon carbide are dispersed using a rotor / stator homogenizer.
  • a block comprising at least one selected from the group consisting of a block chain (A) containing a repeating unit having a carboxyl group, a repeating unit represented by the formula [II] and a repeating unit represented by the formula [III]
  • the block copolymer does not contain a tertiary amino group or a quaternary ammonium base.
  • R 21 represents a hydrogen atom or a C1-6 alkyl group
  • X 2 represents —NH— or —O—
  • R 22 represents a hydrocarbon group
  • R 31 represents a hydrogen atom or a C1-6 alkyl group
  • X 3 represents —NH— or —O—
  • R 32 represents a group having an etheric oxygen atom.
  • Mn number average molecular weight
  • composition according to (8), wherein the inorganic nitride is any of boron nitride, aluminum nitride, silicon nitride, or gallium nitride.
  • the fine particles according to (10), wherein the inorganic nitride particles are any of boron nitride fine particles, aluminum nitride fine particles, silicon nitride fine particles, or gallium nitride fine particles.
  • the inorganic nitride dispersant of the present invention can disperse inorganic nitride particles such as boron nitride in a dispersion medium.
  • the inorganic nitride dispersant of the present invention is excellent in heat resistance.
  • the dispersant for inorganic nitride of the present invention includes a block copolymer containing at least one block chain (A) and block chain (B) described below.
  • the inorganic particle dispersant of the present invention may contain a known polymer dispersant in addition to the block copolymer.
  • the block copolymer of the present invention preferably contains no tertiary amino group or quaternary ammonium base.
  • the number average molecular weight (Mn) of the block copolymer used in the present invention can be 2,000 to 100,000, 2,000 to 50,000, and 2,000 to 30,000.
  • the molecular weight distribution of the block copolymer according to the present invention is 1.0 to 2.5, 1.0 to 2.4, 1.0 in terms of the ratio of weight average molecular weight / number average molecular weight (Mw / Mn). -2.3, 1.0-2.2, 1.0-2.1, 1.0-2.0, and the like can be selected.
  • the weight average molecular weight and number average molecular weight are values obtained by converting data measured by gel permeation chromatography (GPC) using N, N-dimethylformamide as a solvent based on the molecular weight of standard polymethyl methacrylate.
  • the block copolymer of the present invention may contain other block chains in addition to the block chain (A) and the block chain (B), but the block chain (A) and The total content of (B) is usually 1 to 100% by weight, preferably 50 to 100% by weight, particularly preferably 100% by weight.
  • the ratio of the block chain (A) to the total weight of the block chain (A) and the block chain (B) is 15 wt% to 70 wt%, 15 wt% to 65 wt%, 15 wt% to 60 wt%, 15 wt%. % To 55%, 15% to 50%, 20% to 70%, 20% to 65%, 20% to 60%, 20% to 55%, 20% to For example, 50% by weight can be selected.
  • the block chain (A) includes a repeating unit having a carboxyl group (—COOH group).
  • the repeating unit having a carboxyl group is not particularly limited as long as the repeating unit has a carboxyl group, but is preferably a repeating unit represented by the formula [I].
  • R 11 represents a hydrogen atom or a C1-6 alkyl group.
  • Examples of the C1-6 alkyl group for R 11 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
  • the proportion of the repeating unit having a carboxyl group contained in the block chain (A) is 10 to 100% by weight, 20 to 100% by weight, 30 to 100% by weight, 40 to 40% by weight based on the total weight of the block chain (A). 100% by weight, 50 to 100% by weight, 60 to 100% by weight, 70 to 100% by weight, 80 to 100% by weight, 90 to 100% by weight, 100% by weight and the like can be selected. Of these, 100% by weight is preferred.
  • the block chain (B) contains at least one selected from the group consisting of a repeating unit represented by the formula [II] and a repeating unit represented by the formula [III].
  • the block chain (B) has a repeating unit represented by the formula [II], a repeating unit represented by the formula [III], or a repeating unit represented by the formula [II] and the formula [III].
  • each of the repeating unit represented by the formula [II] and the repeating unit represented by the formula [III] may be one kind or two or more kinds.
  • R 21 represents a hydrogen atom or a C1-6 alkyl group.
  • Examples of the C1-6 alkyl group for R 21 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
  • X 2 represents —NH— or —O—.
  • R 22 represents a hydrocarbon group.
  • Preferred examples of the hydrocarbon group for R 22 include an alkyl group, an arylalkyl group, a heteroarylalkyl group, a cycloalkyl group, and an allyl group.
  • Examples of the alkyl group for R 22 include C1-6 groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, and n-hexyl. Can be mentioned.
  • Examples of the arylalkyl group for R 22 include a group in which a C6-10 aryl group such as a benzyl group, a phenethyl group, or a 3-phenylpropyl group is bonded to a C1-6 alkyl group.
  • the heteroarylalkyl group for R 22 includes at least one N, O, or S as a heteroatom, such as a pyridin-2-ylmethyl group, a pyridin-3-ylmethyl group, a pyridin-4-ylmethyl group, and the number of members And a group in which a 5 to 10 heteroaryl group and a C1 to 6 alkyl group are bonded.
  • Examples of the cycloalkyl group for R 22 include C3-6 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 31 represents a hydrogen atom or a C1-6 alkyl group.
  • Examples of the C1-6 alkyl group for R 31 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
  • X 3 represents —NH— or —O—.
  • R 32 represents a group having an etheric oxygen atom.
  • the group having an etheric oxygen atom is not particularly limited as long as it has an etheric oxygen atom, but is preferably a formula [III-1] or a formula [III-2] described below.
  • R 33 represents an alkylene group.
  • alkylene group for R 33 include methylene, ethylene, propane-1,3-diyl, propane-1,2-diyl, butane-1,4-diyl, butane-2,3-diyl, pentane-1,5- C1-10 groups such as diyl, pentane-1,4-diyl, 2-methylbutane-1,4-diyl, hexane-1,6-diyl, octane-1,8-diyl, decane-1,10-diyl Is mentioned.
  • m represents an integer of 1 to 100.
  • R 34 represents a hydrogen atom or an alkyl group.
  • alkyl group for R 34 include C1-6 groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can be mentioned.
  • R 35 and R 36 each independently represent a hydrogen atom or a C1-C6 alkyl group.
  • Examples of the C1-6 alkyl group for R 35 and R 36 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can be mentioned.
  • Q represents an oxygen-containing saturated heterocyclic group which may have a C1-C6 alkyl group as a substituent.
  • the oxygen-containing saturated heterocyclic group may have a substituent on any carbon atom on the ring.
  • the oxygen-containing saturated heterocyclic group means a 3- to 8-membered saturated heterocyclic ring which contains at least one oxygen atom and may further contain one heteroatom selected from N and S, preferably 3 A 6-membered saturated heterocycle.
  • examples of the oxygen-containing saturated heterocyclic group include an oxiranyl group, an oxetanyl group, a tetrahydrofuranyl group, and a tetrahydropyranyl group.
  • n represents an integer of 0 to 6.
  • the proportion of the repeating unit represented by the formula [II] and / or the formula [III] contained in the block chain (B) is 10 to 100% by weight, 20 to 100% with respect to the total weight of the block chain (B).
  • repeating units that can be contained in the block chains (A) and (B) and other possible repeating units in the block copolymer include (meth) acrylate monomers other than those mentioned above, aromatic Examples thereof include repeating units derived from vinyl monomers and conjugated diene monomers.
  • R 11 is the same as R 11 in the formula [I].
  • P represents a protecting group for a carboxyl group.
  • R 21, X 2, and R 22 are the same as R 21, X 2, and R 22 in the formula [II].
  • R 31, X 3, and R 32 are the same as R 31, X 3 of the formula [III], and R 32.
  • the block copolymer obtained as described above can be used as a dispersant for inorganic nitride as it is or after being dissolved or dispersed in a solvent.
  • Solvents include water; aliphatic hydrocarbon solvents such as hexane, decane, dodecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like Ketone solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, propylene glycol methyl ether acetate, etc .; methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, Alcohol solvent
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the solvent used can be appropriately set from the viewpoint of appropriate dispersant viscosity and the like.
  • the amount of the solvent that can be contained in the dispersant of the present invention is preferably 5 to 95% by weight.
  • the inorganic nitride dispersant of the present invention is suitable for uniformly dispersing inorganic nitride particles in a dispersion medium.
  • the composition of the present invention comprises inorganic nitride particles, a dispersant for inorganic nitride of the present invention, and a dispersion medium.
  • the inorganic nitride is preferably uniformly dispersed in the dispersion medium.
  • inorganic nitride particles The kind of inorganic nitride that can be dispersed with the inorganic nitride dispersant of the present invention is not particularly limited, and examples thereof include boron nitride, aluminum nitride, silicon nitride, and gallium nitride. The particles composed of these substances can be dispersed alone or in combination of two or more. Of these, boron nitride is more preferred.
  • the primary particle diameter of the inorganic nitride particles is not particularly limited, but is preferably 1000 nm or less, more preferably 500 nm or less.
  • the amount of the inorganic nitride particles contained in the composition of the present invention is 1 to 90% by weight, 5 to 80% by weight, 5 to 70% by weight, 5 to 60% by weight, 5 to 50% by weight, and 5 to 40% by weight. %, 5 to 30% by weight, and the like can be selected.
  • the amount of the inorganic nitride dispersant used in the composition of the present invention is 1 to 200 parts by weight, 1 to 100 parts by weight, 1 to 100 parts by weight with respect to 100 parts by weight of the inorganic nitride particles. For example, 50 parts by weight can be selected.
  • a liquid medium or a solid medium can be used as the dispersion medium.
  • the liquid dispersion medium include water; aliphatic hydrocarbon solvents such as hexane, decane, dodecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, and methyl isobutyl.
  • Ketone solvents such as ketone; ester solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate; methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as propylene glycol and glycerin; tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl acetate) Cellosolve), and ether-based solvents such as ethylene glycol monobutyl ether (butyl cellosolve) and the like.
  • liquid dispersion media can be used singly or in combination of two or more.
  • the amount of the liquid dispersion medium used in the composition of the present invention can be appropriately set from the viewpoint of an appropriate composition viscosity and the like.
  • the amount of the liquid dispersion medium that can be contained in the composition of the present invention is preferably 5 to 95% by weight.
  • the solid dispersion medium examples include thermoplastic resins, thermosetting resins, and photocurable resins.
  • the photocurable resin and the thermosetting resin may be referred to as a curable component.
  • a curable composition may be used as a solid dispersion medium to form a curable composition. .
  • Thermoplastic resins include silicone resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, fluororesin, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, poly Examples include butylene terephthalate, polyethylene terephthalate, cyclic polyolefin, polyphenylene sulfide, polysulfone, polyether sulfone, amorphous polyarylate, liquid crystal polymer, polyether ether ketone, thermoplastic polyimide, and polyamideimide.
  • the thermoplastic resin can be kneaded or mixed with the inorganic nitride and the dispersant for inorganic nitride after being melted by heating or dissolved in a solvent.
  • the composition containing a thermoplastic resin may further contain a vulcanizing agent.
  • a vulcanizing agent examples include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, Examples thereof include p-methylbenzoyl peroxide.
  • a sheet-like material can be produced by thermoforming the dispersion composition containing the inorganic nitride dispersant, the thermoplastic resin, the vulcanizing agent, and the inorganic nitride particles of the present invention. The conditions for the heat molding can be appropriately set according to the properties of the thermoplastic resin and the inorganic nitride particles.
  • thermosetting resin changes from liquid to solid when heated.
  • thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, thermosetting polyimide, and the like.
  • thermosetting resin include those containing at least a monomer and, if necessary, an oligomer and a thermal polymerization initiator.
  • the photocurable resin changes from a liquid to a solid when irradiated with light (such as ultraviolet rays).
  • examples of the photocurable resin include those containing at least a monomer and, if necessary, an oligomer and a photopolymerization initiator.
  • Monomers or oligomers used in the photocurable resin or thermosetting resin include monofunctional (meth) acrylate monomers, monoethylenically unsaturated compounds such as styrene and acrylonitrile; diethylene glycol di (meth) acrylate, 1,4- Butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 Di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythrito Polyfunctional (meth) acrylate monomers
  • polyfunctional (meth) acrylate monomers such as dipentaerythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane triacrylate, and trimethylolpropane tetraacrylate Is preferred.
  • these can be used individually by 1 type or in combination of 2 or more types.
  • the polymerization initiator there are one that initiates a polymerization reaction by irradiation of light (photopolymerization initiator) and one that initiates a polymerization reaction by heating (thermal polymerization initiator).
  • the polymerization initiator include organic peroxides, imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, N-alkoxypyridinium salts, thioxanthone derivatives, and the like.
  • organic peroxides examples include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, and diisopropylbenzene hydroperoxide; t-butyl peroxylaurate, t-butyl peroxide Peroxyesters such as oxybenzoate and t-butylperoxydecanoate; Peroxyketals such as 1,5-di-t-butylperoxy-3,3,5-trimethylcyclohexane; Ethyl acetoacetate peroxide Ketone peroxides such as diacyl peroxides such as benzoyl peroxide.
  • hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, and diisopropylbenzene hydroperoxide
  • t-butyl peroxylaurate examples of organic peroxides
  • benzoin benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, 2,2-dimethoxyphenylacetophenone, 2-ethylanthraquinone, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 4, 4′-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5-isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1, 2-diphenylethane-1-one (trade name Irgacure 651, manufactured by Ciba Specialty Chemicals), 1-hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure (registered trademark) 184, Ciba Special Manufactured by T Chemicals), 2-benzyl-2-dimethylamino-1-
  • composition according to the present invention can be prepared by appropriately mixing each component.
  • the inorganic nitride dispersant of the present invention By bringing the inorganic nitride dispersant of the present invention into contact with the inorganic nitride, the inorganic nitride dispersant of the present invention can be adhered to the surface of the inorganic nitride particles.
  • the inorganic nitride particles having the inorganic nitride dispersant adhered to the surface can be used in various applications as surface-treated fine particles.
  • Example 1 To the flask, 100 g of tetrahydrofuran (hereinafter referred to as THF) and 0.1 g of lithium chloride were added and cooled to ⁇ 60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes.
  • THF tetrahydrofuran
  • lithium chloride lithium chloride
  • nBMA n-butyl methacrylate
  • PME-200 methoxypolyethylene glycol monomethacrylate
  • EEMA 2-ethoxyethyl methacrylate
  • Example 2 To the flask, 100 g of THF and 0.1 g of lithium chloride were added and cooled to ⁇ 60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of nBMA 8.0 g and PEGMA 8.0 g was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled and monomer disappearance was confirmed by GC measurement. Next, 7.4 g of EEMA was added dropwise, and the reaction was continued for 1 hour after the addition.
  • Example 3 To the flask, 100 g of THF and 0.1 g of lithium chloride were added and cooled to ⁇ 60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of 7.0 g of nBMA and 7.0 g of PEGMA was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled and monomer disappearance was confirmed by GC measurement. Next, 11.0 g of EEMA was added dropwise, and the reaction was continued for 1 hour after the addition.
  • Mw molecular weight
  • Mn molecular weight distribution
  • Example 4 94 g of THF and 0.25 g of lithium chloride were added to the flask and cooled to ⁇ 60 ° C. After adding 1.5 g of n-butyllithium (15.4 wt% hexane solution), 0.4 g of diisopropylamine was further added and stirred for 10 minutes. Furthermore, 0.4 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of nBMA (3.75 g) and PEGMA (3.75 g) was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled, and the disappearance of the monomer was confirmed by measuring GC.
  • TBMA t-butyl methacrylate
  • Mw molecular weight
  • Mn molecular weight distribution
  • Dispersing machine RBM type batch-type ready mill rotating speed manufactured by Imex Corporation: 1500 rpm Slurry amount: 30g Dispersed bead filling amount: 90 g of zirconia beads (bead diameter 0.1 mm)
  • Example 5 9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.0 parts by weight of dispersant A obtained in Example 1, and 89.0 parts by weight of methyl ethyl ketone Mixed.
  • the mixed solution was put into a disperser and dispersed under the above conditions to obtain a dispersion composition A1.
  • the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals.
  • the average particle diameter of the boron nitride fine particles at 4 hours after the start of dispersion was 4200 nm.
  • the weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition A1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
  • Example 6 9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.5 parts by weight of the dispersant B obtained in Example 2, and 88.5 parts by weight of methyl ethyl ketone Mixed.
  • the mixed solution was put into a disperser and dispersed under the above conditions to obtain dispersion composition B1.
  • the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals.
  • the average particle diameter of the boron nitride fine particles at 1 hour after the start of dispersion was 1900 nm.
  • the weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition B1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
  • Example 7 9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 3.3 parts by weight of the dispersant C obtained in Example 3, and 87.7 parts by weight of methyl ethyl ketone Mixed.
  • the mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition C1.
  • the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals.
  • the average particle diameter of the boron nitride fine particles at 1200 hours after the start of dispersion was 1200 nm.
  • the weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition C1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
  • Comparative Example 2 9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 3.0 parts by weight of the dispersant D obtained in Comparative Example 1, and 88 parts by weight of methyl ethyl ketone were mixed. .
  • the mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition D1.
  • the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals.
  • the average particle diameter of the boron nitride fine particles at 1 hour after the start of dispersion was 7400 nm, and after 2 hours, they aggregated and could not be recovered.
  • Example 8 9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.5 parts by weight of the dispersant E obtained in Example 4, and 88.5 parts by weight of methyl ethyl ketone Mixed.
  • the mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition E1.
  • the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals.
  • the average particle diameter of the boron nitride fine particles at the time point of 2 hours after the start of dispersion was 820 nm.
  • the weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition E1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.

Abstract

The present invention addresses the problem of providing a dispersing agent for inorganic nitrides which is capable of well dispersing microparticles of an inorganic nitride such as boron nitride in a dispersion medium such as an organic solvent and which has a high heat resistance. The dispersing agent according to the present invention for inorganic nitrides comprises a block copolymer which comprises: block chain (A) containing a repeating unit having a carboxyl group; and block chain (B) containing at least one member selected from the group consisting of a repeating unit represented by formula [II] (in formula [II]: R21 represents a hydrogen atom or a C1-6 alkyl group; X2 represents -NH- or -O-; and R22 represents a hydrocarbon group) and a repeating unit represented by formula [III] (in formula [III]; R3 1 represents a hydrogen atom or a C1-6 alkyl group; X3 represents -NH- or -O-; and R3 2 represents a group having an etheric oxygen atom), provided that the block copolymer is free from a tertiary amino group or a quaternary ammonium base.

Description

無機窒化物用分散剤、無機窒化物分散組成物Dispersant for inorganic nitride, inorganic nitride dispersion composition
 本発明は、新規の無機窒化物分散剤、無機窒化物分散組成物に関する。本願は、2016年10月19日に出願された日本国特許出願第2016-205454号に対し優先権を主張し、その内容をここに援用する。 The present invention relates to a novel inorganic nitride dispersant and inorganic nitride dispersion composition. This application claims priority to Japanese Patent Application No. 2016-205454 filed on Oct. 19, 2016, the contents of which are incorporated herein by reference.
 微粒子化した物質を樹脂や溶媒に均一に分散させた材料が、様々な分野で求められている。物質を微粒子化すると、一般に凝集体を形成するため、微粒子を樹脂や溶媒に分散させる際には、何らかの方法で凝集体を解砕する必要がある。凝集体を解砕する方法としては、機械的分散や界面化学的方法などがある。界面化学的方法の一つとして、高分子分散剤を用いる方法が知られている。 A material in which finely divided substances are uniformly dispersed in a resin or solvent is required in various fields. When the substance is made into fine particles, aggregates are generally formed. Therefore, when the fine particles are dispersed in a resin or a solvent, the aggregates must be crushed by some method. Examples of a method for crushing the aggregate include mechanical dispersion and a surface chemical method. As one of surface chemical methods, a method using a polymer dispersant is known.
 従来から、様々な高分子分散剤が提案されている。例えば、特許文献1では、3級アミノ基を有する繰り返し単位及び4級アンモニウム塩基を有する繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位を含む重合体からなるブロック鎖(A)と、ポリオキシアルキレン鎖を有する繰り返し単位及び酸性基を有する繰り返し単位を含む共重合体からなるブロック鎖(B)とを含有する共重合体が提案されている。当該共重合体は、塗料、印刷インク、インクジェットインク、カラーフィルタ用顔料分散物等における顔料分散に有用であると記載されている。 Conventionally, various polymer dispersants have been proposed. For example, in Patent Document 1, a block chain (A) composed of a polymer containing at least one repeating unit selected from the group consisting of a repeating unit having a tertiary amino group and a repeating unit having a quaternary ammonium base, A copolymer containing a repeating unit having an oxyalkylene chain and a block chain (B) composed of a copolymer containing a repeating unit having an acidic group has been proposed. The copolymer is described as being useful for pigment dispersion in paints, printing inks, inkjet inks, pigment dispersions for color filters, and the like.
 特許文献2では、3級アミノ基を有する繰り返し単位及び4級アンモニウム塩基を有する繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位を含むブロック鎖(A)と、酸性基を有する繰り返し単位及び下記式(I) In Patent Document 2, a block chain (A) containing at least one repeating unit selected from the group consisting of a repeating unit having a tertiary amino group and a repeating unit having a quaternary ammonium base, a repeating unit having an acidic group, and Formula (I)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、水素原子又はC1~C3アルキル基を表し、Rは、脂肪族炭化水素基又は脂環式炭化水素基を表す。)で表される繰り返し単位を含むブロック鎖(B)とを含有し、式(I)で表される繰り返し単位の共重合割合がブロック鎖(B)中90質量%以上である共重合体が提案されている。当該共重合体は、塗料、印刷インク、インクジェットインク、カラーフィルタ用顔料分散物等における顔料分散に有用であると記載されている。 (Wherein R 1 represents a hydrogen atom or a C1-C3 alkyl group, and R 2 represents an aliphatic hydrocarbon group or an alicyclic hydrocarbon group). B) and a copolymer having a copolymerization ratio of the repeating unit represented by the formula (I) of 90% by mass or more in the block chain (B) has been proposed. The copolymer is described as being useful for pigment dispersion in paints, printing inks, inkjet inks, pigment dispersions for color filters, and the like.
 特許文献3では、3級アミノ基を有する繰り返し単位及び4級アンモニウム塩基を有する繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位を含むブロック鎖(A)と、下記式(I)(式中、Rは、水素原子等を表し、R及びRは、それぞれ独立に、水素原子等を表し、Qは、置換基としてアルキル基を有していてもよい含酸素飽和ヘテロ環基等を表し、nは、0~6のいずれかの整数を表す。)で表される繰り返し単位と、下記式(II)(式中、Rは、水素原子等を表し、Rは、飽和脂肪族炭化水素基等を表す。)で表される繰り返し単位を含むブロック鎖(B)を含有し、下記式(II)で表される繰り返し単位の共重合割合が、下記式(I)で表される繰り返し単位を除くブロック鎖(B)中90重量%以上である共重合体が提案されている。当該共重合体は、塗料、印刷インク、インクジェット用インク、カラーフィルター用顔料分散物等における各種の有機顔料の分散を始め、金属酸化物、金属水酸化物、金属炭酸塩、金属硫酸塩、金属ケイ酸塩、金属窒化物等の無機粒子の分散やカーボンナノチューブの分散に有用であると記載されている。 In Patent Document 3, a block chain (A) containing at least one repeating unit selected from the group consisting of a repeating unit having a tertiary amino group and a repeating unit having a quaternary ammonium base, and the following formula (I) (formula In the formula, R 1 represents a hydrogen atom, R 2 and R 3 each independently represent a hydrogen atom, and Q represents an oxygen-containing saturated heterocyclic group which may have an alkyl group as a substituent. N represents an integer of 0 to 6, and the following formula (II) (wherein R 4 represents a hydrogen atom, etc., and R 5 represents A block chain (B) containing a repeating unit represented by the following formula (II), wherein the copolymerization ratio of the repeating unit represented by the following formula (II) is: 90% by weight or less in the block chain (B) excluding the repeating unit represented by Copolymers have been proposed are. The copolymer is used for the dispersion of various organic pigments in paints, printing inks, inkjet inks, pigment dispersions for color filters, metal oxides, metal hydroxides, metal carbonates, metal sulfates, metal It is described that it is useful for dispersion of inorganic particles such as silicate and metal nitride, and dispersion of carbon nanotubes.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 特許文献4では、3級アミノ基を有する繰り返し単位及び4級アンモニウム塩構造を有する繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位を含む重合体ブロック(a)と、架橋性官能基を有する繰り返し単位及び光による酸化で生成するラジカルを捕捉する機能を有する構造を有する繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位を含む重合体ブロック(b)とを含有するブロック共重合体からなる無機粒子用分散剤が提案されている。 In Patent Document 4, a polymer block (a) containing at least one repeating unit selected from the group consisting of a repeating unit having a tertiary amino group and a repeating unit having a quaternary ammonium salt structure, and a crosslinkable functional group A block copolymer comprising a repeating unit having a polymer block (b) containing at least one repeating unit selected from the group consisting of repeating units having and a repeating unit having a function of capturing radicals generated by oxidation by light There has been proposed a dispersant for inorganic particles comprising:
 近年、電子機器類の小型化や高性能化に伴って、電子工業に用いられる部材に対しても小型化や高性能化が求められている。前記部材の製造工程において、微粒子化した無機粒子を各種溶媒に分散させる必要がある。しかし、無機粒子の粒子径が小さくなればなるほど、分散が困難になってきている。無機粒子のなかでも、特に、窒化ホウ素微粒子や炭化ケイ素微粒子は分散が困難である。特許文献5では、ローター・ステーター式ホモジナイザーを用いて、窒化ホウ素微粒子や炭化ケイ素などの微粒子を分散する機械的分散方法が提案されている。
 また、特許文献6では、窒化ホウ素粒子とエポキシ樹脂とを含むエポキシ樹脂組成物に含有される分散剤であって、少なくとも二種類のアクリル系モノマーにより形成されてなる共重合体である分散剤が提案されている。
In recent years, with the miniaturization and high performance of electronic devices, there is a demand for miniaturization and high performance of members used in the electronic industry. In the manufacturing process of the member, it is necessary to disperse the finely divided inorganic particles in various solvents. However, dispersion becomes more difficult as the particle size of the inorganic particles becomes smaller. Among inorganic particles, especially boron nitride fine particles and silicon carbide fine particles are difficult to disperse. Patent Document 5 proposes a mechanical dispersion method in which fine particles such as boron nitride fine particles and silicon carbide are dispersed using a rotor / stator homogenizer.
Moreover, in patent document 6, it is a dispersing agent contained in the epoxy resin composition containing a boron nitride particle and an epoxy resin, Comprising: The dispersing agent which is a copolymer formed by at least 2 types of acrylic monomers is mentioned. Proposed.
WO2011/129078パンフレットWO2011 / 129078 brochure WO2012/001945パンフレットWO2012 / 001945 brochure WO2012/063435パンフレットWO2012 / 063435 Pamphlet WO2014/109308パンフレットWO2014 / 109308 brochure WO2014/132445パンフレットWO2014 / 132445 brochure 特開2008-266406号JP 2008-266406 A
 窒化ホウ素などの無機窒化物微粒子を、有機溶媒などの分散媒に良好に分散することができる新規の無機窒化物用分散剤が求められていた。また、分散剤を用いて各種分散媒に無機窒化物粒子を分散した材料は、加熱条件下で加工される場合があるため、耐熱性に優れる無機窒化物用分散剤が求められていた。 There has been a demand for a novel inorganic nitride dispersant that can satisfactorily disperse inorganic nitride fine particles such as boron nitride in a dispersion medium such as an organic solvent. Moreover, since the material which disperse | distributed inorganic nitride particle | grains to various dispersion media using the dispersing agent may be processed on heating conditions, the dispersing agent for inorganic nitrides which was excellent in heat resistance was calculated | required.
 上記目的を達成するために検討を重ねた結果、以下の態様を包含する本発明を完成するに至った。 As a result of repeated studies to achieve the above object, the present invention including the following aspects has been completed.
 すなわち本発明は、以下の発明に関する。
(1)カルボキシル基を有する繰り返し単位を含むブロック鎖(A)と、式〔II〕で表わされる繰り返し単位及び式〔III〕で表される繰り返し単位からなる群より選ばれる少なくとも1種を含むブロック鎖(B)を含むブロック共重合体を含む無機窒化物用分散剤。ただし、前記ブロック共重合体は、3級アミノ基、4級アンモニウム塩基を含まない。
Figure JPOXMLDOC01-appb-C000008
(式〔II〕中、R21は、水素原子またはC1~6アルキル基を示し、Xは、-NH-または-O-を示し、R22は、炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000009
(式〔III〕中、R31は、水素原子またはC1~6アルキル基を示し、Xは、-NH-または-O-を示し、R32は、エーテル性酸素原子を有する基を示す。)
(2)式〔II〕中、R22の炭化水素基が、アルキル基、アリールアルキル基、ヘテロアリールアルキル基、シクロアルキル基、またはアリル基である(1)に記載の無機窒化物用分散剤。
(3)式〔III〕中R32のエーテル性酸素原子を有する基が、式〔III-1〕または式〔III-2〕である(1)に記載の無機窒化物用分散剤。
Figure JPOXMLDOC01-appb-C000010
(式〔III-1〕中、R33は、アルキレン基を示し、mは、1~100のいずれかの整数を示し、R34は、水素原子またはアルキル基を示す。*は結合位置を示す。)
Figure JPOXMLDOC01-appb-C000011
(式〔III-2〕中、R35及びR36は、それぞれ独立に、水素原子又はC1~C6アルキル基を表し、Qは、置換基としてC1~C6アルキル基を有していてもよい含酸素飽和ヘテロ環基を示し、nは、0~6のいずれかの整数を示す。*は結合位置を示す。)
(4)カルボキシル基を有する繰り返し単位が、式〔I〕で表される繰り返し単位である(1)に記載の無機窒化物用分散剤。
Figure JPOXMLDOC01-appb-C000012
(式〔I〕中、R11は、水素原子またはC1~6アルキル基を示す。)
(5)ブロック鎖(A)とブロック鎖(B)の総重量に対するブロック鎖(A)の割合が、15重量%以上70重量%以下である(1)~(4)いずれか1項に記載の無機窒化物用分散剤。
(6)ブロック共重合体の数平均分子量(Mn)が2,000~100,000である(1)~(5)いずれか1項に記載の無機窒化物用分散剤。
(7)無機窒化物が、窒化ホウ素、窒化アルミニウム、窒化ケイ素または窒化ガリウムのいずれかである(1)~(6)いずれか1項に記載の無機窒化物用分散剤。
(8)(1)~(6)いずれか1項に記載の無機窒化物用分散剤と、分散媒と、無機窒化物とを含有する組成物。
(9)無機窒化物が、窒化ホウ素、窒化アルミニウム、窒化ケイ素または窒化ガリウムのいずれかである(8)に記載の組成物。
(10)無機窒化物粒子表面に(1)~(6)いずれか1項に記載の無機窒化物用分散剤が付着した微粒子。
(11)無機窒化物粒子が、窒化ホウ素微粒子、窒化アルミニウム微粒子、窒化ケイ素微粒子または窒化ガリウム微粒子のいずれかである(10)に記載の微粒子。
That is, the present invention relates to the following inventions.
(1) A block comprising at least one selected from the group consisting of a block chain (A) containing a repeating unit having a carboxyl group, a repeating unit represented by the formula [II] and a repeating unit represented by the formula [III] A dispersant for inorganic nitride containing a block copolymer containing a chain (B). However, the block copolymer does not contain a tertiary amino group or a quaternary ammonium base.
Figure JPOXMLDOC01-appb-C000008
(In the formula [II], R 21 represents a hydrogen atom or a C1-6 alkyl group, X 2 represents —NH— or —O—, and R 22 represents a hydrocarbon group.)
Figure JPOXMLDOC01-appb-C000009
(In the formula [III], R 31 represents a hydrogen atom or a C1-6 alkyl group, X 3 represents —NH— or —O—, and R 32 represents a group having an etheric oxygen atom. )
(2) The inorganic nitride dispersant according to (1), wherein the hydrocarbon group of R 22 in formula [II] is an alkyl group, an arylalkyl group, a heteroarylalkyl group, a cycloalkyl group, or an allyl group .
(3) The inorganic nitride dispersant according to (1), wherein the group having an R 32 etheric oxygen atom in formula [III] is formula [III-1] or formula [III-2].
Figure JPOXMLDOC01-appb-C000010
(In the formula [III-1], R 33 represents an alkylene group, m represents an integer of 1 to 100, R 34 represents a hydrogen atom or an alkyl group, and * represents a bonding position. .)
Figure JPOXMLDOC01-appb-C000011
(In the formula [III-2], R 35 and R 36 each independently represent a hydrogen atom or a C1-C6 alkyl group, and Q may contain a C1-C6 alkyl group as a substituent. Represents an oxygen-saturated heterocyclic group, and n represents an integer of 0 to 6. * represents a bonding position.)
(4) The dispersant for inorganic nitride according to (1), wherein the repeating unit having a carboxyl group is a repeating unit represented by the formula [I].
Figure JPOXMLDOC01-appb-C000012
(In the formula [I], R 11 represents a hydrogen atom or a C1-6 alkyl group.)
(5) The ratio of the block chain (A) to the total weight of the block chain (A) and the block chain (B) is 15% by weight or more and 70% by weight or less, according to any one of (1) to (4) An inorganic nitride dispersant.
(6) The inorganic nitride dispersant according to any one of (1) to (5), wherein the block copolymer has a number average molecular weight (Mn) of 2,000 to 100,000.
(7) The inorganic nitride dispersant according to any one of (1) to (6), wherein the inorganic nitride is any of boron nitride, aluminum nitride, silicon nitride, or gallium nitride.
(8) A composition containing the dispersant for inorganic nitride according to any one of (1) to (6), a dispersion medium, and an inorganic nitride.
(9) The composition according to (8), wherein the inorganic nitride is any of boron nitride, aluminum nitride, silicon nitride, or gallium nitride.
(10) Fine particles having the inorganic nitride dispersant described in any one of (1) to (6) attached to the surface of the inorganic nitride particles.
(11) The fine particles according to (10), wherein the inorganic nitride particles are any of boron nitride fine particles, aluminum nitride fine particles, silicon nitride fine particles, or gallium nitride fine particles.
 本発明の無機窒化物用分散剤は、窒化ホウ素などの無機窒化物粒子を分散媒に分散することができる。また、本発明の無機窒化物用分散剤は耐熱性に優れる。 The inorganic nitride dispersant of the present invention can disperse inorganic nitride particles such as boron nitride in a dispersion medium. The inorganic nitride dispersant of the present invention is excellent in heat resistance.
(無機窒化物用分散剤)
 本発明の無機窒化物用分散剤は、以下で説明するブロック鎖(A)およびブロック鎖(B)を、それぞれ少なくとも1個含有するブロック共重合体を含む。本発明の無機粒子分散剤は、当該ブロック共重合体以外に、公知の高分子分散剤を含有していてもよい。
 本発明のブロック共重合体は、3級アミノ基、4級アンモニウム塩基を含まないものであるのが好ましい。
(Dispersant for inorganic nitride)
The dispersant for inorganic nitride of the present invention includes a block copolymer containing at least one block chain (A) and block chain (B) described below. The inorganic particle dispersant of the present invention may contain a known polymer dispersant in addition to the block copolymer.
The block copolymer of the present invention preferably contains no tertiary amino group or quaternary ammonium base.
 本発明に用いるブロック共重合体の数平均分子量(Mn)は、2,000~100,000、2,000~50,000、2,000~30,000とすることができる。また、本発明に係るブロック共重合体の分子量分布は、重量平均分子量/数平均分子量(Mw/Mn)の比で、1.0~2.5、1.0~2.4、1.0~2.3、1.0~2.2、1.0~2.1、1.0~2.0などを選択することができる。
 なお、重量平均分子量および数平均分子量はN,N-ジメチルホルムアミドを溶媒とするゲルパーミエーションクロマトグラフィ(GPC)にて測定したデータを標準ポリメタクリル酸メチルの分子量に基づいて換算した値である。
The number average molecular weight (Mn) of the block copolymer used in the present invention can be 2,000 to 100,000, 2,000 to 50,000, and 2,000 to 30,000. The molecular weight distribution of the block copolymer according to the present invention is 1.0 to 2.5, 1.0 to 2.4, 1.0 in terms of the ratio of weight average molecular weight / number average molecular weight (Mw / Mn). -2.3, 1.0-2.2, 1.0-2.1, 1.0-2.0, and the like can be selected.
The weight average molecular weight and number average molecular weight are values obtained by converting data measured by gel permeation chromatography (GPC) using N, N-dimethylformamide as a solvent based on the molecular weight of standard polymethyl methacrylate.
 本発明のブロック共重合体は、ブロック鎖(A)およびブロック鎖(B)以外に他のブロック鎖を含有していてもよいが、本発明のブロック共重合体中のブロック鎖(A)及び(B)の総含有量は、通常、1~100重量%、好ましくは50~100重量%、特に好ましくは、100重量%である。 
 ブロック鎖(A)とブロック鎖(B)の総重量に対するブロック鎖(A)の割合は、15重量%~70重量%、15重量%~65重量%、15重量%~60重量%、15重量%~55重量%、15重量%~50重量%、20重量%~70重量%、20重量%~65重量%、20重量%~60重量%、20重量%~55重量%、20重量%~50重量%などを選択することができる。
The block copolymer of the present invention may contain other block chains in addition to the block chain (A) and the block chain (B), but the block chain (A) and The total content of (B) is usually 1 to 100% by weight, preferably 50 to 100% by weight, particularly preferably 100% by weight.
The ratio of the block chain (A) to the total weight of the block chain (A) and the block chain (B) is 15 wt% to 70 wt%, 15 wt% to 65 wt%, 15 wt% to 60 wt%, 15 wt%. % To 55%, 15% to 50%, 20% to 70%, 20% to 65%, 20% to 60%, 20% to 55%, 20% to For example, 50% by weight can be selected.
(カルボキシル基を有する繰り返し単位を含むブロック鎖(A))
 ブロック鎖(A)は、カルボキシル基(-COOH基)を有する繰り返し単位を含む。カルボキシル基を有する繰り返し単位は、繰り返し単位中にカルボキシル基を有する限り特に限定されないが、式〔I〕で表される繰り返し単位であるのが好ましい。
(Block chain containing a repeating unit having a carboxyl group (A))
The block chain (A) includes a repeating unit having a carboxyl group (—COOH group). The repeating unit having a carboxyl group is not particularly limited as long as the repeating unit has a carboxyl group, but is preferably a repeating unit represented by the formula [I].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式〔I〕中、R11は、水素原子またはC1~6アルキル基を示す。
 R11におけるC1~6アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどを挙げることができる。
In the formula [I], R 11 represents a hydrogen atom or a C1-6 alkyl group.
Examples of the C1-6 alkyl group for R 11 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
 ブロック鎖(A)に含まれるカルボキシル基を有する繰り返し単位の割合は、ブロック鎖(A)の総重量に対して、10~100重量%、20~100重量%、30~100重量%、40~100重量%、50~100重量%、60~100重量%、70~100重量%、80~100重量%、90~100重量%、100重量%などを選択することができる。これらのうち、100重量%であるのが好ましい。 The proportion of the repeating unit having a carboxyl group contained in the block chain (A) is 10 to 100% by weight, 20 to 100% by weight, 30 to 100% by weight, 40 to 40% by weight based on the total weight of the block chain (A). 100% by weight, 50 to 100% by weight, 60 to 100% by weight, 70 to 100% by weight, 80 to 100% by weight, 90 to 100% by weight, 100% by weight and the like can be selected. Of these, 100% by weight is preferred.
(ブロック鎖(B))
 ブロック鎖(B)は、式〔II〕で表わされる繰り返し単位及び式〔III〕で表される繰り返し単位からなる群より選ばれる少なくとも1種を含む。
 ブロック鎖(B)は、式〔II〕で表される繰り返し単位を有するか、式〔III〕で表される繰り返し単位を有するか、式〔II〕および式〔III〕で表される繰り返し単位を両方有するもののいずれかである。ここで、式〔II〕で表される繰り返し単位及び式〔III〕で表される繰り返し単位は、それぞれ、1種でも良いし、2種以上であっても良い。
(Block chain (B))
The block chain (B) contains at least one selected from the group consisting of a repeating unit represented by the formula [II] and a repeating unit represented by the formula [III].
The block chain (B) has a repeating unit represented by the formula [II], a repeating unit represented by the formula [III], or a repeating unit represented by the formula [II] and the formula [III]. One of those having both. Here, each of the repeating unit represented by the formula [II] and the repeating unit represented by the formula [III] may be one kind or two or more kinds.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式〔II〕中、R21は、水素原子またはC1~6アルキル基を示す。
21におけるC1~6アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどを挙げることができる。
In the formula [II], R 21 represents a hydrogen atom or a C1-6 alkyl group.
Examples of the C1-6 alkyl group for R 21 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
 式〔II〕中、Xは、-NH-または-O-を示す。 In the formula [II], X 2 represents —NH— or —O—.
 式〔II〕中、R22は、炭化水素基を示す。R22の炭化水素基として、好ましくは、アルキル基、アリールアルキル基、ヘテロアリールアルキル基、シクロアルキル基、アリル基などを挙げることができる。
 R22におけるアルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどのC1~6の基を挙げることができる。
 R22におけるアリールアルキル基としては、ベンジル基、フェネチル基、3-フェニルプロピル基などのC6~10のアリール基とC1~6のアルキル基の結合した基を挙げることができる。
 R22におけるヘテロアリールアルキル基としては、ピリジン-2-イルメチル基、ピリジン-3-イルメチル基、ピリジン-4-イルメチル基などの、ヘテロ原子としてN、O又はSを少なくとも1個有し、員数が5~10のヘテロアリール基とC1~6のアルキル基の結合した基を挙げることができる。
 R22におけるシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などのC3~6シクロアルキル基を挙げることができる。
In the formula [II], R 22 represents a hydrocarbon group. Preferred examples of the hydrocarbon group for R 22 include an alkyl group, an arylalkyl group, a heteroarylalkyl group, a cycloalkyl group, and an allyl group.
Examples of the alkyl group for R 22 include C1-6 groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, and n-hexyl. Can be mentioned.
Examples of the arylalkyl group for R 22 include a group in which a C6-10 aryl group such as a benzyl group, a phenethyl group, or a 3-phenylpropyl group is bonded to a C1-6 alkyl group.
The heteroarylalkyl group for R 22 includes at least one N, O, or S as a heteroatom, such as a pyridin-2-ylmethyl group, a pyridin-3-ylmethyl group, a pyridin-4-ylmethyl group, and the number of members And a group in which a 5 to 10 heteroaryl group and a C1 to 6 alkyl group are bonded.
Examples of the cycloalkyl group for R 22 include C3-6 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式〔III〕中、R31は、水素原子またはC1~6アルキル基を示す。
 R31におけるC1~6アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどを挙げることができる。
In the formula [III], R 31 represents a hydrogen atom or a C1-6 alkyl group.
Examples of the C1-6 alkyl group for R 31 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can do.
 式〔III〕中、Xは、-NH-または-O-を表す。 In the formula [III], X 3 represents —NH— or —O—.
 式〔III〕中、R32は、エーテル性酸素原子を有する基を示す。エーテル性酸素原子を有する基は、エーテル性酸素原子を有する限り特に制限されないが、以下で説明する、式〔III-1〕または式〔III-2〕であるのが好ましい。 In the formula [III], R 32 represents a group having an etheric oxygen atom. The group having an etheric oxygen atom is not particularly limited as long as it has an etheric oxygen atom, but is preferably a formula [III-1] or a formula [III-2] described below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式〔III-1〕中、R33は、アルキレン基を示す。R33におけるアルキレン基としては、メチレン、エチレン、プロパン-1,3-ジイル、プロパン-1,2-ジイル、ブタン-1,4-ジイル、ブタン-2,3-ジイル、ペンタン-1,5-ジイル、ペンタン-1,4-ジイル、2-メチルブタン-1,4-ジイル、ヘキサン-1,6-ジイル、オクタン-1,8-ジイル、デカン-1,10-ジイルなどのC1~10の基が挙げられる。
 式〔III-1〕中、mは、1~100のいずれかの整数を表す。
In the formula [III-1], R 33 represents an alkylene group. Examples of the alkylene group for R 33 include methylene, ethylene, propane-1,3-diyl, propane-1,2-diyl, butane-1,4-diyl, butane-2,3-diyl, pentane-1,5- C1-10 groups such as diyl, pentane-1,4-diyl, 2-methylbutane-1,4-diyl, hexane-1,6-diyl, octane-1,8-diyl, decane-1,10-diyl Is mentioned.
In the formula [III-1], m represents an integer of 1 to 100.
 式〔III-1〕中、R34は、水素原子またはアルキル基を表す。
 R34におけるアルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどのC1~6の基を挙げることができる。
In the formula [III-1], R 34 represents a hydrogen atom or an alkyl group.
Examples of the alkyl group for R 34 include C1-6 groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can be mentioned.
 式〔III-1〕中、*は、Xとの結合位置を示す。 In the formula [III-1], * represents a bonding position with X 3 .
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式〔III-2〕中、R35及びR36は、それぞれ独立に、水素原子又はC1~C6アルキル基を示す。R35およびR36におけるC1~6アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシルなどを挙げることができる。 In the formula [III-2], R 35 and R 36 each independently represent a hydrogen atom or a C1-C6 alkyl group. Examples of the C1-6 alkyl group for R 35 and R 36 include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl and the like. Can be mentioned.
 式〔III-2〕中、Qは、置換基としてC1~C6アルキル基を有していてもよい含酸素飽和ヘテロ環基を示す。含酸素飽和ヘテロ環基は、環上の任意の炭素原子に置換基を有していてもよい。含酸素飽和へテロ環基とは、酸素原子を少なくとも1個含み、更にN及びSから選ばれるヘテロ原子を1つ含んでいてもよい3~8員飽和ヘテロ環を意味し、好ましくは、3~6員飽和へテロ環である。
 ここで、含酸素飽和へテロ環基としては、オキシラニル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基を例示することができる。
In the formula [III-2], Q represents an oxygen-containing saturated heterocyclic group which may have a C1-C6 alkyl group as a substituent. The oxygen-containing saturated heterocyclic group may have a substituent on any carbon atom on the ring. The oxygen-containing saturated heterocyclic group means a 3- to 8-membered saturated heterocyclic ring which contains at least one oxygen atom and may further contain one heteroatom selected from N and S, preferably 3 A 6-membered saturated heterocycle.
Here, examples of the oxygen-containing saturated heterocyclic group include an oxiranyl group, an oxetanyl group, a tetrahydrofuranyl group, and a tetrahydropyranyl group.
 式〔III-2〕中、nは、0~6のいずれかの整数を示す。 In the formula [III-2], n represents an integer of 0 to 6.
 式〔III-2〕中、*は、Xとの結合位置を示す。 In the formula [III-2], * represents a bonding position with X 3 .
 ブロック鎖(B)に含まれる式〔II〕および/または式〔III〕で表される繰り返し単位の割合は、ブロック鎖(B)の総重量に対して、10~100重量%、20~100重量%、30~100重量%、40~100重量%、50~100重量%、60~100重量%、70~100重量%、80~100重量%、90~100重量%、100重量%などを選択することができる。 The proportion of the repeating unit represented by the formula [II] and / or the formula [III] contained in the block chain (B) is 10 to 100% by weight, 20 to 100% with respect to the total weight of the block chain (B). Wt%, 30-100 wt%, 40-100 wt%, 50-100 wt%, 60-100 wt%, 70-100 wt%, 80-100 wt%, 90-100 wt%, 100 wt% etc. You can choose.
(ブロック鎖(A)及び(B)中の他の含有し得る繰り返し単位、並びにブロック共重合体中の他の含有し得る繰り返し単位)
 ブロック鎖(A)及び(B)中の他の含有しうる繰り返し単位、及びブロック共重合体中の他の含有し得る繰り返し単位としては、上記以外の(メタ)アクリル酸エステル系モノマー、芳香族ビニル系モノマー、共役ジエン系モノマー等由来の繰り返し単位が挙げられる。
(Other possible repeating units in the block chains (A) and (B) and other possible repeating units in the block copolymer)
Other repeating units that can be contained in the block chains (A) and (B) and other repeating units that can be contained in the block copolymer include (meth) acrylate monomers other than those mentioned above, aromatic Examples thereof include repeating units derived from vinyl monomers and conjugated diene monomers.
 (ブロック共重合体の製造方法)
 本発明のブロック共重合体の製造方法の一例を、以下説明する。
 重合開始剤を含む溶媒中に、低温下にて、式〔IIm〕で表される化合物と式〔IIIm〕で表される化合物の混合物を添加して、リビングアニオン重合する。式〔IIm〕で表される化合物と式〔IIIm〕で表される化合物の消失を確認した後、反応系内に式〔Im〕で表される化合物を滴下し、リビングアニオン重合を行う。反応終了後、保護基Pを脱保護することにより、本発明のブロック共重合体を得ることができる。得られたブロック共重合体は、一般的な精製方法で精製することができる。
(Method for producing block copolymer)
An example of the method for producing the block copolymer of the present invention will be described below.
A mixture of the compound represented by the formula [IIm] and the compound represented by the formula [IIIm] is added to a solvent containing a polymerization initiator at a low temperature to perform living anion polymerization. After confirming the disappearance of the compound represented by the formula [IIm] and the compound represented by the formula [IIIm], the compound represented by the formula [Im] is dropped into the reaction system to perform living anion polymerization. After completion of the reaction, the protecting group P is deprotected to obtain the block copolymer of the present invention. The obtained block copolymer can be purified by a general purification method.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式〔Im〕中、R11は、式〔I〕中のR11と同様である。式〔Im〕中、Pはカルボキシル基の保護基を示す。 Wherein [Im], R 11 is the same as R 11 in the formula [I]. In the formula [Im], P represents a protecting group for a carboxyl group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式〔IIm〕中、R21、X、及びR22は、式〔II〕中のR21、X、及びR22と同様である。 Wherein [IIm], R 21, X 2, and R 22 are the same as R 21, X 2, and R 22 in the formula [II].
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式〔IIIm〕中、R31、X、及びR32は、式〔III〕のR31、X、及びR32と同様である。 Wherein [IIIm], R 31, X 3, and R 32 are the same as R 31, X 3 of the formula [III], and R 32.
 上記のようにして得られるブロック共重合体は、そのままで、あるいは、溶媒に溶解又は分散して無機窒化物用分散剤として使用することができる。
 溶媒としては、水;ヘキサン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素溶媒;シクロヘキサンなどの脂環式炭化水素溶媒;トルエン、キシレンなどの芳香族炭化水素溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、プロピレングリコールメチルエーテルアセテートなどのエステル系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンなどのアルコール系溶媒;テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、1-メトキシ-2-プロパノールなどのエーテル系溶媒などを挙げることができる。溶媒は、1種単独でまたは2種以上を組み合わせて用いることができる。用いられる溶媒の量は、適正な分散剤粘度などの観点から適宜設定することができる。本発明の分散剤に含まれ得る溶媒の量は、好ましくは5~95重量%である。
 本発明の無機窒化物用分散剤は、分散媒に無機窒化物粒子を均一に分散するのに好適である。
The block copolymer obtained as described above can be used as a dispersant for inorganic nitride as it is or after being dissolved or dispersed in a solvent.
Solvents include water; aliphatic hydrocarbon solvents such as hexane, decane, dodecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like Ketone solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, propylene glycol methyl ether acetate, etc .; methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, Alcohol solvents such as triethylene glycol, propylene glycol, glycerin; tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve), ethyl Glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), and ether solvents such as 1-methoxy-2-propanol can be exemplified. A solvent can be used individually by 1 type or in combination of 2 or more types. The amount of the solvent used can be appropriately set from the viewpoint of appropriate dispersant viscosity and the like. The amount of the solvent that can be contained in the dispersant of the present invention is preferably 5 to 95% by weight.
The inorganic nitride dispersant of the present invention is suitable for uniformly dispersing inorganic nitride particles in a dispersion medium.
(無機窒化物分散組成物)
 本発明の組成物は、無機窒化物粒子と、本発明の無機窒化物用分散剤と、分散媒とを含むものである。本発明の組成物においては、無機窒化物が分散媒に均一に分散していることが好ましい。
(Inorganic nitride dispersion composition)
The composition of the present invention comprises inorganic nitride particles, a dispersant for inorganic nitride of the present invention, and a dispersion medium. In the composition of the present invention, the inorganic nitride is preferably uniformly dispersed in the dispersion medium.
(無機窒化物粒子)
 本発明の無機窒化物用分散剤で分散することができる無機窒化物の種類は特に限定されないが、窒化ホウ素、窒化アルミニウム、窒化ケイ素または窒化ガリウムなどが挙げられる。これらの物質からなる粒子は1種単独でまたは2種以上を組み合わせて分散対象とすることができる。これらのうち、窒化ホウ素がより好ましい。
(Inorganic nitride particles)
The kind of inorganic nitride that can be dispersed with the inorganic nitride dispersant of the present invention is not particularly limited, and examples thereof include boron nitride, aluminum nitride, silicon nitride, and gallium nitride. The particles composed of these substances can be dispersed alone or in combination of two or more. Of these, boron nitride is more preferred.
 無機窒化物粒子の一次粒子径は、特に限定されないが、好ましくは1000nm以下、より好ましくは500nm以下である。 The primary particle diameter of the inorganic nitride particles is not particularly limited, but is preferably 1000 nm or less, more preferably 500 nm or less.
 本発明の組成物に含まれる無機窒化物粒子の量は、1~90重量%、5~80重量%、5~70重量%、5~60重量%、5~50重量%、5~40重量%、5~30重量%などを選択することができる。また、本発明の組成物に使用される本発明に係る無機窒化物用分散剤の量は、無機窒化物粒子100重量部に対して、1~200重量部、1~100重量部、1~50重量部などを選択することができる。 The amount of the inorganic nitride particles contained in the composition of the present invention is 1 to 90% by weight, 5 to 80% by weight, 5 to 70% by weight, 5 to 60% by weight, 5 to 50% by weight, and 5 to 40% by weight. %, 5 to 30% by weight, and the like can be selected. The amount of the inorganic nitride dispersant used in the composition of the present invention is 1 to 200 parts by weight, 1 to 100 parts by weight, 1 to 100 parts by weight with respect to 100 parts by weight of the inorganic nitride particles. For example, 50 parts by weight can be selected.
(分散媒)
 本発明の組成物においては、分散媒として、液体のものまたは固体のものを用いることができる。
 液体分散媒としては、水;ヘキサン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素溶媒;シクロヘキサンなどの脂環式炭化水素溶媒;トルエン、キシレンなどの芳香族炭化水素溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチルなどのエステル系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンなどのアルコール系溶媒;テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)などのエーテル系溶媒などを挙げることができる。これら液体分散媒は、1種単独でまたは2種以上を組み合わせて用いることができる。
 本発明の組成物に用いられる液体分散媒の量は、適正な組成物粘度などの観点から適宜設定することができる。本発明の組成物に含まれ得る液体分散媒の量は、好ましくは5~95重量%である。  
(Dispersion medium)
In the composition of the present invention, a liquid medium or a solid medium can be used as the dispersion medium.
Examples of the liquid dispersion medium include water; aliphatic hydrocarbon solvents such as hexane, decane, dodecane, and tetradecane; alicyclic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as toluene and xylene; acetone, methyl ethyl ketone, and methyl isobutyl. Ketone solvents such as ketone; ester solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate; methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as propylene glycol and glycerin; tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl acetate) Cellosolve), and ether-based solvents such as ethylene glycol monobutyl ether (butyl cellosolve) and the like. These liquid dispersion media can be used singly or in combination of two or more.
The amount of the liquid dispersion medium used in the composition of the present invention can be appropriately set from the viewpoint of an appropriate composition viscosity and the like. The amount of the liquid dispersion medium that can be contained in the composition of the present invention is preferably 5 to 95% by weight.
 固体分散媒としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などを挙げることができる。なお、本発明においては光硬化性樹脂および熱硬化性樹脂を硬化性成分と呼ぶことがある。本発明においては硬化性成分を固体分散媒として用いて硬化性組成物とすることもできる。     Examples of the solid dispersion medium include thermoplastic resins, thermosetting resins, and photocurable resins. In the present invention, the photocurable resin and the thermosetting resin may be referred to as a curable component. In the present invention, a curable composition may be used as a solid dispersion medium to form a curable composition. .
 熱可塑性樹脂としては、シリコーン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル 、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、フッ素樹脂、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミドなどが挙げられる。熱可塑性樹脂は加熱融解させて、または溶媒に溶解させて、無機窒化物および無機窒化物用分散剤と混練または混合することができる。 Thermoplastic resins include silicone resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, fluororesin, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, poly Examples include butylene terephthalate, polyethylene terephthalate, cyclic polyolefin, polyphenylene sulfide, polysulfone, polyether sulfone, amorphous polyarylate, liquid crystal polymer, polyether ether ketone, thermoplastic polyimide, and polyamideimide. The thermoplastic resin can be kneaded or mixed with the inorganic nitride and the dispersant for inorganic nitride after being melted by heating or dissolved in a solvent.
 熱可塑性樹脂を含む組成物は、さらに加硫剤を含有していてもよい。加硫剤としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メチルベンゾイルパーオキサイドなどを挙げることができる。
 本発明の無機窒化物用分散剤と、熱可塑性樹脂と、加硫剤と、無機窒化物粒子を含む分散組成物を加熱成形することにより、シート状材料を製造することができる。加熱成形する条件は、熱可塑性樹脂や無機窒化物粒子の性質などに合わせて適宜条件を設定することができる。
The composition containing a thermoplastic resin may further contain a vulcanizing agent. Examples of the vulcanizing agent include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, Examples thereof include p-methylbenzoyl peroxide.
A sheet-like material can be produced by thermoforming the dispersion composition containing the inorganic nitride dispersant, the thermoplastic resin, the vulcanizing agent, and the inorganic nitride particles of the present invention. The conditions for the heat molding can be appropriately set according to the properties of the thermoplastic resin and the inorganic nitride particles.
 熱硬化性樹脂は熱を加えることによって液体から固体に変化するものである。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド、などが挙げられる。また、熱硬化性樹脂として、モノマーおよび必要に応じてオリゴマーと、熱重合開始剤とを少なくとも含有するものが挙げられる。    Thermosetting resin changes from liquid to solid when heated. Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, thermosetting polyimide, and the like. Further, examples of the thermosetting resin include those containing at least a monomer and, if necessary, an oligomer and a thermal polymerization initiator. *
 また、光硬化性樹脂は、光(紫外線など)を照射することによって液体から固体に変化するものである。光硬化性樹脂として、例えば、モノマーおよび必要に応じてオリゴマーと、光重合開始剤とを少なくとも含有するものが挙げられる。 Also, the photocurable resin changes from a liquid to a solid when irradiated with light (such as ultraviolet rays). Examples of the photocurable resin include those containing at least a monomer and, if necessary, an oligomer and a photopolymerization initiator.
 光硬化性樹脂または熱硬化性樹脂において用いられるモノマーまたはオリゴマーとしては、単官能(メタ)アクリレート系モノマー、スチレン、アクリロニトリルなどのモノエチレン性不飽和化合物;ジエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリエチレンジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、ネオペンチルジ(メタ)アクリレート、ジメチロルトリシクロデカンジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンテトラアクリレートなどの多官能(メタ)アクリレート系モノマー;ウレタン(メタ)アクリレート;エポキシ(メタ)アクリレートなどが挙げられる。
 これらのうち、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンテトラアクリレートなどの多官能(メタ)アクリレート系モノマーが好ましい。また、これらは1種単独で、または2種以上を組み合わせて用いることができる。
Monomers or oligomers used in the photocurable resin or thermosetting resin include monofunctional (meth) acrylate monomers, monoethylenically unsaturated compounds such as styrene and acrylonitrile; diethylene glycol di (meth) acrylate, 1,4- Butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, triethylene di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 Di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythrito Polyfunctional (meth) acrylate monomers such as rutri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane triacrylate, trimethylolpropane tetraacrylate; urethane (meth) acrylate; epoxy (meth) acrylate It is done.
Among these, polyfunctional (meth) acrylate monomers such as dipentaerythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane triacrylate, and trimethylolpropane tetraacrylate Is preferred. Moreover, these can be used individually by 1 type or in combination of 2 or more types.
 重合開始剤としては、光の照射によって重合反応を開始させるもの(光重合開始剤)と加熱によって重合反応を開始させるもの(熱重合開始剤)とがある。重合開始剤の具体例としては、有機過酸化物、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、N-アルコキシピリジニウム塩、チオキサントン誘導体などが挙げられる。
 有機過酸化物としては、t-ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドなどのハイドロパーオキサイド類;t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシデカノエートなどのパーオキシエステル類;1,5-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサンなどのパーオキシケタール類;アセト酢酸エチルパーオキサイドなどのケトンパーオキサイド類;過酸化ベンゾイルなどのジアシルパーオキサイド類が挙げられる。
 その他、ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシフェニルアセトフェノン、2-エチルアントラキノン、1,3-ジ(tert-ブチルジオキシカルボニル)ベンゾフェノン、4,4’-テトラキス(tert-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名イルガキュア651、チバ・スペシャルティ・ケミカルズ(株)製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア(登録商標)184、チバ・スペシャルティ・ケミカルズ(株)製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(商品名イルガキュア(登録商標)369、チバ・スペシャルティ・ケミカルズ(株)製)、ビス(2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム)(商品名イルガキュア(登録商標)784、チバ・スペシャルティ・ケミカルズ(株)製)、ジクミルペルオキシド、t-ブチルペルベンゾアート、t-ブチルペロキシヘキシン-3などが挙げられる。これら重合開始剤は、1種単独でまたは2種以上を組み合わせて用いることができる。    
As the polymerization initiator, there are one that initiates a polymerization reaction by irradiation of light (photopolymerization initiator) and one that initiates a polymerization reaction by heating (thermal polymerization initiator). Specific examples of the polymerization initiator include organic peroxides, imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, N-alkoxypyridinium salts, thioxanthone derivatives, and the like. .
Examples of organic peroxides include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide, and diisopropylbenzene hydroperoxide; t-butyl peroxylaurate, t-butyl peroxide Peroxyesters such as oxybenzoate and t-butylperoxydecanoate; Peroxyketals such as 1,5-di-t-butylperoxy-3,3,5-trimethylcyclohexane; Ethyl acetoacetate peroxide Ketone peroxides such as diacyl peroxides such as benzoyl peroxide.
Others, benzoin, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, 2,2-dimethoxyphenylacetophenone, 2-ethylanthraquinone, 1,3-di (tert-butyldioxycarbonyl) benzophenone, 4, 4′-tetrakis (tert-butyldioxycarbonyl) benzophenone, 3-phenyl-5-isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1, 2-diphenylethane-1-one (trade name Irgacure 651, manufactured by Ciba Specialty Chemicals), 1-hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure (registered trademark) 184, Ciba Special Manufactured by T Chemicals), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one (trade name Irgacure (registered trademark) 369, Ciba Specialty Chemicals Co., Ltd.) ), Bis (2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium) (trade name Irgacure (registered trademark)) 784, manufactured by Ciba Specialty Chemicals), dicumyl peroxide, t-butyl perbenzoate, t-butylperoxyhexyne-3, and the like. These polymerization initiators can be used alone or in combination of two or more.
 本発明に係る組成物は、各成分を適宜混合することにより調製することができる。 The composition according to the present invention can be prepared by appropriately mixing each component.
 本発明の無機窒化物用分散剤と無機窒化物を接触させることにより、無機窒化物粒子の表面に、本発明の無機窒化物用分散剤を付着させることができる。無機窒化物用分散剤が表面に付着した無機窒化物粒子は、表面処理をした微粒子として各種用途に使用することができる。 By bringing the inorganic nitride dispersant of the present invention into contact with the inorganic nitride, the inorganic nitride dispersant of the present invention can be adhered to the surface of the inorganic nitride particles. The inorganic nitride particles having the inorganic nitride dispersant adhered to the surface can be used in various applications as surface-treated fine particles.
[実施例]
 以下実施例を用いて本発明を詳細に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these illustrations.
<無機窒化物用分散剤の製造>
実施例1
 フラスコにテトラヒドロフラン(以下、THF)100g、塩化リチウム0.1gを加え、-60℃まで冷却した。n-ブチルリチウム2.2g(15.4重量%濃度ヘキサン溶液)を加えた後、さらに、ジイソプロピルアミン0.5gを加えて10分間撹拌した。さらに、イソ酪酸メチル0.5gを加えて10分間撹拌した。反応系内にメタクリル酸n-ブチル(以下、nBMA)9.0g、メトキシポリエチレングリコールモノメタクリレート(PME-200 日油株式会社製)(以下、PEGMA)9.0gの混合物を10分間かけて滴下した後、5分間撹拌した。一部をサンプリングし、GC測定によりモノマー消失を確認した。次いで、メタクリル酸2-エトキシエチル(以下、EEMA)3.7gを滴下し、滴下後1時間反応継続した。一部をサンプリングし、GC測定によりモノマー消失を確認した後、メタノール0.4gを加えて反応を停止した。
 反応液をTHFおよびヘキサンで希釈し、二回水洗後、溶媒を留去した。酢酸2-メトキシ-1-メチルエチル(以下、PGMEA)で溶媒置換した後、水を添加した。加熱還流下で6時間反応させた後、水を留去しポリマー濃度が50重量%になるようPGMEAを加え分散剤Aを得た(nBMA/PEGMA-メタクリル酸(以下、MA)=45/45-10重量%)。GPC(移動相THF、PMMAスタンダード)で分析したところ、分子量(Mw)は5200、分子量分布(Mw/Mn)は1.13であった。
<Manufacture of inorganic nitride dispersant>
Example 1
To the flask, 100 g of tetrahydrofuran (hereinafter referred to as THF) and 0.1 g of lithium chloride were added and cooled to −60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of n-butyl methacrylate (hereinafter referred to as nBMA) 9.0 g and methoxypolyethylene glycol monomethacrylate (PME-200 manufactured by NOF Corporation) (hereinafter referred to as PEGMA) 9.0 g was dropped into the reaction system over 10 minutes. Thereafter, the mixture was stirred for 5 minutes. A part was sampled and monomer disappearance was confirmed by GC measurement. Subsequently, 3.7 g of 2-ethoxyethyl methacrylate (hereinafter referred to as EEMA) was added dropwise, and the reaction was continued for 1 hour after the addition. A part was sampled, and after confirming disappearance of the monomer by GC measurement, 0.4 g of methanol was added to stop the reaction.
The reaction solution was diluted with THF and hexane, washed twice with water, and then the solvent was distilled off. After solvent substitution with 2-methoxy-1-methylethyl acetate (hereinafter PGMEA), water was added. After reacting for 6 hours under heating and refluxing, water was distilled off and PGMEA was added so that the polymer concentration was 50% by weight to obtain Dispersant A (nBMA / PEGMA-methacrylic acid (hereinafter referred to as MA) = 45/45). -10% by weight). When analyzed by GPC (mobile phase THF, PMMA standard), the molecular weight (Mw) was 5200, and the molecular weight distribution (Mw / Mn) was 1.13.
実施例2
 フラスコにTHF100g、塩化リチウム0.1gを加え、-60℃まで冷却した。n-ブチルリチウム2.2g(15.4重量%濃度ヘキサン溶液)を加えた後、さらに、ジイソプロピルアミン0.5gを加えて10分間撹拌した。さらに、イソ酪酸メチル0.5gを加えて10分間撹拌した。反応系内にnBMA8.0g、PEGMA8.0gの混合物を10分間かけて滴下した後、5分間撹拌した。一部をサンプリングし、GC測定によりモノマー消失を確認した。次いで、EEMA7.4gを滴下し、滴下後1時間反応継続した。一部をサンプリングし、GC測定によりモノマー消失を確認した後、メタノール0.5gを加えて反応を停止した。
 反応液をTHFおよびヘキサンで希釈し、二回水洗後、溶媒を留去した。PGMEAで溶媒置換した後、水を添加した。加熱還流下で6時間反応させた後、水を留去しポリマー濃度が30重量%になるようPGMEAを加え分散剤Bを得た(nBMA/PEGMA-MA=40/40-20重量%)。GPC(移動相THF、PMMAスタンダード)で分析したところ、分子量(Mw)は5300、分子量分布(Mw/Mn)は1.13であった。
Example 2
To the flask, 100 g of THF and 0.1 g of lithium chloride were added and cooled to −60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of nBMA 8.0 g and PEGMA 8.0 g was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled and monomer disappearance was confirmed by GC measurement. Next, 7.4 g of EEMA was added dropwise, and the reaction was continued for 1 hour after the addition. A part was sampled, and after confirming the disappearance of the monomer by GC measurement, 0.5 g of methanol was added to stop the reaction.
The reaction solution was diluted with THF and hexane, washed twice with water, and then the solvent was distilled off. After solvent substitution with PGMEA, water was added. After reacting for 6 hours under heating and refluxing, water was distilled off and PGMEA was added to a polymer concentration of 30% by weight to obtain Dispersant B (nBMA / PEGMA-MA = 40 / 40-20% by weight). When analyzed by GPC (mobile phase THF, PMMA standard), the molecular weight (Mw) was 5300, and the molecular weight distribution (Mw / Mn) was 1.13.
実施例3
 フラスコにTHF100g、塩化リチウム0.1gを加え、-60℃まで冷却した。n-ブチルリチウム2.2g(15.4重量%濃度ヘキサン溶液)を加えた後、さらに、ジイソプロピルアミン0.5gを加えて10分間撹拌した。さらに、イソ酪酸メチル0.5gを加えて10分間撹拌した。反応系内にnBMA7.0g、PEGMA7.0gの混合物を10分間かけて滴下した後、5分間撹拌した。一部をサンプリングし、GC測定によりモノマー消失を確認した。次いで、EEMA11.0gを滴下し、滴下後1時間反応継続した。一部をサンプリングし、GC測定によりモノマー消失を確認した後、メタノール1.5gを加えて反応を停止した。
 反応液をTHFおよびヘキサンで希釈し、二回水洗後、溶媒を留去した。PGMEAで溶媒置換した後、水を添加した。加熱還流下で6時間反応させた後、水を留去しポリマー濃度が40重量%になるようPGMEAを加え分散剤Cを得た(nBMA/PEGMA-MA=35/35-30重量%)。GPC(移動相THF、PMMAスタンダード)で分析したところ、分子量(Mw)は4000、分子量分布(Mw/Mn)は1.26であった。
Example 3
To the flask, 100 g of THF and 0.1 g of lithium chloride were added and cooled to −60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of 7.0 g of nBMA and 7.0 g of PEGMA was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled and monomer disappearance was confirmed by GC measurement. Next, 11.0 g of EEMA was added dropwise, and the reaction was continued for 1 hour after the addition. A part was sampled, and after confirming the disappearance of the monomer by GC measurement, 1.5 g of methanol was added to stop the reaction.
The reaction solution was diluted with THF and hexane, washed twice with water, and then the solvent was distilled off. After solvent substitution with PGMEA, water was added. After reacting for 6 hours under heating and refluxing, water was distilled off and PGMEA was added to a polymer concentration of 40% by weight to obtain Dispersant C (nBMA / PEGMA-MA = 35 / 35-30% by weight). When analyzed by GPC (mobile phase THF, PMMA standard), the molecular weight (Mw) was 4000 and the molecular weight distribution (Mw / Mn) was 1.26.
比較例1
 フラスコにTHF100g、塩化リチウム0.1gを加え、-60℃まで冷却した。n-ブチルリチウム2.2g(15.4重量%濃度ヘキサン溶液)を加えた後、さらに、ジイソプロピルアミン0.5gを加えて10分間撹拌した。さらに、イソ酪酸メチル0.5gを加えて10分間撹拌した。反応系内にnBMA7.0g、PEGMA7.0g、EEMA11.0gの混合物を10分間かけて滴下した後、30分間撹拌した。一部をサンプリングし、GC測定によりモノマー消失を確認した後、メタノール0.5gを加えて反応を停止した。
 反応液をTHFおよびヘキサンで希釈し、二回水洗後、溶媒を留去した。PGMEAで溶媒置換した後、水を添加した。加熱還流下で6時間反応させた後、水を留去しポリマー濃度が33重量%になるようPGMEAを加え分散剤Dを得た(nBMA/PEGMA/MA=35/35/30重量%)。GPC(移動相THF、PMMAスタンダード)で分析したところ、分子量(Mw)は4400、分子量分布(Mw/Mn)は1.20であった。
Comparative Example 1
To the flask, 100 g of THF and 0.1 g of lithium chloride were added and cooled to −60 ° C. After adding 2.2 g of n-butyllithium (15.4 wt% hexane solution), 0.5 g of diisopropylamine was further added and stirred for 10 minutes. Further, 0.5 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of nBMA 7.0 g, PEGMA 7.0 g, and EEMA 11.0 g was dropped into the reaction system over 10 minutes, followed by stirring for 30 minutes. A part was sampled, and after confirming the disappearance of the monomer by GC measurement, 0.5 g of methanol was added to stop the reaction.
The reaction solution was diluted with THF and hexane, washed twice with water, and then the solvent was distilled off. After solvent substitution with PGMEA, water was added. After reacting for 6 hours under heating and refluxing, water was distilled off and PGMEA was added so that the polymer concentration was 33 wt% to obtain Dispersant D (nBMA / PEGMA / MA = 35/35/30 wt%). When analyzed by GPC (mobile phase THF, PMMA standard), the molecular weight (Mw) was 4400, and the molecular weight distribution (Mw / Mn) was 1.20.
実施例4
 フラスコにTHF94g、塩化リチウム0.25gを加え、-60℃まで冷却した。n-ブチルリチウム1.5g(15.4重量%濃度ヘキサン溶液)を加えた後、さらに、ジイソプロピルアミン0.4gを加えて10分間撹拌した。さらに、イソ酪酸メチル0.4gを加えて10分間撹拌した。反応系内にnBMA3.75g、PEGMA3.75gの混合物を10分間かけて滴下した後、5分間撹拌した。一部をサンプリングし、GCを測定によりモノマー消失を確認した。次いで、t-ブチルメタクリレート(以下、TBMAと略す)12.4gを滴下し、滴下後1時間反応継続した。一部をサンプリングし、GC測定によりモノマー消失を確認した後、メタノール0.5gを加えて反応を停止した。
 反応液の溶媒を留去し、トルエンで溶媒置換した後、エタノールで希釈し硫酸2.0gを添加した。80℃で6時間反応させた後、THFで希釈した。三回水洗後、溶媒を留去し、ポリマー濃度が31重量%になるようTHFを加え分散剤Eを得た(nBMA/PEGMA-MA=25/25-50重量%)。GPC(移動相THF、PMMAスタンダード)で分析したところ、分子量(Mw)は3100、分子量分布(Mw/Mn)は1.26であった。
Example 4
94 g of THF and 0.25 g of lithium chloride were added to the flask and cooled to −60 ° C. After adding 1.5 g of n-butyllithium (15.4 wt% hexane solution), 0.4 g of diisopropylamine was further added and stirred for 10 minutes. Furthermore, 0.4 g of methyl isobutyrate was added and stirred for 10 minutes. A mixture of nBMA (3.75 g) and PEGMA (3.75 g) was dropped into the reaction system over 10 minutes, followed by stirring for 5 minutes. A part was sampled, and the disappearance of the monomer was confirmed by measuring GC. Subsequently, 12.4 g of t-butyl methacrylate (hereinafter abbreviated as TBMA) was added dropwise, and the reaction was continued for 1 hour after the addition. A part was sampled, and after confirming the disappearance of the monomer by GC measurement, 0.5 g of methanol was added to stop the reaction.
After the solvent of the reaction solution was distilled off, the solvent was replaced with toluene, diluted with ethanol, and 2.0 g of sulfuric acid was added. After reacting at 80 ° C. for 6 hours, it was diluted with THF. After washing three times with water, the solvent was distilled off, and THF was added to obtain a polymer concentration of 31% by weight to obtain Dispersant E (nBMA / PEGMA-MA = 25 / 25-50% by weight). When analyzed by GPC (mobile phase THF, PMMA standard), the molecular weight (Mw) was 3100, and the molecular weight distribution (Mw / Mn) was 1.26.
<分散組成物の製造>
[分散条件]
分散機械:アイメックス株式会社製RBM型バッチ式レディーミル
回転数:1500rpm
スラリー量:30g
分散ビーズ充填量:ジルコニアビーズ(ビーズ径0.1mm)90g
<Production of dispersion composition>
[Distribution condition]
Dispersing machine: RBM type batch-type ready mill rotating speed manufactured by Imex Corporation: 1500 rpm
Slurry amount: 30g
Dispersed bead filling amount: 90 g of zirconia beads (bead diameter 0.1 mm)
[平均粒子径の測定条件]
 分散組成物からサンプリングした分散液を、分散媒より10倍希釈した後、粒子径分析装置(マルバーン社製、ゼータサイザーナノS)を用いて平均粒子径を測定した。
[Measurement conditions for average particle size]
The dispersion sampled from the dispersion composition was diluted 10 times from the dispersion medium, and then the average particle size was measured using a particle size analyzer (manufactured by Malvern, Zetasizer Nano S).
[耐熱性試験の測定条件]
 分散組成物を乾燥することで得られた粉体を熱重量測定(METTLER TOLEDO製 TGA/DSC、10℃/分、窒素ガス雰囲気)を用いて重量減少率を測定した。
[Measurement conditions for heat resistance test]
The weight reduction rate of the powder obtained by drying the dispersion composition was measured using thermogravimetry (TGA / DSC, 10 ° C./min, nitrogen gas atmosphere manufactured by METLER TOLEDO).
実施例5
 窒化ホウ素粒子(昭和電工株式会社製、UHP-S1 平均一次粒子径(D50)500nm)9重量部と、実施例1で得られた分散剤A2.0重量部と、メチルエチルケトン89.0重量部を混合した。該混合液を分散機に入れ、上記の条件で分散を行い、分散組成物A1を得た。分散開始後、一定時間ごとに、窒化ホウ素粒子の平均粒子径を上記の条件で測定した。分散開始後2時間の時点における窒化ホウ素微粒子の平均粒子径は、4200nmであった。また、分散組成物A1を乾燥して得られた粉体の150~250℃の範囲における重量減少率は0%であった。また、前記粉体は300℃まで重量減少が確認されなかった。
Example 5
9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.0 parts by weight of dispersant A obtained in Example 1, and 89.0 parts by weight of methyl ethyl ketone Mixed. The mixed solution was put into a disperser and dispersed under the above conditions to obtain a dispersion composition A1. After the start of dispersion, the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals. The average particle diameter of the boron nitride fine particles at 4 hours after the start of dispersion was 4200 nm. The weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition A1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
実施例6
 窒化ホウ素粒子(昭和電工株式会社製、UHP-S1 平均一次粒子径(D50)500nm)9重量部と、実施例2で得られた分散剤B2.5重量部と、メチルエチルケトン88.5重量部を混合した。該混合液を分散機に入れ、上記の条件で分散を行い、分散組成物B1を得た。分散開始後、一定時間ごとに、窒化ホウ素粒子の平均粒子径を上記の条件で測定した。分散開始後2時間の時点における窒化ホウ素微粒子の平均粒子径は、1900nmであった。また、分散組成物B1を乾燥して得られた粉体の150~250℃の範囲における重量減少率は0%であった。また、前記粉体は300℃まで重量減少が確認されなかった。
Example 6
9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.5 parts by weight of the dispersant B obtained in Example 2, and 88.5 parts by weight of methyl ethyl ketone Mixed. The mixed solution was put into a disperser and dispersed under the above conditions to obtain dispersion composition B1. After the start of dispersion, the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals. The average particle diameter of the boron nitride fine particles at 1 hour after the start of dispersion was 1900 nm. The weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition B1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
実施例7
 窒化ホウ素粒子(昭和電工株式会社製、UHP-S1 平均一次粒子径(D50)500nm)9重量部と、実施例3で得られた分散剤C3.3重量部と、メチルエチルケトン87.7重量部を混合した。該混合液を分散機に入れ、上記の条件で分散を行い、分散組成物C1を得た。分散開始後、一定時間ごとに、窒化ホウ素粒子の平均粒子径を上記の条件で測定した。分散開始後2時間の時点における窒化ホウ素微粒子の平均粒子径は、1200nmであった。また、分散組成物C1を乾燥して得られた粉体の150~250℃の範囲における重量減少率は0%であった。また、前記粉体は300℃まで重量減少が確認されなかった。
Example 7
9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 3.3 parts by weight of the dispersant C obtained in Example 3, and 87.7 parts by weight of methyl ethyl ketone Mixed. The mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition C1. After the start of dispersion, the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals. The average particle diameter of the boron nitride fine particles at 1200 hours after the start of dispersion was 1200 nm. The weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition C1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.
比較例2
 窒化ホウ素粒子(昭和電工株式会社製、UHP-S1 平均一次粒子径(D50)500nm)9重量部と、比較例1で得られた分散剤D3.0重量部と、メチルエチルケトン88重量部を混合した。該混合液を分散機に入れ、上記の条件で分散を行い、分散組成物D1を得た。分散開始後、一定時間ごとに、窒化ホウ素粒子の平均粒子径を上記の条件で測定した。分散開始後1時間の時点における窒化ホウ素微粒子の平均粒子径は、7400nmであり、2時間後は凝集して回収できなかった。
Comparative Example 2
9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 3.0 parts by weight of the dispersant D obtained in Comparative Example 1, and 88 parts by weight of methyl ethyl ketone were mixed. . The mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition D1. After the start of dispersion, the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals. The average particle diameter of the boron nitride fine particles at 1 hour after the start of dispersion was 7400 nm, and after 2 hours, they aggregated and could not be recovered.
実施例8
 窒化ホウ素粒子(昭和電工株式会社製、UHP-S1 平均一次粒子径(D50)500nm)9重量部と、実施例4で得られた分散剤E2.5重量部と、メチルエチルケトン88.5重量部を混合した。該混合液を分散機に入れ、上記の条件で分散を行い、分散組成物E1を得た。分散開始後、一定時間ごとに、窒化ホウ素粒子の平均粒子径を上記の条件で測定した。分散開始後2時間の時点における窒化ホウ素微粒子の平均粒子径は、820nmであった。また、分散組成物E1を乾燥して得られた粉体の150~250℃の範囲における重量減少率は0%であった。また、前記粉体は300℃まで重量減少が確認されなかった。
Example 8
9 parts by weight of boron nitride particles (manufactured by Showa Denko KK, UHP-S1 average primary particle size (D50) 500 nm), 2.5 parts by weight of the dispersant E obtained in Example 4, and 88.5 parts by weight of methyl ethyl ketone Mixed. The mixed solution was put in a disperser and dispersed under the above conditions to obtain a dispersion composition E1. After the start of dispersion, the average particle diameter of the boron nitride particles was measured under the above conditions at regular intervals. The average particle diameter of the boron nitride fine particles at the time point of 2 hours after the start of dispersion was 820 nm. Further, the weight reduction rate in the range of 150 to 250 ° C. of the powder obtained by drying the dispersion composition E1 was 0%. Further, no weight reduction was confirmed up to 300 ° C.

Claims (11)

  1.  カルボキシル基を有する繰り返し単位を含むブロック鎖(A)と、式〔II〕で表わされる繰り返し単位及び式〔III〕で表される繰り返し単位からなる群より選ばれる少なくとも1種を含むブロック鎖(B)を含むブロック共重合体を含む無機窒化物用分散剤。ただし、前記ブロック共重合体は、3級アミノ基、4級アンモニウム塩基を含まない。
    Figure JPOXMLDOC01-appb-C000001
    (式〔II〕中、R21は、水素原子またはC1~6アルキル基を示し、Xは、-NH-または-O-を示し、R22は、炭化水素基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式〔III〕中、R31は、水素原子またはC1~6アルキル基を示し、Xは、-NH-または-O-を示し、R32は、エーテル性酸素原子を有する基を示す。)
    A block chain (B) containing a repeating unit having a carboxyl group and a block chain (B) containing at least one selected from the group consisting of a repeating unit represented by the formula [II] and a repeating unit represented by the formula [III] An inorganic nitride dispersant containing a block copolymer. However, the block copolymer does not contain a tertiary amino group or a quaternary ammonium base.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [II], R 21 represents a hydrogen atom or a C1-6 alkyl group, X 2 represents —NH— or —O—, and R 22 represents a hydrocarbon group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [III], R 31 represents a hydrogen atom or a C1-6 alkyl group, X 3 represents —NH— or —O—, and R 32 represents a group having an etheric oxygen atom. )
  2.  式〔II〕中、R22の炭化水素基が、アルキル基、アリールアルキル基、ヘテロアリールアルキル基、シクロアルキル基、またはアリル基である請求項1に記載の無機窒化物用分散剤。 The inorganic nitride dispersant according to claim 1, wherein the hydrocarbon group of R 22 in formula [II] is an alkyl group, an arylalkyl group, a heteroarylalkyl group, a cycloalkyl group, or an allyl group.
  3.  式〔III〕中R32のエーテル性酸素原子を有する基が、式〔III-1〕または式〔III-2〕である請求項1に記載の無機窒化物用分散剤。
    Figure JPOXMLDOC01-appb-C000003
    (式〔III-1〕中、R33は、アルキレン基を示し、mは、1~100のいずれかの整数を示し、R34は、水素原子またはアルキル基を示す。*は結合位置を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式〔III-2〕中、R35及びR36は、それぞれ独立に、水素原子又はC1~C6アルキル基を表し、Qは、置換基としてC1~C6アルキル基を有していてもよい含酸素飽和ヘテロ環基を示し、nは、0~6のいずれかの整数を示す。*は結合位置を示す。)
    The dispersant for inorganic nitride according to claim 1, wherein the group having an etheric oxygen atom of R 32 in formula [III] is formula [III-1] or formula [III-2].
    Figure JPOXMLDOC01-appb-C000003
    (In the formula [III-1], R 33 represents an alkylene group, m represents an integer of 1 to 100, R 34 represents a hydrogen atom or an alkyl group, and * represents a bonding position. .)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [III-2], R 35 and R 36 each independently represent a hydrogen atom or a C1-C6 alkyl group, and Q may contain a C1-C6 alkyl group as a substituent. Represents an oxygen-saturated heterocyclic group, and n represents an integer of 0 to 6. * represents a bonding position.)
  4.  カルボキシル基を有する繰り返し単位が、式〔I〕で表される繰り返し単位である請求項1に記載の無機窒化物用分散剤。
    Figure JPOXMLDOC01-appb-C000005
    (式〔I〕中、R11は、水素原子またはC1~6アルキル基を示す。)
    The inorganic nitride dispersant according to claim 1, wherein the repeating unit having a carboxyl group is a repeating unit represented by the formula [I].
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [I], R 11 represents a hydrogen atom or a C1-6 alkyl group.)
  5.  ブロック鎖(A)とブロック鎖(B)の総重量に対するブロック鎖(A)の割合が、15重量%以上70重量%以下である請求項1~4いずれか1項に記載の無機窒化物用分散剤。 The ratio of the block chain (A) to the total weight of the block chain (A) and the block chain (B) is 15% by weight or more and 70% by weight or less, for the inorganic nitride according to any one of claims 1 to 4. Dispersant.
  6.  ブロック共重合体の数平均分子量(Mn)が2,000~100,000である請求項1~5いずれか1項に記載の無機窒化物用分散剤。 The inorganic nitride dispersant according to any one of claims 1 to 5, wherein the block copolymer has a number average molecular weight (Mn) of 2,000 to 100,000.
  7.  無機窒化物が、窒化ホウ素、窒化アルミニウム、窒化ケイ素または窒化ガリウムのいずれかである請求項1~6いずれか1項に記載の無機窒化物用分散剤。 The inorganic nitride dispersant according to any one of claims 1 to 6, wherein the inorganic nitride is any one of boron nitride, aluminum nitride, silicon nitride, and gallium nitride.
  8.  請求項1~6いずれか1項に記載の無機窒化物用分散剤と、分散媒と、無機窒化物とを含有する組成物。 A composition comprising the inorganic nitride dispersant according to any one of claims 1 to 6, a dispersion medium, and an inorganic nitride.
  9.  無機窒化物が、窒化ホウ素、窒化アルミニウム、窒化ケイ素または窒化ガリウムのいずれかである請求項8に記載の組成物。 The composition according to claim 8, wherein the inorganic nitride is any of boron nitride, aluminum nitride, silicon nitride, or gallium nitride.
  10.  無機窒化物粒子表面に請求項1~6いずれか1項に記載の無機窒化物用分散剤が付着した微粒子。 Fine particles having the inorganic nitride dispersant attached to any one of claims 1 to 6 on the surface of the inorganic nitride particles.
  11.  無機窒化物粒子が、窒化ホウ素微粒子、窒化アルミニウム微粒子、窒化ケイ素微粒子または窒化ガリウム微粒子のいずれかである請求項10に記載の微粒子。 The fine particles according to claim 10, wherein the inorganic nitride particles are any of boron nitride fine particles, aluminum nitride fine particles, silicon nitride fine particles, or gallium nitride fine particles.
PCT/JP2017/037141 2016-10-19 2017-10-13 Dispersing agent for inorganic nitrides and inorganic nitride dispersion composition WO2018074349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205454 2016-10-19
JP2016-205454 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074349A1 true WO2018074349A1 (en) 2018-04-26

Family

ID=62019338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037141 WO2018074349A1 (en) 2016-10-19 2017-10-13 Dispersing agent for inorganic nitrides and inorganic nitride dispersion composition

Country Status (2)

Country Link
TW (1) TW201823288A (en)
WO (1) WO2018074349A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424119A (en) * 2018-07-30 2021-02-26 株式会社艾迪科 Composite material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207076A (en) * 1992-12-05 1994-07-26 Hoechst Ag Inorganic powder composition containing polymeric auxiliary and its use
JPH09503243A (en) * 1993-09-30 1997-03-31 エル.ヴェ.エム.アッシュ. ルシェルシェ Utilization of acrylic block copolymers as wetting and / or dispersing agents for solid particles, and resulting dispersions
JP2001509770A (en) * 1997-01-31 2001-07-24 ネルコ ケミカル カンパニー Preparation and use of water-soluble polymers with pendant derivatized amide, ester or ether functionalities as ceramic dispersants and binders
JP2008018368A (en) * 2006-07-14 2008-01-31 Kao Corp Production method of oil-in-water type emulsified composition
JP2008174504A (en) * 2007-01-19 2008-07-31 Shin Etsu Chem Co Ltd Silicone copolymer and cosmetic containing the same
JP2011098323A (en) * 2009-11-09 2011-05-19 Toagosei Co Ltd Dispersant for alumina particles
US20130041082A1 (en) * 2010-04-26 2013-02-14 Lubrizol Advanced Materials, Inc. Dispersant composition
WO2015040924A1 (en) * 2013-09-18 2015-03-26 株式会社村田製作所 Ceramic molded body, and method for producing stacked ceramic electronic component
JP2016052613A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle
JP2016053161A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle
JP2016513144A (en) * 2013-01-25 2016-05-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Additives for hydraulic setting materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207076A (en) * 1992-12-05 1994-07-26 Hoechst Ag Inorganic powder composition containing polymeric auxiliary and its use
JPH09503243A (en) * 1993-09-30 1997-03-31 エル.ヴェ.エム.アッシュ. ルシェルシェ Utilization of acrylic block copolymers as wetting and / or dispersing agents for solid particles, and resulting dispersions
JP2001509770A (en) * 1997-01-31 2001-07-24 ネルコ ケミカル カンパニー Preparation and use of water-soluble polymers with pendant derivatized amide, ester or ether functionalities as ceramic dispersants and binders
JP2008018368A (en) * 2006-07-14 2008-01-31 Kao Corp Production method of oil-in-water type emulsified composition
JP2008174504A (en) * 2007-01-19 2008-07-31 Shin Etsu Chem Co Ltd Silicone copolymer and cosmetic containing the same
JP2011098323A (en) * 2009-11-09 2011-05-19 Toagosei Co Ltd Dispersant for alumina particles
US20130041082A1 (en) * 2010-04-26 2013-02-14 Lubrizol Advanced Materials, Inc. Dispersant composition
JP2016513144A (en) * 2013-01-25 2016-05-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Additives for hydraulic setting materials
WO2015040924A1 (en) * 2013-09-18 2015-03-26 株式会社村田製作所 Ceramic molded body, and method for producing stacked ceramic electronic component
JP2016052613A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle
JP2016053161A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424119A (en) * 2018-07-30 2021-02-26 株式会社艾迪科 Composite material

Also Published As

Publication number Publication date
TW201823288A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
CN106660805B (en) Graphenic carbon particle co-dispersions and methods of making the same
TWI465507B (en) A block copolymer containing an alkoxysilyl group, a method for producing the block copolymer, a resin-treated pigment, and a pigment dispersion
CN111527114B (en) Styrene maleic acid diamine block copolymer pigment dispersant
JP5968530B2 (en) Comb copolymer having ionic bonding groups
US20070185272A1 (en) Copolymers comprising three segments of different ion density, processes for preparing them and use thereof
JP2001031900A (en) Dispersion composition and its production
JP7126169B2 (en) pigment dispersion
JP5615918B2 (en) New copolymer
US20220282021A1 (en) Reaction products containing urethane groups and urea groups
WO2016170760A1 (en) Ceramic fine particle dispersant, ceramic fine particle dispersed composition, and ceramic fine particle dispersed sheet
WO2018074349A1 (en) Dispersing agent for inorganic nitrides and inorganic nitride dispersion composition
JP3328147B2 (en) Recording medium liquid
JP2018030051A (en) Inorganic particle dispersant and inorganic particle dispersion composition
JP2010209198A (en) Photocurable ink composition, inkjet recording method, record matter, ink set, ink cartridge and recording device
JP6031125B2 (en) Dispersant for inorganic particles, composition containing the dispersant, curable composition, cured product, and thin film
JP4239629B2 (en) Carbon black composition
JP2002179967A (en) Ultraviolet curable ink-jet ink composition and process for producing it
JP2018030904A (en) Inorganic particle dispersant, and inorganic particle dispersion composition
JP4934047B2 (en) White ink composition for photocurable ink jet
JP6059634B2 (en) Polymer emulsion, colorant composition containing the same, aqueous inkjet ink, and method for producing polymer emulsion
JP2018065934A (en) Viscosity reduction agent and resin composition
JP2017206577A (en) Ultraviolet-curable intaglio ink containing polysilane
JP2577441B2 (en) Cationic aqueous pigment dispersion
JP4471913B2 (en) Pigment dispersion composition for color resist ink
CN112672816A (en) Aromatic amide dispersants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP