WO2018070528A1 - Method for examining intervertebral disc degeneration by mri - Google Patents
Method for examining intervertebral disc degeneration by mri Download PDFInfo
- Publication number
- WO2018070528A1 WO2018070528A1 PCT/JP2017/037254 JP2017037254W WO2018070528A1 WO 2018070528 A1 WO2018070528 A1 WO 2018070528A1 JP 2017037254 W JP2017037254 W JP 2017037254W WO 2018070528 A1 WO2018070528 A1 WO 2018070528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analysis
- mapping
- intervertebral disc
- qsi
- mri
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
Definitions
- a method for examining intervertebral disc degeneration using nuclear magnetic resonance imaging Magnetic resonance imaging, hereinafter referred to as MRI
- MRI nuclear magnetic resonance imaging
- QSI q-space imaging
- DTI diffusion tensor imaging
- MRI is widely used for examination of diseases together with computed tomography (CT) in clinical practice.
- CT computed tomography
- MRI is an examination method in which a subject obtains information generated from hydrogen nuclei that resonates with radio waves of a specific frequency in a strong magnetic field and is used for examination, and is used for examination of diseases such as the brain, spinal cord, and extremities.
- MRI Magnetic resonance Imaging
- various classification methods have been proposed as diagnostic criteria for severity of intervertebral disc degeneration, hernia, etc. even if it is limited to examination of the spine (Non-patent Document 1).
- the Furman classification classifies the degree of degeneration from the T2-weighted image of the intervertebral disc, classifying the intervertebral disc degeneration into 5 stages 1-5.
- FIG. 5 is an image showing a typical degenerative pathology of an intervertebral disc classified by the Furman classification.
- the Furman classification is a method for qualitatively classifying a disease state from the signal intensity of the obtained MRI image and the shape of the intervertebral disc as follows.
- Grade 1 Uniform disc shape, normal disc height, uniform bright white image
- Grade 2 Disc shape non-uniform, normal disc height, horizontal gray line produced
- Non-uniform bright white image grade 3: non-uniform disc shape, unclear between annulus fibrosus and nucleus pulposus, but disc height is normal, image intensity is medium gray image
- Grade 4 The disc shape is non-uniform, the boundary between the annulus fibrosus and the nucleus pulposus is lost, and the disc height is normal or slightly reduced.
- Signal is low intensity, dark gray image
- grade 5 disc shape is non-uniform, the boundary between the annulus fibrosus and nucleus pulposus is lost, and the disc space is lost.
- the signal is low intensity and a black image.
- the Furman classification is a qualitative evaluation method for judging from the signal intensity of the MRI image and the shape of the intervertebral disc, different judgments may occur depending on the observer.
- moderate degeneration that is, grades 2 to 4
- it is difficult to distinguish and the judgment by the observer varies.
- it since it is a qualitative evaluation method, it cannot capture minute changes. Therefore, there is a need for a quantitative MRI analysis method that captures the disease state in more detail.
- QSI has been attracting attention as a method that can perform more detailed analysis.
- QSI is an MRI analysis method that was initially reported as an analysis method for porous materials (Non-patent Document 3).
- the analysis by QSI can capture the diffusion phenomenon caused by water molecules more finely than the conventional method, and can acquire micro-sized structure information.
- Patent Documents 4 and 5 disclose various analysis methods for diffusion MRI.
- Non-patent Document 8 Although an analysis method using QSI has been established in the brain, it has been reported that white matter degeneration and changes in the intervertebral disk can be detected in the spinal cord (Non-Patent Documents 6 and 7). It has also been reported that intervertebral disc degeneration is correlated with the classification by the Ferman classification method, which is a qualitative evaluation method, applying QSI (Non-patent Document 8).
- Non-patent Document 9 In tissues where fibers are oriented, such as brain white matter and spinal cord, the diffusion anisotropy is strong, which is considered to reflect minute changes that could not be obtained from conventional images by DTI analysis. .
- a method for evaluating intervertebral disc degeneration has also been reported in the spinal cord by DTI analysis (Non-Patent Documents 10 and 11).
- Non-patent Document 12 a rat intervertebral disc degeneration model
- An object of the present invention is to provide a method for quantitatively evaluating the degree of human intervertebral disc degeneration and taking a more detailed analysis of minute changes.
- the objective is to objectively indicate the pathophysiology of intervertebral disc degeneration by using more detailed changes than the Ferman classification currently used as an indicator of intervertebral disc degeneration, and to help treat the disease.
- the present invention relates to a method and program for examining a human intervertebral disc using QSI or DTI.
- a human intervertebral disc inspection method using diffusion MRI which uses Q-space imaging (QSI) analysis or diffusion tensor image (DTI) analysis, and is based on Kurtosis (KT) Fractional Anisotropy (FA) (FA) ( KT FA), probability at zero displacement FA (ZP FA), full width at half maximum FA (FWHM FA), FA by DTI analysis, ⁇ 1 mapping, ( ⁇ 2 + ⁇ 3 ) / 2 mapping
- the inspection method characterized by analyzing by.
- movement of the program which concerns on the Example of this invention The figure which shows the comparison with Kurtosis Fractional Anisotropy (KT FA) and the conventional method.
- Non-patent Document 12 Non-patent Document 12
- ZP probability at zero displacement
- K Kurtosis
- FWHM full width at half maximum
- b value data, axis information, and nucleic acid time are extracted from data in each voxel of the target intervertebral disk obtained by the MRI apparatus.
- QSI analysis in the case of KT FA, ZP FA, FWHM FA, and DTI analysis, calculation for calculating FA, ⁇ 1 mapping, and ( ⁇ 2 + ⁇ 3 ) / 2 mapping is executed by a computer.
- the state of the target intervertebral disc can be quantitatively shown as a numerical value based on the calculation result, or can be visualized by a method such as color mapping at the position of the intervertebral disc (FIG. 1).
- MAGNETOM Skyra 3T manufactured by Siemens Healthcare
- FOV (mm) using Echo Planar Imaging (EPI) under the condition that ⁇ of the above apparatus was the shortest.
- Matrix 192 ⁇ 192
- b value (s / mm 2 ): 0, 50, 200, 450, 800, 1250, 1800, 2400, 3150, 4000 were set as imaging conditions.
- the bipolar magnetic field gradient (MPG) application setting was 6 axes.
- each value is based on a general method used in this field.
- a signal attenuation curve is derived from signal values for several steps in each vector direction, and inverse Fourier transform is performed to create a probability variation probability distribution.
- Kurtosis (K), ZP, and FWHM are calculated and tensor calculation is performed to calculate ⁇ 1 , ⁇ 2 , and ⁇ 3 that are eigenvalues of the respective tensors of K, ZP, and FWHM. From the ⁇ 1 , ⁇ 2 , and ⁇ 3 of K, ZP, and FWHM, each ⁇ D> is obtained by the following formula (I).
- the anisotropy ratio (Fractional Anisotropy, FA) is obtained from ⁇ 1 , ⁇ 2 , and ⁇ 3 calculated from Kurtosis, ZP, and FWHM according to the following formula (II).
- KT FA can be obtained as K FA, ZP FA as ZP FA, and FWHM FA as FWHM FA.
- ADC apparent diffusion coefficient
- the signal intensity is obtained by T2 mapping, ADC, and QSI KT FA.
- T2 mapping [ms]
- ADC [* 10 ⁇ 3 mm 2 / s]
- KT FA [a. u. ]
- the vertical axis represents the frequency of each.
- the signals obtained from the grade 3 and grade 4 intervertebral discs overlap, and it is difficult to judge the degree of intervertebral disc degeneration from the signal intensity.
- grades 3 and 4 cannot be separated and overlapped in the signal obtained by ADC.
- T2 mapping the signal tends to be low in grade 3 and high in grade 4, but the median of both frequencies is close, and the degree of intervertebral disc degeneration should be judged from the obtained signal value. It is difficult.
- QSI KT FA the signal values of grades 3 and 4 are separated, and the degree of intervertebral disc degeneration can be determined from the signal values.
- the conventional method of Ferman classification is a qualitative evaluation, it is difficult to distinguish between grades 2 to 4, which are moderate modifications.
- the degree of coincidence of diagnosis is low due to subjectivity.
- the analysis by KT FA is a quantitative analysis, and it is possible to clearly distinguish moderate degeneration such as grades 3 and 4.
- the data is shown for grades 3 and 4, but the difference between grades 2 and 3 or grades 2 and 4 can also be clearly distinguished.
- KT FA, ZP FA, FWHM FA by QSI analysis, FA of ADC by DTI analysis, ⁇ 1 mapping, ( ⁇ 2 + ⁇ 3 ) / 2 mapping, and intervertebral disc classified as grade 1 to grade 5 of Ferman classification The signal intensity was calculated for each of the methods and summarized in a graph (FIG. 3).
- the horizontal axis shows grades 1 to 5 of the Furman classification.
- the Furman classification is performed based on a diagnosis by a skilled spine surgeon having 10 years of experience from a T2-weighted image.
- the present invention is the first time that quantitative analysis of the degree of degeneration in an intervertebral disc has been performed to such an extent that the grades of Furman classification can be completely separated.
- the Furman classification is a qualitative method that makes a composite determination based on the signal intensity of the T2-weighted image and the shape of the intervertebral disc, the degree of coincidence by the observer has been a problem.
- intermediate disc degeneration in the grade 2 to 4 of the Ferman classification may cause a difference in judgment by doctors.
- the method of the present invention is quantitative and more sensitive than ever, there is no discrepancy in judgment by the observer. That is, the subjectivity of the observer is not entered, and the disease can be objectively determined.
- subtle differences such as improvement of diseases due to medication can be captured as numerical values. As a result, it is possible to obtain an objective index for follow-up observation that has been difficult to obtain so far, and can be used for treatment.
- Example 2 Next, we will show the results of a cross-sectional study with an increased number of samples.
- MAGNETOM Skyra fit 3T manufactured by Siemens Healthcare
- An axial T2-weighted image was used as a reference, and a median sagittal T2-weighted image, T2 mapping, and QSI analysis were performed.
- the imaging protocol is shown in Table 1.
- T2WI T2-weighted MRI
- T2map T2 mapping MRI
- RARE rapid acquisition with relaxation enhancement
- ⁇ the time between the two leading edges of the diffusion gradient
- ⁇ gradient length
- aprx apximately
- the optimal b value should be in the range of the reciprocal of the average value of the ADC that gives the optimal signal intensity to noise ratio in the tissue being analyzed, so a b value of 450 s / mm 2 is assumed. used. Further, an ADC map based on a conventional single exponential model was calculated from a part of the QSI data (b value: 0, 450 [s / mm 2 ]). Table 2 and FIG. 4 show the results of each analysis method.
- the method of the present invention it is possible to obtain a quantitative value that could not be obtained from a T2-weighted image that has been mainly used in the spinal cord so far, and therefore an accurate diagnosis can be performed.
- an accurate diagnosis can be performed.
- it is possible to capture minute changes in the patient over time it is possible not only to capture minute changes in the patient with respect to treatment, but also to objectively determine the effect of the therapeutic agent.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
In order to quantitatively detect minute changes in intervertebral discs, a study has been conducted on analysis methods such as the QSI method and the DTI method. With the present invention, it has become possible to quantitatively detect a minute change in intervertebral disc degeneration by using: KT FA, ZP FA, and FWHM FA of the QSI method; and FA of ADC, λ1 mapping, and (λ2+λ3)/2 mapping by DTI analysis.
Description
核磁気共鳴画像法(Magnetic resonance imaging、以下MRIと記載する。)を用いた椎間板変性症の検査方法、特に、q-space imaging(以下QSIと記載する。)、あるいは拡散テンソル画像(diffusion tensor imaging、以下DTIと記載する。)を用いて解析する方法に関する。
A method for examining intervertebral disc degeneration using nuclear magnetic resonance imaging (Magnetic resonance imaging, hereinafter referred to as MRI), in particular, q-space imaging (hereinafter referred to as QSI), or diffusion tensor imaging (diffuse tensor imaging). , Hereinafter referred to as DTI).
MRIは、臨床現場において、コンピューター断層撮影(Computed tomography、CT)とともに疾患の検査に広く用いられている。MRIは、被験者を強い磁場において、特定の周波数の電波により共鳴する水素原子核から生じる情報を得て検査に利用する検査方法であり、脳、脊髄、四肢などの疾患の検査に用いられている。
MRI is widely used for examination of diseases together with computed tomography (CT) in clinical practice. MRI is an examination method in which a subject obtains information generated from hydrogen nuclei that resonates with radio waves of a specific frequency in a strong magnetic field and is used for examination, and is used for examination of diseases such as the brain, spinal cord, and extremities.
整形外科領域では、MRIは頚椎症、ヘルニア、腫瘍の検査など種々の疾患の検査に用いられている。MRIは多くの解析方法があり、脊椎の検査に限っても椎間板変性やヘルニアなどの重症度の診断基準として、種々の分類法が提唱されている(非特許文献1)。多くの分類法が存在するのは、解析方法の進歩もあるが、いずれの分類法も定性的な分類法であり、観察者間での診断の一致度が低く、より客観的な分類法が求められていることが背景にある。
In the orthopedic field, MRI is used for various diseases such as cervical spondylosis, hernia, and tumors. There are many analysis methods for MRI, and various classification methods have been proposed as diagnostic criteria for severity of intervertebral disc degeneration, hernia, etc. even if it is limited to examination of the spine (Non-patent Document 1). Many classification methods exist because of advances in analysis methods, but all classification methods are qualitative classification methods, and the degree of agreement of diagnosis between observers is low, and more objective classification methods are available. There is a demand for this in the background.
MRIには、種々の解析方法があるが、大別すれば得られた信号を水分子の自由拡散ととらえ解析する手法と、拡散を細胞や器官のように制限された空間内で生じる制限拡散として解析する拡散MRIの手法がある。臨床現場では、拡散強調像を用いると、超急性期脳梗塞を従来のMRI撮像法やCTよりも鋭敏に描出できることから、90年代後半に急速に進んできた。脳では、脳梗塞、脳腫瘍などの病変をいくつかの解析法によって描出し、診断する手法が確立しつつある。
There are various analysis methods in MRI, but if broadly classified, a method of analyzing the obtained signal as free diffusion of water molecules and limited diffusion that occurs in a limited space such as cells and organs. There is a diffusion MRI technique to analyze as follows. In clinical practice, using diffusion-weighted images, hyperacute cerebral infarction can be visualized more sensitively than conventional MRI imaging methods or CT, and so progressed rapidly in the late 90s. In the brain, methods for depicting and diagnosing lesions such as cerebral infarction and brain tumor by several analysis methods are being established.
脊髄においてもMRIによる検査方法は病態の判断基準として広く用いられている。脊髄椎間板変性に関しては、椎間板をT2強調画像により解析し、正中矢状断面の信号強度によって5段階に分類するファーマン(Pfirrmann)分類法によって椎間板変性の程度を分類することが一般的に行われている(非特許文献2)。
Even in the spinal cord, MRI examination methods are widely used as criteria for determining the pathological condition. In general, spinal disc degeneration is performed by analyzing the intervertebral disc using a T2-weighted image and classifying the degree of intervertebral disc degeneration using the Pfirmann classification method that classifies the disc into five levels according to the signal strength of the median sagittal section. (Non-Patent Document 2).
ファーマン分類は、椎間板のT2強調画像から、椎間板変性を1~5の5段階に分類し、変性の程度を定めたものである。図5はファーマン分類により分類された椎間板の典型的な変性の病態を示す画像である。ファーマン分類は、得られたMRI画像の信号強度、椎間板の形状から以下のように定性的に病態を分類する方法である。
The Furman classification classifies the degree of degeneration from the T2-weighted image of the intervertebral disc, classifying the intervertebral disc degeneration into 5 stages 1-5. FIG. 5 is an image showing a typical degenerative pathology of an intervertebral disc classified by the Furman classification. The Furman classification is a method for qualitatively classifying a disease state from the signal intensity of the obtained MRI image and the shape of the intervertebral disc as follows.
グレード1:椎間板形状が均一で、椎間板の高さが正常であり、均一な明るい白い画像、グレード2:椎間板形状が不均一であるが、椎間板の高さは正常、水平に灰色の線が生じた不均一な明るい白い画像、グレード3:椎間板形状が不均一であり、繊維輪と髄核の間は不明瞭であるが、椎間板の高さは正常、画像強度は中等度の灰色の画像、グレード4:椎間板形状は不均一であり、繊維輪と髄核の間の境界は失われており、椎間板の高さは正常、あるいはやや減少している。信号は低強度で、暗い灰色の画像、グレード5:椎間板形状は不均一であり、繊維輪と髄核の間の境界は失われており、椎間板の空間が失われている。信号は低強度で、黒い画像。
Grade 1: Uniform disc shape, normal disc height, uniform bright white image, Grade 2: Disc shape non-uniform, normal disc height, horizontal gray line produced Non-uniform bright white image, grade 3: non-uniform disc shape, unclear between annulus fibrosus and nucleus pulposus, but disc height is normal, image intensity is medium gray image, Grade 4: The disc shape is non-uniform, the boundary between the annulus fibrosus and the nucleus pulposus is lost, and the disc height is normal or slightly reduced. Signal is low intensity, dark gray image, grade 5: disc shape is non-uniform, the boundary between the annulus fibrosus and nucleus pulposus is lost, and the disc space is lost. The signal is low intensity and a black image.
このように、ファーマン分類はMRI画像の信号強度、椎間板形状から判断する定性的評価法であることから、観察者によって異なる判断が生じ得る。特に、中等度の変性、すなわちグレード2から4の場合には区別がつきにくく、観察者による判断のバラ付きが生じる。さらに、定性的評価方法であることから、微細な変化をとらえることができない。そのため、より詳細に病態をとらえる定量的なMRIの解析方法が求められていた。
As described above, since the Furman classification is a qualitative evaluation method for judging from the signal intensity of the MRI image and the shape of the intervertebral disc, different judgments may occur depending on the observer. In particular, in the case of moderate degeneration, that is, grades 2 to 4, it is difficult to distinguish, and the judgment by the observer varies. Furthermore, since it is a qualitative evaluation method, it cannot capture minute changes. Therefore, there is a need for a quantitative MRI analysis method that captures the disease state in more detail.
拡散MRIには種々の解析方法が知られているが、より詳細な解析を行うことのできる可能性のある手法としてQSIが注目されてきている。QSIは、当初多孔物質の解析方法として報告されたMRIの解析方法である(非特許文献3)。QSIによる解析は、水分子による拡散現象を従来法より微細にとらえることができ、マイクロサイズの構造情報を取得することが可能であることから、近年、生体情報への応用が始まっている(非特許文献4、5)。
Although various analysis methods are known for diffusion MRI, QSI has been attracting attention as a method that can perform more detailed analysis. QSI is an MRI analysis method that was initially reported as an analysis method for porous materials (Non-patent Document 3). The analysis by QSI can capture the diffusion phenomenon caused by water molecules more finely than the conventional method, and can acquire micro-sized structure information. Patent Documents 4 and 5).
脳ではQSIを用いた解析法が確立しているが、脊髄においても、白質変性症や、椎間板の一日のうちの変化が検出できることが報告されている(非特許文献6、7)。また、椎間板変性症に関してもQSIを応用し、定性的な評価方法であるファーマン分類法による分類と相関があることも報告されている(非特許文献8)。
Although an analysis method using QSI has been established in the brain, it has been reported that white matter degeneration and changes in the intervertebral disk can be detected in the spinal cord (Non-Patent Documents 6 and 7). It has also been reported that intervertebral disc degeneration is correlated with the classification by the Ferman classification method, which is a qualitative evaluation method, applying QSI (Non-patent Document 8).
また、拡散現象の方向性と速さに着目し、拡散の異方性を反映したDTIは、一方向性の高い構造の質的な評価が可能であることから、白質線維という一方向性の高い構造を備えた脳や脊髄で臨床応用が進みつつある(非特許文献9)。脳白質や脊髄などのように線維が配向している組織では、拡散の異方性が強いことから、DTI解析により従来の画像から得ることのできなかった微細な変化を反映すると考えられている。脊髄においてもDTI解析によって、椎間板変性症を評価する方法が報告されている(非特許文献10、11)。
Focusing on the direction and speed of the diffusion phenomenon, DTI that reflects the diffusion anisotropy allows the qualitative evaluation of highly unidirectional structures. Clinical application is progressing in the brain and spinal cord with high structure (Non-patent Document 9). In tissues where fibers are oriented, such as brain white matter and spinal cord, the diffusion anisotropy is strong, which is considered to reflect minute changes that could not be obtained from conventional images by DTI analysis. . A method for evaluating intervertebral disc degeneration has also been reported in the spinal cord by DTI analysis (Non-Patent Documents 10 and 11).
しかしながら、現在報告されているQSIを用いた解析方法では、定量化を試みる段階で微細な変化をとらえることができないという問題があった。そのため、ファーマン分類と同等の分類を行っているにとどまり、より詳細に脊椎の変化をとらえるにはいたっていない。
However, the currently reported analysis method using QSI has a problem that it cannot capture minute changes at the stage of quantification. For this reason, the classification is the same as the Ferman classification, and it is not possible to capture changes in the spine in more detail.
本発明者らは、ラットの椎間板変性モデルを用いて、QSIによる解析を行い、椎間板変性の微細な変化をとらえることに成功している(非特許文献12)。しかしながら、ヒトの椎間板変性に同じ解析方法を適用してもラットの場合のように定量的な変化をとらえることができなかった。また、DTIを用いた解析方法も、椎間板変性の定量的な解析や微細な変化をとらえるところまでは応用が進んでいない。
The present inventors have succeeded in analyzing minute changes in intervertebral disc degeneration by performing analysis by QSI using a rat intervertebral disc degeneration model (Non-patent Document 12). However, even when the same analysis method was applied to human intervertebral disc degeneration, it was not possible to capture quantitative changes as in the case of rats. Moreover, the application of analysis methods using DTI has not progressed to the point where quantitative analysis of intervertebral disc degeneration and fine changes can be captured.
本発明は、ヒト椎間板変性の程度を定量的に評価するとともに、より詳細にとらえ、微細な変化を解析する方法を提供することを課題とする。現在椎間板変性の指標として用いられているファーマン分類よりも詳細な変化をとらえることによって、椎間板変性の病態を客観的に示し、疾患の治療に役立てることを課題とする。
An object of the present invention is to provide a method for quantitatively evaluating the degree of human intervertebral disc degeneration and taking a more detailed analysis of minute changes. The objective is to objectively indicate the pathophysiology of intervertebral disc degeneration by using more detailed changes than the Ferman classification currently used as an indicator of intervertebral disc degeneration, and to help treat the disease.
本発明は、QSIあるいはDTIを用いてヒト椎間板を検査する方法、及びプログラムに関する。
(1)拡散MRIを用いたヒト椎間板の検査方法であって、Q-スペースイメージング(QSI)解析、あるいは拡散テンソル画像(DTI)解析を用い、QSI解析によるKurtosis(KT) Fractional Anisotropy(FA)(KT FA)、probability at zero displacement FA(ZP FA)、full width at half maximum FA(FWHM FA)、DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより解析することを特徴とする検査方法。
(2)(1)記載の検査方法が、椎間板変性を定量化するものであることを特徴とする検査方法。
(3)MRI装置により得られた対象の椎間板の各ボクセルにおけるスペクトルデータから、b値、軸情報、拡散時間を抽出し、QSI解析によるKT FA、ZP FA、FWHM FA、DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより演算を行うステップと、演算結果に基づき対象の椎間板の状態を定量的に表すステップと、をコンピューターに実行させるプログラム。
(4)前記演算結果を画像として表示させるステップを、コンピューターに実行させる(3)記載のプログラム。 The present invention relates to a method and program for examining a human intervertebral disc using QSI or DTI.
(1) A human intervertebral disc inspection method using diffusion MRI, which uses Q-space imaging (QSI) analysis or diffusion tensor image (DTI) analysis, and is based on Kurtosis (KT) Fractional Anisotropy (FA) (FA) ( KT FA), probability at zero displacement FA (ZP FA), full width at half maximum FA (FWHM FA), FA by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping The inspection method characterized by analyzing by.
(2) The inspection method according to (1), wherein the intervertebral disc degeneration is quantified.
(3) The b value, axis information, and diffusion time are extracted from the spectrum data in each voxel of the target intervertebral disk obtained by the MRI apparatus, and KT FA, ZP FA, FWHM FA by QSI analysis, FA by DTI analysis, λ A program for causing a computer to execute a step of performing calculation by at least one of 1 mapping and (λ 2 + λ 3 ) / 2 mapping, and a step of quantitatively representing a state of a target intervertebral disc based on a calculation result.
(4) The program according to (3), which causes a computer to execute the step of displaying the calculation result as an image.
(1)拡散MRIを用いたヒト椎間板の検査方法であって、Q-スペースイメージング(QSI)解析、あるいは拡散テンソル画像(DTI)解析を用い、QSI解析によるKurtosis(KT) Fractional Anisotropy(FA)(KT FA)、probability at zero displacement FA(ZP FA)、full width at half maximum FA(FWHM FA)、DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより解析することを特徴とする検査方法。
(2)(1)記載の検査方法が、椎間板変性を定量化するものであることを特徴とする検査方法。
(3)MRI装置により得られた対象の椎間板の各ボクセルにおけるスペクトルデータから、b値、軸情報、拡散時間を抽出し、QSI解析によるKT FA、ZP FA、FWHM FA、DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより演算を行うステップと、演算結果に基づき対象の椎間板の状態を定量的に表すステップと、をコンピューターに実行させるプログラム。
(4)前記演算結果を画像として表示させるステップを、コンピューターに実行させる(3)記載のプログラム。 The present invention relates to a method and program for examining a human intervertebral disc using QSI or DTI.
(1) A human intervertebral disc inspection method using diffusion MRI, which uses Q-space imaging (QSI) analysis or diffusion tensor image (DTI) analysis, and is based on Kurtosis (KT) Fractional Anisotropy (FA) (FA) ( KT FA), probability at zero displacement FA (ZP FA), full width at half maximum FA (FWHM FA), FA by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping The inspection method characterized by analyzing by.
(2) The inspection method according to (1), wherein the intervertebral disc degeneration is quantified.
(3) The b value, axis information, and diffusion time are extracted from the spectrum data in each voxel of the target intervertebral disk obtained by the MRI apparatus, and KT FA, ZP FA, FWHM FA by QSI analysis, FA by DTI analysis, λ A program for causing a computer to execute a step of performing calculation by at least one of 1 mapping and (λ 2 + λ 3 ) / 2 mapping, and a step of quantitatively representing a state of a target intervertebral disc based on a calculation result.
(4) The program according to (3), which causes a computer to execute the step of displaying the calculation result as an image.
QSI、あるいはDTIによる椎間板変性を検査する定量的な方法を得たことによって、より客観的に患者の病態を区別することができる。DTI、QSIによる解析において、上記パラメータにより、微細な変化を定量的に捉えられることは、本発明者らが初めて見出したことである。本発明の方法によれば、病状の変化を詳細に且つ客観的にとらえることができるため、治療による疾患の改善などの病態の小さな変化をいち早くとらえることが可能となり、治療に役立てることができる。
By obtaining a quantitative method for examining intervertebral disc degeneration due to QSI or DTI, it is possible to more objectively distinguish a patient's pathological condition. In the analysis by DTI and QSI, the present inventors have discovered for the first time that a minute change can be quantitatively captured by the above parameters. According to the method of the present invention, changes in a disease state can be captured in detail and objectively, so that a small change in a disease state such as improvement of a disease due to treatment can be quickly captured, which can be used for treatment.
本発明者らは、ラット椎間板変性モデルを用いてQSIにより解析を行い、ラットでは、probability at zero displacement(ZP)、Kurtosis(K)、full width at half maximum(FWHM)を用いると変性した椎間板、正常な椎間板を有意に区別できることを報告している(非特許文献12)。しかしながら、ヒト椎間板変性症において、これらパラメータにより解析を行っても、変性の度合いを有意に区別することはできなかった。そこで、ヒトの椎間板変性の度合いを定量的に測定することのできる方法について検討を行った。
The present inventors performed analysis by QSI using a rat intervertebral disc degeneration model, and in rats, degenerated disc using probability at zero displacement (ZP), Kurtosis (K), full width at half maximum (FWHM), It has been reported that normal discs can be significantly distinguished (Non-patent Document 12). However, in human intervertebral disc degeneration, even if analysis was performed using these parameters, the degree of degeneration could not be distinguished significantly. Therefore, we examined a method that can quantitatively measure the degree of human intervertebral disc degeneration.
また、ヒト椎間板変性をQSIにより解析している報告(非特許文献6~8)と同じ手法を用いた場合には、ファーマン分類と同程度の分類はできるものの、より明瞭に区別することはできなかった。そこで、パラメータを変え解析を行ったところ、QSIによる解析では、Kurtosis Fractional Anisotropy(KT FA)、probability at zero displacement FA(ZP FA)、full width at half maximum FA(FWHM FA)によって、ファーマン分類のクレード1~5までを明瞭に且つ定量的に区別できることが明らかとなった。さらに、DTI解析では、FA、λ1マッピング、(λ2+λ3)/2マッピングによって、ファーマン分類のグレード1~5までを明瞭に且つ定量的に区別することができることを見出した。
In addition, when using the same method as the report analyzing human intervertebral disc degeneration by QSI (Non-patent Documents 6 to 8), it can be classified as much as the Furman classification, but it can be distinguished more clearly. There wasn't. Therefore, the analysis was performed by changing parameters. In the analysis by QSI, Kurtosis Fractional Anisotropy (KT FA), probability at zero displacement FA (ZP FA), full width at half maximum FA (FH) It became clear that 1 to 5 could be distinguished clearly and quantitatively. Furthermore, in the DTI analysis, it was found that grades 1 to 5 of the Ferman classification can be clearly and quantitatively distinguished by FA, λ 1 mapping, and (λ 2 + λ 3 ) / 2 mapping.
MRIによって取得されたデータをもとに、QSI法、DTI法により解析する工程はすべてコンピュータープログラムによって実行される。具体的には、MRI装置により得られた対象の椎間板の各ボクセルにおけるデータから、b値データ、軸情報、核酸時間を抽出する。QSI解析による場合には、KT FA、ZP FA、FWHM FA、DTI解析による場合には、FA、λ1マッピング、(λ2+λ3)/2マッピングを算出する演算をコンピューターにより実行させる。さらに、演算結果に基づき対象の椎間板の状態を定量的に数値として示すことも、椎間板の位置においてカラーマッピングなどの方法で可視化することもできる(図1)。
Based on the data acquired by MRI, all the processes analyzed by the QSI method and DTI method are executed by a computer program. Specifically, b value data, axis information, and nucleic acid time are extracted from data in each voxel of the target intervertebral disk obtained by the MRI apparatus. In the case of QSI analysis, in the case of KT FA, ZP FA, FWHM FA, and DTI analysis, calculation for calculating FA, λ 1 mapping, and (λ 2 + λ 3 ) / 2 mapping is executed by a computer. Furthermore, the state of the target intervertebral disc can be quantitatively shown as a numerical value based on the calculation result, or can be visualized by a method such as color mapping at the position of the intervertebral disc (FIG. 1).
[実施例1]
以下、データを示しながら説明する。慶應義塾大学医学部整形外科において、インフォームド・コンセントが得られた21名の患者(腰椎1番/2番間~5番/仙骨間の5椎間板のうち高解像度画像を得られた84椎間板を抽出、平均年齢53歳、男性15名、女性6名)からMRI画像を取得して行った。 [Example 1]
Hereinafter, explanation will be given while showing data. 21 patients who received informed consent at Keio University School of Medicine Orthopedic Surgery (84 intervertebral discs with high-resolution images out of 5 intervertebral discs between lumbar 1st / 2nd-5th / sacrum) Extraction, average age 53 years, 15 men, 6 women) MRI images were acquired and performed.
以下、データを示しながら説明する。慶應義塾大学医学部整形外科において、インフォームド・コンセントが得られた21名の患者(腰椎1番/2番間~5番/仙骨間の5椎間板のうち高解像度画像を得られた84椎間板を抽出、平均年齢53歳、男性15名、女性6名)からMRI画像を取得して行った。 [Example 1]
Hereinafter, explanation will be given while showing data. 21 patients who received informed consent at Keio University School of Medicine Orthopedic Surgery (84 intervertebral discs with high-resolution images out of 5 intervertebral discs between lumbar 1st / 2nd-5th / sacrum) Extraction, average age 53 years, 15 men, 6 women) MRI images were acquired and performed.
解析には、MAGNETOM Skyra 3T(シーメンスヘルスケア社製)を用い、上記装置のδが最短となる条件でEcho Planar Imaging(EPI)を用いてTR/TE(ms):4000/89、FOV(mm):576×576、Matrix:192×192、Thickness(mm):3、gap(mm):0、slice(枚):7、voxel size(mm):3×3×6、Δ/δ(ms):43.1/31.7、b値(s/mm2):0、50、200、450、800、1250、1800、2400、3150、4000を撮像条件とした。双極磁場勾配(MPG)印加設定は6軸とした。
For the analysis, MAGNETOM Skyra 3T (manufactured by Siemens Healthcare) was used, and TR / TE (ms): 4000/89, FOV (mm) using Echo Planar Imaging (EPI) under the condition that δ of the above apparatus was the shortest. ): 576 × 576, Matrix: 192 × 192, Thickness (mm): 3, gap (mm): 0, slice (sheet): 7, voxel size (mm): 3 × 3 × 6, Δ / δ (ms ): 43.1 / 31.7, b value (s / mm 2 ): 0, 50, 200, 450, 800, 1250, 1800, 2400, 3150, 4000 were set as imaging conditions. The bipolar magnetic field gradient (MPG) application setting was 6 axes.
下記に概略を記載するが、各値の算出方法はこの分野で用いられている一般的な方法による。QSI法では、それぞれのベクトル方向の数ステップ分の信号値から信号減衰曲線を導き出して逆フーリエ変換して確率変異確率分布を作成する。そのうえで、Kurtosis(K)、ZP、FWHMを算出し、テンソル計算してK、ZP、FWHMそれぞれのテンソルの固有値(eigenvalue value)であるλ1、λ2、λ3を算出する。K、ZP、FWHMの各λ1、λ2、λ3より、それぞれの<D>を下記式(I)により求める。
Although an outline is described below, the calculation method of each value is based on a general method used in this field. In the QSI method, a signal attenuation curve is derived from signal values for several steps in each vector direction, and inverse Fourier transform is performed to create a probability variation probability distribution. Then, Kurtosis (K), ZP, and FWHM are calculated and tensor calculation is performed to calculate λ 1 , λ 2 , and λ 3 that are eigenvalues of the respective tensors of K, ZP, and FWHM. From the λ 1 , λ 2 , and λ 3 of K, ZP, and FWHM, each <D> is obtained by the following formula (I).
すなわち、KT FAは、KのFA、ZP FAは、ZPのFA、FWHM FAはFWHMのFAとして求めることができる。また、DTI解析においては、b値800で見かけの拡散定数(apparent diffusion coefficient、ADC)を算出し、FA、λ1、(λ2+λ3)/2を算出して表示した。
That is, KT FA can be obtained as K FA, ZP FA as ZP FA, and FWHM FA as FWHM FA. In the DTI analysis, an apparent diffusion coefficient (ADC) was calculated with a b value of 800, and FA, λ 1 , (λ 2 + λ 3 ) / 2 were calculated and displayed.
T2強調画像よりファーマン分類グレード3及び4に分類されている椎間板(図2の下にMRI画像の一例を示す。)について、得られたシグナルをT2マッピング、ADC、及びQSIのKT FAにより信号強度を算出しグラフにした。なお、ファーマン分類は、経験年数10年の熟練した脊椎外科医が、T2強調画像から診断を行っている。また、横軸はそれぞれ左よりT2 mapping[ms]、ADC[*10-3mm2/s]、KT FA[a.u.]であり、縦軸はそれぞれの頻度である。
For intervertebral discs classified as Ferman classification grades 3 and 4 from the T2-weighted image (an example of an MRI image is shown in the lower part of FIG. 2), the signal intensity is obtained by T2 mapping, ADC, and QSI KT FA. Was calculated and graphed. In addition, in the Furman classification, an experienced spine surgeon with 10 years of experience makes a diagnosis from a T2-weighted image. Also, the horizontal axis represents T2 mapping [ms], ADC [* 10 −3 mm 2 / s], KT FA [a. u. ], And the vertical axis represents the frequency of each.
図2に示すように、T2マッピング、ADCではファーマン分類のグレード3とグレード4の椎間板から得たシグナルは重なっておりシグナル強度から椎間板変性の程度を判断することは困難である。特に、ADCにより得たシグナルではグレード3と4は値が重なり分離することができない。また、T2マッピングでは、グレード3ではシグナルが低く、グレード4ではシグナルが高い傾向があるが、両者の頻度の中央値が近接しており、得られたシグナル値から椎間板変性の程度を判断することは困難である。これに対し、QSIのKT FAでは、グレード3と4のシグナル値は分離しており、シグナル値から椎間板変性の程度を判断することができる。
As shown in FIG. 2, in T2 mapping and ADC, the signals obtained from the grade 3 and grade 4 intervertebral discs overlap, and it is difficult to judge the degree of intervertebral disc degeneration from the signal intensity. In particular, grades 3 and 4 cannot be separated and overlapped in the signal obtained by ADC. In T2 mapping, the signal tends to be low in grade 3 and high in grade 4, but the median of both frequencies is close, and the degree of intervertebral disc degeneration should be judged from the obtained signal value. It is difficult. In contrast, in QSI KT FA, the signal values of grades 3 and 4 are separated, and the degree of intervertebral disc degeneration can be determined from the signal values.
上述のように従来法であるファーマン分類は定性的評価であるために、中等度の変性であるグレード2~4を区別することが困難である。また、主観が入るために診断の一致度が低い。これに対し、図2に示すようにKT FAによる解析は定量的な解析であり、グレード3と4といった中等度の変性を明確に区別することができる。ここでは、グレード3と4についてデータを示したが、グレード2と3、あるいはグレード2と4といった差も明瞭に区別することができる。
As mentioned above, since the conventional method of Ferman classification is a qualitative evaluation, it is difficult to distinguish between grades 2 to 4, which are moderate modifications. In addition, the degree of coincidence of diagnosis is low due to subjectivity. On the other hand, as shown in FIG. 2, the analysis by KT FA is a quantitative analysis, and it is possible to clearly distinguish moderate degeneration such as grades 3 and 4. Here, the data is shown for grades 3 and 4, but the difference between grades 2 and 3 or grades 2 and 4 can also be clearly distinguished.
次に、QSI解析によるKT FA、ZP FA、FWHM FA、DTI解析によるADCのFA、λ1マッピング、(λ2+λ3)/2マッピングについてファーマン分類のグレード1からグレード5に分類された椎間板についてそれぞれの手法で信号強度を算出し、グラフにまとめた(図3)。横軸はファーマン分類のグレード1~5を示す。ファーマン分類は、上記と同様にT2強調画像から経験年数10年の熟練した脊椎外科医の診断により分類している。
Next, KT FA, ZP FA, FWHM FA by QSI analysis, FA of ADC by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping, and intervertebral disc classified as grade 1 to grade 5 of Ferman classification The signal intensity was calculated for each of the methods and summarized in a graph (FIG. 3). The horizontal axis shows grades 1 to 5 of the Furman classification. In the same manner as described above, the Furman classification is performed based on a diagnosis by a skilled spine surgeon having 10 years of experience from a T2-weighted image.
T2マッピングと比較して、QSI解析によるKT FA、FWHM FA、ZP FA、DTI解析によるFA(ADC)、λ1マッピング、(λ2+λ3)/2マッピングを用いることにより、ファーマン分類のグレード1~5までを非常によく分類することができる(図3)。特にT2マッピングではファーマン分類のグレード3~5は定量的な差はほとんどないが、本発明の6つの解析法では定量的に有意な差を認めることができる。このように、椎間板において変性の程度の定量的な解析を、ファーマン分類のグレードを完全に分離できるほどに行うことができたのは本発明が初めてである。
Compared with T2 mapping, KT FA by FWSI, FWHM FA, ZP FA, FA (ADC) by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping are used, and the grade of Furman classification 1 to 5 can be classified very well (FIG. 3). In particular, in T2 mapping, there is almost no quantitative difference between the grades 3 to 5 of the Ferman classification, but a significant difference can be recognized quantitatively in the six analysis methods of the present invention. Thus, the present invention is the first time that quantitative analysis of the degree of degeneration in an intervertebral disc has been performed to such an extent that the grades of Furman classification can be completely separated.
ファーマン分類は、T2強調画像による信号強度と椎間板の形状などから複合的に判断する定性的な方法であることから、観察者による一致度が問題となっていた。特に、ファーマン分類のグレード2~4の中程度の椎間板変性は、医師により判断の違いが生じることもあった。これに対し、本発明の方法は定量的かつ今までになく鋭敏な方法であることから、観察者により判断のずれが生じることはない。すなわち、観察者の主観が入ることがなく、疾患を客観的に判断することが可能となる。また、投薬による疾患の改善など、微妙な差を数値としてとらえることができるようになる。その結果、これまで得ることが難しかった経過観察の客観的な指標を得ることができるようになり、治療に役立てることが可能となる。
Since the Furman classification is a qualitative method that makes a composite determination based on the signal intensity of the T2-weighted image and the shape of the intervertebral disc, the degree of coincidence by the observer has been a problem. In particular, intermediate disc degeneration in the grade 2 to 4 of the Ferman classification may cause a difference in judgment by doctors. On the other hand, since the method of the present invention is quantitative and more sensitive than ever, there is no discrepancy in judgment by the observer. That is, the subjectivity of the observer is not entered, and the disease can be objectively determined. In addition, subtle differences such as improvement of diseases due to medication can be captured as numerical values. As a result, it is possible to obtain an objective index for follow-up observation that has been difficult to obtain so far, and can be used for treatment.
[実施例2]
次に、サンプル数を増やし、横断的研究を行った結果を示す。名倉整形外科において倫理委員会の許可を得たうえで、44名のインフォームド・コンセントが得られた日本人ボランティア(平均年齢63.5歳(標準偏差9.2)、男性28名、女性23名)において、腰椎(腰椎1番/2番間~5番/仙骨間の5椎間板)の椎間板のMRI画像(n=220)を取得し解析を行った。 [Example 2]
Next, we will show the results of a cross-sectional study with an increased number of samples. Japanese volunteers (average age 63.5 years (standard deviation 9.2), 28 men, 28 women, with 44 informed consent obtained with permission from the Ethics Committee at Nakura Orthopedics 23 patients) acquired and analyzed MRI images (n = 220) of intervertebral discs of the lumbar vertebrae (lumbar vertebra No. 1 / No. 2 to No. 5 / No. 5 intervertebral disc).
次に、サンプル数を増やし、横断的研究を行った結果を示す。名倉整形外科において倫理委員会の許可を得たうえで、44名のインフォームド・コンセントが得られた日本人ボランティア(平均年齢63.5歳(標準偏差9.2)、男性28名、女性23名)において、腰椎(腰椎1番/2番間~5番/仙骨間の5椎間板)の椎間板のMRI画像(n=220)を取得し解析を行った。 [Example 2]
Next, we will show the results of a cross-sectional study with an increased number of samples. Japanese volunteers (average age 63.5 years (standard deviation 9.2), 28 men, 28 women, with 44 informed consent obtained with permission from the Ethics Committee at Nakura Orthopedics 23 patients) acquired and analyzed MRI images (n = 220) of intervertebral discs of the lumbar vertebrae (lumbar vertebra No. 1 / No. 2 to No. 5 / No. 5 intervertebral disc).
解析には、30チャネルのボディコイル、及び30チャネルのスパインコイルを備えたMAGNETOM Skyra fit 3T(シーメンスヘルスケア社製)を用いた。軸方向のT2強調画像を参照として使用し、正中矢状面のT2強調画像、T2マッピング、QSIによる解析を行った。撮像プロトコルを表1に示す。
For the analysis, MAGNETOM Skyra fit 3T (manufactured by Siemens Healthcare) equipped with a 30-channel body coil and a 30-channel spine coil was used. An axial T2-weighted image was used as a reference, and a median sagittal T2-weighted image, T2 mapping, and QSI analysis were performed. The imaging protocol is shown in Table 1.
表中の略称は以下のとおりである。
T2WI:T2-weighted MRI
T2map:T2 mapping MRI
RARE:rapid acquisition with relaxation enhancement
Δ:the time between the two leading edges of the diffusion gradient
δ:gradient length, aprx: approximately Abbreviations in the table are as follows.
T2WI: T2-weighted MRI
T2map: T2 mapping MRI
RARE: rapid acquisition with relaxation enhancement
Δ: the time between the two leading edges of the diffusion gradient
δ: gradient length, aprx: apximately
T2WI:T2-weighted MRI
T2map:T2 mapping MRI
RARE:rapid acquisition with relaxation enhancement
Δ:the time between the two leading edges of the diffusion gradient
δ:gradient length, aprx: approximately Abbreviations in the table are as follows.
T2WI: T2-weighted MRI
T2map: T2 mapping MRI
RARE: rapid acquisition with relaxation enhancement
Δ: the time between the two leading edges of the diffusion gradient
δ: gradient length, aprx: apximately
220の脊髄のうち、25は低シグナル強度のため、31は椎間板変性以外の疾患であっため排除し、164の脊髄から得られたMRI画像を以下の解析に用いた。抽出した椎間板は、ファーマン分類により分類を行った。分類の結果、グレード1は1、グレード2は19、グレード3は59、グレード4は54、グレード5は31の椎間板が分類された。グレード1に分類された椎間板は1つしかなかったので、以下の解析からは除外した。
Of the 220 spinal cords, 25 had low signal intensity, so 31 was excluded because it was a disease other than intervertebral disc degeneration, and MRI images obtained from 164 spinal cords were used for the following analysis. The extracted intervertebral discs were classified by Furman classification. As a result of classification, grade 1 was classified as 1, grade 2 as 19, grade 3 as 59, grade 4 as 54, and grade 5 as 31 discs. Since there was only one disc classified as grade 1, it was excluded from the following analysis.
コンピュータを用いて、T2マッピング、ADCマップ、QSIによって解析した。理論的には、最適なb値は、解析する組織において最適なシグナル強度対ノイズ比が得られるADCの平均値の逆数の範囲内にあるべきであることから、450s/mm2のb値を使用した。また、従来の単一指数モデルに基づくADCマップをQSIデータの一部から計算した(b値:0、450[s/mm2])。表2及び図4は、各解析法による結果を示す。
Using a computer, analysis was performed by T2 mapping, ADC map, and QSI. Theoretically, the optimal b value should be in the range of the reciprocal of the average value of the ADC that gives the optimal signal intensity to noise ratio in the tissue being analyzed, so a b value of 450 s / mm 2 is assumed. used. Further, an ADC map based on a conventional single exponential model was calculated from a part of the QSI data (b value: 0, 450 [s / mm 2 ]). Table 2 and FIG. 4 show the results of each analysis method.
図4に示すようにADCを除くすべての解析法で、ファーマングレードIIとIIIとを有意な差が認められた(p<0.05)。さらに、すべてのQSI解析(mean Kurtosis、mean Probability at zero displacement、mean FWHM、FA of Kurtosis(KT FA)、FA of Probability at zero displacement(ZP FA)、FA of FWHM(FWHM FA))において、従来のMRI解析法であるT2マッピング及びADCと比較して同等あるいはそれ以上にファーマングレードIIとIIIとの間で有意な差を認めた。
As shown in FIG. 4, in all the analysis methods except ADC, a significant difference was observed between Furman grade II and III (p <0.05). Furthermore, in all QSI analysis (mean Kurtosis, mean Probability at zero displacement, mean FWHM, FA of Kurtosis (KT FA), FA of Probability at zero dissemination (FAF, HPF). Significant differences were observed between Furman Grade II and III compared to T2 mapping and ADC, which are MRI analysis methods, equivalent or higher.
ファーマングレードIII及びIVにおいては、すべての解析法で有意差が認められた(p<0.05)。特に、KT FA、ZP FA、FA FWHMは、他の解析法よりも明瞭にファーマングレードIIIとIV区別することができる(p<1*10-10)。特に、FA FWHMは、すべての解析法の中で最も明瞭にファーマングレードIIIとIVを区別することができた。
For Furman grades III and IV, significant differences were observed in all analytical methods (p <0.05). In particular, KT FA, ZP FA, and FA FWHM can be clearly distinguished from Ferman grade III and IV (p <1 * 10 −10 ) than other analysis methods. In particular, FA FWHM was most clearly able to distinguish between Ferman Grade III and IV among all analytical methods.
ファーマングレードVについては、すべての解析法で、標準偏差が他のファーマングレードと比較して最も大きい値を示した。また、KT FA、ZP FA、FA FWHMでは、ファーマングレードIIからIVへは、値が増加するのに対し、IVからVでは値が同等か減少していた。しかし、QSIを用いた解析法では、観察者によるバラツキが生じやすく、これまで非常に分類が困難であるファーマングレードIIからIVを定量的に分類することができる。
For Furman Grade V, the standard deviation showed the largest value compared to other Ferman grades in all analysis methods. In KT FA, ZP FA, and FA FWHM, values increased from Ferman Grade II to IV, whereas values from IV to V were the same or decreased. However, in the analysis method using QSI, it is easy to cause variation by an observer, and it is possible to quantitatively classify Ferman grades II to IV, which are very difficult to classify until now.
QSI解析によるKT FA、FWHM FA、ZP FA、DTI解析によるFA(ADC)、λ1マッピング、(λ2+λ3)/2マッピングは、ファーマン分類2~4の中程度の椎間板変性を鋭敏に区別することが可能であることから、いずれを用いて検査を行ってもよい。DTI法による解析は、短時間の撮像で解析が可能であることから、最新のMRI機器でなくとも対応できるという利点があり、診療所でも診断が可能となる。また、QSI法による解析は、より定量性がよいと考えられることから、詳細な結果が得られる可能性がある。
KT FA, FWHM FA, ZP FA by QSI analysis, FA (ADC) by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping sharply promotes intermediate disc degeneration in Furman classification 2-4 Since it is possible to distinguish, any of them may be used for the inspection. Since the analysis by the DTI method can be performed by imaging in a short time, there is an advantage that the analysis can be performed without using the latest MRI apparatus, and diagnosis can also be performed at a clinic. In addition, since the analysis by the QSI method is considered to be more quantitative, a detailed result may be obtained.
本発明の方法では、これまで脊髄において主として用いられてきたT2強調画像からは得ることができなかった定量的な値を得ることができるため、正確な診断を行うことが可能となる。また、経時的に患者の微細な変化をとらえることができるので、治療に対する患者の微細な変化をとらえることができるだけではなく、治療薬の効果を客観的に判断することができる。
According to the method of the present invention, it is possible to obtain a quantitative value that could not be obtained from a T2-weighted image that has been mainly used in the spinal cord so far, and therefore an accurate diagnosis can be performed. In addition, since it is possible to capture minute changes in the patient over time, it is possible not only to capture minute changes in the patient with respect to treatment, but also to objectively determine the effect of the therapeutic agent.
According to the method of the present invention, it is possible to obtain a quantitative value that could not be obtained from a T2-weighted image that has been mainly used in the spinal cord so far, and therefore an accurate diagnosis can be performed. In addition, since it is possible to capture minute changes in the patient over time, it is possible not only to capture minute changes in the patient with respect to treatment, but also to objectively determine the effect of the therapeutic agent.
Claims (4)
- 拡散MRIを用いたヒト椎間板の検査方法であって、
Q-スペースイメージング(QSI)解析、あるいは拡散テンソル画像(DTI)解析を用い、
QSI解析によるKurtosis(KT) Fractional Anisotropy(FA)(KT FA)、probability at zero displacement FA(ZP FA)、full width at half maximum FA(FWHM FA)、
DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより解析することを特徴とする検査方法。 A method for examining a human intervertebral disk using diffusion MRI,
Using Q-space imaging (QSI) analysis or diffusion tensor image (DTI) analysis,
Kurtosis (KT) Fractional Anisotropic (FA) (KT FA), probability at zero displacement FA (ZP FA), full width at half maximum FA (FWHM FA) by QSI analysis
An inspection method, comprising: analyzing by at least one of FA, λ 1 mapping, and (λ 2 + λ 3 ) / 2 mapping by DTI analysis. - 請求項1記載の検査方法が、
椎間板変性を定量化するものであることを特徴とする検査方法。 The inspection method according to claim 1,
An inspection method characterized by quantifying intervertebral disc degeneration. - MRI装置により得られた対象の椎間板の各ボクセルにおけるスペクトルデータから、
b値、軸情報、拡散時間を抽出し、
QSI解析によるKT FA、ZP FA、FWHM FA、DTI解析によるFA、λ1マッピング、(λ2+λ3)/2マッピングの少なくともいずれか1つにより演算を行うステップと、
演算結果に基づき対象の椎間板の状態を定量的に表すステップと、
をコンピューターに実行させるプログラム。 From the spectral data in each voxel of the subject intervertebral disk obtained by the MRI apparatus,
Extract b value, axis information, diffusion time,
Performing a calculation by at least one of KT FA by ZSI analysis, ZP FA, FWHM FA, FA by DTI analysis, λ 1 mapping, (λ 2 + λ 3 ) / 2 mapping;
A step of quantitatively expressing the state of the target intervertebral disc based on the calculation result;
A program that runs a computer. - 前記演算結果を画像として表示させるステップを、
コンピューターに実行させる請求項3記載のプログラム。
Displaying the calculation result as an image;
The program according to claim 3, which is executed by a computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018545079A JP6966786B2 (en) | 2016-10-13 | 2017-10-13 | MRI examination method for degenerative disc disease |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080452 WO2017065245A1 (en) | 2015-10-13 | 2016-10-13 | Medicinal composition for ameliorating and treating intervertebral disc degeneration and low back pain, and method for screening therapeutic agent |
JPPCT/JP2016/080452 | 2016-10-13 | ||
JP2017-080357 | 2017-04-14 | ||
JP2017080357 | 2017-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018070528A1 true WO2018070528A1 (en) | 2018-04-19 |
Family
ID=61905457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/037254 WO2018070528A1 (en) | 2016-10-13 | 2017-10-13 | Method for examining intervertebral disc degeneration by mri |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6966786B2 (en) |
WO (1) | WO2018070528A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI819936B (en) * | 2022-12-27 | 2023-10-21 | 財團法人工業技術研究院 | Vertebral canal abnormality determination system and determination device thereof |
-
2017
- 2017-10-13 WO PCT/JP2017/037254 patent/WO2018070528A1/en active Application Filing
- 2017-10-13 JP JP2018545079A patent/JP6966786B2/en active Active
Non-Patent Citations (6)
Title |
---|
KATSURA, MASAKI: "Advancement of Backbone Spinal Cord Imaging Diseases in the News", QUANTITATIVE EVALUATION OF INTERVERTEBRAL DISK USING MRI, vol. 29, no. 9, 25 September 2016 (2016-09-25), pages 871 - 879 * |
LI, JIANWEN: "Value of DTO and T2 mapping to assess lumbar intervertebral disc degeneration", JOURNAL OF PRACTICAL RADIOLOGY, vol. 32, no. 12, December 2016 (2016-12-01), pages 1919 - 1922 * |
NAKAJIMA, DAISUKE: "Possibility of QSI as Novel Evaluation Method for Modified Intervertebral Disk", JOURNAL OF SPINE RESEARCH, vol. 8, no. 3, 25 March 2017 (2017-03-25), pages 257 * |
OIKAWA, YASUHIRO: "Quantitative Evaluation of Modified Intervertebral Disk Using Diffusion Tensor Image", THE JOURNAL OF JAPANESE ORTHOPAEDIC SURGICAL SOCIETY, vol. 88, no. 2, 2014, pages 201 * |
YANG, WEI: "Clinical Application of MR DTI in Acute Contusion of Lumbar Disc", JOURNAL OF CLINICAL RADIOOLOGY, vol. 30, no. 4, 2011, pages 556 - 560 * |
ZHAO, YINXIA: "Study on Correlation between ADC value and FA value and Shoulder intervertebral disc degeneration", JOURNAL OF CLINICAL RADIOOLOGY, vol. 33, no. 4, 2014, pages 580 - 584 * |
Also Published As
Publication number | Publication date |
---|---|
JP6966786B2 (en) | 2021-11-17 |
JPWO2018070528A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | DTI for the assessment of disease stage in patients with glomerulonephritis-correlation with renal histology | |
Budzik et al. | Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy | |
Sąsiadek et al. | Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord | |
Yoshida et al. | Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis: preliminary clinical experience | |
Zhang et al. | Age-related diffusion patterns in human lumbar intervertebral discs: a pilot study in asymptomatic subjects | |
Chen et al. | Bone susceptibility mapping with MRI is an alternative and reliable biomarker of osteoporosis in postmenopausal women | |
Chen et al. | Texture analysis of placental MRI: can it aid in the prenatal diagnosis of placenta accreta spectrum? | |
Grosse et al. | Diagnostic value of T1 and T2* relaxation times and off‐resonance saturation effects in the evaluation of achilles tendinopathy by MRI at 3T | |
Tian et al. | Progressive decline in fractional anisotropy on serial DTI examinations of the corpus callosum: a putative marker of disease activity and progression in SPMS | |
Chan et al. | Normal values of cervical spinal cord diffusion tensor in young and middle-aged healthy Chinese | |
Vidić et al. | Modeling the diffusion‐weighted imaging signal for breast lesions in the b= 200 to 3000 s/mm2 range: Quality of fit and classification accuracy for different representations | |
Zhang et al. | Multi-shot echo-planar diffusion tensor imaging in cervical spondylotic myelopathy: a longitudinal study | |
Guan et al. | High‐resolution diffusion tensor imaging in cervical spondylotic myelopathy: a preliminary follow‐up study | |
Ellingson et al. | Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy | |
Rehnitz et al. | Comparison of modern 3D and 2D MR imaging sequences of the wrist at 3 Tesla | |
Zhu et al. | The role of diffusion tensor imaging and diffusion tensor tractography in the assessment of acute traumatic thoracolumbar spinal cord injury | |
Shabani et al. | Comparison between quantitative measurements of diffusion tensor imaging and T2 signal intensity in a large series of cervical spondylotic myelopathy patients for assessment of disease severity and prognostication of recovery | |
Zhang et al. | Diffusional kurtosis imaging in evaluating the secondary change of corticospinal tract after unilateral cerebral infarction | |
Panara et al. | Correlations between cervical spinal cord magnetic resonance diffusion tensor and diffusion kurtosis imaging metrics and motor performance in patients with chronic ischemic brain lesions of the corticospinal tract | |
Chagawa et al. | Normal values of diffusion tensor magnetic resonance imaging parameters in the cervical spinal cord | |
Zeng et al. | A comparative study of diffusion kurtosis imaging and T2* mapping in quantitative detection of lumbar intervertebral disk degeneration | |
Middleton et al. | Correlations of diffusion tensor imaging and clinical measures with spinal cord cross-sectional area measurements in pediatric spinal cord injury patients | |
Yang et al. | The functional relevance of diffusion tensor imaging in comparison to conventional MRI in patients with cervical compressive myelopathy | |
JP6966786B2 (en) | MRI examination method for degenerative disc disease | |
Liang et al. | Quantitative visual pathway abnormalities predict visual field defects in patients with pituitary adenomas: a diffusion spectrum imaging study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17860616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018545079 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17860616 Country of ref document: EP Kind code of ref document: A1 |