WO2018070850A1 - Guide rna complementary to kras gene, and use thereof - Google Patents

Guide rna complementary to kras gene, and use thereof Download PDF

Info

Publication number
WO2018070850A1
WO2018070850A1 PCT/KR2017/011391 KR2017011391W WO2018070850A1 WO 2018070850 A1 WO2018070850 A1 WO 2018070850A1 KR 2017011391 W KR2017011391 W KR 2017011391W WO 2018070850 A1 WO2018070850 A1 WO 2018070850A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
nucleic acid
guide rna
acid sequence
kras
Prior art date
Application number
PCT/KR2017/011391
Other languages
French (fr)
Korean (ko)
Inventor
김형범
김원주
김한상
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170133485A external-priority patent/KR101997116B1/en
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US16/341,585 priority Critical patent/US11510935B2/en
Publication of WO2018070850A1 publication Critical patent/WO2018070850A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to a guide RNA complementary to the KRAS gene, a vector comprising the same, a composition for removing a nucleic acid sequence encoding a KRAS polypeptide from the genome of a cell including the same, a composition for preventing or treating cancer, and a method using the same.
  • Genetic scissors are enzymes that bind to a gene and cut and use specific DNA sites, or genome editing techniques using the same. Genetic scissors can be used in various fields, such as mutation correction and anticancer cell therapies that cause genetic diseases in stem or somatic cells.
  • RNA-guided engineered from zinc finger nuclease (ZFN), transcriptional activator-like effector nuclease (TALEN), and type 2 CRISPR / Cas clustered regularly interspaced repeat / CRISPR-associated prokaryotic immune system. nuclease) and the like are known.
  • ZFN zinc finger nuclease
  • TALEN transcriptional activator-like effector nuclease
  • type 2 CRISPR / Cas clustered regularly interspaced repeat / CRISPR-associated prokaryotic immune system. nuclease) and the like are known.
  • Cas9 nuclease cleaves the DNA target sequence specified by the sequence of the Guide RNA.
  • Methods for editing genomes using gene shears are known from a number of documents, such as Korean Publication No. 10-2015-0101478 (2015.09.03).
  • KRAS is one of the oncogenes that are frequently mutated in human tumors. Although normal KRAS performs essential functions for normal tissue signaling, mutations in the KRAS gene are important therapeutic targets because mutations in the KRAS gene are involved in the development of various cancers.
  • guide RNAs comprising two or more contiguous polynucleotides complementary to a target nucleic acid sequence encoding a KRAS polypeptide.
  • a vector comprising the guide RNA is provided.
  • compositions for removing nucleic acid sequences encoding KRAS polypeptides from the genome of a cell are provided.
  • It provides a pharmaceutical composition for preventing or treating cancer.
  • a method of mutating a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome is provided.
  • One aspect provides guide RNAs comprising two or more contiguous polynucleotides complementary to a target nucleic acid sequence encoding a KRAS polypeptide.
  • the KRAS polypeptide may be a wild type KRAS polypeptide or a mutant KRAS polypeptide.
  • the wild type KRAS polypeptide is GenBank Accession No. May comprise the amino acid sequence of NP_203524.1.
  • the wild type KRAS polypeptide is GenBank Accession No. Amino acid sequences encoded from the nucleic acid sequence of NM_033360.3.
  • the target nucleic acid sequence may be a 34th nucleic acid, a 35th nucleic acid, a 38th nucleic acid, or a combination thereof from the 5′-end of the nucleic acid sequence encoding the wild type KRAS polypeptide.
  • the polynucleotide is the 34th nucleic acid is changed from guanine (G) to thymine (T) or cytosine (C), or the 35th nucleic acid is from guanine (G) to thymine (T), adenine (A), and cytosine (C) Any one of these, or the 38th nucleic acid may be changed from guanine (G) to adenine (A).
  • the target nucleic acid sequence may comprise a protospacer adjacent motif (PAM).
  • the PAM may be a site that Cas9 nuclease specifically recognizes.
  • the PAM may comprise a nucleic acid sequence selected from the group consisting of 5'-TGG-3 ', 5'-TAG-3', 5'-AGG-3 ', and 5'-CTG-3'.
  • the target nucleic acid sequence may include a nucleic acid sequence identical to or complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 to 42.
  • guide RNA refers to a polynucleotide that cleaves, inserts, or links a target DNA within a cell through RNA editing.
  • the guide RNAsms may be single-chain guide RNAs (sgRNAs).
  • the guide RNA may be crRNA (CRISPR RNA) specific for the target nucleic acid sequence.
  • the guide RNA may further comprise a tracrRNA (trans-activating crRNA) that interacts with Cas9 nuclease.
  • the tracrRNA may comprise a polynucleotide forming a loop structure.
  • the guide RNA may be 10 to 30 nucleotides in length.
  • the guide RNA has a length of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, Or 30 nucleotides.
  • the guide RNA may comprise a nucleic acid sequence identical or complementary to two or more consecutive polynucleotides in a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 42 to 84.
  • the guide RNA may include two or more consecutive polynucleotides complementary to the remaining nucleic acid sequence except for the PAM sequence among the target nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1 to 42.
  • the guide RNA may be a polynucleotide complementary to the remaining nucleic acid sequence except for the PAM sequence among the target nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1 to 42.
  • the guide RNA may comprise RNA, DNA, PNA, or a combination thereof.
  • the guide RNA may be chemically modified.
  • the guideRNA may be a component of a programmable nuclease.
  • Genetic shears refer to all forms of nucleases that can recognize and cleave specific locations on the genome.
  • the genetic scissors may be, for example, transcription activator-like effector nuclease (TALEN), zinc-finger nuclease, meganuclease, RNA-guided engineered nuclease (RGEN), Cpf1, And Ago homolog (DNA-guided endonuclease).
  • TALEN transcription activator-like effector nuclease
  • RGEN RNA-guided engineered nuclease
  • Cpf1 And Ago homolog
  • the RGEN refers to a nuclease comprising as a component a guide RNA and a Cas protein specific for the target DNA.
  • the polynucleotide is for example a component of RGEN.
  • the guideRNA can remove nucleic acid sequences encoding KRAS polypeptides by non-homologous end-joining (NHEJ) in the cell's genome.
  • NHEJ non-homologous end-joining
  • Another aspect provides a vector comprising a guideRNA according to one aspect.
  • the vector may be a viral vector.
  • the viral vector may be a lentiviral vector or an adeno-associated virus (AAV).
  • the vector may be an expression vector.
  • the vector may be a constitutive or inducible expression vector.
  • the vector includes packaging signals, rev response element (RRV), posttranscriptional regulatory element (WPRE) of woodchuck hepatitis virus, central polypurine tract (cPPT), promoter, antibiotic resistance gene, operator, inhibition Now, it may include a T2A peptide, reporter gene, or a combination thereof.
  • the promoter may comprise a U6 polymerase III promoter, an elongation factor 1 ⁇ promoter, an H1 promoter, a promoter of cytomegalovirus, or a combination thereof.
  • the antibiotic resistance gene may include a puromycin resistance gene, a blasticidin resistance gene, or a combination thereof.
  • the inhibitor may be a tetracycline operator.
  • the reporter gene may comprise a nucleic acid
  • compositions for removing a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome comprising a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
  • the guideRNAs, vectors, KRAS polypeptides, and nucleic acid sequences encoding KRAS polypeptides are as described above.
  • the cells may be selected from the group consisting of cancer cells, stem cells, vascular endothelial cells, leukocytes, immune cells, epithelial cells, germ cells, fibroblasts, muscle cells, bone marrow cells, epidermal cells, osteoblasts, and neurons.
  • removing refers to any modification in which the nucleic acid sequence encoding the KRAS polypeptide in the cell's genome is altered, resulting in loss or reduction of the function of the KRAS polypeptide.
  • removal can be used interchangeably with “mutation”.
  • the removal or mutation can be, for example, a deletion, substitution, insertion, or frame shift mutation.
  • composition may be for in vitro or in vivo administration.
  • the composition may further comprise a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide.
  • the Cas polypeptide is one of the protein components of the CRISPR / Cas system and may be an activated endonuclease or nick forming enzyme.
  • the Cas polypeptide may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to exhibit its activity.
  • the Cas polynucleotide is for example the genus Streptococcus (eg Streptococcus pyogens), genus Neisseria meningitidis, Pasteurella genus (eg Pasteurella multocida), genus Francisella (eg Francisella novicida), Or polynucleotides derived from bacteria of the genus Campylobacter (eg, Campylobacter jejuni).
  • the Cas polypeptide is GenBank Accession No. May comprise the amino acid sequence of Q99ZW2.1.
  • the Cas polypeptide is GenBank Accession No. Amino acid sequence encoded from the nucleic acid sequence of KT031982.1.
  • the Cas polypeptide may be a wild type Cas polypeptide, or a mutant Cas polypeptide.
  • the mutant Cas polypeptide may be, for example, a polypeptide in which a catalytic aspartate residue is changed to another amino acid (eg, alanine).
  • the Cas polypeptide may be a recombinant protein.
  • the Cas polypeptide may be a Cas9 polypeptide or a Cpf1 polypeptide.
  • Another aspect provides a pharmaceutical composition for preventing or treating cancer, comprising a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
  • the guideRNA and the vector are as described above.
  • the cancer may be a primary tumor or a metastatic tumor.
  • the cancer may include, for example, pancreatic cancer, colon cancer, lung cancer, breast cancer, skin cancer, head and neck cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer, bladder cancer, urethral cancer, liver cancer, kidney cancer, clear cell sarcoma, melanoma, and cerebrospinal tumor , Brain cancer, thymus, mesothelioma, esophageal cancer, biliary tract cancer, testicular cancer, germ cell tumor, thyroid cancer, parathyroid cancer, cervical cancer, endometrial cancer, lymphoma, myelodysplastic syndromes (MDS), myelofibrosis, acute leukemia , Chronic leukemia, multiple myeloma, Hogkin's Disease, endocrine cancer, and sarcoma.
  • pancreatic cancer colon cancer
  • lung cancer breast cancer
  • skin cancer head and neck cancer
  • colorectal cancer
  • prevention refers to any action that inhibits or delays the development of cancer by administration of the pharmaceutical composition.
  • treatment refers to any action that improves or advantageously alters the symptoms of cancer by administration of the pharmaceutical composition.
  • the pharmaceutical composition may further comprise a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide.
  • the guideRNA according to one aspect, the vector according to one aspect, or a combination thereof and the second polynucleotide may be a single composition or separate compositions.
  • the pharmaceutical composition may comprise a pharmaceutically acceptable carrier.
  • the carrier is used in the sense including excipients, diluents or adjuvants.
  • the carrier is, for example, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinyl pi It may be selected from the group consisting of rolidone, water, saline, buffers such as PBS, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate, and mineral oil.
  • the composition may include fillers, anti-coagulants, lubricants, wetting agents, flavors, emulsifiers, preservatives, or combinations thereof.
  • the pharmaceutical composition may be prepared in any formulation according to conventional methods.
  • the compositions can be formulated, for example, in oral dosage forms (eg, powders, tablets, capsules, syrups, pills, or granules), or parenteral formulations (eg, injections).
  • the compositions may be prepared in systemic or topical formulations.
  • the pharmaceutical composition may be administered orally, intravenously, intramuscularly, orally, transdermal, mucosal, intranasal, intratracheal, subcutaneous, or a combination thereof.
  • the pharmaceutical composition may comprise an effective amount of a guideRNA, a vector or a combination thereof according to one aspect.
  • the term “effective amount” refers to an amount sufficient to exert the effect of prophylaxis or treatment when administered to a subject in need thereof.
  • the effective amount may be appropriately selected by those skilled in the art according to the cell or individual to be selected. Factors including the severity of the disease, the age, weight, health, sex of the patient, sensitivity to the patient's drug, time of administration, route of administration and rate of release, duration of treatment, drugs used in combination or concurrently with the composition used and other medical fields Can be determined according to well-known factors.
  • the effective amount may be about 0.1 ⁇ g to about 2 g, about 0.5 ⁇ g to about 1 g, about 1 ⁇ g to about 500 mg, about 10 ⁇ g to about 100 mg, or about 100 ⁇ g to about 50 mg per pharmaceutical composition. have.
  • the dosage of the pharmaceutical composition may be, for example, about 0.001 mg / kg to about 100 mg / kg, about 0.01 mg / kg to about 10 mg / kg, or about 0.1 mg / kg to about 1 mg / on an adult basis. may be in the range of kg.
  • the administration can be administered once daily, multiple times daily, or once a week, once every two weeks, once every three weeks, or once every four weeks to once a year.
  • Another aspect provides a method of mutating a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome, comprising incubating the cell with a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
  • the guideRNAs, vectors, cells, KRAS polypeptides, nucleic acid sequences encoding KRAS polypeptides, and mutations are as described above.
  • the incubation can be performed in vitro or in vivo.
  • the method may further comprise a second step of incubating with the second polynucleotide comprising a nucleic acid sequence encoding the cell and Cas polypeptide.
  • the second step may be performed simultaneously with, before, or after incubating the guideRNA according to one aspect, the vector according to one aspect, or a combination thereof.
  • Another aspect provides a method of preventing or treating cancer comprising administering to a subject a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
  • the individual may be an individual having a genome comprising a nucleic acid sequence encoding a mutant KRAS polypeptide.
  • the subject may be a mammal, for example human, cow, horse, pig, dog, sheep, goat or cat.
  • the subject may be a subject with or at high risk of having cancer.
  • the guideRNA, vector or combinations thereof may be administered orally, intravenously, intramuscularly, orally, transdermal, mucosal, nasal, intratracheal or subcutaneous.
  • Preferred dosages of the polynucleotides, vectors, or combinations thereof vary depending on the condition and weight of the patient, the extent of the disease, the form of the drug, the route and duration of administration, and may be appropriately selected by those skilled in the art.
  • the dosage is, for example, in the range of about 0.001 mg / kg to about 100 mg / kg, about 0.01 mg / kg to about 10 mg / kg, or about 0.1 mg / kg to about 1 mg / kg on an adult basis.
  • the administration can be administered once daily, multiple times daily, or once a week, once every two weeks, once every three weeks, or once every four weeks to once a year.
  • a vector comprising the same, a composition for removing a nucleic acid sequence encoding a KRAS polypeptide from the genome of a cell comprising the same, a composition for preventing or treating cancer comprising the same, and a method using the same
  • Nucleic acid sequences encoding KRAS polypeptides in the genome can be mutated, and can be used to prevent or treat cancer, particularly as tailored or precision care.
  • FIG. 1A is a schematic representation of KRAS mutations strongly associated with cancer development in the human genome
  • FIG. 1B is a schematic representation of a surrogate NHEJ reporter system
  • FIG. 1C is a schematic diagram showing the mechanism of action of the prepared surrogate NHEJ reporter system.
  • 2A-2F are graphs showing the percentage (%) of cells expressing both mRFP and eGFP to the number of cells expressing mRFP only (left) and target sequences for each guide RNA (right, arrows and bold: Target KRAS mutation, bold: PAM sequence).
  • Figure 3 is a graph showing the results of deep sequencing the insertion / deletion frequency in the intrinsic target KRAS sequence.
  • 4A to 4C show that cancer cells are sequentially transformed with a Cas9-encoding lentiviral vector and a guide RNA-encoding vector, and then the transformed cells are analyzed by colony formation assay, soft agar assay, and MTS assay, respectively. Images and graphs showing the results of the analysis.
  • Figures 5a to 5c shows the size and weight of tumors according to 35T9P17 guide RNA expression when cancer cells are transplanted sequentially with Cas9-encoding lentiviral vector and guide RNA-encoding vector and then the cancer cells are implanted in nude mice.
  • One result is an image and graph.
  • Figure 6 shows the tumor volume and weight (g) according to 35T9P17 guide RNA expression when intracellularly injected with a cancer cell or normal cell line to a nude mouse, and then a Cas9-encoding lentiviral vector and a guide RNA-encoding vector. ), And an image of the tumor.
  • Figure 7 shows the tumor volume and weight (g) according to 35T9P17 guide RNA expression when cancer cells or normal cell lines were transplanted into nude mice and then injected intratumorally with Cas9-encoding AAV vector and guide RNA-coding vector. Graphs, and images of tumors.
  • the KRAS gene on the human genome is known to have five exons.
  • a schematic representation of KRAS mutations strongly associated with cancer development in the human genome is shown in FIG. 1A.
  • E represents exon
  • E2 represents exon 2.
  • six KRAS point mutations located in exon 2 of the KRAS gene were selected as targets.
  • Selected KRAS point mutations were c.35G> T (p.G12V), c.35G> A (p.G12D), c.38G> A (p.G13D), c.34G> T (p.G12C), c.34G> C (p.G12R), and c.35G> C (p.G12A).
  • c.35G> T (p.G12V) is where the 35th nucleic acid from the 5′-end of the KRAS gene is mutated from guanine (G) to thymine (T) and N ′ in the amino acid sequence of the KRAS protein.
  • -Means that the 12th amino acid from the end is mutated from glycine (G) to valine (V).
  • 2A-2F show the target sequences of each guide RNA (right).
  • target KRAS mutations are indicated by arrows and bold, PAM sequence (5'-TGG-3 ', 5'-TAG-3', 5'-AGG-3 ', or 5'-).
  • CTG-3 ') is shown in bold.
  • the first three letters in the guide RNA name represent the target KRAS mutations and are described as "35T” if the target KRAS mutation is c.35G> T.
  • the fourth letter represents the distance in bp from the PAM to the mutation site.
  • the fifth letter indicates the position of the PAM relative to the mutation position, P (plus) if the mutation position is located to the left of the PAM, and M (minus) if the mutation position is to the right of the PAM.
  • the sixth and seventh letters indicate the length (bp) of the guide RNA excluding the PAM sequence.
  • “35T9P17” targets the KRAS mutant c.35G> T
  • the distance from the mutation site to the PAM is 9 bp
  • the mutation is located to the left of the PAM
  • the length of the guide RNA excluding the PAM sequence is 17 bp.
  • the guide RNA was designed to have a sequence complementary to the remaining nucleotide sequences except for the PAM sequence in the target sequence.
  • lenti_gRNA-furo refers to a lentivirus vector expressing constitutive guide RNA (sgRNA)
  • lenti_gRNA-doxy-derived_GFP is a term for doxycycline.
  • Presence induces a lentiviral vector from which guide RNA expression is induced
  • lenti_SpCas9-Blast represents a lentiviral vector expressing Cas9 nuclease
  • Psi packaging signal
  • RRE rev response element
  • WPRE Posttranscriptional regulatory element of woodchuck hepatitis virus
  • cPPT central polypurine tract
  • U6 polymerase III promoter
  • gRNA guide RNA
  • EF1 ⁇ elongation factor 1a promoter
  • PuroR puromycin resistance gene
  • H1 H1 promoter
  • TetO tetracycline operator
  • Ub ubiquitin promoter
  • TetR tetracycline inhibitor
  • T2A T2A peptide
  • EGFP enhanced green fluorescence Protein
  • CMV promoter of cytomegalovirus
  • BlastR blasticidin resistance gene
  • FIG. 1C The mechanism of action of the prepared surrogate NHEJ reporter system is shown in FIG. 1C.
  • the monomeric red fluorescent protein (mRFP) is constitutively expressed by the CMV promoter (P CMV ), and the enhanced green fluorescent protein (eGFP) is a non-framed sequence, resulting in a CRISPR / Cas9 activity. Without it is not expressed.
  • mRFP monomeric red fluorescent protein
  • eGFP enhanced green fluorescent protein
  • a reporter plasmid comprising a wild type KRAS sequence or a mutant KRAS sequence, a plasmid encoding Cas9, and a plasmid encoding guide RNAs.
  • Transfected cells were analyzed by flow cytometry and normalized to the number of cells expressing mRFP only to determine the percentage of cells expressing both mRFP and eGFP, and the results are shown in the left graph of FIGS. 2A-2F. This ratio represents the activity of the guide RNA on the target sequence. In the left graphs of FIGS.
  • the dark and thin lines indicate that the ratio of eGFP + mRFP + / eGFP + cells to mutant KRAS sequences versus wild type KRAS sequences is 1 and 3, respectively.
  • the target sequence of each guide RNA is shown on the right, the KRAS point mutation site is indicated by arrows and bold, and the protospacer adjacent motif (PAM) is shown in bold.
  • some guide RNAs exhibit high GFP expression for mutant KRAS sequences and low GFP expression for wild type KRAS sequences, confirming that they are guide RNA specific for the mutant KRAS sequence. It was. Primary selected guide RNAs are indicated by arrows in the left graph of FIGS. 2A-2F. Two guide RNAs (35T9P17 and 38A6P17) with high selectivity and one guide RNA (35A9P17) with low selectivity for mutant KRAS were selected secondary and the selected guide RNA names were shown in the right figure of FIGS. 2A-2F. It is shown in bold text.
  • cancer cells with KRAS mutations were transformed with a lentiviral vector encoding Cas9 and the corresponding guide RNA.
  • Cancer cells include SW403 (heterozyous c.35G> T mutation), SW480 (homozygous c.35G> T mutation), SW620 (homogenous c.35G> T mutation), LS513 (heterozygous c.35G> A mutation) ), LoVo (heterologous c.38G> A mutation), and HT29 cell line (wild type KRAS) were used. Insertion / deletion frequency in intrinsic target KRAS sequences was assessed by deep sequencing and the results are shown in FIG. 3.
  • Figure 3 a to f are graphs showing insertion / deletion frequency (error bars: standard mean error, "untreated”: guide RNA untreated) and g is the graph showing average sequence frequency (iii; insertion / deletion, ⁇ : wild type KRAS, marked with "+”: mutant KRAS).
  • transformation of Cas9 and 35T9P17 guide RNAs showed insertion / deletion frequencies of 50% in SW403 cells and 81% and 80% in SW480 and SW620, respectively.
  • transformation of Cas9 and 35A9P17 exhibited 36% insertion / deletion frequency in LS51336, and transformation of Cas9 and 38A6P17 showed 28% insertion / deletion frequency in LoVo.
  • the insertion / deletion frequency was 0.2% for 35T9P17, 77% for 35A9P17, and 0.3% for 38A6P17 (FIG. 2F), indicating that 35A9P17 was specific for the wild type KRAS sequence.
  • 35T9P17 and 38A6P17 showed high specificity to the mutant KRAS sequence.
  • mutant KRAS sequences of cancer cells were removed using selected guide RNAs, the effects on the survival, proliferation, and carcinogenicity of cancer cells were confirmed.
  • Cancer cells were transformed with a Cas9-encoding lentiviral vector (Addgene # 52962) and then with a guide RNA-encoding vector (Addgene # 52961) as a negative control using guide RNA which was inactive and completely different in sequence. .
  • Transformed cells were analyzed by colony formation assay, soft agar assay, and MTS assay, and the results are shown in FIGS. 4A-4C (error bars: standard mean error, *: p ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001, “Mock”: negative control).
  • the above image in a to d of FIG. 4a shows an image of the well after 2% crystal violet staining
  • MTS cell proliferation assays were used to assess the effect of Cas9 and guide RNA on cell proliferation. Cancer cells were transformed with Cas9 and guide RNA and the living cells were counted the next day. 5000 cells per sample were seeded into 96 well plates and untransformed cells were removed for 24 hours by puromycin selection. After inoculation, MTS reagent was added and incubated for 48 hours to determine cell proliferation. The MTS response was measured for absorbance at a wavelength of 490 nm and the absorbance measured was normalized to the absorbance of the negative control. The relative ratio of cells transformed with guide RNA to the number of cells transformed with negative control guide RNA was calculated and the results are shown in FIG. 3C. As shown in FIG.
  • the ratio of live cells among the cells expressing Cas9 and 35T9P17 RNA in SW403, SW480, and SW620 cells averaged 0.34, 0.46, and 0.71, respectively.
  • expression of Cas9 and guide RNA in HT29 cells did not affect the number of cells in MTS cell proliferation assay. Therefore, it was confirmed that removing mutant KRAS using Cas9 and guide RNA inhibited the proliferation or survival of cancer cells, but not the proliferation or survival of cells having wild type KRAS sequences.
  • Cas9-expressing SW403 cells were transformed with a lentiviral vector, and then 35T9P17 guide RNA was transformed with a lentiviral vector expressing doxycycline inducible.
  • Sequentially transformed cancer cells were implanted subcutaneously into nude mice and induced tumor formation for 14 days. Doxycycline was then administered to mice to induce 35T9P17 guide RNA expression in tumor cells.
  • the size and weight of tumors following 35T9P17 guide RNA expression after transplantation of cancer cells were measured and the results are shown in FIGS. 5A-5C (in the graphs of FIGS. 5A and 5B, where: doxicycline not administered, ⁇ : doxycycline *: P ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001).
  • Example 1.6 cancer cells transformed with Cas9 and 35T9P17 guide RNA were transplanted into nude mice to induce tumor formation, thereby confirming anticancer effects. Furthermore, it was confirmed whether the tumor cells had an anticancer effect even when injected Cas9 and 35T9P17 guide RNA from the outside.
  • mice with 5 week old thymus removed Male BALB / c nude mice with 5 week old thymus removed were prepared.
  • the prepared murine mice (6 per group) were injected subcutaneously with SW403 cancer cells containing the KRAS c.35G> T mutation of 2 ⁇ 10 6 cells and then left for at least two weeks to form tumors.
  • HT29 cell line containing wild type KRAS was injected subcutaneously into the thymus-depleted mice.
  • a lentiviral (1 ⁇ 10 8 TU lentivirus in 50 ⁇ l PBS) expressing Cas9 and 35T9P17 guide RNA in the tumor of the mouse was used using an insulin syringe (BD Biosciences, 31 gauge). Three injections, three days apart. As a negative control, mice injected intratumorally with a lentiviral expressing only Cas9 were used. Then, the size of the tumor was measured every three days using a caliper. Mice were sacrificed 5 weeks after cancer cell injection and tumor tissues were excised from the mice.
  • FIG. 6 The volume, weight, and image of the excised tumor tissue are shown in FIG. 6 (a-c: SW403 cancer cell transplantation, d-f: HT29 cell line transplantation, error bars: measurement standard error, sgRNA: 35T9P17 guide) RNA, triangle: upon lentiviral injection, ***: p ⁇ 0.001, ns: not significant, bar at c and f: 1 cm).
  • tumor growth was inhibited by intratumoral injection of a lentiviral expressing Cas9 and 35T9P17 guide RNAs.
  • the negative control had a strong growth of cancer.
  • Delivery of Cas9 and 35T9P17 guide RNA to tumors generated using cancer cells that did not contain the mutant KRAS had no effect on tumor growth, similar to that injected with a lentiviral expressing Cas9 alone.
  • 35T9P17 guide RNA was specific for cancer cells containing the KRAS c.35G> T mutation, and had anticancer effects even when external scissors was injected with a lentiviral vector to tumor cells.
  • 35T9P17 guide RNA was cloned into the PX552 vector (Addgene # 60958) to determine whether a lentiviral-like effect was seen even with adeno-associated viral (AAV) vectors.
  • AAV adeno-associated viral
  • AAV vectors containing 35T9P17 guide RNA and miniCMV-Cas9-shortPolyA plasmids were cotransfected into HEK293T cells with pAAV-RC2 (Cell Biolabs, VPK-402) and helper DNA (Cell Biolabs, VPK-402) and then drug Virus containing supernatants were obtained from cells incubated for 48 hours.
  • the resulting AAV vector (1 ⁇ 10 12 gc / ml AAV in 50 ⁇ l PBS) was injected into tumors of nude mice depleted of thymus as well as lentivirus.
  • an AAV vector encoding only green fluorescent protein (GFP) was used. The caliper was used to measure tumor size every two days. Mice were sacrificed 12 days after AAV injection and tumor tissues were excised from the mice.
  • GFP green fluorescent protein
  • tumor growth was significantly regulated even when AAV was used, although less than when lentiviral was used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

According to an aspect, provided are: a guide RNA; a vector comprising the same; a composition for removing a nucleic acid sequence encoding a KRAS polypeptide in the genome of a cell, containing the same; a composition for preventing or treating cancer, containing the same; and a method using the same. The present invention enables the mutation of a nucleic acid sequence encoding a KRAS polypeptide in the genome of a cell or a subject and, particularly, can be usable, as personalized or precision medical care, in the prevention or treatment of cancer.

Description

KRAS 유전자에 상보적인 가이드 RNA 및 이의 용도Guide RNA Complementary to the KRAS Gene and Its Uses
KRAS 유전자에 상보적인 가이드 RNA, 이를 포함한 벡터, 이를 포함한 세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거하기 위한 조성물, 이를 포함한 암 예방 또는 치료용 조성물, 및 이들을 이용한 방법에 관한 것이다.The present invention relates to a guide RNA complementary to the KRAS gene, a vector comprising the same, a composition for removing a nucleic acid sequence encoding a KRAS polypeptide from the genome of a cell including the same, a composition for preventing or treating cancer, and a method using the same.
유전자 가위는 유전자에 결합하여 특정 DNA 부위를 절단하여 사용하는 효소 또는 이를 이용한 유전체 편집(genome editing) 기법을 말한다. 유전자 가위를 이용하여 줄기세포 또는 체세포에서 유전병의 원인이 되는 돌연변이 교정, 항암 세포 치료제와 같이 다양한 분야에서 활용할 수 있다. 유전자 가위로서, ZFN(zinc finger nuclease), TALEN(transcriptional activator-like effector nuclease), 및 제2형 CRISPR/Cas(clustered regularly interspaced repeat/CRISPR-associated) 원핵생물 획득 면역 시스템 유래 RGEN(RNA-guided engineered nuclease) 등이 알려져 있다. Cas9 뉴클레아제와 적절한 가이드 RNA를 세포 내로 전달함으로써, 세포의 유전체는 원하는 위치에서 절단되고 기존 유전자를 제거하고 새로운 유전자를 삽입할 수 있다. 유전자 가위를 이용하여 특정 DNA를 절단할 때, Cas9 뉴클레아제는 가이드(Guide) RNA의 서열에 의해 특정된 DNA 표적 서열을 절단한다. 유전자 가위를 이용하여 유전체를 편집하는 방법은 한국 공개 번호 10-2015-0101478(2015.09.03) 등에 다수의 문헌을 통해 알려져 있다.Genetic scissors are enzymes that bind to a gene and cut and use specific DNA sites, or genome editing techniques using the same. Genetic scissors can be used in various fields, such as mutation correction and anticancer cell therapies that cause genetic diseases in stem or somatic cells. As gene shears, RNA-guided engineered from zinc finger nuclease (ZFN), transcriptional activator-like effector nuclease (TALEN), and type 2 CRISPR / Cas clustered regularly interspaced repeat / CRISPR-associated prokaryotic immune system. nuclease) and the like are known. By delivering Cas9 nuclease and appropriate guide RNA into the cell, the genome of the cell can be cut at the desired location, removing the existing gene and inserting a new gene. When cleaving specific DNA using gene shears, Cas9 nuclease cleaves the DNA target sequence specified by the sequence of the Guide RNA. Methods for editing genomes using gene shears are known from a number of documents, such as Korean Publication No. 10-2015-0101478 (2015.09.03).
KRAS는 인간 종양에서 빈번하게 돌연변이 되는 암유전자(oncogene) 중 하나 이다. 정상 KRAS는 정상 조직의 신호전달에 필수적인 기능을 수행하지만 KRAS 유전자의 돌연변이는 다양한 암의 발생에 관여하기 때문에, KRAS 유전자의 돌연변이는 중요한 치료적 표적이다.KRAS is one of the oncogenes that are frequently mutated in human tumors. Although normal KRAS performs essential functions for normal tissue signaling, mutations in the KRAS gene are important therapeutic targets because mutations in the KRAS gene are involved in the development of various cancers.
따라서, KRAS 유전자 돌연변이를 특이적으로 제거하기 위해, KRAS 유전자 돌연변이를 표적으로 하는 가이드 RNA를 개발할 필요가 있다.Thus, to specifically eliminate KRAS gene mutations, it is necessary to develop guide RNAs that target KRAS gene mutations.
KRAS 폴리펩티드를 암호화하는 표적 핵산 서열에 상보적인 2개 이상의 연속 폴리뉴클레오티드를 포함하는 가이드 RNA를 제공한다.Provided are guide RNAs comprising two or more contiguous polynucleotides complementary to a target nucleic acid sequence encoding a KRAS polypeptide.
상기 가이드 RNA를 포함하는 벡터를 제공한다.A vector comprising the guide RNA is provided.
세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거하기 위한 조성물을 제공한다.Provided are compositions for removing nucleic acid sequences encoding KRAS polypeptides from the genome of a cell.
암 예방 또는 치료용 약학적 조성물을 제공한다.It provides a pharmaceutical composition for preventing or treating cancer.
세포의 유전체로부터 KRAS 폴리펩티드를 암호화하는 핵산 서열을 돌연변이시키는 방법을 제공한다.A method of mutating a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome is provided.
암을 예방 또는 치료하는 방법을 제공한다.Provided are methods for preventing or treating cancer.
일 양상은 KRAS 폴리펩티드를 암호화하는 표적 핵산 서열에 상보적인 2개 이상의 연속 폴리뉴클레오티드를 포함하는 가이드 RNA를 제공한다.One aspect provides guide RNAs comprising two or more contiguous polynucleotides complementary to a target nucleic acid sequence encoding a KRAS polypeptide.
상기 KRAS 폴리펩티드는 야생형 KRAS 폴리펩티드 또는 돌연변이 KRAS 폴리펩티드일 수 있다. 상기 야생형 KRAS 폴리펩티드는 인간의 경우 GenBank Accession No. NP_203524.1의 아미노산 서열을 포함할 수 있다. 상기 야생형 KRAS 폴리펩티드는 인간의 경우 GenBank Accession No. NM_033360.3의 핵산 서열로부터 암호화되는 아미노산 서열을 포함할 수 있다.The KRAS polypeptide may be a wild type KRAS polypeptide or a mutant KRAS polypeptide. The wild type KRAS polypeptide is GenBank Accession No. May comprise the amino acid sequence of NP_203524.1. The wild type KRAS polypeptide is GenBank Accession No. Amino acid sequences encoded from the nucleic acid sequence of NM_033360.3.
상기 표적 핵산 서열은 야생형 KRAS 폴리펩티드를 암호화하는 핵산 서열의 5'-말단으로부터 34번째 핵산, 35번째 핵산, 38번째 핵산, 또는 이들의 조합이 변경된 것일 수 있다. 상기 폴리뉴클레오티드는 34번째 핵산이 구아닌(G)으로부터 티민(T) 또는 시토신(C)으로 변경되거나, 35번째 핵산이 구아닌(G)으로부터 티민(T), 아데닌(A), 및 시토신(C) 중 어느 하나로 변경되거나, 38번째 핵산이 구아닌(G)으로부터 아데닌(A)으로 변경된 것일 수 있다.The target nucleic acid sequence may be a 34th nucleic acid, a 35th nucleic acid, a 38th nucleic acid, or a combination thereof from the 5′-end of the nucleic acid sequence encoding the wild type KRAS polypeptide. The polynucleotide is the 34th nucleic acid is changed from guanine (G) to thymine (T) or cytosine (C), or the 35th nucleic acid is from guanine (G) to thymine (T), adenine (A), and cytosine (C) Any one of these, or the 38th nucleic acid may be changed from guanine (G) to adenine (A).
상기 표적 핵산 서열은 프로토스페이서 인접 모티프(protospacer adjacent motif: PAM)를 포함할 수 있다. 상기 PAM은 Cas9 뉴클레아제가 특이적으로 인식하는 부위일 수 있다. 상기 PAM은 5'-TGG-3', 5'-TAG-3', 5'-AGG-3', 및 5'-CTG-3'으로 이루어진 군으로부터 선택된 핵산 서열을 포함할 수 있다.The target nucleic acid sequence may comprise a protospacer adjacent motif (PAM). The PAM may be a site that Cas9 nuclease specifically recognizes. The PAM may comprise a nucleic acid sequence selected from the group consisting of 5'-TGG-3 ', 5'-TAG-3', 5'-AGG-3 ', and 5'-CTG-3'.
상기 표적 핵산 서열은 서열번호 1 내지 42로 이루어진 군으로부터 선택된 핵산 서열과 동일하거나 이에 상보적인 핵산 서열을 포함할 수 있다.The target nucleic acid sequence may include a nucleic acid sequence identical to or complementary to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 to 42.
용어 "가이드(guide) RNA"는 RNA 편집(editing)을 통해 세포내에서 표적 DNA를 절단, 삽입, 또는 연결시키는 폴리뉴클레오티드를 말한다. 상기 가이드 RNAsms 단일-사슬 가이드 RNA(single-chain guide RNA: sgRNA)일 수 있다. 상기 가이드 RNA는 표적 핵산 서열에 특이적인 crRNA(CRISPR RNA)일 수 있다. 상기 가이드 RNA는 Cas9 뉴클레아제와 상호작용하는 tracrRNA(trans-activating crRNA)를 더 포함할 수 있다. 상기 tracrRNA는 루프(loop) 구조를 형성하는 폴리뉴클레오티드를 포함할 수 있다. 상기 가이드 RNA는 길이가 10 뉴클레오티드 내지 30 뉴클레오티드일 수 있다. 상기 가이드 RNA는 길이가 예를 들어, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 또는 30 뉴클레오티드일 수 있다.The term “guide RNA” refers to a polynucleotide that cleaves, inserts, or links a target DNA within a cell through RNA editing. The guide RNAsms may be single-chain guide RNAs (sgRNAs). The guide RNA may be crRNA (CRISPR RNA) specific for the target nucleic acid sequence. The guide RNA may further comprise a tracrRNA (trans-activating crRNA) that interacts with Cas9 nuclease. The tracrRNA may comprise a polynucleotide forming a loop structure. The guide RNA may be 10 to 30 nucleotides in length. The guide RNA has a length of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, Or 30 nucleotides.
상기 가이드 RNA는 서열번호 42 내지 84로 이루어진 군으로부터 선택된 핵산 서열에서 2개 이상의 연속 폴리뉴클레오티드와 동일하거나 상보적인 핵산 서열을 포함할 수 있다. 상기 가이드 RNA는 서열번호 1 내지 42로 이루어진 군으로부터 선택된 표적 핵산 서열 중 PAM 서열을 제외한 나머지 핵산 서열에 상보적인 2 이상 연속 폴리뉴클레오티드를 포함할 수 있다. 상기 가이드 RNA는 서열번호 1 내지 42로 이루어진 군으로부터 선택된 표적 핵산 서열 중 PAM 서열을 제외한 나머지 핵산 서열에 상보적인 폴리뉴클레오티드일 수 있다.The guide RNA may comprise a nucleic acid sequence identical or complementary to two or more consecutive polynucleotides in a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 42 to 84. The guide RNA may include two or more consecutive polynucleotides complementary to the remaining nucleic acid sequence except for the PAM sequence among the target nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1 to 42. The guide RNA may be a polynucleotide complementary to the remaining nucleic acid sequence except for the PAM sequence among the target nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1 to 42.
상기 가이드 RNA는 RNA, DNA, PNA, 또는 이들의 조합을 포함할 수 있다. 상기 가이드 RNA는 화학적으로 변형된 것일 수 있다.The guide RNA may comprise RNA, DNA, PNA, or a combination thereof. The guide RNA may be chemically modified.
상기 가이드RNA는 유전자 가위(programmable nuclease)의 구성요소일 수 있다. 유전자 가위는 유전체 상의 특정 위치를 인식하여 절단할 수 있는 모든 형태의 뉴클레아제를 말한다. 상기 유전자 가위는 예를 들어, TALEN(transcription activator-like effector nuclease), 징크-핑거 뉴클레아제(zinc-finger nuclease), 메가뉴클레아제(meganuclease), RGEN(RNA-guided engineered nuclease), Cpf1, 및 아고 상동체(Ago homolog, DNA-guided endonuclease)이다. 상기 RGEN은 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 구성요소로 포함하는 뉴클레아제를 말한다. 상기 폴리뉴클레오티드는 예를 들어 RGEN의 구성요소이다.The guideRNA may be a component of a programmable nuclease. Genetic shears refer to all forms of nucleases that can recognize and cleave specific locations on the genome. The genetic scissors may be, for example, transcription activator-like effector nuclease (TALEN), zinc-finger nuclease, meganuclease, RNA-guided engineered nuclease (RGEN), Cpf1, And Ago homolog (DNA-guided endonuclease). The RGEN refers to a nuclease comprising as a component a guide RNA and a Cas protein specific for the target DNA. The polynucleotide is for example a component of RGEN.
상기 가이드RNA는 세포의 유전체에서 비상동성 말단-접합(non-homologous end-joining: NHEJ)에 의해 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거할 수 있다.The guideRNA can remove nucleic acid sequences encoding KRAS polypeptides by non-homologous end-joining (NHEJ) in the cell's genome.
다른 양상은 일 양상에 따른 가이드RNA를 포함하는 벡터를 제공한다.Another aspect provides a vector comprising a guideRNA according to one aspect.
상기 벡터는 바이러스성 벡터일 수 있다. 상기 바이러스성 벡터는 렌티바이러스 벡터 또는 아데노-관련 바이러스(adeno-associated viral: AAV)일 수 있다. 상기 벡터는 발현용 벡터일 수 있다. 상기 벡터는 구성적(constitutive) 또는 유도성(inducible) 발현 벡터일 수 있다. 상기 벡터는 패키징 신호, RRV(rev response element), WPRE(우드척(woodchuck) 간염 바이러스의 전사후 조절 요소(posttranscriptional regulatory element)), cPPT(central polypurine tract), 프로모터, 항생제 저항성 유전자, 오퍼레이터, 억제자, T2A 펩티드, 리포터 유전자, 또는 이들의 조합을 포함할 수 있다. 상기 프로모터는 U6 폴리머라제 III 프로모터, 신장 인자 1α 프로모터, H1 프로모터, 사이토메갈로바이러스의 프로모터, 또는 이들의 조합을 포함할 수 있다. 상기 항생제 저항성 유전자는 퓨로마이신 저항성 유전자, 블라스티시딘 저항성 유전자, 또는 이들의 조합을 포함할 수 있다. 상기 억제자는 테트라사이클린 오퍼레이터일 수 있다. 상기 리포터 유전자는 증강된(Enhanced) 녹색 형광 단백질을 암호화하는 핵산 서열을 포함할 수 있다.The vector may be a viral vector. The viral vector may be a lentiviral vector or an adeno-associated virus (AAV). The vector may be an expression vector. The vector may be a constitutive or inducible expression vector. The vector includes packaging signals, rev response element (RRV), posttranscriptional regulatory element (WPRE) of woodchuck hepatitis virus, central polypurine tract (cPPT), promoter, antibiotic resistance gene, operator, inhibition Now, it may include a T2A peptide, reporter gene, or a combination thereof. The promoter may comprise a U6 polymerase III promoter, an elongation factor 1α promoter, an H1 promoter, a promoter of cytomegalovirus, or a combination thereof. The antibiotic resistance gene may include a puromycin resistance gene, a blasticidin resistance gene, or a combination thereof. The inhibitor may be a tetracycline operator. The reporter gene may comprise a nucleic acid sequence encoding an enhanced green fluorescent protein.
다른 양상은 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합을 포함하는, 세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거하기 위한 조성물을 제공한다.Another aspect provides a composition for removing a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome, comprising a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
상기 가이드RNA, 벡터, KRAS 폴리펩티드, 및 KRAS 폴리펩티드를 암호화하는 핵산 서열은 전술한 바와 같다.The guideRNAs, vectors, KRAS polypeptides, and nucleic acid sequences encoding KRAS polypeptides are as described above.
상기 세포는 암세포, 줄기세포, 혈관내피 세포, 백혈구, 면역 세포, 상피 세포, 생식 세포, 섬유아세포, 근육 세포, 골수 세포, 표피 세포, 골아세포, 및 신경세포로 이루어진 군으로부터 선택될 수 있다.The cells may be selected from the group consisting of cancer cells, stem cells, vascular endothelial cells, leukocytes, immune cells, epithelial cells, germ cells, fibroblasts, muscle cells, bone marrow cells, epidermal cells, osteoblasts, and neurons.
상기 "제거"는 세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열이 변경됨으로써 KRAS 폴리펩티드의 기능이 없어지거나 감소되는 모든 변형을 말한다. 용어 "제거"는 "돌연변이"와 상호 교환적으로 사용될 수 있다. 상기 제거 또는 돌연변이는 예를 들어 결실, 치환, 삽입, 또는 프레임 시프트 돌연변이일 수 있다.The term "removing" refers to any modification in which the nucleic acid sequence encoding the KRAS polypeptide in the cell's genome is altered, resulting in loss or reduction of the function of the KRAS polypeptide. The term "removal" can be used interchangeably with "mutation". The removal or mutation can be, for example, a deletion, substitution, insertion, or frame shift mutation.
상기 조성물은 시험관 내(in vitro) 또는 생체 내(in vivo) 투여용일 수 있다.The composition may be for in vitro or in vivo administration.
상기 조성물은 Cas 폴리펩티드를 암호화하는 핵산 서열을 포함하는 제2 폴리뉴클레오티드를 더 포함할 수 있다. 상기 Cas 폴리펩티드는 CRISPR/Cas 시스템의 단백질 구성 요소 중 하나로서, 활성화된 엔도뉴클레아제 또는 닉(nick) 형성 효소일 수 있다. 상기 Cas 폴리펩티드는 crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)와 복합체를 형성하여 그의 활성을 나타낼 수 있다.The composition may further comprise a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide. The Cas polypeptide is one of the protein components of the CRISPR / Cas system and may be an activated endonuclease or nick forming enzyme. The Cas polypeptide may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to exhibit its activity.
상기 Cas 폴리뉴클레오티드는 예를 들어 스트렙토코커스 속(예, Streptococcus pyogens), 네이세리아 속(예, Neisseria meningitidis), 파스테우렐라 속(예, Pasteurella multocida), 프란시셀라 속(예, Francisella novicida), 또는 캄필로박터 속(예, Campylobacter jejuni)의 세균으로부터 유래된 폴리뉴클레오티드일 수 있다. 상기 Cas 폴리펩티드는 GenBank Accession No. Q99ZW2.1의 아미노산 서열을 포함할 수 있다. 상기 Cas 폴리펩티드는 GenBank Accession No. KT031982.1의 핵산 서열로부터 암호화되는 아미노산 서열을 포함할 수 있다.The Cas polynucleotide is for example the genus Streptococcus (eg Streptococcus pyogens), genus Neisseria meningitidis, Pasteurella genus (eg Pasteurella multocida), genus Francisella (eg Francisella novicida), Or polynucleotides derived from bacteria of the genus Campylobacter (eg, Campylobacter jejuni). The Cas polypeptide is GenBank Accession No. May comprise the amino acid sequence of Q99ZW2.1. The Cas polypeptide is GenBank Accession No. Amino acid sequence encoded from the nucleic acid sequence of KT031982.1.
상기 Cas 폴리펩티드는 야생형 Cas 폴리펩티드, 또는 돌연변이 Cas 폴리펩티드일 수 있다. 상기 돌연변이 Cas 폴리펩티드는 예를 들어 촉매적 아스파라긴산 잔기(catalytic aspartate residue)가 다른 아미노산(예, 알라닌)으로 변경된 폴리펩티드일 수 있다. 상기 Cas 폴리펩티드는 재조합 단백질일 수 있다.The Cas polypeptide may be a wild type Cas polypeptide, or a mutant Cas polypeptide. The mutant Cas polypeptide may be, for example, a polypeptide in which a catalytic aspartate residue is changed to another amino acid (eg, alanine). The Cas polypeptide may be a recombinant protein.
상기 Cas 폴리펩티드는 Cas9 폴리펩티드 또는 Cpf1 폴리펩티드일 수 있다.The Cas polypeptide may be a Cas9 polypeptide or a Cpf1 polypeptide.
다른 양상은 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합을 포함하는, 암 예방 또는 치료용 약학적 조성물을 제공한다.Another aspect provides a pharmaceutical composition for preventing or treating cancer, comprising a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
상기 가이드RNA 및 벡터는 전술한 바와 같다.The guideRNA and the vector are as described above.
상기 암은 원발성 종양 또는 전이성 종양일 수 있다. 상기 암은 예를 들어 췌장암, 대장암, 폐암, 유방암, 피부암, 두경부암, 결장직장암, 위암, 난소암, 전립선암, 방광암, 요도암, 간암, 신장암, 투명세포 육종, 흑색종, 뇌척수종양, 뇌암, 흉선종, 중피종, 식도암, 담도암, 고환암, 생식세포종, 갑상선암, 부갑상선암, 자궁 경부암, 자궁 내막암, 림프종, 골수형성이상 증후군(myelodysplastic syndromes: MDS), 골수섬유증(myelofibrosis), 급성 백혈병, 만성 백혈병, 다발성 골수종, 호치킨병(Hodgkin's Disease), 내분비계암, 및 육종으로 이루어진 군으로부터 선택될 수 있다.The cancer may be a primary tumor or a metastatic tumor. The cancer may include, for example, pancreatic cancer, colon cancer, lung cancer, breast cancer, skin cancer, head and neck cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer, bladder cancer, urethral cancer, liver cancer, kidney cancer, clear cell sarcoma, melanoma, and cerebrospinal tumor , Brain cancer, thymus, mesothelioma, esophageal cancer, biliary tract cancer, testicular cancer, germ cell tumor, thyroid cancer, parathyroid cancer, cervical cancer, endometrial cancer, lymphoma, myelodysplastic syndromes (MDS), myelofibrosis, acute leukemia , Chronic leukemia, multiple myeloma, Hogkin's Disease, endocrine cancer, and sarcoma.
상기 용어 "예방"은 상기 약학적 조성물의 투여에 의해 암의 발생을 억제하거나 그의 발병을 지연시키는 모든 행위를 말한다. 상기 용어 "치료"는 상기 약학적 조성물의 투여에 의해 암의 증세가 호전되거나 이롭게 변경하는 모든 행위를 말한다.The term "prevention" refers to any action that inhibits or delays the development of cancer by administration of the pharmaceutical composition. The term "treatment" refers to any action that improves or advantageously alters the symptoms of cancer by administration of the pharmaceutical composition.
상기 약학적 조성물은 Cas 폴리펩티드를 암호화하는 핵산 서열을 포함하는 제2 폴리뉴클레오티드를 더 포함할 수 있다. 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합과 제2 폴리뉴클레오티드는 단일 조성물 또는 별개의 조성물일 수 있다.The pharmaceutical composition may further comprise a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide. The guideRNA according to one aspect, the vector according to one aspect, or a combination thereof and the second polynucleotide may be a single composition or separate compositions.
상기 약학적 조성물은 약학적으로 허용가능한 담체를 포함할 수 있다. 상기 담체는 부형제, 희석제 또는 보조제를 포함하는 의미로 사용된다. 상기 담체는 예를 들면, 락토스, 덱스트로스, 수크로스, 소르비톨, 만니톨, 자일리톨, 에리트리톨, 말티톨, 전분, 아카시아 고무, 알기네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 폴리비닐 피롤리돈, 물, 생리식염수, PBS와 같은 완충액, 메틸히드록시 벤조에이트, 프로필히드록시 벤조에이트, 탈크, 마그네슘 스테아레이트, 및 미네랄 오일로 이루어진 군으로부터 선택된 것일 수 있다. 상기 조성물은 충진제, 항응집제, 윤활제, 습윤제, 풍미제, 유화제, 보존제, 또는 이들의 조합을 포함할 수 있다.The pharmaceutical composition may comprise a pharmaceutically acceptable carrier. The carrier is used in the sense including excipients, diluents or adjuvants. The carrier is, for example, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinyl pi It may be selected from the group consisting of rolidone, water, saline, buffers such as PBS, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate, and mineral oil. The composition may include fillers, anti-coagulants, lubricants, wetting agents, flavors, emulsifiers, preservatives, or combinations thereof.
상기 약학적 조성물은 통상의 방법에 따라 임의의 제형으로 준비될 수 있다. 상기 조성물은 예를 들면, 경구 투여 제형(예, 분말, 정제, 캡슐, 시럽, 알약, 또는 과립), 또는 비경구 제형(예, 주사제)으로 제형화될 수 있다. 또한, 상기 조성물은 전신 제형 또는 국부 제형으로 제조될 수 있다. 상기 약학적 조성물은 경구, 정맥내, 근육내, 경구, 경피(transdermal), 점막, 코안(intranasal), 기관내(intratracheal), 피하, 또는 이들의 조합으로 투여될 수 있다.The pharmaceutical composition may be prepared in any formulation according to conventional methods. The compositions can be formulated, for example, in oral dosage forms (eg, powders, tablets, capsules, syrups, pills, or granules), or parenteral formulations (eg, injections). In addition, the compositions may be prepared in systemic or topical formulations. The pharmaceutical composition may be administered orally, intravenously, intramuscularly, orally, transdermal, mucosal, intranasal, intratracheal, subcutaneous, or a combination thereof.
상기 약학적 조성물은 일 양상에 따른 가이드RNA, 벡터 또는 이들의 조합을 유효한 양으로 포함할 수 있다. 용어 "유효한 양"은 예방 또는 치료를 필요로 하는 개체에게 투여되는 경우 예방 또는 치료의 효과를 나타내기에 충분한 양을 말한다. 상기 유효한 양은 당업자가 선택되는 세포 또는 개체에 따라 적절하게 선택할 수 있다. 질환의 중증도, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 사용된 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 상기 유효한 양은 상기 약학적 조성물 당 약 0.1 ㎍ 내지 약 2 g, 약 0.5 ㎍ 내지 약 1 g, 약 1 ㎍ 내지 약 500 mg, 약 10 ㎍ 내지 약 100 mg, 또는 약 100 ㎍ 내지 약 50 mg일 수 있다.The pharmaceutical composition may comprise an effective amount of a guideRNA, a vector or a combination thereof according to one aspect. The term “effective amount” refers to an amount sufficient to exert the effect of prophylaxis or treatment when administered to a subject in need thereof. The effective amount may be appropriately selected by those skilled in the art according to the cell or individual to be selected. Factors including the severity of the disease, the age, weight, health, sex of the patient, sensitivity to the patient's drug, time of administration, route of administration and rate of release, duration of treatment, drugs used in combination or concurrently with the composition used and other medical fields Can be determined according to well-known factors. The effective amount may be about 0.1 μg to about 2 g, about 0.5 μg to about 1 g, about 1 μg to about 500 mg, about 10 μg to about 100 mg, or about 100 μg to about 50 mg per pharmaceutical composition. have.
상기 약학적 조성물의 투여량은 예를 들어, 성인 기준으로 약 0.001 ㎎/kg 내지 약 100 ㎎/kg, 약 0.01 ㎎/kg 내지 약 10 ㎎/kg, 또는 약 0.1 ㎎/kg 내지 약 1 ㎎/kg의 범위 내 일 수 있다. 상기 투여는 1일 1회, 1일 다회, 또는 1주일에 1회, 2주일에 1회, 3주일에 1회, 또는 4주일에 1회 내지 1년에 1회 투여될 수 있다.The dosage of the pharmaceutical composition may be, for example, about 0.001 mg / kg to about 100 mg / kg, about 0.01 mg / kg to about 10 mg / kg, or about 0.1 mg / kg to about 1 mg / on an adult basis. may be in the range of kg. The administration can be administered once daily, multiple times daily, or once a week, once every two weeks, once every three weeks, or once every four weeks to once a year.
다른 양상은 세포와 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합을 인큐베이션하는 단계를 포함하는, 세포의 유전체로부터 KRAS 폴리펩티드를 암호화하는 핵산 서열을 돌연변이시키는 방법을 제공한다.Another aspect provides a method of mutating a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome, comprising incubating the cell with a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
상기 가이드RNA, 벡터, 세포, KRAS 폴리펩티드, KRAS 폴리펩티드를 암호화하는 핵산 서열, 및 돌연변이는 전술한 바와 같다.The guideRNAs, vectors, cells, KRAS polypeptides, nucleic acid sequences encoding KRAS polypeptides, and mutations are as described above.
상기 인큐베이션은 시험관 내 또는 생체 내에서 수행될 수 있다.The incubation can be performed in vitro or in vivo.
상기 방법은 상기 세포와 Cas 폴리펩티드를 암호화하는 핵산 서열을 포함하는 제2 폴리뉴클레오티드와 인큐베이션하는 제2 단계를 더 포함할 수 있다. 상기 제2 단계는 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합을 인큐베이션하는 단계와 동시, 그 이전, 또는 그 이후에 수행될 수 있다. The method may further comprise a second step of incubating with the second polynucleotide comprising a nucleic acid sequence encoding the cell and Cas polypeptide. The second step may be performed simultaneously with, before, or after incubating the guideRNA according to one aspect, the vector according to one aspect, or a combination thereof.
다른 양상은 개체에 일 양상에 따른 가이드RNA, 일 양상에 따른 벡터, 또는 이들의 조합을 투여하는 단계를 포함하는, 암을 예방 또는 치료하는 방법을 제공한다.Another aspect provides a method of preventing or treating cancer comprising administering to a subject a guideRNA according to one aspect, a vector according to one aspect, or a combination thereof.
상기 개체는 돌연변이 KRAS 폴리펩티드를 암호화하는 핵산 서열을 포함하는 유전체를 갖는 개체일 수 있다. 상기 개체는 포유동물, 예를 들면, 인간, 소, 말, 돼지, 개, 양, 염소 또는 고양이일 수 있다. 상기 개체는 암을 앓거나 앓을 가능성이 큰 개체일 수 있다.The individual may be an individual having a genome comprising a nucleic acid sequence encoding a mutant KRAS polypeptide. The subject may be a mammal, for example human, cow, horse, pig, dog, sheep, goat or cat. The subject may be a subject with or at high risk of having cancer.
상기 가이드RNA, 벡터 또는 이들의 조합은 경구, 정맥내, 근육내, 경구, 경피, 점막, 코안, 기관내 또는 피하 투여될 수 있다. 상기 폴리뉴클레오티드, 벡터 또는 이들의 조합의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여 경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 상기 투여량은 예를 들어, 성인 기준으로 약 0.001 ㎎/kg 내지 약 100 ㎎/kg, 약 0.01 ㎎/kg 내지 약 10 ㎎/kg, 또는 약 0.1 ㎎/kg 내지 약 1 ㎎/kg의 범위 내 일 수 있다. 상기 투여는 1일 1회, 1일 다회, 또는 1주일에 1회, 2주일에 1회, 3주일에 1회, 또는 4주일에 1회 내지 1년에 1회 투여될 수 있다.The guideRNA, vector or combinations thereof may be administered orally, intravenously, intramuscularly, orally, transdermal, mucosal, nasal, intratracheal or subcutaneous. Preferred dosages of the polynucleotides, vectors, or combinations thereof vary depending on the condition and weight of the patient, the extent of the disease, the form of the drug, the route and duration of administration, and may be appropriately selected by those skilled in the art. The dosage is, for example, in the range of about 0.001 mg / kg to about 100 mg / kg, about 0.01 mg / kg to about 10 mg / kg, or about 0.1 mg / kg to about 1 mg / kg on an adult basis. Can be. The administration can be administered once daily, multiple times daily, or once a week, once every two weeks, once every three weeks, or once every four weeks to once a year.
일 양상에 따른 가이드RNA, 이를 포함한 벡터, 이를 포함한 세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거하기 위한 조성물, 이를 포함한 암 예방 또는 치료용 조성물, 및 이들을 이용한 방법에 따르면, 세포 또는 개체의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 돌연변이시킬 수 있고, 특히 맞춤의료 또는 정밀의료로서, 암을 예방 또는 치료하는데 이용할 수 있다.According to a guide RNA, a vector comprising the same, a composition for removing a nucleic acid sequence encoding a KRAS polypeptide from the genome of a cell comprising the same, a composition for preventing or treating cancer comprising the same, and a method using the same, Nucleic acid sequences encoding KRAS polypeptides in the genome can be mutated, and can be used to prevent or treat cancer, particularly as tailored or precision care.
도 1a는 인간 유전체에서 암 발생과 강하게 연관된 KRAS 돌연변이를 나타내는 모식도이고, 도 1b는 대용 NHEJ 리포터 시스템을 나타내는 모식도이고, 도 1c는 제조된 대용 NHEJ 리포터 시스템의 작용 메카니즘을 나타내는 모식도이다.FIG. 1A is a schematic representation of KRAS mutations strongly associated with cancer development in the human genome, FIG. 1B is a schematic representation of a surrogate NHEJ reporter system, and FIG. 1C is a schematic diagram showing the mechanism of action of the prepared surrogate NHEJ reporter system.
도 2a 내지 도 2f는 mRFP 만을 발현하는 세포의 수에 대한 mRFP 및 eGFP 모두를 발현하는 세포의 백분율(%)을 나타내는 그래프(왼쪽) 및 각 가이드 RNA의 표적 서열이다(오른쪽, 화살표 및 진한 글씨: 표적 KRAS 돌연변이, 진한 글씨: PAM 서열).2A-2F are graphs showing the percentage (%) of cells expressing both mRFP and eGFP to the number of cells expressing mRFP only (left) and target sequences for each guide RNA (right, arrows and bold: Target KRAS mutation, bold: PAM sequence).
도 3은 내재적 표적 KRAS 서열에서 삽입/결실 빈도를 심층(deep) 염기서열분석한 결과를 나타내는 그래프이다.Figure 3 is a graph showing the results of deep sequencing the insertion / deletion frequency in the intrinsic target KRAS sequence.
도 4a 내지 도 4c는 암세포를 Cas9-암호화 렌티바이러스 벡터 및 가이드 RNA-암호화 벡터로 순차적으로 형질전환시킨 후, 형질전환된 세포를 각각 콜로니 형성 분석법, 연한천(soft agar) 분석법, 및 MTS 분석법으로 분석한 결과를 나타내는 이미지 및 그래프이다.4A to 4C show that cancer cells are sequentially transformed with a Cas9-encoding lentiviral vector and a guide RNA-encoding vector, and then the transformed cells are analyzed by colony formation assay, soft agar assay, and MTS assay, respectively. Images and graphs showing the results of the analysis.
도 5a 내지 도 5c는 암세포를 Cas9-암호화 렌티바이러스 벡터 및 가이드 RNA-암호화 벡터로 순차적으로 형질전환시킨 후 누드 마우스에 상기 암세포를 이식한 경우, 35T9P17 가이드 RNA 발현에 따른 종양의 크기 및 중량을 측정한 결과를 나타내는 이미지 및 그래프이다.Figures 5a to 5c shows the size and weight of tumors according to 35T9P17 guide RNA expression when cancer cells are transplanted sequentially with Cas9-encoding lentiviral vector and guide RNA-encoding vector and then the cancer cells are implanted in nude mice. One result is an image and graph.
도 6은 누드 마우스에 암세포 또는 일반 세포주를 이식한 후, Cas9-암호화 렌티바이러스 벡터 및 가이드 RNA-암호화 벡터를 종양 내 주사한 경우, 35T9P17 가이드 RNA 발현에 따른 종양의 부피(㎣) 및 중량(g)의 그래프, 및 종양의 이미지이다.Figure 6 shows the tumor volume and weight (g) according to 35T9P17 guide RNA expression when intracellularly injected with a cancer cell or normal cell line to a nude mouse, and then a Cas9-encoding lentiviral vector and a guide RNA-encoding vector. ), And an image of the tumor.
도 7은 누드 마우스에 암세포 또는 일반 세포주를 이식한 후, Cas9-암호화 AAV 벡터 및 가이드 RNA-암호화 벡터를 종양 내 주사한 경우, 35T9P17 가이드 RNA 발현에 따른 종양의 부피(㎣) 및 중량(g)의 그래프, 및 종양의 이미지이다.Figure 7 shows the tumor volume and weight (g) according to 35T9P17 guide RNA expression when cancer cells or normal cell lines were transplanted into nude mice and then injected intratumorally with Cas9-encoding AAV vector and guide RNA-coding vector. Graphs, and images of tumors.
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.It will be described in more detail through the following examples. However, these examples are provided to illustrate one or more embodiments illustratively and the scope of the present invention is not limited to these examples.
실시예 1. 가이드 RNA의 스크리닝 및 확인Example 1. Screening and Identification of Guide RNAs
1. 표적 KRAS 돌연변이의 선정1. Selection of Target KRAS Mutations
인간 유전체 상에서 KRAS 유전자는 5개의 엑손을 갖는 것으로 알려져 있다. 인간 유전체에서 암 발생과 강하게 연관된 KRAS 돌연변이를 나타내는 모식도를 도 1a에 나타내었다. 도 1a에서 "E"는 엑손을 나타내고, "E2"는 엑손 2를 나타낸다. 도 1a에 나타낸 바와 같이, KRAS 유전자(GRCh38.p7 (GCF_000001405.33))의 엑손 2에 위치하는 KRAS 점 돌연변이 6개를 표적으로 선정하였다. 선정된 KRAS 점 돌연변이는 c.35G>T (p.G12V), c.35G>A (p.G12D), c.38G>A (p.G13D), c.34G>T (p.G12C), c.34G>C (p.G12R), 및 c.35G>C (p.G12A)이다. 예를 들어, "c.35G>T (p.G12V)"는 KRAS 유전자의 5'-말단으로부터 35번째 핵산이 구아닌(G)에서 티민(T)으로 돌연변이되고, KRAS 단백질의 아미노산 서열에서 N'-말단으로부터 12번째 아미노산이 글리신(G)에서 발린(V)으로 돌연변이된 것을 의미한다.The KRAS gene on the human genome is known to have five exons. A schematic representation of KRAS mutations strongly associated with cancer development in the human genome is shown in FIG. 1A. In FIG. 1A "E" represents exon and "E2" represents exon 2. As shown in FIG. 1A, six KRAS point mutations located in exon 2 of the KRAS gene (GRCh38.p7 (GCF_000001405.33)) were selected as targets. Selected KRAS point mutations were c.35G> T (p.G12V), c.35G> A (p.G12D), c.38G> A (p.G13D), c.34G> T (p.G12C), c.34G> C (p.G12R), and c.35G> C (p.G12A). For example, “c.35G> T (p.G12V)” is where the 35th nucleic acid from the 5′-end of the KRAS gene is mutated from guanine (G) to thymine (T) and N ′ in the amino acid sequence of the KRAS protein. -Means that the 12th amino acid from the end is mutated from glycine (G) to valine (V).
2. 가이드 RNA 선별을 위한 벡터의 제조2. Preparation of Vectors for Guide RNA Selection
가이드 RNA를 선별하기 위해, 가이드 RNA 이름을 총 7글자로 명명하였다. 도 2a 내지 도 2f에 각 가이드 RNA의 표적 서열을 나타내었다(오른쪽). 도 2a 내지 도 2f에서, 표적 KRAS 돌연변이는 화살표 및 진한 글씨로 표시하고, PAM 서열(5'-TGG-3', 5'-TAG-3', 5'-AGG-3', 또는 5'-CTG-3')은 진한 글씨로 표시하였다. 가이드 RNA 이름에서 첫 3글자는 표적 KRAS 돌연변이를 나타내고, 표적 KRAS 돌연변이가 c.35G>T인 경우 "35T"로 기재하였다. 4번째 글자는 PAM에서 돌연변이 위치까지의 거리(bp)를 나타낸다. 5번째 글자는 돌연변이 위치에 대해 상대적인 PAM의 위치를 나타내고, 돌연변이 위치가 PAM의 왼쪽에 위치하면 P(plus)로 표기하고, 돌연변이 위치가 PAM의 오른쪽에 있으면 M(minus)로 표기하였다. 6번째 및 7번째 글자는 PAM 서열을 제외한 가이드 RNA의 길이(bp)를 나타낸다. 예를 들어, "35T9P17"은 KRAS 돌연변이 c.35G>T를 표적으로 하고, 돌연변이 위치에서 PAM까지의 거리는 9 bp이고, 돌연변이는 PAM의 왼쪽에 위치하고, PAM 서열을 제외한 가이드 RNA의 길이는 17 bp임을 의미한다. 가이드 RNA는 표적 서열에서 PAM 서열을 제외한 나머지 뉴클레오티드 서열에 상보적인 서열을 갖도록 디자인하였다.To select guide RNAs, the guide RNA names were named with a total of seven letters. 2A-2F show the target sequences of each guide RNA (right). In FIGS. 2A-2F, target KRAS mutations are indicated by arrows and bold, PAM sequence (5'-TGG-3 ', 5'-TAG-3', 5'-AGG-3 ', or 5'-). CTG-3 ') is shown in bold. The first three letters in the guide RNA name represent the target KRAS mutations and are described as "35T" if the target KRAS mutation is c.35G> T. The fourth letter represents the distance in bp from the PAM to the mutation site. The fifth letter indicates the position of the PAM relative to the mutation position, P (plus) if the mutation position is located to the left of the PAM, and M (minus) if the mutation position is to the right of the PAM. The sixth and seventh letters indicate the length (bp) of the guide RNA excluding the PAM sequence. For example, "35T9P17" targets the KRAS mutant c.35G> T, the distance from the mutation site to the PAM is 9 bp, the mutation is located to the left of the PAM, and the length of the guide RNA excluding the PAM sequence is 17 bp. Means. The guide RNA was designed to have a sequence complementary to the remaining nucleotide sequences except for the PAM sequence in the target sequence.
가이드 RNA(sgRNA)의 활성을 평가하기 위해, 대용 NHEJ 리포터 시스템을 이용하였다(Kim, H. et al., Nature methods, vol.8, pp.941-943, 2011; 및 Nature communications, vol.5, p.3378, 2014). 사용된 대용 NHEJ 리포터 시스템의 모식도를 도 1b에 나타내었다. 도 1b에서, "렌티_gRNA-퓨로"는 구성적으로(constitutive) 가이드 RNA(guide RNA: sgRNA)를 발현시키는 렌티바이러스 벡터를 나타내고, "렌티_gRNA-독시-유도성_GFP"는 독시사이클린의 존재에 따라 가이드 RNA의 발현이 유도되는 유도성 렌티바이러스 벡터를 나타내고, 및 렌티_SpCas9-Blast는 Cas9 뉴클레아제를 발현하는 렌티바이러스 벡터를 나타낸다(Psi: 패키징 신호, RRE: rev 반응 요소, WPRE: 우드척(woodchuck) 간염 바이러스의 전사후 조절 요소(posttranscriptional regulatory element), cPPT: 센트랄 폴리퓨린 트랙(central polypurine tract), U6: 폴리머라제 III 프로모터, gRNA: 가이드 RNA, EF1α: 신장 인자 1a 프로모터, PuroR: 퓨로마이신 저항성 유전자, H1: H1 프로모터, TetO: 테트라사이클린 오퍼레이터, Ub: 유비퀴틴 프로모터, TetR: 테트라사이클린 억제자, T2A: T2A 펩티드; EGFP: 증강된(Enhanced) 녹색 형광 단백질, CMV: 사이토메갈로바이러스의 프로모터, BlastR: 블라스티시딘 저항성 유전자).To assess the activity of guide RNAs (sgRNAs), a surrogate NHEJ reporter system was used (Kim, H. et al., Nature methods, vol. 8, pp. 941-943, 2011; and Nature communications, vol. 5 , p. 3378, 2014). A schematic of the surrogate NHEJ reporter system used is shown in FIG. 1B. In FIG. 1B, "lenti_gRNA-furo" refers to a lentivirus vector expressing constitutive guide RNA (sgRNA), and "lenti_gRNA-doxy-derived_GFP" is a term for doxycycline. Presence induces a lentiviral vector from which guide RNA expression is induced, and lenti_SpCas9-Blast represents a lentiviral vector expressing Cas9 nuclease (Psi: packaging signal, RRE: rev response element, WPRE : Posttranscriptional regulatory element of woodchuck hepatitis virus, cPPT: central polypurine tract, U6: polymerase III promoter, gRNA: guide RNA, EF1α: elongation factor 1a promoter , PuroR: puromycin resistance gene, H1: H1 promoter, TetO: tetracycline operator, Ub: ubiquitin promoter, TetR: tetracycline inhibitor, T2A: T2A peptide; EGFP: enhanced green fluorescence Protein, CMV: promoter of cytomegalovirus, BlastR: blasticidin resistance gene).
제조된 대용 NHEJ 리포터 시스템의 작용 메카니즘을 도 1c에 나타내었다. 도 1c에 나타낸 바와 같이, 모노머 적색 형광 단백질(mRFP)가 CMV 프로모터(PCMV)에 의해 구성적으로 발현되고, 증강된 녹색 형광 단백질(eGFP)은 프레임이 맞지 않는 서열이기 때문에 CRISPR/Cas9 활성이 없으면 발현되지 않는다. CRISPR/Cas9에 의해 이중가닥 절단이 표적 서열에 도입되면, 이 절단은 오류-유발(error-prone) 비상동적 말단 접합에 의해 수선되고, 삽입/결실(indel) 부위를 형성하게 된다. 삽입/결실은 2개의 eGFP 유전자의 프레임-시프트를 야기하여 eGFP의 발현을 일으키게 된다. The mechanism of action of the prepared surrogate NHEJ reporter system is shown in FIG. 1C. As shown in FIG. 1C, the monomeric red fluorescent protein (mRFP) is constitutively expressed by the CMV promoter (P CMV ), and the enhanced green fluorescent protein (eGFP) is a non-framed sequence, resulting in a CRISPR / Cas9 activity. Without it is not expressed. When double stranded cleavage is introduced into the target sequence by CRISPR / Cas9, this cleavage is repaired by error-prone non-homologous end junctions and forms an insertion / indel site. Insertion / deletion results in frame-shift of two eGFP genes resulting in expression of eGFP.
3. 가이드 RNA의 스크리닝3. Screening of Guide RNA
표적 KRAS 돌연변이를 특이적으로 인식하는 가이드 RNA를 선별하기 위해, 야생형 KRAS 서열 또는 돌연변이 KRAS 서열을 포함하는 리포터 플라스미드, Cas9을 암호화하는 플라스미드, 및 가이드 RNA를 암호화하는 플라스미드를 HEK293T 세포에 공-형질감염시켰다. 형질감염된 세포를 유세포 분석법으로 분석하고, mRFP 만을 발현하는 세포의 수에 대해 정규화하여 mRFP 및 eGFP 모두를 발현하는 세포의 백분율을 결정하였고, 그 결과를 도 2a 내지 도 2f의 왼쪽 그래프에 나타내었다. 이 비율은 표적 서열에 대한 가이드 RNA의 활성을 나타낸다. 도 2a 내지 도 2f의 왼쪽 그래프에서, 진한 선 및 가는 선은 돌연변이 KRAS 서열 대 야생형 KRAS 서열에 대해 eGFP+mRFP+/eGFP+ 세포의 비가 각각 1 및 3임을 나타낸다. 각 가이드 RNA의 표적 서열을 오른쪽에 나타내었고, KRAS 점 돌연변이 부위를 화살표 및 진한 글씨로 표시하고, PAM(protospacer adjacent motif)을 진한 글씨로 표시하였다.To select guide RNAs that specifically recognize target KRAS mutations, co-transfecting HEK293T cells with a reporter plasmid comprising a wild type KRAS sequence or a mutant KRAS sequence, a plasmid encoding Cas9, and a plasmid encoding guide RNAs. I was. Transfected cells were analyzed by flow cytometry and normalized to the number of cells expressing mRFP only to determine the percentage of cells expressing both mRFP and eGFP, and the results are shown in the left graph of FIGS. 2A-2F. This ratio represents the activity of the guide RNA on the target sequence. In the left graphs of FIGS. 2A-2F, the dark and thin lines indicate that the ratio of eGFP + mRFP + / eGFP + cells to mutant KRAS sequences versus wild type KRAS sequences is 1 and 3, respectively. The target sequence of each guide RNA is shown on the right, the KRAS point mutation site is indicated by arrows and bold, and the protospacer adjacent motif (PAM) is shown in bold.
도 2a 내지 도 2f의 오른쪽 그래프에 나타낸 바와 같이, 일부 가이드 RNA는 돌연변이 KRAS 서열에 대해 높은 GFP 발현을 나태내고 야생형 KRAS 서열에 대해 낮은 GFP 발현을 나타내어, 이들이 돌연변이 KRAS 서열에 특이적인 가이드 RNA임을 확인하였다. 1차로 선별된 가이드 RNA를 도 2a 내지 도 2f의 왼쪽 그래프에서 화살표로 표시하였다. 돌연변이 KRAS에 대해 높은 선택성을 갖는 2개의 가이드 RNA(35T9P17 및 38A6P17) 및 낮은 선택성을 갖는 1개의 가이드 RNA(35A9P17)를 2차로 선별하고, 선별된 가이드 RNA 이름을 도 2a 내지 도 2f의 오른쪽 도면에 굵은 글씨로 표시하였다.As shown in the graphs to the right of FIGS. 2A-2F, some guide RNAs exhibit high GFP expression for mutant KRAS sequences and low GFP expression for wild type KRAS sequences, confirming that they are guide RNA specific for the mutant KRAS sequence. It was. Primary selected guide RNAs are indicated by arrows in the left graph of FIGS. 2A-2F. Two guide RNAs (35T9P17 and 38A6P17) with high selectivity and one guide RNA (35A9P17) with low selectivity for mutant KRAS were selected secondary and the selected guide RNA names were shown in the right figure of FIGS. 2A-2F. It is shown in bold text.
4. 선별된 가이드 RNA의 기능 검증4. Functional Verification of Selected Guide RNAs
3.에서 선별된 가이드 RNA가 내재적 표적 KRAS 서열에 대해 기능을 하는지 여부를 확인하기 위해, KRAS 돌연변이를 갖는 암세포를 Cas9 및 상응하는 가이드 RNA를 암호화하는 렌티바이러스 벡터로 형질전환시켰다.To determine whether the guide RNA selected in 3. functions against the endogenous target KRAS sequence, cancer cells with KRAS mutations were transformed with a lentiviral vector encoding Cas9 and the corresponding guide RNA.
암세포로 SW403(이형(heterozyous) c.35G>T 돌연변이), SW480(동형(homozygous) c.35G>T 돌연변이), SW620(동형 c.35G>T 돌연변이), LS513(이형 c.35G>A 돌연변이), LoVo(이형 c.38G>A 돌연변이), 및 HT29 세포주(야생형 KRAS)를 사용하였다. 내재적 표적 KRAS 서열에서 삽입/결실 빈도를 심층(deep) 염기서열분석에 의해 평가하고, 그 결과를 도 3에 나타내었다. 도 3에서 a 내지 f는 삽입/결실 빈도를 나타내는 그래프이고(오차 막대: 표준 평균 오차, "untreated": 가이드 RNA 미처리), g는 평균 서열 빈도을 나타내는 그래프이다(▦; 삽입/결실, ▨: 야생형 KRAS, "+" 표시: 돌연변이 KRAS).Cancer cells include SW403 (heterozyous c.35G> T mutation), SW480 (homozygous c.35G> T mutation), SW620 (homogenous c.35G> T mutation), LS513 (heterozygous c.35G> A mutation) ), LoVo (heterologous c.38G> A mutation), and HT29 cell line (wild type KRAS) were used. Insertion / deletion frequency in intrinsic target KRAS sequences was assessed by deep sequencing and the results are shown in FIG. 3. In Figure 3 a to f are graphs showing insertion / deletion frequency (error bars: standard mean error, "untreated": guide RNA untreated) and g is the graph showing average sequence frequency (iii; insertion / deletion, ▨: wild type KRAS, marked with "+": mutant KRAS).
도 3에 나타난 바와 같이, Cas9 및 35T9P17 가이드 RNA의 형질전환은 SW403 세포에서 50%, SW480 및 SW620에서 각각 81% 및 80%의 삽입/결실 빈도를 나타내었다. 또한, Cas9 및 35A9P17의 형질 전환은 LS51336에서 36%의 삽입/결실 빈도를 나타내고, Cas9 및 38A6P17의 형질전환은 LoVo에서 28%의 삽입/결실 빈도를 나타낸다. 이 가이드 RNA들이 HT29 세포에 형질전환된 경우, 35T9P17에 대해 0.2%, 35A9P17에 대해 77%, 및 38A6P17에 대해 0.3%의 삽입/결실 빈도로 나타나(도 2f), 35A9P17은 야생형 KRAS 서열에 특이도가 높고 35T9P17 및 38A6P17은 돌연변이 KRAS 서열에 특이도가 높다는 것을 확인하였다. As shown in FIG. 3, transformation of Cas9 and 35T9P17 guide RNAs showed insertion / deletion frequencies of 50% in SW403 cells and 81% and 80% in SW480 and SW620, respectively. In addition, transformation of Cas9 and 35A9P17 exhibited 36% insertion / deletion frequency in LS51336, and transformation of Cas9 and 38A6P17 showed 28% insertion / deletion frequency in LoVo. When these guide RNAs were transformed into HT29 cells, the insertion / deletion frequency was 0.2% for 35T9P17, 77% for 35A9P17, and 0.3% for 38A6P17 (FIG. 2F), indicating that 35A9P17 was specific for the wild type KRAS sequence. And 35T9P17 and 38A6P17 showed high specificity to the mutant KRAS sequence.
5. 암세포에서 돌연변이 KRAS 서열의 제거에 의한 효과의 확인5. Confirmation of Effect by Removal of Mutant KRAS Sequences in Cancer Cells
선별된 가이드 RNA를 이용하여 암세포의 돌연변이 KRAS 서열을 제거한 경우, 암세포의 생존, 증식, 및 발암성에 대한 효과를 확인하였다.When mutant KRAS sequences of cancer cells were removed using selected guide RNAs, the effects on the survival, proliferation, and carcinogenicity of cancer cells were confirmed.
암세포를 Cas9-암호화 렌티바이러스 벡터((Addgene #52962)로 형질전환한 후, 가이드 RNA-암호화 벡터(Addgene #52961)로 형질전환시켰다. 음성 대조군으로서 활성이 없고 서열이 완전히 상이한 가이드 RNA를 사용하였다.Cancer cells were transformed with a Cas9-encoding lentiviral vector (Addgene # 52962) and then with a guide RNA-encoding vector (Addgene # 52961) as a negative control using guide RNA which was inactive and completely different in sequence. .
형질전환된 세포를 콜로니 형성 분석법, 연한천(soft agar) 분석법, 및 MTS 분석법으로 분석하고, 그 결과를 각각 도 4a 내지 도 4c에 나타내었다(오차 막대: 표준 평균 오차, *: p<0.05, **: p<0.01, ***: p<0.001, "Mock": 음성 대조군). Transformed cells were analyzed by colony formation assay, soft agar assay, and MTS assay, and the results are shown in FIGS. 4A-4C (error bars: standard mean error, *: p <0.05, **: p <0.01, ***: p <0.001, “Mock”: negative control).
도 4a의 a 내지 d에서 위의 이미지는 2% 크리스탈 바이올렛 염색 후 웰의 이미지를 나타내고, 도 4b의 e 내지 h에서 위의 이미지는 형성된 콜로니의 이미지이다(막대 눈금= 100 ㎛).The above image in a to d of FIG. 4a shows an image of the well after 2% crystal violet staining, and the above image in e to h of FIG. 4b is an image of colonies formed (rod scale = 100 μm).
도 4a 및 도 4b에 나타난 바와 같이, SW403 세포에서 Cas9 및 35T9P17 가이드 RNA의 발현은 콜로니 형성 분석법 및 연한천 분석법에서 콜로니의 수를 각각 94% 및 70% 감소시켰고, SW480 및 SW620 세포에서도 유사한 결과가 확인되었다. 또한, LS513 세포에서 Cas9 및 35A9P17 가이드 RNA의 발현은 콜로니 형성 분석법 및 연한천 분석법에서 콜로니의 수를 각각 91% 및 96% 감소시켰다. 한편, 암세포에서 Cas9 및 38A6P17 가이드 RNA의 발현은 콜로니 형성 분석법 및 연한천 분석법에서 콜로니의 수를 감소시켰지만 각각 25% 및 61%에 불과하였다. 따라서, 38A6P17 가이드 RNA는 KRAS 돌연변이 암세포의 생존 및 발암성을 부분적으로만 저해하지만, 35T9P17 및 35A9P17 가이드 RNA는 암세포의 생존 및 발암성을 현저하게 저해할 수 있음을 확인하였다. 가이드 RNA를 독시사이클린-유도성 방법으로 발현시킨 경우에도 유사한 결과가 나타났다.As shown in FIGS. 4A and 4B, expression of Cas9 and 35T9P17 guide RNAs in SW403 cells reduced the number of colonies by 94% and 70% in colony formation assay and soft agar assay, respectively, with similar results in SW480 and SW620 cells. Confirmed. In addition, expression of Cas9 and 35A9P17 guide RNAs in LS513 cells reduced the number of colonies by 91% and 96% in colony formation assay and soft agar assay, respectively. On the other hand, expression of Cas9 and 38A6P17 guide RNA in cancer cells reduced the number of colonies in colony formation assay and soft agar assay, but only 25% and 61%, respectively. Thus, while 38A6P17 guide RNA only partially inhibited the survival and carcinogenicity of KRAS mutant cancer cells, it was confirmed that 35T9P17 and 35A9P17 guide RNAs significantly inhibit the survival and carcinogenicity of cancer cells. Similar results were obtained when guide RNAs were expressed by doxycycline-induced methods.
MTS 세포 증식 분석법을 이용하여 세포 증식에 대한 Cas9 및 가이드 RNA의 효과를 평가하였다. 암세포를 Cas9 및 가이드 RNA로 형질전환하고, 다음날 살아있는 세포를 계수하였다. 시료 당 5000개의 세포를 96 웰 플레이트에 접종하고, 형질전환되지 않은 세포를 퓨로마이신 선별법으로 24 시간 동안 제거하였다. 접종 후, MTS 시약을 가하고 48 시간 동안 인큐베이션하여 세포 증식을 결정하였다. MTS 반응을 490 nm의 파장에서 흡광도를 측정하고, 측정된 흡광도를 음성 대조군의 흡광도에 대해 정규화하였다. 음성 대조군 가이드 RNA로 형질전환된 세포의 수에 대한 가이드 RNA로 형질전환된 세포의 상대적인 비를 산출하고, 그 결과를 도 3c에 나타내었다. 도 3c에 나타난 바와 같이, SW403, SW480, 및 SW620 세포에서 Cas9 및 35T9P17 RNA를 발현하는 세포 중 살아있는 세포의 비는 각각 평균 0.34, 0.46, 및 0.71이었다. 한편, HT29 세포에서 Cas9 및 가이드 RNA의 발현은 MTS 세포 증식 분석법에서 세포의 수에 영향을 미치지 않았다. 따라서, Cas9 및 가이드 RNA를 이용한 돌연변이 KRAS를 제거하면 암세포의 증식 또는 생존은 저해되지만, 야생형 KRAS 서열을 갖는 세포의 증식 또는 생존은 저해되지 않음을 확인하였다.MTS cell proliferation assays were used to assess the effect of Cas9 and guide RNA on cell proliferation. Cancer cells were transformed with Cas9 and guide RNA and the living cells were counted the next day. 5000 cells per sample were seeded into 96 well plates and untransformed cells were removed for 24 hours by puromycin selection. After inoculation, MTS reagent was added and incubated for 48 hours to determine cell proliferation. The MTS response was measured for absorbance at a wavelength of 490 nm and the absorbance measured was normalized to the absorbance of the negative control. The relative ratio of cells transformed with guide RNA to the number of cells transformed with negative control guide RNA was calculated and the results are shown in FIG. 3C. As shown in FIG. 3C, the ratio of live cells among the cells expressing Cas9 and 35T9P17 RNA in SW403, SW480, and SW620 cells averaged 0.34, 0.46, and 0.71, respectively. On the other hand, expression of Cas9 and guide RNA in HT29 cells did not affect the number of cells in MTS cell proliferation assay. Therefore, it was confirmed that removing mutant KRAS using Cas9 and guide RNA inhibited the proliferation or survival of cancer cells, but not the proliferation or survival of cells having wild type KRAS sequences.
6. 생체 내에서 돌연변이 KRAS 서열의 제거에 의한 효과의 확인6. Confirmation of Effect by Removal of Mutant KRAS Sequences in Vivo
선별된 가이드 RNA가 생체 내에서 종양의 성장을 억제할 수 있는지를 확인하였다.It was confirmed whether the selected guide RNA could inhibit tumor growth in vivo.
Cas9-발현 SW403 세포를 렌티바이러스 벡터로 형질전환시키고, 그 후 35T9P17 가이드 RNA를 독시사이클린 유도성으로 발현하는 렌티바이러스 벡터로 형질전환시켰다. 순차로 형질전환된 암세포를 누드 마우스에 피하로 이식하고, 14일 동안 종양 형성을 유도하였다. 그 후, 독시사이클린을 마우스에 투여하여 종양 세포에서 35T9P17 가이드 RNA 발현을 유도하였다. 암세포의 이식 후 35T9P17 가이드 RNA 발현에 따른 종양의 크기 및 중량을 측정하고 그 결과를 도 5a 내지 도 5c에 나타내었다(도 5a 및 도 5b의 그래프에서, ●: 독시사이클린을 투여하지 않음, ■: 독시사이클린을 투여함, *: p<0.05, **: p<0.01, ***: p<0.001).Cas9-expressing SW403 cells were transformed with a lentiviral vector, and then 35T9P17 guide RNA was transformed with a lentiviral vector expressing doxycycline inducible. Sequentially transformed cancer cells were implanted subcutaneously into nude mice and induced tumor formation for 14 days. Doxycycline was then administered to mice to induce 35T9P17 guide RNA expression in tumor cells. The size and weight of tumors following 35T9P17 guide RNA expression after transplantation of cancer cells were measured and the results are shown in FIGS. 5A-5C (in the graphs of FIGS. 5A and 5B, where: doxicycline not administered, ■: doxycycline *: P <0.05, **: p <0.01, ***: p <0.001).
도 5a 내지 도 5c에 나타난 바와 같이 35T9P17 가이드 RNA의 발현은 야생형 KRAS 서열을 갖는 세포가 주사된 마우스에서는 종양의 크기에 영향이 없었지만, 돌연변이 KRAS 서열을 갖는 세포가 주사된 마우스에서는 종양 성장을 유의하게 저해하고 종양의 중량을 감소시켰다. 따라서, CRISPR-Cas9으로 돌연변이 KRAS를 표적화하는 방법을 이용하면 생체 내에서 종양 성장을 조절할 수 있다는 것을 확인하였다.As shown in FIGS. 5A-5C, expression of 35T9P17 guide RNA did not affect tumor size in mice injected with cells with wild-type KRAS sequence, but significantly increased tumor growth in mice injected with cells with mutant KRAS sequences. Inhibition and reduced tumor weight. Therefore, it was confirmed that the method of targeting mutant KRAS with CRISPR-Cas9 can regulate tumor growth in vivo.
7. 돌연변이 KRAS를 표적으로 하는 Cas9 및 가이드 RNA의 종양 내 전달7. Intratumoral Delivery of Cas9 and Guide RNA Targeting Mutant KRAS
(1) 렌티바이러스 벡터의 사용(1) Use of lentiviral vectors
실시예 1.6의 경우 Cas9 및 35T9P17 가이드 RNA가 형질전환된 암세포를 누드 마우스에 이식하여 종양 형성을 유도하여, 항암 효과를 확인하였다. 더 나아가, 종양 세포에 대해 외부에서 Cas9 및 35T9P17 가이드 RNA를 주입한 경우에도 항암 효과가 있는지 여부를 확인하였다.In Example 1.6, cancer cells transformed with Cas9 and 35T9P17 guide RNA were transplanted into nude mice to induce tumor formation, thereby confirming anticancer effects. Furthermore, it was confirmed whether the tumor cells had an anticancer effect even when injected Cas9 and 35T9P17 guide RNA from the outside.
5주령의 흉선이 제거된 수컷 BALB/c 누드 마우스를 준비하였다. 준비된 누드 마우스의 옆구리에(각 군 당 6 마리) 2x106 세포의 KRAS c.35G>T 돌연변이를 함유한 SW403 암세포를 피하 주사하고, 그 후 종양이 형성하도록 2주 이상 두었다. 한편, 비교군으로, 야생형 KRAS를 함유한 HT29 세포주를 흉선이 제거된 마우스에 피하 주사하였다.Male BALB / c nude mice with 5 week old thymus removed were prepared. The prepared murine mice (6 per group) were injected subcutaneously with SW403 cancer cells containing the KRAS c.35G> T mutation of 2 × 10 6 cells and then left for at least two weeks to form tumors. On the other hand, in the comparative group, HT29 cell line containing wild type KRAS was injected subcutaneously into the thymus-depleted mice.
암세포에 Cas9 및 35T9P17 가이드 RNA를 전달하기 위해, 마우스의 종양내에 Cas9 및 35T9P17 가이드 RNA를 발현하는 렌티바이러스(50 ㎕ PBS 중 1x108 TU 렌티바이러스)를 인슐린 주사기(BD Biosciences, 31 게이지)를 사용하여 3일 간격으로 3회 주사하였다. 음성 대조군으로 Cas9만을 발현하는 렌티바이러스를 종양내 주사한 마우스를 사용하였다. 그 후 캘리퍼를 사용하여 3일 마다 종양의 크기를 측정하였다. 암세포 주사 후 5 주에 마우스를 희생시키고, 마우스에서 종양 조직을 절제하였다.To deliver Cas9 and 35T9P17 guide RNA to cancer cells, a lentiviral (1 × 10 8 TU lentivirus in 50 μl PBS) expressing Cas9 and 35T9P17 guide RNA in the tumor of the mouse was used using an insulin syringe (BD Biosciences, 31 gauge). Three injections, three days apart. As a negative control, mice injected intratumorally with a lentiviral expressing only Cas9 were used. Then, the size of the tumor was measured every three days using a caliper. Mice were sacrificed 5 weeks after cancer cell injection and tumor tissues were excised from the mice.
절제된 종양 조직의 부피(㎣), 중량(g), 및 이미지를 도 6에 나타내었다(a 내지 c: SW403 암세포 이식, d 내지 f: HT29 세포주 이식, 오차 막대: 측정 표준 오차, sgRNA: 35T9P17 가이드 RNA, 삼각형: 렌티바이러스 주입시, ***: p<0.001, ns: 유의하지 않음(not significant), c 및 f에서 막대자: 1 cm).The volume, weight, and image of the excised tumor tissue are shown in FIG. 6 (a-c: SW403 cancer cell transplantation, d-f: HT29 cell line transplantation, error bars: measurement standard error, sgRNA: 35T9P17 guide) RNA, triangle: upon lentiviral injection, ***: p <0.001, ns: not significant, bar at c and f: 1 cm).
도 6에 나타난 바와 같이, Cas9 및 35T9P17 가이드 RNA를 발현하는 렌티바이러스를 종양내 주사한 경우 종양의 성장이 저해되었다. 이에 반해, 음성 대조군은 암의 성장이 왕성하였다. 돌연변이 KRAS를 함유하지 않는 암세포를 사용하여 생성된 종양에 Cas9 및 35T9P17 가이드 RNA를 전달한 경우는 종양 성장에 영향이 없었고, 이는 Cas9만을 발현하는 렌티바이러스로 주사한 경우와 유사하였다.As shown in FIG. 6, tumor growth was inhibited by intratumoral injection of a lentiviral expressing Cas9 and 35T9P17 guide RNAs. In contrast, the negative control had a strong growth of cancer. Delivery of Cas9 and 35T9P17 guide RNA to tumors generated using cancer cells that did not contain the mutant KRAS had no effect on tumor growth, similar to that injected with a lentiviral expressing Cas9 alone.
따라서, 35T9P17 가이드 RNA는 KRAS c.35G>T 돌연변이를 함유한 암세포에 대해 특이성이 있고, 종양 세포에 대해 렌티바이러스 벡터를 사용하여 외부에서 유전자가위를 주입한 경우에도 항암 효과가 있다는 것을 확인하였다.Therefore, it was confirmed that 35T9P17 guide RNA was specific for cancer cells containing the KRAS c.35G> T mutation, and had anticancer effects even when external scissors was injected with a lentiviral vector to tumor cells.
(2) 아데노-관련 바이러스 벡터의 사용(2) the use of adeno-associated viral vectors
아데노-관련 바이러스(adeno-associated viral: AAV) 벡터를 사용한 경우에도 렌티바이러스와 유사한 효과가 나타나는지 여부를 확인하기 위해, PX552 벡터(Addgene #60958)에 35T9P17 가이드 RNA를 클로닝하였다. Cas9 전달을 위해서는 미니CMV-Cas9-shortPolyA 플라스미드(독일, 하이델베르그 대학 병원, Dr. Dirk Grimm 제공)를 사용하였다.35T9P17 guide RNA was cloned into the PX552 vector (Addgene # 60958) to determine whether a lentiviral-like effect was seen even with adeno-associated viral (AAV) vectors. Mini-CMV-Cas9-shortPolyA plasmid (Heidelberg University Hospital, Dr. Dirk Grimm, Germany) was used for Cas9 delivery.
35T9P17 가이드 RNA를 포함한 AAV 벡터와 미니CMV-Cas9-shortPolyA 플라스미드를 pAAV-RC2(Cell Biolabs, VPK-402) 및 헬퍼 DNA (Cell Biolabs, VPK-402)와 함께 HEK293T 세포에 공형질감염하고, 그후 약 48 시간 동안 배양된 세포로부터 바이러스 함유 상층액을 수득하였다. 수득된 AAV 벡터(50 ㎕ PBS 중 1x1012 gc/㎖ AAV)를 렌티바이러스와 마찬가지로 흉선이 제거된 누드 마우스의 종양 내에 주사하였다. 음성 대조군으로 녹색 형광 단백질(GFP)만을 암호화하는 AAV 벡터를 사용하였다. 캘리퍼를 사용하여 2일 마다 종양의 크기를 측정하였다. AAV 주사 후 12일에 마우스를 희생시키고, 마우스에서 종양 조직을 절제하였다.AAV vectors containing 35T9P17 guide RNA and miniCMV-Cas9-shortPolyA plasmids were cotransfected into HEK293T cells with pAAV-RC2 (Cell Biolabs, VPK-402) and helper DNA (Cell Biolabs, VPK-402) and then drug Virus containing supernatants were obtained from cells incubated for 48 hours. The resulting AAV vector (1 × 10 12 gc / ml AAV in 50 μl PBS) was injected into tumors of nude mice depleted of thymus as well as lentivirus. As a negative control, an AAV vector encoding only green fluorescent protein (GFP) was used. The caliper was used to measure tumor size every two days. Mice were sacrificed 12 days after AAV injection and tumor tissues were excised from the mice.
절제된 종양 조직의 부피(㎣), 중량(g), 및 이미지를 도 7에 나타내었다(a 내지 c: SW403 암세포 이식, 오차 막대: 측정 표준 오차, sgRNA: 35T9P17 가이드 RNA, 삼각형: AAV 주입시, **: p<0.01, *: p<0.1, c에서 막대자: 1 cm).The volume, weight, and image of the excised tumor tissue are shown in Figure 7 (a to c: SW403 cancer cell transplantation, error bars: measurement standard error, sgRNA: 35T9P17 guide RNA, triangle: upon AAV injection) **: p <0.01, *: bar at p <0.1, c: 1 cm).
도 7에 나타난 바와 같이, AAV를 사용한 경우에도, 렌티바이러스를 이용한 경우보다 적은 경우이긴 하지만, 종양 성장을 유의하게 조절하였다.As shown in FIG. 7, tumor growth was significantly regulated even when AAV was used, although less than when lentiviral was used.
따라서, 바이러스 벡터의 종류에 상관없이, 종양 세포에 대해 외부에서 유전자가위를 주입한 경우에 항암 효과가 있다는 것을 확인하였다.Therefore, irrespective of the type of viral vector, it was confirmed that there was an anticancer effect when gene scissors were injected externally to tumor cells.

Claims (20)

  1. KRAS 폴리펩티드를 암호화하는 표적 핵산 서열에 상보적인 2개 이상의 연속 폴리뉴클레오티드를 포함하는 가이드 RNA.A guide RNA comprising two or more contiguous polynucleotides complementary to a target nucleic acid sequence encoding a KRAS polypeptide.
  2. 청구항 1에 있어서, 상기 KRAS 폴리펩티드는 야생형 KRAS 폴리펩티드 또는 돌연변이 KRAS 폴리펩티드인 것인 가이드 RNA.The guide RNA of claim 1, wherein the KRAS polypeptide is a wild type KRAS polypeptide or a mutant KRAS polypeptide.
  3. 청구항 1에 있어서, 상기 표적 핵산 서열은 야생형 KRAS 폴리펩티드를 암호화하는 핵산 서열의 5'-말단으로부터 34번째 핵산, 35번째 핵산, 38번째 핵산, 또는 이들의 조합이 변경된 것인 가이드 RNA.The guide RNA of claim 1, wherein the target nucleic acid sequence has changed from the 5′-end of the nucleic acid sequence encoding the wild type KRAS polypeptide to the 34 th nucleic acid, 35 th nucleic acid, 38 th nucleic acid, or a combination thereof.
  4. 청구항 3에 있어서, 상기 표적 핵산 서열은 34번째 핵산이 구아닌으로부터 티민 또는 시토신으로 변경되거나, 35번째 핵산이 구아닌으로부터 티민, 아데닌, 및 시토신 중 어느 하나로 변경되거나, 38번째 핵산이 구아닌으로부터 아데닌으로 변경된 것인 가이드 RNA.The method of claim 3, wherein the target nucleic acid sequence is changed from guanine to thymine or cytosine, the 35th nucleic acid is changed from guanine to thymine, adenine, and cytosine, or the 38th nucleic acid is changed from guanine to adenine Guide RNA.
  5. 청구항 1에 있어서, 상기 표적 핵산 서열은 프로토스페이서 인접 모티프(protospacer adjacent motif: PAM)를 포함하는 것인 가이드 RNA.The guide RNA of claim 1, wherein the target nucleic acid sequence comprises a protospacer adjacent motif (PAM).
  6. 청구항 5에 있어서, 상기 PAM은 5'-TGG-3', 5'-TAG-3', 5'-AGG-3', 및 5'-CTG-3'으로 이루어진 군으로부터 선택된 핵산 서열을 포함하는 것인 가이드 RNA.The method of claim 5, wherein the PAM comprises a nucleic acid sequence selected from the group consisting of 5'-TGG-3 ', 5'-TAG-3', 5'-AGG-3 ', and 5'-CTG-3'. Guide RNA.
  7. 청구항 1에 있어서, 상기 가이드 RNA는 길이가 10 뉴클레오티드 내지 30 뉴클레오티드인 것인 가이드 RNA.The guide RNA of claim 1, wherein the guide RNA is 10 to 30 nucleotides in length.
  8. 청구항 1에 있어서, 상기 가이드 RNA는 서열번호 42 내지 84로 이루어진 군으로부터 선택된 핵산 서열에서 2개 이상의 연속 폴리뉴클레오티드와 동일하거나 상보적인 핵산 서열을 포함하는 것인 가이드 RNA.The guide RNA of claim 1, wherein the guide RNA comprises a nucleic acid sequence identical or complementary to two or more consecutive polynucleotides in a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 42-84.
  9. 청구항 1의 가이드 RNA를 포함하는 벡터.A vector comprising the guide RNA of claim 1.
  10. 청구항 9에 있어서, 상기 벡터는 바이러스성 벡터인 것인 벡터. The vector of claim 9, wherein the vector is a viral vector.
  11. 청구항 1의 가이드 RNA, 청구항 9의 벡터, 또는 이들의 조합을 포함하는, 세포의 유전체에서 KRAS 폴리펩티드를 암호화하는 핵산 서열을 제거하기 위한 조성물.A composition for removing a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome, comprising the guide RNA of claim 1, the vector of claim 9, or a combination thereof.
  12. 청구항 11에 있어서, 상기 조성물은 시험관 내(in vitro) 또는 생체 내(in vivo) 투여용인 것인 조성물.The composition of claim 11, wherein the composition is for in vitro or in vivo administration.
  13. 청구항 11에 있어서, Cas 폴리펩티드를 암호화하는 핵산 서열을 포함하는 제2 폴리뉴클레오티드를 더 포함하는 것인 조성물.The composition of claim 11, further comprising a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide.
  14. 청구항 13에 있어서, 상기 Cas 폴리펩티드는 Cas9 폴리펩티드 또는 Cpf1 폴리펩티드인 것인 조성물.The composition of claim 13, wherein the Cas polypeptide is a Cas9 polypeptide or a Cpf1 polypeptide.
  15. 청구항 1의 가이드 RNA, 청구항 9의 벡터, 또는 이들의 조합을 포함하는, 암 예방 또는 치료용 약학적 조성물. A pharmaceutical composition for preventing or treating cancer, comprising the guide RNA of claim 1, the vector of claim 9, or a combination thereof.
  16. 청구항 15에 있어서, 상기 암은 췌장암, 대장암, 폐암, 유방암, 피부암, 두경부암, 결장직장암, 위암, 난소암, 전립선암, 방광암, 요도암, 간암, 신장암, 투명세포 육종, 흑색종, 뇌척수종양, 뇌암, 흉선종, 중피종, 식도암, 담도암, 고환암, 생식세포종, 갑상선암, 부갑상선암, 자궁 경부암, 자궁 내막암, 림프종, 골수형성이상 증후군(myelodysplastic syndromes: MDS), 골수섬유증(myelofibrosis), 급성 백혈병, 만성 백혈병, 다발성 골수종, 호치킨병(Hodgkin's Disease), 내분비계암, 및 육종으로 이루어진 군으로부터 선택된 것인 약학적 조성물.The method of claim 15, wherein the cancer is pancreatic cancer, colon cancer, lung cancer, breast cancer, skin cancer, head and neck cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer, bladder cancer, urethral cancer, liver cancer, kidney cancer, clear cell sarcoma, melanoma, Cerebrospinal tumors, brain cancer, thymus, mesothelioma, esophageal cancer, biliary tract cancer, testicular cancer, germ cell tumor, thyroid cancer, parathyroid cancer, cervical cancer, endometrial cancer, lymphoma, myelodysplastic syndromes (MDS), myelofibrosis, A pharmaceutical composition, which is selected from the group consisting of acute leukemia, chronic leukemia, multiple myeloma, Hodgkin's Disease, endocrine cancer, and sarcoma.
  17. 청구항 15에 있어서, Cas 폴리펩티드를 암호화하는 핵산 서열을 포함하는 제2 폴리뉴클레오티드를 더 포함하는 것인 약학적 조성물.The pharmaceutical composition of claim 15, further comprising a second polynucleotide comprising a nucleic acid sequence encoding a Cas polypeptide.
  18. 세포와 청구항 1의 가이드 RNA, 청구항 9의 벡터, 또는 이들의 조합을 인큐베이션하는 단계를 포함하는, 세포의 유전체로부터 KRAS 폴리펩티드를 암호화하는 핵산 서열을 돌연변이시키는 방법.A method of mutating a nucleic acid sequence encoding a KRAS polypeptide from a cell's genome, comprising incubating the cell with the guide RNA of claim 1, the vector of claim 9, or a combination thereof.
  19. 개체에 청구항 1의 가이드 RNA, 청구항 9의 벡터, 또는 이들의 조합을 투여하는 단계를 포함하는, 암을 예방 또는 치료하는 방법.A method of preventing or treating cancer, comprising administering to a subject a guide RNA of claim 1, a vector of claim 9, or a combination thereof.
  20. 청구항 19에 있어서, 상기 개체는 돌연변이 KRAS 폴리펩티드를 암호화하는 핵산 서열을 포함하는 유전체를 갖는 것인 방법.The method of claim 19, wherein the individual has a genome comprising a nucleic acid sequence encoding a mutant KRAS polypeptide.
PCT/KR2017/011391 2016-10-14 2017-10-16 Guide rna complementary to kras gene, and use thereof WO2018070850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/341,585 US11510935B2 (en) 2016-10-14 2017-10-16 Guide RNA complementary to KRAS gene, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160133777 2016-10-14
KR10-2016-0133777 2016-10-14
KR1020170133485A KR101997116B1 (en) 2016-10-14 2017-10-13 Guide RNA complementary to KRAS gene and use thereof
KR10-2017-0133485 2017-10-13

Publications (1)

Publication Number Publication Date
WO2018070850A1 true WO2018070850A1 (en) 2018-04-19

Family

ID=61905720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011391 WO2018070850A1 (en) 2016-10-14 2017-10-16 Guide rna complementary to kras gene, and use thereof

Country Status (1)

Country Link
WO (1) WO2018070850A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179540A1 (en) * 2014-05-20 2015-11-26 Regents Of The University Of Minnesota Method for editing a genetic sequence
US20160017301A1 (en) * 2013-08-29 2016-01-21 Temple University Of The Commonwealth System Of Higher Education Methods and compositions for rna-guided treatment of hiv infection
WO2016095931A2 (en) * 2014-12-19 2016-06-23 Geco Aps Indel detection by amplicon analysis
WO2017053762A1 (en) * 2015-09-24 2017-03-30 Sigma-Aldrich Co. Llc Methods and reagents for molecular proximity detection using rna-guided nucleic acid binding proteins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160017301A1 (en) * 2013-08-29 2016-01-21 Temple University Of The Commonwealth System Of Higher Education Methods and compositions for rna-guided treatment of hiv infection
WO2015179540A1 (en) * 2014-05-20 2015-11-26 Regents Of The University Of Minnesota Method for editing a genetic sequence
WO2016095931A2 (en) * 2014-12-19 2016-06-23 Geco Aps Indel detection by amplicon analysis
WO2017053762A1 (en) * 2015-09-24 2017-03-30 Sigma-Aldrich Co. Llc Methods and reagents for molecular proximity detection using rna-guided nucleic acid binding proteins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROSZKOWSKI, K.: "Impact of specific KRAS mutation in exon 2 on clinical outcome of chemotherapy- and radiotherapy-treated colorectal adenocarcinoma patients", MOLECULAR DIAGNOSIS & THERAPY, vol. 18, no. 5, 24 May 2014 (2014-05-24), pages 559 - 566, XP055603329, DOI: 10.1007/s40291-014-0107-2 *
TAN, C.: "KRAS mutation testing in metastatic colorectal cancer", WORLD JOURNAL OF GASTROENTEROLOGY, 7 October 2012 (2012-10-07), pages 5171 - 5180, XP055603324, DOI: 10.3748/wjg.v18.i37.5171 *

Similar Documents

Publication Publication Date Title
US20230096554A1 (en) Methods of editing dna methylation
KR101997116B1 (en) Guide RNA complementary to KRAS gene and use thereof
EP3494997B1 (en) Inducible dna binding proteins and genome perturbation tools and applications thereof
US9914936B2 (en) Nucleic acid silencing sequences
US7241618B2 (en) Expression system
Hertle et al. Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes
Ehrhardt et al. Molecular analysis of chromosomal rearrangements in mammalian cells after ø C31-mediated integration
Kim et al. Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing
WO2019117660A2 (en) Method for improving crispr system function and use thereof
US20240141341A1 (en) Systems and methods for genome-wide annotation of gene regulatory elements linked to cell fitness
Han et al. Cellular antisilencing elements support transgene expression from herpes simplex virus vectors in the absence of immediate early gene expression
Villavicencio et al. Cooperative E‐box regulation of human GLI1 by TWIST and USF
WO2019117662A2 (en) Crispr system specific to tert promoter mutation and use thereof
JP2003504016A (en) DNA binding proteins and sequences as insulators with specific enhancer blocking activity for regulation of gene expression
KR20230137399A (en) Functional nucleic acid molecules and methods
EP3814510A1 (en) Microhomology mediated repair of microduplication gene mutations
KR20230029650A (en) Adeno-associated virus composition for restoring PAH gene function and method of use thereof
CN111902164A (en) Adeno-associated virus compositions for restoration of PAH gene function and methods of use thereof
Thielemans et al. TAL1 cooperates with PI3K/AKT pathway activation in T-cell acute lymphoblastic leukemia
WO2018070850A1 (en) Guide rna complementary to kras gene, and use thereof
Hakki et al. Resistance to maribavir is associated with the exclusion of pUL27 from nucleoli during human cytomegalovirus infection
Vadolas et al. Development of sensitive fluorescent assays for embryonic and fetal hemoglobin inducers using the human β-globin locus in erythropoietic cells
Boehden et al. Recombination at chromosomal sequences involved in leukaemogenic rearrangements is differentially regulated by p53
Murillo et al. Cas9 nickase-mediated contraction of CAG/CTG repeats at multiple disease loci
KR102276940B1 (en) Novel genomic safe harbor and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860417

Country of ref document: EP

Kind code of ref document: A1