WO2018072527A1 - 三维显示装置 - Google Patents

三维显示装置 Download PDF

Info

Publication number
WO2018072527A1
WO2018072527A1 PCT/CN2017/095601 CN2017095601W WO2018072527A1 WO 2018072527 A1 WO2018072527 A1 WO 2018072527A1 CN 2017095601 W CN2017095601 W CN 2017095601W WO 2018072527 A1 WO2018072527 A1 WO 2018072527A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
dimensional display
light
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2017/095601
Other languages
English (en)
French (fr)
Inventor
王维
杨亚锋
陈小川
高健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/744,339 priority Critical patent/US10466498B2/en
Publication of WO2018072527A1 publication Critical patent/WO2018072527A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/006Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to produce indicia, symbols, texts or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a three-dimensional display device.
  • Three-Dimensional (3D) display technology has attracted much attention. It can make the picture stereoscopic.
  • the basic principle is to use the left and right human eyes to receive different pictures separately, and the received image information is processed by the brain. Superimposed and regenerated to form an image with a stereoscopic effect.
  • the embodiment of the present disclosure provides a three-dimensional display device for solving the problem that the monocular focus position and the binocular convergence position are inconsistent when viewing the three-dimensional display device.
  • An embodiment of the present disclosure provides a three-dimensional display device including: a plurality of sub-pixels and a plurality of grating structures in one-to-one correspondence with the plurality of sub-pixels; each of the grating structures is configured to emit light in a specified direction, so that The emitted light of the three-dimensional display device converges into at least two viewpoints in the left eye of the observer, and converges into at least two viewpoints in the right eye of the observer.
  • the three-dimensional display device includes: a liquid crystal display panel and a backlight module facing away from a side of the light emitting side of the liquid crystal display panel; wherein the liquid crystal display panel includes the a plurality of sub-pixels, the backlight module includes: at least one waveguide portion disposed in a stack and a collimated light source at a light incident surface of each of the waveguide portions; each of the grating structures is located at each of the waveguide portions facing the liquid crystal One side of the display panel.
  • each of the grating structures satisfies: Where k 0 is the wave vector, ⁇ is the wavelength of the outgoing light, n 1 is the refractive index of the waveguide portion, n 2 is the refractive index of air, ⁇ 1 is the reflection angle at which the light is totally reflected in the waveguide portion, and ⁇ 2 is the outgoing light of the outgoing light.
  • each of the The waveguide portion is a first substrate having a waveguide function.
  • the number of the first substrates is one; the collimated light source emits white light; each of the grating structures is located at the first substrate facing the One side of the LCD panel.
  • the number of the first substrates is three; the collimated light sources located at the light incident surfaces of the different first substrates respectively emit light of different colors; Each of the grating structures is located on a side of the first substrate illuminated by the collimated light source of the same color as the corresponding sub-pixel facing the liquid crystal display panel.
  • each of the grating structures has a thickness ranging from 100 nm to 700 nm.
  • each of the waveguide portions is a waveguide layer; the backlight module further includes: a waveguide layer located farthest from the liquid crystal display panel A second substrate on one side of the liquid crystal display panel.
  • the number of the waveguide layers is one layer; the collimated light source emits white light; each of the grating structures is located at the waveguide layer facing the liquid crystal One side of the display panel.
  • the number of the waveguide layers is three; the collimated light sources located at the light incident surfaces of the different waveguide layers respectively emit different colors of light;
  • the grating structure is located on a side of the waveguide layer illuminated by the collimated light source of the same color as the corresponding sub-pixel facing the liquid crystal display panel.
  • the backlight module further includes: a buffer layer located on a side of each of the waveguide layers facing the second substrate.
  • the refractive index of the waveguide layer ranges from 1.7 to 2.
  • the thickness of the waveguide layer ranges from 100 nm to 100 ⁇ m.
  • each of the grating structures has a thickness ranging from 100 nm to 500 nm.
  • the three-dimensional display device includes: a liquid crystal display panel and a backlight module facing away from a side of the light emitting side of the liquid crystal display panel;
  • the liquid crystal display panel includes the plurality of sub-pixels, and the backlight module is a direct-type collimated backlight;
  • each of the grating structures is located between the backlight module and the liquid crystal display panel; or each of the grating structures Located in the interior of the liquid crystal display panel; or each of the grating structures is located on a light exiting side of the liquid crystal display panel.
  • an angle between light emitted by the backlight module and a plane of the liquid crystal display panel ranges from 40° to 80°.
  • each of the grating structures has a thickness ranging from 100 nm to 700 nm.
  • the line of sight of at least two viewpoints of the left eye converges to the same position as the line of sight of at least two viewpoints of the right eye.
  • the above three-dimensional display device includes a plurality of sub-pixels and a plurality of grating structures in one-to-one correspondence with the respective sub-pixels; each of the grating structures is configured to emit light in a specified direction, so that the emitted light of the three-dimensional display device is The left eye converges into at least two viewpoints, and the right eye converges into at least two viewpoints, so that the three-dimensional display device can realize single-eye focusing three-dimensional display, so that the viewing distance of the three-dimensional display device can be designed to be three-dimensionally displayed with parallax When the viewing distance is equal, the focus position of the single eye and the convergence position of the binocular line of sight are ensured, thereby preventing the viewer from feeling dizzy when viewing the three-dimensional display device.
  • FIG. 1A is a schematic diagram of a three-dimensional picture in a real environment viewed by a human eye
  • 1B is a schematic diagram of a display screen of a three-dimensional display device viewed by a human eye
  • FIG. 2A is a schematic diagram of a corresponding relationship between each grating structure and each viewpoint when the three-dimensional display device provided by the embodiment of the present disclosure is applied to three-dimensional display of near-eye;
  • FIG. 2B is a diagram of the three-dimensional display device provided by the embodiment of the present disclosure when applied to three-dimensional display of near-eye The second schematic diagram of the correspondence between the gate structure and each viewpoint;
  • 2C is a schematic diagram of a corresponding relationship between each grating structure and each viewpoint when the three-dimensional display device is applied to the far-field three-dimensional display according to the embodiment of the present disclosure
  • 2D is a second schematic diagram of a corresponding relationship between each grating structure and each viewpoint when the three-dimensional display device is applied to the far-field three-dimensional display according to an embodiment of the present disclosure
  • FIG. 3A is a schematic diagram showing a distribution of light emitted by a three-dimensional display device in a view of a human eye
  • FIG. 3B is a second schematic diagram showing the distribution of the light emitted by the three-dimensional display device in the eyes of the human eye according to the embodiment of the present disclosure
  • FIG. 3C is a third schematic diagram showing the distribution of the light emitted by the three-dimensional display device in the eyes of the human eye according to the embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 5 is a second schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 6 is a third schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 7 is a fourth schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an optical path of a waveguide grating in a three-dimensional display device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a grating structure at different positions in a three-dimensional display device according to an embodiment of the present disclosure being aggregated into two viewpoints in a human eye;
  • FIG. 10 is a graph showing a change in an exit angle of an outgoing light of a three-dimensional display device according to a position of a grating structure according to an embodiment of the present disclosure
  • FIG. 11 is a fifth schematic structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 12 is a sixth structural diagram of a three-dimensional display device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an optical path of a grating structure in a three-dimensional display device according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a human eye viewing a display screen of a three-dimensional display device according to an embodiment of the present disclosure.
  • the focus position of the single eye and the convergence position of the binocular line of sight are identical, for example, the focus position of the eye 01 and the convergence position of the binocular line of sight are both at the position F.
  • the focus position of the single eye is located on the screen M of the 3D display device, and the binocular line of sight is concentrated due to the parallax to a certain distance from the screen of the 3D display device.
  • the screen for example, at position F'. Since the focus position of the single eye and the convergence position of the binocular line of sight are inconsistent, the viewer may feel dizzy.
  • a three-dimensional display device includes: a plurality of sub-pixels 1 and a plurality of grating structures 2 corresponding to each sub-pixel 1 in one-to-one;
  • FIG. 2A - FIG. 2D R, G, and B respectively represent one sub-pixel 1;
  • FIG. 2A - FIG. 2D are exemplified by the sub-pixels R, G, and B which respectively display red, green, and blue, and of course, the above-described three-dimensional display device provided by the embodiment of the present disclosure It can also be applied to a monochrome display, or it can also include sub-pixels displaying other colors, such as yellow (Y), etc., which are not limited herein;
  • Each of the grating structures 2 is configured to emit light in a specified direction, so that the emitted light of the three-dimensional display device is concentrated into at least two viewpoints in the left eye and at least two viewpoints in the right eye;
  • FIG. 2A - FIG. 2D are three-dimensional display devices The outgoing light is condensed into two viewpoints in the left and right eyes, respectively.
  • the three-dimensional display device provided by the embodiment of the present disclosure provides a grating structure corresponding to each sub-pixel, and each grating structure can emit light in a specified direction, so that the emitted light of the three-dimensional display device can be concentrated into at least two in the left eye.
  • the viewpoints are gathered into at least two viewpoints in the right eye, so that single-eye focusing three-dimensional display can be realized, so that the monocular focusing can be ensured when the viewing distance of the three-dimensional display device is designed to be equal to the viewing distance of the parallax three-dimensional display.
  • the position of the convergence of the binocular line of sight is the same, that is, the line of sight of the at least two viewpoints of the left eye and the line of sight of the at least two viewpoints of the right eye are concentrated to the same position, thereby preventing the viewer from viewing the three-dimensional view.
  • the sensation of vertigo is generated when the device is displayed; and the above-described three-dimensional display device provided by the embodiment of the present disclosure improves the quality of the display screen, the thinning of the display device, and the cost reduction in the virtual reality/augmented reality (VR/AR) display application. In other respects, they all have obvious advantages.
  • the above-described three-dimensional display device provided by the embodiments of the present disclosure may be applied to a near eye.
  • the three-dimensional display device, that is, the head-mounted three-dimensional display device; or the three-dimensional display device provided by the embodiment of the present disclosure may also be applied to the far-field three-dimensional display device, that is, the viewer is located at a certain distance from the three-dimensional display device; limited.
  • the above-mentioned three-dimensional display device provided by the embodiment of the present disclosure is applied to the above two application forms, the specific implementation manner in which the emitted light of the three-dimensional display device is aggregated into at least two viewpoints in the left eye and the right eye respectively will be described in detail.
  • the light emitted by the three grating structures 2 corresponding to the first three adjacent sub-pixels RGB is respectively concentrated on the viewpoint a
  • the three adjacent three sub-pixels RGB correspond to the three grating structures 2
  • the emitted light is respectively concentrated on the viewpoint b
  • the light emitted by the three grating structures 2 corresponding to the three adjacent sub-pixels RGB of the third group is respectively concentrated on the viewpoint a
  • the three gratings corresponding to the three adjacent sub-pixels RGB of the fourth group The light emitted by the structure 2 converges separately at the viewpoint b, and so on; it is similar for each row of sub-pixels 1 on the right half side.
  • the first row of sub-pixels 1 is For example, in the order from left to right, the light emitted by the two grating structures 2 corresponding to the two adjacent sub-pixels RR is respectively concentrated to the viewpoints a and b, and the two grating structures 2 corresponding to the two adjacent sub-pixels GG are emitted.
  • the light is respectively concentrated to the viewpoints a and b, the light emitted by the two grating structures 2 corresponding to the two adjacent sub-pixels BB is respectively concentrated to the viewpoints a and b, and so on; for each sub-pixel 1 of the right half side
  • the words are similar.
  • the three-dimensional display device provided by the embodiment of the present disclosure is applied to the near-eye three-dimensional display device
  • the light emitted by each grating structure is aggregated into a plurality of viewpoints, and is not limited to the form shown in FIG. 2A and FIG. 2B, and may be applied to other The aggregation mode and the arrangement of any other sub-pixels, but it is necessary to ensure that the light condensed at each viewpoint can contain three colors of RGB light, which is not limited herein.
  • the emitted light of the three-dimensional display device is concentrated into two viewpoints in the left eye and merged into two in the right eye. Viewpoints.
  • FIG. 2C and FIG. 2D For example, in order to facilitate the design of each sub-pixel and corresponding grating structure and the simplification of the scheme, as shown in FIG.
  • the color film layer for each row of sub-pixels 1, in order from left to right, adjacent four
  • the light emitted by the four grating structures 2 corresponding to the sub-pixels RRRR is respectively concentrated to the viewpoints a, b, c, and d
  • the light emitted by the four grating structures 2 corresponding to the adjacent four sub-pixels GGGG is respectively concentrated to the viewpoints a and b, c and d
  • the light emitted by the four grating structures 2 corresponding to the adjacent four sub-pixels BBBB are respectively concentrated to the viewpoints a, b, c, and d, and so on.
  • the light emitted from each grating structure is aggregated into a plurality of viewpoints, and is not limited to the form shown in FIG. 2C and FIG. 2D, and can also be applied to Other aggregation forms and any other arrangement of sub-pixels, but it is necessary to ensure that the light condensed at each viewpoint can contain three colors of RGB light, which is not limited herein.
  • the emitted light of the three-dimensional display device is concentrated into at least two viewpoints in the left eye and the right eye, respectively, and the viewpoints gathered in the left eye (or the right eye) may be, for example, 3A is distributed in a horizontally and vertically intersecting manner, or may be radially distributed from the center to the periphery as shown in FIG. 3B, or may be spirally arranged as shown in FIG. 3c, such that It can improve the picture quality and depth of field of the single-eye light field display.
  • the arrangement of the respective viewpoints is not limited to the shape as shown in FIGS. 3A to 3C, and may be other arrangement manners of multi-viewpoints in at least one direction.
  • the above-described three-dimensional display device provided by the embodiments of the present disclosure is mainly applied to a liquid crystal display (LCD).
  • the above-described three-dimensional display device provided by the embodiment of the present disclosure can also be applied to an organic electroluminescent display (OLED), which is not limited herein.
  • OLED organic electroluminescent display
  • the backlight module in the liquid crystal display may be a side-in backlight module, or the backlight module in the liquid crystal display may also be a direct-lit backlight. Modules are not limited here.
  • the above three-dimensional display device provided by the embodiment of the present disclosure is respectively determined by two specific examples.
  • the specific implementation manners of the liquid crystal display having the side-lit backlight module and the liquid crystal display having the direct-lit backlight module are described in detail.
  • Example 1 The above three-dimensional display device provided by the embodiment of the present disclosure is applied to a liquid crystal display having a side-lit backlight module.
  • the liquid crystal display panel 3 and the backlight module 4 facing away from the light emitting side of the liquid crystal display panel 3 may be included.
  • the backlight module 4 may include: at least one waveguide portion 41 and a collimated light source 42 located at the light incident surface of each waveguide portion 41; each of the grating structures 2 is located at each of the waveguide portions 41 facing the liquid crystal display panel 3 In this way, the light emitted by the collimated light source 42 can be totally reflected in each waveguide portion 41, scattered from each grating structure 2, concentrated in the left eye into at least two viewpoints, and concentrated in the right eye into at least two Viewpoints to achieve single-eye focused 3D display.
  • FIG. 6 take the case where the backlight module 4 includes one waveguide portion 41 as an example
  • FIGS. 5 and 7 take the backlight module 4 as three waveguide portions 41 as an example.
  • each of the waveguide portions 41 may be a first substrate having a waveguide function.
  • the first substrate having a waveguide function may select a material having a higher refractive index, for example, a glass or resin material having a refractive index in the range of 1.6 to 2 to ensure that the light emitted from the collimated light source can be totally reflected in the first substrate.
  • the thickness of the first substrate can be controlled within a range of 0.1 mm to 2 mm.
  • the number of the first substrates may be one, and at this time, the collimated light source 42 located at the light incident surface of the first substrate.
  • White light can be emitted, and each grating structure 2 is located on a side of the first substrate facing the liquid crystal display panel 3, so that the light emitted by the collimated light source 42 can be totally reflected in the first substrate, scattered from each grating structure 2, on the left
  • the eye converges into at least two viewpoints and converges into at least two viewpoints in the right eye, thereby achieving monocular focusing three-dimensional display.
  • the number of the first substrates may be three, and at this time, different The collimated light source 42 at the light incident surface of the first substrate can respectively emit light of different colors, for example, as shown in FIG. 5, in the direction away from the light exit side of the liquid crystal display panel 3, the entrance of the first first substrate
  • the collimated light source 42 at the smooth surface can emit red (R) light
  • the collimated light source 42 located at the light incident surface of the second first substrate can emit green (G) light on the third first substrate.
  • each grating structure 2 is located at a first substrate facing the liquid crystal display panel 3 illuminated by the collimated light source 42 of the same color as the corresponding sub-pixel 1.
  • each grating structure 2 corresponding to each sub-pixel R is located on the first substrate (ie, the first first substrate) illuminated by the collimated light source 42 that emits red (R) light.
  • the red (R) light emitted from the collimated light source 42 is totally reflected in the first first substrate, and is scattered from the grating structures 2 on the first first substrate.
  • Each of the grating structures 2 corresponding to each of the sub-pixels G is located on the side of the first substrate (ie, the second first substrate) illuminated by the collimated light source 42 that emits green (G) light, facing the liquid crystal display panel 3, collimating The green (G) light emitted by the light source 42 is totally reflected in the second first substrate, and is scattered from the grating structures 2 on the second first substrate.
  • each grating structure corresponding to each sub-pixel B 2 the first substrate (ie, the third first substrate) irradiated by the collimated light source 42 of the light emitting blue (B) faces the liquid
  • the blue (B) light emitted from the collimated light source 42 is totally reflected in the third first substrate, and is scattered from each of the grating structures 2 on the third first substrate, thereby The left eye is converged into at least two viewpoints, and the right eye is concentrated into at least two viewpoints, thereby realizing single-eye focusing three-dimensional display.
  • the collimated light sources are all monochromatic light sources, the setting of the color film layer can be omitted in the liquid crystal display panel, and thus, Not only can the production process be simplified, but also the light extraction efficiency of the liquid crystal display panel can be improved.
  • a grating structure may be directly formed on one side of the first substrate facing the liquid crystal display panel, or a grating structure may be fabricated on other substrates, and then laminated.
  • the side of the first substrate facing the liquid crystal display panel is not limited herein.
  • the gaps in the respective grating structures may be air, or may be filled with a material having a refractive index that is significantly different from that of the first substrate, which is not limited herein.
  • the material of the grating structure needs to be a transparent material, such as silicon dioxide (SiO 2 ), a resin material, etc.; the refractive index of the grating structure is significantly different from The surrounding medium; the duty ratio of the grating structure can be controlled within the range of 0.1 to 0.9.
  • the duty ratio of the grating structure can be 0.5, which can comprehensively consider the intensity of the emitted light and the difference in display brightness at different positions of the three-dimensional display device.
  • the design duty ratio is determined by factors such as process conditions, and is not limited herein.
  • the thickness of each grating structure may be controlled within a range of 100 nm to 700 nm. Preferably, it can The thickness of each grating structure was set to 200 nm.
  • the thickness of the grating structure corresponding to the sub-pixel R, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B may be set to be the same; or the grating structure corresponding to the sub-pixel R may be respectively used.
  • the thickness, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B are not limited herein.
  • each of the waveguide portions 41 may be a waveguide layer; the backlight module 4 may further include: a liquid crystal display panel located at a distance from the liquid crystal display panel The farthest waveguide layer faces away from the second substrate 43 on the side of the liquid crystal display panel 3; the second substrate 43 can select a material having a refractive index smaller than that of the waveguide layer to ensure that the light emitted by the collimated light source 42 can be in the waveguide layer. Total reflection occurs.
  • the number of the waveguide layers may be one layer.
  • the collimated light source 42 located at the light incident surface of the waveguide layer may be White light is emitted, and each grating structure 2 is located on the side of the waveguide layer facing the liquid crystal display panel 3.
  • the light emitted by the collimated light source 42 can be totally reflected in the waveguide layer, scattered from each grating structure 2, and concentrated in the left eye.
  • At least two viewpoints are aggregated into at least two viewpoints in the right eye, thereby achieving single-eye focused three-dimensional display.
  • the number of waveguide layers may be three layers, and at this time, different waveguides are located.
  • the collimated light sources 42 at the light incident surfaces of the layers respectively emit light of different colors, for example, as shown in FIG. 7, in a direction away from the light exit side of the liquid crystal display panel 3, at the light incident surface of the first waveguide layer
  • the collimated light source 42 can emit red (R) light
  • the collimated light source 42 located at the light incident surface of the second waveguide layer can emit green (G) light at the light incident surface of the third waveguide layer.
  • the collimated light source 42 can emit blue (B) light; each grating structure 2 is located on a side of the waveguide layer irradiated by the collimated light source 42 of the same color as the corresponding sub-pixel 1 facing the liquid crystal display panel 3, for example, as shown in FIG. As shown in FIG. 7, each of the grating structures 2 corresponding to each of the sub-pixels R is located on the side of the waveguide layer (ie, the first layer of the waveguide layer) irradiated by the collimated light source 42 that emits red (R) light, facing the liquid crystal display panel 3.
  • the red (R) light emitted by the collimated light source 42 is totally inverted in the first layer of the waveguide layer.
  • each of the grating structures 2 corresponding to each sub-pixel G is located at a waveguide layer illuminated by the collimated light source 42 that emits green (G) light (ie, The two-layer waveguide layer faces the side of the liquid crystal display panel 3, and the green (G) light emitted from the collimated light source 42 is in the second waveguide layer Total reflection occurs internally, and is scattered from each grating structure 2 on the second waveguide layer.
  • each grating structure 2 corresponding to each sub-pixel B is illuminated by a collimated light source 42 that emits blue (B) light.
  • the waveguide layer (ie, the third waveguide layer) faces one side of the liquid crystal display panel 3, and the blue (B) light emitted from the collimated light source 42 is totally reflected in the third waveguide layer from the third waveguide layer.
  • Each of the grating structures 2 is scattered out so as to converge into at least two viewpoints in the left eye and at least two viewpoints in the right eye to realize single-eye focusing three-dimensional display.
  • the collimated light sources are all monochromatic light sources, the setting of the color film layer can be omitted in the liquid crystal display panel, and thus, Not only can the production process be simplified, but also the light extraction efficiency of the liquid crystal display panel can be improved.
  • the backlight module 4 may further include: facing each waveguide layer facing the second The buffer layer 44 on the side of the substrate 43.
  • the material of the buffer layer needs to be a transparent material such as silicon dioxide (SiO 2 ), a resin material, or the like, and the refractive index of the buffer layer needs to be smaller than the refractive index of the waveguide layer.
  • the thickness of the buffer layer can be controlled in the range of several hundred nanometers to several micrometers.
  • the equivalent optical thickness of the buffer layer ie, the refractive index and the actual thickness
  • the product of the thickness is, for example, at least greater than 1 ⁇ m.
  • the refractive index of the waveguide layer needs to be larger than the refractive index of the layers adjacent to the waveguide layer (for example, the buffer layer or the second substrate except the grating structure), and the waveguide layer
  • the material may be selected from a transparent material having a refractive index in the range of 1.7 to 2, such as silicon nitride (Si 3 N 4 ), to ensure that light emitted by the collimated source can be totally reflected within the waveguide layer.
  • the thickness of the waveguide layer in the above-described three-dimensional display device provided by the embodiment of the present disclosure, in order to facilitate the control of the direction and color of the emitted light by each grating structure, it is preferable to control the thickness of the waveguide layer in the range of 100 nm to 100 ⁇ m.
  • the thickness of the waveguide layer can be appropriately relaxed, and the thickness of the waveguide layer can be controlled in the range of several hundred nanometers to several millimeters.
  • a grating structure may be directly formed on one side of the waveguide layer facing the liquid crystal display panel, and the gap in each grating structure may be air or may be filled with a refractive index.
  • the material that is distinct from the waveguide layer is not limited herein.
  • the material of the grating structure needs to be a transparent material, such as silicon dioxide (SiO 2 ), a resin material, etc.; the refractive index of the grating structure is significantly different from The surrounding medium; the duty ratio of the grating structure can be controlled in the range of 0.1 to 0.9.
  • the duty ratio of the grating structure can be 0.5, which can comprehensively consider the intensity of the emitted light and the difference in display brightness at different positions of the three-dimensional display device.
  • the design duty ratio is determined by factors such as process conditions, and is not limited herein.
  • each grating structure in the above-described three-dimensional display device provided by the embodiment of the present disclosure, in order to improve light extraction efficiency, it is preferable to control the thickness of each grating structure in the range of 100 nm to 500 nm.
  • the thickness of each grating structure can be set to 200 nm.
  • the thickness of the grating structure corresponding to the sub-pixel R, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B may be set to be the same; or the grating structure corresponding to the sub-pixel R may be respectively used.
  • the thickness, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B are not limited herein.
  • the structure shown in FIG. 4 and FIG. 5 is smaller than the structure of the waveguide layer as compared with the structure shown in FIG. 6 and FIG.
  • the thickness of the first substrate to be applied, the light emitted by the collimated light source is coupled into the waveguide layer by less than the light coupled into the first substrate, and therefore, the light-emitting efficiency of the three-dimensional display device shown in FIGS. 4 and 5 is high.
  • the collimated light source may be made by RGB three-color semiconductor laser chips after being mixed, or may be made of RGB three with better collimation.
  • the color light-emitting diode (LED) chip is made by mixing light, or it can be made of white LED chip with better collimation, or it can be made of strip-shaped cold cathode fluorescent lamp (Cold Cathode) Fluorescent Lamp, CCFL) is made of a collimating structure and is not limited herein.
  • the collimated light source is required to be directed to the first substrate or the waveguide at a certain incident angle. Inject light into the layer.
  • a semiconductor laser chip or an LED chip having a width consistent with that of the liquid crystal display panel may be used, or may be disposed in front of a semiconductor laser chip or LED chip having a small density.
  • Optical structures such as beam expansion and collimation are not limited herein.
  • the light emitted by the collimated light source should be aligned with the first substrate or waveguide layer having a waveguide function to cover the first substrate or the waveguide layer as much as possible without injecting light into the liquid crystal display panel.
  • each grating structure needs to be accurately aligned with the corresponding sub-pixel, since the direction of the light emitted from each grating structure is mostly not perpendicular to the liquid crystal display panel, and , the film layer where each grating structure is located and the color film in the liquid crystal display panel There is a certain distance between the layers. Therefore, when designing the position of each grating structure, it is necessary to consider the misalignment between the respective grating structures and the color film layers corresponding to the corresponding sub-pixels.
  • an optical adhesive 5 can be utilized between the liquid crystal display panel 3 and the backlight module 4 and between the waveguide portions 41. (Optically Clear Adhesive, OCA) for fitting.
  • the light-emitting side of the liquid crystal display panel may be the color film substrate side.
  • the array substrate on which the sub-pixels are formed may be bonded to the backlight module; or the light-emitting side of the liquid crystal display panel may be the array substrate side.
  • the color film substrate on which the color film layer is formed may be bonded to the backlight module, which is not limited herein.
  • the above three-dimensional display device uses a waveguide grating to realize a specific principle in which the left eye is concentrated into at least two viewpoints, and the right eye is aggregated into at least two viewpoints.
  • the eye merges into at least two viewpoints, and the right eye converges into at least two viewpoints, thereby realizing single-eye focusing three-dimensional display.
  • ⁇ m is the propagation constant of the m-th order guided mode
  • ⁇ m k 0 N m
  • N m the effective refractive index of the m-th order guided mode
  • N m ⁇ n 1 sin ⁇ 1 is the effective refractive index of the m-th order guided mode
  • n 1 is the refractive index of the waveguide portion 41
  • ⁇ 1 is the light in the waveguide portion.
  • n2 is the refractive index of air, and ⁇ 2 is emitted into the air.
  • the exit angle of light; K is the raster vector, ⁇ is the grating period; thus, the above formula can be expressed as among them, According to the formula, the wavelength ⁇ of the emitted light, the exit angle ⁇ 2 of the outgoing light, and the grating period ⁇ of the grating structure are correlated, and therefore, the wavelength ⁇ of the light emitted from each grating structure can be correlated (corresponding to the color displayed by the sub-pixel) For example, the grating structure corresponding to the sub-pixel R emits light having a wavelength ranging from 622 nm to 770 nm, and the grating structure corresponding to the sub-pixel G emits light having a wavelength ranging from 492 nm to 577 nm, and the sub-pixel B corresponds to the grating structure.
  • the wavelength range is 455nm to 492nm) and the exit angle ⁇ 2 , the grating period ⁇ of each grating structure is designed, so that the outgoing light can be emitted in a specified direction, aggregated into at least two viewpoints in the left eye, and aggregated into at least two in the right eye. Viewpoint.
  • the exit angle ⁇ 2 is an exit angle of light emitted from the air, and the light has a small change in the direction of propagation when passing through the liquid crystal display panel. Therefore, the exit angle ⁇ 2 can be regarded as a three-dimensional display. The exit angle of the outgoing light emitted by the device.
  • a three-dimensional display distance e from the center of the pupil of the apparatus 100 is d (d is the range of 10mm to 100mm may be), the distance from the two views a and b are respectively the pupil center e S a and S b (S a is The range may be from 0.5 mm to 1.25 mm, and the S b may range from 0.5 mm to 1.25 mm).
  • the light emitted from the grating structure at f converges to the viewpoint a, and the distance from the center of the grating structure at the f to the perpendicular line l is h a , from f
  • the angle between the light emitted by the grating structure and the perpendicular line l is the exit angle ⁇ 2 of the light emitted from the grating structure at f.
  • the light emitted from the grating structure at f satisfies The exit angle of the light emerging from the grating structure at f
  • the light emerging from the grating structure at g converges to the viewpoint b
  • the distance from the center of the grating structure at g to the perpendicular line l is h b
  • the angle between the light emitted from the grating structure at g and the vertical line l is The exit angle ⁇ 2 of the light emitted from the grating structure at g
  • the light emitted from the grating structure at g satisfies The exit angle of the light emerging from the grating structure at g
  • the grating period ⁇ of each grating structure can be designed according to the exit angle ⁇ 2 and the wavelength ⁇ of the light emitted from each grating structure, thereby causing the three-
  • FIG. 10 is a graph of the exit angle ⁇ 2 of the outgoing light as a function of the position of the grating structure
  • the abscissa is the position of each grating structure in the three-dimensional display device
  • the left vertical coordinate is the exit angle ⁇ 2 of the outgoing light
  • right The side ordinate is the difference ⁇ 3 between the exit angles of the outgoing lights corresponding to the viewpoints a and b
  • the solid line in FIG. 10 represents the curve of the exit angle ⁇ 2 of the outgoing light corresponding to the viewpoint a as a function of the position of the grating structure
  • the long broken line represents a curve.
  • the exit angle ⁇ 2 of the exiting light corresponding to the viewpoint b varies with the position of the grating structure
  • the short dashed line represents the difference between the solid line and the long broken line.
  • Example 2 The above three-dimensional display device provided by the embodiment of the present disclosure is applied to a liquid crystal display having a direct type backlight module.
  • the liquid crystal display panel 3 and the backlight module 4 on the side facing away from the light-emitting side of the liquid crystal display panel 3 may be included.
  • the backlight module 4 is a direct-type collimated backlight; as shown in FIG. 11, each of the grating structures 2 may be located between the backlight module 4 and the liquid crystal display panel 3; or, as shown in FIG. 12, each grating structure 2
  • the grating structure may also be located on the light-emitting side of the liquid crystal display panel 3; or the grating structure may be located inside the liquid crystal display panel, for example, above or below the color film layer;
  • each grating structure when each grating structure is located between the backlight module and the liquid crystal display panel, each grating structure can be directly fabricated on the substrate facing the backlight module in the liquid crystal display panel.
  • each of the grating structures may be fabricated on other substrates and attached to the substrate facing the backlight module in the liquid crystal display panel; or each grating structure may be fabricated or attached to a direct-type backlight module.
  • the group faces the substrate on one side of the liquid crystal display panel; it is not limited herein.
  • each grating structure may be directly formed on the light-emitting side of the liquid crystal display panel when each grating structure is located on the light-emitting side of the liquid crystal display panel; or, each grating structure It may be formed on another substrate and attached to the substrate on the light-emitting side of the liquid crystal display panel, which is not limited herein.
  • the liquid crystal display panel 3 and the backlight module 4 can be bonded together by the optical glue 5 .
  • the light-emitting side of the liquid crystal display panel may be the color film substrate side.
  • the array substrate on which the sub-pixels are formed may be bonded to the backlight module; or the light-emitting side of the liquid crystal display panel may be the array substrate side.
  • the color film substrate on which the color film layer is formed may be bonded to the backlight module, which is not limited herein.
  • the grating period of each grating structure is large, which may cause the light of the emitted light to be emitted.
  • the adjustment of the direction is less precise.
  • the angle between the light emitted by the backlight module and the plane of the liquid crystal display panel can be controlled within a range of 40° to 80°.
  • the angle between the light emitted by the backlight module and the plane of the liquid crystal display panel can be set to 60°.
  • the angle between the angle of view, the distance of the three-dimensional display device from the human eye, and the adjustment accuracy of the light exiting direction of the emitted light can be comprehensively designed to design an angle between the light emitted by the backlight module and the plane of the liquid crystal display panel.
  • each of the grating structures needs to be accurately aligned with the corresponding sub-pixels, and the light emitted from the direct-lit backlight is incident on the liquid crystal display panel at a certain oblique angle. Moreover, there is a certain distance between the film layer in which each grating structure is located and the color film layer in the liquid crystal display panel. Therefore, when designing the position of each grating structure, it is necessary to consider the color corresponding to each grating structure and the corresponding sub-pixel. Dislocation between layers.
  • the direct-type collimated backlight may be made by RGB three-color semiconductor laser chips after being expanded, mixed, and collimated, or may be RGB three-color Light Emitting Diode (LED) chips with better collimation are made by expanding, mixing, and collimating, or they can be expanded by white LED chips with better collimation. It can be made after collimation, or it can be made of a strip-shaped cold cathode fluorescent lamp (CCFL) with an optical structure such as collimation and expansion, which is not limited herein.
  • the direct-type collimated backlight can be attached to the liquid crystal display panel, or the two can be separated, which is not limited herein.
  • the material of the grating structure needs to be a transparent material, such as silicon dioxide (SiO 2 ), a resin material, etc.; the refractive index of the grating structure is significantly different from The surrounding medium; the duty ratio of the grating structure can be controlled within the range of 0.1 to 0.9.
  • the duty ratio of the grating structure can be 0.5, which can comprehensively consider the intensity of the emitted light, the difference in display brightness at different positions of the three-dimensional display device, and
  • the design duty ratio is determined by factors such as process conditions, and is not limited herein.
  • the thickness of each grating structure may be controlled in the range of 100 nm to 700 nm.
  • the thickness of each grating structure can be set to 200 nm.
  • the thickness of the grating structure corresponding to the sub-pixel R, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B may be set to be the same; or the grating structure corresponding to the sub-pixel R may be respectively used.
  • the thickness, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B are not limited herein.
  • the above three-dimensional display device provided by the embodiment of the present disclosure is described in detail with the specific principle that the left eye is concentrated into at least two viewpoints and the right eye is aggregated into at least two viewpoints.
  • the diffraction intensity of the 0th order diffraction and the 1st order diffraction of the grating structure is large, the diffraction intensity of the high order diffraction order is much smaller, and the propagation direction of the 0th order diffraction wave is fixed along the incident light direction, and 1 The diffraction direction of the diffracted wave can be adjusted by the grating period.
  • is the exit angle of the outgoing light
  • ⁇ 0 is the incident angle of the incident light
  • is the wavelength of the incident light
  • P is the grating period
  • the incident angle ⁇ 0 of the incident light ie, the outgoing light of the direct-lit backlight module
  • the exit angle is fixed, and the wavelength ⁇ of the incident light and the exit angle ⁇ of the outgoing light are related to the grating period P of the grating structure.
  • the wavelength of the light emitted from each grating structure (equal to the wavelength ⁇ of the incident light, and the sub-pixel can be used.
  • the displayed color corresponds to, for example, the grating structure corresponding to the sub-pixel R emits light having a wavelength ranging from 622 nm to 770 nm, and the grating structure corresponding to the sub-pixel G emits light having a wavelength ranging from 492 nm to 577 nm.
  • the grating structure corresponding to the pixel B has a wavelength range of 455 nm to 492 nm and an exit angle ⁇ , and the grating period P of each grating structure is designed, so that the emitted light can be emitted in a specified direction and merged into at least two viewpoints in the left eye. , in the right eye gathered into at least two viewpoints.
  • the equivalent optical path difference of the grating light and the gap of the grating structure is an odd multiple of a half wavelength
  • the 0th order diffraction wave is coherently canceled
  • the diffraction intensity of the 0th order diffraction wave is weakened
  • the diffraction intensity of the first order diffraction wave is weakened.
  • the incident light is coherently canceled in the first-order diffraction wave when the equivalent optical path difference between the grating strip and the gap is half-wavelength
  • the diffraction intensity of the first-order diffraction wave is weakened
  • the diffraction intensity of the 0-order diffraction wave is enhanced.
  • the thickness of the grating structure corresponding to the sub-pixel R, the thickness of the grating structure corresponding to the sub-pixel G, and the thickness of the grating structure corresponding to the sub-pixel B can be respectively designed, and the diffraction intensity of the 0-order diffraction wave is weakened, and the level 1 is The effect of the diffraction intensity of the diffracted wave is enhanced to improve the light extraction efficiency of the three-dimensional display device.
  • the determination of the exit angle of the outgoing light in the second embodiment of the present disclosure is similar to the determination of the exit angle of the outgoing light in the first embodiment of the present disclosure, and details are not described herein.
  • the grating period P of each grating structure can be designed according to the exit angle ⁇ and the wavelength ⁇ of the light emitted from each grating structure, so that the light emitted by the three-dimensional display device is The left eye converges into at least two viewpoints and converges into at least two viewpoints in the right eye.
  • the line of sight of at least two viewpoints of the left eye and the line of sight of at least two viewpoints of the right eye converge to the same position F'.
  • the focus position of the single eye coincides with the convergence position of the binocular line of sight.
  • the above-described three-dimensional display device provided by the example of the present disclosure may also be applied to OLED.
  • a bottom emission type OLED that is, a side of a substrate having an organic electroluminescence structure is a light exit side, and at this time, each grating structure may be located in an organic electroluminescence structure and a lining. Between the base substrates, or each of the grating structures may be located on the side of the base substrate facing away from the organic electroluminescent structure, which is not limited herein.
  • each grating structure may be located between the organic electroluminescent structure and the package cover, or Each of the grating structures may also be located on a side of the package cover that faces away from the organic electroluminescent structure, which is not limited herein.
  • the above three-dimensional display device is mainly applied to a head-mounted virtual reality or augmented reality device, and can also be applied to: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like.
  • a mobile phone a tablet computer
  • a television a display
  • a notebook computer a digital photo frame
  • a navigation device and the like.
  • the corresponding design should be adjusted according to specific factors such as human eye-screen distance.
  • a three-dimensional display device includes a plurality of sub-pixels and a plurality of grating structures in one-to-one correspondence with the respective sub-pixels; each of the grating structures is configured to emit light in a specified direction to make the light emitted from the three-dimensional display device Converging at least two viewpoints in the left eye and at least two viewpoints in the right eye, so that the three-dimensional display device can realize single-eye focusing three-dimensional display, so that the line of sight of the three-dimensional display device can be designed to be three-dimensionally displayed with parallax When the viewing distances are equal, the focus position of the single eye and the convergence position of the binocular line of sight are ensured, thereby preventing the viewer from feeling dizzy when viewing the three-dimensional display device.

Abstract

一种三维显示装置,包括多个子像素(1)和与多个子像素(1)一一对应的多个光栅结构(2);每个光栅结构(2)被配置为将光按照指定方向出射,使三维显示装置的出射光在左眼汇聚成至少两个视点(a,b),在右眼汇聚成至少两个视点(c,d)。三维显示装置可以实现单眼聚焦三维显示,从而可以在将该三维显示装置的视距设计为与视差三维显示的视距相等时,保证单眼的聚焦位置和双眼视线的汇聚位置一致,进而可以避免观看者在观看三维显示装置时产生眩晕的感觉。

Description

三维显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种三维显示装置。
背景技术
目前,三维(Three-Dimensional,3D)显示技术已经备受关注,它可以使画面变得立体逼真,其最基本的原理是利用左右人眼分别接收不同的画面,经过大脑对接收的图像信息进行叠加重生,构成立体方向效果的影像。
发明内容
本公开实施例提供了一种三维显示装置,用以解决观看三维显示装置时单眼聚焦位置和双眼汇聚位置不一致的问题。
本公开实施例提供了一种三维显示装置,包括:多个子像素和与所述多个子像素一一对应的多个光栅结构;每个所述光栅结构被配置为将光按照指定方向出射,使所述三维显示装置的出射光在观察者的左眼汇聚成至少两个视点,在所述观察者的右眼汇聚成至少两个视点。
在一些示例中,在本公开实施例提供的上述三维显示装置中,包括:液晶显示面板和背离所述液晶显示面板出光侧的一侧的背光模组;其中,所述液晶显示面板包括所述多个子像素,所述背光模组包括:层叠设置的至少一个波导部和位于各所述波导部的入光面处的准直光源;各所述光栅结构位于各所述波导部面向所述液晶显示面板的一侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,各所述光栅结构满足:
Figure PCTCN2017095601-appb-000001
其中,k0为波矢,
Figure PCTCN2017095601-appb-000002
λ为出射光的波长,n1为所述波导部的折射率,n2为空气的折射率,θ1为光在所述波导部中发生全反射的反射角,θ2为出射光的出射角,Λ为所述光栅结构的光栅周期,q=0,±1,±2,...。
在一些示例中,在本公开实施例提供的上述三维显示装置中,每个所述 波导部为具有波导作用的第一基板。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述第一基板的数量为一个;所述准直光源发白光;各所述光栅结构位于所述第一基板面向所述液晶显示面板的一侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述第一基板的数量为三个;位于不同第一基板的入光面处的准直光源分别发出不同颜色的光;各所述光栅结构位于与对应的子像素相同颜色的准直光源所照射的第一基板面向所述液晶显示面板的一侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,各所述光栅结构的厚度的范围为100nm至700nm。
在一些示例中,在本公开实施例提供的上述三维显示装置中,每个所述波导部为波导层;所述背光模组还包括:位于距离所述液晶显示面板最远的波导层背离所述液晶显示面板一侧的第二基板。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述波导层的数量为一层;所述准直光源发白光;各所述光栅结构位于所述波导层面向所述液晶显示面板的一侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述波导层的数量为三层;位于不同波导层的入光面处的准直光源分别发出不同颜色的光;各所述光栅结构位于与对应的子像素相同颜色的准直光源所照射的波导层面向所述液晶显示面板的一侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述背光模组还包括:位于各所述波导层面向所述第二基板一侧的缓冲层。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述波导层的折射率的范围为1.7至2。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述波导层的厚度的范围为100nm至100μm。
在一些示例中,在本公开实施例提供的上述三维显示装置中,各所述光栅结构的厚度的范围为100nm至500nm。
在一些示例中,在本公开实施例提供的上述三维显示装置中,包括:液晶显示面板和背离所述液晶显示面板出光侧的的一侧的背光模组;其中,所 述液晶显示面板包括所述多个子像素,所述背光模组为直下式准直背光;各所述光栅结构位于所述背光模组与所述液晶显示面板之间;或者,各所述光栅结构位于所述液晶显示面板的内部;或者,各所述光栅结构位于所述液晶显示面板的出光侧。
在一些示例中,在本公开实施例提供的上述三维显示装置中,各所述光栅结构满足:sinθ-sinθ0=λ/P;其中,θ为出射光的出射角,θ0为入射光的入射角,λ为入射光的波长,P为所述光栅结构的光栅周期。
在一些示例中,在本公开实施例提供的上述三维显示装置中,所述背光模组发出的光与所述液晶显示面板所在平面之间的夹角的范围为40°至80°。
在一些示例中,在本公开实施例提供的上述三维显示装置中,各所述光栅结构的厚度的范围为100nm至700nm。
在一些示例中,所述左眼的至少两个视点的视线与所述右眼的至少两个视点的视线汇聚至相同的位置。
本公开实施例提供的上述三维显示装置,包括多个子像素和与各子像素一一对应的多个光栅结构;每个光栅结构用于将光按照指定方向出射,使三维显示装置的出射光在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,这样,可以使三维显示装置实现单眼聚焦三维显示,从而可以在将该三维显示装置的视距设计为与视差三维显示的视距相等时,保证单眼的聚焦位置和双眼视线的汇聚位置一致,进而可以避免观看者在观看三维显示装置时使人产生眩晕的感觉。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为人眼观看真实环境中的三维画面的示意图;
图1B为人眼观看三维显示装置的显示画面的示意图;
图2A为本公开实施例提供的三维显示装置应用于近眼三维显示时各光栅结构与各视点的对应关系的示意图之一;
图2B为本公开实施例提供的三维显示装置应用于近眼三维显示时各光 栅结构与各视点的对应关系的示意图之二;
图2C为本公开实施例提供的三维显示装置应用于远场三维显示时各光栅结构与各视点的对应关系的示意图之一;
图2D为本公开实施例提供的三维显示装置应用于远场三维显示时各光栅结构与各视点的对应关系的示意图之二;
图3A为本公开实施例提供的三维显示装置出射的光在人眼汇聚成的各视点的分布示意图之一;
图3B为本公开实施例提供的三维显示装置出射的光在人眼汇聚成的各视点的分布示意图之二;
图3C为本公开实施例提供的三维显示装置出射的光在人眼汇聚成的各视点的分布示意图之三;
图4为本公开实施例提供的三维显示装置的结构示意图之一;
图5为本公开实施例提供的三维显示装置的结构示意图之二;
图6为本公开实施例提供的三维显示装置的结构示意图之三;
图7为本公开实施例提供的三维显示装置的结构示意图之四;
图8为本公开实施例提供的三维显示装置中波导光栅的光路示意图;
图9为本公开实施例提供的三维显示装置中不同位置的光栅结构在人眼汇聚成两个视点的示意图;
图10为本公开实施例提供的三维显示装置的出射光的出射角随光栅结构的位置变化的曲线图;
图11为本公开实施例提供的三维显示装置的结构示意图之五;
图12为本公开实施例提供的三维显示装置的结构示意图之六;
图13为本公开实施例提供的三维显示装置中光栅结构的光路示意图;
图14为人眼观看根据本公开实施例的三维显示装置的显示画面的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描 述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
附图中各膜层的形状和厚度不反映其真实比例,目的只是示意说明本公开内容。
在人眼观察真实环境中的物体时,如图1A所示,单眼的聚焦位置和双眼视线的汇聚位置是一致的,例如,眼睛01的聚焦位置和双眼视线的汇聚位置均在位置F。在人眼观察3D显示装置显示的画面时,如图1B所示,单眼的聚焦位置位于3D显示装置的屏幕M上,而双眼视线由于视差会汇聚到距离3D显示装置的屏幕一定距离处的虚拟画面处,例如,位置F’处。由于单眼的聚焦位置和双眼视线的汇聚位置不一致,会使观看者产生眩晕的感觉。
本公开实施例提供的一种三维显示装置,如图2A-图2D所示,包括:多个子像素1和与各子像素1一一对应的多个光栅结构2;图2A-图2D中的R、G、B分别表示一个子像素1;图2A-图2D以包含分别显示红色、绿色和蓝色的子像素R、G、B为例,当然,本公开实施例提供的上述三维显示装置也可以适用于单色显示,或者,还可以包含显示其他颜色的子像素,例如黄色(Y)等,在此不做限定;
每个光栅结构2用于将光按照指定方向出射,使三维显示装置的出射光在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点;图2A-图2D以三维显示装置的出射光分别在左眼和右眼汇聚成两个视点为例。
本公开实施例提供的上述三维显示装置,设置与各子像素一一对应的光栅结构,每个光栅结构可以将光按照指定方向出射,使三维显示装置的出射光能够在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,因此,可以实现单眼聚焦三维显示,这样,在将该三维显示装置的视距设计为与视差三维显示的视距相等时,可以保证单眼的聚焦位置和双眼视线的汇聚位置一致,也就是说,所述左眼的至少两个视点的视线与所述右眼的至少两个视点的视线汇聚至相同的位置,进而可以避免观看者在观看三维显示装置时产生眩晕的感觉;并且,本公开实施例提供的上述三维显示装置在虚拟现实/增强现实(VR/AR)显示应用中,对于提升显示画面的质量、显示装置的轻薄化、降低成本等方面,都具有明显的优势。
在一些示例中,本公开实施例提供的上述三维显示装置可以应用于近眼 三维显示装置,即头戴式三维显示装置;或者,本公开实施例提供的上述三维显示装置也可以应用于远场三维显示装置,即观看者位于三维显示装置一定距离处观看;在此不做限定。下面对本公开实施例提供的上述三维显示装置分别应用于上述两种应用形式时,三维显示装置的出射光分别在左眼和右眼汇聚成至少两个视点的具体实现方式进行详细说明。
在本公开实施例提供的上述三维显示装置应用于近眼三维显示装置时,如图2A和图2B所示,从三维显示装置的左半侧出射的光在左眼汇聚成两个视点,从三维显示装置的左半侧出射的光在右眼汇聚成两个视点。例如,为了便于各子像素和对应的光栅结构的设计以及方案的简单化,如图2A所示,对于左半侧的每行子像素1而言,以第一行子像素1为例,按照从左到右的顺序,第一组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点a,第二组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点b,第三组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点a,第四组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点b,以此类推;对于右半侧的每行子像素1而言与之类似。进一步地,为了减少不同颜色的光之间的串扰,便于彩膜层的设计与制备,如图2B所示,对于左半侧的每行子像素1而言,以第一行子像素1为例,按照从左到右的顺序,相邻的两个子像素RR对应的两个光栅结构2出射的光分别汇聚到视点a和b,相邻的两个子像素GG对应的两个光栅结构2出射的光分别汇聚到视点a和b,相邻的两个子像素BB对应的两个光栅结构2出射的光分别汇聚到视点a和b,以此类推;对于右半侧的每行子像素1而言与之类似。
当然,本公开实施例提供的上述三维显示装置应用于近眼三维显示装置时,各光栅结构出射的光汇聚成多个视点并非局限于如图2A和图2B所示的形式,还可以应用于其他汇聚形式以及其他任何一种子像素的排列方式,但需保证汇聚于每个视点的光能够包含RGB三种颜色的光,在此不做限定。
在本公开实施例提供的上述三维显示装置应用于远场三维显示装置时,如图2C和图2D所示,三维显示装置的出射光在左眼汇聚成两个视点,在右眼汇聚成两个视点。例如,为了便于各子像素和对应的光栅结构的设计以及方案的简单化,如图2C所示,对于每行子像素1而言,按照从左到右的顺 序,第一组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点a,第二组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点b,第三组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点c,第四组相邻的三个子像素RGB对应的三个光栅结构2出射的光分别汇聚于视点d,以此类推。进一步地,为了减少不同颜色的光之间的串扰,便于彩膜层的设计与制备,如图2D所示,对于每行子像素1而言,按照从左到右的顺序,相邻的四个子像素RRRR对应的四个光栅结构2出射的光分别汇聚到视点a、b、c和d,相邻的四个子像素GGGG对应的四个光栅结构2出射的光分别汇聚到视点a、b、c和d,相邻的四个子像素BBBB对应的四个光栅结构2出射的光分别汇聚到视点a、b、c和d,以此类推。
当然,本公开实施例提供的上述三维显示装置应用于远场三维显示装置时,各光栅结构出射的光汇聚成多个视点并非局限于如图2C和图2D所示的形式,还可以应用于其他汇聚形式以及其他任何一种子像素的排列方式,但需保证汇聚于每个视点的光能够包含RGB三种颜色的光,在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,三维显示装置的出射光分别在左眼和右眼汇聚成至少两个视点,在左眼(或右眼)汇聚成的各视点可以如图3A所示的呈横纵交叉状分布,或者,也可以如图3B所示的呈由中心向周围辐射状分布,或者,还可以如图3c所示的呈螺旋摆线状分布,这样,可以改善单眼光场显示的画面质量和景深层次程度。当然,各视点的排布并非局限于如图3A-图3C所示的形状,还可以为至少在一个方向上为多视点的其他排布方式。
在一些示例中,本公开实施例提供的上述三维显示装置主要应用于液晶显示器(Liquid Crystal Display,LCD)。当然,本公开实施例提供的上述三维显示装置也可以应用于有机电致发光显示器(Organic Electroluminescent Display OLED),在此不做限定。例如,在本公开实施例提供的上述三维显示装置应用于液晶显示器时,液晶显示器中的背光模组可以为侧入式背光模组,或者,液晶显示器中的背光模组也可以为直下式背光模组,在此不做限定。
下面通过两个具体的实例对本公开实施例提供的上述三维显示装置分别 应用于具有侧入式背光模组的液晶显示器和具有直下式背光模组的液晶显示器这两种结构时的具体实现方式进行详细说明。
实例一:本公开实施例提供的上述三维显示装置应用于具有侧入式背光模组的液晶显示器。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图4-图7所示,可以包括:液晶显示面板3和背离液晶显示面板3出光侧的一侧的背光模组4;其中,背光模组4,可以包括:层叠设置的至少一个波导部41和位于各波导部41的入光面处的准直光源42;各光栅结构2位于各波导部41面向液晶显示面板3的一侧;这样,准直光源42发出的光可以在各波导部41内发生全反射,从各光栅结构2散射出去,在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,从而实现单眼聚焦三维显示。图4和图6以背光模组4包括一个波导部41为例,图5和图7以背光模组4包括三个波导部41为例。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图4和图5所示,每个波导部41可以为具有波导作用的第一基板。例如,具有波导作用的第一基板可以选择折射率较高的材料,例如,折射率在1.6至2范围的玻璃或树脂材料,以保证准直光源发出的光能够在第一基板内发生全反射。例如,第一基板的厚度可以控制在0.1mm至2mm范围内。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图4所示,第一基板的数量可以为一个,此时,位于第一基板的入光面处的准直光源42可以发白光,各光栅结构2位于第一基板面向液晶显示面板3的一侧,这样,准直光源42发出的光可以在第一基板内发生全反射,从各光栅结构2散射出去,在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,从而实现单眼聚焦三维显示。
在一些示例中,在本公开实施例提供的上述三维显示装置中,为了减少不同颜色的光之间的串扰,如图5所示,第一基板的数量可以为三个,此时,位于不同第一基板的入光面处的准直光源42可以分别发出不同颜色的光,例如,如图5所示,按照背离液晶显示面板3的出光侧的方向,位于第一个第一基板的入光面处的准直光源42可以发红色(R)的光,位于第二个第一基板的入光面处的准直光源42可以发绿色(G)的光,位于第三个第一基板的 入光面处的准直光源42可以发蓝色(B)的光;各光栅结构2位于与对应的子像素1相同颜色的准直光源42所照射的第一基板面向液晶显示面板3的一侧,例如,如图5所示,与各子像素R对应的各光栅结构2位于发红色(R)的光的准直光源42所照射的第一基板(即第一个第一基板)面向液晶显示面板3的一侧,准直光源42发出的红色(R)的光在第一个第一基板内发生全反射,从第一个第一基板上的各光栅结构2散射出去,同样,与各子像素G对应的各光栅结构2位于发绿色(G)的光的准直光源42所照射的第一基板(即第二个第一基板)面向液晶显示面板3的一侧,准直光源42发出的绿色(G)的光在第二个第一基板内发生全反射,从第二个第一基板上的各光栅结构2散射出去,同样,与各子像素B对应的各光栅结构2位于发蓝色(B)的光的准直光源42所照射的第一基板(即第三个第一基板)面向液晶显示面板3的一侧,准直光源42发出的蓝色(B)的光在第三个第一基板内发生全反射,从第三个第一基板上的各光栅结构2散射出去,从而在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,实现单眼聚焦三维显示。
需要说明的是,在本公开实施例提供的如图5所示的三维显示装置中,由于准直光源都是单色光源,因此,液晶显示面板中可以省去彩膜层的设置,这样,不仅可以简化制作工艺,还可以提高液晶显示面板的出光效率。
在一些示例中,在本公开实施例提供的上述三维显示装置中,可以直接在第一基板面向液晶显示面板的一面制作光栅结构,或者,也可以在其他基材上制作光栅结构,再贴合在第一基板面向液晶显示面板的一面,在此不做限定。各光栅结构中的空隙可以为空气,或者,也可以填充折射率明显区别于第一基板的材料,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,光栅结构的材料需要为透明材料,例如,二氧化硅(SiO2)、树脂材料等;光栅结构的折射率要明显区别于周围的介质;光栅结构的占空比可以控制在0.1至0.9范围内,例如,光栅结构的占空比可以为0.5,具体可以综合考虑出射光的强度、三维显示装置不同位置的显示亮度的差异以及工艺条件等因素设计占空比,在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,为了提高出光效率,可以将各光栅结构的厚度控制在100nm至700nm范围内。优选地,可以将 各光栅结构的厚度设置为200nm。例如,可以将子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度设置为相同;或者,也可以分别对子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度进行设计,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图6和图7所示,每个波导部41可以为波导层;背光模组4还可以包括:位于距离液晶显示面板3最远的波导层背离液晶显示面板3一侧的第二基板43;第二基板43可以选择折射率小于波导层的折射率的材料,以保证准直光源42发出的光能够在波导层内发生全反射。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图6所示,波导层的数量可以为一层,此时,位于波导层的入光面处的准直光源42可以发白光,各光栅结构2位于波导层面向液晶显示面板3的一侧,这样,准直光源42发出的光可以在波导层内发生全反射,从各光栅结构2散射出去,在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,从而实现单眼聚焦三维显示。
在一些示例中,在本公开实施例提供的上述三维显示装置中,为了减少不同颜色的光之间的串扰,如图7所示,波导层的数量可以为三层,此时,位于不同波导层的入光面处的准直光源42分别发出不同颜色的光,例如,如图7所示,按照背离液晶显示面板3的出光侧的方向,位于第一层波导层的入光面处的准直光源42可以发红色(R)的光,位于第二层波导层的入光面处的准直光源42可以发绿色(G)的光,位于第三层波导层的入光面处的准直光源42可以发蓝色(B)的光;各光栅结构2位于与对应的子像素1相同颜色的准直光源42所照射的波导层面向液晶显示面板3的一侧,例如,如图7所示,与各子像素R对应的各光栅结构2位于发红色(R)的光的准直光源42所照射的波导层(即第一层波导层)面向液晶显示面板3的一侧,准直光源42发出的红色(R)的光在第一层波导层内发生全反射,从第一层波导层上的各光栅结构2散射出去,同样,与各子像素G对应的各光栅结构2位于发绿色(G)的光的准直光源42所照射的波导层(即第二层波导层)面向液晶显示面板3的一侧,准直光源42发出的绿色(G)的光在第二层波导层 内发生全反射,从第二层波导层上的各光栅结构2散射出去,同样,与各子像素B对应的各光栅结构2位于发蓝色(B)的光的准直光源42所照射的波导层(即第三层波导层)面向液晶显示面板3的一侧,准直光源42发出的蓝色(B)的光在第三层波导层内发生全反射,从第三层波导层上的各光栅结构2散射出去,从而在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,实现单眼聚焦三维显示。
需要说明的是,在本公开实施例提供的如图7所示的三维显示装置中,由于准直光源都是单色光源,因此,液晶显示面板中可以省去彩膜层的设置,这样,不仅可以简化制作工艺,还可以提高液晶显示面板的出光效率。
在具体实施时,在本公开实施例提供的上述三维显示装置中,为了提高波导层的均匀性,如图6和图7所示,背光模组4还可以包括:位于各波导层面向第二基板43一侧的缓冲层44。例如,缓冲层的材料需要为透明材料,例如,二氧化硅(SiO2)、树脂材料等,缓冲层的折射率需要小于波导层的折射率。如图6所示的三维显示装置中,缓冲层的厚度可以控制在几百纳米至几微米范围,如图7所示的三维显示装置中,缓冲层的等效光学厚度(即折射率与实际厚度的乘积)例如至少要大于1μm。
例如,在本公开实施例提供的上述三维显示装置中,波导层的折射率需要大于与波导层相邻的各层(例如缓冲层或第二基板,光栅结构除外)的折射率,波导层的材料可以选择折射率在1.7至2范围的透明材料,例如,氮化硅(Si3N4),以保证准直光源发出的光能够在波导层内发生全反射。
例如,在本公开实施例提供的上述三维显示装置中,为了便于各光栅结构对出射光的方向和颜色的控制,可以将波导层的厚度控制在100nm至100μm范围为佳。当然,在准直光源的准直性较好时,可以适当放宽对波导层的厚度的要求,可以将波导层的厚度控制在几百纳米至几毫米的范围。
在一些示例中,在本公开实施例提供的上述三维显示装置中,可以直接在波导层面向液晶显示面板的一面制作光栅结构,各光栅结构中的空隙可以为空气,或者,也可以填充折射率明显区别于波导层的材料,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,光栅结构的材料需要为透明材料,例如,二氧化硅(SiO2)、树脂材料等;光栅结构的折射率要明显区别于周围的介质;光栅结构的占空比可以控制在0.1至0.9 范围内,例如,光栅结构的占空比可以为0.5,具体可以综合考虑出射光的强度、三维显示装置不同位置的显示亮度的差异以及工艺条件等因素设计占空比,在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,为了提高出光效率,可以将各光栅结构的厚度控制在100nm至500nm范围内为佳。优选地,可以将各光栅结构的厚度设置为200nm。例如,可以将子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度设置为相同;或者,也可以分别对子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度进行设计,在此不做限定。
需要说明的是,在本公开实施例提供的上述三维显示装置中,如图4和图5所示的结构与如图6和图7所示的结构相比,由于波导层的厚度小于具有波导作用的第一基板的厚度,准直光源发出的光耦合进波导层的光少于耦合进第一基板的光,因此,图4和图5所示的三维显示装置的出光效率较高。
在一些示例中,在本公开实施例提供的上述三维显示装置中,准直光源可以由RGB三色的半导体激光器芯片经过混光后制成,或者,也可以由准直性较好的RGB三色的发光二极管(Light Emitting Diode,LED)芯片经过混光后制成,或者,也可以由准直性较好的白光LED芯片制成,或者,还可以由条状的冷阴极荧光灯(Cold Cathode Fluorescent Lamp,CCFL)加准直结构制成,在此不做限定。为了保证准直光源发出的光能够在具有波导作用的第一基板或波导层中发生全反射,且使得波导光栅具有合适的出光效率,需要准直光源以一定的入射角向第一基板或波导层中注入光线。并且,为了使准直光源与液晶显示面板的宽度相匹配,可以使用与液晶显示面板的宽度一致的半导体激光器芯片或LED芯片,或者,也可以在密度较小的半导体激光器芯片或LED芯片前设置扩束、准直等光学结构,在此不做限定。此外,准直光源发出的光应该与具有波导作用的第一基板或者波导层对准,以尽量覆盖第一基板或者波导层且不向液晶显示面板射入光线为宜。
需要注意的是,在本公开实施例提供的上述三维显示装置中,各光栅结构需要与对应的子像素精准对位,由于从各光栅结构出射的光的方向大多与液晶显示面板不垂直,并且,各光栅结构所在膜层与液晶显示面板中的彩膜 层之间存在一定的距离,因此,在设计各光栅结构的位置时,需要考虑各光栅结构与对应的子像素所对应的彩膜层之间的错位。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图4-图7所示,液晶显示面板3与背光模组4之间、各波导部41之间可以利用光学胶5(Optically Clear Adhesive,OCA)进行贴合。例如,液晶显示面板的出光侧可以为彩膜基板一侧,此时,可以将形成有子像素的阵列基板与背光模组贴合;或者,液晶显示面板的出光侧也可以为阵列基板一侧,此时,可以将形成有彩膜层的彩膜基板与背光模组贴合,在此不做限定。
下面对本公开实施例提供的上述三维显示装置利用波导光栅实现在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点的具体原理进行详细说明。在三维显示装中的波导光栅满足公式βq=βm-qK;其中,q=0,±1,±2,...时,m阶导模可以按照指定方向耦合出去,从而可以在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,实现单眼聚焦三维显示。上述公式中,βm为m阶导模的传播常数,βm=k0Nm,其中,k0为波矢,
Figure PCTCN2017095601-appb-000003
λ为出射光的波长,Nm为m阶导模的有效折射率,Nm≈n1sinθ1,如图8所示,n1为波导部41的折射率,θ1为光在波导部中发生全反射的反射角;βq为q阶衍射波的传播常数,βq=k0n2sinθ2,如图8所示,n2为空气的折射率,θ2为出射到空气中的光的出射角;K为光栅矢量,
Figure PCTCN2017095601-appb-000004
Λ为光栅周期;由此,上述公式可以表示为
Figure PCTCN2017095601-appb-000005
其中,
Figure PCTCN2017095601-appb-000006
由该公式可知,出射光的波长λ、出射光的出射角θ2以及光栅结构的光栅周期Λ相关,因此,可以根据从各光栅结构出射的光的波长λ(与子像素所显示的颜色对应,例如,子像素R对应的光栅结构出射的光的波长范围为622nm至770nm,子像素G对应的光栅结构出射的光的波长范围为492nm至577nm,子像素B对应的光栅结构出射的光的波长范围为455nm至492nm)和出射角θ2,设计各光栅结构的光栅周期Λ,从而可以使出射光按照指定方向出射,在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点。
需要注意的是,出射角θ2为从出射到空气中的光的出射角,该光在经过 液晶显示面板时的传播方向变化很小,因此,可以将该出射角θ2看作从三维显示装置出射的出射光的出射角。
下面对本公开实施例提供的上述三维显示装置从各光栅结构出射的光的出射角θ2的确定进行详细说明。如图9所示,三维显示装置100的出射光在人眼的瞳孔汇聚成两个视点a和b(图9以a和b分别位于瞳孔中心e到三维显示装置的垂线l的上方和下方为例),瞳孔中心e距离三维显示装置100的距离为d(d的范围可以为10mm至100mm),两个视点a和b距离瞳孔中心e的距离分别为Sa和Sb(Sa的范围可以为0.5mm至1.25mm,Sb的范围可以为0.5mm至1.25mm)。下面分别以f处的光栅结构和g处的光栅结构为例,从f处的光栅结构出射的光汇聚到视点a,f处的光栅结构的中心到垂线l的距离为ha,从f处的光栅结构出射的光与垂线l之间的夹角即为从f处的光栅结构出射的光的出射角θ2,根据正切函数,从f处的光栅结构出射的光满足
Figure PCTCN2017095601-appb-000007
则从f处的光栅结构出射的光的出射角
Figure PCTCN2017095601-appb-000008
从g处的光栅结构出射的光汇聚到视点b,g处的光栅结构的中心到垂线l的距离为hb,从g处的光栅结构出射的光与垂线l之间的夹角即为从g处的光栅结构出射的光的出射角θ2,根据正切函数,从g处的光栅结构出射的光满足
Figure PCTCN2017095601-appb-000009
则从g处的光栅结构出射的光的出射角
Figure PCTCN2017095601-appb-000010
在确定从各光栅结构出射的光的出射角θ2之后,可以根据从各光栅结构出射的光的出射角θ2和波长λ,设计各光栅结构的光栅周期Λ,从而使三维显示装置出射的光在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点。
例如,图10为出射光的出射角θ2随光栅结构的位置变化的曲线图,横坐标为各光栅结构在三维显示装置中的位置,左侧纵坐标为出射光的出射角θ2,右侧纵坐标为视点a和b对应的出射光的出射角之差θ3,图10中的实线代表视点a对应的出射光的出射角θ2随光栅结构的位置变化的曲线,长虚线代表视点b对应的出射光的出射角θ2随光栅结构的位置变化的曲线,短虚线代表实线与长虚线之间的差异。
实例二:本公开实施例提供的上述三维显示装置应用于具有直下式背光模组的液晶显示器。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图11和图12所示,可以包括:液晶显示面板3和背离液晶显示面板3出光侧的一侧的背光模组4;其中,背光模组4为直下式准直背光;如图11所示,各光栅结构2可以位于背光模组4与液晶显示面板3之间;或者,如图12所示,各光栅结构2也可以位于液晶显示面板3的出光侧;或者,各光栅结构还可以位于液晶显示面板的内部,例如彩膜层的上面或下面;在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,在各光栅结构位于背光模组与液晶显示面板之间时,各光栅结构可以直接制作在液晶显示面板中面向背光模组一侧的基板上;或者,各光栅结构也可以制作在其他基材上,再贴合于液晶显示面板中面向背光模组一侧的基板上;或者,各光栅结构还可以制作或贴合在直下式背光模组面向液晶显示面板一侧的基板上;在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,在各光栅结构位于液晶显示面板的出光侧时,各光栅结构可以直接制作在液晶显示面板的出光侧的基板上;或者,各光栅结构也可以制作在其他基材上,再贴合于液晶显示面板的出光侧的基板上,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如图11和图12所示,液晶显示面板3与背光模组4之间可以利用光学胶5进行贴合。例如,液晶显示面板的出光侧可以为彩膜基板一侧,此时,可以将形成有子像素的阵列基板与背光模组贴合;或者,液晶显示面板的出光侧也可以为阵列基板一侧,此时,可以将形成有彩膜层的彩膜基板与背光模组贴合,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,如果背光模组发出的光垂直射入液晶显示面板,会导致各光栅结构的光栅周期较大,从而会导致出射光的出光方向的调节精度较小。例如,在本公开实施例提供的上述三维显示装置中,可以将背光模组发出的光与液晶显示面板所在平面之间的夹角控制在40°至80°范围。优选地,可以将背光模组发出的光与液晶显示面板所在平面之间的夹角设置为60°。例如,可以综合考虑视角范围、三维显示装置距离人眼的距离以及出射光的出光方向的调节精度等因素,对背光模组发出的光与液晶显示面板所在平面之间的夹角进行设计。
需要注意的是,在本公开实施例提供的上述三维显示装置中,各光栅结构需要与对应的子像素精准对位,由于直下式背光出射的光是以一定的倾斜角射入液晶显示面板的,并且,各光栅结构所在膜层与液晶显示面板中的彩膜层之间存在一定的距离,因此,在设计各光栅结构的位置时,需要考虑各光栅结构与对应的子像素所对应的彩膜层之间的错位。
在一些示例中,在本公开实施例提供的上述三维显示装置中,直下式准直背光可以由RGB三色的半导体激光器芯片经过扩束、混光、准直后制成,或者,也可以由准直性较好的RGB三色的发光二极管(Light Emitting Diode,LED)芯片经过扩束、混光、准直后制成,或者,也可以由准直性较好的白光LED芯片经过扩束、准直后制成,或者,还可以由条状的冷阴极荧光灯(Cold Cathode Fluorescent Lamp,CCFL)加准直、扩束等光学结构制成,在此不做限定。并且,直下式准直背光可以与液晶显示面板贴合,或者,二者也可以分置,在此不做限定。
在一些示例中,在本公开实施例提供的上述三维显示装置中,光栅结构的材料需要为透明材料,例如,二氧化硅(SiO2)、树脂材料等;光栅结构的折射率要明显区别于周围的介质;光栅结构的占空比可以控制在0.1至0.9范围内,例如,光栅结构的占空比可以为0.5,可以综合考虑出射光的强度、三维显示装置不同位置的显示亮度的差异以及工艺条件等因素设计占空比,在此不做限定。
例如,在本公开实施例提供的上述三维显示装置中,为了提高出光效率,可以将各光栅结构的厚度控制在100nm至700nm范围。例如,可以将各光栅结构的厚度设置为200nm。例如,可以将子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度设置为相同;或者,也可以分别对子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度进行设计,在此不做限定。
下面对本公开实施例提供的上述三维显示装置实现在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点的具体原理进行详细说明。光栅结构的m级衍射波的衍射角θ由光栅周期P、入射光的波长λ以及入射角θ0决定,满足公式sinθ-sinθ0=mλ/P;其中,m=0,±1,±2,...(如图13所示)。由于光栅结构的0级衍射和1级衍射的衍射强度较大,而高阶的衍射级次的衍射强度 小很多,并且,0级衍射波的传播方向是固定的,沿入射光方向,而1级衍射波的衍射方向可以通过光栅周期进行调控,因此,本公开实施例提供的上述三维显示装置选择1级衍射波实现对出射光的出射角度的调节,即满足sinθ-sinθ0=λ/P;其中,θ为出射光的出射角,θ0为入射光的入射角,λ为入射光的波长,P为光栅周期;入射光的入射角θ0(即直下式背光模组的出射光的出射角)固定,入射光的波长λ、出射光的出射角θ与光栅结构的光栅周期P相关,因此,可以根据从各光栅结构出射的光的波长(等于入射光的波长λ,与子像素所显示的颜色对应,例如,子像素R对应的光栅结构出射的光的波长范围为622nm至770nm,子像素G对应的光栅结构出射的光的波长范围为492nm至577nm,子像素B对应的光栅结构出射的光的波长范围为455nm至492nm)和出射角θ,设计各光栅结构的光栅周期P,从而可以使出射光按照指定方向出射,在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点。
并且,由于入射光在光栅结构的栅条和空隙等效光程差为半波长的奇数倍时,0级衍射波相干相消,0级衍射波的衍射强度减弱,1级衍射波的衍射强度增强,入射光在光栅结构的栅条和空隙等效光程差为半波长的偶数倍时,1级衍射波相干相消,1级衍射波的衍射强度减弱,0级衍射波的衍射强度增强,因此,可以分别对子像素R对应的光栅结构的厚度、子像素G对应的光栅结构的厚度、子像素B对应的光栅结构的厚度进行设计,达到0级衍射波的衍射强度减弱,1级衍射波的衍射强度增强的效果,以提高三维显示装置的出光效率。
需要说明的是,本公开实例二中的出射光的出射角的确定与本公开实例一中的出射光的出射角的确定类似,在此不做赘述。在确定从各光栅结构出射的光的出射角θ之后,可以根据从各光栅结构出射的光的出射角θ和波长λ,设计各光栅结构的光栅周期P,从而使三维显示装置出射的光在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点。
如图14所示,所述左眼的至少两个视点的视线与所述右眼的至少两个视点的视线汇聚至相同的位置F’。由此,单眼的聚焦位置与和双眼视线的汇聚位置一致。
在一些示例中,本公开实例提供的上述三维显示装置还可以应用于 OLED。在本公开实例提供的上述三维显示装置应用于底发射型OLED时,即具有有机电致发光结构的衬底基板一侧为出光侧,此时,各光栅结构可以位于有机电致发光结构与衬底基板之间,或者,各光栅结构也可以位于衬底基板背离有机电致发光结构的一侧,在此不做限定。在本公开实例提供的上述三维显示装置应用于顶发射型OLED时,即封装盖板一侧为出光侧,此时,各光栅结构可以位于有机电致发光结构与封装盖板之间,或者,各光栅结构也可以位于封装盖板背离有机电致发光结构的一侧,在此不做限定。
本公开实施例提供的上述三维显示装置,主要应用于头戴式虚拟现实或增强现实装置中,也可以应用到:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,相应的设计应依据具体的人眼-屏幕距离等因素做出相应的调节。
本公开实施例提供的一种三维显示装置,包括多个子像素和与各子像素一一对应的多个光栅结构;每个光栅结构用于将光按照指定方向出射,使三维显示装置的出射光在左眼汇聚成至少两个视点,在右眼汇聚成至少两个视点,这样,可以使三维显示装置实现单眼聚焦三维显示,从而可以在将该三维显示装置的视距设计为与视差三维显示的视距相等时,保证单眼的聚焦位置和双眼视线的汇聚位置一致,进而可以避免观看者在观看三维显示装置时产生眩晕的感觉。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年10月21日递交的中国专利申请第201610920762.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种三维显示装置,包括:多个子像素和与所述多个子像素一一对应的多个光栅结构;
    每个所述光栅结构被配置为将光按照指定方向出射,使所述三维显示装置的出射光在观察者的左眼汇聚成至少两个视点,在所述观察者的右眼汇聚成至少两个视点。
  2. 如权利要求1所述的三维显示装置,包括:液晶显示面板和背离所述液晶显示面板出光侧的一侧的背光模组;其中,所述液晶显示面板包括所述多个子像素,所述背光模组包括:层叠设置的至少一个波导部和位于各所述波导部的入光面处的准直光源;
    各所述光栅结构位于各所述波导部面向所述液晶显示面板的一侧。
  3. 如权利要求2所述的三维显示装置,其中,各所述光栅结构满足:
    Figure PCTCN2017095601-appb-100001
    其中,
    k0为波矢,
    Figure PCTCN2017095601-appb-100002
    λ为出射光的波长,n1为所述波导部的折射率,n2为空气的折射率,θ1为光在所述波导部中发生全反射的反射角,θ2为出射光的出射角,Λ为所述光栅结构的光栅周期,q=0,±1,±2,...。
  4. 如权利要求2所述的三维显示装置,其中,每个所述波导部为具有波导作用的第一基板。
  5. 如权利要求4所述的三维显示装置,其中,所述第一基板的数量为一个;所述准直光源发白光;
    各所述光栅结构位于所述第一基板面向所述液晶显示面板的一侧。
  6. 如权利要求4所述的三维显示装置,其中,所述第一基板的数量为三个;位于不同第一基板的入光面处的准直光源分别发出不同颜色的光;
    各所述光栅结构位于与对应的子像素相同颜色的准直光源所照射的第一基板面向所述液晶显示面板的一侧。
  7. 如权利要求4-6任一项所述的三维显示装置,其中,各所述光栅结构的厚度的范围为100nm至700nm。
  8. 如权利要求2所述的三维显示装置,其中,每个所述波导部为波导层;
    所述背光模组还包括:位于距离所述液晶显示面板最远的波导层背离所述液晶显示面板一侧的第二基板。
  9. 如权利要求8所述的三维显示装置,其中,所述波导层的数量为一层;所述准直光源发白光;
    各所述光栅结构位于所述波导层面向所述液晶显示面板的一侧。
  10. 如权利要求8所述的三维显示装置,其中,所述波导层的数量为三层;位于不同波导层的入光面处的准直光源分别发出不同颜色的光;
    各所述光栅结构位于与对应的子像素相同颜色的准直光源所照射的波导层面向所述液晶显示面板的一侧。
  11. 如权利要求8-10任一项所述的三维显示装置,其中,所述背光模组还包括:位于各所述波导层面向所述第二基板一侧的缓冲层。
  12. 如权利要求8-11任一项所述的三维显示装置,其中,所述波导层的折射率的范围为1.7至2。
  13. 如权利要求8-12任一项所述的三维显示装置,其中,所述波导层的厚度的范围为100nm至100μm。
  14. 如权利要求8-13任一项所述的三维显示装置,其中,各所述光栅结构的厚度的范围为100nm至500nm。
  15. 如权利要求1所述的三维显示装置,包括:液晶显示面板和背离所述液晶显示面板出光侧的一侧的背光模组;其中,所述液晶显示面板包括所述多个子像素,所述背光模组为直下式准直背光;
    各所述光栅结构位于所述背光模组与所述液晶显示面板之间;或者,各所述光栅结构位于所述液晶显示面板的内部;或者,各所述光栅结构位于所述液晶显示面板的出光侧。
  16. 如权利要求15所述的三维显示装置,其中,各所述光栅结构满足:sinθ-sinθ0=λ/P;其中,
    θ为出射光的出射角,θ0为入射光的入射角,λ为入射光的波长,P为所述光栅结构的光栅周期。
  17. 如权利要求15或16所述的三维显示装置,其中,所述背光模组发出的光与所述液晶显示面板所在平面之间的夹角的范围为40°至80°。
  18. 如权利要求15-17任一项所述的三维显示装置,其中,各所述光栅结构的厚度的范围为100nm至700nm。
  19. 如权利要求1-18任一项所述的三维显示装置,其中,所述左眼的至少两个视点的视线与所述右眼的至少两个视点的视线汇聚至相同的位置。
PCT/CN2017/095601 2016-10-21 2017-08-02 三维显示装置 WO2018072527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/744,339 US10466498B2 (en) 2016-10-21 2017-08-02 Three-dimensional display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610920762.2A CN106324847B (zh) 2016-10-21 2016-10-21 一种三维显示装置
CN201610920762.2 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018072527A1 true WO2018072527A1 (zh) 2018-04-26

Family

ID=57818116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095601 WO2018072527A1 (zh) 2016-10-21 2017-08-02 三维显示装置

Country Status (3)

Country Link
US (1) US10466498B2 (zh)
CN (1) CN106324847B (zh)
WO (1) WO2018072527A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495366A (zh) * 2020-04-03 2021-10-12 驻景(广州)科技有限公司 基于子像素出射光空间叠加的三维显示方法
CN114200693A (zh) * 2021-11-17 2022-03-18 广东未来科技有限公司 显示光栅、3d显示装置、显示光栅的制备及3d显示方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324847B (zh) 2016-10-21 2018-01-23 京东方科技集团股份有限公司 一种三维显示装置
CN106324898B (zh) * 2016-10-28 2017-08-25 京东方科技集团股份有限公司 显示面板及显示装置
CN106291945B (zh) * 2016-10-31 2018-01-09 京东方科技集团股份有限公司 一种显示面板和显示装置
CN107577093B (zh) * 2017-09-20 2020-12-01 京东方科技集团股份有限公司 一种显示模组及光波导显示装置
CN107741666B (zh) 2017-10-27 2020-08-04 上海天马微电子有限公司 一种显示装置
CN112292359A (zh) 2018-06-26 2021-01-29 日本电气硝子株式会社 玻璃板
CN117069371A (zh) 2018-06-26 2023-11-17 日本电气硝子株式会社 玻璃板
CN108803060B (zh) * 2018-07-03 2021-01-22 京东方科技集团股份有限公司 单眼立体显示器
US11272168B2 (en) * 2018-07-16 2022-03-08 Boe Technology Group Co., Ltd. Three-dimensional display apparatus, three-dimensional imaging apparatus, and method of displaying three-dimensional image
CN110908134B (zh) * 2018-08-28 2021-01-26 京东方科技集团股份有限公司 一种显示装置及显示系统
CN109325459B (zh) * 2018-09-30 2021-11-09 京东方科技集团股份有限公司 一种准直光学层和显示面板
CN110174767B (zh) * 2019-05-13 2024-02-27 成都工业学院 一种超多视点近眼显示装置
CN112666785B (zh) * 2019-09-30 2022-07-15 宁波舜宇车载光学技术有限公司 定向投影设备及定向投影方法
CN113495365B (zh) * 2020-04-03 2022-09-30 驻景(广州)科技有限公司 以子像素为显示单元的单目多视图显示方法
CN114253005A (zh) * 2020-09-23 2022-03-29 中国科学院上海光学精密机械研究所 三维多视点显示装置及制造方法
FR3118172A1 (fr) * 2020-12-21 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composant optique pour un dispositif d’imagerie atr
CN113219671A (zh) * 2021-05-25 2021-08-06 深圳市光舟半导体技术有限公司 光学装置和显示设备
CN114173108B (zh) * 2021-09-30 2023-12-12 合肥京东方光电科技有限公司 3d显示面板的控制方法、装置、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201966999U (zh) * 2011-03-17 2011-09-07 黑龙江省四维影像数码科技有限公司 三维自由立体显示手机
US20120199081A1 (en) * 2011-02-03 2012-08-09 Richard Daye Animal identification entertainment and safety device
CN104007552A (zh) * 2014-05-30 2014-08-27 北京理工大学 一种真实立体感的光场头盔显示系统
CN106291958A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及图像显示方法
CN106324847A (zh) * 2016-10-21 2017-01-11 京东方科技集团股份有限公司 一种三维显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080086110A (ko) * 2007-03-21 2008-09-25 삼성전자주식회사 고효율 2차원/3차원 겸용 영상 표시장치
CN104460115B (zh) 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199081A1 (en) * 2011-02-03 2012-08-09 Richard Daye Animal identification entertainment and safety device
CN201966999U (zh) * 2011-03-17 2011-09-07 黑龙江省四维影像数码科技有限公司 三维自由立体显示手机
CN104007552A (zh) * 2014-05-30 2014-08-27 北京理工大学 一种真实立体感的光场头盔显示系统
CN106291958A (zh) * 2016-10-21 2017-01-04 京东方科技集团股份有限公司 一种显示装置及图像显示方法
CN106324847A (zh) * 2016-10-21 2017-01-11 京东方科技集团股份有限公司 一种三维显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495366A (zh) * 2020-04-03 2021-10-12 驻景(广州)科技有限公司 基于子像素出射光空间叠加的三维显示方法
CN114200693A (zh) * 2021-11-17 2022-03-18 广东未来科技有限公司 显示光栅、3d显示装置、显示光栅的制备及3d显示方法

Also Published As

Publication number Publication date
US20190004324A1 (en) 2019-01-03
CN106324847A (zh) 2017-01-11
CN106324847B (zh) 2018-01-23
US10466498B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2018072527A1 (zh) 三维显示装置
US10684408B2 (en) Display device and image display method
US11061181B2 (en) Wide angle imaging directional backlights
CN110908134B (zh) 一种显示装置及显示系统
CN108369300B (zh) 使用具有相应不同的发射峰值的多个不同的窄带光进行成像的系统和方法
TWI697693B (zh) 多光束元件式近眼顯示器、系統、與方法
TWI627451B (zh) 多光束繞射格柵式近眼顯示器
EP2788809B1 (en) Compact illumination module for head mounted display
WO2019179136A1 (zh) 显示装置及显示方法
TWI576614B (zh) 可減少串音之免眼鏡式立體顯示設備
US8797620B2 (en) Autostereoscopic display assembly based on digital semiplanar holography
CN104303100A (zh) 定向背光源
CN104380157A (zh) 定向照明波导布置方式
US11054661B2 (en) Near-eye display device and near-eye display method
TWI699557B (zh) 多光束元件式抬頭顯示器、系統、與方法
JP2021508965A (ja) クロスレンダリングマルチビューカメラ、システム、及び方法
US10330843B2 (en) Wide angle imaging directional backlights
US9915773B1 (en) Backlight module and stereo display device using the same
US10585284B1 (en) Systems and methods to provide an interactive environment over a wide field of view
TWI761098B (zh) 靜態影像增強隱私顯示器、可切換模式的隱私顯示系統與其方法
CN109471259B (zh) 近眼显示装置
US10429573B2 (en) Glassless three-dimensional display apparatus including single backlight unit
TW202343091A (zh) 顯示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861464

Country of ref document: EP

Kind code of ref document: A1