WO2018072377A1 - 光信号输出方法、系统、相关设备和计算机存储介质 - Google Patents
光信号输出方法、系统、相关设备和计算机存储介质 Download PDFInfo
- Publication number
- WO2018072377A1 WO2018072377A1 PCT/CN2017/075993 CN2017075993W WO2018072377A1 WO 2018072377 A1 WO2018072377 A1 WO 2018072377A1 CN 2017075993 W CN2017075993 W CN 2017075993W WO 2018072377 A1 WO2018072377 A1 WO 2018072377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical signal
- screen
- sub
- mobile terminal
- pixel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/0279—Improving the user comfort or ergonomics
Definitions
- the present invention relates to the field of communications technologies, and in particular, to an optical signal output method, system, mobile terminal, wearable device, and computer storage medium.
- More and more mobile terminals are currently being used for various operations, such as using terminal chat, viewing files and bank account transfers.
- these operations are performed on the mobile terminal in a public place, the surrounding personnel can easily see the content displayed on the screen of the mobile terminal, which may cause important information or the privacy of the user to be stolen by other personnel, resulting in property loss and information. Leakage and other issues. Therefore, the prior art has a problem that the content displayed on the screen of the mobile terminal is easily leaked.
- embodiments of the present invention provide an optical signal output method, system, mobile terminal, wearable device, and computer storage medium.
- the embodiment of the invention provides an optical signal output method, which is applied to a wearable device, and includes:
- the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity are combined to obtain a third optical signal, and the third optical signal is output.
- the embodiment of the present invention further provides an optical signal output method, which is applied to a mobile terminal, where the mobile terminal includes at least a first screen, including:
- the embodiment of the present invention further provides a mobile terminal, where the mobile terminal includes at least a first screen, the first screen includes a first filter, and the first screen is configured to output a first optical signal and send it to wearable a device, configured to calculate, according to an intensity of a first optical signal output by each sub-pixel of the first screen, an intensity of at least one second optical signal of each sub-pixel except the first optical signal And synthesizing the first optical signal of each sub-pixel and the corresponding calculated at least one second optical signal by the wearable device to obtain a third optical signal, and outputting the third optical signal.
- An embodiment of the present invention further provides a wearable device, the wearable device including at least a filter, a thin film transistor, and a processor, the filter being connected to the processor, the thin film transistor and the processor Connected, where:
- the filter is configured to receive a first optical signal output by each sub-pixel of the screen of the mobile terminal;
- the processor is configured to calculate, according to an intensity of the first optical signal output by each sub-pixel, an intensity of at least one second optical signal of each sub-pixel except the first optical signal, and feed back a calculation result to the Thin film transistor
- the thin film transistor combines the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity to obtain a third optical signal, and outputs the third optical signal.
- the embodiment of the present invention further provides a mobile terminal, where the mobile terminal includes at least a first screen, and the mobile terminal further includes:
- a sending module configured to output a first optical signal on the first screen and send the optical signal to the wearable device, so that the wearable device outputs the first optical signal according to the sub-pixels of the first screen, Calculating an intensity of at least one second optical signal of each sub-pixel other than the first optical signal, and at least the first optical signal of each sub-pixel and corresponding calculated intensity of the sub-pixel by the wearable device
- a second optical signal is synthesized to obtain a third optical signal, and the third optical signal is output.
- the embodiment of the invention further provides a wearable device, comprising:
- a receiving module configured to receive a first optical signal output by each sub-pixel of the screen of the mobile terminal
- a calculation module configured to calculate each sub-intensity according to the intensity of the first optical signal output by each sub-pixel An intensity of at least one second optical signal of the pixel other than the first optical signal;
- a synthesizing module configured to synthesize the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity to obtain a third optical signal, and output the third optical signal.
- the embodiment of the present invention further provides an optical signal output system, including the wearable device and the mobile terminal provided by the embodiments of the present invention.
- the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores one or more programs executable by a computer, and when the one or more programs are executed by the computer, the computer is executed as described above.
- a light signal output method is provided.
- the first optical signal outputted by each sub-pixel of the screen of the mobile terminal is received; and at least one of the sub-pixels except the first optical signal is calculated according to the intensity of the first optical signal output by each sub-pixel.
- FIG. 1 is a schematic flowchart of an optical signal output method according to an embodiment of the present invention.
- FIG. 2 is a schematic flowchart diagram of another optical signal output method according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of a mobile terminal according to an embodiment of the present disclosure.
- FIG. 4 is a structural diagram of an LCD of a mobile terminal according to an embodiment of the present invention.
- FIG. 5 is a structural diagram of a wearable device according to an embodiment of the present invention.
- FIG. 6 is a structural diagram of another wearable device according to an embodiment of the present invention.
- FIG. 7 is a structural diagram of another wearable device according to an embodiment of the present invention.
- FIG. 8 is a structural diagram of another wearable device according to an embodiment of the present invention.
- FIG. 9 is a structural diagram of a mobile terminal according to an embodiment of the present invention.
- FIG. 10 is a structural diagram of another mobile terminal according to an embodiment of the present invention.
- FIG. 11 is a structural diagram of another mobile terminal according to an embodiment of the present invention.
- FIG. 12 is a structural diagram of another mobile terminal according to an embodiment of the present disclosure.
- FIG. 13 is a schematic diagram of an optical signal output system according to an embodiment of the present invention.
- FIG. 1 is a schematic flowchart of an optical signal output method according to an embodiment of the present invention.
- the embodiment of the present invention provides an optical signal output method, which is applied to a wearable device, and includes the following steps:
- Step S101 Receive a first optical signal output by each sub-pixel of the screen of the mobile terminal.
- Step S102 Calculate, according to the intensity of the first optical signal output by each sub-pixel, the intensity of at least one second optical signal of each sub-pixel except the first optical signal.
- Step S103 synthesize the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity to obtain a third optical signal, and output the third optical signal.
- the color layer of the color filter in the mobile terminal has three colors, which are red, green, and blue.
- the color layer of the color filter is now changed to a monochromatic layer, and the corresponding color filter becomes a monochromatic filter.
- the color of the color layer can be changed to a color of red, and the corresponding monochrome filter becomes a red filter.
- the color layer of the color filter of the wearable device is changed to a color layer of only blue and green.
- setting the monochromatic filter in the mobile terminal as a red filter is only an example.
- the monochromatic filter in the mobile terminal can also be set as a blue filter or a green filter, correspondingly.
- the color layer of the color filter of the wearable device also varies with the variation of the monochromatic filter in the mobile terminal.
- the monochrome filter in the mobile terminal is set to a blue filter
- the color layer of the color filter of the corresponding wearable device is changed to a red and green color layer
- the monochrome filter in the mobile terminal When the light sheet is set to a green color filter, the color layer of the color filter of the corresponding wearable device is changed to a red and blue color layer.
- a liquid crystal display in the mobile terminal, includes an upper polarizer, a lower polarizer, a color filter, and a liquid crystal, and the transmission axis of the upper polarizer and the lower polarizer The direction is 90 degrees, and the liquid crystal molecules in the liquid crystal can reverse the polarization direction of the light by 90 degrees without applying a voltage.
- the light from the backlight passes through the lower polarizer, and the light is processed into light having a polarization direction that coincides with the direction of the transmission axis of the lower polarizer.
- Each of the thin film transistors corresponds to one red sub-pixel in the monochromatic filter, and each of the TFTs also corresponds to a string of liquid crystal molecules in the liquid crystal, and the TFT has a switching function.
- each TFT is controlled, some TFTs may be closed, some TFTs may not be closed, and the opening and closing of each TFT is completely controlled by the image signal.
- the alignment direction of the corresponding string of liquid crystal molecules does not change.
- the polarization direction of a passing light beam can be twisted by 90 degrees, so that the light passing through the lower polarizer is further along the string.
- the liquid crystal molecules reach the upper polarizer, and the polarization direction of the light is completely consistent with the transmission axis direction of the upper polarizer.
- the light can be completely transmitted through the upper polarizer without any loss.
- the red light of the red sub-pixel of the TFT should be the brightest.
- a voltage is applied to the corresponding string of liquid crystal molecules, causing a change in the alignment direction of the string of liquid crystal molecules.
- the larger the applied voltage the greater the degree of alignment of the liquid crystal molecules.
- the magnitude of the voltage applied to the corresponding liquid crystal molecules may be different, which may cause the degree of change of the alignment direction of the liquid crystal molecules corresponding to each string to be different, thereby causing the liquid crystal molecules to propagate along different strings.
- the degree of polarization of the light is changed to a different extent.
- the light whose polarization direction is changed to a different extent reaches the upper polarizer, some of the light has a phase difference from the direction of the transmission axis of the upper polarizer. Therefore, the light transmitted through the upper polarizer will be more.
- the intensity of the light of the sub-pixel corresponding to the TFT is greater, that is, the intensity of the red light of the corresponding sub-pixel is larger, and some of the light is polarized.
- the direction is different from the direction of the transmission axis of the upper polarizer, so the light transmitted through the upper polarizer is less.
- the intensity of the light of the sub-pixel corresponding to the TFT is smaller, that is, the corresponding sub-pixel.
- the intensity of the red light of the point is smaller, so that the intensity of the red light of each sub-pixel point is different.
- the wearable device separately calculates the intensity of the corresponding blue light and the green light according to the intensity of the red light of each sub-pixel point, because the red light intensity of each sub-pixel point is different, corresponding The intensity of the blue and green lights calculated separately will be different.
- the light of three colors corresponding to each sub-pixel is combined to form a picture with various colors.
- the user can use the wearable device to see the content displayed on the screen of the mobile terminal, while others can not see the content displayed on the screen of the mobile terminal, and what other people see is only the red light that spreads the entire screen. At this time, it is possible to realize that the content displayed on the screen of the mobile terminal is not stolen by others.
- the method before the intensity of the at least one second optical signal of each sub-pixel except the first optical signal is calculated according to the intensity of the first optical signal output by each sub-pixel, the method further include:
- Calculating, according to the intensity of the first optical signal output by each sub-pixel, the strength of the at least one second optical signal of each sub-pixel except the first optical signal including:
- each sub-pixel except the first optical signal Calculating, according to the first calculation manner corresponding to the first gear position, each sub-pixel except the first optical signal according to the intensity of the first optical signal output by each sub-pixel in the first calculation manner The intensity of at least one second optical signal.
- gear positions can also be set, and each gear position corresponds to one encryption mode.
- Both the mobile terminal and the wearable device are provided with an encrypted file, and the encrypted position of the mobile terminal and the encrypted position of the wearable device are in one-to-one correspondence.
- three color gradations of red can be defined, namely pure red, medium red and magenta, respectively, and the three color gradations respectively correspond to one gear position, for example, pure red corresponds to the first gear, and middle red corresponds to the first Second gear, magenta corresponds to the third gear.
- Three gear positions are set on the mobile terminal, and three gear positions are also set on the corresponding wearable device.
- the three gear positions on the mobile terminal and the three gear positions on the wearable device are in one-to-one correspondence
- the first gear on the mobile terminal corresponds to the first gear on the wearable device
- the second gear on the mobile terminal corresponds to the second gear on the wearable device
- the third gear on the mobile terminal corresponds to the third gear on the wearable device
- each gear has a corresponding calculation manner, for example, when moving
- the wearable device calculates the other optical signals of each sub-pixel point in a calculation manner corresponding to the first gear. strength.
- the encrypted file is expanded by the menu, and the selection of the encrypted gear is implemented on this menu.
- the wearable device can determine, according to the brightness of the monochrome optical signal sent by the mobile terminal, which gear position of the mobile terminal is, and then the wearable device adjusts its gear position to the encrypted position of the mobile terminal. Corresponding gear position. Each gear position corresponds to a calculation mode, and the calculation methods corresponding to different gear positions are different. Only when the gear position of the wearable device and the gear position of the mobile terminal are associated, each sub-calculation is calculated in a corresponding calculation manner. The intensity of other optical signals of the pixel. If the gear position of the wearable device does not correspond to the gear position of the mobile terminal, the wearable device cannot calculate the brightness of other optical signals of each sub-pixel point.
- the wearable device can determine that the brightness of the red light signal emitted by the mobile terminal is pure red.
- the current gear position of the mobile terminal is the first gear, and then the wearable device adjusts its gear position to the first gear corresponding to the gear position of the mobile terminal, so that the first calculation manner corresponding to the first gear is used.
- the intensity of the blue light signal and the green light signal of each sub-pixel point can be calculated.
- gear position can be set to not only three. Since there are many kinds of red color gradations, a plurality of different gear positions can be set, which is merely an example.
- the wearable device can determine, according to the brightness of the monochromatic optical signal sent by the mobile terminal, which gear position the current gear position of the mobile terminal is, and then adjust its own gear position to a gear position corresponding to the gear position of the mobile terminal.
- the gear position of the wearable device can be manually adjusted to match the gear position of the wearable device with the gear position of the mobile terminal. For example, the current gear position of the mobile terminal is set to the second gear, and then the user adjusts the gear position of the wearable device to the second gear, so that the gear position of the wearable device corresponds to the gear position of the mobile terminal.
- the wearable device calculates the intensity of other optical signals of each sub-pixel point in a second calculation manner corresponding to the second gear.
- the gear position is adjusted to a first gear position corresponding to the first brightness, wherein a brightness of the screen is adjusted to the first brightness, and the first gear position corresponds to the first gear position.
- the method further includes:
- a plurality of gear positions including the first gear position are set, wherein each gear position corresponds to a different calculation mode, and each gear position corresponds to a different brightness of the screen.
- Corresponding calculation methods are adopted for each type of encryption gear, and the intensity of blue light and green light corresponding to the red light on each sub-pixel point is calculated using different calculation methods in different encryption gear positions. In this way, the user can flexibly select different gear positions according to his own needs to encrypt the content on the screen of the mobile terminal, so that the encryption effect is better.
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal.
- the first optical signal is a monochromatic optical signal, for example, a red optical signal
- the second optical signal is a blue optical signal or a green optical signal
- the third optical signal is a complex optical signal obtained by combining the monochromatic optical signals.
- step S103 the red light emitted by the screen of the mobile terminal reaches the wearable device, and the wearable device calculates the intensity of the corresponding blue light and green light according to the intensity of the red light of each sub-pixel point, because the red light intensity of each sub-pixel point is strong. The difference between the weak and the corresponding blue and green light is different. Finally, the light corresponding to the three colors of each sub-pixel is combined to form a picture with various colors. At this time, the user You can see what is displayed on the screen of the mobile terminal.
- the user uses the wearable device to view the mobile terminal screen, and can obtain the content displayed on the screen of the mobile terminal.
- the mobile terminal displays monochromatic light on the screen, the content is not directly displayed, and other people cannot obtain the mobile.
- the content on the screen of the terminal, and different gear positions are set for encryption, and the user can flexibly set the encryption gear according to his own needs, thereby preventing others from stealing the content displayed on the screen of the mobile terminal.
- FIG. 2 is a schematic flowchart of another optical signal output method according to an embodiment of the present invention.
- the embodiment of the present invention provides an optical signal output method, which is applied to a mobile terminal, where the mobile terminal includes at least a first screen. , including the following steps:
- Step S201 Set a plurality of calculation modes including the first calculation mode, where each calculation mode corresponds to a brightness of the first screen.
- Step S202 adjusting brightness of the first screen to a first brightness, so that the wearable
- the device selects a first calculation manner corresponding to the first brightness, and calculates, according to the first calculation manner, each sub-pixel by at least the first optical signal according to the intensity of the first optical signal output by each sub-pixel.
- the intensity of a second optical signal is a first optical signal corresponding to the first brightness.
- Step S203 outputting a first optical signal on the first screen and transmitting the first optical signal to the wearable device, so that the wearable device calculates each according to the intensity of the first optical signal output by each sub-pixel of the first screen.
- An intensity of at least one second optical signal of the sub-pixel other than the first optical signal, and at least one of the first optical signal of each sub-pixel and a corresponding calculated intensity by the wearable device The two optical signals are synthesized to obtain a third optical signal, and the third optical signal is output.
- a plurality of encrypted gear positions may be set on the mobile terminal, each encrypted gear position corresponding to one calculation mode, and each encrypted gear position corresponds to a brightness of the first screen.
- a plurality of encrypted gear positions are also set on the wearable device, and the encrypted gear positions on the mobile terminal and the encrypted gear positions on the wearable device are in one-to-one correspondence.
- step S202 the encrypted file position of the mobile terminal is set to the first file, and the corresponding mobile terminal screen is displayed as pure red.
- the encrypted gear position of the wearable device is also set to the first file.
- the first calculation method corresponding to an encrypted file position calculates the intensity of the blue light and the green light corresponding to the intensity of the red light at each sub-pixel point.
- step S203 the first optical signal, that is, the monochromatic optical signal is outputted on the screen of the mobile terminal, where red light is still taken as an example, and the intensity of the red light on each sub-pixel point is different, the wearable device Calculate the intensity of the corresponding blue and green light according to the intensity of the red light at each sub-pixel point, and finally combine the red, green and blue light at each sub-pixel point to form a color picture. , that is, what is displayed on the screen of the mobile terminal.
- the mobile terminal further includes a second screen
- the outputting the first optical signal on the first screen and transmitting the information to the wearable device includes:
- the method further includes:
- the fourth optical signal is output on the second screen.
- FIG. 3 it is a schematic diagram of a mobile terminal.
- the mobile terminal has a screen on the front side
- the reverse side also has a screen.
- the front screen is the second screen, that is, the non-encrypted screen
- the reverse screen is the first screen, that is, the encrypted screen.
- the first screen and the second screen each have a screen switch, and when the second screen is to be used, the screen switch on the second screen is turned on, and when the first screen is used, the screen switch on the first screen is turned on.
- the first screen that is, the encrypted screen
- the second screen that is, the non-encrypted screen
- the first screen comprises a monochrome filter
- the second screen includes a first color filter
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal
- the fourth optical signal is the complex color optical signal.
- the first screen is the opposite encrypted screen, and the first screen contains a monochrome filter, such as a filter of only one color of red, the second screen is a non-encrypted screen of the front, and the second screen contains normal Untreated color filters, that is, filters of three colors, red, green and blue.
- the first optical signal is a monochromatic optical signal, for example, a red optical signal, and then the second optical signal is a blue optical signal or a green optical signal, and the third optical signal is a complex optical signal obtained by combining the monochromatic optical signals.
- the fourth optical signal is the second screen of the mobile terminal, that is, the uncolored optical signal output from the unencrypted screen without any processing.
- the user uses the wearable device to view the mobile terminal screen, and can obtain the content displayed on the screen of the mobile terminal.
- the mobile terminal displays monochromatic light on the screen, the content is not directly displayed, and other people cannot obtain the mobile.
- the content on the screen of the terminal, and different gear positions are set for encryption, and the user can flexibly set the encryption gear according to his own needs, thereby preventing others from stealing the content displayed on the screen of the mobile terminal, and the mobile terminal has encryption.
- Screen and non-encrypted screen two screens users can choose according to their needs Any screen is convenient and fast.
- FIG. 4 is a structural diagram of an LCD of a mobile terminal according to an embodiment of the present invention.
- the embodiment of the present invention provides a mobile terminal, where the mobile terminal includes at least a first screen, and the first screen includes a first a filter, the first screen configured to output a first optical signal and send the signal to the wearable device, so that the wearable device calculates the intensity of the first optical signal output by each sub-pixel of the first screen At least one intensity of at least one second optical signal of each sub-pixel other than the first optical signal, and at least one of the first optical signal of each sub-pixel and a corresponding calculated intensity by the wearable device
- the second optical signal is synthesized to obtain a third optical signal, and the third optical signal is output.
- the LCD 4 is a structure of an LCD having a mobile terminal, and the LCD includes a first filter, that is, a monochrome filter.
- the LCD may further comprise an upper polarizer, a lower polarizer, an upper glass, a lower glass, an alignment layer, an indium tin oxide (ITO) layer, a liquid crystal, and a color filter (CF, Color filter). It should be a monochrome filter.
- the mobile terminal further includes a second screen, and the second screen includes a second filter.
- the mobile terminal not only has the first screen, but also has the second screen, and the second screen is the normal screen, and everyone can see the content displayed on the second screen.
- the second screen includes a second filter, a normal unprocessed color filter, that is, a color filter having three colors of red, green and blue.
- the first filter is a monochromatic filter
- the second filter is a color filter
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal.
- the first filter is a monochromatic filter, such as a filter of only one color of red
- the second filter is a normal unprocessed color filter, that is, three colors of red, green and blue.
- the color filter, the first optical signal is a monochromatic optical signal, for example, a red optical signal
- the second optical signal is a blue optical signal or a green optical signal
- the third optical signal is a composite optical signal. The resulting complex color light signal.
- This embodiment provides a structure of a mobile terminal.
- the mobile terminal has two screens, a first screen and a first screen.
- the user can flexibly select any one of the screens according to his own needs, which is convenient and quick.
- the first screen that is, when the screen is encrypted
- the user can view the content displayed on the screen of the mobile terminal by using the wearable device to view the screen of the mobile terminal, and the content is not directly displayed because the screen is displayed on the screen of the mobile terminal.
- Others cannot obtain the content on the screen of the mobile terminal, and set different gear positions for encryption, and the user can flexibly set the encryption gear according to his own needs, thereby preventing others from stealing the content displayed on the screen of the mobile terminal. .
- FIG. 5 is a structural diagram of a wearable device according to an embodiment of the present invention.
- the wearable device 50 includes at least a filter 501, a processor 502, and a thin film transistor 503, and the filter 501 and The processor 502 is connected, and the thin film transistor 503 is connected to the processor 502, wherein:
- the filter 501 is configured to receive a first optical signal output by each sub-pixel of the screen of the mobile terminal;
- the processor 502 is configured to calculate an intensity of at least one second optical signal of each sub-pixel except the first optical signal according to an intensity of the first optical signal output by each sub-pixel, and feed back the calculation result to the Thin film transistor 503;
- the thin film transistor 503 combines the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity to obtain a third optical signal, and outputs the third optical signal.
- the filter 501 of the wearable device is configured to receive the first optical signal emitted by the first screen of the mobile terminal, that is, the monochromatic optical signal, where the red optical signal is taken as an example.
- the intensity of the red light signal received by each sub-pixel of the filter 501 of the wearable device is different, and the filter 501 is connected to the processor 502 of the wearable device, and the processor 502 will according to each received one.
- the intensity of the red light signal of the pixel calculates the intensity of the blue light signal and the intensity of the green light signal.
- the processor 502 is connected to the TFT, ie, the thin film transistor 503.
- the processor 502 feeds back the calculation result to the thin film transistor 503, and the thin film transistor 503 will
- the red light signal of one sub-pixel is combined with other optical signals, and the synthesized optical signal is output, that is, the complex color optical signal.
- the filter 501 is a second color filter
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal.
- the filter in the wearable device is a processed color filter that is different from the color filter included in the second screen of the mobile terminal.
- the color filter in the wearable device is a filter with only blue and green colors, that is, the color filter in the wearable device.
- the color of the light sheet depends on which color filter the monochrome filter of the first screen of the mobile terminal is.
- the color filter included in the second screen of the mobile terminal is a normal color filter without any processing, that is, a color filter having three colors of red, green, and blue.
- the first optical signal is a monochromatic optical signal, for example, a red optical signal
- the second optical signal is a blue optical signal or a green optical signal
- the third optical signal is a complex optical signal obtained by combining the monochromatic optical signals.
- the embodiment provides a structure of a wearable device.
- the content displayed on the screen of the mobile terminal can be obtained, and at the same time, because the screen of the mobile terminal displays monochromatic light, The content is not directly displayed, and others cannot obtain the content on the screen of the mobile terminal, so that it can prevent others from stealing the content displayed on the screen of the mobile terminal.
- FIG. 6 is a structural diagram of a wearable device according to an embodiment of the present invention.
- the embodiment of the present invention further provides a structure of the wearable device 60, including the following modules:
- the receiving module 601 is configured to receive a first optical signal output by each sub-pixel of the screen of the mobile terminal;
- the calculating module 602 is configured to calculate, according to the intensity of the first optical signal output by each sub-pixel, an intensity of at least one second optical signal of each sub-pixel except the first optical signal;
- the synthesizing module 603 is configured to synthesize the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity to obtain a third optical signal, and output the third optical signal.
- the wearable device 60 further includes:
- the first adjustment module 604 is configured to adjust the gear position to the first gear position corresponding to the first brightness, wherein the brightness of the screen is adjusted to the first brightness, and the first gear position corresponds to the first calculation the way;
- the calculation module 602 is configured to calculate, according to the first calculation manner corresponding to the first gear position, each sub-pixel in the first calculation manner according to the intensity of the first optical signal output by each sub-pixel, except the first The intensity of at least one second optical signal other than the optical signal.
- the wearable device 60 further includes:
- the first setting module 605 is configured to set a plurality of gear positions including the first gear position, wherein each gear position corresponds to a different calculation mode, and each gear position corresponds to a different brightness of the screen.
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal.
- the wearable device may be the wearable device in the embodiment shown in FIG. 1, FIG. 2, FIG. 4 and FIG. 5, and the embodiments shown in FIG. 1, FIG. 2, FIG. 4 and FIG. Any implementation of the medium wearable device can be implemented by the wearable device in this embodiment, and details are not described herein again.
- a wearable device is proposed, and an optical signal output method can be implemented on the wearable device.
- the user can view the content displayed on the screen of the mobile terminal by using the wearable device to view the content of the mobile terminal, and at the same time, because the monochrome terminal light is displayed on the screen of the mobile terminal, the content is not directly displayed, and the other person cannot Obtaining the content on the screen of the mobile terminal, and setting different gear positions for encryption, the user can flexibly set the encryption gear according to his own needs, thereby preventing the others from stealing the content displayed on the screen of the mobile terminal.
- FIG. 9 is a structural diagram of a mobile terminal according to an embodiment of the present invention.
- the embodiment of the present invention provides a structure of a mobile terminal 90.
- the mobile terminal includes at least a first screen, and further includes the following modules:
- the sending module 901 is configured to output a first optical signal on the first screen and send the information to the wearable Wearing a device, so that the wearable device calculates, according to the intensity of the first optical signal output by each sub-pixel of the first screen, at least one second optical signal of each sub-pixel except the first optical signal. Intensity, and combining, by the wearable device, the first optical signal of each sub-pixel and the corresponding calculated at least one second optical signal to obtain a third optical signal, and outputting the third optical signal .
- the mobile terminal 90 further includes:
- the second adjustment module 902 is configured to adjust the brightness of the first screen to the first brightness, so that the wearable device selects a first calculation manner corresponding to the first brightness, according to the output of each sub-pixel
- the intensity of an optical signal is calculated in the first calculation manner by the intensity of at least one second optical signal of each sub-pixel other than the first optical signal.
- FIG. 11 a structural diagram of another mobile terminal according to an embodiment of the present invention, where the mobile terminal 90 further includes:
- the second setting module 903 is configured to set a plurality of calculation modes including the first calculation mode, where each calculation mode corresponds to a brightness of the first screen.
- the mobile terminal further includes a second screen
- the sending module 901 is configured to output a first optical signal on the first screen and send the wearable to the wearable if it is determined that the display content needs to be encrypted. device;
- FIG. 12 is a structural diagram of another mobile terminal according to an embodiment of the present invention.
- the mobile terminal 90 further includes:
- the output module 904 is configured to output a fourth optical signal on the second screen if it is determined that the display content does not need to be encrypted.
- the first screen comprises a monochrome filter
- the second screen includes a first color filter
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal
- the fourth optical signal is the complex color optical signal.
- the mobile terminal may be as shown in FIG. 1, FIG. 2, FIG. 4, FIG. 5 and FIG.
- the mobile terminal in the embodiment, and any embodiment of the mobile terminal in the embodiment shown in FIG. 1, FIG. 2, FIG. 4, FIG. 5 and FIG. 6 can be implemented by the mobile terminal in this embodiment, and is no longer Narration.
- the embodiment provides a mobile terminal, and an optical signal output method can be implemented on the mobile terminal.
- the optical signal output method can be used by the user to view the content of the mobile terminal by using the wearable device to view the mobile terminal screen.
- the screen of the mobile terminal displays monochromatic light
- the content is not directly displayed, other people cannot obtain the content on the screen of the mobile terminal, and different gear positions are set for encryption, and the user can flexibly set the encryption according to his own needs.
- the gear position can prevent the others from stealing the content displayed on the screen of the mobile terminal, and the mobile terminal has two screens of an encrypted screen and an unencrypted screen, and the user can flexibly select one of the screens according to his own needs, which is convenient and quick.
- FIG. 13 is a schematic diagram of an optical signal output system according to an embodiment of the present invention.
- the optical signal output system includes a wearable device 1301 and a mobile terminal 1302, where:
- the wearable device 1301 may be a wearable device of any of the embodiments shown in FIG. 5, and the mobile terminal 1302 may be the mobile terminal of any of the embodiments shown in FIG. 4; or
- the wearable device 1301 may be a wearable device of any of the embodiments shown in FIG. 6, and the mobile terminal 1302 may be the mobile terminal of any of the embodiments shown in FIG.
- the first optical signal of each sub-pixel and the corresponding at least one second optical signal of the calculated intensity are combined to obtain a third optical signal, and the third optical signal is output.
- the method before the intensity of the at least one second optical signal of each sub-pixel except the first optical signal is calculated according to the intensity of the first optical signal output by each sub-pixel, the method further Includes:
- Calculating, according to the intensity of the first optical signal output by each sub-pixel, the strength of the at least one second optical signal of each sub-pixel except the first optical signal including:
- each sub-pixel except the first optical signal Calculating, according to the first calculation manner corresponding to the first gear position, each sub-pixel except the first optical signal according to the intensity of the first optical signal output by each sub-pixel in the first calculation manner The intensity of at least one second optical signal.
- the gear position is adjusted to a first gear position corresponding to the first brightness, wherein a brightness of the screen is adjusted to the first brightness, and the first gear position corresponds to the first gear position.
- the method further includes:
- a plurality of gear positions including the first gear position are set, wherein each gear position corresponds to a different calculation mode, and each gear position corresponds to a different brightness of the screen.
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal.
- the method before the first optical signal is output on the first screen and sent to the wearable device, the method further includes:
- the first calculation mode calculates the intensity of at least one second optical signal of each sub-pixel except the first optical signal.
- the method before the adjusting the brightness of the first screen to the first brightness, the method further includes:
- a plurality of calculation modes including the first calculation mode are set, wherein each calculation mode corresponds to a brightness of the first screen.
- the mobile terminal further includes a second screen
- the outputting the first optical signal on the first screen and transmitting the information to the wearable device includes:
- the method further includes:
- the fourth optical signal is output on the second screen.
- the first screen comprises a monochrome filter
- the second screen includes a first color filter
- the first optical signal is a monochromatic optical signal
- the second optical signal is a monochromatic optical signal other than the first optical signal
- the third optical signal is a complex color optical signal
- the fourth optical signal is the complex color optical signal.
- the storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
- the first optical signal outputted by each sub-pixel of the screen of the mobile terminal is received; and at least one of the sub-pixels except the first optical signal is calculated according to the intensity of the first optical signal output by each sub-pixel.
- the user can view the content displayed on the screen of the mobile terminal by using the wearable device to view the content of the mobile terminal, and at the same time, because the monochrome terminal light is displayed on the screen of the mobile terminal, the content is not directly displayed, thereby preventing others from stealing the mobile device. Displayed on the terminal screen The role of the content.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioethics (AREA)
- Health & Medical Sciences (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
一种光信号输出方法、系统、移动终端(90,1302)、可穿戴设备(50,60,1301)和计算机存储介质,光信号输出方法包括:接收移动终端(90,1302)的屏幕各子像素输出的第一光信号(S101);根据各子像素输出的第一光信号的强度,计算各子像素除第一光信号之外的至少一个第二光信号的强度(S102);将各子像素的第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出第三光信号(S103)。
Description
本发明涉及通信技术领域,特别涉及一种光信号输出方法、系统、移动终端、可穿戴设备和计算机存储介质。
目前移动终端越来越多的被用来进行各类操作,例如使用终端聊天、查看文件和银行账户转账等。但是当在公共场合对移动终端进行这些操作时,周围的人员可以轻易地看到移动终端屏幕上显示的内容,这样会导致重要的信息或者是用户的隐私被其他人员窃取,造成财产损失和信息泄露等问题。因此现有技术存在移动终端屏幕上显示的内容容易泄密的问题。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种光信号输出方法、系统、移动终端、可穿戴设备和计算机存储介质。
本发明实施例提供一种光信号输出方法,应用于可穿戴设备,包括:
接收移动终端的屏幕各子像素输出的第一光信号;
根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;
将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种光信号输出方法,应用于移动终端,所述移动终端至少包括第一屏幕,包括:
在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述
可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种移动终端,所述移动终端至少包括第一屏幕,所述第一屏幕包括第一滤光片,所述第一屏幕配置为输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种可穿戴设备,所述可穿戴设备至少包括滤光片、薄膜晶体管和处理器,所述滤光片与所述处理器相连,所述薄膜晶体管与所述处理器相连,其中:
所述滤光片配置为接收移动终端的屏幕各子像素输出的第一光信号;
所述处理器配置为根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,并将计算结果反馈给所述薄膜晶体管;
所述薄膜晶体管将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种移动终端,所述移动终端至少包括第一屏幕,所述移动终端还包括:
发送模块,配置为在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种可穿戴设备,包括:
接收模块,配置为接收移动终端的屏幕各子像素输出的第一光信号;
计算模块,配置为根据各子像素输出的第一光信号的强度,计算各子
像素除所述第一光信号之外的至少一个第二光信号的强度;
合成模块,配置为将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
本发明实施例还提供一种光信号输出系统,包括本发明实施例提供的可穿戴设备和移动终端。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如上述提供的一种光信号输出方法。
上述技术方案中的一个技术方案具有如下优点或有益效果:
本发明实施例,接收移动终端的屏幕各子像素输出的第一光信号;根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。这样用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,因此,可以解决现有技术存在的移动终端屏幕上显示的内容容易泄密的问题,可以起到防止他人窃取移动终端屏幕上显示的内容的作用。
图1为本发明实施例提供的一种光信号输出方法的流程示意图;
图2为本发明实施例提供的另一种光信号输出方法的流程示意图;
图3为本发明实施例提供的一种移动终端的示意图;
图4为本发明实施例提供的一种移动终端的LCD结构图;
图5为本发明实施例提供的一种可穿戴设备的结构图;
图6为本发明实施例提供的另一种可穿戴设备的结构图;
图7为本发明实施例提供的另一种可穿戴设备的结构图;
图8为本发明实施例提供的另一种可穿戴设备的结构图;
图9为本发明实施例提供的一种移动终端的结构图;
图10为本发明实施例提供的另一种移动终端的结构图;
图11为本发明实施例提供的另一种移动终端的结构图;
图12为本发明实施例提供的另一种移动终端的结构图;
图13为本发明实施例提供的一种光信号输出系统的示意图。
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,为本发明实施例提供的一种光信号输出方法的流程示意图,本发明实施例提供一种光信号输出方法,应用于可穿戴设备,包括以下步骤:
步骤S101、接收移动终端的屏幕各子像素输出的第一光信号。
步骤S102、根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
步骤S103、将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在步骤S101中,移动终端中的彩色滤光片的彩色层共有三种颜色,分别为红色、绿色和蓝色。现在将彩色滤光片的彩色层变更为单色层,相应的彩色滤光片变为单色滤光片。例如可以将彩色层的颜色变更为红色这一种颜色,相应的单色滤光片就变为红色滤光片。与之相对应的,要将可穿戴设备的彩色滤光片的彩色层变更为只有蓝色和绿色的彩色层。这里将移动终端中的单色滤光片设置为红色滤光片只是一种举例说明,其实也可以将移动终端中的单色滤光片设置为蓝色滤光片或者绿色滤光片,相应的可穿戴设备的彩色滤光片的彩色层也要随着移动终端中的单色滤光片的变动而变动。当移动终端中的单色滤光片设置为蓝色滤光片时,相应的可穿戴设备的彩色滤光片的彩色层要变更为红色和绿色的彩色层,当移动终端中的单色滤光片设置为绿色滤光片时,相应的可穿戴设备的彩色滤光片的彩色层要变更为红色和蓝色的彩色层。
在步骤S102中,在移动终端中,液晶显示器(LCD,Liquid Crystal Display)包括上偏光片、下偏光片、彩色滤光片和液晶等结构,并且上偏光片和下偏光片的穿透轴的方向是成90度的,液晶里面的液晶分子在不施加电压的情况下可以将光线的偏振方向扭转90度。首先,背光源发出的光先穿过下偏光片,此时光线被处理成偏振方向与下偏光片的穿透轴方向相一致的光线。每一个薄膜晶体管(TFT,Thin Film Transistor)对应于单色滤光片中的一个红色的子像素,而且每一个TFT也对应于液晶中的一串液晶分子,TFT是具有开关作用的。当图像信号传输进来时,对每一个TFT进行控制,有的TFT可能闭合,有的TFT可能不闭合,每个TFT的打开和关闭完全受图像信号的控制。
当某个TFT不闭合时,对应的那一串液晶分子的排列方向不改变,此时可以将通过的一束光线的偏振方向扭转90度,这样穿过下偏光片的光线再沿着该串液晶分子到达上偏光片,此时光线的偏振方向和上偏光片的穿透轴方向是完全一致的,此时该束光线就可以完全透过上偏光片,不会有任何损失,此时对应该TFT的红色子像素的红色光线是最亮的。
当某个TFT闭合时,会有电压施加在相应的那一串液晶分子上,导致该串液晶分子的排列方向发生改变,所施加的电压越大,液晶分子的排列方向改变的程度越大,对光线的偏振方向改变的程度越小,反之,所施加的电压越小,液晶分子的排列方向改变的程度越小,对光线的偏振方向改变的程度越大。这样,不同的TFT闭合时,在对应的液晶分子上所施加的电压大小可能会不同,会导致每一串对应的液晶分子的排列方向的改变程度不同,进而导致沿着不同串的液晶分子传播的光线的偏振方向被改变的程度会各不相同,当偏振方向被改变的程度各不相同的光线到达上偏光片时,有些光线由于偏振方向与上偏光片的穿透轴方向相差不大,因此透过上偏光片的光线会多一些,此时与TFT对应的子像素点的光线的强度更大些,也即对应的子像素点的红光的强度更大一些,而有些光线由于偏振方向与上偏光片的穿透轴的方向相差较大,因此透过上偏光片的光线会少一些,此时与TFT对应的子像素点的光线的强度更小些,也即对应的子像素点的红光的强度更小一些,这样各个子像素点的红光的强弱是不同的。由
移动终端屏幕发出的红光到达可穿戴设备,可穿戴设备根据每个子像素点的红光的强度分别计算对应的蓝光和绿光的强度,由于各个子像素点的红光强弱不同,对应的分别计算出来的蓝光和绿光的强度也会不同,最后对应于每一个子像素点三种颜色的光进行合成,就形成一幅拥有各种颜色的画面了。此时用户利用此可穿戴设备可以看见移动终端屏幕上显示的内容,而其他人根本看不到移动终端屏幕上所显示的内容,其他人所看到的只是铺满整个屏幕的红光,此时,就可以实现移动终端屏幕上显示的内容不会被其他人窃取。
在一实施例中,在所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度之前,所述方法还包括:
将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式;
所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,包括:
根据所述第一档位对应的所述第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
为了更好地实现对移动终端屏幕上所显示的内容的加密,还可以设置不同的档位,每一种档位均对应一种加密方式。移动终端和可穿戴设备都设置加密档位,并且移动终端的加密档位和可穿戴设备的加密档位是一一对应起来的。
仍以红光为例,可以定义红色的三个色阶,分别为纯红、中红和品红,这三种色阶各自对应一个档位,例如纯红对应第一档,中红对应第二档,品红对应第三档。移动终端上设置了三个档位,相对应的可穿戴设备上也要设置三个档位。并且移动终端上的三个档位和可穿戴设备上的三个档位是一一对应起来的,移动终端上的第一档对应可穿戴设备上的第一档,移动终端上的第二档对应可穿戴设备上的第二档,移动终端上的第三档对应可穿戴设备上的第三档,而且每一个档位都有对应的计算方式,例如当移
动终端的档位调整为第一档且可穿戴设备的档位也调整为第一档时,可穿戴设备会以与第一档相对应的计算方式计算每一个子像素点的其他光信号的强度。
在移动终端屏幕上将加密档位以下拉菜单的方式展开,在这个菜单上实现加密档位的选择。
可穿戴设备可以根据移动终端所发出来的单色光信号的亮度判断移动终端的当前档位是哪一个档位,然后可穿戴设备再将自身的档位调整为与移动终端的加密档位相对应的档位。每一个档位对应一种计算方式,不同的档位对应的计算方式是不同的,只有可穿戴设备的档位和移动终端的档位对应起来时,才会以相应的计算方式计算每一个子像素点的其他光信号的强度,如果可穿戴设备的档位和移动终端的档位没有对应起来,可穿戴设备是无法计算每一个子像素点的其他光信号的亮度的。例如,将移动终端上的加密档位设置为第一档时,对应的移动终端的屏幕显示为纯红色,可穿戴设备根据移动终端所发出来的红色光信号的亮度为纯红就可以判断出移动终端当前的档位为第一档,然后可穿戴设备再将自身的档位调整为与移动终端的档位相对应的第一档,这样利用与第一档相对应的第一计算方式就可以计算每个子像素点的蓝色光信号和绿色光信号的强度了。
需要说明的是,档位不止可以设置为三个,由于红色的色阶有很多种,因此可以设置多个不同的档位,这里仅仅是一种举例说明。
可穿戴设备可以根据移动终端所发出来的单色光信号的亮度判断移动终端当前的档位是哪一个档位,进而将自身的档位调整为与移动终端的档位相对应的档位。除了这种方式,还可手动调整可穿戴设备的档位,使可穿戴设备的档位与移动终端的档位对应起来。例如,将移动终端的当前档位设置为第二档,然后用户再将可穿戴设备的档位也调整为第二档,这样可穿戴设备的档位与移动终端的档位就对应起来了,此时可穿戴设备会以与第二档相对应的第二计算方式计算每个子像素点的其他光信号的强度。
在一实施例中,在所述将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式之前,所述方法还包括:
设置包括所述第一档位在内的多个档位,其中,各个档位对应不同的计算方式,且各个档位对应不同的所述屏幕的亮度。
对应每一种加密档位都有对应的计算方式,在不同的加密档位下使用不同的计算方式计算与每一个子像素点上的红光相对应的蓝光和绿光的强度。这样用户可以根据自身需要灵活选用不同的档位对移动终端屏幕上的内容进行加密,使加密效果更好。
在一实施例中,所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号。
第一光信号为单色光信号,例如为红色光信号,那么第二光信号则为蓝色光信号或者为绿色光信号,第三光信号为将单色光信号进行合成得到的复色光信号。
在步骤S103中,由移动终端屏幕发出的红光到达可穿戴设备,可穿戴设备根据每个子像素点的红光的强度计算对应的蓝光和绿光的强度,由于各个子像素点的红光强弱不同,对应的计算出来的蓝光和绿光的强度也会不同,最后对应于每一个子像素点三种颜色的光进行合成,就形成一幅拥有各种颜色的画面了,此时用户就可以看到移动终端屏幕上所显示的内容了。
本实施例中,用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,并且设置了不同的档位进行加密,用户可以根据自身需要灵活设置加密档位,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用。
如图2所示,为本发明实施例提供的另一种光信号输出方法的流程示意图,本发明实施例提供一种光信号输出方法,应用于移动终端,所述移动终端至少包括第一屏幕,包括以下步骤:
步骤S201、设置包括所述第一计算方式在内的多种计算方式,其中,每个计算方式对应所述第一屏幕的一种亮度。
步骤S202、将所述第一屏幕的亮度调整至第一亮度,以使所述可穿戴
设备选择与所述第一亮度对应的第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
步骤S203、在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在步骤S201中,在移动终端上可以设置多个加密档位,每个加密档位对应一种计算方式,并且每个加密档位对应第一屏幕的一种亮度。相应的在可穿戴设备上也要设置多个加密档位,并且移动终端上的加密档位和可穿戴设备上的加密档位是一一对应的。通过设置不同的加密档位,用户可以根据自身需要灵活使用不同的档位对移动终端屏幕上的内容进行加密,使加密效果更好。
在步骤S202中,将移动终端的加密档位设置为第一档,对应的移动终端屏幕显示为纯红,此时可穿戴设备的加密档位也要设置为第一档,此时利用与第一加密档位相对应的第一计算方式计算与每一个子像素点上的红光强度相对应的蓝光和绿光的强度。
在步骤S203中,在移动终端的屏幕上输出第一光信号,即单色光信号,这里仍然以红光为例,此时每一个子像素点上的红光的强度都不同,可穿戴设备根据每一个子像素点上的红光的强度计算相对应的蓝光和绿光的强度,最后将每一个子像素点上的红光、绿光和蓝光进行合成,就形成了一幅彩色的画面,也即移动终端屏幕上所显示的内容。
在一实施例中,所述移动终端还包括第二屏幕,所述在所述第一屏幕上输出第一光信号并发送给可穿戴设备,包括:
若确定需要对显示内容进行加密,则在所述第一屏幕上输出第一光信号并发送给所述可穿戴设备;
所述方法还包括:
若确定不需要对显示内容进行加密,则在所述第二屏幕上输出第四光信号。
如图3所示,为移动终端的示意图。
此类移动终端共有两个屏幕,即移动终端正面有一个屏幕,反面也有一个屏幕,正面的屏幕为第二屏幕,即非加密屏幕,反面的屏幕为第一屏幕,即加密屏幕。第一屏幕和第二屏幕各自有一个屏幕开关,想使用第二屏幕时就打开第二屏幕上的屏幕开关,想使用第一屏幕时就打开第一屏幕上的屏幕开关。例如在公共场合,为了避免移动终端屏幕上显示的内容被他人窃取,可以使用第一屏幕,即加密屏幕,在家里或者一个人的时候就可以使用第二屏幕,即非加密屏幕。
在一实施例中,所述第一屏幕包含单色滤光片;
所述第二屏幕包含第一彩色滤光片;
所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号;
所述第四光信号为所述复色光信号。
第一屏幕即为反面的加密屏幕,并且第一屏幕包含单色滤光片,例如只有红色这一种颜色的滤光片,第二屏幕为正面的非加密屏幕,并且第二屏幕包含正常的未经过处理的彩色滤光片,即有红绿蓝三种颜色的滤光片。第一光信号为单色光信号,例如为红色光信号,那么第二光信号则为蓝色光信号或者为绿色光信号,第三光信号为将单色光信号进行合成得到的复色光信号。第四光信号即为移动终端的第二屏幕,即非加密屏幕输出的未经过任何处理的复色光信号。
本实施例中,用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,并且设置了不同的档位进行加密,用户可以根据自身需要灵活设置加密档位,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用,而且移动终端具有加密屏幕和非加密屏幕两个屏幕,用户可以根据自身需要灵活选用其中
任意一个屏幕,方便快捷。
如图4所示,为本发明实施例提供的一种移动终端的LCD结构图,本发明实施例提供一种移动终端,所述移动终端至少包括第一屏幕,所述第一屏幕包括第一滤光片,所述第一屏幕配置为输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
图4为移动终端具有的LCD的结构,LCD中包含第一滤光片,即单色滤光片。此LCD还可以包含上偏光片、下偏光片、上玻璃、下玻璃、配向层、铟锡金属氧化物(ITO,Indium Tin Oxides)层、液晶,这里的彩色滤光片(CF,Color filter)应为单色滤光片。
在一实施例中,所述移动终端还包括第二屏幕,所述第二屏幕包括第二滤光片。
移动终端不但具有第一屏幕,还具有第二屏幕,第二屏幕即为正常屏幕,每个人都可以看得到第二屏幕上所显示的内容。第二屏幕包括第二滤光片,即正常的未经过处理的彩色滤光片,也即有红绿蓝三种颜色的彩色滤光片。
在一实施例中,所述第一滤光片为单色滤光片;
所述第二滤光片为彩色滤光片;
所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号。
第一滤光片为单色滤光片,例如只有红色这一种颜色的滤光片,第二滤光片为正常的未经过处理的彩色滤光片,也即有红绿蓝三种颜色的彩色滤光片,第一光信号为单色光信号,例如为红色光信号,那么第二光信号则为蓝色光信号或者为绿色光信号,第三光信号为将单色光信号进行合成得到的复色光信号。
本实施例提出一种移动终端的结构,这种移动终端具有第一屏幕和第一屏幕两个屏幕,用户可以根据自身需要灵活选用其中任意一个屏幕,方便快捷。而且使用第一屏幕,即加密屏幕时,用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,并且设置了不同的档位进行加密,用户可以根据自身需要灵活设置加密档位,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用。
如图5所示,为本发明实施例提供的一种可穿戴设备的结构图,所述可穿戴设备50至少包括滤光片501、处理器502和薄膜晶体管503,所述滤光片501与所述处理器502相连,所述薄膜晶体管503与所述处理器502相连,其中:
所述滤光片501配置为接收移动终端的屏幕各子像素输出的第一光信号;
所述处理器502配置为根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,并将计算结果反馈给所述薄膜晶体管503;
所述薄膜晶体管503将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
可穿戴设备的滤光片501配置为接收移动终端的第一屏幕发出来的第一光信号,即单色光信号,这里以红色光信号为例。可穿戴设备的滤光片501的各个子像素接收到的红色光信号的强度是不同的,并且滤光片501与可穿戴设备的处理器502相连,处理器502会根据接收到的每一个子像素的红色光信号的强度计算蓝色光信号的强度和绿色光信号的强度,处理器502与TFT,即薄膜晶体管503相连,处理器502将计算结果反馈给薄膜晶体管503,薄膜晶体管503会将每一个子像素的红色光信号与其他光信号进行合成,将合成后的光信号输出,即为复色光信号。
在一实施例中,所述滤光片501为第二彩色滤光片;
所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号。
可穿戴设备中的滤光片是经过处理的彩色滤光片,不同于移动终端的第二屏幕所包含的彩色滤光片。当移动终端中的第一屏幕的单色滤光片为红色滤光片时,可穿戴设备中的彩色滤光片就为只有蓝色和绿色的滤光片,即可穿戴设备中的彩色滤光片包含的颜色取决于移动终端的第一屏幕的单色滤光片为哪一种颜色的滤光片。而移动终端的第二屏幕所包含的彩色滤光片是没有经过任何处理的正常的彩色滤光片,即拥有红色、绿色和蓝色三种颜色的彩色滤光片。
第一光信号为单色光信号,例如为红色光信号,那么第二光信号则为蓝色光信号或者为绿色光信号,第三光信号为将单色光信号进行合成得到的复色光信号。
本实施例提出一种可穿戴设备的结构,用户使用这种可穿戴设备观看移动终端的屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用。
如图6所示,为本发明实施例提供的一种可穿戴设备的结构图,本发明实施例还提供一种可穿戴设备60的结构,包括以下模块:
接收模块601,配置为接收移动终端的屏幕各子像素输出的第一光信号;
计算模块602,配置为根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;
合成模块603,配置为将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在一实施例中,如图7所示,为本发明实施例提供的另一种可穿戴设备的结构图,所述可穿戴设备60还包括:
第一调整模块604,配置为将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式;
计算模块602配置为根据所述第一档位对应的所述第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
在一实施例中,如图8所示,为本发明实施例提供的另一种可穿戴设备的结构图,所述可穿戴设备60还包括:
第一设置模块605,配置为设置包括所述第一档位在内的多个档位,其中,各个档位对应不同的计算方式,且各个档位对应不同的所述屏幕的亮度。
在一实施例中,所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号。
本实施例中,上述可穿戴设备可以是图1、图2、图4和图5所示的实施例中的可穿戴设备,且图1、图2、图4和图5所示的实施例中可穿戴设备的任何实施方式都可以被本实施例中的可穿戴设备所实现,这里不再赘述。
本实施例,提出一种可穿戴设备,一种光信号输出方法可以在该可穿戴设备上实现。这种光信号输出方法,用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,并且设置了不同的档位进行加密,用户可以根据自身需要灵活设置加密档位,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用。
如图9所示,为本发明实施例提供的一种移动终端的结构图,本发明实施例提供一种移动终端90的结构,所述移动终端至少包括第一屏幕,还包括以下模块:
发送模块901,配置为在所述第一屏幕上输出第一光信号并发送给可穿
戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在一实施例中,如图10所示,为本发明实施例提供的另一种移动终端的结构图,所述移动终端90还包括:
第二调整模块902,配置为将所述第一屏幕的亮度调整至第一亮度,以使所述可穿戴设备选择与所述第一亮度对应的第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
在一实施例中,如图11所示,为本发明实施例提供的另一种移动终端的结构图,所述移动终端90还包括:
第二设置模块903,配置为设置包括所述第一计算方式在内的多种计算方式,其中,每个计算方式对应所述第一屏幕的一种亮度。
在一实施例中,所述移动终端还包括第二屏幕,发送模块901配置为若确定需要对显示内容进行加密,则在所述第一屏幕上输出第一光信号并发送给所述可穿戴设备;
如图12所示,为本发明实施例提供的另一种移动终端的结构图,所述移动终端90还包括:
输出模块904,配置为若确定不需要对显示内容进行加密,则在所述第二屏幕上输出第四光信号。
在一实施例中,所述第一屏幕包含单色滤光片;
所述第二屏幕包含第一彩色滤光片;
所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号;
所述第四光信号为所述复色光信号。
本实施例中,上述移动终端可以是图1、图2、图4、图5和图6所示
的实施例中的移动终端,且图1、图2、图4、图5和图6所示的实施例中移动终端的任何实施方式都可以被本实施例中的移动终端所实现,这里不再赘述。
本实施例提出一种移动终端,一种光信号输出方法可以在该移动终端上实现,这种光信号输出方法,用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,其他人无法获取移动终端的屏幕上的内容,并且设置了不同的档位进行加密,用户可以根据自身需要灵活设置加密档位,因此可以起到防止他人窃取移动终端屏幕上显示的内容的作用,而且移动终端具有加密屏幕和非加密屏幕两个屏幕,用户可以根据自身需要灵活选用其中任意一个屏幕,方便快捷。
如图13所示,为本发明实施例提供的一种光信号输出系统的示意图,所述光信号输出系统包括可穿戴设备1301和移动终端1302,其中:
可穿戴设备1301可以是图5所示的实施例中任一实施方式的可穿戴设备,移动终端1302可以是图4所示的实施例中任一实施方式的移动终端;或者
可穿戴设备1301可以是图6所示的实施例中任一实施方式的可穿戴设备,移动终端1302可以是图9所示的实施例中任一实施方式的移动终端。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一计算机可读取介质中,该程序在执行时,包括以下步骤:
接收移动终端的屏幕各子像素输出的第一光信号;
根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;
将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在一实施例中,在所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度之前,所述方法还包括:
将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式;
所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,包括:
根据所述第一档位对应的所述第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
在一实施例中,在所述将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式之前,所述方法还包括:
设置包括所述第一档位在内的多个档位,其中,各个档位对应不同的计算方式,且各个档位对应不同的所述屏幕的亮度。
可选的,所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号。
该程序在执行时,还包括以下步骤:
在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
在一实施例中,在所述第一屏幕上输出第一光信号并发送给可穿戴设备之前,所述方法还包括:
将所述第一屏幕的亮度调整至第一亮度,以使所述可穿戴设备选择与所述第一亮度对应的第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
在一实施例中,在所述将所述第一屏幕的亮度调整至第一亮度之前,所述方法还包括:
设置包括所述第一计算方式在内的多种计算方式,其中,每个计算方式对应所述第一屏幕的一种亮度。
在一实施例中,所述移动终端还包括第二屏幕,所述在所述第一屏幕上输出第一光信号并发送给可穿戴设备,包括:
若确定需要对显示内容进行加密,则在所述第一屏幕上输出第一光信号并发送给所述可穿戴设备;
所述方法还包括:
若确定不需要对显示内容进行加密,则在所述第二屏幕上输出第四光信号。
在一实施例中,所述第一屏幕包含单色滤光片;
所述第二屏幕包含第一彩色滤光片;
所述第一光信号为单色光信号;
所述第二光信号为除所述第一光信号之外的其他单色光信号;
所述第三光信号为复色光信号;
所述第四光信号为所述复色光信号。
所述的存储介质,如只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
本发明实施例,接收移动终端的屏幕各子像素输出的第一光信号;根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。这样用户使用可穿戴设备观看移动终端屏幕,可以获取移动终端屏幕上显示的内容,同时由于移动终端的屏幕上显示的是单色光,并不直接显示内容,因此,可以起到防止他人窃取移动终端屏幕上显示的
内容的作用。
Claims (25)
- 一种光信号输出方法,应用于可穿戴设备,包括:接收移动终端的屏幕各子像素输出的第一光信号;根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求1所述的方法,其中,所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度之前,所述方法还包括:将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式;所述根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,包括:根据所述第一档位对应的所述第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
- 如权利要求2所述的方法,其中,所述将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式之前,所述方法还包括:设置包括所述第一档位在内的多个档位,其中,各个档位对应不同的计算方式,且各个档位对应不同的所述屏幕的亮度。
- 如权利要求1-3任一项所述的方法,其中,所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号。
- 一种光信号输出方法,应用于移动终端,所述移动终端至少包括第一屏幕,所述方法包括:在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求5所述的方法,其中,所述第一屏幕上输出第一光信号并发送给可穿戴设备之前,所述方法还包括:将所述第一屏幕的亮度调整至第一亮度,以使所述可穿戴设备选择与所述第一亮度对应的第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
- 如权利要求6所述的方法,其中,所述将所述第一屏幕的亮度调整至第一亮度之前,所述方法还包括:设置包括所述第一计算方式在内的多种计算方式,其中,每个计算方式对应所述第一屏幕的一种亮度。
- 如权利要求5-7任一项所述的方法,其中,所述移动终端还包括第二屏幕,所述在所述第一屏幕上输出第一光信号并发送给可穿戴设备,包括:若确定需要对显示内容进行加密,则在所述第一屏幕上输出第一光信号并发送给所述可穿戴设备;所述方法还包括:若确定不需要对显示内容进行加密,则在所述第二屏幕上输出第四光信号。
- 如权利要求8所述的方法,其中,所述第一屏幕包含单色滤光片;所述第二屏幕包含第一彩色滤光片;所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号;所述第四光信号为所述复色光信号。
- 一种可穿戴设备,所述可穿戴设备至少包括滤光片、薄膜晶体管和处理器,所述滤光片与所述处理器相连,所述薄膜晶体管与所述处理器相连,其中:所述滤光片配置为接收移动终端的屏幕各子像素输出的第一光信号;所述处理器配置为根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,并将计算结果反馈给所述薄膜晶体管;所述薄膜晶体管将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求10所述的可穿戴设备,其中,所述滤光片为第二彩色滤光片;所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号。
- 一种移动终端,所述移动终端至少包括第一屏幕,所述第一屏幕包括第一滤光片,所述第一屏幕配置为输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求12所述的移动终端,其中,所述移动终端还包括第二屏幕,所述第二屏幕包括第二滤光片。
- 如权利要求13所述的移动终端,其中,所述第一滤光片为单色滤光片;所述第二滤光片为彩色滤光片;所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号。
- 一种可穿戴设备,包括:接收模块,配置为接收移动终端的屏幕各子像素输出的第一光信号;计算模块,配置为根据各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度;合成模块,配置为将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求15所述的可穿戴设备,其中,所述可穿戴设备还包括:第一调整模块,配置为将档位调整至与第一亮度所对应的第一档位,其中,所述屏幕的亮度调整至所述第一亮度,所述第一档位对应第一计算方式;所述计算模块配置为根据所述第一档位对应的所述第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
- 如权利要求16所述的可穿戴设备,其中,所述可穿戴设备还包括:第一设置模块,配置为设置包括所述第一档位在内的多个档位,其中,各个档位对应不同的计算方式,且各个档位对应不同的所述屏幕的亮度。
- 如权利要求15-17任一项所述的可穿戴设备,其中,所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号。
- 一种移动终端,所述移动终端至少包括第一屏幕,所述移动终端还包括:发送模块,配置为在所述第一屏幕上输出第一光信号并发送给可穿戴设备,以使所述可穿戴设备根据所述第一屏幕的各子像素输出的第一光信号的强度,计算各子像素除所述第一光信号之外的至少一个第二光信号的强度,以及由所述可穿戴设备将各子像素的所述第一光信号和对应的已计算出强度的至少一个第二光信号进行合成得到第三光信号,并输出所述第三光信号。
- 如权利要求19所述的移动终端,其中,所述移动终端还包括:第二调整模块,配置为将所述第一屏幕的亮度调整至第一亮度,以使所述可穿戴设备选择与所述第一亮度对应的第一计算方式,根据各子像素输出的第一光信号的强度,以所述第一计算方式计算各子像素除所述第一光信号之外的至少一个第二光信号的强度。
- 如权利要求20所述的移动终端,其中,所述移动终端还包括:第二设置模块,配置为设置包括所述第一计算方式在内的多种计算方式,其中,每个计算方式对应所述第一屏幕的一种亮度。
- 如权利要求19-21任一项所述的移动终端,其中,所述移动终端还包括第二屏幕,所述发送模块配置为若确定需要对显示内容进行加密,则在所述第一屏幕上输出第一光信号并发送给所述可穿戴设备;所述移动终端还包括:输出模块,配置为若确定不需要对显示内容进行加密,则在所述第二屏幕上输出第四光信号。
- 如权利要求22所述的移动终端,其中,所述第一屏幕包含单色滤光片;所述第二屏幕包含第一彩色滤光片;所述第一光信号为单色光信号;所述第二光信号为除所述第一光信号之外的其他单色光信号;所述第三光信号为复色光信号;所述第四光信号为所述复色光信号。
- 一种光信号输出系统,包括如权利要求10至11中任一项的可穿戴设备和如权利要求12至14中任一项的移动终端;或者包括如权利要求15至18中任一项的可穿戴设备和如权利要求19至23中任一项的移动终端。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行的一个或多个程序,所述一个或多个程序被所述计算机执行时使所述计算机执行如权利要求1至4任一项所述的光信号输出方法,或者执行如权利要求5至9任一项所述的光信号传输方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610913616.7 | 2016-10-20 | ||
CN201610913616.7A CN107967884B (zh) | 2016-10-20 | 2016-10-20 | 一种光信号输出方法、移动终端、可穿戴设备和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018072377A1 true WO2018072377A1 (zh) | 2018-04-26 |
Family
ID=61996302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/075993 WO2018072377A1 (zh) | 2016-10-20 | 2017-03-08 | 光信号输出方法、系统、相关设备和计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107967884B (zh) |
WO (1) | WO2018072377A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103188511A (zh) * | 2011-12-29 | 2013-07-03 | 三星电子株式会社 | 显示装置及其控制方法 |
CN104796686A (zh) * | 2015-04-07 | 2015-07-22 | 上海交通大学 | 基于空域心理视觉调制的信息安全显示系统及方法 |
CN105447421A (zh) * | 2016-01-11 | 2016-03-30 | 邓磊 | 一种实现屏幕显示信息隐私保护的方法 |
CN105627194A (zh) * | 2016-01-20 | 2016-06-01 | 京东方科技集团股份有限公司 | 一种背光源、背光模组、显示装置及显示系统 |
CN105760123A (zh) * | 2014-12-17 | 2016-07-13 | 中兴通讯股份有限公司 | 眼镜、显示终端、图像显示处理系统及方法 |
WO2016126281A1 (en) * | 2015-02-04 | 2016-08-11 | Sony Corporation | Switchable privacy mode display |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008102883A1 (ja) * | 2007-02-22 | 2008-08-28 | Nec Corporation | 画像処理装置及び方法、プログラム並びに表示装置 |
JP5505308B2 (ja) * | 2008-10-20 | 2014-05-28 | 日本電気株式会社 | 画像表示システム、画像表示装置および光シャッタ |
CN104090374B (zh) * | 2014-06-18 | 2016-08-17 | 京东方科技集团股份有限公司 | 防偷窥显示系统及方法、防偷窥显示器、防偷窥眼镜 |
CN104090416B (zh) * | 2014-07-10 | 2017-04-12 | 京东方科技集团股份有限公司 | 一种趣味显示系统 |
CN105552105B (zh) * | 2016-01-26 | 2019-04-02 | 京东方科技集团股份有限公司 | 显示装置及其驱动方法、制作方法以及防偷窥显示系统 |
-
2016
- 2016-10-20 CN CN201610913616.7A patent/CN107967884B/zh active Active
-
2017
- 2017-03-08 WO PCT/CN2017/075993 patent/WO2018072377A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103188511A (zh) * | 2011-12-29 | 2013-07-03 | 三星电子株式会社 | 显示装置及其控制方法 |
CN105760123A (zh) * | 2014-12-17 | 2016-07-13 | 中兴通讯股份有限公司 | 眼镜、显示终端、图像显示处理系统及方法 |
WO2016126281A1 (en) * | 2015-02-04 | 2016-08-11 | Sony Corporation | Switchable privacy mode display |
CN104796686A (zh) * | 2015-04-07 | 2015-07-22 | 上海交通大学 | 基于空域心理视觉调制的信息安全显示系统及方法 |
CN105447421A (zh) * | 2016-01-11 | 2016-03-30 | 邓磊 | 一种实现屏幕显示信息隐私保护的方法 |
CN105627194A (zh) * | 2016-01-20 | 2016-06-01 | 京东方科技集团股份有限公司 | 一种背光源、背光模组、显示装置及显示系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107967884A (zh) | 2018-04-27 |
CN107967884B (zh) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10388234B2 (en) | Double-sided display device, system, and method | |
US11644675B2 (en) | Ghost image mitigation in see-through displays with pixel arrays | |
CN101878501B (zh) | 用于在显示器上提供隐私的方法和设备 | |
TWI435301B (zh) | 防窺顯示系統 | |
TWI419549B (zh) | 快門眼鏡以及控制快門眼鏡的方法 | |
WO2011125368A1 (ja) | 立体画像表示装置、表示システム、駆動方法、駆動装置、表示制御方法、表示制御装置、プログラム、およびコンピュータ読み取り可能な記録媒体 | |
JP2007121893A (ja) | 偏光スイッチング液晶素子、およびこれを備える画像表示装置 | |
KR101295884B1 (ko) | 다중 시각 및 입체 영상 표시장치 | |
US8681280B2 (en) | Stereoscopic image display and method for driving the same | |
US20180088438A1 (en) | Display device | |
WO2015190588A1 (ja) | 液晶表示装置 | |
CN104865751B (zh) | 液晶显示器 | |
US20100060810A1 (en) | Image processing system capable of changing a polarization angle of a polarized image and related method | |
US20010028416A1 (en) | System and method for displaying 3D imagery using a dual projector 3D stereoscopic projection system | |
WO2019201158A1 (zh) | 显示装置、其驱动方法及显示系统 | |
TWI419550B (zh) | 快門眼鏡以及控制快門眼鏡的方法 | |
JP2002214566A (ja) | 三次元表示方法及び装置 | |
JP2012175699A (ja) | 立体映像表示装置及びそのクロストーク補償方法 | |
RU2306680C1 (ru) | Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации | |
CN202563212U (zh) | 影像显示系统 | |
US8373807B2 (en) | Data producing method and electronic device thereof | |
WO2018072377A1 (zh) | 光信号输出方法、系统、相关设备和计算机存储介质 | |
TWI405455B (zh) | 快門眼鏡以及控制快門眼鏡的方法 | |
JP4444152B2 (ja) | 3次元表示装置 | |
JP2006285112A (ja) | 3次元表示方法および3次元表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17862675 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17862675 Country of ref document: EP Kind code of ref document: A1 |