WO2018074203A1 - Welding torch - Google Patents

Welding torch Download PDF

Info

Publication number
WO2018074203A1
WO2018074203A1 PCT/JP2017/035780 JP2017035780W WO2018074203A1 WO 2018074203 A1 WO2018074203 A1 WO 2018074203A1 JP 2017035780 W JP2017035780 W JP 2017035780W WO 2018074203 A1 WO2018074203 A1 WO 2018074203A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
gas supply
wire feeding
welding torch
water channel
Prior art date
Application number
PCT/JP2017/035780
Other languages
French (fr)
Japanese (ja)
Inventor
怜士 玉城
寿朗 宮原
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to JP2018546226A priority Critical patent/JP7093304B2/en
Publication of WO2018074203A1 publication Critical patent/WO2018074203A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means

Definitions

  • the present invention relates to a welding torch for performing welding.
  • the welding torch includes a cylindrical cover having an up-down direction as an axial direction, an inner side of a lower end of the cover, an insulated nozzle, and a contact tip provided inside the nozzle.
  • a wire is inserted inside the cover and the contact tip, and the wire is delivered from the tip of the contact tip toward the welding location.
  • a shield gas that suppresses the reaction between the molten metal and air is injected between the cover and the nozzle, and is sent toward the nozzle tip. By applying a voltage to the contact tip, an arc is generated between the contact tip and the object, and welding is performed.
  • the shield gas covers the periphery of the arc and suppresses the occurrence of poor welding (see, for example, Patent Document 1).
  • the wire feed path through which the wire is fed is formed in the cover.
  • the wire feeding path as a shield gas flow path. For example, by providing a through hole in the peripheral surface of the wire feed path to connect the inner space of the wire feed path and the inner space of the nozzle, the shield gas passes through the wire feed path and the through hole, and the nozzle Released from.
  • the contact tip is provided at the end of the wire feed path, and the contact tip is provided with a hole through which the wire is sent, the shield gas leaks from the contact tip hole.
  • This invention is made
  • a welding torch is provided with a wire feeding cylinder having a wire feeding path for feeding a welding wire, a contact tip attached to an end of the wire feeding cylinder, and a periphery of the contact tip.
  • the wire feeding cylinder has a gas supply path for supplying the shielding gas to the nozzle separately from the wire feeding path.
  • a single wire feeding cylinder is provided with a wire feeding path and a gas supply path.
  • the welding torch according to the present invention includes an outlet of the gas supply path formed on an outer peripheral surface of the wire feeding cylinder, and an outer fitting to the wire feeding cylinder to cover the outlet, and a plurality of through holes are provided.
  • the diameter of the through-holes can be reduced as compared with the case of providing a single large-diameter through-hole, and the pressure in the first space Can be increased.
  • the shield gas is sent out radially from the plurality of through holes.
  • shield gas with substantially the same flow rate is sent out radially from each through hole, and the periphery of the arc is stably covered with the shield gas, thereby suppressing the occurrence of poor welding.
  • the wire feeding cylinder has a plurality of the gas supply paths, and a chamber connected to each of the plurality of gas supply paths is formed in the first space.
  • the volume of each chamber becomes smaller than that of the first space, so that the pressure in each chamber can be reduced to a desired pressure in a short time. Can be raised.
  • the cylindrical body is screwed into the wire feeding cylinder.
  • the present invention it is possible to prevent the shielding gas from leaking from the first space by screwing the cylinder into the wire feeding cylinder. Further, the sealing degree in the first space is increased by the labyrinth effect of screwing, and the pressure in the first space is easily increased.
  • the wire feed path and the gas supply path can be provided separately to suppress leakage of the shield gas. Moreover, the enlargement of the welding torch can be avoided by providing the wire feed path and the gas supply path in a single wire feed cylinder.
  • FIG. 1 is an external perspective view schematically showing a welding torch. It is a longitudinal cross-sectional view of the welding torch which shows a gas supply path. It is a perspective sectional view of a welding torch showing a gas supply path.
  • FIG. 4 is a perspective sectional view taken along line IV-IV in FIG. 2.
  • FIG. 4 is a plan sectional view taken along line IV-IV in FIG. 2.
  • It is a longitudinal cross-sectional view of the welding torch which shows a water channel.
  • It is a perspective sectional view of a welding torch showing a water channel. It is the perspective view which visually recognized the opening-and-closing part from the upper part. It is the perspective view which visually recognized the opening-and-closing part from the lower part.
  • FIG. 6 is a perspective sectional view taken along line XI-XI shown in FIG.
  • FIG. 6 is a plan sectional view taken along line XI-XI shown in FIG.
  • FIG. 6 is a perspective sectional view taken along line XII-XII shown in FIG. 5.
  • FIG. 6 is a plan sectional view taken along line XII-XII shown in FIG.
  • FIG. 6 is a perspective sectional view taken along line XIII-XIII shown in FIG. FIG.
  • FIG. 6 is a plan sectional view taken along line XIII-XIII shown in FIG.
  • FIG. 6 is a perspective sectional view taken along line XIV-XIV shown in FIG. 5.
  • FIG. 6 is a plan sectional view taken along line XIV-XIV shown in FIG. 5.
  • FIG. 6 is a perspective sectional view taken along line XV-XV shown in FIG.
  • FIG. 6 is a plan sectional view taken along line XV-XV shown in FIG.
  • It is a partial expanded longitudinal cross-sectional view of the welding torch which shows the structure of the opening-closing part vicinity of the state where the water channel was closed.
  • FIG. 6 is a transverse sectional view schematically showing a first gas supply path to a fourth gas supply path.
  • FIG. 5 is a cross-sectional view of an inner cylinder and a branch cylinder schematically showing the first chamber to the fourth chamber. It is a partial expanded longitudinal cross-sectional view which shows the state which screwed the branch
  • FIG. 1 is an external perspective view schematically showing a welding torch.
  • the top and bottom shown in the figure are used.
  • the welding torch includes a wire feeding cylinder 1 whose axial direction is the vertical direction for feeding a welding wire, and a cylindrical nozzle 4 into which a lower portion of the wire feeding cylinder 1 is inserted.
  • the wire feeding cylinder 1 and the nozzle 4 are connected by a connecting cylinder 5.
  • the wire feeding cylinder 1 and the nozzle 4 are arranged coaxially.
  • a rectangular parallelepiped connecting portion 6 is provided at the upper end of the wire feeding tube 1.
  • a wire supply port 7 that supplies a wire, a water supply port 8 that supplies cooling water, a drain port 9 that discharges cooling water, and an air supply port 10 that supplies shield gas are connected to the connection portion 6.
  • the wire supply port 7 has a cylindrical shape and is provided coaxially with the outer cylinder 2.
  • FIG. 2 is a longitudinal sectional view of the welding torch showing the gas supply path 11
  • FIG. 3 is a perspective sectional view of the welding torch showing the gas supply path 11.
  • the wire feeding cylinder 1 includes an outer cylinder 2 and an inner cylinder 3 inserted into the outer cylinder 2.
  • the lower end portion of the inner cylinder 3 protrudes below the outer cylinder 2 and is inserted into the nozzle 4.
  • a wire feed path 1 a penetrating vertically is formed in the axial center portion of the inner cylinder 3.
  • a contact chip 20 is inserted into the lower end portion of the inner cylinder 3.
  • the contact chip 20 has a cylindrical shape extending in the axial direction, and is provided coaxially with the inner cylinder 3.
  • the lower end portion of the contact chip 20 is located near the lower end portion of the nozzle 4.
  • the welding wire is supplied from the wire supply port 7 and is sent to the lower side of the nozzle 4 through the wire feed path 1 a and the contact tip 20.
  • a gas supply path 11 extending in the axial direction is formed in the inner cylinder 3 next to the wire feed path 1a.
  • the upper end portion of the gas supply path 11 protrudes above the inner cylinder 3 and is located inside the connection portion 6.
  • An inlet 11 a is provided at the upper end of the gas supply path 11.
  • the inlet 11 a and the air supply port 10 communicate with each other through a passage in the connection portion 6.
  • the lower end portion of the gas supply path 11 is curved toward the lower side surface of the inner cylinder 3, and an outlet 11b of the gas supply path 11 is formed on the side surface.
  • FIG. 4A is a perspective sectional view taken along line IV-IV in FIG. 2, and FIG. 4B is a plan sectional view taken along line IV-IV in FIG.
  • a branch cylinder 12 (cylinder) for branching the shield gas is fitted to the lower end portion of the inner cylinder 3.
  • the branch cylinder 12 is disposed between the nozzle 4 and the lower end portion of the inner cylinder 3, and covers the outlet 11b.
  • the upper end and the lower end of the branch cylinder 12 are in contact with the inner cylinder 3, but a first space 13 a is formed across the entire circumferential direction between the middle section of the branch cylinder 12 and the inner cylinder 3. ing.
  • the outlet 11b is continuous with the first space 13a.
  • a plurality of through holes 12 a, 12 a,..., 12 a are arranged in the circumferential direction in the middle of the branch cylinder 12.
  • the through hole 12 a allows the first space 13 a to communicate with the second space 4 a inside the nozzle 4.
  • the shield gas is supplied from the air supply port 10, passes through the gas supply path 11 and the outlet 11 b, and enters the first space 13 a between the branch cylinder 12 and the inner cylinder 3. It reaches.
  • the shield gas is sent radially through the plurality of through holes 12 a, supplied to the second space 4 a inside the nozzle 4, and discharged from the lower end of the nozzle 4.
  • a voltage is applied to the inner cylinder 3, and an arc is generated between the welding wire and the object inside the shield gas emitted from the nozzle 4, the welding wire is melted, and welding to the object is executed. .
  • FIG. 5 is a longitudinal sectional view of a welding torch showing a water channel
  • FIG. 6 is a perspective sectional view of the welding torch showing a water channel.
  • the welding torch includes a water channel
  • the water channel includes a first water channel 31 to an eighth water channel 38.
  • a first water channel 31 extending in the axial direction is formed next to the wire feed path 1a on the one radial side of the upper part of the inner cylinder 3, and a wire is formed on the other radial side of the upper part of the inner cylinder 3.
  • An eighth water passage 38 extending in the axial direction is formed next to the feed passage 1a.
  • the first water channel 31 and the eighth water channel 38 are arranged on the opposite sides in the radial direction.
  • the upper end portion of the first water channel 31 and the water supply port 8 communicate with each other through a passage formed in the connection portion 6.
  • the upper end portion of the eighth water channel 38 and the drain port 9 communicate with each other through a passage formed in the connection portion 6.
  • a fourth water channel 34 extending in the axial direction is formed on one radial side of the lower portion of the inner cylinder 3, and a third water channel 33 extending in the axial direction is formed on the other radial side of the lower portion of the inner cylinder 3. Is formed.
  • the lower ends of the third water channel 33 and the fourth water channel 34 reach the bottom of the inner cylinder 3 (hereinafter referred to as the first bottom 3c), and are continuous at the first bottom 3c (see FIG. 14 described later).
  • the lower end of the first water channel 31 and the upper end of the third water channel 33 communicate with each other via a second water channel 32 formed in a spiral shape.
  • Two fifth water passages 35, 35 extending in the axial direction are formed on one side in the radial direction of the nozzle 4, and two sixth water passages 36, 36 are formed on the other side in the radial direction of the nozzle 4. (See FIG. 14 described later).
  • the lower ends of the one fifth water channel 35 and the one sixth water channel 36 reach the bottom of the nozzle 4 (hereinafter referred to as the second bottom 4b), and are continuous at the second bottom 4b.
  • the lower ends of the other fifth water passage 35 and the other sixth water passage 36 are also connected at the second bottom portion 4b (see FIG. 15 described later).
  • the upper end portion of the fifth water passage 35 communicates with the upper end portion of the fourth water passage 34 via a communication passage of the opening / closing portion 40 described later.
  • a seventh water channel 37 is formed between the third water channel 33 and the eighth water channel 38 in the axial direction.
  • the upper end portion of the sixth water passage 36 communicates with the lower end portion of the eighth water passage 38 through the seventh water passage 37 and the communication passage.
  • FIG. 7 is a perspective view of the opening / closing section 40 viewed from above
  • FIG. 8 is a perspective view of the opening / closing section 40 viewed from below
  • FIG. 9 is a schematic longitudinal sectional view of the opening / closing section 40.
  • the opening / closing part 40 includes a cylindrical main body 41 and an annular projecting part 42 projecting radially from the middle part of the main body 41.
  • the tip of the protrusion 42 is bent upward, and the vertical cross-sectional shape of the protrusion 42 is L-shaped (see FIG. 9).
  • the guide insertion hole 44 includes a counterbore in which a bolt head is disposed.
  • the guide 45 is not limited to a bolt, and may have another configuration (for example, a pin).
  • the guide insertion hole 44 is located above the protrusion 42.
  • a plurality of first communication passages 43 a, 43 a,..., 43 a penetrating in the radial direction are arranged in parallel in the circumferential direction on one side of the lower portion of the main body 41.
  • a plurality of second communication passages 43b, 43b,..., 43b penetrating in the radial direction are arranged side by side in the circumferential direction.
  • the first communication path 43 a and the second communication path 43 b are located below the protrusion 42.
  • FIG. 10 is a partially enlarged longitudinal sectional view of a welding torch showing a configuration in the vicinity of the opening / closing part 40 in a state where the water channel is opened.
  • the opening / closing part 40 is provided at the upper end of the nozzle 4 so as to be movable up and down.
  • the lower portion of the main body 41 is disposed between the upper end portion of the nozzle 4 and the lower portion of the inner cylinder 3 in the radial direction.
  • the upper portion of the main body 41 and the protruding portion 42 are disposed above the upper end of the nozzle 4.
  • a first flange 2 a is formed at the lower end of the outer cylinder 2, and a second flange 4 c is formed at the upper end of the nozzle 4.
  • a male screw 2c is formed on the outer peripheral surface of the first flange 2a.
  • An annular groove 2b is formed in the inner peripheral portion of the first flange 2a.
  • the first flange 2a and the second flange 4c face each other in the axial direction.
  • the protrusion 42 is disposed between the first flange 2a and the second flange 4c.
  • a biasing member 46 that biases the opening / closing portion 40 downward (contact chip 20 side) is provided between the inside of the projecting portion 42 having an L-shaped cross section and the groove 2b. Examples of the urging member 46 include a spring.
  • a guide groove 3 a extending in the axial direction is formed in a portion facing the guide insertion hole 44 on the outer peripheral surface of the inner cylinder 3.
  • a guide 45 is inserted into the guide insertion hole 44 and fixed. The tip of the guide 45 is disposed inside the guide groove 3a.
  • the connecting cylinder 5 is fitted outside the first flange 2a and the upper end of the nozzle 4.
  • a female screw 5 a is formed at the upper end of the connecting cylinder 5.
  • the lower diameter of the connecting cylinder 5 is smaller than the upper diameter.
  • a step portion 5 b is formed at the upper and lower connecting portions of the connecting cylinder 5.
  • the 2nd flange 4c is arrange
  • the second flange 4c and the projecting portion 42 resist the urging force of the urging member 46 and the step portion 5b and the first It is sandwiched between the flanges 2a.
  • the fourth water passage 34 and the two fifth water passages 35 communicate with each other via the first communication passage 43a, and the two sixth water passages 36 and the seventh water passage 37 via the second communication passage 43b. Communicate.
  • FIGS. 11A to 15A are perspective sectional views taken along lines XI-XI to XV-XV shown in FIG. 5, and FIGS. 11B to 15B are XI-XI to XV-XV shown in FIG. It is plane sectional drawing which used the line as the cutting line.
  • FIGS. 5, 6, and 10 to 15 The arrows in FIGS. 5, 6, and 11 to 15 indicate the flow of cooling water.
  • the cooling water When the cooling water is supplied to the water supply port 8, the cooling water flows downward through the first water channel 31, passes through the second water channel 32, and reaches the third water channel 33 (FIGS. 5, 6, 11 to 11). 13). The cooling water flows further downward through the third water channel 33, reaches the first bottom 3c, changes the flow direction upward, and flows upward through the fourth water channel 34 (FIGS. 5, 6, and 6). 13 and FIG. 14).
  • the downward arrow indicated by the first bottom portion 3c indicates cooling water flowing downward through the third water channel 33 to the first bottom portion 3c
  • the horizontal arc arrow indicates the first bottom portion 3c.
  • the cooling water flowing from the third water channel 33 toward the fourth water channel 34 is shown, and the upward arrow indicates the cooling water flowing upward from the first bottom 3c through the fourth water channel 34.
  • the cooling water changes the direction of flow outward in the radial direction at the upper end of the fourth water passage 34, passes through the plurality of first communication passages 43a, and flows downward through the two fifth water passages 35 (FIG. 5). , FIG. 6, FIG. 10 and FIG. 13).
  • the other sixth water channel 36 flows upward (see FIGS. 5, 6, 14, and 15).
  • the downward white arrow indicates the cooling water flowing downward through one fifth water channel 35 to the second bottom 4b
  • the horizontal circular white arrow indicates one of the two bottoms 4b.
  • the cooling water that flows from the fifth water channel 35 toward the one sixth water channel 36 is shown
  • the upward white arrow indicates the cooling water that flows upward from the first bottom 3c through the one sixth water channel 36. .
  • the downward solid arrow indicates the cooling water flowing downward to the second bottom 4b through the other fifth water channel 35
  • the horizontal arc solid arrow indicates the other fifth at the second bottom 4b.
  • the cooling water flowing from the water channel 35 toward the other sixth water channel 36 is shown
  • the upward solid arrow indicates the cooling water flowing upward from the first bottom 3c through the other sixth water channel 36.
  • the white arrow and the solid line arrow of the 5th water channel 35 and the 6th water channel 36 in FIG. 15A are used similarly in FIG. 14A.
  • the cooling water moves upward in the seventh water passage 37 through the plurality of second communication passages 43b by changing the flow direction inward in the radial direction at the upper ends of the two sixth water passages 36.
  • the cooling water that has passed through the two sixth water passages 36 merges in the second communication passage 43b and the seventh water passage 37 and moves upward (see FIGS. 5, 6, 10, 12, and 13). .
  • the cooling water flows upward through the eighth water passage 38 and is discharged from the drain port 9.
  • the cooling water discharged from the drain port 9 is returned to the water supply port 8 after cooling and circulated.
  • the cooling water need not be circulated.
  • FIG. 16 is a partially enlarged longitudinal sectional view of a welding torch showing a configuration in the vicinity of the opening / closing part 40 in a state where the water channel is closed.
  • the user when replacing the nozzle 4, the user removes the connecting cylinder 5 from the wire feed cylinder 1 and removes the nozzle 4.
  • the guide 45 moves downward along the guide groove 3a, and the opening / closing part 40 smoothly moves downward.
  • the first communication passage 43 a and the fourth water channel 34 are not communicated, and the fourth water channel 34 is closed by the main body 41.
  • the second communication path 43 b and the seventh communication path are not communicated, and the seventh water channel 37 is closed by the main body 41. Therefore, when the nozzle 4 is removed, water is prevented from being discharged from the water channel in the wire feeding cylinder 1, that is, the first water channel 31 to the fourth water channel 34, the seventh water channel 37, and the eighth water channel 38. Can do.
  • the wire feed path 1a and the gas supply path 11 can be provided separately to suppress leakage of the shield gas. Further, by providing the wire feed path 1a and the gas supply path 11 in the single wire feed cylinder 1, it is possible to avoid an increase in the size of the welding torch.
  • the diameter of the through hole 12a is made smaller than that in the case of providing a single large diameter through hole 12a, and the inside of the first space 13a is reduced. Can increase the pressure.
  • the shield gas is sent out radially from the plurality of through holes 12a. As a result, the shielding gas having substantially the same flow rate is sent radially from each through-hole 12a, and the periphery of the arc is stably covered with the shielding gas, thereby suppressing the occurrence of poor welding.
  • FIG. 17 is a cross-sectional view schematically showing the first gas supply path 11a to the fourth gas supply path 11d
  • FIG. 18 is a view of the inner cylinder 3 and the branch cylinder 12 schematically showing the first chamber 131 to the fourth chamber 134. It is a cross-sectional view.
  • the gas supply path 11 is single, but as shown in FIG. 17, instead of the single gas supply path 11, a plurality of gas supply paths, for example, the first gas supply path, are provided. 11a to fourth gas supply path 11d may be formed in the inner cylinder 3. In this case, as shown in FIG. 18, four partitions 12b, 12b, 12b, 12b are provided on the inner peripheral surface of the branch cylinder 12 at a phase interval of about 90 degrees around the axis.
  • the branch cylinder 12 When the branch cylinder 12 is externally fitted to the inner cylinder 3, four chambers, that is, the first chamber 131 to the fourth chamber 134 are formed in the first space 13a by the four partitions 12b.
  • the outlets of the first gas supply path 11a to the fourth gas supply path 11d are connected to the first chamber 131 to the fourth chamber 134, respectively.
  • the first chamber 131 to the fourth chamber 134 By forming the first chamber 131 to the fourth chamber 134 connected to the first gas supply path 11a to the fourth gas supply path 11d in the first space 13a, respectively, the first chamber 131 to the fourth chamber are compared with the first space 13a. Since the volume of each chamber 134 is reduced, the pressure in each of the first chamber 131 to the fourth chamber 134 can be increased to a desired pressure in a short time.
  • gas supply paths and chambers are examples, and two or three gas supply paths and chambers, or five or more gas supply paths and chambers may be provided.
  • FIG. 19 is a partially enlarged longitudinal sectional view showing a state in which the branch cylinder 12 is screwed into the inner cylinder 3.
  • a female screw 12 b may be formed at the lower end of the branch cylinder 12, and a male screw 3 b corresponding to the female screw 12 b may be formed on the outer peripheral surface of the inner cylinder 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

Provided is a welding torch with which leakage of a shielding gas can be suppressed while avoiding an increase in size. This welding torch is provided with: a wire feed tube including a wire feed passage through which a welding wire is fed; a contact tip attached to an end portion of the wire feed tube; and a tubular nozzle which is provided around the contact tip and through which a shielding gas flows. Separately from the wire feed passage, the wire feed tube also includes a gas supply passage which supplies the shielding gas to the nozzle.

Description

溶接トーチWelding torch
 本発明は溶接を行う溶接トーチに関する。 The present invention relates to a welding torch for performing welding.
 溶接用トーチは、上下方向を軸方向とした筒状のカバーと、該カバーの下端部内側に配置されており、絶縁されたノズルと、ノズル内部に設けられたコンタクトチップとを備える。前記カバー及びコンタクトチップの内側にワイヤが挿入され、ワイヤはコンタクトチップの先端から溶接箇所に向けて送出される。カバー及びノズルの間に、溶融金属と空気との反応を抑制するシールドガスが注入され、ノズル先端に向けて送出される。コンタクトチップに電圧を印加することによって、コンタクトチップと対象物との間にアークが発生し、溶接が行われる。シールドガスはアークの周囲を覆い、溶接不良の発生を抑制する(例えば特許文献1参照)。 The welding torch includes a cylindrical cover having an up-down direction as an axial direction, an inner side of a lower end of the cover, an insulated nozzle, and a contact tip provided inside the nozzle. A wire is inserted inside the cover and the contact tip, and the wire is delivered from the tip of the contact tip toward the welding location. A shield gas that suppresses the reaction between the molten metal and air is injected between the cover and the nozzle, and is sent toward the nozzle tip. By applying a voltage to the contact tip, an arc is generated between the contact tip and the object, and welding is performed. The shield gas covers the periphery of the arc and suppresses the occurrence of poor welding (see, for example, Patent Document 1).
 カバーにはワイヤが送給されるワイヤ送給路が形成されている。溶接用トーチの小型化を図るべく、ワイヤ送給路をシールドガスの通流路としても使用することが考えられる。例えば、ワイヤ送給路の周面に、ワイヤ送給路の内側空間とノズルの内側空間とを連通させる貫通孔を設けることによって、シールドガスは、ワイヤ送給路及び貫通孔を通って、ノズルから放出される。 The wire feed path through which the wire is fed is formed in the cover. In order to reduce the size of the welding torch, it is conceivable to use the wire feeding path as a shield gas flow path. For example, by providing a through hole in the peripheral surface of the wire feed path to connect the inner space of the wire feed path and the inner space of the nozzle, the shield gas passes through the wire feed path and the through hole, and the nozzle Released from.
特開2004-237343号公報JP 2004-237343 A
 しかし、ワイヤ送給路の端部にはコンタクトチップが設けられており、コンタクトチップにはワイヤが送出される孔が設けられているので、コンタクトチップの孔からシールドガスが漏れる。 However, since the contact tip is provided at the end of the wire feed path, and the contact tip is provided with a hole through which the wire is sent, the shield gas leaks from the contact tip hole.
 本発明は斯かる事情に鑑みてなされたものであり、大型化を回避しつつ、シールドガスの漏れを抑制することができる溶接トーチを提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the welding torch which can suppress the leakage of shielding gas, avoiding enlargement.
 本発明に係る溶接トーチは、溶接ワイヤを送給するワイヤ送給路を有するワイヤ送給筒と、該ワイヤ送給筒の端部に取り付けられたコンタクトチップと、該コンタクトチップの周囲に設けられており、シールドガスが通流する筒状のノズルとを備え、前記ワイヤ送給筒は、前記ワイヤ送給路とは別に、前記シールドガスを前記ノズルに供給するガス供給路を有する。 A welding torch according to the present invention is provided with a wire feeding cylinder having a wire feeding path for feeding a welding wire, a contact tip attached to an end of the wire feeding cylinder, and a periphery of the contact tip. The wire feeding cylinder has a gas supply path for supplying the shielding gas to the nozzle separately from the wire feeding path.
 本発明においては、単一のワイヤ送給筒にワイヤ送給路及びガス供給路をそれぞれ別に設ける。 In the present invention, a single wire feeding cylinder is provided with a wire feeding path and a gas supply path.
 本発明に係る溶接トーチは、前記ワイヤ送給筒の外周面に形成された前記ガス供給路の出口と、前記ワイヤ送給筒に外嵌して前記出口を覆っており、複数の貫通孔が周方向に並設された筒体とを備え、前記筒体及びワイヤ送給筒の間に第1空間が設けられており、前記貫通孔によって前記第1空間と前記ノズルの内側の第2空間とが連通している。 The welding torch according to the present invention includes an outlet of the gas supply path formed on an outer peripheral surface of the wire feeding cylinder, and an outer fitting to the wire feeding cylinder to cover the outlet, and a plurality of through holes are provided. A cylindrical body arranged in a circumferential direction, wherein a first space is provided between the cylindrical body and the wire feeding cylinder, and the first space and a second space inside the nozzle are formed by the through hole. And communicate with each other.
 本発明においては、筒体に複数の貫通孔を周方向に並設することによって、単数の大径の貫通孔を設ける場合に比べて、貫通孔の直径を小さくし、第1空間内の圧力を高めることができる。またシールドガスは複数の貫通孔から放射状に送出される。その結果、各貫通孔から略同じ流量のシールドガスが放射状に送出され、アークの周囲が安定的にシールドガスによって覆われ、溶接不良の発生が抑制される。 In the present invention, by arranging a plurality of through-holes in the circumferential direction in the cylindrical body, the diameter of the through-holes can be reduced as compared with the case of providing a single large-diameter through-hole, and the pressure in the first space Can be increased. The shield gas is sent out radially from the plurality of through holes. As a result, shield gas with substantially the same flow rate is sent out radially from each through hole, and the periphery of the arc is stably covered with the shield gas, thereby suppressing the occurrence of poor welding.
 本発明に係る溶接トーチは、前記ワイヤ送給筒は前記ガス供給路を複数有し、前記第1空間には前記複数のガス供給路それぞれに連なる室が形成されている。 In the welding torch according to the present invention, the wire feeding cylinder has a plurality of the gas supply paths, and a chamber connected to each of the plurality of gas supply paths is formed in the first space.
 本発明においては、複数のガス供給路それぞれに連なる室を第1空間に形成することによって、第1空間に比べて各室の体積は小さくなるので、各室の圧力を短時間で所望の圧力まで上げることができる。 In the present invention, by forming a chamber connected to each of the plurality of gas supply paths in the first space, the volume of each chamber becomes smaller than that of the first space, so that the pressure in each chamber can be reduced to a desired pressure in a short time. Can be raised.
 本発明に係る溶接トーチは、前記筒体は前記ワイヤ送給筒に螺合している。 In the welding torch according to the present invention, the cylindrical body is screwed into the wire feeding cylinder.
 本発明においては、筒体をワイヤ送給筒に螺合させることによって、第1空間からシールドガスが漏れることを防止することができる。また螺合のラビリンス効果によって第1空間内の密閉度が高まり、第1空間内の圧力を高め易くなる。 In the present invention, it is possible to prevent the shielding gas from leaking from the first space by screwing the cylinder into the wire feeding cylinder. Further, the sealing degree in the first space is increased by the labyrinth effect of screwing, and the pressure in the first space is easily increased.
 本発明に係る溶接トーチにあっては、ワイヤ送給路及びガス供給路をそれぞれ別に設けて、シールドガスの漏洩を抑制することができる。またワイヤ送給路及びガス供給路を単一のワイヤ送給筒に設けることによって、溶接トーチの大型化を回避することができる。 In the welding torch according to the present invention, the wire feed path and the gas supply path can be provided separately to suppress leakage of the shield gas. Moreover, the enlargement of the welding torch can be avoided by providing the wire feed path and the gas supply path in a single wire feed cylinder.
溶接トーチを略示する外観斜視図である。1 is an external perspective view schematically showing a welding torch. ガス供給路を示す溶接トーチの縦断面図である。It is a longitudinal cross-sectional view of the welding torch which shows a gas supply path. ガス供給路を示す溶接トーチの斜視断面図である。It is a perspective sectional view of a welding torch showing a gas supply path. 図2のIV-IV線を切断線とした斜視断面図である。FIG. 4 is a perspective sectional view taken along line IV-IV in FIG. 2. 図2のIV-IV線を切断線とした平面断面図である。FIG. 4 is a plan sectional view taken along line IV-IV in FIG. 2. 水路を示す溶接トーチの縦断面図である。It is a longitudinal cross-sectional view of the welding torch which shows a water channel. 水路を示す溶接トーチの斜視断面図である。It is a perspective sectional view of a welding torch showing a water channel. 開閉部を上方から視認した斜視図である。It is the perspective view which visually recognized the opening-and-closing part from the upper part. 開閉部を下方から視認した斜視図である。It is the perspective view which visually recognized the opening-and-closing part from the lower part. 開閉部の略示縦断面図である。It is a schematic longitudinal cross-sectional view of an opening / closing part. 水路が開放された状態の開閉部付近の構成を示す溶接トーチの部分拡大縦断面図である。It is a partial expanded longitudinal cross-sectional view of the welding torch which shows the structure of the opening-closing part vicinity of the state where the water channel was open | released. 図5に示すXI-XI線を切断線とした斜視断面図である。FIG. 6 is a perspective sectional view taken along line XI-XI shown in FIG. 図5に示すXI-XI線を切断線とした平面断面図である。FIG. 6 is a plan sectional view taken along line XI-XI shown in FIG. 図5に示すXII-XII線を切断線とした斜視断面図である。FIG. 6 is a perspective sectional view taken along line XII-XII shown in FIG. 5. 図5に示すXII-XII線を切断線とした平面断面図である。FIG. 6 is a plan sectional view taken along line XII-XII shown in FIG. 図5に示すXIII-XIII線を切断線とした斜視断面図である。FIG. 6 is a perspective sectional view taken along line XIII-XIII shown in FIG. 図5に示すXIII-XIII線を切断線とした平面断面図である。FIG. 6 is a plan sectional view taken along line XIII-XIII shown in FIG. 図5に示すXIV-XIV線を切断線とした斜視断面図である。FIG. 6 is a perspective sectional view taken along line XIV-XIV shown in FIG. 5. 図5に示すXIV-XIV線を切断線とした平面断面図である。FIG. 6 is a plan sectional view taken along line XIV-XIV shown in FIG. 5. 図5に示すXV-XV線を切断線とした斜視断面図である。FIG. 6 is a perspective sectional view taken along line XV-XV shown in FIG. 図5に示すXV-XV線を切断線とした平面断面図である。FIG. 6 is a plan sectional view taken along line XV-XV shown in FIG. 水路が閉鎖された状態の開閉部付近の構成を示す溶接トーチの部分拡大縦断面図である。It is a partial expanded longitudinal cross-sectional view of the welding torch which shows the structure of the opening-closing part vicinity of the state where the water channel was closed. 第1ガス供給路~第4ガス供給路を略示する横断面図である。FIG. 6 is a transverse sectional view schematically showing a first gas supply path to a fourth gas supply path. 第1室~第4室を略示する内筒及び分岐筒の横断面図である。FIG. 5 is a cross-sectional view of an inner cylinder and a branch cylinder schematically showing the first chamber to the fourth chamber. 分岐筒を内筒に螺合させた状態を示す部分拡大縦断面図である。It is a partial expanded longitudinal cross-sectional view which shows the state which screwed the branch cylinder to the inner cylinder.
 以下本発明を実施の形態に係る溶接トーチを示す図面に基づいて説明する。図1は、溶接トーチを略示する外観斜視図である。以下の説明では図に示す上下を使用する。 Hereinafter, the present invention will be described with reference to the drawings showing a welding torch according to an embodiment. FIG. 1 is an external perspective view schematically showing a welding torch. In the following description, the top and bottom shown in the figure are used.
 溶接トーチは、溶接ワイヤを送給する上下方向を軸方向としたワイヤ送給筒1と、ワイヤ送給筒1の下部が挿入された円筒状のノズル4とを備える。ワイヤ送給筒1とノズル4とは、連結筒5によって連結されている。ワイヤ送給筒1及びノズル4は同軸的に配置されている。ワイヤ送給筒1の上端部には、直方体状の接続部6が設けられている。 The welding torch includes a wire feeding cylinder 1 whose axial direction is the vertical direction for feeding a welding wire, and a cylindrical nozzle 4 into which a lower portion of the wire feeding cylinder 1 is inserted. The wire feeding cylinder 1 and the nozzle 4 are connected by a connecting cylinder 5. The wire feeding cylinder 1 and the nozzle 4 are arranged coaxially. A rectangular parallelepiped connecting portion 6 is provided at the upper end of the wire feeding tube 1.
 ワイヤを供給するワイヤ供給口7、冷却水を供給する給水口8、冷却水を排出する排水口9、及びシールドガスを供給する給気口10が接続部6に接続されている。ワイヤ供給口7は筒状をなし、外筒2に同軸的に設けられている。 A wire supply port 7 that supplies a wire, a water supply port 8 that supplies cooling water, a drain port 9 that discharges cooling water, and an air supply port 10 that supplies shield gas are connected to the connection portion 6. The wire supply port 7 has a cylindrical shape and is provided coaxially with the outer cylinder 2.
 図2は、ガス供給路11を示す溶接トーチの縦断面図、図3は、ガス供給路11を示す溶接トーチの斜視断面図である。 FIG. 2 is a longitudinal sectional view of the welding torch showing the gas supply path 11, and FIG. 3 is a perspective sectional view of the welding torch showing the gas supply path 11.
 ワイヤ送給筒1は、外筒2と、該外筒2に挿入された内筒3とを備える。内筒3の下端部は、外筒2よりも下側に突出しており、ノズル4に挿入されている。内筒3の軸心部分には、上下に貫通したワイヤ送給路1aが形成されている。内筒3の下端部にはコンタクトチップ20が挿入されている。コンタクトチップ20は軸方向に伸びた筒状をなし、内筒3に同軸的に設けられている。コンタクトチップ20の下端部はノズル4の下端部付近に位置する。 The wire feeding cylinder 1 includes an outer cylinder 2 and an inner cylinder 3 inserted into the outer cylinder 2. The lower end portion of the inner cylinder 3 protrudes below the outer cylinder 2 and is inserted into the nozzle 4. A wire feed path 1 a penetrating vertically is formed in the axial center portion of the inner cylinder 3. A contact chip 20 is inserted into the lower end portion of the inner cylinder 3. The contact chip 20 has a cylindrical shape extending in the axial direction, and is provided coaxially with the inner cylinder 3. The lower end portion of the contact chip 20 is located near the lower end portion of the nozzle 4.
 ワイヤ供給口7から溶接ワイヤが供給され、ワイヤ送給路1a及びコンタクトチップ20を通って、ノズル4の下方に送出される。 The welding wire is supplied from the wire supply port 7 and is sent to the lower side of the nozzle 4 through the wire feed path 1 a and the contact tip 20.
 図2及び図3に示すように、内筒3には、ワイヤ送給路1aの隣に、軸方向に延びたガス供給路11が形成されている。ガス供給路11の上端部は内筒3の上側に突出し、接続部6の内部に位置する。ガス供給路11の上端部に入口11aが設けられている。入口11aと給気口10は、接続部6内の通路を介して連通している。 As shown in FIGS. 2 and 3, a gas supply path 11 extending in the axial direction is formed in the inner cylinder 3 next to the wire feed path 1a. The upper end portion of the gas supply path 11 protrudes above the inner cylinder 3 and is located inside the connection portion 6. An inlet 11 a is provided at the upper end of the gas supply path 11. The inlet 11 a and the air supply port 10 communicate with each other through a passage in the connection portion 6.
 ガス供給路11の下端部は、内筒3の下部側面に向けて湾曲しており、前記側面にガス供給路11の出口11bが形成されている。 The lower end portion of the gas supply path 11 is curved toward the lower side surface of the inner cylinder 3, and an outlet 11b of the gas supply path 11 is formed on the side surface.
 図4Aは、図2のIV-IV線を切断線とした斜視断面図であり、図4Bは、図2のIV-IV線を切断線とした平面断面図である。内筒3の下端部には、シールドガスを分岐させる分岐筒12(筒体)が外嵌している。分岐筒12は、ノズル4と内筒3の下端部との間に配置され、出口11bを覆う。 4A is a perspective sectional view taken along line IV-IV in FIG. 2, and FIG. 4B is a plan sectional view taken along line IV-IV in FIG. A branch cylinder 12 (cylinder) for branching the shield gas is fitted to the lower end portion of the inner cylinder 3. The branch cylinder 12 is disposed between the nozzle 4 and the lower end portion of the inner cylinder 3, and covers the outlet 11b.
 分岐筒12の上端部及び下端部は内筒3に接触しているが、分岐筒12の中途部と内筒3との間には、周方向全体に亘って、第1空間13aが形成されている。前記出口11bは前記第1空間13aに連なる。分岐筒12の中途部には複数の貫通孔12a、12a、・・・、12aが周方向に並設されている。貫通孔12aは、前記第1空間13aと、ノズル4の内側の第2空間4aとを連通させている。 The upper end and the lower end of the branch cylinder 12 are in contact with the inner cylinder 3, but a first space 13 a is formed across the entire circumferential direction between the middle section of the branch cylinder 12 and the inner cylinder 3. ing. The outlet 11b is continuous with the first space 13a. A plurality of through holes 12 a, 12 a,..., 12 a are arranged in the circumferential direction in the middle of the branch cylinder 12. The through hole 12 a allows the first space 13 a to communicate with the second space 4 a inside the nozzle 4.
 図2及び図3の矢印で示すように、給気口10からシールドガスが供給され、ガス供給路11及び出口11bを通って、分岐筒12と内筒3との間の第1空間13aに至る。シールドガスは、複数の貫通孔12aを通って放射状に送出され、ノズル4の内側の第2空間4aに供給され、ノズル4の下端から放出される。内筒3に電圧が印加され、ノズル4から放出されるシールドガスの内側において、溶接ワイヤと対象物との間でアークが発生し、溶接ワイヤが溶融して、対象物に対する溶接が実行される。 As shown by the arrows in FIGS. 2 and 3, the shield gas is supplied from the air supply port 10, passes through the gas supply path 11 and the outlet 11 b, and enters the first space 13 a between the branch cylinder 12 and the inner cylinder 3. It reaches. The shield gas is sent radially through the plurality of through holes 12 a, supplied to the second space 4 a inside the nozzle 4, and discharged from the lower end of the nozzle 4. A voltage is applied to the inner cylinder 3, and an arc is generated between the welding wire and the object inside the shield gas emitted from the nozzle 4, the welding wire is melted, and welding to the object is executed. .
 図5は、水路を示す溶接トーチの縦断面図、図6は、水路を示す溶接トーチの斜視断面図である。溶接トーチは水路を備え、該水路は第1水路31~第8水路38を備える。 FIG. 5 is a longitudinal sectional view of a welding torch showing a water channel, and FIG. 6 is a perspective sectional view of the welding torch showing a water channel. The welding torch includes a water channel, and the water channel includes a first water channel 31 to an eighth water channel 38.
 内筒3の上部の径方向一側には、ワイヤ送給路1aの隣に軸方向に延びた第1水路31が形成されており、内筒3の上部の径方向他側には、ワイヤ送給路1aの隣に軸方向に延びた第8水路38が形成されている。なお第1水路31及び第8水路38は、径方向において互いに反対側に配置されている。第1水路31の上端部と給水口8とは、接続部6に形成した通路を介して、連通している。第8水路38の上端部と排水口9とは、接続部6に形成した通路を介して、連通している。 A first water channel 31 extending in the axial direction is formed next to the wire feed path 1a on the one radial side of the upper part of the inner cylinder 3, and a wire is formed on the other radial side of the upper part of the inner cylinder 3. An eighth water passage 38 extending in the axial direction is formed next to the feed passage 1a. The first water channel 31 and the eighth water channel 38 are arranged on the opposite sides in the radial direction. The upper end portion of the first water channel 31 and the water supply port 8 communicate with each other through a passage formed in the connection portion 6. The upper end portion of the eighth water channel 38 and the drain port 9 communicate with each other through a passage formed in the connection portion 6.
 内筒3の下部の径方向一側には、軸方向に延びた第4水路34が形成されており、内筒3の下部の径方向他側には、軸方向に延びた第3水路33が形成されている。第3水路33及び第4水路34の下端は、内筒3の底部(以下第1底部3cという)に至り、該第1底部3cにおいて連なっている(後述する図14参照)。第1水路31の下端部及び第3水路33の上端部は、螺旋状に形成された第2水路32を介して連通している。 A fourth water channel 34 extending in the axial direction is formed on one radial side of the lower portion of the inner cylinder 3, and a third water channel 33 extending in the axial direction is formed on the other radial side of the lower portion of the inner cylinder 3. Is formed. The lower ends of the third water channel 33 and the fourth water channel 34 reach the bottom of the inner cylinder 3 (hereinafter referred to as the first bottom 3c), and are continuous at the first bottom 3c (see FIG. 14 described later). The lower end of the first water channel 31 and the upper end of the third water channel 33 communicate with each other via a second water channel 32 formed in a spiral shape.
 ノズル4の径方向一側には、軸方向に延びた二つの第5水路35、35が形成されており、ノズル4の径方向他側には二つの第6水路36、36が形成されている(後述する図14参照)。一方の第5水路35及び一方の第6水路36の下端は、ノズル4の底部(以下第2底部4bという)に至り、該第2底部4bにおいて連なっている。また他方の第5水路35及び他方の第6水路36の下端も第2底部4bにおいて、連なっている(後述する図15参照)。第5水路35の上端部は、後述する開閉部40の連通路を介して、第4水路34の上端部に連通する。 Two fifth water passages 35, 35 extending in the axial direction are formed on one side in the radial direction of the nozzle 4, and two sixth water passages 36, 36 are formed on the other side in the radial direction of the nozzle 4. (See FIG. 14 described later). The lower ends of the one fifth water channel 35 and the one sixth water channel 36 reach the bottom of the nozzle 4 (hereinafter referred to as the second bottom 4b), and are continuous at the second bottom 4b. The lower ends of the other fifth water passage 35 and the other sixth water passage 36 are also connected at the second bottom portion 4b (see FIG. 15 described later). The upper end portion of the fifth water passage 35 communicates with the upper end portion of the fourth water passage 34 via a communication passage of the opening / closing portion 40 described later.
 軸方向において、第3水路33と第8水路38との間に、第7水路37が形成されている。第6水路36の上端部は、第7水路37及び前記連通路を介して、第8水路38の下端部に連通する。 A seventh water channel 37 is formed between the third water channel 33 and the eighth water channel 38 in the axial direction. The upper end portion of the sixth water passage 36 communicates with the lower end portion of the eighth water passage 38 through the seventh water passage 37 and the communication passage.
 図7は、開閉部40を上方から視認した斜視図、図8は、開閉部40を下方から視認した斜視図、図9は、開閉部40の略示縦断面図である。開閉部40は、円筒状の本体41と、該本体41の中途部から径方向に突出した円環状の突出部42とを備える。突出部42の先端部は上方向に向けて屈曲しており、突出部42の縦断面形状はL状をなす(図9参照)。 7 is a perspective view of the opening / closing section 40 viewed from above, FIG. 8 is a perspective view of the opening / closing section 40 viewed from below, and FIG. 9 is a schematic longitudinal sectional view of the opening / closing section 40. The opening / closing part 40 includes a cylindrical main body 41 and an annular projecting part 42 projecting radially from the middle part of the main body 41. The tip of the protrusion 42 is bent upward, and the vertical cross-sectional shape of the protrusion 42 is L-shaped (see FIG. 9).
 本体41の上端部には、径方向に貫通した二つのガイド挿入孔44、44が設けられている。径方向において、二つのガイド挿入孔44は反対側に配置されている。ガイド挿入孔44には、ガイド45(後述する図10参照)が挿入される。本実施例においては、ボルトをガイド45として使用している。そのため、ガイド挿入孔44は、ボルトの頭部が配置される座繰りを備える。なおガイド45はボルトに限定されず、他の構成(例えばピン)でもよい。ガイド挿入孔44は突出部42よりも上側に位置する。 At the upper end of the main body 41, two guide insertion holes 44, 44 penetrating in the radial direction are provided. In the radial direction, the two guide insertion holes 44 are arranged on the opposite sides. A guide 45 (see FIG. 10 described later) is inserted into the guide insertion hole 44. In this embodiment, a bolt is used as the guide 45. Therefore, the guide insertion hole 44 includes a counterbore in which a bolt head is disposed. The guide 45 is not limited to a bolt, and may have another configuration (for example, a pin). The guide insertion hole 44 is located above the protrusion 42.
 本体41の下部の径方向一側には、径方向に貫通した複数の第1連通路43a、43a、・・、43aが周方向に並設されており、本体41の下部の径方向他側には、径方向に貫通した複数の第2連通路43b、43b、・・、43bが周方向に並設されている。第1連通路43a及び第2連通路43bは突出部42よりも下側に位置する。 A plurality of first communication passages 43 a, 43 a,..., 43 a penetrating in the radial direction are arranged in parallel in the circumferential direction on one side of the lower portion of the main body 41. A plurality of second communication passages 43b, 43b,..., 43b penetrating in the radial direction are arranged side by side in the circumferential direction. The first communication path 43 a and the second communication path 43 b are located below the protrusion 42.
 図10は、水路が開放された状態の開閉部40付近の構成を示す溶接トーチの部分拡大縦断面図である。開閉部40は、ノズル4の上端部に、上下動可能に設けられている。本体41下部は、径方向において、ノズル4上端部と内筒3下部との間に配置されている。本体41上部及び突出部42はノズル4上端よりも上側に配置されている。 FIG. 10 is a partially enlarged longitudinal sectional view of a welding torch showing a configuration in the vicinity of the opening / closing part 40 in a state where the water channel is opened. The opening / closing part 40 is provided at the upper end of the nozzle 4 so as to be movable up and down. The lower portion of the main body 41 is disposed between the upper end portion of the nozzle 4 and the lower portion of the inner cylinder 3 in the radial direction. The upper portion of the main body 41 and the protruding portion 42 are disposed above the upper end of the nozzle 4.
 外筒2の下端には第1フランジ2aが形成されており、ノズル4の上端には第2フランジ4cが形成されている。第1フランジ2aの外周面には雄ねじ2cが形成されている。第1フランジ2aの内周部分には、円環状の溝2bが形成されている。第1フランジ2a及び第2フランジ4cは軸方向に対向する。軸方向において、突出部42は第1フランジ2a及び第2フランジ4cの間に配置されている。断面L形の突出部42の内側と溝2bとの間には、開閉部40を下側(コンタクトチップ20側)に付勢する付勢部材46が設けられている。付勢部材46としては、例えば、ばねが挙げられる。 A first flange 2 a is formed at the lower end of the outer cylinder 2, and a second flange 4 c is formed at the upper end of the nozzle 4. A male screw 2c is formed on the outer peripheral surface of the first flange 2a. An annular groove 2b is formed in the inner peripheral portion of the first flange 2a. The first flange 2a and the second flange 4c face each other in the axial direction. In the axial direction, the protrusion 42 is disposed between the first flange 2a and the second flange 4c. A biasing member 46 that biases the opening / closing portion 40 downward (contact chip 20 side) is provided between the inside of the projecting portion 42 having an L-shaped cross section and the groove 2b. Examples of the urging member 46 include a spring.
 内筒3の外周面におけるガイド挿入孔44に対向する部分に、軸方向に伸びたガイド溝3aが形成されている。ガイド挿入孔44には、ガイド45が挿入され、固定されている。ガイド45の先端部はガイド溝3aの内側に配置されている。 A guide groove 3 a extending in the axial direction is formed in a portion facing the guide insertion hole 44 on the outer peripheral surface of the inner cylinder 3. A guide 45 is inserted into the guide insertion hole 44 and fixed. The tip of the guide 45 is disposed inside the guide groove 3a.
 連結筒5は、第1フランジ2a及びノズル4上端部の外側に嵌合している。連結筒5の上端部には雌ねじ5aが形成されている。連結筒5の下部の直径は上部よりも小さい。連結筒5の上部及び下部の連結部分には段差部5bが形成されている。第2フランジ4cは、突出部42の下端と段差部5bとの間に配置されている。連結筒5の雌ねじ5aと第1フランジ2aの雄ねじ2cとを螺合させることによって、第2フランジ4c及び突出部42は、付勢部材46の付勢力に抗して、段差部5b及び第1フランジ2aの間で挟まれる。 The connecting cylinder 5 is fitted outside the first flange 2a and the upper end of the nozzle 4. A female screw 5 a is formed at the upper end of the connecting cylinder 5. The lower diameter of the connecting cylinder 5 is smaller than the upper diameter. A step portion 5 b is formed at the upper and lower connecting portions of the connecting cylinder 5. The 2nd flange 4c is arrange | positioned between the lower end of the protrusion part 42, and the level | step-difference part 5b. By screwing the female screw 5a of the connecting cylinder 5 and the male screw 2c of the first flange 2a, the second flange 4c and the projecting portion 42 resist the urging force of the urging member 46 and the step portion 5b and the first It is sandwiched between the flanges 2a.
 このとき、第1連通路43aを介して、第4水路34と二つの第5水路35とは連通し、第2連通路43bを介して、二つの第6水路36と第7水路37とは連通する。 At this time, the fourth water passage 34 and the two fifth water passages 35 communicate with each other via the first communication passage 43a, and the two sixth water passages 36 and the seventh water passage 37 via the second communication passage 43b. Communicate.
 図11A~図15Aは、図5に示すXI-XI線~XV-XV線を切断線とした斜視断面図であり、図11B~図15Bは、図5に示すXI-XI線~XV-XV線を切断線とした平面断面図である。以下、図5、図6、図10~図15を参照し、冷却水の流れについて説明する。図5、図6、図11~図15の矢印は、冷却水の流れを示す。 11A to 15A are perspective sectional views taken along lines XI-XI to XV-XV shown in FIG. 5, and FIGS. 11B to 15B are XI-XI to XV-XV shown in FIG. It is plane sectional drawing which used the line as the cutting line. Hereinafter, the flow of the cooling water will be described with reference to FIGS. 5, 6, and 10 to 15. The arrows in FIGS. 5, 6, and 11 to 15 indicate the flow of cooling water.
 冷却水が給水口8に供給された場合、冷却水は第1水路31を下方に通流し、第2水路32を通って、第3水路33に至る(図5,図6、図11~図13参照)。冷却水は、第3水路33を更に下方に通流して、第1底部3cに至り、通流方向を上向きに変更し、第4水路34を上方に通流する(図5,図6、図13及び図14参照)。 When the cooling water is supplied to the water supply port 8, the cooling water flows downward through the first water channel 31, passes through the second water channel 32, and reaches the third water channel 33 (FIGS. 5, 6, 11 to 11). 13). The cooling water flows further downward through the third water channel 33, reaches the first bottom 3c, changes the flow direction upward, and flows upward through the fourth water channel 34 (FIGS. 5, 6, and 6). 13 and FIG. 14).
 図14Aにおいて、第1底部3cにて示された下向きの矢印は、第3水路33を通って第1底部3cまで下方に流れる冷却水を示しており、横向きの円弧矢印は、第1底部3cにて、第3水路33から第4水路34に向けて流れる冷却水を示しており、上向きの矢印は、第1底部3cから第4水路34を通って上方に流れる冷却水を示す。 In FIG. 14A, the downward arrow indicated by the first bottom portion 3c indicates cooling water flowing downward through the third water channel 33 to the first bottom portion 3c, and the horizontal arc arrow indicates the first bottom portion 3c. The cooling water flowing from the third water channel 33 toward the fourth water channel 34 is shown, and the upward arrow indicates the cooling water flowing upward from the first bottom 3c through the fourth water channel 34.
 冷却水は、第4水路34の上端部において、通流方向を径方向外向きに変更し、複数の第1連通路43aを通り、二つの第5水路35を下方に通流する(図5,図6、図10及び図13参照)。 The cooling water changes the direction of flow outward in the radial direction at the upper end of the fourth water passage 34, passes through the plurality of first communication passages 43a, and flows downward through the two fifth water passages 35 (FIG. 5). , FIG. 6, FIG. 10 and FIG. 13).
 冷却水は第2底部4bに至り、一方の第5水路35を通流した冷却水は、一方の第6水路36を上方に通流し、他方の第5水路35を通流した冷却水は、他方の第6水路36を上方に通流する(図5,図6、図14及び図15参照)。図15Aにおいて、下向きの白抜き矢印は、一方の第5水路35を通って第2底部4bまで下方に流れる冷却水を示し、横向きの円弧白抜き矢印は、第2底部4bにて、一方の第5水路35から一方の第6水路36に向けて流れる冷却水を示しており、上向きの白抜き矢印は、第1底部3cから一方の第6水路36を通って上方に流れる冷却水を示す。 The cooling water reaches the second bottom 4b, the cooling water that has flowed through one of the fifth water channels 35 flows upward through one of the sixth water channels 36, and the cooling water that has flowed through the other fifth water channel 35 is: The other sixth water channel 36 flows upward (see FIGS. 5, 6, 14, and 15). In FIG. 15A, the downward white arrow indicates the cooling water flowing downward through one fifth water channel 35 to the second bottom 4b, and the horizontal circular white arrow indicates one of the two bottoms 4b. The cooling water that flows from the fifth water channel 35 toward the one sixth water channel 36 is shown, and the upward white arrow indicates the cooling water that flows upward from the first bottom 3c through the one sixth water channel 36. .
 図15Aにおいて、下向きの実線矢印は、他方の第5水路35を通って第2底部4bまで下方に流れる冷却水を示し、横向きの円弧実線矢印は、第2底部4bにて、他方の第5水路35から他方の第6水路36に向けて流れる冷却水を示しており、上向きの実線矢印は、第1底部3cから他方の第6水路36を通って上方に流れる冷却水を示す。なお図15Aにおける第5水路35及び第6水路36の白抜き矢印及び実線矢印は、図14Aにおいても、同様に使用されている。 In FIG. 15A, the downward solid arrow indicates the cooling water flowing downward to the second bottom 4b through the other fifth water channel 35, and the horizontal arc solid arrow indicates the other fifth at the second bottom 4b. The cooling water flowing from the water channel 35 toward the other sixth water channel 36 is shown, and the upward solid arrow indicates the cooling water flowing upward from the first bottom 3c through the other sixth water channel 36. In addition, the white arrow and the solid line arrow of the 5th water channel 35 and the 6th water channel 36 in FIG. 15A are used similarly in FIG. 14A.
 冷却水は、二つの第6水路36それぞれの上端部において、通流方向を径方向内向きに変更し、複数の第2連通路43bを通り、第7水路37を上方に移動する。なお二つの第6水路36を通った冷却水は、第2連通路43b及び第7水路37にて合流し、上方に移動する(図5,図6、図10、図12及び図13参照)。冷却水は第8水路38を上方に通流し、排水口9から排出される。なお排水口9から排出された冷却水は、冷却後に給水口8に戻され、循環する。なお冷却水を循環させなくてもよい。 The cooling water moves upward in the seventh water passage 37 through the plurality of second communication passages 43b by changing the flow direction inward in the radial direction at the upper ends of the two sixth water passages 36. The cooling water that has passed through the two sixth water passages 36 merges in the second communication passage 43b and the seventh water passage 37 and moves upward (see FIGS. 5, 6, 10, 12, and 13). . The cooling water flows upward through the eighth water passage 38 and is discharged from the drain port 9. The cooling water discharged from the drain port 9 is returned to the water supply port 8 after cooling and circulated. The cooling water need not be circulated.
 図16は、水路が閉鎖された状態の開閉部40付近の構成を示す溶接トーチの部分拡大縦断面図である。ユーザは、例えばノズル4を交換する場合に、連結筒5をワイヤ送給筒1から取り外して、ノズル4を取り外す。 FIG. 16 is a partially enlarged longitudinal sectional view of a welding torch showing a configuration in the vicinity of the opening / closing part 40 in a state where the water channel is closed. For example, when replacing the nozzle 4, the user removes the connecting cylinder 5 from the wire feed cylinder 1 and removes the nozzle 4.
 図16に示すように、連結筒5をワイヤ送給筒1から取り外す場合、ユーザは、連結筒5の雌ねじ5aと第1フランジ2aの雄ねじ2cとの螺合を解除させる。このとき連結筒5及びノズル4は下方に移動する。前述したように、開閉部40は、付勢部材46の付勢力によって下方に付勢されているので、連結筒5及びノズル4の下方への移動に従って、開閉部40も下方へ移動する。 As shown in FIG. 16, when removing the connecting cylinder 5 from the wire feeding cylinder 1, the user releases the screwing between the female screw 5a of the connecting cylinder 5 and the male screw 2c of the first flange 2a. At this time, the connecting cylinder 5 and the nozzle 4 move downward. As described above, since the opening / closing part 40 is urged downward by the urging force of the urging member 46, the opening / closing part 40 also moves downward as the connecting cylinder 5 and the nozzle 4 move downward.
 ガイド45はガイド溝3aに沿って下方に移動し、開閉部40は円滑に下方に移動する。このとき、図16に示すように、第1連通路43aと第4水路34とが連通しなくなり、第4水路34は本体41によって閉鎖される。また第2連通路43bと第7連通路とが連通しなくなり、第7水路37は本体41によって閉鎖される。そのため、ノズル4を取り外した場合に、ワイヤ送給筒1内の水路、即ち、第1水路31~第4水路34、第7水路37及び第8水路38から水が放出されることを防ぐことができる。 The guide 45 moves downward along the guide groove 3a, and the opening / closing part 40 smoothly moves downward. At this time, as shown in FIG. 16, the first communication passage 43 a and the fourth water channel 34 are not communicated, and the fourth water channel 34 is closed by the main body 41. Further, the second communication path 43 b and the seventh communication path are not communicated, and the seventh water channel 37 is closed by the main body 41. Therefore, when the nozzle 4 is removed, water is prevented from being discharged from the water channel in the wire feeding cylinder 1, that is, the first water channel 31 to the fourth water channel 34, the seventh water channel 37, and the eighth water channel 38. Can do.
 ノズル4を取り外した場合、水が放出されたとしても、第5水路35及び第6水路36に残留した水のみが放出されるので、放出される水量を抑制することができる。 When the nozzle 4 is removed, even if water is released, only the water remaining in the fifth water channel 35 and the sixth water channel 36 is discharged, so that the amount of water released can be suppressed.
 上述した実施の形態にあっては、ワイヤ送給路1a及びガス供給路11をそれぞれ別に設けて、シールドガスの漏洩を抑制することができる。またワイヤ送給路1a及びガス供給路11を単一のワイヤ送給筒1に設けることによって、溶接トーチの大型化を回避することができる。 In the embodiment described above, the wire feed path 1a and the gas supply path 11 can be provided separately to suppress leakage of the shield gas. Further, by providing the wire feed path 1a and the gas supply path 11 in the single wire feed cylinder 1, it is possible to avoid an increase in the size of the welding torch.
 また分岐筒12に複数の貫通孔12aを周方向に並設しているので、貫通孔12aの直径を、単数の大径の貫通孔12aを設ける場合に比べて小さくし、第1空間13a内の圧力を高めることができる。またシールドガスは複数の貫通孔12aから放射状に送出される。その結果、各貫通孔12aから略同じ流量のシールドガスが放射状に送出され、アークの周囲が安定的にシールドガスによって覆われ、溶接不良の発生が抑制される。 Further, since the plurality of through holes 12a are arranged in the circumferential direction in the branch cylinder 12, the diameter of the through hole 12a is made smaller than that in the case of providing a single large diameter through hole 12a, and the inside of the first space 13a is reduced. Can increase the pressure. The shield gas is sent out radially from the plurality of through holes 12a. As a result, the shielding gas having substantially the same flow rate is sent radially from each through-hole 12a, and the periphery of the arc is stably covered with the shielding gas, thereby suppressing the occurrence of poor welding.
 以下に示すように、実施の形態に係る溶接トーチの構成を一部変更してもよい。図17は、第1ガス供給路11a~第4ガス供給路11dを略示する横断面図、図18は、第1室131~第4室134を略示する内筒3及び分岐筒12の横断面図である。 As shown below, the configuration of the welding torch according to the embodiment may be partially changed. 17 is a cross-sectional view schematically showing the first gas supply path 11a to the fourth gas supply path 11d, and FIG. 18 is a view of the inner cylinder 3 and the branch cylinder 12 schematically showing the first chamber 131 to the fourth chamber 134. It is a cross-sectional view.
 上述した実施の形態においては、ガス供給路11は単一であったが、図17に示すように、単一のガス供給路11に代えて、複数のガス供給路、例えば第1ガス供給路11a~第4ガス供給路11dを内筒3に形成してもよい。この場合、図18に示すように、分岐筒12の内周面に四つの仕切り12b、12b、12b、12bを、軸周りに略90度の位相間隔で設ける。 In the embodiment described above, the gas supply path 11 is single, but as shown in FIG. 17, instead of the single gas supply path 11, a plurality of gas supply paths, for example, the first gas supply path, are provided. 11a to fourth gas supply path 11d may be formed in the inner cylinder 3. In this case, as shown in FIG. 18, four partitions 12b, 12b, 12b, 12b are provided on the inner peripheral surface of the branch cylinder 12 at a phase interval of about 90 degrees around the axis.
 分岐筒12を内筒3に外嵌させた場合、第1空間13aには、四つの仕切り12bによって、四つの室、すなわち第1室131~第4室134が形成される。第1ガス供給路11a~第4ガス供給路11dの出口は第1室131~第4室134にそれぞれ連なる。 When the branch cylinder 12 is externally fitted to the inner cylinder 3, four chambers, that is, the first chamber 131 to the fourth chamber 134 are formed in the first space 13a by the four partitions 12b. The outlets of the first gas supply path 11a to the fourth gas supply path 11d are connected to the first chamber 131 to the fourth chamber 134, respectively.
 第1ガス供給路11a~第4ガス供給路11dそれぞれに連なる第1室131~第4室134を第1空間13aに形成することによって、第1空間13aに比べて第1室131~第4室134それぞれの体積は小さくなるので、第1室131~第4室134それぞれの圧力を短時間で所望の圧力まで上げることができる。 By forming the first chamber 131 to the fourth chamber 134 connected to the first gas supply path 11a to the fourth gas supply path 11d in the first space 13a, respectively, the first chamber 131 to the fourth chamber are compared with the first space 13a. Since the volume of each chamber 134 is reduced, the pressure in each of the first chamber 131 to the fourth chamber 134 can be increased to a desired pressure in a short time.
 なお四つのガス供給路及び室は例示であり、二つ若しくは三つのガス供給路及び室、又は五つ以上のガス供給路及び室を設けてもよい。 Note that the four gas supply paths and chambers are examples, and two or three gas supply paths and chambers, or five or more gas supply paths and chambers may be provided.
 また以下に示すように、実施の形態に係る溶接トーチの構成を一部変更してもよい。図19は、分岐筒12を内筒3に螺合させた状態を示す部分拡大縦断面図である。分岐筒12の下端に雌ねじ12bを形成し、雌ねじ12bに対応する雄ねじ3bを内筒3の外周面に形成してもよい。 Further, as shown below, the configuration of the welding torch according to the embodiment may be partially changed. FIG. 19 is a partially enlarged longitudinal sectional view showing a state in which the branch cylinder 12 is screwed into the inner cylinder 3. A female screw 12 b may be formed at the lower end of the branch cylinder 12, and a male screw 3 b corresponding to the female screw 12 b may be formed on the outer peripheral surface of the inner cylinder 3.
 分岐筒12を内筒3に外嵌させる場合に、雌ねじ12b及び雄ねじ3bを螺合させることによって、第1空間13aからシールドガスが漏れることを防止することができる。また螺合のラビリンス効果によって第1空間13a内の密閉度が高まり、第1空間13a内の圧力を高め易くなる。 When externally fitting the branch cylinder 12 to the inner cylinder 3, it is possible to prevent the shielding gas from leaking from the first space 13a by screwing the female screw 12b and the male screw 3b. Moreover, the sealing degree in the 1st space 13a increases by the labyrinth effect of screwing, and it becomes easy to raise the pressure in the 1st space 13a.
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、請求の範囲内での全ての変更及び請求の範囲と均等の範囲が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the claims and the scope equivalent to the scope of the claims. .
 1 ワイヤ送給筒
 1a ワイヤ送給路
 2 外筒
 3 内筒
 3b 雄ねじ
 3c 第1底部
 4 ノズル
 4a 第2空間
 11 ガス供給路
 11a 入口
 11b 出口
 12 分岐筒(筒体)
 12a 貫通孔
 12b 雌ねじ
 13a 第1空間
 20 コンタクトチップ
 131~134 第1室~第4室
DESCRIPTION OF SYMBOLS 1 Wire feed cylinder 1a Wire feed path 2 Outer cylinder 3 Inner cylinder 3b Male screw 3c 1st bottom part 4 Nozzle 4a 2nd space 11 Gas supply path 11a Inlet 11b Outlet 12 Branch cylinder (cylinder body)
12a Through hole 12b Female screw 13a First space 20 Contact tip 131-134 First chamber to fourth chamber

Claims (4)

  1.  溶接ワイヤを送給するワイヤ送給路を有するワイヤ送給筒と、
     該ワイヤ送給筒の端部に取り付けられたコンタクトチップと、
     該コンタクトチップの周囲に設けられており、シールドガスが通流する筒状のノズルと
     を備え、
     前記ワイヤ送給筒は、前記ワイヤ送給路とは別に、前記シールドガスを前記ノズルに供給するガス供給路を有する
     溶接トーチ。
    A wire feeding cylinder having a wire feeding path for feeding a welding wire;
    A contact tip attached to the end of the wire feed tube;
    A cylindrical nozzle provided around the contact chip and through which a shielding gas flows;
    The wire feeding cylinder has a gas supply path for supplying the shield gas to the nozzle separately from the wire feeding path.
  2.  前記ワイヤ送給筒の外周面に形成された前記ガス供給路の出口と、
     前記ワイヤ送給筒に外嵌して前記出口を覆っており、複数の貫通孔が周方向に並設された筒体と
     を備え、
     前記筒体及びワイヤ送給筒の間に第1空間が設けられており、
     前記貫通孔によって前記第1空間と前記ノズルの内側の第2空間とが連通している
     請求項1に記載の溶接トーチ。
    An outlet of the gas supply path formed on the outer peripheral surface of the wire feeding cylinder;
    A cylindrical body that is externally fitted to the wire feeding cylinder and covers the outlet, and a plurality of through holes arranged in the circumferential direction;
    A first space is provided between the cylindrical body and the wire feeding cylinder;
    The welding torch according to claim 1, wherein the first space communicates with the second space inside the nozzle by the through hole.
  3.  前記ワイヤ送給筒は前記ガス供給路を複数有し、
     前記第1空間には前記複数のガス供給路それぞれに連なる室が形成されている
     請求項2に記載の溶接トーチ。
    The wire feeding cylinder has a plurality of the gas supply paths,
    The welding torch according to claim 2, wherein chambers connected to each of the plurality of gas supply paths are formed in the first space.
  4.  前記筒体は前記ワイヤ送給筒に螺合している
     請求項2又は3に記載の溶接トーチ。
    The welding torch according to claim 2 or 3, wherein the cylindrical body is screwed into the wire feeding cylinder.
PCT/JP2017/035780 2016-10-19 2017-10-02 Welding torch WO2018074203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546226A JP7093304B2 (en) 2016-10-19 2017-10-02 Welding torch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205291 2016-10-19
JP2016-205291 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074203A1 true WO2018074203A1 (en) 2018-04-26

Family

ID=62019197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035780 WO2018074203A1 (en) 2016-10-19 2017-10-02 Welding torch

Country Status (2)

Country Link
JP (1) JP7093304B2 (en)
WO (1) WO2018074203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093271A (en) * 2018-12-11 2020-06-18 株式会社ダイヘン Welding torch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024720U (en) * 1973-07-02 1975-03-20
JPS5132834Y1 (en) * 1968-10-21 1976-08-16
JPH03291169A (en) * 1990-04-04 1991-12-20 Techno:Kk Carbon dioxide gas arc welding torch nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591067A (en) * 1982-06-25 1984-01-06 Hitachi Ltd Welding torch
JPS6074858U (en) * 1983-10-28 1985-05-25 東亜精機株式会社 Water cooling torch for welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132834Y1 (en) * 1968-10-21 1976-08-16
JPS5024720U (en) * 1973-07-02 1975-03-20
JPH03291169A (en) * 1990-04-04 1991-12-20 Techno:Kk Carbon dioxide gas arc welding torch nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093271A (en) * 2018-12-11 2020-06-18 株式会社ダイヘン Welding torch
JP7323998B2 (en) 2018-12-11 2023-08-09 株式会社ダイヘン welding torch

Also Published As

Publication number Publication date
JPWO2018074203A1 (en) 2019-09-05
JP7093304B2 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US8338740B2 (en) Nozzle with exposed vent passage
EP3443820B1 (en) Plasma gas swirl ring and method for controlling a plasma gas flow through the swirl ring
US9533369B2 (en) Plug part and socket part for detachably connecting a pipe elbow of a water-cooled welding torch and connecting device
EP3437440B1 (en) Improved electrode for a plasma arc cutting system and operational method
JP2009163949A (en) Static eliminator and discharge electrode unit incorporated therein
WO2018074203A1 (en) Welding torch
KR102635796B1 (en) Vented plasma cutting electrode and torch using the same
CN106413970A (en) Non-contact laminar flow drawn arc stud welding nozzle and method
RU2017142973A (en) COOLING NOZZLES FOR PLASMA BURNER AND RELATED SYSTEMS AND METHODS
US9664380B2 (en) Gas cutting tip for preventing backfire
CN110454978B (en) Water inlet device and water heater
JP6748553B2 (en) Welding torch
US20170332470A1 (en) Systems and Methods for Stabilizing Plasma Gas Flow in a Plasma Arc Torch
JP7323998B2 (en) welding torch
KR102118026B1 (en) torch assembly for welding
CN110744193A (en) Shielding gas device and laser welding equipment
JP5717141B2 (en) Plasma torch
JP5248753B2 (en) Welding torch
EP3210708B1 (en) Welding gun with evenly distributed gas pressure
JP6192457B2 (en) Cooling structure of resistance welding electrode part of spot welding gun and spot welding gun provided with the same
US9664323B2 (en) Coupler
JP3935899B2 (en) Liquid circulation spray gun
JP6650133B2 (en) Jig, coolant supply structure and cutting tool
JP5805409B2 (en) Electrode for plasma cutting device and plasma torch
JP4848185B2 (en) Painting gun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862782

Country of ref document: EP

Kind code of ref document: A1