WO2018070387A1 - Method for producing rubber composition - Google Patents

Method for producing rubber composition Download PDF

Info

Publication number
WO2018070387A1
WO2018070387A1 PCT/JP2017/036701 JP2017036701W WO2018070387A1 WO 2018070387 A1 WO2018070387 A1 WO 2018070387A1 JP 2017036701 W JP2017036701 W JP 2017036701W WO 2018070387 A1 WO2018070387 A1 WO 2018070387A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
acid
weight
rubber
fiber
Prior art date
Application number
PCT/JP2017/036701
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 伊藤
雄介 安川
昌浩 森田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2018545005A priority Critical patent/JP6990190B2/en
Publication of WO2018070387A1 publication Critical patent/WO2018070387A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • C08C1/15Coagulation characterised by the coagulants used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene

Definitions

  • the present invention relates to a method for producing a rubber composition containing cellulosic fibers.
  • Patent Document 1 discloses a rubber / short fiber master batch obtained by stirring and mixing an aqueous dispersion of short fibers having an average fiber diameter of less than 0.5 ⁇ m and rubber latex, and removing water from the mixed liquid.
  • This document describes that a short fiber having an average fiber diameter of less than 0.5 ⁇ m is uniformly dispersed in rubber by mixing and drying a dispersion obtained by fibrillating short fibers in water and a rubber latex. ing. It is also described that a rubber composition having an excellent balance between rubber reinforcement and fatigue resistance can be produced from this rubber / short fiber master batch.
  • An object of the present invention is to provide a rubber composition that has good compatibility between rubber and cellulosic fibers and can exhibit sufficient reinforcement.
  • the present invention provides the following [1] to [6].
  • [1] A step of adding a divalent or trivalent metal salt, or a divalent or trivalent metal salt and an acid to a mixed solution containing chloroprene rubber and cellulosic fiber to coagulate the rubber component.
  • the manufacturing method of a rubber composition [2] The method for producing a rubber composition according to [1], wherein the metal salt is a calcium salt. [3] The method for producing a rubber composition according to [1] or [2], wherein the acid is acetic acid or sulfuric acid.
  • the present invention relates to a method for producing a rubber composition, comprising a step of coagulating chloroprene rubber by adding a metal salt or a metal salt and an acid to a mixed solution containing chloroprene rubber and cellulosic fibers.
  • the rubber composition produced by this method has good compatibility between the rubber and the cellulosic fiber, can exhibit sufficient reinforcement, and can maintain the reinforcement even when a large strain is applied.
  • the effect of this invention expresses specifically in the rubber composition containing a chloroprene rubber and a cellulosic fiber.
  • solidification means that a rubber component is aggregated by adding an acid or a metal salt to a liquid such as a suspension (dispersion) containing the rubber component, and as a result, the rubber component is separated (solidified). Liquid separation) (process, method).
  • the coagulation step includes mixing chloroprene rubber and cellulosic fibers to obtain a mixed solution containing these, and adding a metal salt, or an acid or a metal salt to the mixed solution.
  • the metal salt used for solidification is preferably a divalent or trivalent metal salt. It is presumed that divalent or trivalent metal ions contribute to the improvement of the compatibility between the chloroprene rubber and the cellulosic fiber, and the reinforcing property of the rubber composition can be improved.
  • Examples of the divalent or trivalent metal salt include calcium salts such as calcium chloride and calcium nitrate, magnesium salts such as magnesium chloride and magnesium sulfate, and aluminum salts such as aluminum chloride and aluminum sulfate. Salts are preferred, calcium salts are more preferred, and calcium chloride is even more preferred.
  • the amount of the metal salt added to the mixed solution is not particularly limited, but the metal salt concentration in the whole mixed solution is preferably adjusted to 0.1% by weight or more, more preferably 0.3% by weight or more. That's fine. Although an upper limit is not specifically limited, Preferably it is 3.0 weight% or less, More preferably, it is 2.0 weight% or less. Therefore, the concentration of the metal salt in the premixed solution is preferably adjusted to 0.1 to 3.0% by weight, more preferably 0.3 to 2.0% by weight.
  • Acid As the acid used for coagulation, either an organic acid or an inorganic acid can be used.
  • organic acid formic acid, acetic acid and the like are preferable.
  • inorganic acid sulfuric acid, hydrochloric acid, carbonic acid and the like are preferable. Of these, acetic acid and sulfuric acid are more preferable.
  • the acid addition conditions vary depending on the type of metal salt, but in general, the pH in the mixed solution after acid addition is preferably 3.0 or more, more preferably 3.5 or more, and even more preferably 4.0 or more. do it.
  • an upper limit is not specifically limited, Preferably it is 8.0 or less, More preferably, it is 7.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less. Accordingly, the pH is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, still more preferably 4.0 to 7.0, 4.0 to 6.0, or pH 4.0 to 5 Adjust to 0. One or a combination of two or more acids may be used.
  • a metal salt In solidification, it is preferable to add a metal salt, or to add both a metal salt and an acid, and to add a divalent or trivalent metal salt, or to add a divalent or 3 It is more preferable to perform both addition of a valent metal salt and addition of an acid.
  • the timing of the addition of the metal salt and the addition of the acid is not particularly limited, but it is preferable to add the acid after the addition of the metal salt.
  • the cellulose fiber may be a cellulose fiber having a fiber diameter of micron order or a cellulose nanofiber having a fiber diameter of nano order obtained by chemically modifying the cellulose fiber after chemical modification as necessary.
  • the origin of the cellulose fiber is not particularly limited, and examples thereof include plants, animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), and microorganism products.
  • Plant-derived cellulose fibers include, for example, wood, bamboo, hemp, jute, kenaf, farmland residue, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, and the like.
  • the raw material of the cellulose fiber used by this invention may be any of these or a combination, it is preferably a plant or microorganism-derived cellulose fiber, more preferably a plant-derived cellulose fiber.
  • the average fiber diameter of the cellulose fibers is not particularly limited, but is usually about 30 to 60 ⁇ m in the case of softwood kraft pulp, which is a general pulp, and is usually about 10 to 30 ⁇ m in the case of hardwood kraft pulp.
  • the average fiber diameter of pulp other than softwood kraft pulp and hardwood kraft pulp that has undergone general refining is usually about 50 ⁇ m.
  • a disintegrator such as a refiner or beater
  • the average fiber diameter of cellulosic fibers is usually about 2 to 500 nm, preferably 2 to 50 nm in terms of length-weighted average fiber diameter.
  • the average fiber length is preferably 50 to 2000 nm in terms of length-weighted average fiber length.
  • Length-weighted average fiber diameter and length-weighted average fiber length are measured using an atomic force microscope (AFM) or a transmission electron microscope (TEM). It is obtained by observing each fiber.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • the average aspect ratio of the cellulosic fiber is usually 10 or more. Although an upper limit is not specifically limited, Usually, it is 1000 or less. The average aspect ratio can be calculated by the following formula.
  • Average aspect ratio average fiber length / average fiber diameter
  • the cellulose fiber that is the raw material of the cellulose nanofiber is also referred to as “cellulose raw material”.
  • the cellulose raw material has three hydroxyl groups per glucose unit and can be subjected to various chemical modifications.
  • both the cellulose raw material subjected to chemical modification and the cellulose raw material not subjected to chemical modification can be used as the cellulosic fiber.
  • the chemically modified cellulose raw material is used, the fineness of the fibers is sufficiently advanced to obtain cellulose nanofibers having a uniform fiber length and fiber diameter, so that a sufficient reinforcing effect can be exhibited when combined with rubber. Therefore, as the cellulose fiber, a cellulose fiber obtained through chemical modification is preferable.
  • the chemical modification include oxidation, etherification, phosphorylation, esterification, silane coupling, fluorination, and cationization. Of these, oxidation (carboxylation), etherification, cationization and esterification are preferred.
  • chemical modification will be described.
  • the amount of carboxyl groups in the oxidized cellulose or cellulose nanofiber obtained by this treatment is preferably 0.5 mmol / g or more, more preferably 0.8 mmol / g or more, and still more preferably 1. 0 mmol / g or more.
  • the upper limit of the amount is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and still more preferably 2.0 mmol / g or less. Accordingly, the amount is preferably 0.5 to 3.0 mmol / g, more preferably 0.8 to 2.5 mmol / g, and further preferably 1.0 to 2.0 mmol / g.
  • the amount of carboxyl groups of oxidized cellulose and the amount of carboxyl groups of oxidized cellulose nanofibers obtained from the oxidized cellulose are usually the same value.
  • the oxidation method is not particularly limited, for example, the cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a substance selected from the group consisting of bromide, iodide, and a mixture thereof. The method of doing is mentioned. According to this method, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized to produce a group selected from the group consisting of an aldehyde group, a carboxyl group, and a carboxylate group.
  • concentration of the cellulose raw material at the time of reaction is not specifically limited, 5 weight% or less is preferable.
  • the N-oxyl compound is a compound capable of generating a nitroxy radical.
  • the nitroxyl radical include 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO).
  • the N-oxyl compound is not particularly limited as long as it is a compound that promotes the target oxidation reaction.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount that can oxidize cellulose as a raw material. For example, 0.01 mmol or more is preferable and 0.02 mmol or more is more preferable with respect to 1 g of absolutely dry cellulose.
  • the upper limit is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.5 mmol or less. Therefore, the amount of the N-oxyl compound used is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.02 to 0.5 mmol with respect to 1 g of absolutely dry cellulose.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water, such as sodium bromide.
  • the iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction.
  • the total amount of bromide and iodide is preferably 0.1 mmol or more, more preferably 0.5 mmol or more, with respect to 1 g of absolutely dry cellulose.
  • the upper limit of the amount is preferably 100 mmol or less, more preferably 10 mmol or less, and even more preferably 5 mmol or less.
  • the total amount of bromide and iodide is preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of absolutely dry cellulose.
  • the oxidizing agent is not particularly limited, and examples thereof include halogen, hypohalous acid, halous acid, perhalogen acid, salts thereof, halogen oxide, and peroxide.
  • hypohalous acid or a salt thereof is preferable because it is inexpensive and has a low environmental burden
  • hypochlorous acid or a salt thereof is more preferable
  • sodium hypochlorite is more preferable.
  • the amount of the oxidizing agent used is preferably 0.5 mmol or more, more preferably 1 mmol or more, and further preferably 3 mmol or more with respect to 1 g of absolutely dry cellulose.
  • the upper limit of the amount is preferably 500 mmol or less, more preferably 50 mmol or less, and even more preferably 25 mmol or less.
  • the amount of the oxidizing agent used is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and particularly preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose.
  • the amount of the oxidizing agent used is preferably 1 mol or more with respect to 1 mol of the N-oxyl compound, and the upper limit is preferably 40 mol. Accordingly, the amount of the oxidizing agent used is preferably 1 to 40 mol with respect to 1 mol of the N-oxyl compound.
  • the conditions such as pH and temperature during the oxidation reaction are not particularly limited, and in general, the oxidation reaction proceeds efficiently even under relatively mild conditions.
  • the reaction temperature is preferably 4 ° C or higher, more preferably 15 ° C or higher.
  • the upper limit of the temperature is preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. Accordingly, the reaction temperature is preferably 4 to 40 ° C., and may be about 15 to 30 ° C., that is, room temperature.
  • the pH of the reaction solution is preferably 8 or more, and more preferably 10 or more.
  • the upper limit of pH is preferably 12 or less, and more preferably 11 or less. Accordingly, the pH of the reaction solution is preferably about 8 to 12, more preferably about 10 to 11.
  • the reaction medium for the oxidation is preferably water for reasons such as ease of handling and the difficulty of side reactions.
  • the reaction time in the oxidation can be appropriately set according to the progress of the oxidation, and is usually 0.5 hours or more, and the upper limit is usually 6 hours or less, preferably 4 hours or less. Therefore, the reaction time in the oxidation is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • Oxidation may be carried out in two or more stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first stage reaction. Can be oxidized well.
  • ozone oxidation Another example of the carboxylation (oxidation) method is ozone oxidation.
  • the ozone treatment is usually performed by bringing a gas containing ozone and a cellulose raw material into contact with each other.
  • the ozone concentration in the gas is preferably 50 g / m 3 or more.
  • the upper limit is preferably 250 g / m 3 or less, more preferably 220 g / m 3. Therefore, the ozone concentration in the gas is preferably 50 ⁇ 250g / m 3, more preferably 50 ⁇ 220g / m 3.
  • the amount of ozone added is preferably 0.1% by weight or more and more preferably 5% by weight or more with respect to 100% by weight of the solid content of the cellulose raw material.
  • the upper limit of the amount of ozone added is usually 30% by weight or less. Accordingly, the amount of ozone added is preferably 0.1 to 30% by weight and more preferably 5 to 30% by weight with respect to 100% by weight of the solid content of the cellulose raw material.
  • the ozone treatment temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and the upper limit is usually 50 ° C. or lower. Accordingly, the ozone treatment temperature is preferably 0 to 50 ° C., more preferably 20 to 50 ° C.
  • the ozone treatment time is usually 1 minute or longer, preferably 30 minutes or longer, and the upper limit is usually 360 minutes or shorter. Accordingly, the ozone treatment time is usually about 1 to 360 minutes, and preferably about 30 to 360 minutes.
  • the condition of the ozone treatment is within the above range, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • the ozone-treated cellulose may be further oxidized using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • Examples of the method for the additional oxidation treatment include a method in which these oxidizers are dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizer solution, and the cellulose raw material is immersed in the oxidizer solution.
  • the amount of the carboxyl group, carboxylate group, and aldehyde group contained in the oxidized cellulose nanofiber can be adjusted by controlling the oxidizing conditions such as the addition amount of the oxidizing agent and the reaction time.
  • Carboxyl group amount [mmol / g oxidized cellulose or cellulose nanofiber] a [mL] ⁇ 0.05 / oxidized cellulose weight [g]
  • the product after oxidation may be subjected to a desalting treatment.
  • Desalting means that a salt (which is a counter cation of a carboxylate group, such as a sodium salt) contained in a reaction product (salt form) is replaced with a proton to form an acid form.
  • the desalting treatment the counter cation of the carboxylate group introduced into the reaction product is proton-substituted to obtain an acid-type carboxy group-modified cellulose fiber.
  • Desalting can be performed at any time before and after the defibrating process described below. Examples of the desalting method after oxidation include a method of adjusting the inside of the system to acidity and a method of contacting oxidized cellulose with a cation exchange resin.
  • the pH in the system is preferably adjusted to 2 to 6, more preferably 2 to 5, and still more preferably 2.3 to 5.
  • an acid for example, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid and phosphoric acid; organic acids such as acetic acid, lactic acid, succinic acid, citric acid and formic acid
  • a washing treatment may be appropriately performed.
  • the cation exchange resin both a strong acid ion exchange resin and a weak acid ion exchange resin can be used as long as the counter ion is H + .
  • the ratio between the oxidized cellulose and the cation exchange resin is not particularly limited, and those skilled in the art can appropriately set the ratio from the viewpoint of efficiently performing proton substitution.
  • the collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the degree of carboxymethyl substitution per anhydroglucose unit in carboxymethylated cellulose or cellulose nanofiber obtained by carboxymethylation is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more.
  • the upper limit of the substitution degree is preferably 0.50 or less, more preferably 0.40 or less, and further preferably 0.35 or less or 0.30 or less.
  • the degree of carboxymethyl group substitution is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and even more preferably 0.10 to 0.35 or 0.10 to 0.30.
  • the amount of carboxyl groups of carboxymethylated cellulose and the amount of carboxyl groups of carboxymethylated cellulose nanofibers obtained from the carboxymethylated cellulose are usually the same value.
  • the carboxymethylation method is not particularly limited, and examples thereof include a method in which a cellulose raw material as a bottoming raw material is mercerized and then etherified.
  • a solvent is usually used.
  • the solvent include water, alcohol (for example, lower alcohol), and a mixed solvent thereof.
  • the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butyl alcohol, isobutyl alcohol, and tertiary butyl alcohol.
  • the mixing ratio of the lower alcohol in the mixed solvent is usually 60% by weight or more and 95% by weight or less, and preferably 60 to 95% by weight.
  • the amount of the solvent is usually 3 times the weight of the cellulose raw material. Although the upper limit of the amount is not particularly limited, it is 20 times by weight. Therefore, the amount of the solvent is preferably 3 to 20 times by weight.
  • Mercerization is usually performed by mixing the bottoming material and mercerizing agent.
  • mercerizing agents include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount of mercerizing agent used is preferably 0.5 times mol or more, more preferably 1.0 times mol or more, and further preferably 1.5 times mol or more per anhydroglucose residue of the starting material.
  • the upper limit of the amount is usually 20 times mol or less, preferably 10 times mol or less, more preferably 5 times mol or less. Accordingly, the amount of mercerizing agent used is preferably 0.5 to 20 times mol, more preferably 1.0 to 10 times mol, and even more preferably 1.5 to 5 times mol.
  • the reaction temperature for mercerization is usually 0 ° C. or higher, preferably 10 ° C. or higher, and the upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Accordingly, the reaction temperature is usually 0 to 70 ° C., preferably 10 to 60 ° C.
  • the reaction time is usually 15 minutes or longer, preferably 30 minutes or longer.
  • the upper limit of the time is usually 8 hours or less, preferably 7 hours or less. Accordingly, the reaction time is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • the etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization.
  • the carboxymethylating agent include sodium monochloroacetate.
  • the addition amount of the carboxymethylating agent is usually preferably 0.05 times mol or more, more preferably 0.5 times mol or more, further preferably 0.8 times mol or more per glucose residue of the cellulose raw material.
  • the upper limit of the amount is usually 10.0 moles or less, preferably 5 moles or less, and more preferably 3 moles or less. Therefore, the amount is preferably 0.05 to 10.0 times mol, more preferably 0.5 to 5 times mol, and still more preferably 0.8 to 3 times mol.
  • the reaction temperature is usually 30 ° C. or higher, preferably 40 ° C.
  • the upper limit is usually 90 ° C. or lower, preferably 80 ° C. or lower.
  • the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually 30 minutes or longer, preferably 1 hour or longer, and the upper limit is usually 10 hours or shorter, preferably 4 hours or shorter. Therefore, the reaction time is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • the reaction solution may be stirred as necessary during the carboxymethylation reaction.
  • the carboxymethyl substitution degree per glucose unit of the carboxymethyl cellulose nanofiber is measured, for example, by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose (absolutely dry) is precisely weighed and put into a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of nitric acid methanol solution prepared by adding 100 mL of special concentrated nitric acid to 1000 mL of methanol, and shake for 3 hours to convert the carboxymethyl cellulose salt (carboxymethylated cellulose) into acid-type carboxymethylated cellulose.
  • the product after carboxymethylation may be subjected to a desalting treatment.
  • Desalination is the same as desalting after oxidation, in which a salt (a counter cation of a carboxylate group, such as a sodium salt) contained in a reaction product (salt form) is replaced with a proton to form an acid form. means.
  • Desalting can be performed at any time before and after the defibrating process described below.
  • Examples of the desalting method after carboxymethylation include a method of bringing carboxymethylated cellulose into contact with a cation exchange resin.
  • the cation exchange resin both a strong acid ion exchange resin and a weak acid ion exchange resin can be used as long as the counter ion is H + .
  • the ratio between the carboxymethylated cellulose and the cation exchange resin when they are brought into contact with each other is not particularly limited, and those skilled in the art can appropriately set them from the viewpoint of efficiently performing proton substitution.
  • the ratio can be adjusted so that the pH of the aqueous carboxymethylated cellulose dispersion after addition of the cation exchange resin is preferably 2 to 6, more preferably 2 to 5.
  • the collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the cationized cellulose nanofiber obtained by cationization may contain a cation such as ammonium, phosphonium, or sulfonium, or a group having the cation in the molecule.
  • the cationized cellulose nanofiber preferably includes a group having ammonium, and more preferably includes a group having quaternary ammonium.
  • the method of cationization is not particularly limited, and examples thereof include a method of reacting a cellulose raw material with a cationizing agent and a catalyst in the presence of water or alcohol.
  • the cationizing agent include glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride (eg, 3-chloro-2-hydroxypropyltrimethylammonium hydride) or a halohydrin type thereof. By using any of these, a cationized cellulose having a group containing quaternary ammonium can be obtained.
  • the catalyst include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the alcohol examples include alcohols having 1 to 4 carbon atoms.
  • the amount of the cationizing agent is preferably 5% by weight or more, more preferably 10% by weight or more with respect to 100% by weight of the cellulose raw material.
  • the upper limit of the amount is usually 800% by weight or less, preferably 500% by weight or less.
  • the amount of the catalyst is preferably 0.5% by weight or more, more preferably 1% by weight or more with respect to 100% by weight of the cellulose fibers.
  • the upper limit of the amount is usually 70% by weight or less, preferably 30% by weight or less.
  • the amount of alcohol is preferably 50% by weight or more, more preferably 100% by weight or more, based on 100% by weight of cellulose fibers.
  • the upper limit of the amount is usually 50000% by weight or less, preferably 500% by weight or less.
  • the reaction temperature during cationization is usually 10 ° C or higher, preferably 30 ° C or higher, and the upper limit is usually 90 ° C or lower, preferably 80 ° C or lower.
  • the reaction time is usually 10 minutes or more, preferably 30 minutes or more, and the upper limit is usually 10 hours or less, preferably 5 hours or less.
  • the reaction solution may be stirred as necessary during the cationization reaction.
  • the degree of cation substitution per unit of glucose in the cationized cellulose can be adjusted by the amount of cationizing agent added and the composition ratio of water or alcohol.
  • the degree of cation substitution refers to the number of substituents introduced per unit structure (glucopyranose ring) constituting cellulose. That is, the degree of cation substitution is defined as “a value obtained by dividing the number of moles of the introduced substituent by the total number of moles of hydroxyl groups of the glucopyranose ring”. Since pure cellulose has three substitutable hydroxyl groups per unit structure (glucopyranose ring), the theoretical maximum value of the degree of cation substitution is 3 (the minimum value is 0).
  • the cation substitution degree per glucose unit of the cationized cellulose nanofiber is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.03 or more.
  • the upper limit of the degree of substitution is preferably 0.40 or less, more preferably 0.30 or less, and still more preferably 0.20 or less. Accordingly, the degree of cation substitution is preferably from 0.01 to 0.40, more preferably from 0.02 to 0.30, and even more preferably from 0.03 to 0.20.
  • the cation substitution degree per glucose unit is 0.01 or more, nano-defibration can be sufficiently achieved.
  • the degree of cation substitution per glucose unit is 0.40 or less, swelling or dissolution can be suppressed, whereby the fiber form can be maintained, and a situation where nanofibers cannot be obtained can be prevented.
  • the amount of carboxyl groups of cationized cellulose and the amount of carboxyl groups of cationized cellulose nanofibers obtained from the cationized cellulose are usually the same value.
  • the degree of cation substitution per glucose unit is measured after drying the sample (cationized cellulose), the nitrogen content is measured with a total nitrogen analyzer TN-10 (manufactured by Mitsubishi Chemical Corporation).
  • TN-10 total nitrogen analyzer
  • the degree of cation substitution is calculated by the following formula.
  • the cation substitution degree is an average value of the number of moles of substituents per mole of anhydroglucose unit.
  • the method of esterification is not specifically limited, For example, the method of making the compound A mentioned later react with a cellulose raw material is mentioned.
  • the method of reacting compound A with a cellulose raw material include a method of mixing a powder or an aqueous solution of compound A with a cellulose raw material, a method of adding an aqueous solution of compound A to a slurry of a cellulose raw material, and the like.
  • a method of mixing an aqueous solution of Compound A into a cellulose raw material or a slurry thereof is preferable because the uniformity of the reaction is enhanced and esterification efficiency can be increased.
  • compound A examples include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof.
  • Compound A may be in the form of a salt.
  • a phosphoric acid compound is preferable because it is low in cost and easy to handle, and a phosphoric acid group can be introduced into cellulose of pulp fiber to improve the fibrillation efficiency.
  • the phosphate compound may be any compound having a phosphate group.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate
  • examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate.
  • the phosphoric acid compound used may be one or a combination of two or more of these.
  • phosphoric acid group introduction efficiency is high, it is easy to defibrate in the defibrating process, and is easy to apply industrially, from the viewpoint of phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid Ammonium salts are preferable, and sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferable.
  • the pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less from the viewpoint of increasing the efficiency of introducing phosphate groups, and more preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
  • esterification method examples include the following methods.
  • Compound A is added to a suspension of cellulose raw material (for example, solid content concentration of 0.1 to 10% by weight) with stirring to introduce phosphate groups into the cellulose.
  • the amount of compound A added is preferably 0.2 parts by weight or more and more preferably 1 part by weight or more as the amount of phosphorus element with respect to 100 parts by weight of the cellulose raw material. Thereby, the yield of fine fibrous cellulose can be improved more.
  • the upper limit of the amount is preferably 500 parts by weight or less, and more preferably 400 parts by weight or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by weight is preferable, and 1 to 400 parts by weight is more preferable.
  • Compound B When reacting Compound A with the cellulose raw material, Compound B may be further added to the reaction system.
  • Examples of the method of adding Compound B to the reaction system include a method of adding to a slurry of cellulose raw material, an aqueous solution of Compound A, or a slurry of cellulose raw material and Compound A.
  • Compound B is not particularly limited, but a compound showing basicity is preferable, and a nitrogen-containing compound showing basicity is more preferable. “Show basic” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator, or the pH of the aqueous solution of Compound B is greater than 7.
  • the nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable.
  • urea methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned.
  • urea is preferable because it is easy to handle at low cost.
  • the amount of compound B added is preferably 2 to 1000 parts by weight, more preferably 100 to 700 parts by weight.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, it is possible to prevent cellulose from being excessively esterified and easily dissolved, and to improve the yield of phosphorylated esterified cellulose. .
  • an esterified cellulose suspension is usually obtained.
  • the esterified cellulose suspension is dehydrated as necessary.
  • Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of a cellulose raw material can be suppressed.
  • the heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
  • phosphate esterified cellulose In phosphate esterified cellulose, a phosphate group substituent is introduced into the cellulose raw material, and the cellulose repels electrically. Therefore, phosphorylated cellulose can be easily nano-defibrated.
  • the degree of phosphate group substitution per glucose unit in the phosphate esterified cellulose is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented.
  • the upper limit of the degree of substitution is preferably 0.60. Thereby, swelling or melt
  • the amount of carboxyl groups of phosphate esterified cellulose and the amount of carboxyl groups of phosphate esterified cellulose nanofibers obtained from the phosphate esterified cellulose are usually the same value.
  • the product after phosphoric acid esterification may be subjected to a desalting treatment.
  • the desalting means that the salt (for example, sodium salt) contained in the reaction product (salt form) is replaced with a proton to form an acid form, similar to desalting after oxidation and desalting after carboxymethylation. To do.
  • Desalting can be performed at any time before and after the defibrating process described below.
  • Examples of the desalting method after the phosphoric esterification include a method of bringing the phosphoric esterified cellulose into contact with a cation exchange resin.
  • the phosphate esterified cellulose is preferably subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
  • the fibrillation of the cellulose raw material may be performed before or after chemical modification of the cellulose raw material.
  • the defibrating process may be performed once or a plurality of times. In the case of multiple times, each defibration period may be any time.
  • the defibrating process is usually physical defibrating.
  • the apparatus used for defibration is not particularly limited, and examples thereof include high-speed rotating type, colloid mill type, high-pressure type, roll mill type, ultrasonic type and the like, and high-pressure or ultra-high-pressure homogenizers are preferable, and wet high pressure Or an ultra high pressure homogenizer is more preferable. It is preferable that the apparatus can apply a strong shearing force to the cellulose raw material or the modified cellulose (usually a dispersion).
  • the pressure that can be applied by the apparatus is preferably 50 MPa or more, more preferably 100 MPa or more, and still more preferably 140 MPa or more.
  • the apparatus is preferably a wet high-pressure or ultrahigh-pressure homogenizer capable of applying the above pressure to a cellulose raw material or modified cellulose (usually a dispersion) and applying a strong shearing force. Thereby, defibration can be performed efficiently.
  • the solid content concentration of the cellulose raw material in the dispersion is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.3%. % By weight or more.
  • the upper limit of the concentration is usually 10% by weight or less, preferably 6% by weight or less. Thereby, fluidity can be maintained.
  • pretreatment Prior to defibration (preferably defibration with a high-pressure homogenizer) or, if necessary, dispersion treatment performed before defibration, pretreatment may be performed as necessary.
  • the pretreatment may be performed using a mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer.
  • the cellulosic fiber preferably includes at least one cellulose nanofiber obtained through the above-described chemical modification, and includes at least one selected from the group consisting of oxidized cellulose fiber, carboxymethylated cellulose fiber, and cationized cellulose fiber. It is more preferable.
  • Cellulose nanofibers may be subjected to treatment other than chemical modification and defibration treatment usually performed in the production process.
  • treatment include filtration treatment, fiber shortening treatment, and combinations of two or more thereof.
  • the timing for performing the filtration treatment is not particularly limited, it is usually after the defibration treatment and may be performed on the modified cellulose dispersion (eg, an aqueous dispersion such as an aqueous dispersion) after the defibration treatment.
  • the modified cellulose dispersion eg, an aqueous dispersion such as an aqueous dispersion
  • foreign matters for example, undefibrated fibers
  • the modified cellulose fiber is used for the production of a rubber composition, it is possible to suppress the breakage of the rubber composition starting from the remaining foreign matter and problems caused by this (eg, a decrease in strength of the rubber composition).
  • filtration treatment examples include pressure filtration treatment and vacuum filtration treatment.
  • the pressure condition (differential pressure) in the pressure filtration treatment and the vacuum filtration treatment is not particularly limited, but is, for example, 0.01 MPa or more, preferably 0.01 to 10 MPa.
  • the differential pressure is 0.01 MPa or more, the dilution of the dispersion liquid performed to obtain a sufficient amount of filtration treatment can be omitted (dilution is preferably not performed in consideration of the subsequent steps).
  • the differential pressure is 0.01 to 10 MPa, a sufficient amount of filtration treatment can be obtained even when the concentration of the modified cellulose fiber in the dispersion or the viscosity of the dispersion is high.
  • the concentration of the modified cellulose fiber during filtration is usually 0.1 to 5% by mass, preferably 0.2 to 4% by mass, and more preferably 0.5 to 3% by mass.
  • a filtration device is usually used for the filtration treatment.
  • the filtration device is not particularly limited, and examples thereof include Nutsche type, candle type, leaf disk type, drum type, filter press type, belt filter type and the like.
  • the amount of filtration treatment is not particularly limited, but is preferably 10 L / m 2 or more per hour, and more preferably 100 L / m 2 or more.
  • filter media used for the filtration treatment include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, and combinations thereof; membrane filters; filter cloths; metals A filter formed by sintering a material such as powder; or a slit filter.
  • filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, and combinations thereof
  • membrane filters such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, and combinations thereof
  • membrane filters filter cloths
  • metals A filter formed by sintering a material such as powder or a slit filter.
  • a filter made of metal fiber and a membrane filter are preferable.
  • the average pore size of the filter medium is not particularly limited when a filter aid is used in combination.
  • the average pore size of the filter medium is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and still more preferably 1 to 30 ⁇ m.
  • the average pore size is 0.01 ⁇ m or more, the filtration rate can be sufficient.
  • the thickness is 100 ⁇ m or less, foreign matters can be sufficiently captured, and a filtration effect is easily obtained.
  • a filter aid may be used as necessary.
  • the filter layer formed on the filter medium can be removed using the filter aid, so that the filter medium can be easily clogged and continuously removed.
  • the average particle size of the filter aid is preferably 150 ⁇ m or less, more preferably 1 to 150 ⁇ m, still more preferably 10 to 75 ⁇ m, still more preferably 15 to 45 ⁇ m, and particularly preferably 25 to 45 ⁇ m. When the average particle diameter exceeds 1 ⁇ m, a decrease in filtration rate can be suppressed. When the average particle diameter is less than 150 ⁇ m, foreign matters can be sufficiently captured, and filtration can be performed efficiently.
  • the shape of the filter aid is not particularly limited, and examples thereof include substantially spherical shapes (eg, diatomaceous earth) and substantially rod shapes (eg, powdered cellulose). Measurement of the average particle diameter of the filter aid can be performed with a laser diffraction measuring instrument in accordance with JIS Z8825-1 regardless of its shape.
  • the form of the auxiliary filter treatment is not particularly limited.
  • precoat filtration that forms a filter aid layer on the filter medium, and body feed that filters a mixture obtained by adding the filter aid to the modified cellulose fiber dispersion.
  • Examples include filtration and a combination of both. Of these, a combination of both is preferred. Thereby, the amount of filtration processing improves and the filtrate of favorable quality can be obtained.
  • the auxiliary filtration treatment may be a multistage treatment consisting of two or more filtration steps using different filter aids. In the case of multistage treatment, at least one of the filtration steps is preferably pressure filtration treatment or vacuum filtration treatment.
  • the filter aid is not particularly limited, and for example, inorganic compounds and organic compounds are preferable.
  • Preferable examples of the filter aid include diatomaceous earth, powdered cellulose, pearlite, and activated carbon.
  • Diatomaceous earth refers to soft rock or soil mainly composed of diatom shell, and is mainly composed of silica. Components other than silica, such as alumina, iron oxide and alkali metal oxides, may be included. Diatomaceous earth is usually porous and has a high porosity. The cake bulk density of diatomaceous earth is preferably about 0.2 to 0.45 g / cm 3 . Diatomaceous earth is preferably a fired product or a flux fired product. The origin of diatomaceous earth is not particularly limited, but freshwater diatomaceous earth is preferred. Examples of diatomaceous earth include Celite (registered trademark) manufactured by Celite, and Ceratom (registered trademark) manufactured by Eagle Pitcher Minerals.
  • Powdered cellulose is powdered cellulose, and its shape is usually rod-shaped particles.
  • the method for producing the powdered cellulose is not particularly limited.
  • the wood pulp is subjected to an acid hydrolysis treatment to remove the non-crystalline portion, and then pulverized and sieved.
  • the undegraded residue obtained after the acid hydrolysis of the selected pulp is purified and The method of drying, grinding
  • Powdered cellulose can be crystalline or microcrystalline cellulose and preferably has a certain particle size distribution.
  • the degree of cellulose polymerization of the powdered cellulose is preferably about 100 to 500.
  • the crystallinity of powdered cellulose by X-ray diffraction method is preferably 70 to 90%.
  • the volume average particle size of the powdered cellulose measured by a laser diffraction particle size distribution analyzer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • liquidity after filtration can be obtained.
  • the powdered cellulose include KC Flock (registered trademark) manufactured by Nippon Paper Industries Co., Ltd., Theolas (registered trademark) manufactured by Asahi Kasei Chemicals Corporation, and Avicel (registered trademark) manufactured by FMC.
  • the foreign matter area ratio of the modified cellulose fiber dispersion after filtration is preferably 25% or less.
  • the foreign matter area ratio is calculated by the following method. First, a surface tension adjuster is added to a dispersion of modified cellulose fibers, and then thinned. A pair of polarizing plates are arranged on both surfaces of the thin film so that the polarization axes are orthogonal to each other. Light is irradiated from one polarizing plate side, and a transmission image is acquired from the other polarizing plate side. The image is subjected to image analysis to determine the foreign matter area, and the foreign matter area ratio per gram of the modified cellulose fiber absolutely dry mass is calculated.
  • the modified cellulose fiber dispersion after filtration preferably has a foreign matter area ratio of 25% or less in the evaluation method.
  • the foreign matter area ratio is an index of dispersibility, and when the ratio is 25% or less, it has good dispersibility.
  • the fiber shortening treatment is a treatment for appropriately cutting (shortening fibers) the cellulose chain before the treatment, and examples include ultraviolet irradiation treatment, oxidative decomposition treatment, hydrolysis treatment, and combinations of two or more thereof. It is done.
  • the short fiber treatment is preferably a hydrolysis treatment or a combination of hydrolysis treatment and other treatment.
  • the conditions for the cleaning treatment are not particularly limited, and can be performed by a known method.
  • hydrolysis treatment examples include acid hydrolysis treatment in which an acid is added to cellulose fibers to hydrolyze cellulose chains, and alkali hydrolysis treatment in which alkali is added to cellulose fibers to hydrolyze cellulose chains.
  • the reaction medium for the hydrolysis treatment is usually water. Thereby, a side reaction can be suppressed.
  • the acid examples include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.
  • the hydrolysis treatment is preferably performed on a dispersion of cellulose fibers (eg, a dispersion in an aqueous dispersion medium such as water). Thereby, a hydrolysis reaction can be performed efficiently.
  • the cellulose fiber concentration in the dispersion is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass, and even more preferably from 1 to 5% by mass.
  • the conditions for the acid hydrolysis treatment may be any conditions that allow the acid to act on the amorphous part of the cellulose molecule. Examples are as follows.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulose fiber.
  • the added amount of the acid is 0.01% by mass or more, hydrolysis of the cellulose fiber can proceed and the efficiency of nanofiber formation can be improved.
  • the amount added is 0.5% by mass or less, excessive hydrolysis of the cellulose fibers can be prevented, and a decrease in the yield of the cellulose fibers can be suppressed.
  • the pH value of the dispersion medium during the acid hydrolysis treatment is preferably 2.0 to 4.0, more preferably 2.0 or more and less than 3.0.
  • the pH value can be adjusted, for example, by adjusting the acid addition amount. For example, when the alkali remains in the dispersion medium, the acid addition amount may be increased.
  • the reaction temperature is, for example, 70 to 120 ° C., and the reaction time is, for example, 1 to 10 hours. After the acid hydrolysis treatment, it is preferable to neutralize by adding an alkali such as sodium hydroxide. Thereby, the nanofiberization can be performed efficiently.
  • the conditions for the alkaline hydrolysis treatment are not particularly limited, but examples are as follows.
  • the pH value of the reaction solution is preferably 8 to 14, more preferably 9 to 13, and further preferably 10 to 12.
  • the pH value is 8 or more, hydrolysis proceeds and the cellulose fibers can be sufficiently shortened.
  • the pH value is 14 or less, coloring of the cellulose fiber after hydrolysis and a decrease in transparency can be suppressed.
  • the pH value may be adjusted by adding an alkali.
  • the alkali used is usually water-soluble, and sodium hydroxide is preferable from the viewpoint of production cost.
  • an auxiliary agent eg, oxidizing agent, reducing agent
  • the cellulose fibers having a carboxy group When cellulose fibers having a carboxy group are hydrolyzed in an alkaline solution, the cellulose fibers may be colored yellow due to the formation of double bonds during ⁇ elimination, and the transparency may decrease. Result application technology may be limited. However, by using an auxiliary agent, the double bond can be oxidized or reduced, and coloration and transparency can be prevented from lowering.
  • the auxiliary agent only needs to have activity in the alkaline region. From the viewpoint of reaction efficiency, the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and further preferably 0.5 to 2% by mass with respect to the absolutely dried cellulose fiber. preferable.
  • the oxidizing agent examples include oxygen, ozone, hydrogen peroxide, and hypochlorite. Among them, the oxidizing agent is less likely to generate radicals, and oxygen, hydrogen peroxide, and hypochlorite are preferable, and hydrogen peroxide is more preferable.
  • One oxidizing agent can be used alone, or two or more oxidizing agents can be used in combination.
  • Examples of the reducing agent include sodium borohydride, hydrosulfite, and sulfite.
  • a reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the reaction temperature of the hydrolysis treatment is not particularly limited, but hydrolysis may be insufficient at low temperatures, resulting in insufficient fiber shortening, and cellulose fibers after hydrolysis may be colored at high temperatures.
  • the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C.
  • the reaction time for the hydrolysis treatment is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
  • the concentration of the cellulose fiber in the alkaline solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass.
  • the ultraviolet irradiation treatment is a treatment for irradiating cellulose fibers with ultraviolet rays.
  • the reason why cellulose fibers are shortened by ultraviolet irradiation is presumed as follows. Ultraviolet rays directly act on cellulose and hemicellulose to cause low molecular weight and shorten the cellulose chain.
  • the wavelength of the ultraviolet light is preferably 100 to 400 nm, more preferably 100 to 300 nm, and still more preferably 135 to 260 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm it can directly act on cellulose and hemicellulose to easily reduce the molecular weight.
  • a light source for irradiating ultraviolet rays it is only necessary to irradiate light in a wavelength region of 100 to 400 nm.
  • Examples thereof include a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deuterium lamp, and a metal halide lamp. .
  • These light sources may be used alone or in any combination of two or more.
  • the combination of two or more light sources is preferably a combination of a plurality of light sources having different wavelength characteristics. Thereby, the cut
  • a container that contains a cellulose fiber dispersion is usually used.
  • a hard glass container may be used.
  • a quartz glass container that transmits ultraviolet rays more may be used. What is necessary is just to select suitably from the material with little deterioration with respect to the wavelength of the ultraviolet-ray used about the material of the part which does not participate in the light transmission reaction of a container.
  • the concentration of the cellulose fiber in the dispersion upon irradiation with ultraviolet rays is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 3% by mass. Energy efficiency can be improved as the density
  • the temperature at the time of irradiation with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and further preferably 20 to 50 ° C.
  • a temperature of 20 ° C. or higher is preferable because the efficiency of the photooxidation reaction is increased. If the temperature is 95 ° C. or lower, there is no risk of adverse effects such as deterioration of the quality of carboxymethylated cellulose, and there is no possibility that the pressure in the reaction apparatus will exceed atmospheric pressure, and it is necessary to design an apparatus that takes pressure resistance into consideration. This is preferable because the property is lost.
  • the pH value when irradiating with ultraviolet rays is not particularly limited, but considering the simplification of the process, the neutral value, for example, the pH value is preferably about 6.0 to 8.0.
  • Control methods include, for example, adjustment of the residence time of cellulose fibers in the irradiation reaction apparatus, adjustment of the energy amount of the irradiation light source, adjustment of the concentration of cellulose fibers in the irradiation apparatus (eg, adjustment by dilution with water, air or nitrogen, etc. Adjustment by blowing an inert gas into cellulose fibers).
  • the extent to which the residence time and concentration are controlled can be appropriately set according to the target quality of the cellulose fibers after irradiation with ultraviolet rays (fiber length, degree of cellulose polymerization, etc.).
  • the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. preferable.
  • an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
  • ozone is generated from the air present in the gas phase around the light source (light source periphery). Ozone generated in this way can be used as an auxiliary agent for ultraviolet irradiation treatment. Thereby, the amount of ozone supplied from outside the system can be reduced, or the supply can be omitted.
  • the method of using ozone purified from the air present in the periphery of the light source as an auxiliary agent for the ultraviolet irradiation treatment is not particularly limited. For example, while continuously supplying air to the periphery of the light source, the generated ozone is continuously And extracting the extracted ozone into cellulose fibers. By supplying oxygen to the periphery of the light source, a larger amount of ozone can be generated in the system, and the generated ozone can also be used as an auxiliary agent for the photooxidation reaction.
  • the ultraviolet irradiation treatment may be repeated a plurality of times.
  • the number of repetitions can be appropriately set according to conditions such as target quality of the cellulose fiber.
  • the wavelength of ultraviolet rays is 100 to 400 nm, preferably 135 to 260 nm, it is preferably 1 to 10 times, more preferably 2 to 5 times.
  • the irradiation time per time is preferably 0.5 to 10 hours, more preferably 0.5 to 3 hours.
  • Oxidative decomposition treatment is usually performed using hydrogen peroxide and ozone in combination.
  • Ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • the amount of ozone added (in terms of mass) is preferably 0.1 to 3 times, more preferably 0.3 to 2.5 times, and more preferably 0.5 to 1.5 times the absolute dry mass of the cellulose fiber. Further preferred. If it is 0.1 times or more, the amorphous part of cellulose can be sufficiently decomposed. When it is 3 times or less, excessive decomposition of cellulose can be suppressed, and a decrease in the yield of cellulose fibers can be prevented.
  • the amount of hydrogen peroxide added is preferably 0.001 to 1.5 times, more preferably 0.1 to 1.0 times the absolute dry mass of the cellulose fiber. When it is 0.001 times or more, the synergistic effect of ozone and hydrogen peroxide can be exhibited. If it is 1.5 times or less, the oxidative decomposition can proceed sufficiently, and the cost can be suppressed.
  • the conditions for the oxidative decomposition treatment are not particularly limited, but when ozone and hydrogen peroxide are used, the conditions are as follows.
  • the pH value is preferably 2 to 12, more preferably 4 to 10, further preferably 6 to 8, and the temperature is preferably 10 to 90 ° C., more preferably 20 to 70 ° C., and further preferably 30 to 50.
  • the reaction time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours. Thereby, the treatment can be carried out with good reaction efficiency.
  • the apparatus used for the oxidative decomposition treatment may be a known apparatus.
  • the apparatus include a reaction chamber, a stirrer, a chemical injection device, a heater, and a normal reactor equipped with a pH electrode.
  • ozone and hydrogen peroxide remaining in the aqueous solution can act effectively in the defibrating process, so that the shortening of cellulose fibers is further shortened. Can be promoted.
  • the form of the cellulosic fiber mixed with a rubber component is not particularly limited.
  • the form include a dispersion in which cellulosic fibers are dispersed in a dispersion medium, a dry solid of the dispersion, and a wet solid of the dispersion.
  • the concentration of the cellulosic fibers in the dispersion is usually 0.1 to 5% (w / v) when the dispersion medium is water.
  • the dispersion medium contains an organic solvent such as alcohol in addition to water, the concentration is usually 0.1 to 20% (w / v).
  • the wet solid is a solid in an intermediate form between the dispersion and the dry solid.
  • the amount of the dispersion medium in the wet solid obtained by dehydrating the dispersion by a conventional method is preferably 5 to 15% by weight based on the cellulosic fiber, but the amount of the dispersion medium can be increased by adding a liquid medium or further drying. Can be adjusted as appropriate.
  • examples of the form include a mixed solution of a cellulosic fiber and a water-soluble polymer solution, a dry solid of the mixed solution, and a wet solid of the mixed solution.
  • the amount of the liquid medium in the mixed liquid and the dry solid may be in the range of the amount of the dispersion medium of the wet solid described above.
  • water-soluble polymers examples include cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, hard starch, crumbs Flour, positive starch, phosphorylated starch, corn starch, gum arabic, locust bean gum, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soy protein lysate, peptone, polyvinyl alcohol, polyacrylamide, Polyvinyl pyrrolidone, polyvinyl acetate, polyamino acid, polylactic acid, polymalic acid, polyglycerin, latex, rosin sizing agent, petroleum Fat sizing agent, urea resin, melamine resin, epoxy resin, polyamide
  • the dry solid and wet solid can be prepared by drying a dispersion of cellulose fibers or a mixture of cellulose fibers and a water-soluble polymer.
  • a drying method is not specifically limited, For example, spray drying, pressing, air drying, hot air drying, or vacuum drying is mentioned.
  • the drying device include a continuous tunnel drying device, a band drying device, a vertical drying device, a vertical turbo drying device, a multi-stage disk drying device, an aeration drying device, a rotary drying device, an air flow drying device, and a spray dryer drying device.
  • Spray dryer cylindrical dryer, drum dryer, screw conveyor dryer, rotary dryer with heating tube, vibration transport dryer, batch dryer (eg box dryer, aerated dryer, vacuum box)
  • batch dryer eg box dryer, aerated dryer, vacuum box
  • a drying device or a stirring drying device may be used alone or in combination of two or more.
  • the drum drying apparatus is preferable because it can supply heat energy uniformly and directly to the material to be dried, so that energy efficiency is high and the dried material can be recovered immediately without applying more heat than necessary.
  • chloroprene rubber is used as the rubber component.
  • Chloroprene rubber (CR) exhibits crystallinity similar to that of natural rubber (NR).
  • Chloroprene rubber is characterized by satisfying various properties such as heat resistance, oil resistance, ozone resistance, chemical resistance, fatigue resistance, flame resistance, weather resistance, and adhesiveness in a well-balanced manner.
  • chloroprene rubber and other rubber components can be used in combination as long as the desired effects are not impaired.
  • other rubber components include natural rubber, chlorinated natural rubber, hydrogenated natural rubber, chlorosulfonated natural rubber, epoxidized natural rubber, deproteinized natural rubber, butadiene rubber (BR), and styrene-butadiene copolymer.
  • SBR isoprene rubber
  • IR isoprene rubber
  • IIR butyl rubber
  • NBR acrylonitrile-butadiene rubber
  • styrene-isoprene copolymer rubber styrene-isoprene-butadiene copolymer rubber
  • isoprene-butadiene copolymer rubber etc.
  • the form of mixing the chloroprene rubber and the rubber component used as necessary with the cellulosic fiber is not particularly limited.
  • a dispersion of cellulose fibers, a dry solid of the dispersion, or a wet solid of the dispersion is mixed with chloroprene rubber and a rubber component (solid) used as necessary or a dispersion thereof.
  • a form is mentioned.
  • the form which mixes the dispersion liquid of a cellulosic fiber, the dispersion liquid of the chloroprene rubber and the rubber component used as needed is preferable.
  • the addition amount of the cellulosic fibers in the preparation of the mixed solution is preferably 1% by weight or more with respect to 100% by weight of the rubber component (the total of the chloroprene rubber and the other rubber component when other rubber components are included), and 2% by weight. % Or more is more preferable, and 3% by weight or more is more preferable. Thereby, the improvement effect of the tensile strength of the rubber composition obtained can fully be expressed.
  • the upper limit is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 1 to 50% by weight is preferable.
  • Solid-liquid separation process dehydration process
  • water washing process The production method of the present invention preferably further includes at least one step selected from the group consisting of a solid-liquid separation step and a water washing step, and more preferably further includes both steps. Thereby, content of the impurity in a rubber composition can be reduced and the intensity
  • the aspect of a solid-liquid separation process and a water washing process has a preferable aspect which repeats the set of solid-liquid separation and water washing twice or more.
  • the solid-liquid separation step is a step for solid-liquid separation of the liquid mixture containing the solidified rubber component obtained in the coagulation step. Therefore, the time for performing the solid-liquid separation step is usually after the coagulation step.
  • Solid-liquid separation is preferably performed using a filter medium.
  • filter media include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, membranes, filter cloths, filters made by sintering metal powder, Or a slit filter is mentioned.
  • a nylon filter is preferable.
  • a preferable average pore diameter of the filter medium is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and further preferably 1 to 30 ⁇ m.
  • the water washing step is a step of washing the solid phase obtained in the solid-liquid separation step.
  • the production method of the present invention may further include a drying step. Thereby, a masterbatch with little moisture content can be obtained.
  • a drying process is a process which uses for the drying by heating the processing liquid obtained by a coagulation process, or the processing liquid obtained by the solid-liquid separation process and washing
  • Conditions such as heating temperature and heating time are not particularly limited.
  • the heating temperature is preferably 40 ° C. or higher.
  • the upper limit is preferably less than 100 ° C.
  • the heating time is preferably 1 hour or longer.
  • the upper limit is preferably 24 hours or less. By setting the heating condition within the above range, damage to the rubber component can be suppressed. Heating may be performed using a dryer such as an oven.
  • the production method of the present invention may further include a step of adding a methylene acceptor compound and / or a methylene donor compound.
  • the methylene acceptor compound is usually a compound that can accept a methylene group and can undergo a curing reaction by mixing with a methylene donor compound and heating.
  • Examples of the methylene acceptor compound include phenol compounds such as phenol, resorcinol, resorcin, and cresol and derivatives thereof, resorcin resin, cresol resin, and phenol resin.
  • phenol resin examples include condensates of the above phenol compounds and derivatives thereof with aldehyde compounds such as formaldehyde and acetaldehyde.
  • Phenol resins can be classified into novolak resins (acidic catalysts) and resol resins (alkaline catalysts) depending on the catalyst used in the condensation, and any of them may be used in the present invention.
  • the phenol resin may be modified with oil or fatty acid. Examples of the oil and fatty acid include rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linolenic acid.
  • the methylene donor compound is usually a compound that can donate a methylene group and can undergo a curing reaction by mixing with a methylene acceptor compound and heating.
  • the methylene donor compound include hexamethylenetetramine and melamine derivatives.
  • the melamine derivative include hexamethylol melamine, hexamethoxymethyl melamine, pentamethoxymethyl melamine, pentamethoxymethylol melamine, hexaethoxymethyl melamine, and hexakis- (methoxymethyl) melamine.
  • Examples of the combination of the methylene acceptor compound and the methylene donor compound include, for example, cresol, a cresol derivative or a combination of a cresol resin and pentamethoxymethylmelamine, a resorcin, a resorcin derivative or a combination of a resorcin resin and hexamethylenetetramine, a cashew-modified phenol.
  • Examples include a combination of a resin and hexamethylenetetramine, and a combination of a phenol resin and hexamethylenetetramine.
  • cresol a cresol derivative or a cresol resin and pentamethoxymethylmelamine
  • a combination of resorcin, a resorcin derivative or resorcin resin and hexamethylenetetramine are preferable.
  • the amount of the methylene acceptor compound added is preferably 0.5% by weight or more, more preferably 1.0% by weight or more, further preferably 1.3% by weight or more, and more preferably 1.5% by weight with respect to 100% by weight of the rubber component. % Or more is even more preferable. Thereby, the improvement effect of tensile strength can fully express.
  • the upper limit is preferably 50% by weight or less, preferably 20% by weight or less, and more preferably 10% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Accordingly, 0.5 to 50% by weight is preferable, 1.0 to 50% by weight or 1.0 to 20% by weight is more preferable, 1.3 to 20% by weight is further preferable, and 1.5 to 10% by weight is more preferable. Even more preferred.
  • the addition amount of the methylene donor compound is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 25% by weight or more with respect to 100% by weight of the methylene acceptor compound.
  • the upper limit is preferably 100% by weight or less, preferably 90% by weight or less, and more preferably 85% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 10 to 100% by weight is preferable, 20 to 90% by weight is more preferable, and 25 to 85% by weight is further preferable.
  • the time for performing this step may be either during or after the solidification step.
  • a mode in which a methylene acceptor compound / methylene donor compound is mixed together with them; a methylene acceptor compound / methylene donor compound is added to a master batch obtained after the drying step An embodiment is mentioned.
  • the mixing step is a step of mixing the processed product (master batch) after the coagulation step (obtained through other steps as necessary) as it is or adding an optional component as necessary.
  • the temperature during mixing may be about room temperature (for example, about 15 to 30 ° C.), but may be heated to a high temperature so that the rubber component does not undergo a crosslinking reaction. .
  • it is 140 ° C. or lower, more preferably 120 ° C. or lower.
  • a minimum is 40 degreeC or more, Preferably it is 60 degreeC or more.
  • the heating temperature is preferably about 40 to 140 ° C., more preferably about 60 to 120 ° C.
  • Optional components include, for example, reinforcing agents (for example, carbon black, silica, etc.), silane coupling agents, sulfur, zinc oxide, stearic acid, vulcanization accelerators, vulcanization accelerators, oils, cured resins, waxes, aging Inhibitors, colorants, peptizers, softeners, plasticizers, curing agents (eg, phenol resins, high styrene resins, etc.), foaming agents, fillers (carbon black, silica, etc.), coupling agents, adhesives (E.g., macron resin, phenol, terpene resin, petroleum hydrocarbon resin, rosin derivative, etc.), dispersant (e.g., fatty acid, etc.), adhesion promoter (e.g., organic cobalt salt, etc.), lubricant (e.g., paraffin, Compounding agents that can be used in the rubber industry, such as hydrocarbon resins, fatty acids, fatty acid derivatives, etc.).
  • the addition timing of optional ingredients is not particularly limited.
  • the addition timing of sulfur and the vulcanization accelerator is preferably after the addition timing of the methylene acceptor compound and / or the methylene donor compound.
  • the methylene acceptor compound and / or methylene donor compound addition step is performed in the middle of the mixing step, the methylene acceptor compound and the material containing the methylene donor compound are mixed and kneaded without adding sulfur and a vulcanization accelerator. It is preferable to start and then add sulfur and a vulcanization accelerator to further masticate and knead.
  • the methylene acceptor compound and the methylene donor compound are preliminarily condensed by heating, and the interaction between the condensate, the rubber component, and the cellulosic fiber can be effectively exhibited.
  • the amount of sulfur added is preferably 1.0% by weight or more, more preferably 1.5% by weight or more, and still more preferably 1.7% by weight or more based on the rubber component.
  • the upper limit is preferably 10% by weight or less, preferably 7% by weight or less, and more preferably 5% by weight or less.
  • the addition amount of the vulcanization accelerator is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and further preferably 0.4% by weight or more based on the rubber component.
  • the upper limit is preferably 5% by weight or less, preferably 3% by weight or less, and more preferably 2% by weight or less.
  • molding may be performed as necessary.
  • the molding apparatus include mold molding, injection molding, extrusion molding, hollow molding, and foam molding, and may be appropriately selected according to the shape, application, and molding method of the final product.
  • the rubber composition can be effectively reinforced.
  • a methylene acceptor compound and / or a methylene donor compound undergo a condensation reaction by heating to form a three-dimensional network structure, and this structure interacts with the rubber component and the cellulosic fiber, respectively.
  • the rubber composition can be reinforced more effectively.
  • the heating temperature is preferably 150 ° C. or higher, and the upper limit is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. Therefore, about 150 to 200 ° C. is preferable, and about 150 to 180 ° C. is more preferable.
  • the heating device include vulcanization devices such as mold vulcanization, can vulcanization, and continuous vulcanization.
  • finishing may be performed as necessary at the end (before final product).
  • finishing treatment include polishing, surface treatment, lip finishing, lip cutting, and chlorination, and only one of these treatments may be performed, or a combination of two or more may be used.
  • the use of the rubber composition obtained by the production method of the present invention is not particularly limited, and includes, for example, transportation equipment such as automobiles, trains, ships, airplanes, and belt conveyors; electrical appliances such as personal computers, televisions, telephones, and watches; Mobile communication equipment such as telephones; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment; building materials; office equipment such as stationery, containers, and containers.
  • transportation equipment such as automobiles, trains, ships, airplanes, and belt conveyors
  • electrical appliances such as personal computers, televisions, telephones, and watches
  • Mobile communication equipment such as telephones
  • building materials office equipment such as stationery, containers, and containers.
  • office equipment such as stationery, containers, and containers.
  • industrial belts include a flat belt, a conveyor belt, a cogged belt, a V belt, a rib belt, and a round belt.
  • oxidized cellulose nanofiber (1) Bleached unbeaten kraft pulp derived from conifers (whiteness 85%), 5.00 g (absolutely dry), 39 mg of TEMPO (Sigma Aldrich) and 0.05 mmol of sodium bromide (absolutely dry) The solution was added to 500 ml of an aqueous solution in which 1.0 mmol) was dissolved in 1 g of cellulose, and stirred until the pulp was uniformly dispersed. An aqueous sodium hypochlorite solution was added to the reaction system so that sodium hypochlorite was 5.5 mmol / g, and the oxidation reaction was started at room temperature.
  • oxidized cellulose nanofiber (2) A 5% (w / v) slurry of the oxidized cellulose of Production Example 1 was prepared, and 30% (w / v) hydrogen peroxide solution was added 2% (in terms of active ingredient) with respect to the solid content of the oxidized cellulose. The pH was adjusted to 12 with sodium hydroxide. This slurry was hydrolyzed at 80 ° C. for 2 hours. Then, it filtered with the glass filter and washed thoroughly with water. The hydrolyzed 5% (w / v) oxidized cellulose slurry was treated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain an oxidized cellulose nanofiber dispersion. The average fiber diameter was 5 nm and the aspect ratio was 60.
  • ⁇ Manufacture example 4 Manufacture of cationized cellulose nanofiber To pulper which can stir pulp, pulp (NBKP, made by Nippon Paper Industries Co., Ltd.) is added by dry weight 200g, sodium hydroxide 24g by dry weight, and pulp solid concentration is 15%. Water was added so that Then, after stirring for 30 minutes at 30 ° C., the temperature was raised to 70 ° C., and 200 g (in terms of active ingredient) of 3-chloro-2-hydroxypropyltrimethylammonium chloride was added as a cationizing agent. After reacting for 1 hour, the reaction product was taken out, neutralized and washed to obtain a cation-modified pulp having a cation substitution degree of 0.05 per glucose unit. This was made into 1% of solid content concentration, and it processed twice with the high pressure homogenizer at 20 degreeC and the pressure of 140 Mpa. The average fiber diameter was 25 nm and the aspect ratio was 50.
  • Example 1 1000 g of a solid dispersion of 0.5% solid content concentration of oxidized cellulose nanofiber obtained in Production Example 1 and 1000 g of a 10% suspension of chloroprene rubber latex solid content are mixed, and rubber component: weight of modified cellulose nanofiber The ratio was 100: 5, and the mixture was stirred for 30 minutes with a TK homomixer (6000 rpm). While stirring this mixed solution with a three-one motor (150-300 rpm), 10% calcium chloride was added so that the concentration in the total mixed solution would be 0.5%, and solid-liquid separation was performed with a nylon mesh with an opening of 5 ⁇ m. Then, a master batch was obtained by drying in a heating oven at 70 ° C. for 10 hours.
  • This master batch 168g was kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 60 ° C for 5 minutes.
  • stearic acid is 0.5% by weight based on the rubber component
  • zinc oxide is 6% by weight based on the rubber component
  • sulfur is 3.5% by weight based on the rubber component
  • a vulcanization accelerator (BBS, Nt -Butyl-2-benzothiazolesulfenamide) is added to the rubber component by 0.7% by weight and kneaded at 60 ° C. for 10 minutes using an open roll (manufactured by Kansai Roll Co., Ltd.).
  • a sheet of material was obtained.
  • This sheet was sandwiched between molds and press vulcanized at 160 ° C. for 15 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm.
  • This is cut into test pieces of a predetermined shape, and tensile strength (50% tensile stress (M50), 100), which is one of reinforcing properties, according to JIS K6251 “vulcanized rubber and thermoplastic rubber—how to obtain tensile properties”.
  • % Tensile stress (M100), 300% tensile stress (M300), and breaking strength) were measured. The results are shown in Table 1. The larger each value, the better the vulcanized rubber composition is reinforced and the better the mechanical strength of the rubber.
  • Example 2 After solidification, solid-liquid separation was performed with a nylon mesh having an opening of 5 ⁇ m after solidification, and the obtained solid was washed with water, and again solid-liquid separated with a nylon mesh having an opening of 5 ⁇ m, and the solid was recovered. Went in the way. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 2 was performed except that the oxidized cellulose nanofiber obtained in Production Example 2 was used. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 2 was performed except that the coagulant was magnesium chloride. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 2 was performed except that the coagulant was aluminum sulfate. The results are shown in Table 1.
  • Example 6> In the same manner as in Example 2, except that calcium chloride was added so that the concentration in the total mixed solution was 0.3%, and then 5% by weight acetic acid was added until the pH in the mixed solution reached 5. went. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 2, except that calcium chloride was added so that the concentration in the total mixed solution was 0.3%, and then 5 wt% sulfuric acid was added until the pH in the mixed solution reached 5. went. The results are shown in Table 1.
  • Example 8> The same procedure as in Example 1 was performed, except that 20 parts by weight of the oxidized cellulose nanofiber obtained in Production Example 1 was blended with respect to 100 parts of the rubber component. The results are shown in Table 1.
  • Example 9 After solidification, solid-liquid separation was performed with a nylon mesh having a mesh opening of 5 ⁇ m, and the obtained solid was washed with water, and again solid-liquid separated with a nylon mesh having a mesh opening of 5 ⁇ m, and the solid was recovered. Went in the way. The results are shown in Table 1.
  • Example 10 The same procedure as in Example 2 was performed except that the carboxymethylated cellulose nanofiber obtained in Production Example 3 was used. The results are shown in Table 1.
  • Example 11> This was carried out in the same manner as in Example 2 except that the cationized cellulose nanofiber obtained in Production Example 4 was used. The results are shown in Table 1.
  • Example 12 Instead of kneading 168 g of the master batch at 60 ° C. for 10 minutes using an open roll, 1.3 wt% of resorcin for the rubber component and 0.8 wt% of hexamethylenetetramine for the rubber component are added to the master batch of 168 g. This was performed in the same manner as in Example 2 except that it was added and kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 60 ° C. for 10 minutes. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that the coagulant was sodium chloride. With this coagulant, coagulation did not proceed well, and it was difficult to produce an evaluation sample, so no measurement results of tensile strength were obtained. The results are shown in Table 1.

Abstract

The purpose of the present invention is to provide a rubber composition having sufficient reinforcing properties and improved compatibility of rubber and cellulose-based fiber. That is, the present invention provides a method for producing a rubber composition, the method comprising a step in which a mixture of a chloroprene rubber-containing rubber component and a cellulose-based fiber (e.g., oxidized cellulose fiber, carboxymethylated cellulose fiber, cationized cellulose fiber, etc.) is coagulated by a metal salt, or by a metal salt and an acid. The rubber composition obtained by this production method exhibits excellent strength characteristics.

Description

ゴム組成物の製造方法Method for producing rubber composition
 本発明は、セルロース系繊維を含有するゴム組成物の製造方法に関する。 The present invention relates to a method for producing a rubber composition containing cellulosic fibers.
 ゴムとセルロース系繊維を含むゴム組成物は優れた機械強度を有することが知られている。例えば、特許文献1には平均繊維径が0.5μm未満の短繊維の水分散液とゴムラテックスとを撹拌混合し、その混合液から水を除去して得られるゴム/短繊維のマスターバッチが記載されている。当該文献には、平均繊維径が0.5μm未満の短繊維を水中でフィブリル化させた分散液とゴムラテックスを混合して乾燥させることにより短繊維をゴム中に均一に分散させることが記載されている。また、このゴム/短繊維のマスターバッチからゴム補強性と耐疲労性のバランスに優れるゴム組成物を製造できることも記載されている。しかしながら、一般にゴムとセルロース系繊維とは相溶性が低いため、ゴムとセルロース系繊維を含むゴム組成物の強度は不十分であった。そこで、相溶性を向上させるためにシランカップリング剤を使用すること、及びセルロース繊維に長鎖アルキル基を導入することが検討されている(例えば特許文献2、3)。 Rubber compositions containing rubber and cellulosic fibers are known to have excellent mechanical strength. For example, Patent Document 1 discloses a rubber / short fiber master batch obtained by stirring and mixing an aqueous dispersion of short fibers having an average fiber diameter of less than 0.5 μm and rubber latex, and removing water from the mixed liquid. Are listed. This document describes that a short fiber having an average fiber diameter of less than 0.5 μm is uniformly dispersed in rubber by mixing and drying a dispersion obtained by fibrillating short fibers in water and a rubber latex. ing. It is also described that a rubber composition having an excellent balance between rubber reinforcement and fatigue resistance can be produced from this rubber / short fiber master batch. However, since rubber and cellulosic fiber are generally poorly compatible, the strength of the rubber composition containing rubber and cellulosic fiber has been insufficient. Then, in order to improve compatibility, using a silane coupling agent and introduce | transducing a long-chain alkyl group into a cellulose fiber are examined (for example, patent document 2, 3).
特開2006-206864号公報JP 2006-206864 A 特開2009-191198号公報JP 2009-191198 A 特開2014-125607号公報JP 2014-125607 A
 しかし、特許文献2及び3に記載の方法に使用する試薬は高価であるという問題がある。さらにこれらの方法は反応率が低く、十分な強度改善効果が得られないという問題がある。
 本発明は、ゴムとセルロース系繊維の相溶性が良好であり、十分な補強性を発揮し得るゴム組成物を提供することを目的とする。
However, there is a problem that the reagents used in the methods described in Patent Documents 2 and 3 are expensive. Furthermore, these methods have a problem that the reaction rate is low and a sufficient strength improvement effect cannot be obtained.
An object of the present invention is to provide a rubber composition that has good compatibility between rubber and cellulosic fibers and can exhibit sufficient reinforcement.
 本発明は以下の〔1〕~〔6〕を提供する。
〔1〕クロロプレンゴム及びセルロース系繊維を含有する混合液に、2価又は3価の金属塩、あるいは、2価又は3価の金属塩及び酸を添加して、ゴム成分を凝固させる工程を含む、ゴム組成物の製造方法。
〔2〕金属塩が、カルシウム塩である、〔1〕に記載のゴム組成物の製造方法。
〔3〕酸が、酢酸又は硫酸である、〔1〕又は〔2〕に記載のゴム組成物の製造方法。
〔4〕セルロース系繊維が、酸化セルロースファイバー、カルボキシメチル化セルロースファイバー及びカチオン化セルロースファイバーからなる群より選ばれる少なくとも1種を含む、〔1〕~〔3〕のいずれかに記載のゴム組成物の製造方法。
〔5〕セルロース系繊維の長さ加重平均繊維長が50~2000nmである、〔1〕~〔4〕のいずれかに記載のゴム組成物の製造方法。
〔6〕セルロース系繊維の長さ加重平均繊維径が2~500nmである、〔1〕~〔5〕のいずれか1項に記載の方法。
The present invention provides the following [1] to [6].
[1] A step of adding a divalent or trivalent metal salt, or a divalent or trivalent metal salt and an acid to a mixed solution containing chloroprene rubber and cellulosic fiber to coagulate the rubber component. The manufacturing method of a rubber composition.
[2] The method for producing a rubber composition according to [1], wherein the metal salt is a calcium salt.
[3] The method for producing a rubber composition according to [1] or [2], wherein the acid is acetic acid or sulfuric acid.
[4] The rubber composition according to any one of [1] to [3], wherein the cellulosic fiber includes at least one selected from the group consisting of oxidized cellulose fiber, carboxymethylated cellulose fiber, and cationized cellulose fiber. Manufacturing method.
[5] The method for producing a rubber composition according to any one of [1] to [4], wherein the length-weighted average fiber length of the cellulosic fibers is 50 to 2000 nm.
[6] The method according to any one of [1] to [5], wherein the cellulosic fiber has a length-weighted average fiber diameter of 2 to 500 nm.
 本発明によれば、ゴムとセルロース系繊維の相溶性が良好であり、十分な補強性を発揮し得るゴム組成物を提供できる。 According to the present invention, it is possible to provide a rubber composition that has good compatibility between rubber and cellulosic fibers and can exhibit sufficient reinforcement.
 本発明は、クロロプレンゴムとセルロース系繊維を含む混合液に金属塩あるいは金属塩及び酸を添加し、クロロプレンゴムを凝固させる工程(凝固工程)を含む、ゴム組成物の製造方法に関する。この方法で製造されたゴム組成物は、ゴムとセルロース系繊維の相溶性が良好であり、十分な補強性を発揮し得、大きなひずみを与えた場合でも補強性が維持され得る。なお、本発明の効果は、クロロプレンゴムとセルロース系繊維を含むゴム組成物に特異的に発現する。 The present invention relates to a method for producing a rubber composition, comprising a step of coagulating chloroprene rubber by adding a metal salt or a metal salt and an acid to a mixed solution containing chloroprene rubber and cellulosic fibers. The rubber composition produced by this method has good compatibility between the rubber and the cellulosic fiber, can exhibit sufficient reinforcement, and can maintain the reinforcement even when a large strain is applied. In addition, the effect of this invention expresses specifically in the rubber composition containing a chloroprene rubber and a cellulosic fiber.
<1.凝固工程>
 本発明において、凝固(凝固法)とは、ゴム成分を含む懸濁液(分散液)等の液に酸あるいは金属塩の添加により、ゴム成分を凝集させ、その結果としてゴム成分を分離(固液分離)させる処理(工程、方法)である。
<1. Solidification process>
In the present invention, solidification (coagulation method) means that a rubber component is aggregated by adding an acid or a metal salt to a liquid such as a suspension (dispersion) containing the rubber component, and as a result, the rubber component is separated (solidified). Liquid separation) (process, method).
 凝固工程は、クロロプレンゴムとセルロース系繊維とを混合し、これらを含む混合液を得ること、及び、前記混合液に金属塩を、若しくは、酸又は金属塩を、添加すること、を含む。 The coagulation step includes mixing chloroprene rubber and cellulosic fibers to obtain a mixed solution containing these, and adding a metal salt, or an acid or a metal salt to the mixed solution.
<1.1.金属塩>
 凝固に用いる金属塩は、2価又は3価の金属塩が好ましい。2価又は3価の金属イオンがクロロプレンゴムとセルロース系繊維の相溶性向上に寄与し、ゴム組成物の補強性を向上できると推測される。2価又は3価の金属塩としては、例えば、塩化カルシウム、硝酸カルシウム等のカルシウム塩、塩化マグネシウム、硫酸マグネシウム等のマグネシウム塩、塩化アルミニウム、硫酸アルミニウム等のアルミニウム塩が挙げられ、カルシウム塩及びマグネシウム塩が好ましく、カルシウム塩がより好ましく、塩化カルシウムがさらに好ましい。カルシウムイオンは、クロロプレンゴムとセルロース系繊維の相溶性向上及びゴム組成物の補強性向上への寄与率が高いと推測される。金属塩は、1種又は2種以上の組み合わせでもよい。
 金属塩の混合液への添加量は特に限定されないが、全混合液中での金属塩の濃度が、好ましくは0.1重量%以上、より好ましくは0.3重量%以上となるよう調整すればよい。上限は特に限定されないが、好ましくは3.0重量%以下、より好ましくは2.0重量%以下である。従って、前混合液中での金属塩の濃度は、好ましくは0.1~3.0重量%、より好ましくは0.3~2.0重量%となるよう調整すればよい。
<1.1. Metal salt>
The metal salt used for solidification is preferably a divalent or trivalent metal salt. It is presumed that divalent or trivalent metal ions contribute to the improvement of the compatibility between the chloroprene rubber and the cellulosic fiber, and the reinforcing property of the rubber composition can be improved. Examples of the divalent or trivalent metal salt include calcium salts such as calcium chloride and calcium nitrate, magnesium salts such as magnesium chloride and magnesium sulfate, and aluminum salts such as aluminum chloride and aluminum sulfate. Salts are preferred, calcium salts are more preferred, and calcium chloride is even more preferred. Calcium ions are presumed to have a high contribution to improving compatibility between chloroprene rubber and cellulosic fibers and reinforcing the rubber composition. One or a combination of two or more metal salts may be used.
The amount of the metal salt added to the mixed solution is not particularly limited, but the metal salt concentration in the whole mixed solution is preferably adjusted to 0.1% by weight or more, more preferably 0.3% by weight or more. That's fine. Although an upper limit is not specifically limited, Preferably it is 3.0 weight% or less, More preferably, it is 2.0 weight% or less. Therefore, the concentration of the metal salt in the premixed solution is preferably adjusted to 0.1 to 3.0% by weight, more preferably 0.3 to 2.0% by weight.
<1.2.酸>
 凝固に用いる酸は、有機酸及び無機酸のいずれを用いることもできる。有機酸としては、ギ酸、酢酸などが好ましい。無機酸としては、硫酸、塩酸、炭酸などが好ましい。中でも酢酸、硫酸がより好ましい。酸の添加条件は金属塩の種類により異なるが一般に、酸添加後の混合液中のpHが好ましくは3.0以上、より好ましくは3.5以上、さらに好ましくは4.0以上となるよう調整すればよい。上限は特に限定されないが、好ましくは8.0以下、より好ましくは7.0以下、さらに好ましくは6.0以下、さらにより好ましくは5.0以下である。従って、pHが好ましくは3.0~8.0、より好ましくは3.5~7.0、さらに好ましくは4.0~7.0、4.0~6.0、又はpH4.0~5.0となるように調整すればよい。酸は1種又は2種以上の組み合わせでもよい。
<1.2. Acid>
As the acid used for coagulation, either an organic acid or an inorganic acid can be used. As the organic acid, formic acid, acetic acid and the like are preferable. As the inorganic acid, sulfuric acid, hydrochloric acid, carbonic acid and the like are preferable. Of these, acetic acid and sulfuric acid are more preferable. The acid addition conditions vary depending on the type of metal salt, but in general, the pH in the mixed solution after acid addition is preferably 3.0 or more, more preferably 3.5 or more, and even more preferably 4.0 or more. do it. Although an upper limit is not specifically limited, Preferably it is 8.0 or less, More preferably, it is 7.0 or less, More preferably, it is 6.0 or less, More preferably, it is 5.0 or less. Accordingly, the pH is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, still more preferably 4.0 to 7.0, 4.0 to 6.0, or pH 4.0 to 5 Adjust to 0. One or a combination of two or more acids may be used.
 凝固においては、金属塩を添加して行うこと、又は金属塩の添加と酸の添加の両方を行うことが好ましく、2価又は3価の金属塩を添加して行うこと、又は2価又は3価の金属塩の添加と酸の添加の両方を行うことがより好ましい。金属塩の添加と酸の添加の両方を行う場合、金属塩の添加と酸の添加の時期は特に限定されないが、金属塩を添加後に酸を添加することが好ましい。 In solidification, it is preferable to add a metal salt, or to add both a metal salt and an acid, and to add a divalent or trivalent metal salt, or to add a divalent or 3 It is more preferable to perform both addition of a valent metal salt and addition of an acid. When both the addition of the metal salt and the addition of the acid are performed, the timing of the addition of the metal salt and the addition of the acid is not particularly limited, but it is preferable to add the acid after the addition of the metal salt.
<1.3.セルロース系繊維>
 本発明において、セルロース系繊維は、ミクロンオーダーの繊維径を有するセルロース繊維又は当該セルロース繊維を必要に応じ化学変性した後で解繊して得たナノオーダーの繊維径を有するセルロースナノファイバーでもよい。
<1.3. Cellulosic fiber>
In the present invention, the cellulose fiber may be a cellulose fiber having a fiber diameter of micron order or a cellulose nanofiber having a fiber diameter of nano order obtained by chemically modifying the cellulose fiber after chemical modification as necessary.
 セルロース繊維の由来は、特に限定されないが、例えば、植物、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物が挙げられる。植物由来のセルロース繊維としては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)が挙げられる。本発明で用いるセルロース繊維の原料は、これらのいずれか又は組合せでもよいが、好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。 The origin of the cellulose fiber is not particularly limited, and examples thereof include plants, animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), and microorganism products. Plant-derived cellulose fibers include, for example, wood, bamboo, hemp, jute, kenaf, farmland residue, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, and the like. Although the raw material of the cellulose fiber used by this invention may be any of these or a combination, it is preferably a plant or microorganism-derived cellulose fiber, more preferably a plant-derived cellulose fiber.
 セルロース繊維の平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は、通常30~60μm程度、広葉樹クラフトパルプの場合は、通常10~30μm程度である。一般的な精製を経た、針葉樹クラフトパルプ及び広葉樹クラフトパルプ以外のパルプの平均繊維径は、通常50μm程度である。例えばチップ等の数cm大の材料を精製した原料を用いる場合、リファイナー、ビーター等の離解機で機械的処理を行い、平均繊維径を50μm程度に調整してセルロース繊維を得ることが好ましい。 The average fiber diameter of the cellulose fibers is not particularly limited, but is usually about 30 to 60 μm in the case of softwood kraft pulp, which is a general pulp, and is usually about 10 to 30 μm in the case of hardwood kraft pulp. The average fiber diameter of pulp other than softwood kraft pulp and hardwood kraft pulp that has undergone general refining is usually about 50 μm. For example, when a raw material obtained by refining a material such as a chip of several centimeters is used, it is preferable to obtain a cellulose fiber by performing mechanical treatment with a disintegrator such as a refiner or beater and adjusting the average fiber diameter to about 50 μm.
 セルロース系繊維(例えば、セルロースナノファイバー)の平均繊維径は、長さ加重平均繊維径にして通常2~500nm程度であるが、好ましくは2~50nmである。平均繊維長は長さ加重平均繊維長にして50~2000nmが好ましい。長さ加重平均繊維径及び長さ加重平均繊維長(以下、単に「平均繊維径」、「平均繊維長」ともいう)は、原子間力顕微鏡(AFM)又は透過型電子顕微鏡(TEM)を用いて、各繊維を観察して求められる。セルロース系繊維(例えば、セルロースナノファイバー)の平均アスペクト比は、通常10以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出できる。 The average fiber diameter of cellulosic fibers (for example, cellulose nanofibers) is usually about 2 to 500 nm, preferably 2 to 50 nm in terms of length-weighted average fiber diameter. The average fiber length is preferably 50 to 2000 nm in terms of length-weighted average fiber length. Length-weighted average fiber diameter and length-weighted average fiber length (hereinafter, simply referred to as “average fiber diameter” or “average fiber length”) are measured using an atomic force microscope (AFM) or a transmission electron microscope (TEM). It is obtained by observing each fiber. The average aspect ratio of the cellulosic fiber (for example, cellulose nanofiber) is usually 10 or more. Although an upper limit is not specifically limited, Usually, it is 1000 or less. The average aspect ratio can be calculated by the following formula.
  平均アスペクト比=平均繊維長/平均繊維径 Average aspect ratio = average fiber length / average fiber diameter
 以下、セルロースナノファイバーの製造方法について説明する。便宜上、セルロースナノファイバーの原料となるセルロース繊維を「セルロース原料」ともいう。 Hereinafter, a method for producing cellulose nanofiber will be described. For convenience, the cellulose fiber that is the raw material of the cellulose nanofiber is also referred to as “cellulose raw material”.
[変性]
 セルロース原料は、グルコース単位あたり3つのヒドロキシル基を有しており、各種の化学変性を行うことが可能である。本発明では、化学変性がなされたセルロース原料およびなされていないセルロース原料のいずれもセルロース系繊維として使用できる。化学変性されたセルロース原料を用いると繊維の微細化が十分に進んで均一な繊維長及び繊維径のセルロースナノファイバーが得られるので、ゴムと複合化した際に十分な補強効果を発揮し得る。よって、セルロース系繊維としては、化学変性を経て得られるセルロース系繊維が好ましい。化学変性としては、例えば、酸化、エーテル化、リン酸化、エステル化、シランカップリング、フッ素化、カチオン化などが挙げられる。中でも、酸化(カルボキシル化)、エーテル化、カチオン化、エステル化が好ましい。以下、化学変性について説明する。
[Modification]
The cellulose raw material has three hydroxyl groups per glucose unit and can be subjected to various chemical modifications. In the present invention, both the cellulose raw material subjected to chemical modification and the cellulose raw material not subjected to chemical modification can be used as the cellulosic fiber. When the chemically modified cellulose raw material is used, the fineness of the fibers is sufficiently advanced to obtain cellulose nanofibers having a uniform fiber length and fiber diameter, so that a sufficient reinforcing effect can be exhibited when combined with rubber. Therefore, as the cellulose fiber, a cellulose fiber obtained through chemical modification is preferable. Examples of the chemical modification include oxidation, etherification, phosphorylation, esterification, silane coupling, fluorination, and cationization. Of these, oxidation (carboxylation), etherification, cationization and esterification are preferred. Hereinafter, chemical modification will be described.
[酸化]
 本処理によって得られる酸化セルロース又はセルロースナノファイバー中のカルボキシル基の量は、絶乾重量に対して、好ましくは0.5mmol/g以上、より好ましくは0.8mmol/g以上、さらに好ましくは1.0mmol/g以上である。当該量の上限は、好ましくは3.0mmol/g以下、より好ましくは2.5mmol/g以下、さらに好ましくは2.0mmol/g以下である。従って、当該量は0.5~3.0mmol/gが好ましく、0.8~2.5mmol/gがより好ましく、1.0~2.0mmol/gがさらに好ましい。なお、酸化セルロースのカルボキシル基量と、当該酸化セルロースから得られる酸化セルロースナノファイバーのカルボキシル基量は、通常、同値である。
[Oxidation]
The amount of carboxyl groups in the oxidized cellulose or cellulose nanofiber obtained by this treatment is preferably 0.5 mmol / g or more, more preferably 0.8 mmol / g or more, and still more preferably 1. 0 mmol / g or more. The upper limit of the amount is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and still more preferably 2.0 mmol / g or less. Accordingly, the amount is preferably 0.5 to 3.0 mmol / g, more preferably 0.8 to 2.5 mmol / g, and further preferably 1.0 to 2.0 mmol / g. In addition, the amount of carboxyl groups of oxidized cellulose and the amount of carboxyl groups of oxidized cellulose nanofibers obtained from the oxidized cellulose are usually the same value.
 酸化方法は特に限定されないが、一例として、N-オキシル化合物と、臭化物、ヨウ化物及びこれらの混合物からなる群より選択される物質との存在下で、酸化剤を用いて水中でセルロース原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、アルデヒド基、カルボキシル基、及びカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース原料の濃度は特に限定されないが、5重量%以下が好ましい。 Although the oxidation method is not particularly limited, for example, the cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a substance selected from the group consisting of bromide, iodide, and a mixture thereof. The method of doing is mentioned. According to this method, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized to produce a group selected from the group consisting of an aldehyde group, a carboxyl group, and a carboxylate group. Although the density | concentration of the cellulose raw material at the time of reaction is not specifically limited, 5 weight% or less is preferable.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物である。ニトロキシルラジカルとしては例えば、2,2,6,6-テトラメチルピペリジン1-オキシル(TEMPO)が挙げられる。N-オキシル化合物は、目的の酸化反応を促進する化合物であればよく、特に限定されない。N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01mmol以上が好ましく、0.02mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N-オキシル化合物の使用量は絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.02~0.5mmolがさらに好ましい。 The N-oxyl compound is a compound capable of generating a nitroxy radical. Examples of the nitroxyl radical include 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). The N-oxyl compound is not particularly limited as long as it is a compound that promotes the target oxidation reaction. The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount that can oxidize cellulose as a raw material. For example, 0.01 mmol or more is preferable and 0.02 mmol or more is more preferable with respect to 1 g of absolutely dry cellulose. The upper limit is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.5 mmol or less. Therefore, the amount of the N-oxyl compound used is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.02 to 0.5 mmol with respect to 1 g of absolutely dry cellulose.
 臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属、例えば臭化ナトリウム等が挙げられる。また、ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物及びヨウ化物の合計量は絶乾1gのセルロースに対して、0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物及びヨウ化物の合計量は絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water, such as sodium bromide. Further, the iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. The total amount of bromide and iodide is preferably 0.1 mmol or more, more preferably 0.5 mmol or more, with respect to 1 g of absolutely dry cellulose. The upper limit of the amount is preferably 100 mmol or less, more preferably 10 mmol or less, and even more preferably 5 mmol or less. Accordingly, the total amount of bromide and iodide is preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of absolutely dry cellulose.
 酸化剤としては、特に限定されないが例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物などが挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸又はその塩が好ましく、次亜塩素酸又はその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが特に好ましい。N-オキシル化合物を用いる場合、酸化剤の使用量はN-オキシル化合物1molに対して1mol以上が好ましく、上限は40molが好ましい。従って、酸化剤の使用量はN-オキシル化合物1molに対して1~40molが好ましい。 The oxidizing agent is not particularly limited, and examples thereof include halogen, hypohalous acid, halous acid, perhalogen acid, salts thereof, halogen oxide, and peroxide. Among them, hypohalous acid or a salt thereof is preferable because it is inexpensive and has a low environmental burden, hypochlorous acid or a salt thereof is more preferable, and sodium hypochlorite is more preferable. The amount of the oxidizing agent used is preferably 0.5 mmol or more, more preferably 1 mmol or more, and further preferably 3 mmol or more with respect to 1 g of absolutely dry cellulose. The upper limit of the amount is preferably 500 mmol or less, more preferably 50 mmol or less, and even more preferably 25 mmol or less. Therefore, the amount of the oxidizing agent used is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and particularly preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose. When an N-oxyl compound is used, the amount of the oxidizing agent used is preferably 1 mol or more with respect to 1 mol of the N-oxyl compound, and the upper limit is preferably 40 mol. Accordingly, the amount of the oxidizing agent used is preferably 1 to 40 mol with respect to 1 mol of the N-oxyl compound.
 酸化反応時のpH、温度等の条件は特に限定されず、一般に、比較的温和な条件でも酸化反応は効率よく進行する。反応温度は4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4~40℃が好ましく、15~30℃程度、すなわち室温でもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8~12、より好ましくは10~11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。 The conditions such as pH and temperature during the oxidation reaction are not particularly limited, and in general, the oxidation reaction proceeds efficiently even under relatively mild conditions. The reaction temperature is preferably 4 ° C or higher, more preferably 15 ° C or higher. The upper limit of the temperature is preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. Accordingly, the reaction temperature is preferably 4 to 40 ° C., and may be about 15 to 30 ° C., that is, room temperature. The pH of the reaction solution is preferably 8 or more, and more preferably 10 or more. The upper limit of pH is preferably 12 or less, and more preferably 11 or less. Accordingly, the pH of the reaction solution is preferably about 8 to 12, more preferably about 10 to 11. Usually, a carboxyl group is generated in cellulose as the oxidation reaction proceeds, and therefore the pH of the reaction solution tends to decrease. Therefore, in order to advance the oxidation reaction efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution in the above range. The reaction medium for the oxidation is preferably water for reasons such as ease of handling and the difficulty of side reactions.
 酸化における反応時間は、酸化の進行程度に従って適宜設定でき、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5~6時間、例えば0.5~4時間程度である。酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一又は異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 The reaction time in the oxidation can be appropriately set according to the progress of the oxidation, and is usually 0.5 hours or more, and the upper limit is usually 6 hours or less, preferably 4 hours or less. Therefore, the reaction time in the oxidation is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours. Oxidation may be carried out in two or more stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first stage reaction. Can be oxidized well.
 カルボキシル化(酸化)方法の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾン処理は通常、オゾンを含む気体とセルロース原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m3以上が好ましい。上限は、250g/m3以下が好ましく、220g/m3以下がより好ましい。従って、気体中のオゾン濃度は、50~250g/m3が好ましく、50~220g/m3がより好ましい。オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1重量%以上が好ましく、5重量%以上がより好ましい。オゾン添加量の上限は、通常30重量%以下である。従って、オゾン添加量は、セルロース原料の固形分100重量%に対し、0.1~30重量%が好ましく、5~30重量%がより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0~50℃が好ましく、20~50℃がより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。 Another example of the carboxylation (oxidation) method is ozone oxidation. By this oxidation reaction, at least the 2- and 6-position hydroxyl groups of the glucopyranose ring constituting cellulose are oxidized, and the cellulose chain is decomposed. The ozone treatment is usually performed by bringing a gas containing ozone and a cellulose raw material into contact with each other. The ozone concentration in the gas is preferably 50 g / m 3 or more. The upper limit is preferably 250 g / m 3 or less, more preferably 220 g / m 3. Therefore, the ozone concentration in the gas is preferably 50 ~ 250g / m 3, more preferably 50 ~ 220g / m 3. The amount of ozone added is preferably 0.1% by weight or more and more preferably 5% by weight or more with respect to 100% by weight of the solid content of the cellulose raw material. The upper limit of the amount of ozone added is usually 30% by weight or less. Accordingly, the amount of ozone added is preferably 0.1 to 30% by weight and more preferably 5 to 30% by weight with respect to 100% by weight of the solid content of the cellulose raw material. The ozone treatment temperature is usually 0 ° C. or higher, preferably 20 ° C. or higher, and the upper limit is usually 50 ° C. or lower. Accordingly, the ozone treatment temperature is preferably 0 to 50 ° C., more preferably 20 to 50 ° C. The ozone treatment time is usually 1 minute or longer, preferably 30 minutes or longer, and the upper limit is usually 360 minutes or shorter. Accordingly, the ozone treatment time is usually about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the condition of the ozone treatment is within the above range, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
 オゾン処理されたセルロースに対しさらに、酸化剤を用いて追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。追酸化処理の方法としては例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作製し、酸化剤溶液中にセルロース原料を浸漬させる方法が挙げられる。酸化セルロースナノファイバーに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整できる。 Further, the ozone-treated cellulose may be further oxidized using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. Examples of the method for the additional oxidation treatment include a method in which these oxidizers are dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizer solution, and the cellulose raw material is immersed in the oxidizer solution. The amount of the carboxyl group, carboxylate group, and aldehyde group contained in the oxidized cellulose nanofiber can be adjusted by controlling the oxidizing conditions such as the addition amount of the oxidizing agent and the reaction time.
 カルボキシル基量の測定方法の一例を以下に説明する。酸化セルロースの0.5重量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出できる。 An example of a method for measuring the carboxyl group amount will be described below. Prepare 60 mL of 0.5 wt% slurry (aqueous dispersion) of oxidized cellulose, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N sodium hydroxide aqueous solution dropwise to adjust pH to 11. Measure the electrical conductivity until It can be calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid where the change in electrical conductivity is gradual, using the following equation.
 カルボキシル基量〔mmol/g酸化セルロース又はセルロースナノファイバー〕=a〔mL〕×0.05/酸化セルロース重量〔g〕 Carboxyl group amount [mmol / g oxidized cellulose or cellulose nanofiber] = a [mL] × 0.05 / oxidized cellulose weight [g]
 酸化後の生成物は、脱塩処理に供されてもよい。脱塩とは、反応生成物(塩型)に含まれる塩(カルボキシレート基のカウンターカチオンであり、例えば、ナトリウム塩)をプロトンに置換し酸型とすることを意味する。脱塩処理により、反応生成物中に導入されたカルボキシレート基のカウンターカチオンをプロトン置換し、酸型カルボキシ基変性セルロース繊維を得ることができる。脱塩は、後述の解繊処理の前後の何れかの時点で行い得る。酸化後の脱塩方法としては、例えば、系内を酸性に調整する方法や酸化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。系内を酸性に調整する場合、系内のpHは、好ましくは2~6、より好ましくは2~5、さらに好ましくは2.3~5に調整される。酸性に調整するには、通常は酸(例えば、硫酸、塩酸、硝酸、亜硫酸、亜硝酸、リン酸等の無機酸;酢酸、乳酸、蓚酸、クエン酸、蟻酸等の有機酸)が用いられる。酸の添加後には、適宜洗浄処理を行ってもよい。陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂及び弱酸性イオン交換樹脂のいずれも用いることができる。酸化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。 The product after oxidation may be subjected to a desalting treatment. Desalting means that a salt (which is a counter cation of a carboxylate group, such as a sodium salt) contained in a reaction product (salt form) is replaced with a proton to form an acid form. By the desalting treatment, the counter cation of the carboxylate group introduced into the reaction product is proton-substituted to obtain an acid-type carboxy group-modified cellulose fiber. Desalting can be performed at any time before and after the defibrating process described below. Examples of the desalting method after oxidation include a method of adjusting the inside of the system to acidity and a method of contacting oxidized cellulose with a cation exchange resin. When the inside of the system is adjusted to be acidic, the pH in the system is preferably adjusted to 2 to 6, more preferably 2 to 5, and still more preferably 2.3 to 5. In order to adjust to acidity, an acid (for example, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid and phosphoric acid; organic acids such as acetic acid, lactic acid, succinic acid, citric acid and formic acid) is usually used. After the addition of the acid, a washing treatment may be appropriately performed. As the cation exchange resin, both a strong acid ion exchange resin and a weak acid ion exchange resin can be used as long as the counter ion is H + . The ratio between the oxidized cellulose and the cation exchange resin is not particularly limited, and those skilled in the art can appropriately set the ratio from the viewpoint of efficiently performing proton substitution. The collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
[エーテル化]
 エーテル化としては、カルボキシメチル(エーテル)化、メチル(エーテル)化、エチル(エーテル)化、シアノエチル(エーテル)化、ヒドロキシエチル(エーテル)化、ヒドロキシプロピル(エーテル)化、エチルヒドロキシエチル(エーテル)化、ヒドロキシプロピルメチル(エーテル)化などが挙げられる。この中から一例としてカルボキシメチル化の方法を以下に説明する。
[Etherification]
As etherification, carboxymethyl (ether), methyl (ether), ethyl (ether), cyanoethyl (ether), hydroxyethyl (ether), hydroxypropyl (ether), ethyl hydroxyethyl (ether) And hydroxypropylmethyl (ether). As an example, a carboxymethylation method will be described below.
 カルボキシメチル化により得られるカルボキシメチル化セルロース又はセルロースナノファイバー中の無水グルコース単位当たりのカルボキシメチル置換度は、0.01以上が好ましく、0.05以上がより好ましく、0.10以上がさらに好ましい。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下又は0.30以下がさらに好ましい。従って、カルボキシメチル基置換度は、0.01~0.50が好ましく、0.05~0.40がより好ましく、0.10~0.35又は0.10~0.30がさらに好ましい。なお、カルボキシメチル化セルロースのカルボキシル基量と、当該カルボキシメチル化セルロースから得られるカルボキシメチル化セルロースナノファイバーのカルボキシル基量は、通常、同値である。 The degree of carboxymethyl substitution per anhydroglucose unit in carboxymethylated cellulose or cellulose nanofiber obtained by carboxymethylation is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more. The upper limit of the substitution degree is preferably 0.50 or less, more preferably 0.40 or less, and further preferably 0.35 or less or 0.30 or less. Accordingly, the degree of carboxymethyl group substitution is preferably 0.01 to 0.50, more preferably 0.05 to 0.40, and even more preferably 0.10 to 0.35 or 0.10 to 0.30. In addition, the amount of carboxyl groups of carboxymethylated cellulose and the amount of carboxyl groups of carboxymethylated cellulose nanofibers obtained from the carboxymethylated cellulose are usually the same value.
 カルボキシメチル化方法は特に限定されないが、例えば、発底原料としてのセルロース原料をマーセル化し、その後エーテル化する方法が挙げられる。当該反応には、通常、溶媒が使用される。溶媒としては例えば、水、アルコール(例えば低級アルコール)及びこれらの混合溶媒が挙げられる。低級アルコールとしては例えば、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブチルアルコール、イソブチルアルコール、第3級ブチルアルコールが挙げられる。混合溶媒における低級アルコールの混合割合は、通常は60重量%以上又は95重量%以下であり、60~95重量%が好ましい。溶媒の量は、セルロース原料に対し通常は3重量倍である。当該量の上限は特に限定されないが20重量倍である。従って、溶媒の量は3~20重量倍が好ましい。 The carboxymethylation method is not particularly limited, and examples thereof include a method in which a cellulose raw material as a bottoming raw material is mercerized and then etherified. In the reaction, a solvent is usually used. Examples of the solvent include water, alcohol (for example, lower alcohol), and a mixed solvent thereof. Examples of the lower alcohol include methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butyl alcohol, isobutyl alcohol, and tertiary butyl alcohol. The mixing ratio of the lower alcohol in the mixed solvent is usually 60% by weight or more and 95% by weight or less, and preferably 60 to 95% by weight. The amount of the solvent is usually 3 times the weight of the cellulose raw material. Although the upper limit of the amount is not particularly limited, it is 20 times by weight. Therefore, the amount of the solvent is preferably 3 to 20 times by weight.
 マーセル化は通常、発底原料とマーセル化剤を混合して行う。マーセル化剤としては例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。マーセル化剤の使用量は、発底原料の無水グルコース残基当たり0.5倍モル以上が好ましく、1.0倍モル以上がより好ましく、1.5倍モル以上がさらに好ましい。当該量の上限は、通常20倍モル以下であり、10倍モル以下が好ましく、5倍モル以下がより好ましい。従って、マーセル化剤の使用量0.5~20倍モルが好ましく、1.0~10倍モルがより好ましく、1.5~5倍モルがさらに好ましい。 Mercerization is usually performed by mixing the bottoming material and mercerizing agent. Examples of mercerizing agents include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. The amount of mercerizing agent used is preferably 0.5 times mol or more, more preferably 1.0 times mol or more, and further preferably 1.5 times mol or more per anhydroglucose residue of the starting material. The upper limit of the amount is usually 20 times mol or less, preferably 10 times mol or less, more preferably 5 times mol or less. Accordingly, the amount of mercerizing agent used is preferably 0.5 to 20 times mol, more preferably 1.0 to 10 times mol, and even more preferably 1.5 to 5 times mol.
 マーセル化の反応温度は、通常0℃以上であり、好ましくは10℃以上であり、上限は通常70℃以下、好ましくは60℃以下である。従って、反応温度は通常0~70℃、好ましくは10~60℃である。反応時間は、通常15分以上、好ましくは30分以上である。当該時間の上限は、通常8時間以下、好ましくは7時間以下である。従って、反応時間は、通常は15分~8時間、好ましくは30分~7時間である。 The reaction temperature for mercerization is usually 0 ° C. or higher, preferably 10 ° C. or higher, and the upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Accordingly, the reaction temperature is usually 0 to 70 ° C., preferably 10 to 60 ° C. The reaction time is usually 15 minutes or longer, preferably 30 minutes or longer. The upper limit of the time is usually 8 hours or less, preferably 7 hours or less. Accordingly, the reaction time is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
 エーテル化反応は通常、カルボキシメチル化剤をマーセル化後に反応系に追加して行う。カルボキシメチル化剤としては例えば、モノクロロ酢酸ナトリウムが挙げられる。カルボキシメチル化剤の添加量は、セルロース原料のグルコース残基当たり通常は0.05倍モル以上が好ましく、0.5倍モル以上がより好ましく、0.8倍モル以上がさらに好ましい。当該量の上限は、通常10.0倍モル以下であり、5倍モル以下が好ましく、3倍モル以下がより好ましい。従って、当該量は好ましくは0.05~10.0倍モルであり、より好ましくは0.5~5倍モルであり、さらに好ましくは0.8~3倍モルである。反応温度は通常30℃以上、好ましくは40℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。従って反応温度は通常30~90℃、好ましくは40~80℃である。反応時間は、通常30分以上であり、好ましくは1時間以上であり、その上限は、通常は10時間以下、好ましくは4時間以下である。従って反応時間は、通常は30分~10時間であり、好ましくは1時間~4時間である。カルボキシメチル化反応の間必要に応じて、反応液を撹拌してもよい。 The etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization. Examples of the carboxymethylating agent include sodium monochloroacetate. The addition amount of the carboxymethylating agent is usually preferably 0.05 times mol or more, more preferably 0.5 times mol or more, further preferably 0.8 times mol or more per glucose residue of the cellulose raw material. The upper limit of the amount is usually 10.0 moles or less, preferably 5 moles or less, and more preferably 3 moles or less. Therefore, the amount is preferably 0.05 to 10.0 times mol, more preferably 0.5 to 5 times mol, and still more preferably 0.8 to 3 times mol. The reaction temperature is usually 30 ° C. or higher, preferably 40 ° C. or higher, and the upper limit is usually 90 ° C. or lower, preferably 80 ° C. or lower. Accordingly, the reaction temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C. The reaction time is usually 30 minutes or longer, preferably 1 hour or longer, and the upper limit is usually 10 hours or shorter, preferably 4 hours or shorter. Therefore, the reaction time is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours. The reaction solution may be stirred as necessary during the carboxymethylation reaction.
 カルボキシメチル化セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度の測定は例えば、次の方法による。すなわち、1)カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)メタノール1000mLに特級濃硝酸100mLを加えて調製した硝酸メタノール液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(カルボキシメチル化セルロース)を酸型カルボキシメチル化セルロースにする。3)酸型カルボキシメチル化セルロース(絶乾)を1.5~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで酸型カルボキシメチル化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
 A=[(100×F’-(0.1NのH2SO4)(mL)×F)×0.1]/(酸型カルボキシメチル化セルロースの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
A:酸型カルボキシメチル化セルロースの1gの中和に要する1NのNaOH量(mL)
F:0.1NのH2SO4のファクター
F’:0.1NのNaOHのファクター
The carboxymethyl substitution degree per glucose unit of the carboxymethyl cellulose nanofiber is measured, for example, by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose (absolutely dry) is precisely weighed and put into a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of nitric acid methanol solution prepared by adding 100 mL of special concentrated nitric acid to 1000 mL of methanol, and shake for 3 hours to convert the carboxymethyl cellulose salt (carboxymethylated cellulose) into acid-type carboxymethylated cellulose. 3) Weigh accurately 1.5 to 2.0 g of acid-type carboxymethylated cellulose (absolutely dry) and put into a 300 mL Erlenmeyer flask with a stopper. 4) Wet the acid carboxymethylated cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours. 5) Back titrate excess NaOH with 0.1N H 2 SO 4 using phenolphthalein as indicator. 6) The degree of carboxymethyl substitution (DS) is calculated by the following formula:
A = [(100 × F ′ − (0.1 N H 2 SO 4 ) (mL) × F) × 0.1] / (absolute dry mass of acid-type carboxymethylated cellulose (g))
DS = 0.162 × A / (1-0.058 × A)
A: 1N NaOH amount (mL) required for neutralizing 1 g of acid-type carboxymethylated cellulose
F: Factor of 0.1N H 2 SO 4 F ′: Factor of 0.1N NaOH
 カルボキシメチル化後の生成物は、脱塩処理に供されてもよい。脱塩とは、酸化後の脱塩と同様、反応生成物(塩型)に含まれる塩(カルボキシレート基のカウンターカチオンであり、例えば、ナトリウム塩)をプロトンに置換し酸型とすることを意味する。脱塩は、後述の解繊処理の前後の何れかの時点で行い得る。カルボキシメチル化後の脱塩方法としては例えば、カルボキシメチル化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂及び弱酸性イオン交換樹脂のいずれも用いることができる。カルボキシメチル化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、陽イオン交換樹脂添加後のカルボキシメチル化セルロース水分散液のpHが好ましくは2~6、より好ましくは2~5となるように、比率を調整できる。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。 The product after carboxymethylation may be subjected to a desalting treatment. Desalination is the same as desalting after oxidation, in which a salt (a counter cation of a carboxylate group, such as a sodium salt) contained in a reaction product (salt form) is replaced with a proton to form an acid form. means. Desalting can be performed at any time before and after the defibrating process described below. Examples of the desalting method after carboxymethylation include a method of bringing carboxymethylated cellulose into contact with a cation exchange resin. As the cation exchange resin, both a strong acid ion exchange resin and a weak acid ion exchange resin can be used as long as the counter ion is H + . The ratio between the carboxymethylated cellulose and the cation exchange resin when they are brought into contact with each other is not particularly limited, and those skilled in the art can appropriately set them from the viewpoint of efficiently performing proton substitution. As an example, the ratio can be adjusted so that the pH of the aqueous carboxymethylated cellulose dispersion after addition of the cation exchange resin is preferably 2 to 6, more preferably 2 to 5. The collection of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
[カチオン化]
 カチオン化により得られるカチオン化セルロースナノファイバーは、アンモニウム、ホスホニウム、スルホニウム等のカチオン、又は該カチオンを有する基を分子中に含んでいればよい。カチオン化セルロースナノファイバーは、アンモニウムを有する基を含むことが好ましく、四級アンモニウムを有する基を含むことがより好ましい。
[Cationization]
The cationized cellulose nanofiber obtained by cationization may contain a cation such as ammonium, phosphonium, or sulfonium, or a group having the cation in the molecule. The cationized cellulose nanofiber preferably includes a group having ammonium, and more preferably includes a group having quaternary ammonium.
 カチオン化の方法は特に限定されないが例えば、セルロース原料にカチオン化剤と触媒を水又はアルコールの存在下で反応させる方法が挙げられる。カチオン化剤としては例えば、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライト(例:3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムハイドライト)又はこれらのハロヒドリン型などが挙げられ、これらのいずれかを用いることで、四級アンモニウムを含む基を有するカチオン化セルロースを得ることができる。触媒としては例えば、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属が挙げられる。アルコールとしては例えば、炭素数1~4のアルコールが挙げられる。カチオン化剤の量は、好ましくはセルロース原料100重量%に対して5重量%以上であり、より好ましくは10重量%以上である。当該量の上限は通常800重量%以下であり、好ましくは500重量%以下である。触媒の量は、好ましくはセルロース繊維100重量%に対して0.5重量%以上であり、より好ましくは1重量%以上である。当該量の上限は通常70重量%以下であり、好ましくは30重量%以下である。アルコールの量は、好ましくはセルロース繊維100重量%に対して50重量%以上であり、より好ましくは100重量%以上である。当該量の上限は通常50000重量%以下であり、好ましくは500重量%以下である。 The method of cationization is not particularly limited, and examples thereof include a method of reacting a cellulose raw material with a cationizing agent and a catalyst in the presence of water or alcohol. Examples of the cationizing agent include glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride (eg, 3-chloro-2-hydroxypropyltrimethylammonium hydride) or a halohydrin type thereof. By using any of these, a cationized cellulose having a group containing quaternary ammonium can be obtained. Examples of the catalyst include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. Examples of the alcohol include alcohols having 1 to 4 carbon atoms. The amount of the cationizing agent is preferably 5% by weight or more, more preferably 10% by weight or more with respect to 100% by weight of the cellulose raw material. The upper limit of the amount is usually 800% by weight or less, preferably 500% by weight or less. The amount of the catalyst is preferably 0.5% by weight or more, more preferably 1% by weight or more with respect to 100% by weight of the cellulose fibers. The upper limit of the amount is usually 70% by weight or less, preferably 30% by weight or less. The amount of alcohol is preferably 50% by weight or more, more preferably 100% by weight or more, based on 100% by weight of cellulose fibers. The upper limit of the amount is usually 50000% by weight or less, preferably 500% by weight or less.
 カチオン化の際の反応温度は通常10℃以上、好ましくは30℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。反応時間は、通常10分以上であり、好ましくは30分以上であり、上限は通常は10時間以下、好ましくは5時間以下である。カチオン化反応の間必要に応じて、反応液を撹拌してもよい。 The reaction temperature during cationization is usually 10 ° C or higher, preferably 30 ° C or higher, and the upper limit is usually 90 ° C or lower, preferably 80 ° C or lower. The reaction time is usually 10 minutes or more, preferably 30 minutes or more, and the upper limit is usually 10 hours or less, preferably 5 hours or less. The reaction solution may be stirred as necessary during the cationization reaction.
 カチオン化セルロースのグルコース単位当たりのカチオン置換度は、カチオン化剤の添加量、水又はアルコールの組成比率によって調整できる。カチオン置換度とは、セルロースを構成する単位構造(グルコピラノース環)あたりの導入された置換基の個数を示す。すなわちカチオン置換度は、「導入された置換基のモル数をグルコピラノース環の水酸基の総モル数で割った値」として定義される。純粋セルロースは単位構造(グルコピラノース環)あたり3個の置換可能な水酸基を有しているため、カチオン置換度の理論最大値は3(最小値は0)である。 The degree of cation substitution per unit of glucose in the cationized cellulose can be adjusted by the amount of cationizing agent added and the composition ratio of water or alcohol. The degree of cation substitution refers to the number of substituents introduced per unit structure (glucopyranose ring) constituting cellulose. That is, the degree of cation substitution is defined as “a value obtained by dividing the number of moles of the introduced substituent by the total number of moles of hydroxyl groups of the glucopyranose ring”. Since pure cellulose has three substitutable hydroxyl groups per unit structure (glucopyranose ring), the theoretical maximum value of the degree of cation substitution is 3 (the minimum value is 0).
 カチオン化セルロースナノファイバーのグルコース単位当たりのカチオン置換度は、0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。当該置換度の上限は、0.40以下が好ましく、0.30以下がより好ましく、0.20以下がさらに好ましい。従って、カチオン置換度は0.01~0.40が好ましく、0.02~0.30がより好ましく、0.03~0.20がさらに好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊できる。グルコース単位当たりのカチオン置換度が0.01以上であることにより、十分にナノ解繊できる。一方、グルコース単位当たりのカチオン置換度が0.40以下であることにより、膨潤又は溶解を抑制でき、これにより繊維形態を維持でき、ナノファイバーとして得られない事態を防止できる。なお、カチオン化セルロースのカルボキシル基量と、当該カチオン化セルロースから得られるカチオン化セルロースナノファイバーのカルボキシル基量は、通常、同値である。 The cation substitution degree per glucose unit of the cationized cellulose nanofiber is preferably 0.01 or more, more preferably 0.02 or more, and further preferably 0.03 or more. The upper limit of the degree of substitution is preferably 0.40 or less, more preferably 0.30 or less, and still more preferably 0.20 or less. Accordingly, the degree of cation substitution is preferably from 0.01 to 0.40, more preferably from 0.02 to 0.30, and even more preferably from 0.03 to 0.20. By introducing a cationic substituent into cellulose, the celluloses repel each other electrically. For this reason, the cellulose which introduce | transduced the cation substituent can be nano-fibrillated easily. When the cation substitution degree per glucose unit is 0.01 or more, nano-defibration can be sufficiently achieved. On the other hand, when the degree of cation substitution per glucose unit is 0.40 or less, swelling or dissolution can be suppressed, whereby the fiber form can be maintained, and a situation where nanofibers cannot be obtained can be prevented. In addition, the amount of carboxyl groups of cationized cellulose and the amount of carboxyl groups of cationized cellulose nanofibers obtained from the cationized cellulose are usually the same value.
 グルコース単位当たりのカチオン置換度の測定方法の一例を以下に説明する。試料(カチオン化セルロース)を乾燥させた後に、全窒素分析計TN-10(三菱化学株式会社製)で窒素含有量を測定する。例えば、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを用いた場合、次式によりカチオン置換度が算出される。ここでいうカチオン置換度とは、無水グルコース単位1モル当たりの置換基のモル数の平均値である。 An example of a method for measuring the degree of cation substitution per glucose unit will be described below. After drying the sample (cationized cellulose), the nitrogen content is measured with a total nitrogen analyzer TN-10 (manufactured by Mitsubishi Chemical Corporation). For example, when 3-chloro-2-hydroxypropyltrimethylammonium chloride is used as the cationizing agent, the degree of cation substitution is calculated by the following formula. The cation substitution degree here is an average value of the number of moles of substituents per mole of anhydroglucose unit.
 カチオン置換度=(162×N)/(1-116×N)
 N:カチオン化セルロース1gあたりの窒素含有量(mol)
Degree of cation substitution = (162 × N) / (1-116 × N)
N: Nitrogen content per gram of cationized cellulose (mol)
[エステル化]
 エステル化の方法は特に限定されないが、例えばセルロース原料に対し後述する化合物Aを反応させる方法が挙げられる。セルロース原料に対し化合物Aを反応させる方法としては、例えば、セルロース原料に化合物Aの粉末又は水溶液を混合する方法、セルロース原料のスラリーに化合物Aの水溶液を添加する方法等が挙げられる。これらのうち、反応の均一性が高まり、かつエステル化効率を高め得ることから、セルロース原料又はそのスラリーに化合物Aの水溶液を混合する方法が好ましい。
[Esterification]
Although the method of esterification is not specifically limited, For example, the method of making the compound A mentioned later react with a cellulose raw material is mentioned. Examples of the method of reacting compound A with a cellulose raw material include a method of mixing a powder or an aqueous solution of compound A with a cellulose raw material, a method of adding an aqueous solution of compound A to a slurry of a cellulose raw material, and the like. Among these, a method of mixing an aqueous solution of Compound A into a cellulose raw material or a slurry thereof is preferable because the uniformity of the reaction is enhanced and esterification efficiency can be increased.
 化合物Aとしては例えば、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステル等が挙げられる。化合物Aは、塩の形態でもよい。上記の中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由から、リン酸系化合物が好ましい。リン酸系化合物は、リン酸基を有する化合物であればよく、例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。用いられるリン酸系化合物は、これらの1種あるいは2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがより好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから、エステル化においてはリン酸系化合物の水溶液を用いることが好ましい。リン酸系化合物の水溶液のpHは、リン酸基導入の効率を高める観点から7以下が好ましく、パルプ繊維の加水分解を抑える観点から3~7がより好ましい。 Examples of compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. Compound A may be in the form of a salt. Among them, a phosphoric acid compound is preferable because it is low in cost and easy to handle, and a phosphoric acid group can be introduced into cellulose of pulp fiber to improve the fibrillation efficiency. The phosphate compound may be any compound having a phosphate group. For example, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, diphosphate Examples include potassium hydrogen, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate. . The phosphoric acid compound used may be one or a combination of two or more of these. Among these, phosphoric acid group introduction efficiency is high, it is easy to defibrate in the defibrating process, and is easy to apply industrially, from the viewpoint of phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid Ammonium salts are preferable, and sodium dihydrogen phosphate and disodium hydrogen phosphate are more preferable. In addition, it is preferable to use an aqueous solution of a phosphoric acid compound in the esterification because the uniformity of the reaction is increased and the efficiency of introducing a phosphate group is increased. The pH of the aqueous solution of the phosphoric acid compound is preferably 7 or less from the viewpoint of increasing the efficiency of introducing phosphate groups, and more preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
 エステル化の方法としては例えば、以下の方法が挙げられる。セルロース原料の懸濁液(例えば、固形分濃度0.1~10重量%)に化合物Aを撹拌しながら添加し、セルロースにリン酸基を導入する。化合物Aがリン酸系化合物の場合、セルロース原料100重量部に対して化合物Aの添加量はリン元素量として、0.2重量部以上が好ましく、1重量部以上がより好ましい。これにより、微細繊維状セルロースの収率をより向上できる。当該量の上限は、500重量部以下が好ましく、400重量部以下がより好ましい。これにより、化合物Aの使用量に見合った収率を効率よく得ることができる。従って、0.2~500重量部が好ましく、1~400重量部がより好ましい。 Examples of the esterification method include the following methods. Compound A is added to a suspension of cellulose raw material (for example, solid content concentration of 0.1 to 10% by weight) with stirring to introduce phosphate groups into the cellulose. When compound A is a phosphoric acid compound, the amount of compound A added is preferably 0.2 parts by weight or more and more preferably 1 part by weight or more as the amount of phosphorus element with respect to 100 parts by weight of the cellulose raw material. Thereby, the yield of fine fibrous cellulose can be improved more. The upper limit of the amount is preferably 500 parts by weight or less, and more preferably 400 parts by weight or less. Thereby, the yield corresponding to the usage-amount of the compound A can be obtained efficiently. Therefore, 0.2 to 500 parts by weight is preferable, and 1 to 400 parts by weight is more preferable.
 セルロース原料に対し化合物Aを反応させる際、さらに化合物Bを反応系に加えてもよい。化合物Bを反応系に加える方法としては例えば、セルロース原料のスラリー、化合物Aの水溶液、又はセルロース原料と化合物Aのスラリーに、添加する方法が挙げられる。化合物Bは特に限定されないが、塩基性を示す化合物が好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは通常、フェノールフタレイン指示薬の存在下で化合物Bの水溶液が桃~赤色を呈すること、又は化合物Bの水溶液のpHが7より大きいことを意味する。塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。この中でも低コストで扱いやすい点で、尿素が好ましい。化合物Bの添加量は、2~1000重量部が好ましく、100~700重量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率を向上させることができる。 When reacting Compound A with the cellulose raw material, Compound B may be further added to the reaction system. Examples of the method of adding Compound B to the reaction system include a method of adding to a slurry of cellulose raw material, an aqueous solution of Compound A, or a slurry of cellulose raw material and Compound A. Compound B is not particularly limited, but a compound showing basicity is preferable, and a nitrogen-containing compound showing basicity is more preferable. “Show basic” usually means that the aqueous solution of Compound B is pink to red in the presence of a phenolphthalein indicator, or the pH of the aqueous solution of Compound B is greater than 7. The nitrogen-containing compound showing basicity is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. For example, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned. Of these, urea is preferable because it is easy to handle at low cost. The amount of compound B added is preferably 2 to 1000 parts by weight, more preferably 100 to 700 parts by weight. The reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C. The reaction time is not particularly limited, but is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are in any of these ranges, it is possible to prevent cellulose from being excessively esterified and easily dissolved, and to improve the yield of phosphorylated esterified cellulose. .
 セルロース原料に化合物Aを反応させた後、通常はエステル化セルロース懸濁液が得られる。エステル化セルロース懸濁液は必要に応じて脱水される。脱水後には加熱処理を行うことが好ましい。これにより、セルロース原料の加水分解を抑えることができる。加熱温度は、100~170℃が好ましく、加熱処理の際に水が含まれている間は130℃以下(さらに好ましくは110℃以下)で加熱し、水を除いた後100~170℃で加熱処理することがより好ましい。 After reacting compound A with the cellulose raw material, an esterified cellulose suspension is usually obtained. The esterified cellulose suspension is dehydrated as necessary. Heat treatment is preferably performed after dehydration. Thereby, hydrolysis of a cellulose raw material can be suppressed. The heating temperature is preferably 100 to 170 ° C. While water is included in the heat treatment, heating is performed at 130 ° C or less (more preferably 110 ° C or less), and after removing water, heating is performed at 100 to 170 ° C. More preferably, it is processed.
 リン酸エステル化セルロースにおいては、セルロース原料にリン酸基置換基が導入されており、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロースは容易にナノ解繊できる。リン酸エステル化セルロースのグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。これにより、十分な解繊(例えばナノ解繊)が実施できる。当該置換度の上限は0.60が好ましい。これにより、リン酸エステル化セルロースの膨潤又は溶解を防止し、ナノファイバーが得られない事態を防止できる。従って当該置換度は0.001~0.60が好ましい。なお、リン酸エステル化セルロースのカルボキシル基量と、当該リン酸エステル化セルロースから得られるリン酸エステル化セルロースナノファイバーのカルボキシル基量は、通常、同値である。 In phosphate esterified cellulose, a phosphate group substituent is introduced into the cellulose raw material, and the cellulose repels electrically. Therefore, phosphorylated cellulose can be easily nano-defibrated. The degree of phosphate group substitution per glucose unit in the phosphate esterified cellulose is preferably 0.001 or more. Thereby, sufficient defibration (for example, nano defibration) can be implemented. The upper limit of the degree of substitution is preferably 0.60. Thereby, swelling or melt | dissolution of phosphate esterified cellulose can be prevented, and the situation where a nanofiber cannot be obtained can be prevented. Therefore, the degree of substitution is preferably 0.001 to 0.60. In addition, the amount of carboxyl groups of phosphate esterified cellulose and the amount of carboxyl groups of phosphate esterified cellulose nanofibers obtained from the phosphate esterified cellulose are usually the same value.
 リン酸エステル化後の生成物は、脱塩処理に供されてもよい。脱塩とは、酸化後の脱塩及びカルボキシメチル化後の脱塩と同様、反応生成物(塩型)に含まれる塩(例えば、ナトリウム塩)をプロトンに置換し酸型とすることを意味する。脱塩は、後述の解繊処理の前後の何れかの時点で行い得る。リン酸エステル化後の脱塩方法としては例えば、リン酸エステル化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。
 リン酸エステル化セルロースは、煮沸後冷水で洗浄する等の洗浄処理を行うことが好ましい。これにより解繊を効率よく行うことができる。
The product after phosphoric acid esterification may be subjected to a desalting treatment. The desalting means that the salt (for example, sodium salt) contained in the reaction product (salt form) is replaced with a proton to form an acid form, similar to desalting after oxidation and desalting after carboxymethylation. To do. Desalting can be performed at any time before and after the defibrating process described below. Examples of the desalting method after the phosphoric esterification include a method of bringing the phosphoric esterified cellulose into contact with a cation exchange resin.
The phosphate esterified cellulose is preferably subjected to a washing treatment such as washing with cold water after boiling. Thereby, defibration can be performed efficiently.
[解繊]
 セルロース原料の解繊は、セルロース原料に化学変性を施す前に行ってもよいし、後に行ってもよい。解繊処理は1回行ってもよいし、複数回行ってもよい。複数回の場合それぞれの解繊の時期はいつでもよい。なお、解繊処理は、通常、物理的解繊である。
[Defibration]
The fibrillation of the cellulose raw material may be performed before or after chemical modification of the cellulose raw material. The defibrating process may be performed once or a plurality of times. In the case of multiple times, each defibration period may be any time. The defibrating process is usually physical defibrating.
 解繊に用いる装置は特に限定されないが、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧又は超高圧ホモジナイザーが好ましく、湿式の高圧又は超高圧ホモジナイザーがより好ましい。装置は、セルロース原料又は変性セルロース(通常は分散液)に強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は、セルロース原料又は変性セルロース(通常は分散液)に上記圧力を印加できかつ強力なせん断力を印加できる、湿式の高圧又は超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。 The apparatus used for defibration is not particularly limited, and examples thereof include high-speed rotating type, colloid mill type, high-pressure type, roll mill type, ultrasonic type and the like, and high-pressure or ultra-high-pressure homogenizers are preferable, and wet high pressure Or an ultra high pressure homogenizer is more preferable. It is preferable that the apparatus can apply a strong shearing force to the cellulose raw material or the modified cellulose (usually a dispersion). The pressure that can be applied by the apparatus is preferably 50 MPa or more, more preferably 100 MPa or more, and still more preferably 140 MPa or more. The apparatus is preferably a wet high-pressure or ultrahigh-pressure homogenizer capable of applying the above pressure to a cellulose raw material or modified cellulose (usually a dispersion) and applying a strong shearing force. Thereby, defibration can be performed efficiently.
 解繊をセルロース原料の分散体に対して行う場合、分散体中のセルロース原料の固形分濃度は、通常は0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.3重量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的になり得る。当該濃度の上限は通常10重量%以下、好ましくは6重量%以下である。これにより流動性を保持できる。 When defibration is performed on a dispersion of cellulose raw material, the solid content concentration of the cellulose raw material in the dispersion is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.3%. % By weight or more. Thereby, the liquid quantity with respect to the quantity of a cellulose fiber raw material becomes an appropriate quantity, and can become efficient. The upper limit of the concentration is usually 10% by weight or less, preferably 6% by weight or less. Thereby, fluidity can be maintained.
 解繊(好ましくは高圧ホモジナイザーでの解繊)、又は必要に応じて解繊前に行う分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、攪拌、乳化、分散装置を用いて行えばよい。 Prior to defibration (preferably defibration with a high-pressure homogenizer) or, if necessary, dispersion treatment performed before defibration, pretreatment may be performed as necessary. The pretreatment may be performed using a mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer.
 セルロース系繊維は、上述の化学変性を経て得られるセルロースナノファイバーを少なくとも1種含むことが好ましく、酸化セルロースファイバー、カルボキシメチル化セルロースファイバー及びカチオン化セルロースファイバーからなる群より選ばれる少なくとも1種を含むことがより好ましい。 The cellulosic fiber preferably includes at least one cellulose nanofiber obtained through the above-described chemical modification, and includes at least one selected from the group consisting of oxidized cellulose fiber, carboxymethylated cellulose fiber, and cationized cellulose fiber. It is more preferable.
 セルロースナノファイバーは、その製造工程において、化学変性、及び通常行われる解繊処理以外の処理を経ていてもよい。斯かる処理としては例えば、ろ過処理、短繊維化処理及びこれらのうち2以上の組み合わせが挙げられる。 Cellulose nanofibers may be subjected to treatment other than chemical modification and defibration treatment usually performed in the production process. Examples of such treatment include filtration treatment, fiber shortening treatment, and combinations of two or more thereof.
[ろ過処理]
 ろ過処理を行う時期は特に限定されないが、通常、解繊処理後であり、解繊処理後の変性セルロースの分散液(例、水分散液等の水系分散液)に対し行えばよい。これにより、不十分な解繊処理に起因して残存する異物(例、未解繊繊維)を除去できる。さらに、変性セルロース繊維をゴム組成物の製造に用いる場合、残存する異物を起点としたゴム組成物の破断及びこれによる問題(例、ゴム組成物の強度低下)を抑制できる。
[Filtration treatment]
Although the timing for performing the filtration treatment is not particularly limited, it is usually after the defibration treatment and may be performed on the modified cellulose dispersion (eg, an aqueous dispersion such as an aqueous dispersion) after the defibration treatment. Thereby, foreign matters (for example, undefibrated fibers) remaining due to insufficient defibrating treatment can be removed. Furthermore, when the modified cellulose fiber is used for the production of a rubber composition, it is possible to suppress the breakage of the rubber composition starting from the remaining foreign matter and problems caused by this (eg, a decrease in strength of the rubber composition).
 ろ過処理としては、例えば、加圧ろ過処理、減圧ろ過処理が挙げられる。加圧ろ過処理及び減圧ろ過処理における圧力条件(差圧)は特に限定されないが、例えば、0.01MPa以上であり、好ましくは0.01~10MPaである。差圧が0.01MPa以上であることにより、十分なろ過処理量を得るために行う分散液の希釈を省略できる(希釈は、その後の工程を考慮すると行わないことが好ましい)。差圧が0.01~10MPaであることにより、分散液中の変性セルロース繊維の濃度又は分散液の粘度が高い場合にも、十分なろ過処理量を得ることができ。ろ過の際の変性セルロース繊維の濃度は、通常、0.1~5質量%であり、好ましくは0.2~4質量%であり、より好ましくは0.5~3質量%である。 Examples of filtration treatment include pressure filtration treatment and vacuum filtration treatment. The pressure condition (differential pressure) in the pressure filtration treatment and the vacuum filtration treatment is not particularly limited, but is, for example, 0.01 MPa or more, preferably 0.01 to 10 MPa. When the differential pressure is 0.01 MPa or more, the dilution of the dispersion liquid performed to obtain a sufficient amount of filtration treatment can be omitted (dilution is preferably not performed in consideration of the subsequent steps). When the differential pressure is 0.01 to 10 MPa, a sufficient amount of filtration treatment can be obtained even when the concentration of the modified cellulose fiber in the dispersion or the viscosity of the dispersion is high. The concentration of the modified cellulose fiber during filtration is usually 0.1 to 5% by mass, preferably 0.2 to 4% by mass, and more preferably 0.5 to 3% by mass.
 ろ過処理には通常、ろ過装置を用いる。ろ過装置は特に限定されないが、例えば、ヌッチェ型、キャンドル型、リーフディスク型、ドラム型、フィルタープレス型、ベルトフィルター型等のタイプのろ過装置が挙げられる。ろ過処理量は特に限定されないが、1時間当たり10L/m2以上が好ましく、100L/m2以上がより好ましい。 A filtration device is usually used for the filtration treatment. The filtration device is not particularly limited, and examples thereof include Nutsche type, candle type, leaf disk type, drum type, filter press type, belt filter type and the like. The amount of filtration treatment is not particularly limited, but is preferably 10 L / m 2 or more per hour, and more preferably 100 L / m 2 or more.
 ろ過処理に用いるろ材としては、例えば、金属繊維、セルロース、ポリプロピレン、ポリエステル、ナイロン、ガラス、コットン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、これらの組み合わせ等の素材からなるフィルター;メンブレンフィルター;ろ布;金属粉等の素材を焼結させてなるフィルター;又はスリット状フィルターが挙げられる。これらの中で、金属繊維からなるフィルター、メンブレンフィルターが好ましい。 Examples of filter media used for the filtration treatment include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, and combinations thereof; membrane filters; filter cloths; metals A filter formed by sintering a material such as powder; or a slit filter. Among these, a filter made of metal fiber and a membrane filter are preferable.
 ろ材の平均孔径は、ろ過助剤を併用する場合、特に限定されない。一方、ろ過助剤を併用しない場合、ろ材の平均孔径は、好ましくは0.01~100μm、より好ましくは0.1~50μm、さらに好ましくは1~30μmである。平均孔径が0.01μm以上であることにより、ろ過速度が十分となり得る。一方、100μm以下であることにより、異物を十分に捉えることができ、ろ過効果が得られやすくなる。 The average pore size of the filter medium is not particularly limited when a filter aid is used in combination. On the other hand, when no filter aid is used in combination, the average pore size of the filter medium is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm, and still more preferably 1 to 30 μm. When the average pore size is 0.01 μm or more, the filtration rate can be sufficient. On the other hand, when the thickness is 100 μm or less, foreign matters can be sufficiently captured, and a filtration effect is easily obtained.
 ろ過処理の際には、必要に応じて、ろ過助剤を用いてもよい。ろ過助剤を用いるろ過処理(助剤ろ過処理)においては、ろ材上に形成されたろ過層をろ過助剤を用いて取り除くことができるので、ろ材の目詰まりを容易に解消でき、連続的なろ過処理を行える。ろ過助剤の平均粒子径は、好ましくは150μm以下、より好ましくは1~150μm、さらに好ましくは10~75μm、さらにより好ましくは15~45μm、とりわけ好ましくは25~45μmである。平均粒子径が1μmを超えることにより、ろ過速度の低下が抑制され得る。平均粒子径が150μm未満であることにより、異物を十分に捉えることができ、ろ過処理を効率よく行い得る。 In the filtration treatment, a filter aid may be used as necessary. In the filtration treatment using a filter aid (auxiliary filtration treatment), the filter layer formed on the filter medium can be removed using the filter aid, so that the filter medium can be easily clogged and continuously removed. Can be filtered. The average particle size of the filter aid is preferably 150 μm or less, more preferably 1 to 150 μm, still more preferably 10 to 75 μm, still more preferably 15 to 45 μm, and particularly preferably 25 to 45 μm. When the average particle diameter exceeds 1 μm, a decrease in filtration rate can be suppressed. When the average particle diameter is less than 150 μm, foreign matters can be sufficiently captured, and filtration can be performed efficiently.
 ろ過助剤の形状は特に限定されないが、例えば、略球形(例、珪藻土)、略棒状(例、粉末セルロース)等の略粒状が挙げられる。ろ過助剤の平均粒子径の測定は、その形状に拘らず、JIS Z8825-1に準拠したレーザー回折式測定器により行い得る。 The shape of the filter aid is not particularly limited, and examples thereof include substantially spherical shapes (eg, diatomaceous earth) and substantially rod shapes (eg, powdered cellulose). Measurement of the average particle diameter of the filter aid can be performed with a laser diffraction measuring instrument in accordance with JIS Z8825-1 regardless of its shape.
 助剤ろ過処理の形式は特に限定されないが、例えば、ろ材の上にろ過助剤の層を形成するプレコートろ過、ろ過助剤を変性セルロース繊維の分散液に添加し得られる混合物をろ過するボディーフィードろ過、両者の組み合わせが挙げられる。これらのうち、両者の組み合わせが好ましい。これにより、ろ過処理量が向上し、良好な品質のろ液を得ることができる。助剤ろ過処理は、異なるろ過助剤を用いる2以上のろ過工程からなる多段処理であってもよい。多段処理の場合、少なくともいずれかのろ過工程が加圧ろ過処理又は減圧ろ過処理が好ましい。 The form of the auxiliary filter treatment is not particularly limited. For example, precoat filtration that forms a filter aid layer on the filter medium, and body feed that filters a mixture obtained by adding the filter aid to the modified cellulose fiber dispersion. Examples include filtration and a combination of both. Of these, a combination of both is preferred. Thereby, the amount of filtration processing improves and the filtrate of favorable quality can be obtained. The auxiliary filtration treatment may be a multistage treatment consisting of two or more filtration steps using different filter aids. In the case of multistage treatment, at least one of the filtration steps is preferably pressure filtration treatment or vacuum filtration treatment.
 ろ過助剤は特に限定されず、例えば、無機化合物、有機化合物が好ましい。ろ過助剤の好ましい例としては、珪藻土、粉末セルロース、パーライト、活性炭が挙げられる。 The filter aid is not particularly limited, and for example, inorganic compounds and organic compounds are preferable. Preferable examples of the filter aid include diatomaceous earth, powdered cellulose, pearlite, and activated carbon.
 珪藻土とは、主に珪藻の殻からなる軟質の岩石又は土壌をいい、シリカを主成分とする。アルミナ、酸化鉄、アルカリ金属の酸化物等の、シリカ以外の成分を含んでいてもよい。珪藻土は、通常は多孔質で高い空隙率を有している。珪藻土のケーク嵩密度は、0.2~0.45g/cm3程度が好ましい。珪藻土は、焼成品、融剤焼成品が好ましい。珪藻土の由来は特に限定されないが、淡水産珪藻土が好ましい。珪藻土としては、例えば、セライト社製のセライト(登録商標)、イーグルピッチャーミネラルズ社製のセラトム(登録商標)が挙げられる。 Diatomaceous earth refers to soft rock or soil mainly composed of diatom shell, and is mainly composed of silica. Components other than silica, such as alumina, iron oxide and alkali metal oxides, may be included. Diatomaceous earth is usually porous and has a high porosity. The cake bulk density of diatomaceous earth is preferably about 0.2 to 0.45 g / cm 3 . Diatomaceous earth is preferably a fired product or a flux fired product. The origin of diatomaceous earth is not particularly limited, but freshwater diatomaceous earth is preferred. Examples of diatomaceous earth include Celite (registered trademark) manufactured by Celite, and Ceratom (registered trademark) manufactured by Eagle Pitcher Minerals.
 粉末セルロースは、粉末状のセルロースであり、その形状は通常、棒軸状粒子である。粉末セルロースの製法は特に限定されないが、例えば、木材パルプを酸加水分解処理し非結晶部分を除去後、粉砕、篩分けする方法、精選パルプを酸加水分解した後に得られる未分解残渣を精製かつ乾燥し、粉砕、篩分けする方法が挙げられる。粉末セルロースは、結晶性又は微結晶性セルロースであり得、一定の粒径分布を有することが好ましい。粉末セルロースのセルロース重合度は、好ましくは100~500程度である。X線回折法による粉末セルロースの結晶化度は、好ましくは70~90%である。レーザー回折式粒度分布測定装置による粉末セルロースの体積平均粒子径は、好ましくは100μm以下であり、より好ましくは50μm以下である。これにより、ろ過後の流動性に優れる変性セルロース繊維を得ることができる。粉末セルロースとしては、例えば、日本製紙社製のKCフロック(登録商標)、旭化成ケミカルズ社製のセオラス(登録商標)、FMC社製のアビセル(登録商標)が挙げられる。 Powdered cellulose is powdered cellulose, and its shape is usually rod-shaped particles. The method for producing the powdered cellulose is not particularly limited. For example, the wood pulp is subjected to an acid hydrolysis treatment to remove the non-crystalline portion, and then pulverized and sieved. The undegraded residue obtained after the acid hydrolysis of the selected pulp is purified and The method of drying, grinding | pulverizing, and sieving is mentioned. Powdered cellulose can be crystalline or microcrystalline cellulose and preferably has a certain particle size distribution. The degree of cellulose polymerization of the powdered cellulose is preferably about 100 to 500. The crystallinity of powdered cellulose by X-ray diffraction method is preferably 70 to 90%. The volume average particle size of the powdered cellulose measured by a laser diffraction particle size distribution analyzer is preferably 100 μm or less, more preferably 50 μm or less. Thereby, the modified cellulose fiber excellent in the fluidity | liquidity after filtration can be obtained. Examples of the powdered cellulose include KC Flock (registered trademark) manufactured by Nippon Paper Industries Co., Ltd., Theolas (registered trademark) manufactured by Asahi Kasei Chemicals Corporation, and Avicel (registered trademark) manufactured by FMC.
 ろ過後の変性セルロース繊維の分散液の異物面積比率は、25%以下が好ましい。異物面積比率は、以下の方法で算出される。まず、変性セルロース繊維の分散液に表面張力調整剤を添加した後に薄膜化する。当該薄膜の両面に、一対の偏光板を互いに偏光軸が直交するように配置する。一方の偏光板側から光を照射し、他方の偏光板側から透過画像を取得する。当該画像を画像解析して異物面積を特定し、変性セルロース繊維絶乾質量1gあたりの異物面積比率を算出する。ろ過後の変性セルロース繊維分散液は、当該評価方法において25%以下の異物面積比率を有することが好ましい。異物面積比率は分散性の指標であり、当該比率が25%以下であることにより、良好な分散性を有するものとなる。 The foreign matter area ratio of the modified cellulose fiber dispersion after filtration is preferably 25% or less. The foreign matter area ratio is calculated by the following method. First, a surface tension adjuster is added to a dispersion of modified cellulose fibers, and then thinned. A pair of polarizing plates are arranged on both surfaces of the thin film so that the polarization axes are orthogonal to each other. Light is irradiated from one polarizing plate side, and a transmission image is acquired from the other polarizing plate side. The image is subjected to image analysis to determine the foreign matter area, and the foreign matter area ratio per gram of the modified cellulose fiber absolutely dry mass is calculated. The modified cellulose fiber dispersion after filtration preferably has a foreign matter area ratio of 25% or less in the evaluation method. The foreign matter area ratio is an index of dispersibility, and when the ratio is 25% or less, it has good dispersibility.
[短繊維化処理]
 短繊維化処理とは、処理前のセルロース鎖を適宜切断する(短繊維化する)処理であり、例えば、紫外線照射処理、酸化分解処理、加水分解処理、及びこれらのうち2以上の組み合わせが挙げられる。短繊維化処理は、加水分解処理、又は加水分解処理と他の処理の組み合わせが好ましい。
[Short fiber treatment]
The fiber shortening treatment is a treatment for appropriately cutting (shortening fibers) the cellulose chain before the treatment, and examples include ultraviolet irradiation treatment, oxidative decomposition treatment, hydrolysis treatment, and combinations of two or more thereof. It is done. The short fiber treatment is preferably a hydrolysis treatment or a combination of hydrolysis treatment and other treatment.
 短繊維化処理の前に、セルロース繊維を洗浄する洗浄処理を行うことが好ましい。これにより副反応を抑制できる。洗浄処理の条件は特に限定されず、公知の方法で行うことができる。 It is preferable to perform a washing treatment for washing the cellulose fibers before the shortening treatment. Thereby, a side reaction can be suppressed. The conditions for the cleaning treatment are not particularly limited, and can be performed by a known method.
 加水分解処理としては例えば、セルロース繊維に酸を添加してセルロース鎖を加水分解する酸加水分解処理、セルロース繊維にアルカリを添加してセルロース鎖を加水分解するアルカリ加水分解処理が挙げられる。加水分解処理の反応媒体は、通常は水である。これにより、副反応を抑制できる。 Examples of the hydrolysis treatment include acid hydrolysis treatment in which an acid is added to cellulose fibers to hydrolyze cellulose chains, and alkali hydrolysis treatment in which alkali is added to cellulose fibers to hydrolyze cellulose chains. The reaction medium for the hydrolysis treatment is usually water. Thereby, a side reaction can be suppressed.
 酸としては、例えば、硫酸、塩酸、硝酸、リン酸等の鉱酸が挙げられる。加水分解処理は、セルロース繊維の分散液(例、水等の水系分散媒への分散液)に対して行うことが好ましい。これにより、加水分解反応を効率よく行なうことができる。分散液中のセルロース繊維濃度は、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、1~5質量%がさらに好ましい。 Examples of the acid include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid. The hydrolysis treatment is preferably performed on a dispersion of cellulose fibers (eg, a dispersion in an aqueous dispersion medium such as water). Thereby, a hydrolysis reaction can be performed efficiently. The cellulose fiber concentration in the dispersion is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass, and even more preferably from 1 to 5% by mass.
 酸加水分解処理の条件は、酸がセルロース分子の非晶部に作用し得るような条件であればよいが、例を挙げると以下のとおりである。酸の添加量は、セルロース繊維の絶乾質量に対して、0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロース繊維の加水分解を進行でき、ナノファイバー化の効率を向上できる。当該添加量が0.5質量%以下であると、セルロース繊維の過度の加水分解を防ぐことができ、セルロース繊維の収率の低下を抑制できる。 The conditions for the acid hydrolysis treatment may be any conditions that allow the acid to act on the amorphous part of the cellulose molecule. Examples are as follows. The amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulose fiber. When the added amount of the acid is 0.01% by mass or more, hydrolysis of the cellulose fiber can proceed and the efficiency of nanofiber formation can be improved. When the amount added is 0.5% by mass or less, excessive hydrolysis of the cellulose fibers can be prevented, and a decrease in the yield of the cellulose fibers can be suppressed.
 酸加水分解処理時の分散媒のpH値は、2.0~4.0が好ましく、2.0以上3.0未満がより好ましい。pH値の調整は、例えば、酸添加量の調整によって行い得る。例えば、分散媒中にアルカリが残存している場合、酸添加量を増量すればよい。反応温度は、例えば、70~120℃であり、反応時間は、例えば1~10時間である。酸加水分解処理後、水酸化ナトリウム等のアルカリを添加して中和することが好ましい。これにより、ナノファイバー化を効率よく行なうことができる。 The pH value of the dispersion medium during the acid hydrolysis treatment is preferably 2.0 to 4.0, more preferably 2.0 or more and less than 3.0. The pH value can be adjusted, for example, by adjusting the acid addition amount. For example, when the alkali remains in the dispersion medium, the acid addition amount may be increased. The reaction temperature is, for example, 70 to 120 ° C., and the reaction time is, for example, 1 to 10 hours. After the acid hydrolysis treatment, it is preferable to neutralize by adding an alkali such as sodium hydroxide. Thereby, the nanofiberization can be performed efficiently.
 アルカリ加水分解処理の条件は、特に限定されないが、例を挙げると以下のとおりである。反応液のpH値は、8~14が好ましく、9~13がより好ましく、10~12がさらに好ましい。pH値が8以上であることにより、加水分解が進行し、セルロース繊維の短繊維化を十分に進め得る。一方、pH値が14以下であることにより、加水分解後のセルロース繊維の着色、透明性低下を抑制し得る。pH値の調整は、アルカリの添加によればよく、用いるアルカリは通常は水溶性であり、製造コストの観点から好ましくは水酸化ナトリウムである。 The conditions for the alkaline hydrolysis treatment are not particularly limited, but examples are as follows. The pH value of the reaction solution is preferably 8 to 14, more preferably 9 to 13, and further preferably 10 to 12. When the pH value is 8 or more, hydrolysis proceeds and the cellulose fibers can be sufficiently shortened. On the other hand, when the pH value is 14 or less, coloring of the cellulose fiber after hydrolysis and a decrease in transparency can be suppressed. The pH value may be adjusted by adding an alkali. The alkali used is usually water-soluble, and sodium hydroxide is preferable from the viewpoint of production cost.
 アルカリ加水分解処理の際には、助剤(例、酸化剤、還元剤)を用いることが好ましい。アルカリ性溶液中でカルボキシ基を有するセルロース繊維を加水分解すると、β脱離の際に二重結合が生成することに起因して、セルロース繊維が黄色に着色し透明性が低下するおそれがあり、その結果適用技術が制限されるおそれがある。しかし、助剤を用いることにより、二重結合を酸化又は還元し、着色及び透明性の低下が抑制され得る。助剤は、アルカリ性領域で活性を有するものであればよい。助剤の添加量は、反応効率の観点から、絶乾したセルロース繊維に対し0.1~10質量%が好ましく、0.3~5質量%がより好ましく、0.5~2質量%がさらに好ましい。 In the alkali hydrolysis treatment, it is preferable to use an auxiliary agent (eg, oxidizing agent, reducing agent). When cellulose fibers having a carboxy group are hydrolyzed in an alkaline solution, the cellulose fibers may be colored yellow due to the formation of double bonds during β elimination, and the transparency may decrease. Result application technology may be limited. However, by using an auxiliary agent, the double bond can be oxidized or reduced, and coloration and transparency can be prevented from lowering. The auxiliary agent only needs to have activity in the alkaline region. From the viewpoint of reaction efficiency, the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and further preferably 0.5 to 2% by mass with respect to the absolutely dried cellulose fiber. preferable.
 酸化剤としては、例えば、酸素、オゾン、過酸化水素、次亜塩素酸塩が挙げられる。中でも、酸化剤は、ラジカルを発生し難い、酸素、過酸化水素、次亜塩素酸塩が好ましく、過酸化水素がより好ましい。酸化剤は1種単独で、2種以上を組み合わせて使用し得る。 Examples of the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite. Among them, the oxidizing agent is less likely to generate radicals, and oxygen, hydrogen peroxide, and hypochlorite are preferable, and hydrogen peroxide is more preferable. One oxidizing agent can be used alone, or two or more oxidizing agents can be used in combination.
 還元剤としては、例えば、水素化ホウ素ナトリウム、ハイドロサルファイト、亜硫酸塩が挙げられる。還元剤は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the reducing agent include sodium borohydride, hydrosulfite, and sulfite. A reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 加水分解処理の反応温度は、特に限定されないが、低温では加水分解が不十分となりその結果短繊維化が不十分となるおそれがあり、高温では加水分解後のセルロース繊維が着色するおそれがある。このような問題点を抑制し反応効率を向上できることから、40~120℃が好ましく、50~100℃がより好ましく、60~90℃がさらに好ましい。加水分解処理の反応時間は、0.5~24時間が好ましく、1~10時間がより好ましく、2~6時間がさらに好ましい。 The reaction temperature of the hydrolysis treatment is not particularly limited, but hydrolysis may be insufficient at low temperatures, resulting in insufficient fiber shortening, and cellulose fibers after hydrolysis may be colored at high temperatures. In order to suppress such problems and improve the reaction efficiency, the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C. The reaction time for the hydrolysis treatment is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
 反応効率の観点から、アルカリ性溶液中のセルロース繊維の濃度は、1~20質量%が好ましく、3~15質量%がより好ましく、5~10質量%がさらに好ましい。 From the viewpoint of reaction efficiency, the concentration of the cellulose fiber in the alkaline solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass.
 紫外線照射処理は、セルロース繊維に紫外線を照射する処理である。紫外線照射によりセルロース繊維が短繊維化される理由は、次のように推察される。紫外線はセルロースやヘミセルロースに直接作用して低分子化を引き起こしセルロース鎖を短繊維化できる。 The ultraviolet irradiation treatment is a treatment for irradiating cellulose fibers with ultraviolet rays. The reason why cellulose fibers are shortened by ultraviolet irradiation is presumed as follows. Ultraviolet rays directly act on cellulose and hemicellulose to cause low molecular weight and shorten the cellulose chain.
 紫外線の波長は、好ましくは100~400nm、より好ましくは100~300nmであり、さらに好ましくは、135~260nmである。波長135~260nmの紫外線を用いることにより、セルロースやヘミセルロースに直接作用し低分子化を容易に引き起こすことができる。 The wavelength of the ultraviolet light is preferably 100 to 400 nm, more preferably 100 to 300 nm, and still more preferably 135 to 260 nm. By using ultraviolet rays having a wavelength of 135 to 260 nm, it can directly act on cellulose and hemicellulose to easily reduce the molecular weight.
 紫外線を照射する光源としては、100~400nmの波長領域の光を照射できればよく、例えば、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプが挙げられる。これらの光源は、1種単独で用いてもよく、2種以上を任意に組み合わせて用いてもよい。2種以上の光源の組み合わせは、波長特性の異なる複数の光源の組み合わせが好ましい。これにより、異なる波長の紫外線が同時に照射されることによりセルロース鎖やヘミセルロース鎖における切断箇所を増加できる。 As a light source for irradiating ultraviolet rays, it is only necessary to irradiate light in a wavelength region of 100 to 400 nm. Examples thereof include a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deuterium lamp, and a metal halide lamp. . These light sources may be used alone or in any combination of two or more. The combination of two or more light sources is preferably a combination of a plurality of light sources having different wavelength characteristics. Thereby, the cut | disconnection location in a cellulose chain or a hemicellulose chain can be increased by irradiating simultaneously with the ultraviolet-ray of a different wavelength.
 紫外線照射を行う際、通常はセルロース繊維分散液を収容する容器を用いる。例えば、300~400nmの紫外線を用いる場合、硬質ガラス製の容器を用いてもよい。300nmより短波長の紫外線を用いる場合、紫外線をより透過させる石英ガラス製の容器を用いてもよい。容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切に選定すればよい。 When performing ultraviolet irradiation, a container that contains a cellulose fiber dispersion is usually used. For example, when ultraviolet rays of 300 to 400 nm are used, a hard glass container may be used. When ultraviolet rays having a wavelength shorter than 300 nm are used, a quartz glass container that transmits ultraviolet rays more may be used. What is necessary is just to select suitably from the material with little deterioration with respect to the wavelength of the ultraviolet-ray used about the material of the part which does not participate in the light transmission reaction of a container.
 紫外線を照射する際の分散液中のセルロース繊維の濃度は、好ましくは0.1~12質量%、より好ましくは0.5~5質量%、さらに好ましくは1~3質量%である。カルボキシメチル化セルロースの濃度が0.1質量%以上であると、エネルギー効率を高めることができる。セルロース繊維の濃度が12質量%以下であると、紫外線照射装置内でのセルロース繊維の流動性が良好となり、反応効率を高めることができる。 The concentration of the cellulose fiber in the dispersion upon irradiation with ultraviolet rays is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 3% by mass. Energy efficiency can be improved as the density | concentration of carboxymethylated cellulose is 0.1 mass% or more. When the concentration of the cellulose fiber is 12% by mass or less, the fluidity of the cellulose fiber in the ultraviolet irradiation device becomes good, and the reaction efficiency can be increased.
 紫外線を照射する際の温度は、好ましくは20~95℃、より好ましくは20~80℃、さらに好ましくは20~50℃である。温度が20℃以上であると、光酸化反応の効率が高まるため好ましい。温度が95℃以下であると、カルボキシメチル化セルロースの品質の悪化等の悪影響のおそれがなく、また反応装置内の圧力が大気圧を超えるおそれもなくなり、耐圧性を考慮した装置設計を行なう必要性がなくなるため好ましい。 The temperature at the time of irradiation with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and further preferably 20 to 50 ° C. A temperature of 20 ° C. or higher is preferable because the efficiency of the photooxidation reaction is increased. If the temperature is 95 ° C. or lower, there is no risk of adverse effects such as deterioration of the quality of carboxymethylated cellulose, and there is no possibility that the pressure in the reaction apparatus will exceed atmospheric pressure, and it is necessary to design an apparatus that takes pressure resistance into consideration. This is preferable because the property is lost.
 紫外線を照射する際のpH値は特に限定されないが、プロセスの簡素化を考えると中性領域、例えば、pH値は6.0~8.0程度が好ましい。 The pH value when irradiating with ultraviolet rays is not particularly limited, but considering the simplification of the process, the neutral value, for example, the pH value is preferably about 6.0 to 8.0.
 セルロース繊維が受ける紫外線量は、必要に応じて制御できる。制御方法としては例えば、照射反応装置内でのセルロース繊維の滞留時間の調節、照射光源のエネルギー量の調節、照射装置内のセルロース繊維の濃度の調整(例、水希釈による調整、空気又は窒素等の不活性気体のセルロース繊維への吹き込みによる調整)が挙げられる。滞留時間、濃度をどの程度に制御するかは、目標とする紫外線照射後のセルロース繊維の品質(繊維長やセルロース重合度等)に応じて、適宜設定できる。 The amount of ultraviolet rays received by the cellulose fibers can be controlled as necessary. Control methods include, for example, adjustment of the residence time of cellulose fibers in the irradiation reaction apparatus, adjustment of the energy amount of the irradiation light source, adjustment of the concentration of cellulose fibers in the irradiation apparatus (eg, adjustment by dilution with water, air or nitrogen, etc. Adjustment by blowing an inert gas into cellulose fibers). The extent to which the residence time and concentration are controlled can be appropriately set according to the target quality of the cellulose fibers after irradiation with ultraviolet rays (fiber length, degree of cellulose polymerization, etc.).
 紫外線照射処理は、酸素、オゾン、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)等の助剤の存在下で行なうと、光酸化反応の効率が高まるため、好ましい。 When the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. preferable.
 135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部(光源周辺部)に存在する空気からオゾンが生成する。このように副次的に生成したオゾンを紫外線照射処理の助剤として利用できる。これにより、系外からのオゾン供給量を低減できるか、又は供給を省略できる。光源周辺部に存在する空気から精製したオゾンを紫外線照射処理の助剤として利用する方法は特に限定されないが、例えば、光源周辺部に連続的に空気を供給する一方で、生成するオゾンを連続的に抜き出し、この抜き出したオゾンをセルロース繊維へ注入する方法が挙げられる。光源周辺部に酸素を供給することにより、より大量のオゾンを系内に発生でき、発生したオゾンを光酸化反応の助剤として使用することもできる。 When irradiating ultraviolet rays in the wavelength region of 135 to 242 nm, ozone is generated from the air present in the gas phase around the light source (light source periphery). Ozone generated in this way can be used as an auxiliary agent for ultraviolet irradiation treatment. Thereby, the amount of ozone supplied from outside the system can be reduced, or the supply can be omitted. The method of using ozone purified from the air present in the periphery of the light source as an auxiliary agent for the ultraviolet irradiation treatment is not particularly limited. For example, while continuously supplying air to the periphery of the light source, the generated ozone is continuously And extracting the extracted ozone into cellulose fibers. By supplying oxygen to the periphery of the light source, a larger amount of ozone can be generated in the system, and the generated ozone can also be used as an auxiliary agent for the photooxidation reaction.
 紫外線照射処理は、複数回繰り返してもよい。繰り返しの回数は、目標とするセルロース繊維の品質等の条件に応じて適宜設定できる。例えば、紫外線の波長が100~400nm、好ましくは135~260nmの場合、好ましくは1~10回、より好ましくは2~5回である。1回あたりの照射時間は、好ましくは0.5~10時間、より好ましくは0.5~3時間である。 The ultraviolet irradiation treatment may be repeated a plurality of times. The number of repetitions can be appropriately set according to conditions such as target quality of the cellulose fiber. For example, when the wavelength of ultraviolet rays is 100 to 400 nm, preferably 135 to 260 nm, it is preferably 1 to 10 times, more preferably 2 to 5 times. The irradiation time per time is preferably 0.5 to 10 hours, more preferably 0.5 to 3 hours.
 酸化分解処理は、通常、過酸化水素とオゾンを併用して行う。オゾンは、空気又は酸素を原料としてオゾン発生装置を用いて公知の方法で発生できる。オゾンの添加量(質量換算)は、セルロース繊維の絶乾質量に対して、0.1~3倍が好ましく、0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。0.1倍以上であると、セルロースの非晶部を十分に分解できる。3倍以下であると、セルロースの過度の分解を抑制でき、セルロース繊維の収率の低下を防ぐことができる。過酸化水素の添加量(質量換算)は、セルロース繊維の絶乾質量の0.001~1.5倍が好ましく、0.1~1.0倍がより好ましい。0.001倍以上であると、オゾンと過酸化水素との相乗作用が発揮され得る。1.5倍以下であれば十分に酸化分解が進行し得、コストを抑えることができる。 Oxidative decomposition treatment is usually performed using hydrogen peroxide and ozone in combination. Ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material. The amount of ozone added (in terms of mass) is preferably 0.1 to 3 times, more preferably 0.3 to 2.5 times, and more preferably 0.5 to 1.5 times the absolute dry mass of the cellulose fiber. Further preferred. If it is 0.1 times or more, the amorphous part of cellulose can be sufficiently decomposed. When it is 3 times or less, excessive decomposition of cellulose can be suppressed, and a decrease in the yield of cellulose fibers can be prevented. The amount of hydrogen peroxide added (in terms of mass) is preferably 0.001 to 1.5 times, more preferably 0.1 to 1.0 times the absolute dry mass of the cellulose fiber. When it is 0.001 times or more, the synergistic effect of ozone and hydrogen peroxide can be exhibited. If it is 1.5 times or less, the oxidative decomposition can proceed sufficiently, and the cost can be suppressed.
 酸化分解処理の条件(例えば、pH、温度)は特に限定されないが、オゾン及び過酸化水素を用いる場合は、以下のとおりである。pH値は、好ましくは2~12、より好ましくは4~10、さらに好ましくは6~8であり、温度は、好ましくは10~90℃、より好ましくは20~70℃、さらに好ましくは30~50℃であり、反応時間は、好ましくは1~20時間、より好ましくは2~10時間、さらに好ましくは3~6時間である。これにより良好な反応効率にて処理を実施できる。 The conditions for the oxidative decomposition treatment (for example, pH and temperature) are not particularly limited, but when ozone and hydrogen peroxide are used, the conditions are as follows. The pH value is preferably 2 to 12, more preferably 4 to 10, further preferably 6 to 8, and the temperature is preferably 10 to 90 ° C., more preferably 20 to 70 ° C., and further preferably 30 to 50. The reaction time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours. Thereby, the treatment can be carried out with good reaction efficiency.
 酸化分解処理に用いる装置は、公知の装置であればよい。装置としては例えば、反応室、攪拌機、薬品注入装置、加熱器、及びpH電極を備える通常の反応器が挙げられる。 The apparatus used for the oxidative decomposition treatment may be a known apparatus. Examples of the apparatus include a reaction chamber, a stirrer, a chemical injection device, a heater, and a normal reactor equipped with a pH electrode.
 オゾン及び過酸化水素を用いる酸化分解処理後に解繊処理を行うと、水溶液中に残留するオゾン及び過酸化水素が、解繊工程においても有効に作用し得るため、セルロース繊維の短繊維化が一層促進され得る。 When defibrating treatment is performed after oxidative decomposition treatment using ozone and hydrogen peroxide, ozone and hydrogen peroxide remaining in the aqueous solution can act effectively in the defibrating process, so that the shortening of cellulose fibers is further shortened. Can be promoted.
<1.4.混合に供されるセルロース系繊維の形態>
 凝固工程において混合液を調製する際、ゴム成分と混合されるセルロース系繊維の形態は特に限定されない。前記形態としては、例えば、セルロース系繊維が分散媒に分散した分散液、当該分散液の乾燥固形物、当該分散液の湿潤固形物が挙げられる。分散液におけるセルロース系繊維の濃度は、分散媒が水である場合は、通常0.1~5%(w/v)である。分散媒が水の他にアルコール等の有機溶媒を含む場合、前記濃度は、通常0.1~20%(w/v)である。湿潤固形物とは、前記分散液と乾燥固形物との中間の態様の固形物である。前記分散液を通常の方法で脱水して得た湿潤固形物中の分散媒の量はセルロース系繊維に対して5~15重量%が好ましいが、液状媒体の追加又はさらなる乾燥により分散媒の量は適宜調整できる。
<1.4. Form of cellulosic fiber used for mixing>
When preparing a liquid mixture in a coagulation process, the form of the cellulosic fiber mixed with a rubber component is not particularly limited. Examples of the form include a dispersion in which cellulosic fibers are dispersed in a dispersion medium, a dry solid of the dispersion, and a wet solid of the dispersion. The concentration of the cellulosic fibers in the dispersion is usually 0.1 to 5% (w / v) when the dispersion medium is water. When the dispersion medium contains an organic solvent such as alcohol in addition to water, the concentration is usually 0.1 to 20% (w / v). The wet solid is a solid in an intermediate form between the dispersion and the dry solid. The amount of the dispersion medium in the wet solid obtained by dehydrating the dispersion by a conventional method is preferably 5 to 15% by weight based on the cellulosic fiber, but the amount of the dispersion medium can be increased by adding a liquid medium or further drying. Can be adjusted as appropriate.
 また、前記形態としては、例えば、セルロース系繊維と水溶性高分子溶液との混合液、混合液の乾燥固形物、混合液の湿潤固形物も挙げられる。当該混合液及び乾燥固形物における液状媒体の量は、前述の湿潤固形物の分散媒の量の範囲であってよい。水溶性高分子としては例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、陽性澱粉、燐酸化澱粉、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩(例えば、ポリアクリル酸ソーダ)、でんぷんポリアクリル酸共重合体、タマリンドガム、グァーガム、及びコロイダルシリカ、並びにこれらの混合物が挙げられる。この中でも溶解性の点から、カルボキシメチルセルロース及びその塩が好ましい。 Also, examples of the form include a mixed solution of a cellulosic fiber and a water-soluble polymer solution, a dry solid of the mixed solution, and a wet solid of the mixed solution. The amount of the liquid medium in the mixed liquid and the dry solid may be in the range of the amount of the dispersion medium of the wet solid described above. Examples of water-soluble polymers include cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, hard starch, crumbs Flour, positive starch, phosphorylated starch, corn starch, gum arabic, locust bean gum, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soy protein lysate, peptone, polyvinyl alcohol, polyacrylamide, Polyvinyl pyrrolidone, polyvinyl acetate, polyamino acid, polylactic acid, polymalic acid, polyglycerin, latex, rosin sizing agent, petroleum Fat sizing agent, urea resin, melamine resin, epoxy resin, polyamide resin, polyamide-polyamine resin, polyethyleneimine, polyamine, vegetable gum, polyethylene oxide, hydrophilic cross-linked polymer, polyacrylate (eg, polyacrylic acid soda) , Starch polyacrylic acid copolymer, tamarind gum, guar gum, and colloidal silica, and mixtures thereof. Among these, carboxymethylcellulose and its salt are preferable from the viewpoint of solubility.
 前記乾燥固形物及び湿潤固形物は、セルロース系繊維の分散液又はセルロース系繊維と水溶性高分子の混合液を乾燥して調製できる。乾燥方法は特に限定されないが、例えば、スプレードライ、圧搾、風乾、熱風乾燥、又は真空乾燥が挙げられる。乾燥装置としては例えば、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の乾燥装置(例えば、箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、又は撹拌乾燥装置)が挙げられる。これらの乾燥装置は、単独で用いてもよいし、2つ以上を組合せて用いてもよい。ドラム乾燥装置は、均一に被乾燥物に熱エネルギーを直接供給できるのでエネルギー効率が高く、かつ必要以上に熱を加えずに直ちに乾燥物を回収できるので好ましい。 The dry solid and wet solid can be prepared by drying a dispersion of cellulose fibers or a mixture of cellulose fibers and a water-soluble polymer. Although a drying method is not specifically limited, For example, spray drying, pressing, air drying, hot air drying, or vacuum drying is mentioned. Examples of the drying device include a continuous tunnel drying device, a band drying device, a vertical drying device, a vertical turbo drying device, a multi-stage disk drying device, an aeration drying device, a rotary drying device, an air flow drying device, and a spray dryer drying device. , Spray dryer, cylindrical dryer, drum dryer, screw conveyor dryer, rotary dryer with heating tube, vibration transport dryer, batch dryer (eg box dryer, aerated dryer, vacuum box) A drying device or a stirring drying device). These drying apparatuses may be used alone or in combination of two or more. The drum drying apparatus is preferable because it can supply heat energy uniformly and directly to the material to be dried, so that energy efficiency is high and the dried material can be recovered immediately without applying more heat than necessary.
<1.5.ゴム成分>
 本発明においてはゴム成分としてクロロプレンゴムを用いる。クロロプレンゴム(CR)は、天然ゴム(NR)の構造に類似した結晶性を示す。クロロプレンゴムは、耐熱性、耐油性、耐オゾン性、耐薬品性、耐疲労性、難燃性、耐候性、接着性など様々な特性をバランスよく満たしていることを特徴とする。
<1.5. Rubber component>
In the present invention, chloroprene rubber is used as the rubber component. Chloroprene rubber (CR) exhibits crystallinity similar to that of natural rubber (NR). Chloroprene rubber is characterized by satisfying various properties such as heat resistance, oil resistance, ozone resistance, chemical resistance, fatigue resistance, flame resistance, weather resistance, and adhesiveness in a well-balanced manner.
 本発明において、所望の効果を阻害しない範囲で、クロロプレンゴムと他のゴム成分を併用できる。他のゴム成分としては、例えば、天然ゴム、塩素化天然ゴム、水素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム、脱タンパク天然ゴム、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム等のジエン系ゴム、エチレン-プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)が挙げられる。 In the present invention, chloroprene rubber and other rubber components can be used in combination as long as the desired effects are not impaired. Examples of other rubber components include natural rubber, chlorinated natural rubber, hydrogenated natural rubber, chlorosulfonated natural rubber, epoxidized natural rubber, deproteinized natural rubber, butadiene rubber (BR), and styrene-butadiene copolymer. Rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, etc. Diene rubber, ethylene-propylene rubber (EPM, EPDM), acrylic rubber (ACM), epichlorohydrin rubber (CO, ECO), fluoro rubber (FKM), silicone rubber (Q), urethane rubber (U), chloro Examples include sulfonated polyethylene (CSM).
 クロロプレンゴム及び必要に応じて用いられるゴム成分とセルロース系繊維との混合の形態は特に限定されない。例えば、セルロース系繊維の分散液、該分散液の乾燥固形物、又は当該分散液の湿潤固形物と、クロロプレンゴム及び必要に応じて用いられるゴム成分(固形物)又はその分散液とを混合する形態が挙げられる。これらのうち、セルロース系繊維の分散液とクロロプレンゴム及び必要に応じて用いられるゴム成分の分散液とを混合する形態が好ましい。 The form of mixing the chloroprene rubber and the rubber component used as necessary with the cellulosic fiber is not particularly limited. For example, a dispersion of cellulose fibers, a dry solid of the dispersion, or a wet solid of the dispersion is mixed with chloroprene rubber and a rubber component (solid) used as necessary or a dispersion thereof. A form is mentioned. Among these, the form which mixes the dispersion liquid of a cellulosic fiber, the dispersion liquid of the chloroprene rubber and the rubber component used as needed is preferable.
<1.6.添加量>
 混合液調製の際のセルロース系繊維の添加量は、ゴム成分(他のゴム成分を含む場合、クロロプレンゴムと他のゴム成分の合計)100重量%に対して1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。これにより得られるゴム組成物の引張強度の向上効果が十分に発現し得る。上限は、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下が更に好ましい。これにより、製造工程における加工性を保持することができる。従って、1~50重量%が好ましい。
<1.6. Addition amount>
The addition amount of the cellulosic fibers in the preparation of the mixed solution is preferably 1% by weight or more with respect to 100% by weight of the rubber component (the total of the chloroprene rubber and the other rubber component when other rubber components are included), and 2% by weight. % Or more is more preferable, and 3% by weight or more is more preferable. Thereby, the improvement effect of the tensile strength of the rubber composition obtained can fully be expressed. The upper limit is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 1 to 50% by weight is preferable.
<2.固液分離工程(脱水工程)、水洗工程>
 本発明の製造方法は、固液分離工程及び水洗工程からなる群より選ばれる少なくとも1つの工程を更に含むことが好ましく、両工程を更に含むことがより好ましい。これにより、ゴム組成物中の不純物の含有量を低下でき、ゴム組成物の強度を向上させることができる。固液分離工程と水洗工程の態様は、固液分離と水洗のセットを2回以上繰り返す態様が好ましい。
<2. Solid-liquid separation process (dehydration process), water washing process>
The production method of the present invention preferably further includes at least one step selected from the group consisting of a solid-liquid separation step and a water washing step, and more preferably further includes both steps. Thereby, content of the impurity in a rubber composition can be reduced and the intensity | strength of a rubber composition can be improved. The aspect of a solid-liquid separation process and a water washing process has a preferable aspect which repeats the set of solid-liquid separation and water washing twice or more.
 固液分離工程(脱水工程)は、凝固工程にて得られる凝固したゴム成分を含む混合液を固液分離する工程である。そのため、固液分離工程を行う時期は、通常は、凝固工程の後である。固液分離は、ろ材を用いて行うことが好ましい。ろ材としては、例えば、金属繊維、セルロース、ポリプロピレン、ポリエステル、ナイロン、ガラス、コットン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド等の素材からなるフィルター、メンブレン、ろ布、金属粉を焼結させてなるフィルター、またはスリット状フィルターが挙げられる。これらの中でも、ナイロンフィルターが好ましい。ろ材の好ましい平均孔径は、好ましくは0.01~100μmであり、より好ましくは0.1~50μmであり、さらに好ましくは1~30μmである。 The solid-liquid separation step (dehydration step) is a step for solid-liquid separation of the liquid mixture containing the solidified rubber component obtained in the coagulation step. Therefore, the time for performing the solid-liquid separation step is usually after the coagulation step. Solid-liquid separation is preferably performed using a filter medium. Examples of filter media include filters made of materials such as metal fibers, cellulose, polypropylene, polyester, nylon, glass, cotton, polytetrafluoroethylene, polyphenylene sulfide, membranes, filter cloths, filters made by sintering metal powder, Or a slit filter is mentioned. Among these, a nylon filter is preferable. A preferable average pore diameter of the filter medium is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm, and further preferably 1 to 30 μm.
 水洗工程は、固液分離工程で得られる固相を洗浄する工程である。 The water washing step is a step of washing the solid phase obtained in the solid-liquid separation step.
<3.乾燥工程>
 本発明の製造方法は、乾燥工程を更に含んでもよい。これにより、水分量の少ないマスターバッチを得ることができる。乾燥工程は、凝固工程により得られる処理液、又は、その後必要に応じて行われる固液分離工程及び洗浄工程により得られる処理液を、加熱による乾燥に供する工程である。加熱温度、加熱時間等の条件は特に限定されない。加熱温度は、40℃以上が好ましい。上限は100℃未満が好ましい。加熱時間は、1時間以上が好ましい。上限は24時間以下が好ましい。加熱の条件を上記範囲とすることで、ゴム成分に対するダメージを抑えることができる。加熱は、オーブン等の乾燥機を用いて行えばよい。
<3. Drying process>
The production method of the present invention may further include a drying step. Thereby, a masterbatch with little moisture content can be obtained. A drying process is a process which uses for the drying by heating the processing liquid obtained by a coagulation process, or the processing liquid obtained by the solid-liquid separation process and washing | cleaning process performed after that as needed. Conditions such as heating temperature and heating time are not particularly limited. The heating temperature is preferably 40 ° C. or higher. The upper limit is preferably less than 100 ° C. The heating time is preferably 1 hour or longer. The upper limit is preferably 24 hours or less. By setting the heating condition within the above range, damage to the rubber component can be suppressed. Heating may be performed using a dryer such as an oven.
<4.メチレンアクセプター化合物及び/又はメチレンドナー化合物添加工程>
 本発明の製造方法は、メチレンアクセプター化合物及び/又はメチレンドナー化合物添加工程を更に含んでもよい。
 メチレンアクセプター化合物とは通常、メチレン基を受容でき、かつ、メチレンドナー化合物と混合して加熱することにより硬化反応し得る化合物である。メチレンアクセプター化合物としては例えば、フェノール、レゾルシノール、レゾルシン、クレゾールなどのフェノール化合物及びその誘導体、レゾルシン系樹脂、クレゾール系樹脂、フェノール樹脂が挙げられる。フェノール樹脂としては例えば、上記フェノール化合物及びその誘導体とホルムアルデヒド、アセトアルデヒドなどのアルデヒド化合物との縮合物が挙げられる。フェノール樹脂は、縮合の際の触媒によりノボラック樹脂(酸性触媒)、レゾール樹脂(アルカリ性触媒)に分類できるが、本発明においてはいずれを使用してもよい。フェノール樹脂は、オイル又は脂肪酸で変性されていてもよい。オイル及び脂肪酸としては例えば、ロジン油、トール油、カシュー油、リノール酸、オレイン酸、リノレイン酸などが挙げられる。
<4. Methylene acceptor compound and / or methylene donor compound addition step>
The production method of the present invention may further include a step of adding a methylene acceptor compound and / or a methylene donor compound.
The methylene acceptor compound is usually a compound that can accept a methylene group and can undergo a curing reaction by mixing with a methylene donor compound and heating. Examples of the methylene acceptor compound include phenol compounds such as phenol, resorcinol, resorcin, and cresol and derivatives thereof, resorcin resin, cresol resin, and phenol resin. Examples of the phenol resin include condensates of the above phenol compounds and derivatives thereof with aldehyde compounds such as formaldehyde and acetaldehyde. Phenol resins can be classified into novolak resins (acidic catalysts) and resol resins (alkaline catalysts) depending on the catalyst used in the condensation, and any of them may be used in the present invention. The phenol resin may be modified with oil or fatty acid. Examples of the oil and fatty acid include rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linolenic acid.
 メチレンドナー化合物とは通常、メチレン基を供与でき、かつ、メチレンアクセプター化合物と混合して加熱することにより硬化反応し得る化合物である。メチレンドナー化合物としては例えば、ヘキサメチレンテトラミン、メラミン誘導体が挙げられる。メラミン誘導体としては例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ペンタメトキシメチルメラミン、ペンタメトキシメチロールメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミンが挙げられる。 The methylene donor compound is usually a compound that can donate a methylene group and can undergo a curing reaction by mixing with a methylene acceptor compound and heating. Examples of the methylene donor compound include hexamethylenetetramine and melamine derivatives. Examples of the melamine derivative include hexamethylol melamine, hexamethoxymethyl melamine, pentamethoxymethyl melamine, pentamethoxymethylol melamine, hexaethoxymethyl melamine, and hexakis- (methoxymethyl) melamine.
 メチレンアクセプター化合物とメチレンドナー化合物の組み合わせとしては例えば、クレゾール、クレゾール誘導体又はクレゾール系樹脂とペンタメトキシメチルメラミンとの組み合わせ、レゾルシン、レゾルシン誘導体又はレゾルシン系樹脂とヘキサメチレンテトラミンとの組み合わせ、カシュー変性フェノール樹脂とヘキサメチレンテトラミンとの組み合わせ、フェノール樹脂とヘキサメチレンテトラミンとの組み合わせが挙げられる。中でもクレゾール、クレゾール誘導体又はクレゾール系樹脂とペンタメトキシメチルメラミンとの組み合わせ、レゾルシン、レゾルシン誘導体又はレゾルシン系樹脂とヘキサメチレンテトラミンとの組み合わせが好ましい。 Examples of the combination of the methylene acceptor compound and the methylene donor compound include, for example, cresol, a cresol derivative or a combination of a cresol resin and pentamethoxymethylmelamine, a resorcin, a resorcin derivative or a combination of a resorcin resin and hexamethylenetetramine, a cashew-modified phenol. Examples include a combination of a resin and hexamethylenetetramine, and a combination of a phenol resin and hexamethylenetetramine. Among these, a combination of cresol, a cresol derivative or a cresol resin and pentamethoxymethylmelamine, and a combination of resorcin, a resorcin derivative or resorcin resin and hexamethylenetetramine are preferable.
 メチレンアクセプター化合物の添加量は、ゴム成分100重量%に対して0.5重量%以上が好ましく、1.0重量%以上がより好ましく、1.3重量%以上がさらに好ましく、1.5重量%以上がさらにより好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、50重量%以下が好ましく、20重量%以下が好ましく、10重量%以下がさらに好ましい。これにより、製造工程における加工性を保持できる。従って、0.5~50重量%が好ましく、1.0~50重量%又は1.0~20重量%がより好ましく、1.3~20重量%がさらに好ましく、1.5~10重量%がさらにより好ましい。 The amount of the methylene acceptor compound added is preferably 0.5% by weight or more, more preferably 1.0% by weight or more, further preferably 1.3% by weight or more, and more preferably 1.5% by weight with respect to 100% by weight of the rubber component. % Or more is even more preferable. Thereby, the improvement effect of tensile strength can fully express. The upper limit is preferably 50% by weight or less, preferably 20% by weight or less, and more preferably 10% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Accordingly, 0.5 to 50% by weight is preferable, 1.0 to 50% by weight or 1.0 to 20% by weight is more preferable, 1.3 to 20% by weight is further preferable, and 1.5 to 10% by weight is more preferable. Even more preferred.
 メチレンドナー化合物の添加量は、メチレンアクセプター化合物100重量%に対して10重量%以上が好ましく、20重量%以上がより好ましく、25重量%以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、100重量%以下が好ましく、90重量%以下が好ましく、85重量%以下がさらに好ましい。これにより、製造工程における加工性を保持できる。従って、10~100重量%が好ましく、20~90重量%がより好ましく、25~85重量%がさらに好ましい。 The addition amount of the methylene donor compound is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably 25% by weight or more with respect to 100% by weight of the methylene acceptor compound. Thereby, the improvement effect of tensile strength can fully express. The upper limit is preferably 100% by weight or less, preferably 90% by weight or less, and more preferably 85% by weight or less. Thereby, the workability in the manufacturing process can be maintained. Therefore, 10 to 100% by weight is preferable, 20 to 90% by weight is more preferable, and 25 to 85% by weight is further preferable.
 本工程を行う時期は、凝固工程の途中又は後のいずれでもよい。例えば、クロロプレンとセルロース系繊維との混合液を調製する際にこれらと共にメチレンアクセプター化合物/メチレンドナー化合物を混合する態様;乾燥工程後に得られるマスターバッチにメチレンアクセプター化合物/メチレンドナー化合物を添加する態様が挙げられる。 The time for performing this step may be either during or after the solidification step. For example, when preparing a mixed liquid of chloroprene and cellulosic fibers, a mode in which a methylene acceptor compound / methylene donor compound is mixed together with them; a methylene acceptor compound / methylene donor compound is added to a master batch obtained after the drying step An embodiment is mentioned.
<5.混合工程>
 混合工程は、凝固工程後の(必要に応じて他の工程を経て得られる)処理物(マスターバッチ)をそのまま、又は必要に応じて任意成分を添加して、混合する工程である。混合の際の(例えば、素練り及び混練りの際の)の温度は、常温程度(例えば、15~30℃程度)でもよいが、ゴム成分が架橋反応しない程度に高温に加熱してもよい。例えば140℃以下、より好ましくは120℃以下である。また下限は40℃以上、好ましくは60℃以上である。従って加熱温度は、40~140℃程度が好ましく、60~120℃程度がより好ましい。
<5. Mixing process>
The mixing step is a step of mixing the processed product (master batch) after the coagulation step (obtained through other steps as necessary) as it is or adding an optional component as necessary. The temperature during mixing (for example, during kneading and kneading) may be about room temperature (for example, about 15 to 30 ° C.), but may be heated to a high temperature so that the rubber component does not undergo a crosslinking reaction. . For example, it is 140 ° C. or lower, more preferably 120 ° C. or lower. Moreover, a minimum is 40 degreeC or more, Preferably it is 60 degreeC or more. Accordingly, the heating temperature is preferably about 40 to 140 ° C., more preferably about 60 to 120 ° C.
 任意成分としては例えば、補強剤(例えば、カーボンブラック、シリカ等)、シランカップリング剤、硫黄、酸化亜鉛、ステアリン酸、加硫促進剤、加硫促進助剤、オイル、硬化レジン、ワックス、老化防止剤、着色剤、素練り促進剤、軟化剤、可塑剤、硬化剤(例えば、フェノール樹脂、ハイスチレン樹脂等)、発泡剤、充填剤(カーボンブラック、シリカ等)、カップリング剤、粘着剤(例えば、マクロン樹脂、フェノール、テルペン系樹脂、石油系炭化水素樹脂、ロジン誘導体等)、分散剤(例えば、脂肪酸等)、接着増進剤(例えば、有機コバルト塩等)、滑剤(例えば、パラフィン、炭化水素樹脂、脂肪酸、脂肪酸誘導体等)などゴム工業で使用され得る配合剤が挙げられる。このうち硫黄、加硫促進剤が好ましい。加硫促進剤としては例えば、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド(BBS)が挙げられる。任意成分は1種でもよいし、2種以上でもよい。 Optional components include, for example, reinforcing agents (for example, carbon black, silica, etc.), silane coupling agents, sulfur, zinc oxide, stearic acid, vulcanization accelerators, vulcanization accelerators, oils, cured resins, waxes, aging Inhibitors, colorants, peptizers, softeners, plasticizers, curing agents (eg, phenol resins, high styrene resins, etc.), foaming agents, fillers (carbon black, silica, etc.), coupling agents, adhesives (E.g., macron resin, phenol, terpene resin, petroleum hydrocarbon resin, rosin derivative, etc.), dispersant (e.g., fatty acid, etc.), adhesion promoter (e.g., organic cobalt salt, etc.), lubricant (e.g., paraffin, Compounding agents that can be used in the rubber industry, such as hydrocarbon resins, fatty acids, fatty acid derivatives, etc.). Of these, sulfur and vulcanization accelerators are preferred. Examples of the vulcanization accelerator include Nt-butyl-2-benzothiazole sulfenamide (BBS). The optional component may be one type or two or more types.
 任意成分の添加時期は特に限定されない。硫黄及び加硫促進剤の添加時期は、メチレンアクセプター化合物及び/又はメチレンドナー化合物の添加時期より後が好ましい。メチレンアクセプター化合物及び/又はメチレンドナー化合物添加工程を混合工程の途中に行う場合、硫黄及び加硫促進剤を添加せずにメチレンアクセプター化合物とメチレンドナー化合物を含む材料を混合して素練りを開始し、その後に、硫黄及び加硫促進剤を追加してさらに素練り及び混練りを行うことが好ましい。これにより、メチレンアクセプター化合物とメチレンドナー化合物が加熱により予備的に縮合し、その縮合物とゴム成分及びセルロース系繊維との相互作用が効果的に発揮され得る。 The addition timing of optional ingredients is not particularly limited. The addition timing of sulfur and the vulcanization accelerator is preferably after the addition timing of the methylene acceptor compound and / or the methylene donor compound. When the methylene acceptor compound and / or methylene donor compound addition step is performed in the middle of the mixing step, the methylene acceptor compound and the material containing the methylene donor compound are mixed and kneaded without adding sulfur and a vulcanization accelerator. It is preferable to start and then add sulfur and a vulcanization accelerator to further masticate and knead. As a result, the methylene acceptor compound and the methylene donor compound are preliminarily condensed by heating, and the interaction between the condensate, the rubber component, and the cellulosic fiber can be effectively exhibited.
 硫黄の添加量は、ゴム成分に対し1.0重量%以上が好ましく、1.5重量%以上がより好ましく、1.7重量%以上がさらに好ましい。上限は、10重量%以下が好ましく、7重量%以下が好ましく、5重量%以下がさらに好ましい。 The amount of sulfur added is preferably 1.0% by weight or more, more preferably 1.5% by weight or more, and still more preferably 1.7% by weight or more based on the rubber component. The upper limit is preferably 10% by weight or less, preferably 7% by weight or less, and more preferably 5% by weight or less.
 加硫促進剤の添加量は、ゴム成分に対し0.1重量%以上が好ましく、0.3重量%以上がより好ましく、0.4重量%以上がさらに好ましい。上限は、5重量%以下が好ましく、3重量%以下が好ましく、2重量%以下がさらに好ましい。 The addition amount of the vulcanization accelerator is preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and further preferably 0.4% by weight or more based on the rubber component. The upper limit is preferably 5% by weight or less, preferably 3% by weight or less, and more preferably 2% by weight or less.
 混合工程では、混合終了後に、必要に応じて成形を行ってもよい。成形装置としては、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等が挙げられ、最終製品の形状、用途、成形方法に応じて適宜選択すればよい。 In the mixing step, after mixing is completed, molding may be performed as necessary. Examples of the molding apparatus include mold molding, injection molding, extrusion molding, hollow molding, and foam molding, and may be appropriately selected according to the shape, application, and molding method of the final product.
 混合工程では、混合終了後に、好ましくは成形後に、加熱する(加硫、架橋)ことが好ましい。これによりゴム組成物を効果的に補強できる。メチレンアクセプター化合物及び/又はメチレンドナー化合物を添加する場合、これらの化合物が加熱により縮合反応して三次元網状構造体を形成し、この構造体がゴム成分及びセルロース系繊維とそれぞれ相互作用するため、ゴム組成物をより効果的に補強できる。加熱温度は、150℃以上が好ましく、上限は200℃以下が好ましく、180℃以下がより好ましい。従って、150~200℃程度が好ましく、150~180℃程度がより好ましい。加熱装置としては例えば、型加硫、缶加硫、連続加硫等の加硫装置が挙げられる。 In the mixing step, it is preferable to heat (vulcanize, crosslink) after completion of mixing, preferably after molding. Thereby, the rubber composition can be effectively reinforced. When a methylene acceptor compound and / or a methylene donor compound is added, these compounds undergo a condensation reaction by heating to form a three-dimensional network structure, and this structure interacts with the rubber component and the cellulosic fiber, respectively. The rubber composition can be reinforced more effectively. The heating temperature is preferably 150 ° C. or higher, and the upper limit is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. Therefore, about 150 to 200 ° C. is preferable, and about 150 to 180 ° C. is more preferable. Examples of the heating device include vulcanization devices such as mold vulcanization, can vulcanization, and continuous vulcanization.
 混合工程においては最後(最終製品とする前)に、必要に応じ仕上げ処理を行ってもよい。仕上げ処理としては例えば、研磨、表面処理、リップ仕上げ、リップ裁断、塩素処理などが挙げられ、これらの処理のうち1つのみを行ってもよいし2つ以上の組み合わせでもよい。 In the mixing step, finishing may be performed as necessary at the end (before final product). Examples of the finishing treatment include polishing, surface treatment, lip finishing, lip cutting, and chlorination, and only one of these treatments may be performed, or a combination of two or more may be used.
<6.ゴム組成物の用途>
 本発明の製造方法により得られるゴム組成物の用途は、特に制限されず、例えば、自動車、電車、船舶、飛行機、ベルトコンベア等の輸送機器;パソコン、テレビ、電話、時計等の電化製品;携帯電話等の移動通信機器;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品;建築材;文具等の事務機器、容器、コンテナーが挙げられる。これら以外でも、ゴムや柔軟なプラスチックが用いられている部材への適用が可能であり、産業用ベルトへの適用が好適である。産業用ベルトとしては例えば、フラットベルト、コンベアベルト、コグドベルト、Vベルト、リブベルト、丸ベルトが挙げられる。
<6. Applications of rubber composition>
The use of the rubber composition obtained by the production method of the present invention is not particularly limited, and includes, for example, transportation equipment such as automobiles, trains, ships, airplanes, and belt conveyors; electrical appliances such as personal computers, televisions, telephones, and watches; Mobile communication equipment such as telephones; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment; building materials; office equipment such as stationery, containers, and containers. Other than these, application to members using rubber or flexible plastic is possible, and application to industrial belts is preferable. Examples of the industrial belt include a flat belt, a conveyor belt, a cogged belt, a V belt, a rib belt, and a round belt.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
<製造例1> 酸化セルロースナノファイバーの製造(1)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで酸化されたパルプ(酸化(カルボキシル化)セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、酸化セルロースナノファイバー分散液を得た。平均繊維径は3nm、アスペクト比は250であった。
<Production Example 1> Production of oxidized cellulose nanofiber (1)
Bleached unbeaten kraft pulp derived from conifers (whiteness 85%), 5.00 g (absolutely dry), 39 mg of TEMPO (Sigma Aldrich) and 0.05 mmol of sodium bromide (absolutely dry) The solution was added to 500 ml of an aqueous solution in which 1.0 mmol) was dissolved in 1 g of cellulose, and stirred until the pulp was uniformly dispersed. An aqueous sodium hypochlorite solution was added to the reaction system so that sodium hypochlorite was 5.5 mmol / g, and the oxidation reaction was started at room temperature. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed. The mixture after the reaction was filtered through a glass filter to separate pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (oxidized (carboxylated) cellulose). The pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to 1.0% (w / v) with water and treated with an ultra-high pressure homogenizer (20 ° C., 150 Mpa) three times to obtain an oxidized cellulose nanofiber dispersion. The average fiber diameter was 3 nm and the aspect ratio was 250.
<製造例2> 酸化セルロースナノファイバーの製造(2)
 製造例1の酸化セルロースの5%(w/v)スラリーを調製し、30%(w/v)過酸化水素水を酸化セルロースの固形分に対して2%(有効成分換算)添加し、1M水酸化ナトリウムでpHを12に調整した。このスラリーを80℃で、2時間加水分解処理した。その後、ガラスフィルターで濾過し、十分に水洗した。加水分解した5%(w/v)酸化セルロースのスラリーを超高圧ホモジナイザー(20℃、150MPa)で3回処理し、酸化セルロースナノファイバー分散液を得た。平均繊維径は5nm、アスペクト比は60であった。
<Production Example 2> Production of oxidized cellulose nanofiber (2)
A 5% (w / v) slurry of the oxidized cellulose of Production Example 1 was prepared, and 30% (w / v) hydrogen peroxide solution was added 2% (in terms of active ingredient) with respect to the solid content of the oxidized cellulose. The pH was adjusted to 12 with sodium hydroxide. This slurry was hydrolyzed at 80 ° C. for 2 hours. Then, it filtered with the glass filter and washed thoroughly with water. The hydrolyzed 5% (w / v) oxidized cellulose slurry was treated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain an oxidized cellulose nanofiber dispersion. The average fiber diameter was 5 nm and the aspect ratio was 60.
<製造例3> カルボキシメチル化セルロースナノファイバーの製造
 パルプを混ぜることができる撹拌機に、パルプ(NBKP(針葉樹晒クラフトパルプ)、日本製紙製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で111g(発底原料の無水グルコース残基当たり2.25倍モル)加え、パルプ固形分が20%(w/v)になるように水を加えた。その後、30℃で30分攪拌した後にモノクロロ酢酸ナトリウムを216g(有効成分換算、パルプのグルコース残基当たり1.5倍モル)添加した。30分撹拌した後に、70℃まで昇温し1時間撹拌した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.25のカルボキシルメチル化したパルプを得た。これを水で固形分濃度1%とし、高圧ホモジナイザーにより20℃、150MPaの圧力で5回処理することにより解繊しカルボキシメチル化セルロースナノファイバーを得た。平均繊維径は15nm、アスペクト比は50であった。
<Manufacture example 3> Manufacture of carboxymethylated cellulose nanofiber In a stirrer which can mix pulp, pulp (NBKP (coniferous bleached kraft pulp), made by Nippon Paper Industries Co., Ltd.) is 200 g in dry mass and sodium hydroxide in dry mass. 111 g (2.25 moles per anhydroglucose residue of the bottoming raw material) was added, and water was added so that the pulp solid content was 20% (w / v). Thereafter, after stirring at 30 ° C. for 30 minutes, 216 g of sodium monochloroacetate (in terms of active ingredient, 1.5 times mol per glucose residue of pulp) was added. After stirring for 30 minutes, the temperature was raised to 70 ° C. and stirred for 1 hour. Thereafter, the reaction product was taken out, neutralized and washed to obtain a carboxymethylated pulp having a carboxymethyl substitution degree of 0.25 per glucose unit. This was defatted by treating it with water at a solid content concentration of 1% and treating it with a high-pressure homogenizer five times at 20 ° C. and a pressure of 150 MPa to obtain carboxymethylated cellulose nanofibers. The average fiber diameter was 15 nm and the aspect ratio was 50.
<製造例4> カチオン化セルロースナノファイバーの製造
 パルプを攪拌できるパルパーに、パルプ(NBKP、日本製紙製)を乾燥重量で200g、水酸化ナトリウムを乾燥重量で24g加え、パルプ固形濃度が15%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを200g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄して、グルコース単位当たりのカチオン置換度0.05のカチオン変性されたパルプを得た。これを固形分濃度1%とし、高圧ホモジナイザーにより20℃、140MPaの圧力で2回処理した。平均繊維径は25nm、アスペクト比は50であった。
<Manufacture example 4> Manufacture of cationized cellulose nanofiber To pulper which can stir pulp, pulp (NBKP, made by Nippon Paper Industries Co., Ltd.) is added by dry weight 200g, sodium hydroxide 24g by dry weight, and pulp solid concentration is 15%. Water was added so that Then, after stirring for 30 minutes at 30 ° C., the temperature was raised to 70 ° C., and 200 g (in terms of active ingredient) of 3-chloro-2-hydroxypropyltrimethylammonium chloride was added as a cationizing agent. After reacting for 1 hour, the reaction product was taken out, neutralized and washed to obtain a cation-modified pulp having a cation substitution degree of 0.05 per glucose unit. This was made into 1% of solid content concentration, and it processed twice with the high pressure homogenizer at 20 degreeC and the pressure of 140 Mpa. The average fiber diameter was 25 nm and the aspect ratio was 50.
 なお、上記製造例におけるカルボキシル基量、カルボキシメチル置換度、カチオン置換度は、上段にて説明した方法により測定された。 In addition, the amount of carboxyl groups, the degree of carboxymethyl substitution, and the degree of cation substitution in the above production examples were measured by the method described above.
<実施例1>
 製造例1で得られた酸化セルロースナノファイバーの固形分濃度0.5%水分散液1000gとクロロプレンゴムラテックス固形分濃度10%懸濁液1000gを混合して、ゴム成分:変性セルロースナノファイバーの重量比が100:5となるようにし、TKホモミキサー(6000rpm)で30分間攪拌した。この混合液を、スリーワンモーター(150~300rpm)で攪拌しながら10%塩化カルシウムを、全混合液中の濃度が0.5%となるように添加し、目開き5μmのナイロンメッシュで固液分離した後、70℃の加熱オーブン中で10時間乾燥させることにより、マスターバッチを得た。このマスターバッチ168gをオープンロール(関西ロール株式会社製)にて、60℃で5分間混練した。次に、ステアリン酸をゴム成分に対し0.5重量%、酸化亜鉛をゴム成分に対し6重量%)、硫黄をゴム成分に対し3.5重量%、加硫促進剤(BBS、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド)をゴム成分に対し0.7重量%加え、オープンロール(関西ロール株式会社製)を用い、60℃で10分間混練して、未加硫のゴム組成物のシートを得た。このシートを、金型にはさみ、160℃で15分間プレス加硫することにより、厚さ2mmの加硫ゴム組成物のシートを得た。これを所定の形状の試験片に裁断し、JIS K6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従い、補強性の一つである引張強度(50%引張応力(M50)、100%引張応力(M100)、300%引張応力(M300)、及び破断強度)を測定した。結果を表1に示す。各々の数値が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度に優れることを示す。
<Example 1>
1000 g of a solid dispersion of 0.5% solid content concentration of oxidized cellulose nanofiber obtained in Production Example 1 and 1000 g of a 10% suspension of chloroprene rubber latex solid content are mixed, and rubber component: weight of modified cellulose nanofiber The ratio was 100: 5, and the mixture was stirred for 30 minutes with a TK homomixer (6000 rpm). While stirring this mixed solution with a three-one motor (150-300 rpm), 10% calcium chloride was added so that the concentration in the total mixed solution would be 0.5%, and solid-liquid separation was performed with a nylon mesh with an opening of 5 μm. Then, a master batch was obtained by drying in a heating oven at 70 ° C. for 10 hours. This master batch 168g was kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 60 ° C for 5 minutes. Next, stearic acid is 0.5% by weight based on the rubber component, zinc oxide is 6% by weight based on the rubber component, sulfur is 3.5% by weight based on the rubber component, and a vulcanization accelerator (BBS, Nt -Butyl-2-benzothiazolesulfenamide) is added to the rubber component by 0.7% by weight and kneaded at 60 ° C. for 10 minutes using an open roll (manufactured by Kansai Roll Co., Ltd.). A sheet of material was obtained. This sheet was sandwiched between molds and press vulcanized at 160 ° C. for 15 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm. This is cut into test pieces of a predetermined shape, and tensile strength (50% tensile stress (M50), 100), which is one of reinforcing properties, according to JIS K6251 “vulcanized rubber and thermoplastic rubber—how to obtain tensile properties”. % Tensile stress (M100), 300% tensile stress (M300), and breaking strength) were measured. The results are shown in Table 1. The larger each value, the better the vulcanized rubber composition is reinforced and the better the mechanical strength of the rubber.
<実施例2>
 凝固後に目開き5μmのナイロンメッシュで固液分離した後、得られた固形物を水洗し、再度目開き5μmのナイロンメッシュで固液分離して固形物を回収した以外は実施例1と同様の方法で行った。結果を表1に示す。
<Example 2>
After solidification, solid-liquid separation was performed with a nylon mesh having an opening of 5 μm after solidification, and the obtained solid was washed with water, and again solid-liquid separated with a nylon mesh having an opening of 5 μm, and the solid was recovered. Went in the way. The results are shown in Table 1.
<実施例3>
 製造例2で得られた酸化セルロースナノファイバーを用いた以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 3>
The same procedure as in Example 2 was performed except that the oxidized cellulose nanofiber obtained in Production Example 2 was used. The results are shown in Table 1.
<実施例4>
 凝固剤を塩化マグネシウムとした以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 4>
The same procedure as in Example 2 was performed except that the coagulant was magnesium chloride. The results are shown in Table 1.
<実施例5>
 凝固剤を硫酸アルミニウムとした以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 5>
The same procedure as in Example 2 was performed except that the coagulant was aluminum sulfate. The results are shown in Table 1.
<実施例6>
 塩化カルシウムを、全混合液中の濃度が0.3%となるように添加し、その後5重量%酢酸を混合液中のpHが5となるまで添加した以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 6>
In the same manner as in Example 2, except that calcium chloride was added so that the concentration in the total mixed solution was 0.3%, and then 5% by weight acetic acid was added until the pH in the mixed solution reached 5. went. The results are shown in Table 1.
<実施例7>
 塩化カルシウムを、全混合液中の濃度が0.3%となるように添加し、その後5重量%硫酸を混合液中のpHが5となるまで添加した以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 7>
In the same manner as in Example 2, except that calcium chloride was added so that the concentration in the total mixed solution was 0.3%, and then 5 wt% sulfuric acid was added until the pH in the mixed solution reached 5. went. The results are shown in Table 1.
<実施例8>
 製造例1で得られた酸化セルロースナノファイバーをゴム成分100部に対して重量比で20部配合した以外は実施例1と同様の方法で行った。結果を表1に示す。
<Example 8>
The same procedure as in Example 1 was performed, except that 20 parts by weight of the oxidized cellulose nanofiber obtained in Production Example 1 was blended with respect to 100 parts of the rubber component. The results are shown in Table 1.
<実施例9>
 凝固後に目開き5μmのナイロンメッシュで固液分離した後、得られた固形物を水洗し、再度目開き5μmのナイロンメッシュで固液分離して固形物を回収した以外は実施例8と同様の方法で行った。結果を表1に示す。
<Example 9>
After solidification, solid-liquid separation was performed with a nylon mesh having a mesh opening of 5 μm, and the obtained solid was washed with water, and again solid-liquid separated with a nylon mesh having a mesh opening of 5 μm, and the solid was recovered. Went in the way. The results are shown in Table 1.
<実施例10>
 製造例3で得られたカルボキシメチル化セルロースナノファイバーを用いた以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 10>
The same procedure as in Example 2 was performed except that the carboxymethylated cellulose nanofiber obtained in Production Example 3 was used. The results are shown in Table 1.
<実施例11>
 製造例4で得られたカチオン化セルロースナノファイバーを用いた以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 11>
This was carried out in the same manner as in Example 2 except that the cationized cellulose nanofiber obtained in Production Example 4 was used. The results are shown in Table 1.
<実施例12>
 マスターバッチ168gをオープンロールを用い60℃で10分間混練する代わりに、マスターバッチ168gに対し、レゾルシンをゴム成分に対し1.3重量%、ヘキサメチレンテトラミンをゴム成分に対し0.8重量%を添加し、オープンロール(関西ロール株式会社製)にて、60℃で10分間混練した以外は実施例2と同様の方法で行った。結果を表1に示す。
<Example 12>
Instead of kneading 168 g of the master batch at 60 ° C. for 10 minutes using an open roll, 1.3 wt% of resorcin for the rubber component and 0.8 wt% of hexamethylenetetramine for the rubber component are added to the master batch of 168 g. This was performed in the same manner as in Example 2 except that it was added and kneaded with an open roll (manufactured by Kansai Roll Co., Ltd.) at 60 ° C. for 10 minutes. The results are shown in Table 1.
<比較例1>
 凝固処理を実施しなかった以外は実施例1と同様の方法で行った。結果を表1に示す。   
<Comparative Example 1>
The same method as in Example 1 was performed except that the coagulation treatment was not performed. The results are shown in Table 1.
<比較例2>
 凝固処理を実施しなかった以外は実施例3と同様の方法で行った。結果を表1に示す。
<Comparative example 2>
The same method as in Example 3 was performed except that the coagulation treatment was not performed. The results are shown in Table 1.
<比較例3>
 凝固剤を塩化ナトリウムとした以外は実施例1と同様の方法で行った。本凝固剤では凝固がうまく進まず、評価サンプルの作製が困難であったため、引張強度の測定結果は得られなかった。結果を表1に示す。
<Comparative Example 3>
The same procedure as in Example 1 was performed except that the coagulant was sodium chloride. With this coagulant, coagulation did not proceed well, and it was difficult to produce an evaluation sample, so no measurement results of tensile strength were obtained. The results are shown in Table 1.
<比較例4>
 凝固処理を実施しなかった以外は実施例10と同様の方法で行った。結果を表1に示す。
<Comparative example 4>
The same method as in Example 10 was performed except that the coagulation treatment was not performed. The results are shown in Table 1.
<比較例5>
 凝固処理を実施しなかった以外は実施例11と同様の方法で行った。結果を表1に示す。
<Comparative Example 5>
The same procedure as in Example 11 was performed except that the coagulation treatment was not performed. The results are shown in Table 1.
<比較例6>
 セルロースナノファイバーを配合しなかった以外は実施例2と同様の方法で行った。結果を表1に示す。
<Comparative Example 6>
It carried out by the same method as Example 2 except not having blended cellulose nanofiber. The results are shown in Table 1.
<比較例7>
 凝固処理を実施しなかった以外は比較例6と同様の方法で行った。結果を表1に示す。
<Comparative Example 7>
The same process as in Comparative Example 6 was performed except that the coagulation treatment was not performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  クロロプレンゴム及びセルロース系繊維を含有する混合液に、2価又は3価の金属塩、あるいは、2価又は3価の金属塩及び酸を添加して、ゴム成分を凝固させる工程を含む、ゴム組成物の製造方法。 A rubber composition comprising a step of coagulating a rubber component by adding a divalent or trivalent metal salt, or a divalent or trivalent metal salt and an acid to a mixed liquid containing chloroprene rubber and cellulose fiber. Manufacturing method.
  2.  金属塩が、カルシウム塩である、請求項1に記載の方法。 The method according to claim 1, wherein the metal salt is a calcium salt.
  3.  酸が、酢酸又は硫酸である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the acid is acetic acid or sulfuric acid.
  4.  セルロース系繊維が、酸化セルロースファイバー、カルボキシメチル化セルロースファイバー及びカチオン化セルロースファイバーからなる群より選ばれる少なくとも1種を含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the cellulosic fiber comprises at least one selected from the group consisting of oxidized cellulose fiber, carboxymethylated cellulose fiber and cationized cellulose fiber.
  5.  セルロース系繊維の長さ加重平均繊維長が50~2000nmである、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the length-weighted average fiber length of the cellulosic fibers is 50 to 2000 nm.
  6.  セルロース系繊維の長さ加重平均繊維径が2~500nmである、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the length-weighted average fiber diameter of the cellulosic fibers is 2 to 500 nm.
PCT/JP2017/036701 2016-10-13 2017-10-10 Method for producing rubber composition WO2018070387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018545005A JP6990190B2 (en) 2016-10-13 2017-10-10 Method for manufacturing rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016202072 2016-10-13
JP2016-202072 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070387A1 true WO2018070387A1 (en) 2018-04-19

Family

ID=61906361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036701 WO2018070387A1 (en) 2016-10-13 2017-10-10 Method for producing rubber composition

Country Status (2)

Country Link
JP (1) JP6990190B2 (en)
WO (1) WO2018070387A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104896A (en) * 2017-12-08 2019-06-27 東ソー株式会社 Rubber composition and manufacturing method therefor
WO2019235557A1 (en) * 2018-06-08 2019-12-12 花王株式会社 Method for producing shortened anionically modified cellulose fibers
JP2020007457A (en) * 2018-07-09 2020-01-16 日本製紙株式会社 Cellulose nanofiber, and manufacturing method of rubber composition containing cellulose nanofiber
JP2020075996A (en) * 2018-11-07 2020-05-21 バンドー化学株式会社 Rubber composition for transmission belt, method for producing the same and transmission belt using the same
CN112708177A (en) * 2020-12-29 2021-04-27 江苏宏祺体育用品有限公司 Elastic rubber ring with high antibacterial property for fitness equipment
WO2021100608A1 (en) * 2019-11-19 2021-05-27 東ソー株式会社 Rubber composition and production method therefor
US11959194B2 (en) 2018-06-08 2024-04-16 Kao Corporation Method for producing shortened anionically modified cellulose fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513582A (en) * 1997-08-21 2001-09-04 ハッチンソン エス.エイ. Sponge-like material, its production method and its application
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2015098576A (en) * 2013-10-17 2015-05-28 日信工業株式会社 Manufacturing method of rubber composition and rubber composition
WO2016031848A1 (en) * 2014-08-29 2016-03-03 日本ゼオン株式会社 Crosslinkable nitrile rubber composition and crosslinked rubber material
WO2016136453A1 (en) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513582A (en) * 1997-08-21 2001-09-04 ハッチンソン エス.エイ. Sponge-like material, its production method and its application
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
JP2015098576A (en) * 2013-10-17 2015-05-28 日信工業株式会社 Manufacturing method of rubber composition and rubber composition
WO2016031848A1 (en) * 2014-08-29 2016-03-03 日本ゼオン株式会社 Crosslinkable nitrile rubber composition and crosslinked rubber material
WO2016136453A1 (en) * 2015-02-26 2016-09-01 住友ゴム工業株式会社 Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104896A (en) * 2017-12-08 2019-06-27 東ソー株式会社 Rubber composition and manufacturing method therefor
JP7192381B2 (en) 2017-12-08 2022-12-20 東ソー株式会社 Rubber composition and its manufacturing method
WO2019235557A1 (en) * 2018-06-08 2019-12-12 花王株式会社 Method for producing shortened anionically modified cellulose fibers
JPWO2019235557A1 (en) * 2018-06-08 2021-07-15 花王株式会社 Method for Producing Shortened Anion-Modified Cellulose Fiber
JP7395472B2 (en) 2018-06-08 2023-12-11 花王株式会社 Method for producing short anion-modified cellulose fibers
US11959194B2 (en) 2018-06-08 2024-04-16 Kao Corporation Method for producing shortened anionically modified cellulose fibers
JP2020007457A (en) * 2018-07-09 2020-01-16 日本製紙株式会社 Cellulose nanofiber, and manufacturing method of rubber composition containing cellulose nanofiber
JP2020075996A (en) * 2018-11-07 2020-05-21 バンドー化学株式会社 Rubber composition for transmission belt, method for producing the same and transmission belt using the same
WO2021100608A1 (en) * 2019-11-19 2021-05-27 東ソー株式会社 Rubber composition and production method therefor
CN114729161A (en) * 2019-11-19 2022-07-08 东曹株式会社 Rubber composition and method for producing same
CN112708177A (en) * 2020-12-29 2021-04-27 江苏宏祺体育用品有限公司 Elastic rubber ring with high antibacterial property for fitness equipment
CN112708177B (en) * 2020-12-29 2022-11-25 江苏宏祺体育用品有限公司 Elastic rubber ring with high antibacterial property for fitness equipment

Also Published As

Publication number Publication date
JP6990190B2 (en) 2022-01-12
JPWO2018070387A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6990190B2 (en) Method for manufacturing rubber composition
JP6155415B1 (en) Masterbatch, rubber composition, and production method thereof
JP7141950B2 (en) Rubber composition and its manufacturing method
JP6276489B1 (en) Modified cellulose nanofiber and rubber composition containing the same
JP7061998B2 (en) Rubber composition and its manufacturing method
JP6700741B2 (en) Rubber composition
JP6153694B1 (en) Method for producing rubber composition
JP2018199755A (en) Modified cellulose fiber
JP6877158B2 (en) Masterbatch, rubber compositions, and methods of making them
JP6944451B2 (en) Masterbatch manufacturing method
JP6994345B2 (en) Rubber composition and molded products
JP7324225B2 (en) Method for producing masterbatch and rubber composition containing anion-modified cellulose nanofibers
WO2018012505A1 (en) Method for producing master batch
JP6951844B2 (en) Masterbatch manufacturing method
JP2018193465A (en) Master batch and manufacturing method of rubber composition
JP6832110B2 (en) Masterbatch manufacturing method
WO2020218263A1 (en) Dipping latex, rubber composition, and production methods therefor
JP7015970B2 (en) Rubber composition and its manufacturing method
JP6915170B2 (en) Method for manufacturing rubber composition
WO2024009850A1 (en) Method for producing rubber composition
JP2020007457A (en) Cellulose nanofiber, and manufacturing method of rubber composition containing cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859604

Country of ref document: EP

Kind code of ref document: A1