WO2018074036A1 - Self-heating fixing roller and method for manufacturing self-heating fixing roller - Google Patents

Self-heating fixing roller and method for manufacturing self-heating fixing roller Download PDF

Info

Publication number
WO2018074036A1
WO2018074036A1 PCT/JP2017/028295 JP2017028295W WO2018074036A1 WO 2018074036 A1 WO2018074036 A1 WO 2018074036A1 JP 2017028295 W JP2017028295 W JP 2017028295W WO 2018074036 A1 WO2018074036 A1 WO 2018074036A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating elements
fixing roller
self
base material
Prior art date
Application number
PCT/JP2017/028295
Other languages
French (fr)
Japanese (ja)
Inventor
晋吾 中島
雅晃 山内
池田 吉隆
田中 正人
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018074036A1 publication Critical patent/WO2018074036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present invention relates to a self-heating type fixing roller and a method for manufacturing a self-heating type fixing roller.
  • This application claims the priority based on the Japanese application 2016-203766 of an application on October 17, 2016, and uses all the description content described in the said Japanese application.
  • a heat fixing method is generally employed at the final stage of printing and copying.
  • unfixed toner is heated and melted by passing an object to be transferred such as printing paper on which a toner image is transferred between a fixing roller and a pressure roller in which a heater is disposed.
  • toner is fixed on a transfer object to form an image.
  • a fixing roller having a structure in which a fluororesin layer is formed directly or via another layer on the outer peripheral surface of a cylindrical base material made of polyimide, metal, or the like (the surface in contact with the transfer object) is used. Yes.
  • a material using rubber or the like having excellent elasticity, releasability, wearability, etc. as another layer is sometimes called a fixing sleeve.
  • a heater is provided inside the fixing roller, and heat generated from the heater is conducted to the outer peripheral surface of the fixing roller to heat the toner.
  • the conventional fixing roller has a disadvantage that the structure of the printer is complicated because it is necessary to provide a heater inside.
  • a self-heating type fixing roller has been proposed in which conductive particles are dispersed in a resin layer in the vicinity of the surface of the fixing roller, and the resin layer is a resistor capable of generating heat when energized (see Japanese Patent Application Laid-Open No. 2014-145828). ).
  • a self-heating type fixing roller includes a cylindrical base material layer and a plurality of linear heating elements that are stacked on the base material layer and generate heat when energized. Is meandering from one end side to the other end side in the axial direction of the base material layer.
  • a manufacturing method of a self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements that generate heat upon energization on a cylindrical base material layer, In the body forming step, the plurality of heating elements are formed to meander from one end side to the other end side in the axial direction of the base material layer.
  • FIG. 1 is a schematic perspective view of a self-heating type fixing roller according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the self-heating type fixing roller of FIG. 1 taken along line AA.
  • FIG. 2 is a schematic enlarged side view showing the shape of a plurality of heating elements in the self-heating type fixing roller of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view in a direction perpendicular to a central axis of a self-heating type fixing roller according to an embodiment different from the self-heating type fixing roller of FIG. 1.
  • FIG. 5 is a schematic enlarged side view showing the shape of a plurality of heating elements in the self-heating type fixing roller of FIG. 4.
  • FIG. 5 is a schematic cross-sectional view in a direction perpendicular to the central axis of a self-heating type fixing roller according to an embodiment different from the self-heating type fixing roller of FIGS. 1 and 4.
  • FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention.
  • the present invention has been made based on the above-described circumstances, and an object thereof is to provide a self-heating type fixing roller capable of suppressing abnormal heat generation when a crack occurs on the surface.
  • the self-heating type fixing roller according to the present invention can suppress abnormal heat generation when a crack occurs on the surface. Moreover, the manufacturing method of the self-heating type fixing roller according to the present invention can manufacture a self-heating type fixing roller capable of suppressing abnormal heat generation when a crack occurs on the surface.
  • a self-heating type fixing roller made to solve the above problems includes a cylindrical base material layer and a plurality of linear heating elements that are stacked on the base material layer and generate heat when energized.
  • the plurality of heating elements meander from one end side to the other end side in the axial direction of the base material layer.
  • a heating element that generates heat when energized is linearly formed and meanders from one end side to the other end side in the axial direction of the cylindrical base material layer.
  • a crack is generated in one heating element, and when this heating element breaks, no current flows through the broken heating element, thereby interrupting the current to bypass the crack.
  • the self-heating type fixing roller has a relatively long heating element due to the meandering of the heating element, the resistance value of the heating element can be adjusted and the current density can be made uniform. it can. Therefore, the self-heating type fixing roller can prevent current from being concentrated in the vicinity of the crack to suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variation.
  • the plurality of heating elements extend in the circumferential direction of the base material layer, and each heating element includes a plurality of linear portions arranged in parallel in the axial direction, ends on one side of adjacent linear portions, and It is good to have the some connection part which connects the edge parts on the other side alternately.
  • the plurality of heating elements extend in the circumferential direction of the base material layer, and each heating element is provided on one side of the plurality of linear portions arranged in parallel in the axial direction and the adjacent linear portions.
  • the plurality of heating elements are electrically connected in parallel by having a pair of electrodes that connect the plurality of heating elements to both ends in the axial direction of the base material layer, cracks are generated and fractured. All the heating elements except for the above can easily generate heat.
  • the plurality of heating elements include a pair of adjacent first heating elements and a plurality of second heating elements other than the pair of first heating elements, and the width of the first heating element is that of the second heating element.
  • the distance between the pair of first heating elements is preferably larger than the width between the adjacent second heating elements.
  • the plurality of heating elements have a pair of adjacent first heating elements and a plurality of second heating elements other than the pair of first heating elements, and the width of the first heating element is the first. It is easier to form a plurality of heating elements, for example, by printing such as screen printing, because it is larger than the width of two heating elements and the interval between the pair of first heating elements is larger than the interval between adjacent second heating elements. It is possible to promote the uniformity of the roller surface temperature.
  • a manufacturing method of a self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements that generate heat upon energization on a cylindrical base material layer, and the heating element formation described above In the step, the plurality of heating elements are formed to meander from one end side to the other end side in the axial direction of the base material layer.
  • a plurality of heating elements are formed so as to meander from one end side to the other end side in the axial direction of the base material layer by the heating element forming step. It is possible to manufacture a self-heating type fixing roller that can suppress concentration and suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variations.
  • the interval between the heating elements or “the interval between the heating elements” means that in the pair of adjacent heating elements, the base material layer has a plurality of vertices protruding toward the adjacent heating elements. The distance between regression lines drawn parallel to the axial direction.
  • the self-heating type fixing roller 1 shown in FIGS. 1 and 2 includes a cylindrical base material layer 2 and a plurality of linear heating elements 3 stacked on the base material layer 2 and generating heat when energized. As shown in FIG. 3, the plurality of heating elements 3 meander from the one end side in the axial direction of the base material layer 2 to the other end side.
  • the self-heating type fixing roller 1 has a pair of electrodes 4 that connect a plurality of heating elements 3 to both ends of the base material layer 2 in the axial direction.
  • the self-heating type fixing roller 1 is laminated on the base material layer 2 and also covers an insulating layer 5 that covers the plurality of heating elements 3, and is laminated on the insulating layer 5, and the outermost layer of the self-heating type fixing roller 1.
  • a release layer 6 for forming In the self-heating type fixing roller 1, a base material layer 2, a plurality of heating elements 3, an insulating layer 5, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction.
  • a cylindrical cored bar (not shown) whose main component is a metal, a heat resistant resin, or the like is inserted on the inner surface side of the base material layer 2.
  • the “main component” means a component having the highest content, for example, a component contained in an amount of 50% by mass or more.
  • a heating element 3 that generates heat when energized is formed in a linear shape and meanders from one end side to the other end side in the axial direction of the cylindrical base material layer 2.
  • a crack is generated in one heating element 3, and when the heating element 3 is torn, current does not flow to the torn heating element 3, thereby interrupting the current to bypass the crack.
  • the self-heating type fixing roller 1 has a relatively large length of the heating element 3 due to the meandering of the heating element 3, so that the resistance value of the heating element 3 is adjusted and the current density is made uniform. Can be achieved. Therefore, the self-heating type fixing roller 1 can suppress abnormal heat generation by preventing current from concentrating in the vicinity of the crack, and can maintain a good heat generation temperature while suppressing temperature variation.
  • the base material layer 2 has a synthetic resin as a main component. Moreover, the base material layer 2 has flexibility.
  • the base material layer 2 constitutes a laminated substrate of a plurality of heating elements 3 and a pair of electrodes 4. Moreover, the base material layer 2 has insulating properties, and prevents a plurality of heating elements 3 from conducting through the base material layer 2.
  • Examples of the main component of the base material layer 2 include polyimide, polyethylene terephthalate, fluororesin, and liquid crystal polymer. Among these, polyimide that is excellent in insulation, flexibility, heat resistance, and the like is preferable.
  • the lower limit of the average thickness of the base material layer 2 is preferably 10 ⁇ m, and more preferably 20 ⁇ m.
  • an upper limit of the average thickness of the base material layer 2 100 micrometers is preferable and 80 micrometers is more preferable. If the average thickness of the base material layer 2 is less than the lower limit, the strength of the self-heating type fixing roller 1 may be insufficient. On the contrary, when the average thickness of the base material layer 2 exceeds the upper limit, the flexibility of the self-heating type fixing roller 1 may be insufficient.
  • the lower limit of the inner diameter of the base material layer 2 is preferably 5 mm, and more preferably 10 mm.
  • the upper limit of the inner diameter of the base material layer 2 is preferably 100 mm, and more preferably 70 mm. If the inner diameter of the base material layer 2 is less than the lower limit, there is a fear that the temperature variation of the surface of the self-heating type fixing roller 1 becomes large. On the contrary, if the inner diameter of the base material layer 2 exceeds the above upper limit, the self-heating fixing roller 1 may become unnecessarily large. As a result, the image forming apparatus using the self-heating fixing roller 1 is increased in size. There is a risk of being invited.
  • the plurality of heating elements 3 are stacked on the outer peripheral surface of the base material layer 2. Each heating element 3 meanders with the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer 2. The total length of each heating element 3 is longer than the axial length of the base material layer 2. The plurality of heating elements 3 are arranged in parallel in the circumferential direction of the base material layer 2, and the heating elements 3 adjacent to each other in the circumferential direction of the base material layer 2 are separated from each other. Each heating element 3 preferably extends parallel to the axial direction of the base material layer 2. Further, the width of each heating element 3 is preferably constant over the entire length of the heating element 3.
  • each heating element 3 is not particularly limited as long as it is meandering from one end side to the other end side in the axial direction of the base material layer 2, for example, a wave shape, a saw blade type, etc.
  • the shape of each heating element 3 is adjacent to a plurality of linear portions 7 that extend in the circumferential direction of the base material layer 2 and are arranged in parallel in the axial direction. It is preferable to have a plurality of connecting portions 8 that alternately connect the end portions on one side and the end portions on the other side of the straight portion 7.
  • the self-heating type fixing roller 1 has such a configuration as the heating element 3, a plurality of heating elements 3 having a large length can be stacked on the surface of the base material layer 2 at a high density. It is easy to optimize the heat generation temperature while further suppressing the above.
  • the plurality of heating elements 3 are all configured in the same shape. As a minimum of the average width of a plurality of exothermic bodies 3, 0.01 mm is preferred and 0.02 mm is more preferred.
  • the upper limit of the average width of the plurality of heating elements 3 is preferably 1.0 mm, and more preferably 0.8 mm. If the average width is less than the lower limit, defects such as chipping are likely to occur when a heating element is formed by printing or the like, which may cause a resistance value defect. On the other hand, if the average width exceeds the upper limit, the heating element 3 may not be disconnected when cracks occur, and the abnormal heat generation suppressing effect may not be sufficiently obtained.
  • the interval between adjacent heating elements 3 is equal.
  • the lower limit of the interval between adjacent heating elements 3 is preferably 0.05 mm, and more preferably 0.1 mm.
  • the upper limit of the interval between the adjacent heating elements 3 is preferably 1.0 mm, and more preferably 0.8 mm. If the interval is less than the lower limit, it may be difficult to form the heating elements 3 while reliably separating them. On the contrary, if the interval exceeds the upper limit, it may be difficult to make the surface temperature of the roller uniform.
  • the cross-sectional shape perpendicular to the length direction of the plurality of heating elements 3 a rectangular shape is preferable.
  • the upper limit of the average thickness of the plurality of heating elements 3 is preferably 300 ⁇ m, and more preferably 250 ⁇ m. If the average thickness is less than the lower limit, the plurality of heating elements 3 may be easily damaged by heat or impact. On the contrary, if the average thickness exceeds the upper limit, the manufacturing cost of the self-heating type fixing roller 1 may increase.
  • the lower limit of the electrical resistance between both ends of the plurality of heating elements 3 is preferably 100 ⁇ , and more preferably 400 ⁇ .
  • the upper limit of the electrical resistance between both ends of the plurality of heating elements 3 is preferably 6000 ⁇ , and more preferably 4000 ⁇ . If the electric resistance is less than the lower limit, the current required for increasing the temperature of the plurality of heating elements 3 increases, and the power supply device for driving the self-heating type fixing roller 1 may become unnecessary and expensive. . On the other hand, if the electrical resistance exceeds the upper limit, the voltage required for the temperature rise of the plurality of heating elements 3 increases, and the power supply device for driving the self-heating type fixing roller 1 may become unnecessary and expensive. There is.
  • the lower limit of the electric resistance (length resistivity) per unit length of the plurality of heating elements 3 is preferably 0.7 ⁇ / cm, more preferably 1.0 ⁇ / cm.
  • the upper limit of the length resistivity is preferably 100 ⁇ / cm, more preferably 70 ⁇ / cm. If the length resistivity is less than the lower limit, the electrical resistance of the plurality of heating elements 3 may be too small. Conversely, if the length resistivity exceeds the upper limit, the electrical resistance of the plurality of heating elements 3 may become too large.
  • the lower limit of the ratio of the length of the heating element 3 to the linear distance in the axial direction of the base material layer 2 of the heating element 3 is preferably 2, and more preferably 4.
  • the upper limit of the ratio is preferably 20, and more preferably 15. If the ratio is less than the lower limit, it may be difficult to accurately adjust the resistance value of the heating element 3, and the current density of the heating element 3 may not be sufficiently uniform. Conversely, if the ratio exceeds the upper limit, it may be difficult to sufficiently increase the amount of heat generated by the heating element.
  • the length of the straight portion 7 of the heating element 3 can be set to, for example, 1.0 mm or more and 3 mm or less. If the length of the linear portion 7 of the heating element 3 is less than the lower limit, it may be difficult to sufficiently suppress the temperature variation in each heating element 3. Conversely, if the length of the linear portion 7 of the heating element 3 exceeds the above upper limit, when the heating element 3 is torn, the gap between the pair of adjacent heating elements 3 with the broken heating element 3 sandwiched therebetween is large. Therefore, it may be difficult to make the surface temperature of the roll uniform.
  • the upper limit of the number is preferably 50, and more preferably 45. If the number is less than the lower limit, the amount of heat generated may be insufficient. If the number is less than the lower limit, when one heating element 3 is torn, the gap between the pair of adjacent heating elements 3 with the broken heating element 3 sandwiched between them becomes too large. There is a risk that it may be difficult to make the surface temperature uniform. On the contrary, if the number exceeds the upper limit, it is difficult to form each heating element 3 with a sufficient length, and it is difficult to sufficiently suppress the temperature variation in each heating element 3.
  • the heating element 3 includes a resin matrix and a plurality of conductive particles included in the resin matrix.
  • a resistor is used. By dispersing a plurality of conductive particles in the resin matrix, it is possible to relatively easily select one having desired moldability, heat generation and flexibility. High performance and low price can be achieved.
  • a metal such as nickel, copper, or silver can be used as a material for forming the plurality of heating elements 3.
  • a heat-resistant synthetic material is used as the main component of the resin matrix.
  • resins and rubbers and among them, heat resistant resins are preferable.
  • heat resistant resin include polyimide and polyamide, and polyimide having excellent heat resistance and mechanical strength is particularly preferable.
  • the heat resistant rubber include silicone rubber, fluororubber, or a mixture thereof.
  • conductive particles known particles can be used, and examples thereof include metal powders such as gold, silver and nickel, resin particles subjected to metal plating, carbon powders such as carbon black and carbon nanotubes.
  • metal powders such as gold, silver and nickel
  • resin particles subjected to metal plating resin particles subjected to metal plating
  • carbon powders such as carbon black and carbon nanotubes.
  • silver is preferable because it has a small electrical resistance and can easily raise the temperature of the roller even if the length of the heating element 3 is relatively long.
  • the heating element 3 may include an insulating filler.
  • the electrical contact between the conductive particles can be limited, and the electrical resistance of the heating element 3 can be adjusted relatively easily.
  • any material having an insulating property may be used, but titanium oxide, metal silicon, magnesium oxide, magnesium carbonate, magnesium hydroxide, silicon oxide, alumina, boron nitride, which has high thermal conductivity, An inorganic filler such as aluminum nitride is preferably used.
  • the pair of electrodes 4 are annularly laminated at both ends of the outer peripheral surface of the base material layer 2.
  • the pair of electrodes 4 may be formed of a conductor having a sufficiently small electric resistance.
  • the pair of electrodes 4 may be formed integrally with the plurality of heating elements 3 by using the same material as the plurality of heating elements 3. It may be formed separately from the heating element 3.
  • the pair of electrodes 4 can be formed of, for example, a metal foil.
  • copper foil is used suitably and the metal tape by which the conductive adhesive was apply
  • the self-heating type fixing roller 1 has a pair of electrodes 4 that connect the plurality of heating elements 3 to both ends of the base layer 2 in the axial direction, so that the plurality of heating elements 3 are electrically connected in parallel. As a result, all the heating elements 3 except those which are cracked and broken can be easily heated.
  • a contact such as a carbon brush can be brought into contact with the pair of electrodes 4 in order to supply current. Therefore, it is preferable that the pair of electrodes 4 have an axial average width equal to or greater than the width of the contact used.
  • the average width in the axial direction of the pair of electrodes 4 is not particularly limited, but may be, for example, 0.2 cm or more and 10 cm or less.
  • the insulating layer 5 has heat resistance and insulating properties.
  • the insulating layer 5 is filled between the plurality of heating elements 3 on the outer peripheral surface of the base material layer 2 and covers the outer peripheral surfaces of the plurality of heating elements 3.
  • the insulating layer 5 is not stacked on the pair of electrodes 4. Examples of the main component of the insulating layer 5 include synthetic resin and heat-resistant rubber (heat-resistant rubber).
  • the synthetic resin examples include phenol resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester (UP), alkyd resin, polyurethane (PUR), and polyimide.
  • PI polyamideimide
  • PE polyethylene
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PVC polychlorinated Vinylidene
  • PS polystyrene
  • PS polyvinyl acetate
  • ABS acrylonitrile butadiene styrene resin
  • AS acrylonitrile styrene resin
  • AS polymethyl methacrylate
  • PMMA polyamide
  • PA polyacetal
  • POM polycarbonate
  • PC modified polyphenylene ether
  • m-PPE polybutylene terephthalate
  • PBT polyethylene terephthalate
  • PET cyclic poly
  • the rubber is not particularly limited as long as it has heat resistance, but preferably has elasticity, and silicone rubber, fluororubber, or a mixture thereof can be suitably used.
  • silicone rubber examples include dimethyl silicone rubber, fluorosilicone rubber, and methylphenyl silicone rubber.
  • fluororubber include vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, tetrafluoroethylene-perfluoromethyl vinyl ether rubber, and the like.
  • the heat of the plurality of heating elements 3 is transmitted to the toner through the insulating layer 5, so that the insulating layer 5 preferably has a relatively high thermal conductivity.
  • the insulating layer 5 may contain a heat conductive filler.
  • the heat conductive filler include metals, ceramics, boron nitride, carbon nanotubes, alumina, silicon carbide, and the like.
  • the insulating layer 5 since the insulating layer 5 needs to be insulative, it is preferable that the insulating layer 5 includes an amount that does not conduct when the heat conductive filler has conductivity.
  • the lower limit of the average thickness of the insulating layer 5 is not less than the thickness of the plurality of heating elements 3, preferably 10 ⁇ m, and more preferably 20 ⁇ m.
  • the upper limit of the average thickness of the insulating layer 5 is preferably 500 ⁇ m, and more preferably 300 ⁇ m. If the average thickness of the insulating layer 5 is less than the lower limit, the strength of the self-heating type fixing roller 1 may be insufficient. Conversely, if the average thickness of the insulating layer 5 exceeds the above upper limit, the flexibility of the self-heating type fixing roller 1 may be insufficient.
  • the “average thickness of the insulating layer” refers to the average thickness between the interface of the insulating layer with the base material layer and the outer peripheral surface.
  • the release layer 6 is a layer that is laminated on the outer peripheral surface of the insulating layer 5 and is in contact with the toner.
  • the release layer 6 prevents toner from adhering to the self-heating type fixing roller 1.
  • the release layer 6 is formed from a resin composition.
  • a resin composition which forms the release layer 6 a thermoplastic resin and a thermosetting resin are mentioned, for example.
  • thermoplastic resin examples include vinyl resin, polyester, polyolefin, acrylic resin, fluorine resin, epoxy resin, phenol resin, urea resin, and the like. Among these, a fluororesin excellent in releasability, flexibility and heat resistance is preferable. These resins may be used alone or in combination of two or more.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (EFP), and tetrafluoroethylene-6
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EFP tetrafluoroethylene-hexafluoropropylene copolymer
  • FEP fluorinated propylene copolymer
  • PFA or PTFE having a small molecular weight and excellent releasability is preferable.
  • the release layer 6 may contain an additive such as a heat conductive filler.
  • an additive such as a heat conductive filler.
  • heat conductive filler a heat conductive filler that can be contained in the insulating layer 5 can be used.
  • the release layer 6 preferably has an insulating property.
  • the lower limit of the electrical resistance per unit length in the axial direction of the release layer 6 is preferably 10 14 ⁇ / m. If the electrical resistance per unit length of the release layer 6 is less than the lower limit, the plurality of heating elements 3 may leak through the release layer 6 and the heating of the plurality of heating elements 3 may be insufficient. There is a risk of electric shock or equipment failure.
  • the lower limit of the average thickness of the release layer 6 is preferably 1 ⁇ m and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the release layer 6 is preferably 50 ⁇ m, and more preferably 35 ⁇ m. If the average thickness is less than the lower limit, the strength of the release layer 6 may be insufficient. On the other hand, if the average thickness exceeds the upper limit, the size of the self-heating fixing roller 1 may increase unnecessarily, and the thermal efficiency of the self-heating fixing roller 1 may decrease.
  • the release layer 6 may be capable of rotating independently without being joined to the insulating layer 5, but is preferably joined. As described above, the release layer 6 and the insulating layer 5 are bonded to each other so that wear due to friction between the inner peripheral surface of the release layer 6 (the surface on the side in contact with the insulating layer 5) and the insulating layer 5 can be prevented. The durability of the self-heating type fixing roller 1 is improved.
  • the manufacturing method of the self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements 3 that generate heat upon energization on the cylindrical base material layer 2.
  • the self-heating type fixing roller 1 is manufactured by an electrode stacking process in which a pair of electrodes 4 are stacked on the base material layer 2 and an insulating layer 5 is stacked on the base material layer 2 after the heating element forming process.
  • the plurality of heating elements 3 are formed to meander from the one end side to the other end side in the axial direction of the base material layer 2.
  • the plurality of heating elements 3 are formed to meander from the one end side to the other end side in the axial direction of the base material layer 2 in the heating element forming step. It is possible to manufacture the self-heating type fixing roller 1 that can prevent current from being concentrated and suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variation.
  • a plurality of heating elements 3 are laminated on the outer peripheral surface of the cylindrical base material layer 2.
  • the resin matrix and the plurality of conductive particles are printed on the outer peripheral surface of the base material layer 2 by screen printing, gravure printing, gravure offset printing, screen offset printing, or the like.
  • a method for printing a heating element-forming material containing metal, metal plating is performed on the outer peripheral surface of the base material layer 2, a resist pattern is printed on the metal plating by a known printing method, and a resist pattern is formed after patterning by etching.
  • Examples thereof include a method of removing, a method in which a plating catalyst layer is printed in a pattern on the outer peripheral surface of the base material layer 2, and a plating layer is laminated on the plating catalyst layer.
  • a method of laminating the plurality of heating elements 3 by the heating element forming step metal plating is performed on the outer peripheral surface of the base material layer 2 in that the plurality of heating elements 3 are easily arranged in the same shape and at equal intervals.
  • the method of applying is preferred.
  • the electrode stacking step a pair of electrodes 4 that connect a plurality of heating elements 3 in parallel are stacked on the base material layer 2.
  • the electrode stacking step may be performed simultaneously with the heating element forming step by the same method as the heating element forming step, or may be performed separately from the heating element forming step.
  • a pair of electrodes 4 are printed in a ring shape along both edges of the base layer 2 in the extending direction of the plurality of heating elements 3.
  • a metal is formed using a conductive adhesive along both edges of the base layer 2 in the extending direction of the plurality of heating elements 3. Laminate the foil.
  • the method for laminating the insulating layer 5 in the insulating layer laminating step is not particularly limited, and examples thereof include a method of laminating using a dispenser, a coater and the like.
  • release layer lamination process In the release layer stacking step, it is not always necessary to join the release layer 6 to the insulating layer 5.
  • the release layer 6 is laminated by a method of laminating the release layer 6 by applying a release layer forming material to the outer surface of the insulating layer 5 and drying.
  • a method of laminating the release layer 6 with an adhesive When the main component of the release layer 6 is a fluororesin, the release layer 6 and the insulating layer 5 are chemically formed by heating, irradiation with ionizing radiation, application of a coupling agent, The method of coupling
  • the self-heating type fixing roller 11 shown in FIG. 4 includes a cylindrical base material layer 2 and a plurality of linear heating elements 13 stacked on the base material layer 2 and generating heat when energized. As shown in FIG. 5, the plurality of heating elements 13 meander from one end side to the other end side in the axial direction of the base material layer 2.
  • the self-heating type fixing roller 11 has a pair of electrodes 4 that connect a plurality of heating elements 13 to both ends of the base material layer 2 in the axial direction. Further, the self-heating type fixing roller 11 is laminated on the base material layer 2 and covers the plurality of heating elements 13, and is laminated on the insulating layer 5, and the outermost layer of the self-heating type fixing roller 11.
  • a release layer 6 for forming In the self-heating type fixing roller 11, a base material layer 2, a plurality of heating elements 13, an insulating layer 5, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction.
  • the self-heating type fixing roller 11 has a cylindrical cored bar (not shown) whose main component is a metal, a heat-resistant resin, or the like inserted through the inner surface side of the base material layer 2.
  • the plurality of heating elements 13 includes a pair of first heating elements 13a adjacent to each other and a plurality of second heating elements 13b other than the pair of first heating elements 13a.
  • the self-heating type fixing roller 11 has the self-heating shown in FIG.
  • the plurality of heating elements 13 have a pair of first heating elements 13a and a plurality of second heating elements 13b other than the pair of first heating elements 13a. It has the same configuration as the mold fixing roller 1. Therefore, only the plurality of heating elements 13 will be described below.
  • the plurality of heating elements 13 are stacked on the outer peripheral surface of the base material layer 2. Each heating element 13 meanders with the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer 2. The total length of each heating element 13 is longer than the axial length of the base material layer 2. The plurality of heating elements 13 are arranged in parallel in the circumferential direction of the base material layer 2, and the heating elements 13 adjacent in the circumferential direction of the base material layer 2 are separated from each other. Each heating element 13 preferably extends parallel to the axial direction of the base material layer 2. Furthermore, the width of each heating element 13 is preferably constant over the entire length of the heating element 13.
  • each heating element 13 is not particularly limited as long as it is meandering from one end side to the other end side in the axial direction of the base material layer 2.
  • a wave shape a saw blade type, etc.
  • the shape of each heating element includes a plurality of linear portions 17 extending in the circumferential direction of the base material layer 2 and arranged in parallel in the axial direction, and adjacent straight lines. It is preferable to have the some connection part 18 which connects the edge parts of the one side of the part 17, and the edge parts of the other side alternately.
  • the self-heating type fixing roller 11 has such a configuration as the heating element 13, a plurality of heating elements 13 having a large length can be stacked on the surface of the base material layer 2 at a high density. It is easy to optimize the heat generation temperature while further suppressing the above.
  • the plurality of heating elements 13 are composed of only a pair of first heating elements 13a and a plurality of second heating elements 13b.
  • the first heating element 13a and the second heating element 13b have different shapes.
  • the specific shape of the second heating element 13b can be the same as that of the heating element 3 in FIG.
  • the width of the pair of first heating elements 13a is larger than the width of the plurality of second heating elements 13b. Further, the interval between the pair of first heating elements 13a is larger than the interval between the adjacent second heating elements 13b.
  • the self-heating type fixing roller 11 is formed by, for example, printing a heating element forming material including a resin matrix and a plurality of conductive particles on the outer peripheral surface of the cylindrical base material layer 2 by printing such as curved screen printing or the like. It is formed by printing a plating catalyst layer in a pattern on the outer peripheral surface of the base material layer 2 by printing such as curved screen printing and laminating the plating layer on the plating catalyst layer.
  • a pair of first heating elements 13 a are disposed on both sides of a printing seam of the plurality of heating elements 13, and a plurality of second heating elements 13 b are disposed on the other portions.
  • the heating elements 13 may be short-circuited in the printing process.
  • a short circuit between the pair of first heating elements 13a can be prevented by making the interval between the pair of first heating elements 13a larger than the interval between the adjacent second heating elements 13b.
  • the self-heating type fixing roller 11 can promote uniform formation of the surface temperature of the roller while facilitating the formation of the plurality of heating elements 13 by printing such as curved screen printing.
  • the interval between the adjacent first heating elements 13a and the second heating elements 13b may be larger than the interval between the adjacent second heating elements 13b.
  • the lower limit of the ratio of the average width of the pair of first heating elements 13a to the average width of the plurality of second heating elements 13b is preferably 1.05 and more preferably 1.1.
  • the upper limit of the ratio of the average width is preferably 3, and more preferably 2. If the ratio of the average widths is less than the lower limit, a sufficient difference in electrical resistance between the pair of first heating elements 13a and the plurality of second heating elements 13b cannot be obtained, and the surface temperature of the rollers can be sufficiently uniformized. It may be difficult to plan.
  • the ratio of the average width exceeds the upper limit, the average width of the first heating element 13a becomes too large, and even if a crack is formed, the first heating element 13a is not torn and abnormalities due to current concentration. There is a risk of heat generation.
  • the distance between the pair of first heating elements 13a is preferably adjusted as appropriate so that the surface temperature of the roller can be made uniform according to the distance between the adjacent second heating elements 13b.
  • the ratio of the distance between the pair of first heat generating elements 13a to the distance between the adjacent second heat generating elements 13b can be set to 1.1 or more and 5 or less, for example.
  • the average thickness of the pair of first heating elements 13a may be the same as the average thickness of the plurality of second heating elements 13b or may be larger than the average thickness of the plurality of second heating elements 13b.
  • the self-heating type fixing roller 11 forms the plurality of heating elements 13 relatively easily because the average thickness of the pair of first heating elements 13a and the average thickness of the plurality of second heating elements 13b are the same. be able to.
  • the self-heating-type fixing roller 11 has a pair of first heating elements 13a and a plurality of first heating elements 13a and a plurality of second heating elements 13a having an average thickness larger than an average thickness of the plurality of second heating elements 13b. It is easy to make the surface temperature of the roller uniform by adjusting the electrical resistance of the two heating elements 13b.
  • the upper limit of the electrical resistance ratio is preferably 0.95, more preferably 0.9. If the ratio of the electrical resistances is less than the lower limit, the difference between the heat generation amount of the pair of first heat generating elements 13a and the heat generation amounts of the plurality of second heat generating elements 13b becomes too large, and the surface temperature of the roller is made uniform. May be difficult to achieve.
  • the ratio of the length of the first heating element 13a to the linear distance in the axial direction of the base layer 2 of the first heating element 13a is the second heat generation relative to the linear distance in the axial direction of the base layer 2 of the second heating element 13b. It is preferably smaller than the length ratio of the body 13b.
  • the self-heating type fixing roller 11 has a pair of heating elements for a plurality of second heating elements 13b by making the ratio of the base layer 2 of the first heating element 13a smaller than the ratio of the second heating element 13b. It is easy to make the surface temperature of the roller uniform by sufficiently increasing the amount of heat generated by 13a.
  • the ratio of the first heating element 13a to the ratio of the second heating element 13b can be, for example, 0.5 or more and 0.95 or less.
  • the length of the straight portion 17 of the first heating element 13a can be substantially the same as the length of the straight portion 17 of the second heating element 13b. Further, the number of the plurality of heating elements 13 laminated on the base material layer 2 can be the same as the number of the plurality of heating elements 3 of the self-heating type fixing roller 1 of FIG. Note that “the lengths of the linear portions of the first heating element and the second heating element are substantially the same” means the ratio of the length of the linear portion 17 of the second heating element to the length of the linear portion 17 of the first heating element. Is 0.9 or more and 1.1 or less.
  • the manufacturing method of the self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements 13 that generate heat when energized on the cylindrical base material layer 2.
  • the self-heating type fixing roller manufacturing method includes an electrode stacking process in which a pair of electrodes 4 are stacked on the base material layer 2 and an insulating process in which an insulating layer 5 is stacked on the base material layer 2 after the heating element forming process.
  • the heating element forming step the plurality of heating elements 13 are formed to meander from one end side to the other end side of the base layer 2 in the axial direction.
  • the electrode stacking step, the insulating layer stacking step, and the release layer stacking step are the same as the manufacturing method of the self-heating type fixing roller 1 in FIG.
  • a plurality of heating elements 13 are laminated on the outer peripheral surface of the cylindrical base material layer 2.
  • a plurality of second heating elements 13b other than the pair of first heating elements 13a and the pair of first heating elements 13a adjacent to the outer peripheral surface of the base material layer 2 are laminated.
  • the width of the pair of first heating elements 13a is formed larger than the width of the plurality of second heating elements 13b, and the interval between the pair of first heating elements 13a is set to be adjacent second heating elements. It is formed larger than the interval between the bodies 13b.
  • the same method as the heating element forming step in the method of manufacturing the self-heating type fixing roller 1 in FIG. 1 can be employed.
  • the heating element forming step is performed by printing a heating element forming material including a resin matrix and a plurality of conductive particles on the outer peripheral surface of the base material layer 2.
  • a pair of first heating elements 13a are formed on both sides of the printing seam.
  • the self-heating type fixing roller 21 shown in FIG. 6 includes a cylindrical base material layer 2 and a plurality of linear heating elements 3 stacked on the base material layer 2 and generating heat when energized.
  • the plurality of heating elements 3 meander from the one end side to the other end side in the axial direction of the base material layer 2 in the same manner as the self-heating type fixing roller 1 of FIG.
  • the self-heating type fixing roller 21 has a pair of electrodes (not shown) that connect the plurality of heating elements 3 to both ends of the base material layer 2 in the axial direction.
  • the self-heating type fixing roller 21 is laminated on the base material layer 2 and covers the plurality of heating elements 3, an elastic layer 23 laminated on the insulating layer 22, and an elastic layer 23. And a release layer 6 that forms the outermost layer of the self-heating type fixing roller 21.
  • a base material layer 2 a plurality of heating elements 3, an insulating layer 22, an elastic body layer 23, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction.
  • a cylindrical cored bar (not shown) whose main component is a metal, a heat resistant resin, or the like is inserted on the inner surface side of the base material layer 2.
  • the self-heating type fixing roller 21 has a laminated body of an insulating layer 22 and an elastic layer 23 in place of the insulating layer 5 of the self-heating type fixing roller 1 of FIG. It has the same configuration as. Therefore, only the insulating layer 22 and the elastic body layer 23 will be described below.
  • the insulating layer 22 has heat resistance and insulating properties.
  • the insulating layer 22 is filled between the plurality of heating elements 3 on the outer peripheral surface of the base material layer 2 and covers the outer peripheral surfaces of the plurality of heating elements 3.
  • the main component of the insulating layer 22 is a synthetic resin. Examples of the synthetic resin include the synthetic resins mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
  • the average thickness of the insulating layer 22 can be the same as that of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
  • the elastic body layer 23 has heat resistance and elasticity.
  • An example of the main component of the elastic layer 23 is rubber. Examples of the rubber include the rubbers mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
  • the lower limit of the average thickness of the elastic layer 23 is preferably 10 ⁇ m and more preferably 20 ⁇ m.
  • the upper limit of the average thickness of the elastic layer 23 is preferably 300 ⁇ m and more preferably 280 ⁇ m. If the average thickness is less than the lower limit, the elasticity of the self-heating type fixing roller 21 is not sufficiently improved, and the self-heating type fixing roller 21 is not sufficiently pressed against the printing paper or the like, and the surface of the image There is a possibility that the property cannot be improved sufficiently. On the other hand, if the average thickness exceeds the upper limit, the elastic layer 23 becomes unnecessarily thick, and the time required for preheating the self-heating type fixing roller 21 may be increased.
  • the self-heating type fixing roller 21 has the insulating layer 22 and the elastic layer 23, the insulating property and elasticity can be improved easily and reliably, and the surface property of the image can be improved more accurately. .
  • the insulating layer 22 and the elastic layer 23 in FIG. A laminate may be used.
  • FIG. 7, 8, and 9 are schematic cross-sectional views of a self-heating type fixing roller according to another embodiment of the present invention.
  • the number of heating elements is changed.
  • the self-heating type fixing roller may have a heat insulating layer between the base material layer and the cored bar.
  • This heat insulation layer suppresses the heat generated from the plurality of heating elements from escaping to the core metal side, and improves the energy efficiency of the self-heating type fixing roller.
  • the heat insulating layer preferably has a matrix mainly composed of a synthetic resin or rubber and a plurality of pores contained in the matrix. Furthermore, it is preferable that this heat insulation layer has elasticity.
  • the rubber as the main component of the matrix of the heat insulating layer is not particularly limited as long as it has heat resistance, but preferably has elasticity, and rubber (heat resistant rubber) having excellent heat resistance is particularly preferable.
  • the heat resistant rubber include the rubbers listed as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
  • the synthetic resin include the synthetic resins mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 shown in FIG.
  • the pores in the matrix of the heat insulating layer can be formed by a foaming agent, a hollow filler or the like.
  • the hollow filler examples include organic microballoons and hollow glass beads.
  • the foaming agent it decomposes by heating to generate, for example, nitrogen gas, carbon dioxide gas, carbon monoxide, ammonia gas, etc., and an organic foaming agent or an inorganic foaming agent can be used.
  • organic blowing agent examples include azo blowing agents such as azodicarbonamide (A.D.C.A) and azobisisobutyronitrile (A.I.B.N), such as dinitrosopentamethylenetetramine (D P.T), N, N′dinitroso-N, N′-dimethylterephthalamide (DNDMTA), and the like, for example, P-toluenesulfonyl hydrazide (TS H), P, P-oxybisbenzenesulfonyl hydrazide (O.B.S.H), benzenesulfonyl hydrazide (B.S.H), and other hydrazides, and trihydrazinotriazine (T.H. T), acetone-P-sulfonylhydrazone and the like are exemplified, and these can be used alone or in combination of two or more.
  • azo blowing agents such as azodicarbonamide (A
  • Examples of the inorganic foaming agent include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, sodium borohydride, sodium boron hydride, silicon oxyhydride and the like.
  • an inorganic foaming agent has a slower gas generation rate than an organic foaming agent, and adjustment of gas generation is difficult. Therefore, an organic foaming agent is preferable as the chemical foaming agent.
  • the organic microballoon is a kind of hollow microsphere (Microsphere), for example, a thermosetting resin such as phenol resin, a thermoplastic resin such as polyvinylidene chloride, and a hollow formed by an organic polymer material such as rubber.
  • the said heat insulation layer contains an organic microballoon, the softness
  • the heat resistance of the said heat insulation layer improves more by using the heat resistant organic microballoon containing thermosetting resins, such as a phenol resin, as an organic microballoon.
  • thermosetting resins such as a phenol resin
  • a commercial item can be used as said organic microballoon.
  • the average diameter of the organic microballoon is usually from several ⁇ m to several hundred ⁇ m, and preferably from 5 ⁇ m to 200 ⁇ m.
  • the lower limit of the porosity of the heat insulating layer is preferably 5%, more preferably 10%, and even more preferably 15%.
  • the upper limit of the porosity of the heat insulating layer is preferably 60%, more preferably 50%, and even more preferably 45%. If the porosity is less than the lower limit, the heat insulating property of the heat insulating layer may be insufficient. Conversely, when the porosity exceeds the upper limit, the strength of the heat insulating layer may be insufficient.
  • the porosity is a value measured as an area ratio when a cross section is observed with a microscope.
  • the lower limit of the average thickness of the heat insulating layer is preferably 20 ⁇ m, more preferably 100 ⁇ m.
  • the upper limit of the average thickness of the heat insulating layer is preferably 500 mm, and more preferably 200 mm. If the average thickness is less than the lower limit, the heat insulating property of the heat insulating layer becomes insufficient, and the energy efficiency of the self-heating type fixing roller may not be sufficiently increased. Conversely, if the average thickness exceeds the upper limit, the size of the self-heating type fixing roller may increase unnecessarily.
  • the heat insulating layer may be capable of rotating independently without being bonded to the base material layer, but is preferably bonded. Thus, by joining the heat insulating layer and the base material layer, wear due to friction with the base material layer on the outer peripheral surface of the heat insulating layer can be prevented, and the durability of the self-heating type fixing roller is improved.
  • Each heating element preferably meanders at the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer, but each heating element does not necessarily meander at the same period and the same amplitude. It does not have to be.
  • the self-heating type fixing roller is not necessarily a base material as long as it has a cylindrical base material layer and a plurality of heating elements laminated on the base material layer and meandering from one end side to the other end side in the axial direction of the base material layer. It is not necessary to have a pair of electrodes that connect a plurality of heating elements to both ends of the layer in the axial direction.
  • one side and the other side of the plurality of heating elements may be connected to the plurality of electrodes, respectively, or may not have the electrodes themselves.
  • the self-heating type fixing roller has a plurality of heating elements stacked on the inner peripheral side of the base material layer. May be.
  • the self-heating type fixing roller may not have the above-described cored bar, insulating layer, and release layer.
  • the self-heating type fixing roller may be provided with an adhesive layer or a primer layer in order to improve the adhesive strength between the layers.
  • the fixing roller may further include heating elements other than the first heating elements and the second heating elements.
  • the heating element forming step in the method for manufacturing the self-heating type fixing roller for example, a plurality of heating elements are stacked on the base film so as to meander in parallel and from one end side to the other end side of the base film. It is also possible to adopt a configuration in which the heating element non-stacked regions on both sides in the parallel direction of the heating element of the base film are connected. In this case, by laminating the above-described pair of first heating elements on both ends of the substrate film, and laminating a plurality of second heating elements between the pair of first heating elements, the seam of the substrate film Since the interval can be made relatively large, it is possible to facilitate the uniform surface temperature of the roller while facilitating the production.

Abstract

A self-heating fixing roller according to an embodiment of the present invention comprises a cylindrical base material layer and a plurality of linear heat generators laminated on the base material layer and generating heat when energized. The plurality of heat generators meanders from one end to the other end of the base material layer along the axial direction.

Description

自己発熱型定着ローラ及び自己発熱型定着ローラの製造方法Self-heating type fixing roller and manufacturing method of self-heating type fixing roller
 本発明は、自己発熱型定着ローラ及び自己発熱型定着ローラの製造方法に関する。本出願は、2016年10月17日出願の日本出願第2016-203766号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。 The present invention relates to a self-heating type fixing roller and a method for manufacturing a self-heating type fixing roller. This application claims the priority based on the Japanese application 2016-203766 of an application on October 17, 2016, and uses all the description content described in the said Japanese application.
 複写機、レーザービームプリンタ等の画像形成装置において、印刷及び複写の最終段階では一般に熱定着方式が採用されている。この熱定着方式は、ヒータが内部に配置される定着ローラと加圧ローラとの間にトナー画像が転写された印刷用紙等の被転写物を通過させることで、未定着のトナーを加熱溶融し、被転写物にトナーを定着させて画像を形成する方式である。 In an image forming apparatus such as a copying machine or a laser beam printer, a heat fixing method is generally employed at the final stage of printing and copying. In this thermal fixing method, unfixed toner is heated and melted by passing an object to be transferred such as printing paper on which a toner image is transferred between a fixing roller and a pressure roller in which a heater is disposed. In this method, toner is fixed on a transfer object to form an image.
 定着ローラとしては、ポリイミドや金属等からなる筒状の基材の外周面(被転写物に接する面)に直接又は他の層を介してフッ素樹脂層を形成した構造のものが一般に使用されている。他の層として弾性、離型性、磨耗性等が優れるゴム等を用いたものは定着スリーブと呼ばれることもある。この定着ローラの内部にヒータを設け、ヒータから発生する熱が定着ローラの外周面まで伝導して、トナーを加熱することができる。 A fixing roller having a structure in which a fluororesin layer is formed directly or via another layer on the outer peripheral surface of a cylindrical base material made of polyimide, metal, or the like (the surface in contact with the transfer object) is used. Yes. A material using rubber or the like having excellent elasticity, releasability, wearability, etc. as another layer is sometimes called a fixing sleeve. A heater is provided inside the fixing roller, and heat generated from the heater is conducted to the outer peripheral surface of the fixing roller to heat the toner.
 しかしながら、上記従来の定着ローラでは、内部にヒータを配設する必要があるため、プリンタの構造が複雑となるという不都合がある。 However, the conventional fixing roller has a disadvantage that the structure of the printer is complicated because it is necessary to provide a heater inside.
 そこで、定着ローラの表面近傍の樹脂層に導電性粒子を分散し、この樹脂層を通電により発熱可能な抵抗体とした自己発熱型定着ローラが提案されている(特開2014-145828号公報参照)。 Therefore, a self-heating type fixing roller has been proposed in which conductive particles are dispersed in a resin layer in the vicinity of the surface of the fixing roller, and the resin layer is a resistor capable of generating heat when energized (see Japanese Patent Application Laid-Open No. 2014-145828). ).
特開2014-145828号公報JP 2014-145828 A
 本発明の一態様に係る自己発熱型定着ローラは、筒状の基材層と、この基材層に積層され、通電により発熱する線状の複数の発熱体とを備え、上記複数の発熱体が上記基材層の軸方向の一端側から他端側にかけて蛇行している。 A self-heating type fixing roller according to an aspect of the present invention includes a cylindrical base material layer and a plurality of linear heating elements that are stacked on the base material layer and generate heat when energized. Is meandering from one end side to the other end side in the axial direction of the base material layer.
 本発明の他の一態様に係る自己発熱型定着ローラの製造方法は、通電によって発熱する線状の複数の発熱体を筒状の基材層上に形成する発熱体形成工程を備え、上記発熱体形成工程で、上記複数の発熱体を上記基材層の軸方向の一端側から他端側にかけて蛇行するように形成する。 A manufacturing method of a self-heating type fixing roller according to another aspect of the present invention includes a heating element forming step of forming a plurality of linear heating elements that generate heat upon energization on a cylindrical base material layer, In the body forming step, the plurality of heating elements are formed to meander from one end side to the other end side in the axial direction of the base material layer.
本発明の一実施形態に係る自己発熱型定着ローラの模式的斜視図である。1 is a schematic perspective view of a self-heating type fixing roller according to an embodiment of the present invention. 図1の自己発熱型定着ローラのA-A線断面図である。FIG. 2 is a cross-sectional view of the self-heating type fixing roller of FIG. 1 taken along line AA. 図1の自己発熱型定着ローラにおける複数の発熱体の形状を示す模式的拡大側面図である。FIG. 2 is a schematic enlarged side view showing the shape of a plurality of heating elements in the self-heating type fixing roller of FIG. 1. 図1の自己発熱型定着ローラとは異なる実施形態に係る自己発熱型定着ローラの中心軸と垂直な方向における模式的断面図である。FIG. 2 is a schematic cross-sectional view in a direction perpendicular to a central axis of a self-heating type fixing roller according to an embodiment different from the self-heating type fixing roller of FIG. 1. 図4の自己発熱型定着ローラにおける複数の発熱体の形状を示す模式的拡大側面図である。FIG. 5 is a schematic enlarged side view showing the shape of a plurality of heating elements in the self-heating type fixing roller of FIG. 4. 図1及び図4の自己発熱型定着ローラとは異なる実施形態に係る自己発熱型定着ローラの中心軸と垂直な方向における模式的断面図である。FIG. 5 is a schematic cross-sectional view in a direction perpendicular to the central axis of a self-heating type fixing roller according to an embodiment different from the self-heating type fixing roller of FIGS. 1 and 4. 本発明の他の実施形態に係る自己発熱型定着ローラの模式的断面図である。FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention. 本発明の他の実施形態に係る自己発熱型定着ローラの模式的断面図である。FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention. 本発明の他の実施形態に係る自己発熱型定着ローラの模式的断面図である。FIG. 6 is a schematic cross-sectional view of a self-heating type fixing roller according to another embodiment of the present invention.
 [本開示が解決しようとする課題]
 従来の自己発熱型定着ローラでは、表面にクラックが生じると、電流がクラックを迂回するため、局所的に電流密度が大きくなる。特に、自己発熱型定着ローラの表面に生じるクラックは、周方向に延在するよう形成されることが多く、クラックの周方向両側において異常発熱が生じる場合がある。
[Problems to be solved by this disclosure]
In the conventional self-heating type fixing roller, when a crack occurs on the surface, the current bypasses the crack, and therefore the current density locally increases. In particular, cracks generated on the surface of the self-heating type fixing roller are often formed so as to extend in the circumferential direction, and abnormal heat generation may occur on both sides of the crack in the circumferential direction.
 本発明は、上述のような事情に基づいてなされたものであり、表面にクラックが生じた場合の異常発熱を抑制することができる自己発熱型定着ローラを提供することを課題とする。 The present invention has been made based on the above-described circumstances, and an object thereof is to provide a self-heating type fixing roller capable of suppressing abnormal heat generation when a crack occurs on the surface.
 [本開示の効果]
 本発明に係る自己発熱型定着ローラは、表面にクラックが生じた場合の異常発熱を抑制できる。また、本発明に係る自己発熱型定着ローラの製造方法は、表面にクラックが生じた場合の異常発熱を抑制可能な自己発熱型定着ローラを製造することができる。
[Effects of the present disclosure]
The self-heating type fixing roller according to the present invention can suppress abnormal heat generation when a crack occurs on the surface. Moreover, the manufacturing method of the self-heating type fixing roller according to the present invention can manufacture a self-heating type fixing roller capable of suppressing abnormal heat generation when a crack occurs on the surface.
[本願発明の実施形態の説明]
 上記課題を解決するためになされた本発明の一態様に係る自己発熱型定着ローラは、筒状の基材層と、この基材層に積層され、通電により発熱する線状の複数の発熱体とを備え、上記複数の発熱体が上記基材層の軸方向の一端側から他端側にかけて蛇行している。
[Description of Embodiment of Present Invention]
A self-heating type fixing roller according to one aspect of the present invention made to solve the above problems includes a cylindrical base material layer and a plurality of linear heating elements that are stacked on the base material layer and generate heat when energized. The plurality of heating elements meander from one end side to the other end side in the axial direction of the base material layer.
 当該自己発熱型定着ローラは、通電により発熱する発熱体が線状に形成されると共に筒状の基材層の軸方向の一端側から他端側にかけて蛇行している。当該自己発熱型定着ローラは、一つの発熱体にクラックが生じ、この発熱体が断裂すると、断裂した発熱体に電流が流れなくなることで、クラックを迂回しようとする電流が遮断される。また、当該自己発熱型定着ローラは、発熱体が蛇行していることでこの発熱体の長さが比較的大きいので、発熱体の抵抗値を調節すると共に、電流密度の均一化を図ることができる。そのため、当該自己発熱型定着ローラは、クラックの近傍に電流が集中することを防止して異常発熱を抑制することができると共に、温度のばらつきを抑えつつ発熱温度を良好に保つことができる。 In the self-heating type fixing roller, a heating element that generates heat when energized is linearly formed and meanders from one end side to the other end side in the axial direction of the cylindrical base material layer. In the self-heating type fixing roller, a crack is generated in one heating element, and when this heating element breaks, no current flows through the broken heating element, thereby interrupting the current to bypass the crack. In addition, since the self-heating type fixing roller has a relatively long heating element due to the meandering of the heating element, the resistance value of the heating element can be adjusted and the current density can be made uniform. it can. Therefore, the self-heating type fixing roller can prevent current from being concentrated in the vicinity of the crack to suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variation.
 上記複数の発熱体が上記基材層の周方向に延在し、その各発熱体は軸方向に並列に配設される複数の直線部と、隣接する直線部の一方側の端部同士及び他方側の端部同士を交互に接続する複数の接続部とを有するとよい。このように、上記複数の発熱体が上記基材層の周方向に延在し、その各発熱体は軸方向に並列に配設される複数の直線部と、隣接する直線部の一方側の端部同士及び他方側の端部同士を交互に接続する複数の接続部とを有することによって、長さの大きい複数の発熱体を基材層の表面に高密度で積層することができるので、温度のばらつきをさらに抑制しつつ発熱温度の最適化を図りやすい。 The plurality of heating elements extend in the circumferential direction of the base material layer, and each heating element includes a plurality of linear portions arranged in parallel in the axial direction, ends on one side of adjacent linear portions, and It is good to have the some connection part which connects the edge parts on the other side alternately. As described above, the plurality of heating elements extend in the circumferential direction of the base material layer, and each heating element is provided on one side of the plurality of linear portions arranged in parallel in the axial direction and the adjacent linear portions. By having a plurality of connecting portions that alternately connect the end portions and the other end portions, a plurality of heating elements having a large length can be laminated at a high density on the surface of the base material layer. It is easy to optimize the heat generation temperature while further suppressing temperature variations.
 上記基材層の軸方向の両端に上記複数の発熱体を接続する一対の電極を有するとよい。このように、上記基材層の軸方向の両端に上記複数の発熱体を接続する一対の電極を有することによって、複数の発熱体が電気的に並列に接続されるので、クラックが生じて断裂したものを除く全ての発熱体を容易に発熱させることができる。 It is preferable to have a pair of electrodes that connect the plurality of heating elements to both ends of the base material layer in the axial direction. As described above, since the plurality of heating elements are electrically connected in parallel by having a pair of electrodes that connect the plurality of heating elements to both ends in the axial direction of the base material layer, cracks are generated and fractured. All the heating elements except for the above can easily generate heat.
 上記複数の発熱体が、隣接する一対の第1発熱体と、一対の第1発熱体以外の複数の第2発熱体とを有し、上記第1発熱体の幅が上記第2発熱体の幅よりも大きく、上記一対の第1発熱体同士の間隔が隣接する第2発熱体同士の間隔よりも大きいとよい。このように、上記複数の発熱体が、隣接する一対の第1発熱体と、一対の第1発熱体以外の複数の第2発熱体とを有し、上記第1発熱体の幅が上記第2発熱体の幅よりも大きく、上記一対の第1発熱体同士の間隔が隣接する第2発熱体同士の間隔よりも大きいことによって、例えばスクリーン印刷等の印刷による複数の発熱体の形成容易化を図りつつ、ローラの表面温度の均一化を促進することができる。 The plurality of heating elements include a pair of adjacent first heating elements and a plurality of second heating elements other than the pair of first heating elements, and the width of the first heating element is that of the second heating element. The distance between the pair of first heating elements is preferably larger than the width between the adjacent second heating elements. In this way, the plurality of heating elements have a pair of adjacent first heating elements and a plurality of second heating elements other than the pair of first heating elements, and the width of the first heating element is the first. It is easier to form a plurality of heating elements, for example, by printing such as screen printing, because it is larger than the width of two heating elements and the interval between the pair of first heating elements is larger than the interval between adjacent second heating elements. It is possible to promote the uniformity of the roller surface temperature.
 本発明の一態様に係る自己発熱型定着ローラの製造方法は、通電によって発熱する線状の複数の発熱体を筒状の基材層上に形成する発熱体形成工程を備え、上記発熱体形成工程で、上記複数の発熱体を上記基材層の軸方向の一端側から他端側にかけて蛇行するように形成する。 A manufacturing method of a self-heating type fixing roller according to an aspect of the present invention includes a heating element forming step of forming a plurality of linear heating elements that generate heat upon energization on a cylindrical base material layer, and the heating element formation described above In the step, the plurality of heating elements are formed to meander from one end side to the other end side in the axial direction of the base material layer.
 当該自己発熱型定着ローラの製造方法は、上記発熱体形成工程によって複数の発熱体を基材層の軸方向の一端側から他端側にかけて蛇行するように形成するので、クラックの近傍に電流が集中することを防止して異常発熱を抑制することができると共に、温度のばらつきを抑えつつ発熱温度を良好に保つことができる自己発熱型定着ローラを製造することができる。 In the manufacturing method of the self-heating type fixing roller, a plurality of heating elements are formed so as to meander from one end side to the other end side in the axial direction of the base material layer by the heating element forming step. It is possible to manufacture a self-heating type fixing roller that can suppress concentration and suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variations.
 なお、本発明において、「発熱体の間隔」又は「発熱体同士の間隔」とは、隣接する一対の発熱体において、それぞれの隣接する発熱体側に突出する複数の頂点に対して基材層の軸方向に平行に引いた回帰直線間の距離をいう。 In the present invention, “the interval between the heating elements” or “the interval between the heating elements” means that in the pair of adjacent heating elements, the base material layer has a plurality of vertices protruding toward the adjacent heating elements. The distance between regression lines drawn parallel to the axial direction.
[本発明の実施形態の詳細]
 以下、本発明の実施形態の自己発熱型定着ローラについて図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
Hereinafter, a self-heating type fixing roller of an embodiment of the present invention will be described in detail with reference to the drawings.
[第一実施形態]
 図1及び図2の自己発熱型定着ローラ1は、筒状の基材層2と、基材層2に積層され、通電により発熱する線状の複数の発熱体3とを備える。複数の発熱体3は、図3に示すように、基材層2の軸方向の一端側から他端側にかけて蛇行している。また、当該自己発熱型定着ローラ1は、基材層2の軸方向の両端に複数の発熱体3を接続する一対の電極4を有する。さらに、当該自己発熱型定着ローラ1は、基材層2に積層されると共に複数の発熱体3を被覆する絶縁層5と、絶縁層5に積層され、当該自己発熱型定着ローラ1の最外層を形成する離型層6とを有する。当該自己発熱型定着ローラ1は、基材層2、複数の発熱体3、絶縁層5及び離型層6が径方向の内側から外側にこの順で積層されている。当該自己発熱型定着ローラ1は、基材層2の内面側に金属、耐熱性樹脂等を主成分とする円柱状の芯金(不図示)が挿通されている。なお、「主成分」とは、最も含有量の多い成分をいい、例えば50質量%以上含有される成分をいう。
[First embodiment]
The self-heating type fixing roller 1 shown in FIGS. 1 and 2 includes a cylindrical base material layer 2 and a plurality of linear heating elements 3 stacked on the base material layer 2 and generating heat when energized. As shown in FIG. 3, the plurality of heating elements 3 meander from the one end side in the axial direction of the base material layer 2 to the other end side. The self-heating type fixing roller 1 has a pair of electrodes 4 that connect a plurality of heating elements 3 to both ends of the base material layer 2 in the axial direction. Further, the self-heating type fixing roller 1 is laminated on the base material layer 2 and also covers an insulating layer 5 that covers the plurality of heating elements 3, and is laminated on the insulating layer 5, and the outermost layer of the self-heating type fixing roller 1. And a release layer 6 for forming In the self-heating type fixing roller 1, a base material layer 2, a plurality of heating elements 3, an insulating layer 5, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction. In the self-heating type fixing roller 1, a cylindrical cored bar (not shown) whose main component is a metal, a heat resistant resin, or the like is inserted on the inner surface side of the base material layer 2. The “main component” means a component having the highest content, for example, a component contained in an amount of 50% by mass or more.
 当該自己発熱型定着ローラ1は、通電により発熱する発熱体3が線状に形成されると共に筒状の基材層2の軸方向の一端側から他端側にかけて蛇行している。当該自己発熱型定着ローラ1は、一つの発熱体3にクラックが生じ、この発熱体3が断裂すると、断裂した発熱体3に電流が流れなくなることで、クラックを迂回しようとする電流が遮断される。また、当該自己発熱型定着ローラ1は、発熱体3が蛇行していることでこの発熱体3の長さが比較的大きいので、発熱体3の抵抗値を調節すると共に、電流密度の均一化を図ることができる。そのため、当該自己発熱型定着ローラ1は、クラックの近傍に電流が集中することを防止して異常発熱を抑制することができると共に、温度のばらつきを抑えつつ発熱温度を良好に保つことができる。 In the self-heating type fixing roller 1, a heating element 3 that generates heat when energized is formed in a linear shape and meanders from one end side to the other end side in the axial direction of the cylindrical base material layer 2. In the self-heating type fixing roller 1, a crack is generated in one heating element 3, and when the heating element 3 is torn, current does not flow to the torn heating element 3, thereby interrupting the current to bypass the crack. The Further, the self-heating type fixing roller 1 has a relatively large length of the heating element 3 due to the meandering of the heating element 3, so that the resistance value of the heating element 3 is adjusted and the current density is made uniform. Can be achieved. Therefore, the self-heating type fixing roller 1 can suppress abnormal heat generation by preventing current from concentrating in the vicinity of the crack, and can maintain a good heat generation temperature while suppressing temperature variation.
(基材層)
 基材層2は合成樹脂を主成分としている。また、基材層2は可撓性を有する。基材層2は、複数の発熱体3及び一対の電極4の積層基板を構成する。また、基材層2は絶縁性を有しており、複数の発熱体3が基材層2を介して導通することを防止する。
(Base material layer)
The base material layer 2 has a synthetic resin as a main component. Moreover, the base material layer 2 has flexibility. The base material layer 2 constitutes a laminated substrate of a plurality of heating elements 3 and a pair of electrodes 4. Moreover, the base material layer 2 has insulating properties, and prevents a plurality of heating elements 3 from conducting through the base material layer 2.
 基材層2の主成分としては、例えばポリイミド、ポリエチレンテレフタレート、フッ素樹脂、液晶ポリマー等が挙げられる。中でも、絶縁性、柔軟性、耐熱性等に優れるポリイミドが好ましい。 Examples of the main component of the base material layer 2 include polyimide, polyethylene terephthalate, fluororesin, and liquid crystal polymer. Among these, polyimide that is excellent in insulation, flexibility, heat resistance, and the like is preferable.
 基材層2の平均厚さの下限としては、10μmが好ましく、20μmがより好ましい。一方、基材層2の平均厚さの上限としては、100μmが好ましく、80μmがより好ましい。基材層2の平均厚さが上記下限に満たないと、当該自己発熱型定着ローラ1の強度が不十分となるおそれがある。逆に、基材層2の平均厚さが上記上限を超えると、当該自己発熱型定着ローラ1の可撓性が不十分となるおそれがある。 The lower limit of the average thickness of the base material layer 2 is preferably 10 μm, and more preferably 20 μm. On the other hand, as an upper limit of the average thickness of the base material layer 2, 100 micrometers is preferable and 80 micrometers is more preferable. If the average thickness of the base material layer 2 is less than the lower limit, the strength of the self-heating type fixing roller 1 may be insufficient. On the contrary, when the average thickness of the base material layer 2 exceeds the upper limit, the flexibility of the self-heating type fixing roller 1 may be insufficient.
 基材層2の内径の下限としては5mmが好ましく、10mmがより好ましい。一方、基材層2の内径の上限としては、100mmが好ましく、70mmがより好ましい。基材層2の内径が上記下限に満たないと、当該自己発熱型定着ローラ1の表面の温度のばらつきが大きくなるおそれがある。逆に、基材層2の内径が上記上限を超えると、当該自己発熱型定着ローラ1が不要に大きくなるおそれがあり、ひいては当該自己発熱型定着ローラ1を用いた画像形成装置の大型化を招来するおそれがある。 The lower limit of the inner diameter of the base material layer 2 is preferably 5 mm, and more preferably 10 mm. On the other hand, the upper limit of the inner diameter of the base material layer 2 is preferably 100 mm, and more preferably 70 mm. If the inner diameter of the base material layer 2 is less than the lower limit, there is a fear that the temperature variation of the surface of the self-heating type fixing roller 1 becomes large. On the contrary, if the inner diameter of the base material layer 2 exceeds the above upper limit, the self-heating fixing roller 1 may become unnecessarily large. As a result, the image forming apparatus using the self-heating fixing roller 1 is increased in size. There is a risk of being invited.
(発熱体)
 複数の発熱体3は、基材層2の外周面に積層されている。各発熱体3は、基材層2の軸方向の一端側から他端側にかけて同一周期かつ同一の振幅で蛇行している。各発熱体3の全長は、基材層2の軸方向長さよりも長い。複数の発熱体3は、基材層2の周方向に並列に配設されており、基材層2の周方向に隣接する発熱体3同士は離間している。各発熱体3は、基材層2の軸方向と平行に延在することが好ましい。さらに、各発熱体3の幅は発熱体3の全長に亘って一定であることが好ましい。
(Heating element)
The plurality of heating elements 3 are stacked on the outer peripheral surface of the base material layer 2. Each heating element 3 meanders with the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer 2. The total length of each heating element 3 is longer than the axial length of the base material layer 2. The plurality of heating elements 3 are arranged in parallel in the circumferential direction of the base material layer 2, and the heating elements 3 adjacent to each other in the circumferential direction of the base material layer 2 are separated from each other. Each heating element 3 preferably extends parallel to the axial direction of the base material layer 2. Further, the width of each heating element 3 is preferably constant over the entire length of the heating element 3.
 各発熱体3の具体的形状としては、基材層2の軸方向の一端側から他端側にかけて蛇行している限り特に限定されるものではなく、例えば波型、鋸刃型等であってもよいが、各発熱体3の形状としては、図3に示すように、基材層2の周方向に延在すると共に軸方向に並列に配設される複数の直線部7と、隣接する直線部7の一方側の端部同士及び他方側の端部同士を交互に接続する複数の接続部8とを有することが好ましい。当該自己発熱型定着ローラ1は、発熱体3がかかる構成を有することで、長さの大きい複数の発熱体3を基材層2の表面に高密度で積層することができるので、温度のばらつきをさらに抑制しつつ発熱温度の最適化を図りやすい。 The specific shape of each heating element 3 is not particularly limited as long as it is meandering from one end side to the other end side in the axial direction of the base material layer 2, for example, a wave shape, a saw blade type, etc. However, as shown in FIG. 3, the shape of each heating element 3 is adjacent to a plurality of linear portions 7 that extend in the circumferential direction of the base material layer 2 and are arranged in parallel in the axial direction. It is preferable to have a plurality of connecting portions 8 that alternately connect the end portions on one side and the end portions on the other side of the straight portion 7. Since the self-heating type fixing roller 1 has such a configuration as the heating element 3, a plurality of heating elements 3 having a large length can be stacked on the surface of the base material layer 2 at a high density. It is easy to optimize the heat generation temperature while further suppressing the above.
 複数の発熱体3は、全て同一形状に構成されている。複数の発熱体3の平均幅の下限としては、0.01mmが好ましく、0.02mmがより好ましい。一方、複数の発熱体3の平均幅の上限としては、1.0mmが好ましく、0.8mmがより好ましい。上記平均幅が上記下限に満たないと、印刷等による発熱体形成時に欠けなどの欠陥が生じやすくなり、抵抗値不良の原因となるおそれがある。逆に、上記平均幅が上記上限を超えると、クラックが生じた場合に発熱体3が断線せず、十分に異常発熱抑制効果が得られないおそれがある。 The plurality of heating elements 3 are all configured in the same shape. As a minimum of the average width of a plurality of exothermic bodies 3, 0.01 mm is preferred and 0.02 mm is more preferred. On the other hand, the upper limit of the average width of the plurality of heating elements 3 is preferably 1.0 mm, and more preferably 0.8 mm. If the average width is less than the lower limit, defects such as chipping are likely to occur when a heating element is formed by printing or the like, which may cause a resistance value defect. On the other hand, if the average width exceeds the upper limit, the heating element 3 may not be disconnected when cracks occur, and the abnormal heat generation suppressing effect may not be sufficiently obtained.
 隣接する発熱体3同士の間隔は等しい。隣接する発熱体3同士の間隔の下限としては、0.05mmが好ましく、0.1mmがより好ましい。一方、隣接する発熱体3同士の間隔の上限としては、1.0mmが好ましく、0.8mmがより好ましい。上記間隔が上記下限に満たないと、発熱体3同士を確実に離間させつつ形成することが困難になるおそれがある。逆に、上記間隔が上記上限を超えると、ローラの表面温度の均一化を図り難くなるおそれがある。 The interval between adjacent heating elements 3 is equal. The lower limit of the interval between adjacent heating elements 3 is preferably 0.05 mm, and more preferably 0.1 mm. On the other hand, the upper limit of the interval between the adjacent heating elements 3 is preferably 1.0 mm, and more preferably 0.8 mm. If the interval is less than the lower limit, it may be difficult to form the heating elements 3 while reliably separating them. On the contrary, if the interval exceeds the upper limit, it may be difficult to make the surface temperature of the roller uniform.
 複数の発熱体3の長さ方向と垂直な断面形状としては矩形状が好ましい。また、複数の発熱体3の平均厚さの下限としては、0.01μmが好ましく、0.05μmがより好ましい。一方、複数の発熱体3の平均厚さの上限としては、300μmが好ましく、250μmがより好ましい。上記平均厚さが上記下限に満たないと、複数の発熱体3が熱や衝撃により損傷しやすくなるおそれがある。逆に、上記平均厚さが上記上限を超えると、当該自己発熱型定着ローラ1の製造コストが増加するおそれがある。 As the cross-sectional shape perpendicular to the length direction of the plurality of heating elements 3, a rectangular shape is preferable. Moreover, as a minimum of the average thickness of the some heat generating body 3, 0.01 micrometer is preferable and 0.05 micrometer is more preferable. On the other hand, the upper limit of the average thickness of the plurality of heating elements 3 is preferably 300 μm, and more preferably 250 μm. If the average thickness is less than the lower limit, the plurality of heating elements 3 may be easily damaged by heat or impact. On the contrary, if the average thickness exceeds the upper limit, the manufacturing cost of the self-heating type fixing roller 1 may increase.
 複数の発熱体3の両端間の電気抵抗の下限としては、100Ωが好ましく、400Ωがより好ましい。一方、複数の発熱体3の両端間の電気抵抗の上限としては、6000Ωが好ましく、4000Ωがより好ましい。上記電気抵抗が上記下限に満たないと、複数の発熱体3の温度上昇に必要な電流が大きくなり、当該自己発熱型定着ローラ1を駆動するための電源装置が不要に高価となるおそれがある。逆に、上記電気抵抗が上記上限を超えると、複数の発熱体3の温度上昇に必要な電圧が大きくなり、当該自己発熱型定着ローラ1を駆動するための電源装置が不要に高価となるおそれがある。 The lower limit of the electrical resistance between both ends of the plurality of heating elements 3 is preferably 100Ω, and more preferably 400Ω. On the other hand, the upper limit of the electrical resistance between both ends of the plurality of heating elements 3 is preferably 6000Ω, and more preferably 4000Ω. If the electric resistance is less than the lower limit, the current required for increasing the temperature of the plurality of heating elements 3 increases, and the power supply device for driving the self-heating type fixing roller 1 may become unnecessary and expensive. . On the other hand, if the electrical resistance exceeds the upper limit, the voltage required for the temperature rise of the plurality of heating elements 3 increases, and the power supply device for driving the self-heating type fixing roller 1 may become unnecessary and expensive. There is.
 複数の発熱体3の単位長さ当たりの電気抵抗(長さ抵抗率)の下限としては、0.7Ω/cmが好ましく、1.0Ω/cmがより好ましい。一方、上記長さ抵抗率の上限としては、100Ω/cmが好ましく、70Ω/cmがより好ましい。上記長さ抵抗率が上記下限に満たないと、複数の発熱体3の電気抵抗が小さくなり過ぎるおそれがある。逆に、上記長さ抵抗率が上記上限を超えると、複数の発熱体3の電気抵抗が大きくなり過ぎるおそれがある。 The lower limit of the electric resistance (length resistivity) per unit length of the plurality of heating elements 3 is preferably 0.7 Ω / cm, more preferably 1.0 Ω / cm. On the other hand, the upper limit of the length resistivity is preferably 100 Ω / cm, more preferably 70 Ω / cm. If the length resistivity is less than the lower limit, the electrical resistance of the plurality of heating elements 3 may be too small. Conversely, if the length resistivity exceeds the upper limit, the electrical resistance of the plurality of heating elements 3 may become too large.
 発熱体3の基材層2の軸方向における直線距離に対する発熱体3の長さの比の下限としては、2が好ましく、4がより好ましい。一方、上記比の上限としては、20が好ましく、15がより好ましい。上記比が上記下限に満たないと、発熱体3の抵抗値を的確に調節し難くなるおそれがあると共に、発熱体3の電流密度の均一化を十分に図り難くなるおそれがある。逆に、上記比が上記上限を超えると、発熱体の発熱量を十分に大きくし難くなるおそれがある。 The lower limit of the ratio of the length of the heating element 3 to the linear distance in the axial direction of the base material layer 2 of the heating element 3 is preferably 2, and more preferably 4. On the other hand, the upper limit of the ratio is preferably 20, and more preferably 15. If the ratio is less than the lower limit, it may be difficult to accurately adjust the resistance value of the heating element 3, and the current density of the heating element 3 may not be sufficiently uniform. Conversely, if the ratio exceeds the upper limit, it may be difficult to sufficiently increase the amount of heat generated by the heating element.
 発熱体3の直線部7の長さとしては、例えば1.0mm以上3mm以下とすることができる。発熱体3の直線部7の長さが上記下限に満たないと、各発熱体3における温度のばらつきを十分に抑え難くなるおそれがある。逆に、発熱体3の直線部7の長さが上記上限を超えると、発熱体3が断裂した場合に、この断裂した発熱体3を挟んで隣接する一対の発熱体3同士の間隔が大きくなり過ぎて、ロールの表面温度の均一化を図り難くなるおそれがある。 The length of the straight portion 7 of the heating element 3 can be set to, for example, 1.0 mm or more and 3 mm or less. If the length of the linear portion 7 of the heating element 3 is less than the lower limit, it may be difficult to sufficiently suppress the temperature variation in each heating element 3. Conversely, if the length of the linear portion 7 of the heating element 3 exceeds the above upper limit, when the heating element 3 is torn, the gap between the pair of adjacent heating elements 3 with the broken heating element 3 sandwiched therebetween is large. Therefore, it may be difficult to make the surface temperature of the roll uniform.
 基材層2に積層される複数の発熱体3の個数の下限としては、10が好ましく、15がより好ましい。一方、上記個数の上限としては、50が好ましく、45がより好ましい。
上記個数が上記下限に満たないと、発熱量が不十分となるおそれがある。また、上記個数が上記下限に満たないと、一つの発熱体3が断裂した場合に、この断裂した発熱体3を挟んで隣接する一対の発熱体3同士の間隔が大きくなり過ぎて、ロールの表面温度の均一化を図り難くなるおそれがある。逆に、上記個数が上記上限を超えると、各発熱体3を十分な長さに形成し難くなり、各発熱体3における温度のばらつきを十分に抑制し難くなるおそれがある。
As a minimum of the number of a plurality of exothermic bodies 3 laminated on base material layer 2, 10 is preferred and 15 is more preferred. On the other hand, the upper limit of the number is preferably 50, and more preferably 45.
If the number is less than the lower limit, the amount of heat generated may be insufficient. If the number is less than the lower limit, when one heating element 3 is torn, the gap between the pair of adjacent heating elements 3 with the broken heating element 3 sandwiched between them becomes too large. There is a risk that it may be difficult to make the surface temperature uniform. On the contrary, if the number exceeds the upper limit, it is difficult to form each heating element 3 with a sufficient length, and it is difficult to sufficiently suppress the temperature variation in each heating element 3.
 複数の発熱体3の形成材料としては、電流を流すことができ、抵抗損によって発熱するものであればよいが、例えば樹脂マトリックスと、この樹脂マトリックス中に含まれる複数の導電性粒子とを有する抵抗体が用いられる。樹脂マトリックス中に複数の導電性粒子を分散することで、所望の成形性、発熱性及び可撓性を有するものを比較的容易に選択することができるので、複数の発熱体3を比較的容易に高性能化及び低価格化することができる。また、複数の発熱体3の形成材料としては、ニッケル、銅、銀等の金属を用いることも可能である。 As a material for forming the plurality of heating elements 3, any material can be used as long as current can flow and heat is generated by resistance loss. For example, the heating element 3 includes a resin matrix and a plurality of conductive particles included in the resin matrix. A resistor is used. By dispersing a plurality of conductive particles in the resin matrix, it is possible to relatively easily select one having desired moldability, heat generation and flexibility. High performance and low price can be achieved. In addition, as a material for forming the plurality of heating elements 3, a metal such as nickel, copper, or silver can be used.
 複数の発熱体3の形成材料として、樹脂マトリックスと、この樹脂マトリックス中に含まれる複数の導電性粒子とを有する抵抗体が用いられる場合、上記樹脂マトリックスの主成分としては、耐熱性を有する合成樹脂又はゴムが挙げられ、中でも、耐熱性樹脂が好ましい。この耐熱性樹脂としては、例えばポリイミド、ポリアミド等が挙げられ、耐熱性及び機械的強度に優れるポリイミドが特に好ましい。また、耐熱性ゴムとしては、シリコーンゴム、フッ素ゴム、又はこれらの混合物が挙げられる。 When a resistor having a resin matrix and a plurality of conductive particles contained in the resin matrix is used as a material for forming the plurality of heating elements 3, a heat-resistant synthetic material is used as the main component of the resin matrix. Examples thereof include resins and rubbers, and among them, heat resistant resins are preferable. Examples of the heat resistant resin include polyimide and polyamide, and polyimide having excellent heat resistance and mechanical strength is particularly preferable. Examples of the heat resistant rubber include silicone rubber, fluororubber, or a mixture thereof.
 上記導電性粒子としては、公知のものを使用でき、例えば金、銀、ニッケル等の金属粉末、金属メッキを施した樹脂粒子、カーボンブラック、カーボンナノチューブ等の炭素粉末などが挙げられる。これらの中でも、電気抵抗が小さく、発熱体3の長さを比較的長くしてもローラの温度を十分に高めやすい銀が好ましい。 As the conductive particles, known particles can be used, and examples thereof include metal powders such as gold, silver and nickel, resin particles subjected to metal plating, carbon powders such as carbon black and carbon nanotubes. Among these, silver is preferable because it has a small electrical resistance and can easily raise the temperature of the roller even if the length of the heating element 3 is relatively long.
 さらに、複数の発熱体3の形成材料として、樹脂マトリックスと、この樹脂マトリックス中に含まれる複数の導電性粒子とを有する抵抗体が用いられる場合、発熱体3は、絶縁フィラーを含んでもよい。絶縁フィラーを含むことにより、導電性粒子間の電気的接触を制限して、発熱体3の電気抵抗を比較的容易に調節することができる。 Furthermore, when a resistor having a resin matrix and a plurality of conductive particles contained in the resin matrix is used as a material for forming the plurality of heating elements 3, the heating element 3 may include an insulating filler. By including the insulating filler, the electrical contact between the conductive particles can be limited, and the electrical resistance of the heating element 3 can be adjusted relatively easily.
 このような絶縁フィラーの材質としては、絶縁性を有するものであればよいが、熱伝導率が大きい酸化チタン、金属ケイ素、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、酸化ケイ素、アルミナ、窒化ホウ素、窒化アルミニウム等の無機フィラーが好適に使用される。 As a material of such an insulating filler, any material having an insulating property may be used, but titanium oxide, metal silicon, magnesium oxide, magnesium carbonate, magnesium hydroxide, silicon oxide, alumina, boron nitride, which has high thermal conductivity, An inorganic filler such as aluminum nitride is preferably used.
(電極)
 一対の電極4は、基材層2の外周面の両端に環状に積層されている。一対の電極4は、十分に電気抵抗の小さい導電体で形成されればよく、例えば複数の発熱体3と同様の形成材料によって複数の発熱体3と一体的に形成されてもよく、複数の発熱体3とは別個に形成されてもよい。一対の電極4が複数の発熱体3と別個に形成される場合、一対の電極4は例えば金属箔によって形成することができる。また、上記金属箔としては、銅箔が好適に用いられ、金属箔に導電性接着剤が塗布された金属テープを用いてもよい。当該自己発熱型定着ローラ1は、基材層2の軸方向の両端に複数の発熱体3を接続する一対の電極4を有することによって、複数の発熱体3が電気的に並列に接続されるので、クラックが生じて断裂したものを除く全ての発熱体3を容易に発熱させることができる。
(electrode)
The pair of electrodes 4 are annularly laminated at both ends of the outer peripheral surface of the base material layer 2. The pair of electrodes 4 may be formed of a conductor having a sufficiently small electric resistance. For example, the pair of electrodes 4 may be formed integrally with the plurality of heating elements 3 by using the same material as the plurality of heating elements 3. It may be formed separately from the heating element 3. When the pair of electrodes 4 is formed separately from the plurality of heating elements 3, the pair of electrodes 4 can be formed of, for example, a metal foil. Moreover, as said metal foil, copper foil is used suitably and the metal tape by which the conductive adhesive was apply | coated to metal foil may be used. The self-heating type fixing roller 1 has a pair of electrodes 4 that connect the plurality of heating elements 3 to both ends of the base layer 2 in the axial direction, so that the plurality of heating elements 3 are electrically connected in parallel. As a result, all the heating elements 3 except those which are cracked and broken can be easily heated.
 一対の電極4には、電流を供給するために例えばカーボンブラシ等の接触子(不図示)が当接され得る。従って、一対の電極4は、軸方向の平均幅が使用される接触子の幅以上とすることが好ましい。一対の電極4の軸方向の平均幅としては、特に限定されないが、例えば0.2cm以上10cm以下とすることができる。 A contact (not shown) such as a carbon brush can be brought into contact with the pair of electrodes 4 in order to supply current. Therefore, it is preferable that the pair of electrodes 4 have an axial average width equal to or greater than the width of the contact used. The average width in the axial direction of the pair of electrodes 4 is not particularly limited, but may be, for example, 0.2 cm or more and 10 cm or less.
(絶縁層)
 絶縁層5は耐熱性及び絶縁性を有する。絶縁層5は、基材層2の外周面上において複数の発熱体3間に充填されると共に、複数の発熱体3の外周面を被覆する。また、絶縁層5は、一対の電極4には積層されていない。絶縁層5の主成分としては、合成樹脂や耐熱性を有するゴム(耐熱性ゴム)が挙げられる。
(Insulating layer)
The insulating layer 5 has heat resistance and insulating properties. The insulating layer 5 is filled between the plurality of heating elements 3 on the outer peripheral surface of the base material layer 2 and covers the outer peripheral surfaces of the plurality of heating elements 3. The insulating layer 5 is not stacked on the pair of electrodes 4. Examples of the main component of the insulating layer 5 include synthetic resin and heat-resistant rubber (heat-resistant rubber).
 上記合成樹脂としては、例えばフェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル(UP)、アルキド樹脂、ポリウレタン(PUR)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、アクリロニトリルブタジエンスチレン樹脂(ABS)、アクリロニトリルスチレン樹脂(AS)、ポリメチルメタクリレート(PMMA)、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、環状ポリオレフィン(COP)等が挙げられる。 Examples of the synthetic resin include phenol resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester (UP), alkyd resin, polyurethane (PUR), and polyimide. (PI), polyamideimide (PAI), polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), polychlorinated Vinylidene, polystyrene (PS), polyvinyl acetate (PVAc), acrylonitrile butadiene styrene resin (ABS), acrylonitrile styrene resin (AS), polymethyl methacrylate (PMMA), polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and cyclic polyolefin (COP) and the like.
 また、上記ゴムとしては、耐熱性を有するものであれば特に限定されないが、弾性を有することが好ましく、シリコーンゴム、フッ素ゴム、或いはこれらの混合物を好適に用いることができる。 The rubber is not particularly limited as long as it has heat resistance, but preferably has elasticity, and silicone rubber, fluororubber, or a mixture thereof can be suitably used.
 上記シリコーンゴムとしては、例えばジメチルシリコーンゴム、フルオロシリコーンゴム、メチルフェニルシリコーンゴム等が挙げられる。上記フッ素ゴムとしては、例えばフッ化ビニリデンゴム、テトラフルオロエチレン-プロピレンゴム、テトラフルオロエチレン-パーフルオロメチルビニルエーテルゴム等が挙げられる。 Examples of the silicone rubber include dimethyl silicone rubber, fluorosilicone rubber, and methylphenyl silicone rubber. Examples of the fluororubber include vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, tetrafluoroethylene-perfluoromethyl vinyl ether rubber, and the like.
 また、当該自己発熱型定着ローラ1では、複数の発熱体3の熱が絶縁層5を介してトナーに伝達されるので、絶縁層5は熱伝導性が比較的大きいことが好ましい。このため、絶縁層5は、熱伝導フィラーを含んでいてもよい。この熱伝導フィラーとしては、例えば金属、セラミック、ボロンナイトライド、カーボンナノチューブ、アルミナ、シリコンカーバイド等が挙げられる。但し、絶縁層5は絶縁性が必要であるため、熱伝導フィラーが導電性を有する場合、導通しない程度の量を含むことが好ましい。 Further, in the self-heating type fixing roller 1, the heat of the plurality of heating elements 3 is transmitted to the toner through the insulating layer 5, so that the insulating layer 5 preferably has a relatively high thermal conductivity. For this reason, the insulating layer 5 may contain a heat conductive filler. Examples of the heat conductive filler include metals, ceramics, boron nitride, carbon nanotubes, alumina, silicon carbide, and the like. However, since the insulating layer 5 needs to be insulative, it is preferable that the insulating layer 5 includes an amount that does not conduct when the heat conductive filler has conductivity.
 絶縁層5の平均厚さの下限としては、複数の発熱体3の厚さ以上であり、10μmが好ましく、20μmがより好ましい。一方、絶縁層5の平均厚さの上限としては、500μmが好ましく、300μmがより好ましい。絶縁層5の平均厚さが上記下限に満たないと、当該自己発熱型定着ローラ1の強度が不十分となるおそれがある。逆に、絶縁層5の平均厚さが上記上限を超えると、当該自己発熱型定着ローラ1の可撓性が不十分となるおそれがある。なお、「絶縁層の平均厚さ」とは、絶縁層における基材層との界面と外周面との平均厚さをいう。 The lower limit of the average thickness of the insulating layer 5 is not less than the thickness of the plurality of heating elements 3, preferably 10 μm, and more preferably 20 μm. On the other hand, the upper limit of the average thickness of the insulating layer 5 is preferably 500 μm, and more preferably 300 μm. If the average thickness of the insulating layer 5 is less than the lower limit, the strength of the self-heating type fixing roller 1 may be insufficient. Conversely, if the average thickness of the insulating layer 5 exceeds the above upper limit, the flexibility of the self-heating type fixing roller 1 may be insufficient. The “average thickness of the insulating layer” refers to the average thickness between the interface of the insulating layer with the base material layer and the outer peripheral surface.
(離型層)
 離型層6は、絶縁層5の外周面に積層され、トナーと接触する層である。離型層6は、トナーが当該自己発熱型定着ローラ1に付着することを防止する。
(Release layer)
The release layer 6 is a layer that is laminated on the outer peripheral surface of the insulating layer 5 and is in contact with the toner. The release layer 6 prevents toner from adhering to the self-heating type fixing roller 1.
 離型層6は、樹脂組成物から形成される。離型層6を形成する樹脂組成物の主成分としては、例えば熱可塑性樹脂及び熱硬化性樹脂が挙げられる。 The release layer 6 is formed from a resin composition. As a main component of the resin composition which forms the release layer 6, a thermoplastic resin and a thermosetting resin are mentioned, for example.
 上記熱可塑性樹脂としては、例えばビニル樹脂、ポリエステル、ポリオレフィン、アクリル樹脂、フッ素樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂等が挙げられる。これらの中で、離型性、可撓性及び耐熱性に優れるフッ素樹脂が好ましい。また、これらの樹脂を単独で用いてもよく、2種以上混合して用いてもよい。 Examples of the thermoplastic resin include vinyl resin, polyester, polyolefin, acrylic resin, fluorine resin, epoxy resin, phenol resin, urea resin, and the like. Among these, a fluororesin excellent in releasability, flexibility and heat resistance is preferable. These resins may be used alone or in combination of two or more.
 上記フッ素樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(EFP)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)等が挙げられる。これらの中で、分子量が小さく離型性に優れるPFA又はPTFEが好ましい。 Examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (EFP), and tetrafluoroethylene-6 Examples thereof include a fluorinated propylene copolymer (FEP). Among these, PFA or PTFE having a small molecular weight and excellent releasability is preferable.
 離型層6は、熱伝導フィラー等の添加剤を含有してもよい。離型層6が熱伝導フィラーを含有することで、複数の発熱体3の熱を効率よくトナーに伝えることができると共に、当該自己発熱型定着ローラ1の表面の温度のばらつきを抑制することができる。 The release layer 6 may contain an additive such as a heat conductive filler. When the release layer 6 contains the heat conductive filler, the heat of the plurality of heating elements 3 can be efficiently transmitted to the toner, and the temperature variation of the surface of the self-heating type fixing roller 1 can be suppressed. it can.
 上記熱伝導フィラーとしては、上述の絶縁層5に含有可能な熱伝導フィラーを用いることができる。 As the heat conductive filler, a heat conductive filler that can be contained in the insulating layer 5 can be used.
 離型層6は、絶縁性を有することが好ましい。具体的には、離型層6の軸方向の単位長さあたりの電気抵抗の下限としては、1014Ω/mが好ましい。離型層6の上記単位長さあたりの電気抵抗が上記下限に満たないと、複数の発熱体3から離型層6を介して漏電し、複数の発熱体3の発熱が不十分となるおそや、感電事故又は装置故障の原因となるおそれがある。 The release layer 6 preferably has an insulating property. Specifically, the lower limit of the electrical resistance per unit length in the axial direction of the release layer 6 is preferably 10 14 Ω / m. If the electrical resistance per unit length of the release layer 6 is less than the lower limit, the plurality of heating elements 3 may leak through the release layer 6 and the heating of the plurality of heating elements 3 may be insufficient. There is a risk of electric shock or equipment failure.
 離型層6の平均厚さの下限としては、1μmが好ましく、5μmがより好ましい。一方、離型層6の平均厚さの上限としては、50μmが好ましく、35μmがより好ましい。上記平均厚さが上記下限に満たないと、離型層6の強度が不十分となるおそれがある。逆に、上記平均厚さが上記上限を超えると、当該自己発熱型定着ローラ1の大きさが不要に増大するおそれや、当該自己発熱型定着ローラ1の熱効率が低下するおそれがある。 The lower limit of the average thickness of the release layer 6 is preferably 1 μm and more preferably 5 μm. On the other hand, the upper limit of the average thickness of the release layer 6 is preferably 50 μm, and more preferably 35 μm. If the average thickness is less than the lower limit, the strength of the release layer 6 may be insufficient. On the other hand, if the average thickness exceeds the upper limit, the size of the self-heating fixing roller 1 may increase unnecessarily, and the thermal efficiency of the self-heating fixing roller 1 may decrease.
 離型層6は、絶縁層5と接合されずに独立して回転できるものでもよいが、接合されていることが好ましい。このように、離型層6と絶縁層5とが接合されることで、離型層6の内周面(絶縁層5と接する側の面)の絶縁層5との摩擦による摩耗が防止でき、当該自己発熱型定着ローラ1の耐久性が向上する。 The release layer 6 may be capable of rotating independently without being joined to the insulating layer 5, but is preferably joined. As described above, the release layer 6 and the insulating layer 5 are bonded to each other so that wear due to friction between the inner peripheral surface of the release layer 6 (the surface on the side in contact with the insulating layer 5) and the insulating layer 5 can be prevented. The durability of the self-heating type fixing roller 1 is improved.
<製造方法>
 次に、図1の当該自己発熱型定着ローラ1の製造方法を説明する。当該自己発熱型定着ローラの製造方法は、通電によって発熱する線状の複数の発熱体3を筒状の基材層2上に形成する発熱体形成工程を備える。また、当該自己発熱型定着ローラ1の製造方法は、基材層2上に一対の電極4を積層する電極積層工程と、上記発熱体形成工程後に基材層2上に絶縁層5を積層する絶縁層積層工程と、上記絶縁層積層工程後に、絶縁層5上に離型層6を積層する離型層積層工程とを備える。当該自己発熱型定着ローラの製造方法は、上記発熱体形成工程で、複数の発熱体3を基材層2の軸方向の一端側から他端側にかけて蛇行するように形成する。
<Manufacturing method>
Next, a method for manufacturing the self-heating fixing roller 1 shown in FIG. 1 will be described. The manufacturing method of the self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements 3 that generate heat upon energization on the cylindrical base material layer 2. The self-heating type fixing roller 1 is manufactured by an electrode stacking process in which a pair of electrodes 4 are stacked on the base material layer 2 and an insulating layer 5 is stacked on the base material layer 2 after the heating element forming process. An insulating layer laminating step; and a release layer laminating step of laminating the release layer 6 on the insulating layer 5 after the insulating layer laminating step. In the manufacturing method of the self-heating type fixing roller, in the heating element forming step, the plurality of heating elements 3 are formed to meander from the one end side to the other end side in the axial direction of the base material layer 2.
 当該自己発熱型定着ローラの製造方法は、上記発熱体形成工程によって複数の発熱体3を基材層2の軸方向の一端側から他端側にかけて蛇行するように形成するので、クラックの近傍に電流が集中することを防止して異常発熱を抑制することができると共に、温度のばらつきを抑えつつ発熱温度を良好に保つことができる自己発熱型定着ローラ1を製造することができる。 In the manufacturing method of the self-heating type fixing roller, the plurality of heating elements 3 are formed to meander from the one end side to the other end side in the axial direction of the base material layer 2 in the heating element forming step. It is possible to manufacture the self-heating type fixing roller 1 that can prevent current from being concentrated and suppress abnormal heat generation, and can maintain a good heat generation temperature while suppressing temperature variation.
(発熱体形成工程)
 上記発熱体形成工程では、筒状の基材層2の外周面に複数の発熱体3を積層する。上記発熱体形成工程による複数の発熱体3の積層方法としては、基材層2の外周面にスクリーン印刷、グラビア印刷、グラビアオフセット印刷、スクリーンオフセット印刷等の印刷によって樹脂マトリックス及び複数の導電性粒子を含む発熱体形成材料を印刷する方法、基材層2の外周面に金属めっきを施し、この金属めっき上に公知の印刷法にてレジストパターンを印刷し、さらにエッチングによるパターニングの後にレジストパターンを除去する方法、基材層2の外周面にめっき触媒層をパターン状に印刷し、このめっき触媒層上にめっき層を積層する方法等が挙げられる。中でも、上記発熱体形成工程による複数の発熱体3の積層方法としては、複数の発熱体3を同一形状、かつ等間隔に配設しやすい点で、基材層2の外周面に金属めっきを施す方法が好ましい。
(Heat generation process)
In the heating element forming step, a plurality of heating elements 3 are laminated on the outer peripheral surface of the cylindrical base material layer 2. As a method of laminating the plurality of heating elements 3 in the heating element forming step, the resin matrix and the plurality of conductive particles are printed on the outer peripheral surface of the base material layer 2 by screen printing, gravure printing, gravure offset printing, screen offset printing, or the like. A method for printing a heating element-forming material containing metal, metal plating is performed on the outer peripheral surface of the base material layer 2, a resist pattern is printed on the metal plating by a known printing method, and a resist pattern is formed after patterning by etching. Examples thereof include a method of removing, a method in which a plating catalyst layer is printed in a pattern on the outer peripheral surface of the base material layer 2, and a plating layer is laminated on the plating catalyst layer. Among them, as a method of laminating the plurality of heating elements 3 by the heating element forming step, metal plating is performed on the outer peripheral surface of the base material layer 2 in that the plurality of heating elements 3 are easily arranged in the same shape and at equal intervals. The method of applying is preferred.
(電極積層工程)
 上記電極積層工程では、複数の発熱体3を並列に接続する一対の電極4を基材層2上に積層する。上記電極積層工程は、上記発熱体形成工程と同様の方法によって上記発熱体形成工程と同時に行ってもよく、上記発熱体形成工程とは別個に行ってもよい。上記電極積層工程を上記発熱体形成工程と同時に行う場合、上記電極積層工程では、例えば基材層2における複数の発熱体3の延在方向の両端縁に沿って一対の電極4を環状に印刷する。また、上記電極工程を上記発熱体形成工程とは別個に行う場合であれば、例えば基材層2における複数の発熱体3の延在方向の両端縁に沿って導電性接着剤を用いて金属箔を積層する。
(Electrode lamination process)
In the electrode stacking step, a pair of electrodes 4 that connect a plurality of heating elements 3 in parallel are stacked on the base material layer 2. The electrode stacking step may be performed simultaneously with the heating element forming step by the same method as the heating element forming step, or may be performed separately from the heating element forming step. When the electrode stacking step is performed simultaneously with the heating element forming step, in the electrode stacking step, for example, a pair of electrodes 4 are printed in a ring shape along both edges of the base layer 2 in the extending direction of the plurality of heating elements 3. To do. Further, if the electrode step is performed separately from the heating element forming step, for example, a metal is formed using a conductive adhesive along both edges of the base layer 2 in the extending direction of the plurality of heating elements 3. Laminate the foil.
(絶縁層積層工程)
 上記絶縁層積層工程における絶縁層5の積層方法としては、特に限定されるものではなく、例えばディスペンサー、コーター等を用いて積層する方法が挙げられる。
(Insulating layer lamination process)
The method for laminating the insulating layer 5 in the insulating layer laminating step is not particularly limited, and examples thereof include a method of laminating using a dispenser, a coater and the like.
(離型層積層工程)
 上記離型層積層工程では、必ずしも離型層6を絶縁層5と接合する必要はない。離型層6を絶縁層5と接合する場合、この離型層6の積層方法としては、絶縁層5の外面への離型層形成材料の塗布及び乾燥によって離型層6を積層する方法、接着剤によって離型層6を積層する方法、離型層6の主成分がフッ素樹脂である場合、加熱、電離放射線の照射、カップリング剤の塗布等により離型層6を絶縁層5と化学結合する方法等が挙げられる。
(Release layer lamination process)
In the release layer stacking step, it is not always necessary to join the release layer 6 to the insulating layer 5. When the release layer 6 is bonded to the insulating layer 5, the release layer 6 is laminated by a method of laminating the release layer 6 by applying a release layer forming material to the outer surface of the insulating layer 5 and drying. A method of laminating the release layer 6 with an adhesive. When the main component of the release layer 6 is a fluororesin, the release layer 6 and the insulating layer 5 are chemically formed by heating, irradiation with ionizing radiation, application of a coupling agent, The method of coupling | bonding etc. are mentioned.
[第二実施形態]
 図4の自己発熱型定着ローラ11は、筒状の基材層2と、基材層2に積層され、通電により発熱する線状の複数の発熱体13とを備える。複数の発熱体13は、図5に示すように、基材層2の軸方向の一端側から他端側にかけて蛇行している。また、当該自己発熱型定着ローラ11は、基材層2の軸方向の両端に複数の発熱体13を接続する一対の電極4を有する。さらに、当該自己発熱型定着ローラ11は、基材層2に積層されると共に複数の発熱体13を被覆する絶縁層5と、絶縁層5に積層され、当該自己発熱型定着ローラ11の最外層を形成する離型層6とを有する。当該自己発熱型定着ローラ11は、基材層2、複数の発熱体13、絶縁層5及び離型層6が径方向の内側から外側にこの順で積層されている。なお、当該自己発熱型定着ローラ11は、基材層2の内面側に金属、耐熱性樹脂等を主成分とする円柱状の芯金(不図示)が挿通されている。当該自己発熱型定着ローラ11は、複数の発熱体13が、隣接する一対の第1発熱体13aと、一対の第1発熱体13a以外の複数の第2発熱体13bとを有する。当該自己発熱型定着ローラ11は、複数の発熱体13が一対の第1発熱体13aと、一対の第1発熱体13a以外の複数の第2発熱体13bとを有する以外、図1の自己発熱型定着ローラ1と同様の構成を有する。そのため、以下では、複数の発熱体13についてのみ説明する。
[Second Embodiment]
The self-heating type fixing roller 11 shown in FIG. 4 includes a cylindrical base material layer 2 and a plurality of linear heating elements 13 stacked on the base material layer 2 and generating heat when energized. As shown in FIG. 5, the plurality of heating elements 13 meander from one end side to the other end side in the axial direction of the base material layer 2. The self-heating type fixing roller 11 has a pair of electrodes 4 that connect a plurality of heating elements 13 to both ends of the base material layer 2 in the axial direction. Further, the self-heating type fixing roller 11 is laminated on the base material layer 2 and covers the plurality of heating elements 13, and is laminated on the insulating layer 5, and the outermost layer of the self-heating type fixing roller 11. And a release layer 6 for forming In the self-heating type fixing roller 11, a base material layer 2, a plurality of heating elements 13, an insulating layer 5, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction. The self-heating type fixing roller 11 has a cylindrical cored bar (not shown) whose main component is a metal, a heat-resistant resin, or the like inserted through the inner surface side of the base material layer 2. In the self-heating type fixing roller 11, the plurality of heating elements 13 includes a pair of first heating elements 13a adjacent to each other and a plurality of second heating elements 13b other than the pair of first heating elements 13a. The self-heating type fixing roller 11 has the self-heating shown in FIG. 1 except that the plurality of heating elements 13 have a pair of first heating elements 13a and a plurality of second heating elements 13b other than the pair of first heating elements 13a. It has the same configuration as the mold fixing roller 1. Therefore, only the plurality of heating elements 13 will be described below.
(発熱体)
 複数の発熱体13は、基材層2の外周面に積層されている。各発熱体13は、基材層2の軸方向の一端側から他端側にかけて同一周期かつ同一の振幅で蛇行している。各発熱体13の全長は、基材層2の軸方向長さよりも長い。複数の発熱体13は、基材層2の周方向に並列に配設されており、基材層2の周方向に隣接する発熱体13同士は離間している。各発熱体13は、基材層2の軸方向と平行に延在することが好ましい。さらに、各発熱体13の幅は発熱体13の全長に亘って一定であることが好ましい。
(Heating element)
The plurality of heating elements 13 are stacked on the outer peripheral surface of the base material layer 2. Each heating element 13 meanders with the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer 2. The total length of each heating element 13 is longer than the axial length of the base material layer 2. The plurality of heating elements 13 are arranged in parallel in the circumferential direction of the base material layer 2, and the heating elements 13 adjacent in the circumferential direction of the base material layer 2 are separated from each other. Each heating element 13 preferably extends parallel to the axial direction of the base material layer 2. Furthermore, the width of each heating element 13 is preferably constant over the entire length of the heating element 13.
 各発熱体13の具体的形状としては、基材層2の軸方向の一端側から他端側にかけて蛇行している限り特に限定されるものではなく、例えば波型、鋸刃型等であってもよいが、各発熱体の形状としては、図5に示すように、基材層2の周方向に延在すると共に軸方向に並列に配設される複数の直線部17と、隣接する直線部17の一方側の端部同士及び他方側の端部同士を交互に接続する複数の接続部18とを有することが好ましい。当該自己発熱型定着ローラ11は、発熱体13がかかる構成を有することで、長さの大きい複数の発熱体13を基材層2の表面に高密度で積層することができるので、温度のばらつきをさらに抑制しつつ発熱温度の最適化を図りやすい。 The specific shape of each heating element 13 is not particularly limited as long as it is meandering from one end side to the other end side in the axial direction of the base material layer 2. For example, a wave shape, a saw blade type, etc. However, as shown in FIG. 5, the shape of each heating element includes a plurality of linear portions 17 extending in the circumferential direction of the base material layer 2 and arranged in parallel in the axial direction, and adjacent straight lines. It is preferable to have the some connection part 18 which connects the edge parts of the one side of the part 17, and the edge parts of the other side alternately. Since the self-heating type fixing roller 11 has such a configuration as the heating element 13, a plurality of heating elements 13 having a large length can be stacked on the surface of the base material layer 2 at a high density. It is easy to optimize the heat generation temperature while further suppressing the above.
 複数の発熱体13は、一対の第1発熱体13a及び複数の第2発熱体13bのみから構成されている。第1発熱体13aと第2発熱体13bとは形状が異なる。なお、第2発熱体13bの具体的形状としては、図1の発熱体3と同様とすることができる。 The plurality of heating elements 13 are composed of only a pair of first heating elements 13a and a plurality of second heating elements 13b. The first heating element 13a and the second heating element 13b have different shapes. The specific shape of the second heating element 13b can be the same as that of the heating element 3 in FIG.
 一対の第1発熱体13aの幅は複数の第2発熱体13bの幅よりも大きい。また、一対の第1発熱体13a同士の間隔は、隣接する第2発熱体13b同士の間隔よりも大きい。当該自己発熱型定着ローラ11は、例えば筒状の基材層2の外周面に樹脂マトリックス及び複数の導電性粒子を含む発熱体形成材料を曲面スクリーン印刷等の印刷によって印刷することで、又は筒状の基材層2の外周面に曲面スクリーン印刷等の印刷によってめっき触媒層をパターン状に印刷し、このめっき触媒層上にめっき層を積層することで形成される。当該自己発熱型定着ローラ11は、複数の発熱体13の印刷の継ぎ目の両側に一対の第1発熱体13aが配設され、その他の部分に複数の第2発熱体13bが配設される。当該自己発熱型定着ローラ11は、印刷の継ぎ目の両側に位置する一対の発熱体13の間隔を小さくし過ぎると、印刷の過程でこれらの発熱体13同士が短絡するおそれがある。これに対し、一対の第1発熱体13a同士の間隔を隣接する第2発熱体13b同士の間隔よりも大きくすることで、一対の第1発熱体13a同士の短絡を防止することができる。また、一対の第1発熱体13aの幅を複数の第2発熱体13bの幅よりも大きくすることで、一対の第1発熱体13a同士の間隔を比較的大きくしてもローラの表面温度の均一化を図ることができる。従って、当該自己発熱型定着ローラ11は、かかる構成によると曲面スクリーン印刷等の印刷による複数の発熱体13の形成容易化を図りつつ、ローラの表面温度の均一化を促進することができる。なお、当該自己発熱型定着ローラ11は、隣接する第1発熱体13a及び第2発熱体13bの間隔を、隣接する第2発熱体13b同士の間隔よりも大きくしてもよい。 The width of the pair of first heating elements 13a is larger than the width of the plurality of second heating elements 13b. Further, the interval between the pair of first heating elements 13a is larger than the interval between the adjacent second heating elements 13b. The self-heating type fixing roller 11 is formed by, for example, printing a heating element forming material including a resin matrix and a plurality of conductive particles on the outer peripheral surface of the cylindrical base material layer 2 by printing such as curved screen printing or the like. It is formed by printing a plating catalyst layer in a pattern on the outer peripheral surface of the base material layer 2 by printing such as curved screen printing and laminating the plating layer on the plating catalyst layer. In the self-heating type fixing roller 11, a pair of first heating elements 13 a are disposed on both sides of a printing seam of the plurality of heating elements 13, and a plurality of second heating elements 13 b are disposed on the other portions. In the self-heating type fixing roller 11, if the distance between the pair of heating elements 13 located on both sides of the printing seam is too small, the heating elements 13 may be short-circuited in the printing process. On the other hand, a short circuit between the pair of first heating elements 13a can be prevented by making the interval between the pair of first heating elements 13a larger than the interval between the adjacent second heating elements 13b. Further, by making the width of the pair of first heating elements 13a larger than the width of the plurality of second heating elements 13b, the surface temperature of the roller can be maintained even if the distance between the pair of first heating elements 13a is relatively large. Uniformity can be achieved. Therefore, according to this configuration, the self-heating type fixing roller 11 can promote uniform formation of the surface temperature of the roller while facilitating the formation of the plurality of heating elements 13 by printing such as curved screen printing. In the self-heating type fixing roller 11, the interval between the adjacent first heating elements 13a and the second heating elements 13b may be larger than the interval between the adjacent second heating elements 13b.
 複数の第2発熱体13bの平均幅に対する一対の第1発熱体13aの平均幅の比の下限としては、1.05が好ましく、1.1がより好ましい。一方、上記平均幅の比の上限としては、3が好ましく、2がより好ましい。上記平均幅の比が上記下限に満たないと、一対の第1発熱体13a及び複数の第2発熱体13bの電気抵抗の差が十分に得られず、ローラの表面温度の均一化を十分に図り難くなるおそれがある。逆に、上記平均幅の比が上記上限を超えると、第1発熱体13aの平均幅が大きくなり過ぎて、クラックが形成されても第1発熱体13aが断裂せず、電流の集中による異常発熱が生じるおそれがある。 The lower limit of the ratio of the average width of the pair of first heating elements 13a to the average width of the plurality of second heating elements 13b is preferably 1.05 and more preferably 1.1. On the other hand, the upper limit of the ratio of the average width is preferably 3, and more preferably 2. If the ratio of the average widths is less than the lower limit, a sufficient difference in electrical resistance between the pair of first heating elements 13a and the plurality of second heating elements 13b cannot be obtained, and the surface temperature of the rollers can be sufficiently uniformized. It may be difficult to plan. On the contrary, if the ratio of the average width exceeds the upper limit, the average width of the first heating element 13a becomes too large, and even if a crack is formed, the first heating element 13a is not torn and abnormalities due to current concentration. There is a risk of heat generation.
 一対の第1発熱体13a同士の間隔は、隣接する第2発熱体13b同士の間隔等に応じてローラの表面温度の均一化を図ることができるよう適宜調節することが好ましい。隣接する第2発熱体13b同士の間隔に対する一対の第1発熱体13a同士の間隔の比としては、例えば1.1以上5以下とすることができる。 The distance between the pair of first heating elements 13a is preferably adjusted as appropriate so that the surface temperature of the roller can be made uniform according to the distance between the adjacent second heating elements 13b. The ratio of the distance between the pair of first heat generating elements 13a to the distance between the adjacent second heat generating elements 13b can be set to 1.1 or more and 5 or less, for example.
 一対の第1発熱体13aの平均厚さは、複数の第2発熱体13bの平均厚さと同一であってもよく、複数の第2発熱体13bの平均厚さよりも大きくてもよい。当該自己発熱型定着ローラ11は、一対の第1発熱体13aの平均厚さと複数の第2発熱体13bの平均厚さとが同一であることで、複数の発熱体13を比較的容易に形成することができる。一方、当該自己発熱型定着ローラ11は、一対の第1発熱体13aの平均厚さが複数の第2発熱体13bの平均厚さよりも大きいことによって、一対の第1発熱体13a及び複数の第2発熱体13bの電気抵抗を調節してローラの表面温度の均一化を図りやすい。 The average thickness of the pair of first heating elements 13a may be the same as the average thickness of the plurality of second heating elements 13b or may be larger than the average thickness of the plurality of second heating elements 13b. The self-heating type fixing roller 11 forms the plurality of heating elements 13 relatively easily because the average thickness of the pair of first heating elements 13a and the average thickness of the plurality of second heating elements 13b are the same. be able to. On the other hand, the self-heating-type fixing roller 11 has a pair of first heating elements 13a and a plurality of first heating elements 13a and a plurality of second heating elements 13a having an average thickness larger than an average thickness of the plurality of second heating elements 13b. It is easy to make the surface temperature of the roller uniform by adjusting the electrical resistance of the two heating elements 13b.
 複数の第2発熱体13bの単位長さ当たりの電気抵抗(長さ抵抗率)に対する一対の第1発熱体13aの単位長さ当たりの電気抵抗(長さ抵抗率)の比の下限としては、0.2が好ましく、0.4がより好ましい。一方、上記電気抵抗の比の上限としては、0.95が好ましく、0.9がより好ましい。上記電気抵抗の比が上記下限に満たないと、一対の第1発熱体13aの発熱量と複数の第2発熱体13bの発熱量との差が大きくなり過ぎて、ローラの表面温度の均一化を図り難くなるおそれがある。逆に、上記電気抵抗の比が上記上限を超えると、一対の第1発熱体13aの発熱量と複数の第2発熱体13bの発熱量との差が十分に得られず、ローラの表面温度の均一化を図り難くなるおそれがある。 As a lower limit of the ratio of the electrical resistance per unit length (length resistivity) of the pair of first heating elements 13a to the electrical resistance per unit length (length resistivity) of the plurality of second heating elements 13b, 0.2 is preferable and 0.4 is more preferable. On the other hand, the upper limit of the electrical resistance ratio is preferably 0.95, more preferably 0.9. If the ratio of the electrical resistances is less than the lower limit, the difference between the heat generation amount of the pair of first heat generating elements 13a and the heat generation amounts of the plurality of second heat generating elements 13b becomes too large, and the surface temperature of the roller is made uniform. May be difficult to achieve. Conversely, if the ratio of the electrical resistances exceeds the upper limit, a difference between the heat generation amount of the pair of first heat generating elements 13a and the heat generation amounts of the plurality of second heat generating elements 13b cannot be obtained sufficiently, and the surface temperature of the roller It may be difficult to achieve uniformization.
 第1発熱体13aの基材層2の軸方向における直線距離に対する第1発熱体13aの長さの比としては、第2発熱体13bの基材層2の軸方向における直線距離に対する第2発熱体13bの長さの比より小さいことが好ましい。当該自己発熱型定着ローラ11は、第1発熱体13aの基材層2の上記比を、第2発熱体13bの上記比より小さくすることで、複数の第2発熱体13bに対する一対の発熱体13aの発熱量を十分に大きくしてローラの表面温度の均一化を図りやすい。第2発熱体13bの上記比に対する第1発熱体13aの上記比としては、例えば0.5以上0.95以下とすることができる。 The ratio of the length of the first heating element 13a to the linear distance in the axial direction of the base layer 2 of the first heating element 13a is the second heat generation relative to the linear distance in the axial direction of the base layer 2 of the second heating element 13b. It is preferably smaller than the length ratio of the body 13b. The self-heating type fixing roller 11 has a pair of heating elements for a plurality of second heating elements 13b by making the ratio of the base layer 2 of the first heating element 13a smaller than the ratio of the second heating element 13b. It is easy to make the surface temperature of the roller uniform by sufficiently increasing the amount of heat generated by 13a. The ratio of the first heating element 13a to the ratio of the second heating element 13b can be, for example, 0.5 or more and 0.95 or less.
 第1発熱体13aの直線部17の長さとしては、第2発熱体13bの直線部17の長さと略同一とすることができる。また、基材層2に積層される複数の発熱体13の個数としては、図1の自己発熱型定着ローラ1の複数の発熱体3の個数と同様とすることができる。なお、「第1発熱体及び第2発熱体の直線部の長さが略同一」とは、第1発熱体の直線部17の長さに対する第2発熱体の直線部17の長さの比が0.9以上1.1以下であることをいう。 The length of the straight portion 17 of the first heating element 13a can be substantially the same as the length of the straight portion 17 of the second heating element 13b. Further, the number of the plurality of heating elements 13 laminated on the base material layer 2 can be the same as the number of the plurality of heating elements 3 of the self-heating type fixing roller 1 of FIG. Note that “the lengths of the linear portions of the first heating element and the second heating element are substantially the same” means the ratio of the length of the linear portion 17 of the second heating element to the length of the linear portion 17 of the first heating element. Is 0.9 or more and 1.1 or less.
<製造方法>
 次に、当該自己発熱型定着ローラ11の製造方法について説明する。当該自己発熱型定着ローラの製造方法は、通電によって発熱する線状の複数の発熱体13を筒状の基材層2上に形成する発熱体形成工程を備える。また、当該自己発熱型定着ローラの製造方法は、基材層2上に一対の電極4を積層する電極積層工程と、上記発熱体形成工程後に基材層2上に絶縁層5を積層する絶縁層積層工程と、上記絶縁層積層工程後に、絶縁層5上に離型層6を積層する離型層積層工程とを備える。当該自己発熱型定着ローラの製造方法は、上記発熱体形成工程で、複数の発熱体13を基材層2の軸方向の一端側から他端側にかけて蛇行するように形成する。なお、上記電極積層工程、絶縁層積層工程及び離型層積層工程は、図1の自己発熱型定着ローラ1の製造方法と同様のため、説明を省略する。
<Manufacturing method>
Next, a method for manufacturing the self-heating type fixing roller 11 will be described. The manufacturing method of the self-heating type fixing roller includes a heating element forming step of forming a plurality of linear heating elements 13 that generate heat when energized on the cylindrical base material layer 2. The self-heating type fixing roller manufacturing method includes an electrode stacking process in which a pair of electrodes 4 are stacked on the base material layer 2 and an insulating process in which an insulating layer 5 is stacked on the base material layer 2 after the heating element forming process. A layer stacking step, and a release layer stacking step of stacking the release layer 6 on the insulating layer 5 after the insulating layer stacking step. In the manufacturing method of the self-heating type fixing roller, in the heating element forming step, the plurality of heating elements 13 are formed to meander from one end side to the other end side of the base layer 2 in the axial direction. The electrode stacking step, the insulating layer stacking step, and the release layer stacking step are the same as the manufacturing method of the self-heating type fixing roller 1 in FIG.
(発熱体形成工程)
 上記発熱体形成工程では、筒状の基材層2の外周面に複数の発熱体13を積層する。上記発熱体形成工程では、基材層2の外周面に隣接する一対の第1発熱体13a及び一対の第1発熱体13a以外の複数の第2発熱体13bを積層する。上記発熱体形成工程では、一対の第1発熱体13aの幅を複数の第2発熱体13bの幅よりも大きく形成し、かつ一対の第1発熱体13a同士の間隔を、隣接する第2発熱体13b同士の間隔よりも大きく形成する。上記発熱体形成工程による複数の発熱体13の積層方法としては、図1の自己発熱型定着ローラ1の製造方法における発熱体形成工程と同様の方法を採用することできる。なお、当該自己発熱型定着ローラの製造方法にあっては、上記発熱体形成工程を樹脂マトリックス及び複数の導電性粒子を含む発熱体形成材料を基材層2の外周面に印刷することで行う場合、又は基材層2の外周面にめっき触媒層をパターン状に印刷し、このめっき触媒層上にめっき層を積層することで行う場合、印刷の継ぎ目の両側に一対の第1発熱体13aを積層することで、一対の第1発熱体13a同士の短絡を容易に防止することができる。そのため、当該自己発熱型定着ローラの製造方法は、曲面スクリーン印刷等の印刷による複数の発熱体13の製造に適している。
(Heat generation process)
In the heating element forming step, a plurality of heating elements 13 are laminated on the outer peripheral surface of the cylindrical base material layer 2. In the heating element forming step, a plurality of second heating elements 13b other than the pair of first heating elements 13a and the pair of first heating elements 13a adjacent to the outer peripheral surface of the base material layer 2 are laminated. In the heating element forming step, the width of the pair of first heating elements 13a is formed larger than the width of the plurality of second heating elements 13b, and the interval between the pair of first heating elements 13a is set to be adjacent second heating elements. It is formed larger than the interval between the bodies 13b. As a method of stacking the plurality of heating elements 13 in the heating element forming step, the same method as the heating element forming step in the method of manufacturing the self-heating type fixing roller 1 in FIG. 1 can be employed. In the method of manufacturing the self-heating type fixing roller, the heating element forming step is performed by printing a heating element forming material including a resin matrix and a plurality of conductive particles on the outer peripheral surface of the base material layer 2. In this case, or when the plating catalyst layer is printed in a pattern on the outer peripheral surface of the base material layer 2 and the plating layer is laminated on the plating catalyst layer, a pair of first heating elements 13a are formed on both sides of the printing seam. By stacking, the short circuit between the pair of first heating elements 13a can be easily prevented. Therefore, the manufacturing method of the self-heating type fixing roller is suitable for manufacturing a plurality of heating elements 13 by printing such as curved screen printing.
[第三実施形態]
<自己発熱型定着ローラ>
 図6の自己発熱型定着ローラ21は、筒状の基材層2と、基材層2に積層され、通電により発熱する線状の複数の発熱体3とを備える。複数の発熱体3は、図1の自己発熱型定着ローラ1と同様、基材層2の軸方向の一端側から他端側にかけて蛇行している。また、当該自己発熱型定着ローラ21は、基材層2の軸方向の両端に複数の発熱体3を接続する一対の電極(不図示)を有する。さらに、当該自己発熱型定着ローラ21は、基材層2に積層されると共に複数の発熱体3を被覆する絶縁層22と、絶縁層22に積層される弾性体層23と、弾性体層23に積層され、当該自己発熱型定着ローラ21の最外層を形成する離型層6とを有する。当該自己発熱型定着ローラ21は、基材層2、複数の発熱体3、絶縁層22、弾性体層23及び離型層6が径方向の内側から外側にこの順で積層されている。なお、当該自己発熱型定着ローラ21は、基材層2の内面側に金属、耐熱性樹脂等を主成分とする円柱状の芯金(不図示)が挿通されている。当該自己発熱型定着ローラ21は、図1の自己発熱型定着ローラ1の絶縁層5に代えて、絶縁層22及び弾性体層23の積層体を有する以外、図1の自己発熱型定着ローラ1と同様の構成を有する。そのため、以下では絶縁層22及び弾性体層23についてのみ説明する。
[Third embodiment]
<Self-heating roller>
The self-heating type fixing roller 21 shown in FIG. 6 includes a cylindrical base material layer 2 and a plurality of linear heating elements 3 stacked on the base material layer 2 and generating heat when energized. The plurality of heating elements 3 meander from the one end side to the other end side in the axial direction of the base material layer 2 in the same manner as the self-heating type fixing roller 1 of FIG. The self-heating type fixing roller 21 has a pair of electrodes (not shown) that connect the plurality of heating elements 3 to both ends of the base material layer 2 in the axial direction. Further, the self-heating type fixing roller 21 is laminated on the base material layer 2 and covers the plurality of heating elements 3, an elastic layer 23 laminated on the insulating layer 22, and an elastic layer 23. And a release layer 6 that forms the outermost layer of the self-heating type fixing roller 21. In the self-heating type fixing roller 21, a base material layer 2, a plurality of heating elements 3, an insulating layer 22, an elastic body layer 23, and a release layer 6 are laminated in this order from the inner side to the outer side in the radial direction. In the self-heating type fixing roller 21, a cylindrical cored bar (not shown) whose main component is a metal, a heat resistant resin, or the like is inserted on the inner surface side of the base material layer 2. The self-heating type fixing roller 21 has a laminated body of an insulating layer 22 and an elastic layer 23 in place of the insulating layer 5 of the self-heating type fixing roller 1 of FIG. It has the same configuration as. Therefore, only the insulating layer 22 and the elastic body layer 23 will be described below.
(絶縁層)
 絶縁層22は耐熱性及び絶縁性を有する。絶縁層22は、基材層2の外周面上において複数の発熱体3間に充填されると共に、複数の発熱体3の外周面を被覆する。絶縁層22の主成分としては合成樹脂が挙げられる。上記合成樹脂としては、図1の自己発熱型定着ローラ1の絶縁層5の主成分として挙げた合成樹脂が挙げられる。また、絶縁層22の平均厚さとしては、図1の自己発熱型定着ローラ1の絶縁層5と同様とすることができる。
(Insulating layer)
The insulating layer 22 has heat resistance and insulating properties. The insulating layer 22 is filled between the plurality of heating elements 3 on the outer peripheral surface of the base material layer 2 and covers the outer peripheral surfaces of the plurality of heating elements 3. The main component of the insulating layer 22 is a synthetic resin. Examples of the synthetic resin include the synthetic resins mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG. The average thickness of the insulating layer 22 can be the same as that of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
(弾性体層)
 弾性体層23は耐熱性及び弾性を有する。弾性体層23の主成分としては、ゴムが挙げられる。上記ゴムとしては、図1の自己発熱型定着ローラ1の絶縁層5の主成分として挙げたゴムが挙げられる。
(Elastic layer)
The elastic body layer 23 has heat resistance and elasticity. An example of the main component of the elastic layer 23 is rubber. Examples of the rubber include the rubbers mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG.
 弾性体層23の平均厚さの下限としては、10μmが好ましく、20μmがより好ましい。一方、弾性体層23の平均厚さの上限としては、300μmが好ましく、280μmがより好ましい。上記平均厚さが上記下限に満たないと、当該自己発熱型定着ローラ21の弾性が十分に向上せず、当該自己発熱型定着ローラ21を印刷用紙等に十分に圧接し難くなり、画像の表面性を十分に向上することができないおそれがある。逆に、上記平均厚さが上記上限を超えると、弾性体層23が不要に厚くなり、当該自己発熱型定着ローラ21の予熱に要する時間が長くなるおそれがある。 The lower limit of the average thickness of the elastic layer 23 is preferably 10 μm and more preferably 20 μm. On the other hand, the upper limit of the average thickness of the elastic layer 23 is preferably 300 μm and more preferably 280 μm. If the average thickness is less than the lower limit, the elasticity of the self-heating type fixing roller 21 is not sufficiently improved, and the self-heating type fixing roller 21 is not sufficiently pressed against the printing paper or the like, and the surface of the image There is a possibility that the property cannot be improved sufficiently. On the other hand, if the average thickness exceeds the upper limit, the elastic layer 23 becomes unnecessarily thick, and the time required for preheating the self-heating type fixing roller 21 may be increased.
 当該自己発熱型定着ローラ21は、絶縁層22及び弾性体層23を有するので、絶縁性及び弾性を容易かつ確実に向上することができ、ひいては画像の表面性をより的確に向上することができる。 Since the self-heating type fixing roller 21 has the insulating layer 22 and the elastic layer 23, the insulating property and elasticity can be improved easily and reliably, and the surface property of the image can be improved more accurately. .
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
 例えば、当該自己発熱型定着ローラは、一対の第1発熱体及び複数の第2発熱体を有する場合に、図4の絶縁層5に代えて、図6の絶縁層22及び弾性体層23の積層体を用いてもよい。 For example, when the self-heating type fixing roller has a pair of first heating elements and a plurality of second heating elements, the insulating layer 22 and the elastic layer 23 in FIG. A laminate may be used.
 図7、図8、図9は本発明の他の実施形態に係る自己発熱型定着ローラの模式的断面図である。それぞれ前述の第一実施形態、第二実施形態、第三実施形態において、発熱体の数を変更した形態を示す。 7, 8, and 9 are schematic cross-sectional views of a self-heating type fixing roller according to another embodiment of the present invention. In the first embodiment, the second embodiment, and the third embodiment, respectively, the number of heating elements is changed.
 また、当該自己発熱型定着ローラは、上記基材層と芯金との間に断熱層を有していてもよい。この断熱層は、複数の発熱体から発生する熱が芯金側に逃げることを抑制し、当該自己発熱型定着ローラのエネルギー効率を向上する。この断熱層は、合成樹脂又はゴムを主成分とするマトリックスと、このマトリックス中に含まれる複数の気孔とを有することが好ましい。さらに、この断熱層は、弾性を有することが好ましい。 The self-heating type fixing roller may have a heat insulating layer between the base material layer and the cored bar. This heat insulation layer suppresses the heat generated from the plurality of heating elements from escaping to the core metal side, and improves the energy efficiency of the self-heating type fixing roller. The heat insulating layer preferably has a matrix mainly composed of a synthetic resin or rubber and a plurality of pores contained in the matrix. Furthermore, it is preferable that this heat insulation layer has elasticity.
 上記断熱層のマトリックスの主成分とされるゴムとしては耐熱性を有するものであれば特に限定されないが、弾性を有することが好ましく、耐熱性に優れるゴム(耐熱性ゴム)が特に好ましい。この耐熱性ゴムとしては、図1の自己発熱型定着ローラ1の絶縁層5の主成分として挙げたゴムが挙げられる。また、上記合成樹脂としては、図1の自己発熱型定着ローラ1の絶縁層5の主成分として挙げた合成樹脂が挙げられる。 The rubber as the main component of the matrix of the heat insulating layer is not particularly limited as long as it has heat resistance, but preferably has elasticity, and rubber (heat resistant rubber) having excellent heat resistance is particularly preferable. Examples of the heat resistant rubber include the rubbers listed as the main component of the insulating layer 5 of the self-heating type fixing roller 1 of FIG. Examples of the synthetic resin include the synthetic resins mentioned as the main component of the insulating layer 5 of the self-heating type fixing roller 1 shown in FIG.
 また、上記断熱層のマトリックス中の気孔は、発泡剤、中空フィラー等によって形成することができる。中空フィラーとしては、例えば有機マイクロバルーン、中空ガラスビーズ等を使用することができる。 Further, the pores in the matrix of the heat insulating layer can be formed by a foaming agent, a hollow filler or the like. Examples of the hollow filler that can be used include organic microballoons and hollow glass beads.
 上記発泡剤としては、加熱することにより分解して、例えば窒素ガス、炭酸ガス、一酸化炭素、アンモニアガス等を発生するものであり、有機発泡剤又は無機発泡剤が使用できる。 As the foaming agent, it decomposes by heating to generate, for example, nitrogen gas, carbon dioxide gas, carbon monoxide, ammonia gas, etc., and an organic foaming agent or an inorganic foaming agent can be used.
 有機発泡剤としては、例えばアゾジカルボンアミド(A.D.C.A)、アゾビスイソブチロニトリル(A.I.B.N)等のアゾ系発泡剤、例えばジニトロソペンタメチレンテトラミン(D.P.T)、N,N’ジニトロソ-N,N’-ジメチルテレフタルアミド(D.N.D.M.T.A)等のニトロソ系発泡剤、例えばP-トルエンスルホニルヒドラジド(T.S.H)、P,P-オキシビスベンゼンスルホニルヒドラジド(O.B.S.H)、ベンゼンスルホニルヒドラジド(B.S.H)等のヒドラジド系、他にはトリヒドラジノトリアジン(T.H.T)、アセトン-P-スルホニルヒドラゾンなどが例示され、これらを単独で、又は二種類以上合わせて使用できる。 Examples of the organic blowing agent include azo blowing agents such as azodicarbonamide (A.D.C.A) and azobisisobutyronitrile (A.I.B.N), such as dinitrosopentamethylenetetramine (D P.T), N, N′dinitroso-N, N′-dimethylterephthalamide (DNDMTA), and the like, for example, P-toluenesulfonyl hydrazide (TS H), P, P-oxybisbenzenesulfonyl hydrazide (O.B.S.H), benzenesulfonyl hydrazide (B.S.H), and other hydrazides, and trihydrazinotriazine (T.H. T), acetone-P-sulfonylhydrazone and the like are exemplified, and these can be used alone or in combination of two or more.
 また、無機発泡剤としては、例えば重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、ホウ化水素ナトリウム、ソジウムボロンハイドライド、シリコンオキシハイドライド等が例示される。一般的に無機発泡剤は、ガス発生速度が有機発泡剤より緩慢でありガス発生の調整が難しい。そのため、化学発泡剤としては、有機発泡剤が好ましい。 Examples of the inorganic foaming agent include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, sodium borohydride, sodium boron hydride, silicon oxyhydride and the like. In general, an inorganic foaming agent has a slower gas generation rate than an organic foaming agent, and adjustment of gas generation is difficult. Therefore, an organic foaming agent is preferable as the chemical foaming agent.
 上記有機マイクロバルーンとは、中空マイクロスフィア(Microsphere)の1種であり、例えばフェノール樹脂等の熱硬化性樹脂、ポリ塩化ビニリデン等の熱可塑性樹脂、ゴムなどの有機高分子材料で形成された中空の球状微粒子である。上記断熱層が有機マイクロバルーンを含有することで、この断熱層の柔軟性、耐熱性及び寸法安定性が向上する。この有機マイクロバルーンは球状であるため、断熱層を形成する組成物に含有させても応力の異方性が生じ難い。従って、有機マイクロバルーンは上記断熱層の硬度及び断熱性の均一性を低下させ難い。また、有機マイクロバルーンとしてフェノール樹脂等の熱硬化性樹脂を含有する耐熱性有機マイクロバルーンを用いることで、上記断熱層の耐熱性がより向上する。なお、上記有機マイクロバルーンとしては市販品を用いることができる。 The organic microballoon is a kind of hollow microsphere (Microsphere), for example, a thermosetting resin such as phenol resin, a thermoplastic resin such as polyvinylidene chloride, and a hollow formed by an organic polymer material such as rubber. The spherical fine particles. When the said heat insulation layer contains an organic microballoon, the softness | flexibility of this heat insulation layer, heat resistance, and dimensional stability improve. Since the organic microballoon has a spherical shape, stress anisotropy hardly occurs even when the organic microballoon is contained in the composition forming the heat insulating layer. Therefore, it is difficult for the organic microballoon to reduce the hardness and uniformity of the heat insulation layer. Moreover, the heat resistance of the said heat insulation layer improves more by using the heat resistant organic microballoon containing thermosetting resins, such as a phenol resin, as an organic microballoon. In addition, a commercial item can be used as said organic microballoon.
 上記有機マイクロバルーンの平均径は、通常数μm以上数百μm以下であり、5μm以上200μm以下が好ましい。 The average diameter of the organic microballoon is usually from several μm to several hundred μm, and preferably from 5 μm to 200 μm.
 上記断熱層の気孔率の下限としては、5%が好ましく、10%がより好ましく、15%がさらに好ましい。一方、上記断熱層の気孔率の上限としては、60%が好ましく、50%がより好ましく、45%がさらに好ましい。上記気孔率が上記下限に満たないと、断熱層の断熱性が不十分となるおそれがある。逆に、上記気孔率が上記上限を超えると、断熱層の強度が不十分となるおそれがある。なお、気孔率とは、断面を顕微鏡観察した際の面積率として測定される値である。 The lower limit of the porosity of the heat insulating layer is preferably 5%, more preferably 10%, and even more preferably 15%. On the other hand, the upper limit of the porosity of the heat insulating layer is preferably 60%, more preferably 50%, and even more preferably 45%. If the porosity is less than the lower limit, the heat insulating property of the heat insulating layer may be insufficient. Conversely, when the porosity exceeds the upper limit, the strength of the heat insulating layer may be insufficient. The porosity is a value measured as an area ratio when a cross section is observed with a microscope.
 上記断熱層の平均厚さの下限としては、20μmが好ましく、100μmがより好ましい。一方、上記断熱層の平均厚さの上限としては、500mmが好ましく、200mmがより好ましい。上記平均厚さが上記下限に満たないと、断熱層の断熱性が不十分となり、当該自己発熱型定着ローラのエネルギー効率を十分に高めることができないおそれがある。逆に、上記平均厚さが上記上限を超えると、当該自己発熱型定着ローラの大きさが不要に増加するおそれがある。 The lower limit of the average thickness of the heat insulating layer is preferably 20 μm, more preferably 100 μm. On the other hand, the upper limit of the average thickness of the heat insulating layer is preferably 500 mm, and more preferably 200 mm. If the average thickness is less than the lower limit, the heat insulating property of the heat insulating layer becomes insufficient, and the energy efficiency of the self-heating type fixing roller may not be sufficiently increased. Conversely, if the average thickness exceeds the upper limit, the size of the self-heating type fixing roller may increase unnecessarily.
 上記断熱層は、上記基材層と接合されずに独立して回転できるものでもよいが、接合されていることが好ましい。このように、上記断熱層と基材層とが接合されることで、断熱層の外周面の基材層との摩擦による摩耗が防止でき、当該自己発熱型定着ローラの耐久性が向上する。 The heat insulating layer may be capable of rotating independently without being bonded to the base material layer, but is preferably bonded. Thus, by joining the heat insulating layer and the base material layer, wear due to friction with the base material layer on the outer peripheral surface of the heat insulating layer can be prevented, and the durability of the self-heating type fixing roller is improved.
 各発熱体は、上記基材層の軸方向の一端側から他端側にかけて同一周期かつ同一の振幅で蛇行していることが好ましいが、各発熱体は、必ずしも同一周期及び同一振幅で蛇行していなくてもよい。 Each heating element preferably meanders at the same period and the same amplitude from one end side to the other end side in the axial direction of the base material layer, but each heating element does not necessarily meander at the same period and the same amplitude. It does not have to be.
 当該自己発熱型定着ローラは、筒状の基材層及びこの基材層に積層され、基材層の軸方向の一端側から他端側にかけて蛇行する複数の発熱体を有する限り、必ずしも基材層の軸方向の両端に複数の発熱体を接続する一対の電極を有しなくてもよい。当該自己発熱型定着ローラは、例えば複数の発熱体の一方側及び他方側がそれぞれ複数の電極に接続されていてもよく、電極自体を有しなくてもよい。 The self-heating type fixing roller is not necessarily a base material as long as it has a cylindrical base material layer and a plurality of heating elements laminated on the base material layer and meandering from one end side to the other end side in the axial direction of the base material layer. It is not necessary to have a pair of electrodes that connect a plurality of heating elements to both ends of the layer in the axial direction. In the self-heating type fixing roller, for example, one side and the other side of the plurality of heating elements may be connected to the plurality of electrodes, respectively, or may not have the electrodes themselves.
 上記実施形態では、基材層の外周側に複数の発熱体が積層される構成について説明したが、当該自己発熱型定着ローラは、基材層の内周側に複数の発熱体が積層されていてもよい。また、当該自己発熱型定着ローラは、上述の芯金、絶縁層及び離型層を有しなくてもよい。さらに、当該自己発熱型定着ローラは、層間の接着強度を向上するために接着剤層やプライマー層が設けられてもよい。 In the above embodiment, the configuration in which a plurality of heating elements are stacked on the outer peripheral side of the base material layer has been described. However, the self-heating type fixing roller has a plurality of heating elements stacked on the inner peripheral side of the base material layer. May be. In addition, the self-heating type fixing roller may not have the above-described cored bar, insulating layer, and release layer. Further, the self-heating type fixing roller may be provided with an adhesive layer or a primer layer in order to improve the adhesive strength between the layers.
 当該自己発熱型定着ローラは、一対の第1発熱体と、複数の第2発熱体とを有する場合、これらの第1発熱体及び第2発熱体以外の発熱体をさらに有していてもよい。 When the self-heating type fixing roller has a pair of first heating elements and a plurality of second heating elements, the fixing roller may further include heating elements other than the first heating elements and the second heating elements. .
 当該自己発熱型定着ローラの製造方法における上述の発熱体形成工程としては、例えば基材フィルム上に複数の発熱体を並列かつ基材フィルムの一端側から他端側にかけて蛇行するように積層したうえ、この基材フィルムの発熱体の並列方向両側における発熱体非積層領域を接続する構成を採用することも可能である。この場合、基材フィルムの両端側に上述の一対の第1発熱体を積層し、この一対の第1発熱体の間に複数の第2発熱体を積層することで、基材フィルムの継ぎ目の間隔を比較的大きくすることができるので、製造容易化を図りつつ、ローラの表面温度の均一化を促進することができる。 As the heating element forming step in the method for manufacturing the self-heating type fixing roller, for example, a plurality of heating elements are stacked on the base film so as to meander in parallel and from one end side to the other end side of the base film. It is also possible to adopt a configuration in which the heating element non-stacked regions on both sides in the parallel direction of the heating element of the base film are connected. In this case, by laminating the above-described pair of first heating elements on both ends of the substrate film, and laminating a plurality of second heating elements between the pair of first heating elements, the seam of the substrate film Since the interval can be made relatively large, it is possible to facilitate the uniform surface temperature of the roller while facilitating the production.
 1,11,21 自己発熱型定着ローラ
 2 基材層
 3,13発熱体
 13a 第1発熱体
 13b 第2発熱体
 4 電極
 5,22 絶縁層
 6 離型層
 7,17 直線部
 8,18 接続部
 23 弾性体層
DESCRIPTION OF SYMBOLS 1,11,21 Self-heating type fixing roller 2 Base material layer 3,13 Heat generating body 13a 1st heat generating body 13b 2nd heat generating body 4 Electrode 5,22 Insulating layer 6 Release layer 7,17 Linear part 8,18 Connection part 23 Elastic layer

Claims (5)

  1.  筒状の基材層と、この基材層に積層され、通電により発熱する線状の複数の発熱体とを備え、
     上記複数の発熱体が上記基材層の軸方向の一端側から他端側にかけて蛇行している自己発熱型定着ローラ。
    A cylindrical base material layer and a plurality of linear heating elements that are stacked on the base material layer and generate heat when energized,
    A self-heating type fixing roller in which the plurality of heating elements meander from one end side to the other end side in the axial direction of the base material layer.
  2.  上記複数の発熱体が上記基材層の周方向に延在し、その各発熱体は軸方向に並列に配設される複数の直線部と、隣接する直線部の一方側の端部同士及び他方側の端部同士を交互に接続する複数の接続部とを有する請求項1に記載の自己発熱型定着ローラ。 The plurality of heating elements extend in the circumferential direction of the base material layer, and each heating element includes a plurality of linear portions arranged in parallel in the axial direction, ends on one side of adjacent linear portions, and The self-heating type fixing roller according to claim 1, further comprising a plurality of connecting portions that alternately connect the other end portions.
  3.  上記基材層の軸方向の両端に上記複数の発熱体を接続する一対の電極を有する請求項1又は請求項2に記載の自己発熱型定着ローラ。 The self-heating type fixing roller according to claim 1 or 2, further comprising a pair of electrodes that connect the plurality of heating elements to both ends of the base material layer in the axial direction.
  4.  上記複数の発熱体が、隣接する一対の第1発熱体と、一対の第1発熱体以外の複数の第2発熱体とを有し、
     上記第1発熱体の幅が上記第2発熱体の幅よりも大きく、
     上記一対の第1発熱体同士の間隔が隣接する第2発熱体同士の間隔よりも大きい請求項1から請求項3のいずれか1項に記載の自己発熱型定着ローラ。
    The plurality of heating elements include a pair of adjacent first heating elements and a plurality of second heating elements other than the pair of first heating elements,
    The width of the first heating element is larger than the width of the second heating element;
    The self-heating type fixing roller according to any one of claims 1 to 3, wherein an interval between the pair of first heating elements is larger than an interval between adjacent second heating elements.
  5.  通電によって発熱する線状の複数の発熱体を筒状の基材層上に形成する発熱体形成工程を備え、
     上記発熱体形成工程で、上記複数の発熱体を上記基材層の軸方向の一端側から他端側にかけて蛇行するように形成する自己発熱型定着ローラの製造方法。
    A heating element forming step of forming a plurality of linear heating elements that generate heat by energization on a cylindrical base material layer,
    In the heating element forming step, the plurality of heating elements are formed so as to meander from one end side to the other end side in the axial direction of the base material layer.
PCT/JP2017/028295 2016-10-17 2017-08-03 Self-heating fixing roller and method for manufacturing self-heating fixing roller WO2018074036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203766A JP2019215384A (en) 2016-10-17 2016-10-17 Self-heating type fixation roller and method for manufacturing self-heating type fixation roller
JP2016-203766 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074036A1 true WO2018074036A1 (en) 2018-04-26

Family

ID=62019330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028295 WO2018074036A1 (en) 2016-10-17 2017-08-03 Self-heating fixing roller and method for manufacturing self-heating fixing roller

Country Status (2)

Country Link
JP (1) JP2019215384A (en)
WO (1) WO2018074036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004977A (en) * 2019-06-26 2021-01-14 住友理工株式会社 Fixing member for electrophotographic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150580A (en) * 1979-05-15 1980-11-22 Sakaguchi Electric Heaters Hollow roll heater
JPH09146400A (en) * 1995-11-27 1997-06-06 Ricoh Co Ltd Fixing roller
JPH09197878A (en) * 1996-01-23 1997-07-31 Ricoh Co Ltd Fixing heating roller
JP2000340336A (en) * 1999-05-26 2000-12-08 Sharp Corp Roll-shaped heater and fixing device using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150580A (en) * 1979-05-15 1980-11-22 Sakaguchi Electric Heaters Hollow roll heater
JPH09146400A (en) * 1995-11-27 1997-06-06 Ricoh Co Ltd Fixing roller
JPH09197878A (en) * 1996-01-23 1997-07-31 Ricoh Co Ltd Fixing heating roller
JP2000340336A (en) * 1999-05-26 2000-12-08 Sharp Corp Roll-shaped heater and fixing device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004977A (en) * 2019-06-26 2021-01-14 住友理工株式会社 Fixing member for electrophotographic apparatus

Also Published As

Publication number Publication date
JP2019215384A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP5109168B2 (en) Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus
CN102262384B (en) Fixing device, image forming apparatus, and heat generation belt
JP2009109997A (en) Image fixing device
KR101820099B1 (en) resistive heat generating material, heating member and fusing device adopting the same
JP2007109640A (en) Planar heating element and manufacturing method of the same
US10216130B2 (en) Heating rotating member and heating apparatus
JP6029361B2 (en) Method for manufacturing a fuser member
US10503105B2 (en) Fixing apparatus having a tubular film that includes a low resistance layer formed in a heat generating layer
WO2018074036A1 (en) Self-heating fixing roller and method for manufacturing self-heating fixing roller
US9037063B2 (en) Method of forming thin resistive heating layer, heating member including the thin resistive heating layer, and fusing unit including the heating member
WO2017026254A1 (en) Self-heating fuser roller
US9002253B2 (en) Heating member and fusing device including the same
WO2016117205A1 (en) Self-heating fuser roller
US7263324B2 (en) Heat roller, fixing apparatus
JP2017037154A (en) Self-heating type fixing roller
JP5564112B2 (en) Digital image transfer belt and production method
JP6548502B2 (en) Fixing roller and fixing device
JP6229083B2 (en) Heat fixing belt, image fixing device, and method for manufacturing heat fixing belt
JP2017173453A (en) Heat-generating fixation belt and image-fixing device including the same
JP5953973B2 (en) Planar heating element and image fixing apparatus having the same
JP4298404B2 (en) Manufacturing method of fixing member
JP2006259724A (en) Heat roller and fixing apparatus
JP2020101700A (en) Thin film heater, fixation device and image formation device
JP2020016770A (en) Heating body
JP2011141334A (en) Fixing roller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP