WO2018070269A1 - Optical device, optical sensor, and imaging device - Google Patents

Optical device, optical sensor, and imaging device Download PDF

Info

Publication number
WO2018070269A1
WO2018070269A1 PCT/JP2017/035400 JP2017035400W WO2018070269A1 WO 2018070269 A1 WO2018070269 A1 WO 2018070269A1 JP 2017035400 W JP2017035400 W JP 2017035400W WO 2018070269 A1 WO2018070269 A1 WO 2018070269A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer film
light
polarizing
pixel
polarization
Prior art date
Application number
PCT/JP2017/035400
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 淳
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018070269A1 publication Critical patent/WO2018070269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to an optical device, an optical sensor, and an imaging apparatus, and more particularly, to an optical device, an optical sensor, and an imaging apparatus that can suppress a reduction in the extinction ratio of transmitted light.
  • Patent Document 1 a method of transmitting a specific polarized wave with a wire grid or the like is known (for example, see Patent Document 1). This is a method of putting a strong absorber such as metal or pigment into a wire shape.
  • the present technology has been proposed in view of such a situation, and an object thereof is to suppress a reduction in the extinction ratio of transmitted light.
  • An optical device has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other in a multilayer film formed in a direction from the light incident surface toward the light emission surface, An optical device that blocks polarized light whose electric field oscillates and transmits polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction.
  • vibration refers to electric field vibration.
  • the multilayer film may have a structure in which a plurality of films made of materials having different refractive indexes are stacked.
  • the multilayer film may have a structure in which titanium oxide films and silicon dioxide films are alternately stacked.
  • the multilayer film may have a structure that blocks light in a predetermined wavelength range.
  • the multilayer film may have a structure that blocks infrared light.
  • a film of a material having a low refractive index can be formed in the groove.
  • a silicon dioxide film can be formed in the groove.
  • An optical sensor transmits a polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface toward the light exit surface, and the polarizing multilayer film is transmitted.
  • An optical sensor comprising: a detection unit that detects polarized light whose electric field vibrates in a direction perpendicular to the predetermined direction.
  • the detection unit includes a plurality of pixels that detect light independently of each other, and the polarization multilayer film is formed on at least some of the pixels, and the pixel on which the polarization multilayer film is formed transmits the polarization multilayer film.
  • the polarized light can be configured to be detected.
  • the detection unit may include pixels in which the direction of the groove portion of the polarizing multilayer film is different from the direction of the groove portion of the polarizing multilayer film formed in any other pixel.
  • the detection unit includes a pixel on which the polarizing multilayer film having the groove part in a predetermined first direction is formed, and the polarizing multilayer film having the groove part in a second direction orthogonal to the first direction.
  • a pixel in which the polarizing multilayer film having the groove in the third direction of +45 deg with respect to the first direction is formed, and a fourth direction of ⁇ 45 deg with respect to the first direction A pixel on which the polarizing multilayer film having the groove is formed.
  • a multilayer film that blocks light in a predetermined wavelength region which is the same as the multilayer film of the polarization multilayer film, is formed on at least some of the pixels in which the polarization multilayer film is not formed.
  • the pixel in which the multilayer film is formed can be configured to detect light in a wavelength range other than the predetermined wavelength range that has passed through the multilayer film.
  • the predetermined wavelength range can be infrared.
  • the detection unit detects IR polarized light having an electric field oscillating in a direction perpendicular to the predetermined direction, which is transmitted through the polarizing multilayer film in a pixel in which the polarizing multilayer film is formed, and the multilayer film is formed. In the pixel, visible light transmitted through the multilayer film can be detected.
  • optical filter that transmits light in a predetermined wavelength region in at least some of the plurality of pixels.
  • the detection unit includes, on at least some of the plurality of pixels, the polarizing multilayer film and a multilayer film that blocks the light in a predetermined wavelength region that is the same as the multilayer film of the polarizing multilayer film.
  • the polarizing multilayer film and the multilayer film are transmitted through the polarizing multilayer film and the multilayer film, and are perpendicular to the predetermined direction in a wavelength region other than the predetermined wavelength region. It can be configured to detect polarized light whose electric field oscillates in any direction.
  • An optical sensor is provided with a groove in a predetermined direction in a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light output surface.
  • a polarizing multilayer film on which is formed a first detection unit that detects the first polarized light that is transmitted through the polarizing multilayer film and whose electric field vibrates in a direction perpendicular to the predetermined direction, and reflected by the polarizing multilayer film
  • an optical sensor including a second detection unit that detects the second polarized light whose electric field vibrates in the predetermined direction.
  • An optical sensor includes a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light emission surface in the first direction.
  • a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light emission surface in the first direction.
  • a second detection unit that detects second polarized light whose electric field oscillates in a direction inclined by ⁇ 45 deg from a direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film transmitted through the multilayer film;
  • the third polarized light whose electric field oscillates in a direction inclined by +45 deg from the direction of electric field oscillation of the reflected light of the first polarizing multilayer film, which is reflected by the first polarizing multilayer film and transmitted through the second polarizing multilayer film.
  • a third detection unit to detect, and an electric field in a direction inclined by ⁇ 45 deg from an electric field oscillation direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and the second polarizing multilayer film
  • An optical sensor includes a light emitting unit that emits light, and a multilayer film formed in a direction from the incident surface of the reflected light that is emitted from the light emitting unit and reflected by the object toward the exit surface.
  • An optical sensor comprising: a polarizing multilayer film in which a groove portion in the direction is formed; and a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
  • An imaging device includes a plurality of pixels that detect light independently of each other, and includes a multilayer film formed in at least some of the pixels in a direction from the light incident surface toward the light emission surface.
  • the imaging apparatus includes an imaging unit that images a subject by detecting the light, and an image processing unit that performs predetermined image processing on image data obtained by the imaging unit.
  • a multilayer film formed in a direction from the light incident surface toward the light emission surface is provided with a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and an electric field is generated in the predetermined direction. Oscillating polarized light is blocked, and polarized light whose electric field vibrates in a direction perpendicular to a predetermined direction is transmitted.
  • a polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface to the light emitting surface, and the predetermined light transmitted through the polarizing multilayer film. And a detector for detecting polarized light whose electric field oscillates in a direction perpendicular to the direction.
  • a groove in a predetermined direction is formed in a multilayer film formed at a predetermined angle with respect to the light traveling direction and formed in a direction from the light incident surface toward the light emission surface.
  • a groove in the first direction is formed in a multilayer film formed at a predetermined angle with respect to the light traveling direction and formed in a direction from the light incident surface toward the light emission surface.
  • the first polarizing multilayer film formed and formed in a direction from the incident surface of the transmitted light toward the exit surface provided at a predetermined angle with respect to the traveling direction of the transmitted light of the first polarizing multilayer film.
  • the first detection unit that detects the first polarized light whose electric field vibrates in a direction inclined by +45 deg from the direction perpendicular to the electric field vibration direction of the light, and the first polarizing multilayer film and the second polarizing multilayer film are transmitted
  • a second detector for detecting second polarized light whose electric field oscillates in a direction inclined by ⁇ 45 deg from a direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film A third detector that detects the third polarized light whose electric field vibrates in a direction inclined by +45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film that is reflected and transmitted through the second polarizing multilayer film;
  • a fourth polarization that detects the fourth polarized light whose electric field vibrates in the direction inclined by ⁇ 45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and
  • the light emitting unit that emits light and the multilayer film formed in the direction from the incident surface toward the emission surface of the reflected light that is emitted from the light emitting unit and reflected by the object has a predetermined direction.
  • a plurality of pixels that detect light independently of each other are provided, and at least some of the pixels are formed on a multilayer film formed in a direction from the light incident surface toward the light emission surface.
  • a polarizing multilayer film having a groove in the direction is formed, and in a pixel in which the polarizing multilayer film is formed, polarized light transmitted through the polarizing multilayer film is detected, and in a pixel in which the polarizing multilayer film is not formed, light is emitted.
  • an image processing unit that performs predetermined image processing on image data obtained by the imaging unit.
  • polarization information can be obtained.
  • FIG. 1 It is a figure which shows the structural example of a biometrics device. It is a figure which shows the structural example of a biometrics device. It is a figure explaining the main structural examples of an image sensor. It is a figure explaining the example of a pixel arrangement
  • First Embodiment> ⁇ Polarization and spectroscopy>
  • a method of transmitting a specific polarized wave with a wire grid or the like as described in Patent Document 1 is known. This is a method of putting a strong absorber such as metal or pigment into a wire shape.
  • a strong absorber is used for this wire grid, the transmittance is remarkably reduced, and the extinction ratio of transmitted light may be greatly reduced.
  • the extinction ratio deterioration with respect to oblique light was remarkable.
  • this wire grid does not have a function of selecting a wavelength, it is impossible to perform spectroscopy alone. Therefore, in order to obtain the spectral information together with the polarization information, a spectroscopic means is necessary separately from the wire grid. As a result, the scale (size) and cost of the device may increase. In addition, since the structure is complicated, the failure rate may increase or the durability may decrease, which may reduce the reliability.
  • the multilayer film formed in the direction from the light incident surface to the light exit surface has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and blocks polarized light whose electric field vibrates in the predetermined direction.
  • An optical device that transmits polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction is used. By using such an optical device, polarized light can be extracted as transmitted light, and a reduction in the extinction ratio of transmitted light at that time can be suppressed.
  • vibration refers to vibration of an electric field.
  • the multilayer film of the optical device has a structure that blocks light in a predetermined wavelength range, spectral information can be obtained together with polarization information. Therefore, there is no need to provide a separate spectroscopic means, and the configuration can be made simpler than in the case of the method described in Patent Document 1. Therefore, an increase in the scale (size) and cost of the device can be suppressed, and a decrease in reliability can be suppressed, such as an increase in failure rate and a decrease in durability.
  • FIG. 1 shows a main configuration example of a polarizing multilayer film that is an embodiment of an optical device to which the present technology is applied.
  • 1A is a bird's-eye view of the polarizing multilayer film
  • FIG. 1B is a plan view of the polarizing multilayer film as viewed from the light incident surface side.
  • a polarizing multilayer film 100 shown in FIG. 1A is an optical device having a structure in which a plurality of grooves in a predetermined direction are formed in parallel with each other at predetermined intervals in the multilayer film.
  • the polarizing multilayer film 100 is an optical device that blocks polarized light whose electric field vibrates in a predetermined direction and transmits polarized light whose electric field vibrates in a direction perpendicular to the predetermined direction. Light enters from the upper plane of the polarizing multilayer film 100 in the drawing and exits from the lower surface (not shown).
  • the polarizing multilayer film 100 is formed by multilayer films 111-1 to 111-4 and groove portions 112-1 to 112-4.
  • the multilayer films 111-1 to 111-4 are referred to as the multilayer film 111 when it is not necessary to distinguish them from each other.
  • the groove portions 112-1 to 112-4 are referred to as the groove portions 112 when it is not necessary to distinguish them from each other.
  • the multilayer film 111 includes a SiO 2 film 121 formed with silicon dioxide (SiO 2 ) and a TiO 2 film 122 formed with titanium oxide (TiO 2 ). It has a structure in which layers are alternately stacked in the direction from the surface toward the exit surface. Therefore, the multilayer film 111 is also referred to as a TiO 2 / SiO 2 multilayer film. Further, the groove 112, SiO 2 film 123 SiO 2 is filled is formed.
  • the groove 112 is formed so that the direction of the double arrow 131 is the longitudinal direction, and the grooves 112-1 to 112-4 are formed in parallel with each other at a predetermined interval.
  • the multilayer film 111 is also formed so that the direction of the double arrow 131 is the longitudinal direction, and the multilayer films 111- to 111-4 are formed in parallel with each other at a predetermined interval. Accordingly, when the polarizing multilayer film 100 is viewed from the light incident surface side, the multilayer film 111 and the groove 112 are arranged alternately as shown in FIG.
  • the polarized wave in the longitudinal direction of the groove 112 is a TE wave
  • the TE wave is reflected on the light incident surface of the polarizing multilayer film 100 as indicated by an arrow 132.
  • the polarized wave in the direction of the double arrow 133 perpendicular to the direction of the double arrow 131 is a TM wave
  • the incident TM wave as shown by the arrow 134 is transmitted through the polarizing multilayer film 100 and the polarized multilayer as shown by the arrow 135.
  • the light is emitted from an emission surface (not shown) of the film 100.
  • the polarizing multilayer film 100 can transmit and extract the polarized wave (TM wave) in the direction of the double arrow 133. That is, polarized light (polarization information) whose electric field oscillates in the direction of the double arrow 133 can be extracted.
  • the multilayer film 111 is formed of the SiO 2 film 121 and the TiO 2 film 122, and is formed without using a strong absorber such as metal or pigment. Therefore, the polarizing multilayer film 100 can suppress a reduction in the extinction ratio of transmitted light as compared to the case of the wire grid described in Patent Document 1. In particular, by using a material that does not easily absorb light of a desired wavelength, it is possible to further suppress a reduction in the extinction ratio of transmitted light.
  • each laminated film of the multilayer film 111 may be any material as long as it is not a strong absorber such as metal or pigment, and is not limited to the above example. That is, the multilayer film 111 only needs to have a structure in which a plurality of different films are stacked in the direction from the light incident surface toward the light exit surface.
  • the multilayer film 111 may have a structure in which a plurality of films made of materials having different refractive indexes are stacked.
  • the multilayer film 111 has a structure in which a SiO 2 film having a low refractive index and a Si 3 N 4 film formed by depositing silicon nitride (Si 3 N 4 ) having a higher refractive index than the SiO 2 film are laminated. You may make it have.
  • the material for forming the groove 112 is also arbitrary.
  • the groove 112 may be filled with another low refractive index material instead of SiO 2 .
  • the groove 112 may be a cavity (air gap) without filling anything.
  • the groove 112 may be filled with a material having a high refractive index.
  • the size of the polarizing multilayer film 100 and each component thereof is arbitrary.
  • the width of the multilayer film 111 (interval between the groove portions 112) and the length in the longitudinal direction, the width of the groove portion 112 (interval between the multilayer films 111) and the length in the longitudinal direction, and the thickness of the multilayer film 111 and the groove portion 112 (transmitted light) )
  • the thickness of each film forming the multilayer film 111 (for example, the thickness of the SiO 2 film 121 or the TiO 2 film 122) are arbitrary.
  • the size (length, width, thickness, etc.) of these components may be set such that the polarizing multilayer film 100 blocks light in a predetermined wavelength range.
  • the size of these configurations may be set such that the polarizing multilayer film 100 blocks infrared light.
  • the polarizing multilayer film 100 can extract light outside the predetermined wavelength range (for example, light other than infrared light) as transmitted light. That is, the polarizing multilayer film 100 can split incident light in the predetermined wavelength region. That is, the polarizing multilayer film 100 can obtain spectral information as well as polarization information. Therefore, there is no need to provide a separate spectroscopic means, and the configuration can be made simpler than in the case of the method described in Patent Document 1. Accordingly, an increase in the size (size) and cost of the polarizing multilayer film 100 can be suppressed, and the reliability of the polarizing multilayer film 100 can be reduced, such as an increase in failure rate and a decrease in durability. Can be suppressed.
  • the predetermined wavelength range for example, light other than infrared light
  • FIG. 2 shows the simulation structure.
  • the thickness of the TiO 2 film 122 of each multilayer film 111 of the polarizing multilayer film 100 is 82.7 nm
  • the thickness of the SiO 2 film 121 is 149.7 nm
  • the width W 1 of the multilayer film 111 is 200 nm
  • the groove 112 Width W2 200 nm.
  • a light source 141 is provided on the upper side of the polarizing multilayer film 100 in the drawing, and a parallel beam (parallel light) having a wavelength of 850 nm is irradiated downward from the light source 141 as indicated by an arrow in the drawing.
  • the parallel light is irradiated perpendicularly to the upper incident surface of the polarizing multilayer film 100 in the drawing. It is assumed that the light transmitted through the polarizing multilayer film 100 is monitored by a monitor 142 provided on the lower side of the polarizing multilayer film 100 in the drawing.
  • FIGS. 3A and 3B The results of TE and TM waves obtained by wave simulation using the FDTD method are shown in FIGS. 3A and 3B, respectively. That is, A in FIG. 3 is a TE wave simulation result, and B in FIG. 3 is a TM wave simulation result. Basically, the darker the color, the higher the light intensity. As is clear from comparison between A in FIG. 3 and B in FIG. 3, the TE wave light is more largely reflected than the TM wave, and does not substantially pass through the polarizing multilayer film 100. On the other hand, the TM wave light does not reflect much compared to the TE wave and substantially transmits through the polarizing multilayer film 100. From this, it can be seen that the light transmitted and reflected through the polarizing multilayer film 100 has polarization characteristics. At this time, the extinction ratio of transmitted light (TM wave transmission intensity / TE wave transmission intensity) was estimated to be 32.
  • FIG. 4 shows a simulation result by the FDTD method when light from the light source is incident on the polarizing multilayer film 100 obliquely at an angle of 25 deg with respect to the vertical line from the upper left side.
  • 4A shows the simulation result of the TE wave
  • B of FIG. 4 shows the simulation result of the TM wave.
  • FIG. 5A An example of simulation by changing the incident angle of such light is shown in FIG.
  • the graph shown in FIG. 5A is a graph showing the relationship between the incident angle of light and the light intensity of the TE wave and TM wave monitored by the monitor 142.
  • a curve 161 is a TE wave simulation result
  • a curve 162 is a TM wave simulation result.
  • the graph shown in FIG. 5B is a graph showing the relationship between the incident angle of light and the extinction ratio monitored by the monitor 142.
  • a curve 163 shows an extinction ratio (TM wave / TE wave). From these results, as the incident angle increases, the TM wave transmittance increases and the light intensity increases and the transmitted light intensity of the TE wave decreases. As a result, the TM wave / TE wave extinction ratio increases. You can see that
  • the sensitivity and extinction ratio to obliquely incident light may be reduced, or the applicable wavelength range may be narrowed. Sufficient sensitivity and extinction ratio can be obtained even for oblique light.
  • the result of infrared light with a wavelength of 850 nm has been described.
  • the width W1 of the multilayer film 111, and the width W2 of the groove portion 112 visible light and ultraviolet light can be changed. Similarly, it can have polarization characteristics.
  • the polarizing multilayer film 100 makes it possible to acquire spectroscopic and polarization information at the same time.
  • the sensitivity is high, and deterioration of the extinction ratio with respect to oblique light with a high incident angle can be suppressed.
  • the wavelength dependence is small, and it can be operated as a polarizer from short wavelength ultraviolet light to long wavelength infrared light. Therefore, the polarizing multilayer film 100 can be applied to various optical devices. For example, when the polarizing multilayer film 100 is applied to an image sensor, the normal vector of the surface of the subject can be detected, so that it can be used for grasping the subject shape.
  • the polarizing multilayer film 100 when the polarizing multilayer film 100 is mounted on a camera of an in-vehicle system, the center line of the road can be grasped more easily. Further, by applying the polarizing multilayer film 100 to a camera of an industrial system, the present technology can be used for inspection of scratches and the like. Of course, the present invention is not limited to these application examples, and can be applied to various fields.
  • FIG. 6 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An image sensor 200 shown in FIG. 6 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 200 has a plurality of pixels that detect light independently of each other.
  • FIG. 6 illustrates a configuration example of the pixels 221 to 225 which are some pixels of the image sensor 200.
  • the image sensor 200 includes a substrate layer 211, a multilayer film formation layer 212, a planarization film layer 213, a filter layer 214, and a condenser lens layer 215.
  • the substrate layer 211 is formed of a silicon substrate or the like.
  • a photodiode 231-1 is formed on the substrate layer 211 of the pixel 221.
  • a photodiode 231-2 is formed on the substrate layer 211 of the pixel 222
  • a photodiode 231-3 is formed on the substrate layer 211 of the pixel 223, and a photodiode is formed on the substrate layer 211 of the pixel 224.
  • photodiode 231-5 is formed on the substrate layer 211 of the pixel 225.
  • photodiodes 231 when it is not necessary to distinguish each of these photodiodes from each other, they are referred to as photodiodes 231.
  • the photodiode 231 is formed on the substrate layer 211 for each pixel.
  • a light shielding wall 232-1 that does not transmit light is formed between the pixel 221 and the pixel 222 of the multilayer film formation layer 212, the planarization film layer 213, and the filter layer 214 in order to suppress the occurrence of color mixing.
  • a light shielding wall 232-2 is formed between the pixel 222 and the pixel 223, and a light shielding wall 232-3 is formed between the pixel 223 and the pixel 224.
  • a light shielding wall 232-4 is formed between the pixel 224 and the pixel 225.
  • a light shielding wall 232 is formed between the pixels of the multilayer film formation layer 212 to the filter layer 214, and the configuration of each pixel is partitioned by the light shielding wall 232.
  • the light shielding wall 232 may be omitted.
  • a polarizing multilayer film 100-1 is formed on the pixel 221 of the multilayer film forming section 212.
  • a polarizing multilayer film 100-2 is formed on the pixel 223 and a polarizing multilayer film 100-3 is formed on the pixel 225 of the multilayer film forming unit 212.
  • the polarizing multilayer film 100 is a device having the same configuration and the same function as the polarizing multilayer film 100 described in the first embodiment. That is, the polarizing multilayer film 100 has a structure in which a plurality of grooves 112 in a predetermined direction are formed in parallel to each other in a multilayer film 111 formed in a direction from the light incident surface toward the light exit surface.
  • the multilayer film 111 has a structure in which SiO 2 films 121 and TiO 2 films 122 are alternately stacked in the direction from the light incident surface toward the light exit surface.
  • the groove 112, SiO 2 film 123 SiO 2 is filled is formed.
  • an IR cut filter 233-1 is formed in the pixel 222 of the multilayer film forming unit 212.
  • an IR cut filter 233-2 is formed in the pixel 224 of the multilayer film forming unit 212.
  • IR cut filters 233 When there is no need to distinguish each of these IR cut filters from each other, they are referred to as IR cut filters 233.
  • the IR cut filter 233 has the same layer structure as the multilayer film 111. That is, the IR cut filter 233 has a structure in which the SiO 2 films 121 and the TiO 2 films 122 are alternately stacked in the direction from the light incident surface toward the light exit surface. Each film thickness of the IR cut filter 233 is the same as each film thickness of the multilayer film 111.
  • the multilayer film 111 and the IR cut filter 233 may be generated in the same process. That is, after depositing and stacking this multilayer structure on all the pixels of the image sensor 200 by, for example, sputtering, the grooves 112 are formed in the areas of the infrared polarization pixels (for example, the pixels 221, 223, and 225). You may make it do.
  • the groove 112 may be formed using lithography and RIE (Reactive Ion Etching) processing.
  • the SiO 2 film 123 may be formed by filling the groove 112 with SiO 2 .
  • the IR cut filter 233 and the multilayer film 111 have been described so that the TiO 2 film 122 and the SiO 2 film 121 are used as the dielectric multilayer film, but the TaO 2 film and the SiO 2 film, the Si 3 N 4 film and the SiO 2 film are used.
  • Other material systems may be used as long as the material has a high refractive index and a low material such as two films.
  • the IR cut filter 233 has transmission spectral characteristics as shown in FIG. 7 due to its laminated structure. That is, the IR cut filter 233 transmits visible light and blocks infrared light. Since the multilayer film 111 also has the same layer structure as the IR cut filter 233, it has the same transmission spectral characteristics. Therefore, the polarizing multilayer film 100 transmits TM light of infrared light (polarized light whose electric field vibrates in a direction perpendicular to the longitudinal direction of the groove portion 112). That is, the polarizing multilayer film 100 functions as a polarizing filter (infrared polarizing filter) for infrared light.
  • TM light of infrared light polarized light whose electric field vibrates in a direction perpendicular to the longitudinal direction of the groove portion 112
  • the polarizing multilayer film 100 functions as a polarizing filter (infrared polarizing filter) for infrared light.
  • an on-chip color filter 234-1 is formed in the pixel 221 of the filter layer 214.
  • an on-chip color filter 234-2 is formed in the pixel 222
  • an on-chip color filter 234-3 is formed in the pixel 223
  • an on-chip color filter 234-4 is formed in the pixel 224.
  • the on-chip color filter 234-5 is formed in the pixel 225.
  • the on-chip color filter 234-1 formed on the pixel 221, the on-chip color filter 234-3 formed on the pixel 223, and the on-chip color filter 234-5 formed on the pixel 225 are visible.
  • the on-chip color filter 234-2 formed in the pixel 222 is an on-chip color filter (G-OCCF) that transmits green light.
  • the on-chip color filter 234-4 formed in the pixel 224 is an on-chip color filter (R-OCCF) that transmits red light.
  • R-OCCF on-chip color filter
  • B-OCCF on-chip color filter
  • a condensing lens is formed in each pixel of the condensing lens layer 215.
  • the pixel 222 functions as a visible light pixel that receives visible light, and green light is mainly incident on the photodiode 231-2.
  • the IR cut filter 233-1 blocks the infrared light component contained in the light incident on the photodiode 231-2, the color reproducibility of the pixel 222 can be improved.
  • the pixel 224 functions as a visible light pixel that receives visible light, and red light is mainly incident on the photodiode 231-4.
  • the IR cut filter 233-2 blocks the infrared light component of the light incident on the photodiode 231-4, the color reproducibility of the pixel 224 can be improved.
  • the pixel 221, the pixel 223, and the pixel 225 each function as an IR polarization pixel that receives polarized light of infrared light, and the photodiode 231-1, the photodiode 231-3, and the photodiode 231.
  • ⁇ 5 mainly polarized light of infrared light is incident.
  • the pixel arrangement is arbitrary, for example, as shown in FIG. 8, IR polarized pixels are arranged in a checkered pattern, and the other pixels are visible light pixels (visible light G pixels, visible light B pixels, visible light R). Any one of the pixels).
  • four IR polarization pixels are arranged in 3 ⁇ 3 pixels.
  • the electric field oscillation directions (polarization directions) of the polarization obtained in each IR polarization pixel may be different from each other.
  • the image sensor 200 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction.
  • polarization information in four polarization directions can be acquired. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a direct current component that does not change due to polarization and a alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
  • such a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • using the image sensor 200 it is possible to realize an imaging device that can simultaneously acquire color information of visible light that blocks infrared light and polarization information of infrared light.
  • IR polarized pixels are maximized here, but other arrangements are also possible. For example, more visible light pixels may be provided than IR polarized pixels.
  • arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 200 is arbitrary.
  • FIG. 10 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An image sensor 250 shown in FIG. 10 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 250 has a plurality of pixels that detect light independently of each other.
  • FIG. 10 illustrates a configuration example of the pixels 251 to 255 which are some pixels of the image sensor 250.
  • the image sensor 250 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100 is not formed on the pixels 251, 253, and 255 of the multilayer film forming layer 212. That is, the pixel 251, the pixel 253, and the pixel 255 function as IR pixels that receive infrared light.
  • the pixel 252 and the pixel 254 function as visible polarization pixels that receive the polarization of visible light.
  • a visible polarization multilayer film 261-1 that functions to function as a filter that extracts polarized light (polarization information) of visible light and blocks infrared light is formed.
  • a visible polarizing multilayer film 261-2 is formed on the pixel 254 of the multilayer film forming layer 212.
  • the visible polarizing multilayer film 261 includes an IR cut filter 262 and a visible polarizing filter 263.
  • the IR cut filter 262 has the same layer structure as the IR cut filter 233, has a transmission spectral characteristic as shown in FIG. 7, and blocks infrared light.
  • the visible polarizing filter 263 has a layer structure similar to that of the polarizing multilayer film 100, and extracts the polarized light of visible light as transmitted light.
  • the visible polarizing multilayer film 261 is formed by first forming a multilayer film and forming a groove halfway through the multilayer film by, for example, lithography and RIE processing. That is, the upper part of the multilayer film where the groove is formed functions as the visible polarizing filter 263, and the lower part where the groove is not formed functions as the IR cut filter 262.
  • the thickness period of the multilayer film (the thickness of each film) is set to an appropriate period so as to be compatible with visible light.
  • the thickness cycle of the multilayer film is arbitrary.
  • the thickness cycle of the multilayer film may be changed between the visible polarizing filter 263 and the IR cut filter 262.
  • the method of forming this visible polarization multilayer film 261 is arbitrary.
  • a multilayer film is deposited and deposited on the entire surface (all pixels) by sputtering or the like, a groove is cut only in the area of the visible polarization pixel, and the multilayer film area of the infrared light pixel is removed and then SiO 2 It may be filled with 2 mag.
  • FIG. 11 An example of the pixel arrangement of such an image sensor 250 is shown in FIG.
  • the pixel arrangement is arbitrary, for example, as shown in FIG. 11, visible polarization pixels may be arranged in a checkered pattern, and other pixels may be IR pixels.
  • five visible polarization pixels are arranged in 3 ⁇ 3 pixels.
  • polarized light in four electric field vibration directions may be obtained in five visible polarization pixels.
  • the image sensor 250 includes a pixel in which the visible polarization filter 263 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction.
  • the visible polarization filter 263 having the groove 112 in the fourth direction is formed.
  • such a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • IR pixels are the largest here, other arrangements may be used. For example, more visible polarization pixels may be provided than IR pixels. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 200 is arbitrary.
  • FIG. 12 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An image sensor 300 illustrated in FIG. 12 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 300 includes a plurality of pixels that detect light independently of each other.
  • FIG. 12 illustrates a configuration example of the pixels 301 to 305 that are some pixels of the image sensor 300.
  • the image sensor 300 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100 is not formed on the pixels 251, 253, and 255 of the multilayer film forming layer 212.
  • an on-chip color filter 321-1 is formed in the pixel 301
  • an on-chip color filter 321-2 is formed in the pixel 303
  • an on-chip color filter 321-3 is formed in the pixel 305. Is done.
  • the on-chip color filter 321-1 is an on-chip color filter (B-OCCF) that transmits blue light.
  • the on-chip color filter 321-2 is an on-chip color filter (G-OCCF) that transmits green light.
  • the on-chip color filter 321-3 is an on-chip color filter (R-OCCF) that transmits red light.
  • the pixel 301 functions as a visible light pixel (visible light B pixel) that receives visible light, and blue light is mainly incident on the photodiode 231-2.
  • the pixel 303 functions as a visible light pixel (visible light G pixel) that receives visible light, and green light is mainly incident on the photodiode 231-3.
  • the pixel 305 functions as a visible light pixel (visible light R pixel) that receives visible light, and red light is mainly incident on the photodiode 231-5.
  • the pixel 302 and the pixel 304 function as visible polarization pixels that receive the polarization of visible light.
  • On-chip color filters are not formed in the pixels 302 and 304 of the filter layer 214. That is, the pixel 302 and the pixel 304 function as a W-polarized pixel that receives polarized light of white light.
  • the polarization multilayer film 100-1 described in the first embodiment is formed and functions as a filter for extracting the polarization (polarization information) of visible light (white light).
  • the polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 304 of the multilayer film forming layer 212, and serves as a filter for extracting the polarization (polarization information) of visible light (white light). Function.
  • the polarizing multilayer film 100 has a structure in which grooves are cut in the multilayer film by, for example, lithography and RIE processing, but the thickness period of the multilayer film may be changed to an appropriate period. After the multilayer film is deposited on the entire surface by vapor deposition, for example, by sputtering, grooves may be cut only in the area of the W-polarized pixel, and the multilayer film area of the RGB pixel may be removed and then filled with SiO 2 or the like. .
  • a transparent filter may be disposed so as to transmit the entire visible light to the filter layer 214 of the pixel 302 and the pixel 304 which are W-polarized pixels.
  • an IR cut filter 331 is formed over all the pixels above the condensing lens layer 215 in the drawing (light incident side). That is, the infrared component of the light incident on all the pixels of the image sensor 300 is blocked by the IR cut filter 331. Of course, this IR cut filter 331 may be omitted.
  • the pixel arrangement is arbitrary.
  • W-polarized pixels are arranged in a checkered pattern, and the other pixels are visible light pixels (visible light B pixels, visible light G pixels, visible light R). Pixel).
  • the other pixels are visible light pixels (visible light B pixels, visible light G pixels, visible light R). Pixel).
  • four W-polarized pixels are arranged in 3 ⁇ 3 pixels.
  • the electric field vibration directions (polarization directions) of the polarization obtained in each W-polarized pixel may be different from each other.
  • the image sensor 300 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed and a groove 112 in the second direction orthogonal to the first direction.
  • such a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • W-polarized pixels are maximized here, other arrangements may be used. For example, more visible light pixels may be used than W polarized pixels. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 300 is arbitrary.
  • FIG. 14 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An image sensor 350 shown in FIG. 14 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 350 has a plurality of pixels that detect light independently of each other.
  • FIG. 14 illustrates a configuration example of the pixels 351 to 355 that are some pixels of the image sensor 350.
  • the image sensor 350 has basically the same configuration as that of the image sensor 200 (FIG. 6). However, the pixel 351 to the pixel 355 of the multilayer film forming layer 212 have a polarizing multilayer film 100 (polarizing multilayer film 100 ⁇ ), respectively. 1 to a polarizing multilayer film 100-5) are formed.
  • the polarizing multilayer film 100 has a structure in which grooves are cut in the multilayer film by, for example, lithography and RIE processing, but the thickness period of the multilayer film may be changed to an appropriate period.
  • grooves may be cut only in the area of the W-polarized pixel, and the multilayer film area of the RGB pixel may be removed and then filled with SiO 2 or the like.
  • an on-chip color filter 361-1 is formed in the pixel 351, an on-chip color filter 361-2 is formed in the pixel 352, and an on-chip color filter 361-3 is formed in the pixel 353.
  • an on-chip color filter 361-4 is formed in the pixel 354, and an on-chip color filter 361-6 is formed in the pixel 355.
  • the on-chip color filter 361-1 is an on-chip color filter (B-OCCF) that transmits blue light.
  • the on-chip color filter 361-2 is an on-chip color filter (G-OCCF) that transmits green light.
  • the on-chip color filter 361-3 is an on-chip color filter (R-OCCF) that transmits red light.
  • the on-chip color filter 361-4 is an on-chip color filter (B-OCCF) that transmits blue light.
  • the on-chip color filter 361-5 is an on-chip color filter (G-OCCF) that transmits green light.
  • an IR cut filter 331 is formed over all the pixels above the condensing lens layer 215 in the drawing (light incident side). Of course, this IR cut filter 331 may be omitted.
  • the pixel 351 functions as a visible polarization pixel (visible polarization B pixel) that receives the polarization of visible light, and blue light is mainly incident on the photodiode 231-1.
  • the pixel 352 functions as a visible polarization pixel (visible polarization G pixel) that receives the polarization of visible light, and green light is mainly incident on the photodiode 231-2.
  • the pixel 353 functions as a visible polarization pixel (visible polarization R pixel) that receives polarization of visible light, and red light is mainly incident on the photodiode 231-3.
  • the pixel 354 functions as a visible polarization pixel (visible polarization B pixel) that receives polarization of visible light, and blue light is mainly incident on the photodiode 231-4.
  • the pixel 355 functions as a visible polarization pixel (visible polarization G pixel) that receives polarization of visible light, and green light is mainly incident on the photodiode 231-5.
  • the pixel arrangement is arbitrary, but for example, as shown in FIG. 15, an RGB Bayer arrangement may be used.
  • the visible polarization B pixel, the visible polarization G pixel, and the visible polarization R pixel are arranged in a 3 ⁇ 3 pixel in a Bayer array so that polarization information can be acquired in all pixels.
  • polarization in four electric field vibration directions may be obtained in nine visible polarization pixels.
  • the image sensor 350 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction.
  • the information of the non-polarized component intensity, the polarization main axis direction, and the polarized component intensity can be obtained by Fourier analysis of this intensity.
  • a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • the number of visible polarization G pixels is the largest here, but other arrangements may be used. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 350 is arbitrary.
  • FIG. 16 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An image sensor 400 shown in FIG. 16 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 400 includes a plurality of pixels that detect light independently of each other.
  • FIG. 16 illustrates a configuration example of the pixels 401 to 405 which are some pixels of the image sensor 400.
  • the image sensor 400 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100-1 described in the first embodiment is included in the pixel 401 of the multilayer film formation layer 212.
  • the polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 403, and the polarizing multilayer film 100-3 described in the first embodiment is formed in the pixel 405.
  • the visible polarizing multilayer film 261-1 described in the third embodiment is formed in the pixel 402 of the multilayer film formation layer 212, and the visible light described in the third embodiment is formed in the pixel 404.
  • a polarizing multilayer film 261-2 is formed.
  • the on-chip color filter 234-1 (Black-OCCF) described in the second embodiment is formed in the pixel 401 of the filter layer 214, and the on-chip color filter 234-1 (Black-OCCF) described in the second embodiment is formed in the pixel 402.
  • a chip color filter 234-2 (G-OCCF) is formed, the pixel 403 is formed with the on-chip color filter 234-3 (Black-OCCF) described in the second embodiment, and the pixel 404 has a second color filter.
  • the on-chip color filter 234-4 (R-OCCF) described in the embodiment is formed, and the on-chip color filter 234-5 (Black-OCCF) is formed in the pixel 405.
  • the image sensor 400 may include pixels on which an on-chip color filter (B-OCCF) that transmits blue light is formed.
  • the pixel 401 functions as an IR polarization pixel that receives infrared polarized light, and infrared light is mainly incident on the photodiode 231-1.
  • the pixel 402 functions as a visible polarization pixel (visible polarization G pixel) that receives the polarization of visible light, and green light is mainly incident on the photodiode 231-2.
  • the pixel 403 functions as an IR polarized pixel that receives polarized light of infrared light, and infrared light is mainly incident on the photodiode 231-3.
  • the pixel 354 functions as a visible polarization pixel (visible polarization R pixel) that receives polarization of visible light, and blue light is mainly incident on the photodiode 231-4.
  • the pixel 405 functions as an IR polarization pixel that receives polarized light of infrared light, and infrared light is mainly incident on the photodiode 231-5. That is, polarization information is obtained in all pixels.
  • IR polarized pixels may be arranged in a checkered pattern, and other pixels may be visible light pixels.
  • 4 IR polarization pixels are arranged in 3 ⁇ 3 pixels, and 5 visible polarization pixels are arranged.
  • polarization in four electric field vibration directions may be obtained in each polarization pixel (IR polarization pixel and visible polarization pixel).
  • the image sensor 400 includes a pixel in which the polarizing multilayer film 100 or the visible polarizing multilayer film 261 having the groove 112 in a predetermined first direction is formed, and a second orthogonal to the first direction.
  • the pixel includes the pixel on which the film 261 is formed and the pixel on which the polarizing multilayer film 100 or the visible polarizing multilayer film 261 having the groove 112 in the fourth direction of ⁇ 45 deg with respect to the first direction is formed. With such four types of polarization pixels, polarization information in four polarization directions can be acquired.
  • such a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • the image sensor 400 it is possible to realize an imaging apparatus capable of simultaneously obtaining visible light color information and polarization information thereof together with infrared light spectroscopy.
  • IR polarized pixels are maximized here, but other arrangements are also possible. For example, there may be more visible polarization pixels than IR polarization pixels.
  • arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 400 is arbitrary.
  • the polarizing multilayer film 100 can be applied to other than the image sensor.
  • the polarizing multilayer film 100 can be applied to an optical sensor that detects light having an arbitrary wavelength.
  • the polarizing multilayer film 100 can be applied not only to the sensor but also to any device / configuration.
  • FIG. 18 is a cross-sectional view illustrating a main configuration example of a part of an optical unit to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • An optical unit 500 shown in FIG. 18A is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the optical unit 500 includes an imaging lens 501, a prism 502, an image sensor 503-1, and an image sensor 503-2, and is a unit that splits incident light.
  • Incident light is input to the prism 502 via the imaging lens 501.
  • the prism 502 is provided with the polarizing multilayer film 100 at a predetermined angle (for example, 45 deg) with respect to the traveling direction of the incident light.
  • Incident light is split into two polarized light beams by the polarizing multilayer film 100 as described in the first embodiment.
  • the TE wave reflected on the incident surface of the polarizing multilayer film 100 is detected by the image sensor 503-1.
  • the image sensor 503-1 has a plurality of pixels that receive light independently of each other and perform photoelectric conversion, and generate image data of the TE wave.
  • the TM wave transmitted through the polarizing multilayer film 100 is detected by the image sensor 503-2.
  • the image sensor 503-2 is an image sensor similar to the image sensor 503-1, has a plurality of pixels, and generates image data of the TM wave. That is, as shown in FIG. 18B, the optical unit 500 can obtain an image (polarized image) composed of two polarized light beams whose electric field vibration directions are orthogonal to each other. At this time, a polarization image composed of each polarization may be obtained (that is, two polarization images are obtained), or one polarization image composed of two polarizations may be obtained.
  • optical unit 2 The configuration of the optical unit to which the polarizing multilayer film 100 can be applied is arbitrary, and is not limited to the example of FIG.
  • the present invention can also be applied to an optical unit configured as shown in FIG.
  • An optical unit 550 shown in FIG. 19A is an embodiment of an optical sensor for detecting light to which the present technology is applied.
  • the optical unit 500 includes an imaging lens 501, prisms 502-1 to 502-3, and image sensors 503-1 to 503-4, and separates incident light into four polarized light.
  • the polarizing multilayer film 100 is provided at a predetermined angle (for example, 45 degrees) with respect to the traveling direction of the incident light (the polarizing multilayer film 100-1 to the polarizing multilayer film). Membrane 100-3).
  • the prism surface is formed parallel to the direction perpendicular to the paper surface, and the surface of the dielectric multilayer film (the longitudinal direction of the groove 112 of the polarization multilayer film 100-1). Is also formed parallel to the direction perpendicular to the plane of the drawing.
  • the polarization direction (electric field oscillation direction) of the transmitted light through the polarizing multilayer film 100-1 is parallel to the paper surface. Further, the polarization direction (electric field oscillation direction) of the reflected light of the polarizing multilayer film 100-1 is a direction perpendicular to the paper surface (a direction rotated 90 degrees from the polarization direction of the transmitted light).
  • the prism surface is formed at an angle of 45 ° with respect to the direction perpendicular to the paper surface, and the dielectric multilayer film surface (polarization multilayer film 100-2 and polarization multilayer film) is formed.
  • the longitudinal direction of the groove 112 of the film 100-2 is also formed at an angle of 45 degrees with respect to the direction perpendicular to the paper surface. Therefore, the polarization direction (electric field vibration direction) of the transmitted light of the polarizing multilayer film 100-2 is a direction of ⁇ 45 ° oblique to the paper surface, and the polarization direction (electric field vibration direction) of the reflected light of the polarizing multilayer film 100-2 is The direction is oblique +45 deg with respect to the paper surface.
  • the polarization direction (electric field vibration direction) of the transmitted light of the polarizing multilayer film 100-3 is obliquely +45 degrees with respect to the paper surface
  • the polarization direction (electric field vibration direction) of the reflected light of the polarizing multilayer film 100-3 is The direction is -45 deg oblique to the paper surface.
  • the image sensor 503-1 detects the light transmitted through the polarizing multilayer film 100-1 and reflected by the polarizing multilayer film 100-2.
  • the polarization direction of this light is a direction of +45 degrees oblique to the paper surface.
  • the image sensor 503-2 detects light having incident light transmitted through the polarizing multilayer film 100-1 and the polarizing multilayer film 100-2.
  • the polarization direction of this light is a direction of ⁇ 45 deg oblique to the paper surface.
  • the image sensor 503-3 detects the incident light reflected by the polarizing multilayer film 100-1 and transmitted through the polarizing multilayer film 100-3.
  • the polarization direction of this light is a direction of +45 degrees oblique to the paper surface.
  • the image sensor 503-4 detects light reflected by the incident multilayer light 100-1 and the polarizing multilayer film 100-3.
  • the polarization direction of this light is a direction of ⁇ 45 deg oblique to the paper surface.
  • the four polarization images detected in this way are added by signal processing to obtain a polarization image in four directions as shown in FIG. 19B.
  • a polarization image whose polarization direction is polarization in the horizontal direction in the figure is obtained.
  • a polarization image having a polarization direction of polarization in the vertical direction in the figure is obtained.
  • such a method it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject.
  • such a method can be used for grasping the center line of a road in an in-vehicle system or the like.
  • such a technique can be used for inspection of scratches in an industrial system or the like.
  • FIG. 20 is a cross-sectional view illustrating a main configuration example of a part of a biometric authentication device to which the polarizing multilayer film 100 described in the first embodiment is applied.
  • a biometric authentication device 600 shown in FIG. 20 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the biometric authentication device is a system that prevents impersonation authentication by enabling fingerprint authentication and vein authentication at the same time for a living body 611 such as a finger. Instead of fingerprint authentication, skin surface shape authentication such as a palm may be performed.
  • the biometric authentication device 600 includes a light emitting unit 601, an imaging lens 602, and an image sensor 603.
  • the light emitting unit 601 includes, for example, a two-wavelength LED that can emit light in two wavelength ranges of blue to green visible light and near-infrared light.
  • the image sensor 603 receives the reflected light, which is reflected by the living body 611, through the imaging lens 602.
  • the light incident from the skin becomes less susceptible to scattering and absorption as the wavelength increases, and the light penetrates deep into the skin. If it penetrates into the back of the skin, it will be scattered in the middle of the optical path and the light will spread and come back. When light returns from the back in this way, it becomes background light when imaging the skin surface, resulting in resolution degradation. Therefore, it is advantageous for imaging the skin surface that the wavelength is as short as possible in the visible light region.
  • the wavelength is as short as possible in the visible light region.
  • the light on the short wavelength side does not reach the back, but the light on the long wavelength side.
  • the image sensor 603 detects (receives and photoelectrically converts) the reflected light reflected from the near-infrared light 621 emitted from the light emitting unit 601 inside the living body 611 via the imaging lens 602. Further, the image sensor 603 detects (receives and photoelectrically converts) reflected light reflected from the surface of the living body 611 by visible light (blue to green) 622 emitted from the light emitting unit 601 via the imaging lens 602. .
  • the near-infrared light from hemoglobin is absorbed in the vein, so the returning light becomes weak and recognized as a dark line.
  • the image contrast is deteriorated.
  • infrared light causes reflection on the skin surface, which also causes deterioration of image contrast. Therefore, in order to suppress surface reflection and scattered light, obtaining a polarization image is an example of obtaining a vein image.
  • FIG. 21 is a cross-sectional view showing a main configuration example of a part of the image sensor 603.
  • An image sensor 603 illustrated in FIG. 21 is an embodiment of an optical sensor that detects light, to which the present technology is applied.
  • the image sensor 603 includes a plurality of pixels that detect light independently of each other.
  • FIG. 21 illustrates a configuration example of the pixels 631 to 635 which are some pixels of the image sensor 603.
  • the image sensor 603 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100-1 described in the first embodiment is formed in the pixel 631 of the multilayer film formation layer 212.
  • the polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 633, and the polarizing multilayer film 100-3 described in the first embodiment is formed in the pixel 635.
  • the IR cut filter 233-1 described in the second embodiment is formed in the pixel 632 of the multilayer film formation layer 212, and the IR cut described in the second embodiment is formed in the pixel 634.
  • a filter 233-2 is formed.
  • TiO 2 film and SiO 2 film are used as dielectric multilayer films, but instead of these, for example, TaO 2 film and SiO 2 film, Si 3 N 4 film and SiO 2 film should be used. It may be. Other material systems may be used as long as the material has a high refractive index and a low material.
  • an on-chip color filter 641-1 is formed in the pixel 631
  • an on-chip color filter 644-2 is formed in the pixel 632
  • an on-chip color filter 644-3 is formed in the pixel 633.
  • an on-chip color filter 644-4 is formed in the pixel 634
  • an on-chip color filter 644-5 is formed in the pixel 635.
  • the on-chip color filter 641-1, the on-chip color filter 641-3, and the on-chip color filter 641-5 are on-chip color filters (Black-OCCF) that block visible light.
  • the on-chip color filter 641-2 and the on-chip color filter 641-4 are on-chip color filters (B, G-OCCF) that transmit blue to green visible light.
  • the pixel 632 and the pixel 634 are visible light pixels having sensitivity from blue to green.
  • the multilayer structure (IR cut filter 233) works as a filter that does not transmit infrared light such as the transmission spectral characteristics shown in FIG.
  • the pixel 631, the pixel 633, and the pixel 635 are IR polarization pixels that polarize infrared light.
  • the multilayer structure (polarization multilayer film 100) of the IR polarization pixel functions as an infrared polarization filter that obtains polarization of infrared light.
  • the polarizing multilayer film 100 has a structure in which a groove is cut in the multilayer film by, for example, lithography and RIE processing.
  • the multilayer film is deposited on the entire surface by, for example, sputtering and laminated, and then a groove is formed only in the area of the IR polarized pixel. After cutting, the groove may be filled with, for example, SiO 2 or the like.
  • a light shielding wall 232 may be arranged as shown in this figure.
  • IR polarized pixels may be arranged in a checkered pattern, and other pixels may be visible light pixels.
  • four IR polarization pixels are arranged in 3 ⁇ 3 pixels.
  • the electric field oscillation directions (polarization directions) of the polarization obtained in each IR polarization pixel may be the same.
  • the image sensor 603 includes a pixel on which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed. With such one type of IR polarization pixel, polarization information in one polarization direction can be acquired.
  • the polarization direction is a direction in which scattered light and surface reflection can be suppressed.
  • a polarization image in a direction parallel to the incident surface of the infrared ray emitted from the LED or the like (TM wave) can be taken, and
  • the polarized wave in the vertical direction (TE wave) is cut.
  • the configuration of the camera optical system is arbitrary.
  • a base 651 for arranging the living body 611 on the upper surface in the figure is provided, and an image sensor 603 is arranged on the lower side of the base 651 in the figure, and the image sensor 603 is provided.
  • a light shielding wall 653 may be further arranged on the base 652 in order to prevent stray light from entering each pixel (close-up type).
  • a pinhole 663 may be formed on the base 661 using a light shielding film 662 (pinhole type).
  • an imaging lens 602 may be provided on the base 671 every several pixels (compound lens type). Further, in order to suppress stray light, the imaging lenses may be separated by a light shielding wall 653. Further, for example, as shown in FIG. 25C, an imaging lens 602 that covers all the pixels may be provided on the base 681 (single lens type).
  • polarization images may be acquired with both infrared and blue to green visible light.
  • a groove is formed partway through the multilayer film, the upper side is used as a polarizing filter (polarized multilayer film), and the lower side is blocked by infrared light. It may be used as an IR cut filter (visible polarizing multilayer film 261 described in the third embodiment). By doing so, a polarization image can be obtained not only for infrared light but also for visible light.
  • a light shielding wall may be arranged as shown in this figure.
  • FIG. 26 shows the configuration of the pixels 701 to 705 of the image sensor 603.
  • the pixel 701, the pixel 703, and the pixel 703 are IR polarization pixels
  • the pixel 702 and the pixel 704 are visible light polarization pixels.
  • the presence of OCCF (On-Chip Color Filter) above the visible light polarization pixels (pixel 702 and pixel 704) makes it possible to acquire polarization information along with, for example, blue to green visible light spectroscopy.
  • a black OCCF may be disposed on the IR polarization pixel so as to block visible light.
  • FIG. 1 one example of the pixel arrangement is shown in FIG.
  • the IR polarization pixels are arranged in a checkered pattern so that the same polarization direction can be acquired.
  • the blue to green visible light polarizing pixels are also in a checkered arrangement and the polarization directions are the same. These directions may be changed to an optimum direction according to the incident direction of light to the LED or the like.
  • These polarization directions can suppress scattered light and surface reflection, in particular, as shown in FIG. 23, a polarization image in a parallel direction (TM wave) can be taken with respect to an incident surface of light rays such as infrared or blue to green visible LEDs,
  • the polarized wave in the direction perpendicular to the incident surface (TE wave) is cut.
  • the groove direction is prepared in accordance with the incident direction of the light beam of each LED or the like.
  • scattered light and surface reflection can be suppressed, a high-contrast vein image and an image such as fingerprint authentication can be acquired, and biometric authentication with high accuracy is possible.
  • the configuration of the camera optical system in this case is arbitrary, and may be a close-up type configuration as shown in FIG. 24A or a close-up type configuration as shown in FIG. Further, a pinhole type configuration as shown in FIG. 25A, a compound eye lens type configuration as shown in FIG. 25B, or a single type as shown in FIG. A lens-type configuration may be used.
  • each image sensor described in each of the above embodiments can be provided with an arbitrary configuration whose description is omitted, such as a configuration relating to signal readout of FD, gate, wiring, etc., its drive circuit, and drive power supply. No.
  • the image sensor to which the polarizing multilayer film 100 described above is applied can be applied to any device. That is, the polarizing multilayer film 100 to which the present technology is applied can also be applied to an optical device that performs optical processing.
  • FIG. 28 is a block diagram illustrating a main configuration example of a light detection device which is an embodiment of an optical device to which the present technology is applied.
  • the light detection device 800 shown in FIG. 28 is a device that detects light and performs predetermined processing on the detection result.
  • the light detection apparatus 800 includes an optical system 811 such as a lens and a diaphragm, a polarization multilayer film light detection unit 812, a detection information processing unit 813, a bus 820, a control unit 821, an input unit 831, and an output unit. 832, a storage unit 833, a communication unit 834, and a drive 835.
  • the polarization multilayer film light detection unit 812 includes the polarization multilayer film 100 described above, and the polarization multilayer film 100 extracts polarized light from incident light incident through the optical system 811 or separates light having a predetermined wavelength. In other words, the extracted polarized light and the predetermined wavelength light are detected.
  • the polarization multilayer film light detection unit 812 includes the image sensor including the polarization multilayer film 100 described above in each embodiment. Therefore, as described above, the polarization multilayer film light detection unit 812 can suppress a reduction in the extinction ratio of transmitted light, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration.
  • the polarization multilayer film light detection unit 812 supplies the detection result (detection information) to the detection information processing unit 813.
  • the detection information processing unit 813 performs a predetermined process on the supplied detection information.
  • the detection information processing unit 813 transmits the detection information after the processing to a desired one of the control unit 821, the input unit 831, the output unit 832, the storage unit 833, the communication unit 834, the drive 835, and the like via the bus 820. It supplies to a processing part suitably.
  • the control unit 821 performs processing related to control of each processing unit in the light detection apparatus 800.
  • the input unit 831 includes an input device that receives arbitrary external information such as user input. This input device may be anything. For example, a keyboard, a mouse, operation buttons, a touch panel, a camera, a microphone, a barcode reader, and the like may be used. Moreover, various sensors, such as an acceleration sensor, an optical sensor, and a temperature sensor, may be used. Further, it may be an input terminal that receives arbitrary external information as data (signal).
  • the output unit 832 includes an output device that outputs arbitrary information inside the apparatus, such as an image and sound. Any output device may be used. For example, a display or a speaker may be used. Moreover, the output terminal which outputs arbitrary information as data (signal) outside may be sufficient. For example, the output unit 832 outputs the detection information supplied from the detection information processing unit 813 to the outside of the light detection device 800.
  • the storage unit 833 includes a storage medium that stores information such as programs and data.
  • This storage medium may be anything. For example, it may be a hard disk, a RAM disk, a non-volatile memory, or the like.
  • the storage unit 833 stores the detection information supplied from the detection information processing unit 813.
  • the communication unit 834 includes a communication device that performs communication for exchanging information such as a program and data with an external apparatus via a predetermined communication medium (for example, an arbitrary network such as the Internet).
  • This communication device may be anything.
  • a network interface may be used.
  • a communication method and a communication standard for communication by the communication unit 834 are arbitrary.
  • the communication unit 834 may be able to perform wired communication, wireless communication, or both.
  • the communication unit 834 supplies the detection information supplied from the detection information processing unit 813 to another device that is a communication partner.
  • the drive 835 performs processing related to reading and writing of information (program, data, etc.) with respect to the removable medium 841 attached to the drive 835.
  • This removable medium 841 may be any recording medium.
  • the drive 835 reads information (program, data, etc.) stored in the removable medium 841 attached to the drive 835 and supplies the information to the control unit 821 and the like.
  • the drive 835 acquires information (program, data, etc.) supplied from another processing unit such as the control unit 821 and writes the information to the removable medium 841 attached to the drive 835.
  • the drive 835 writes the detection information supplied from the detection information processing unit 813 into the removable medium 841.
  • the light detection device 800 can suppress a reduction in the extinction ratio of transmitted light, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration. Note that such a light detection device 800 can be realized, for example, as an imaging device that captures an image of a subject and obtains image data.
  • the control unit 821 of the light detection apparatus 800 performs a process related to light detection such as parameter setting and adjustment of the optical system 811 in step S101.
  • the polarization multilayer film light detection unit 812 detects incident light incident via the optical system 811 via the polarization multilayer film 100.
  • step S103 the detection information processing unit 813 processes the detection information obtained by the process in step S102.
  • step S104 the output unit 832 outputs the detection information processed in step S103, the storage unit 833 stores the detection information, or the communication unit 834 transmits the detection information to another device.
  • the drive 835 may perform other arbitrary processing such as writing the detection information in the removable medium 841.
  • step S104 When the process of step S104 is completed, the light detection process is completed.
  • the light detection device 800 can suppress the reduction in the extinction ratio of the transmitted light as described above, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration. Note that such a light detection device 800 can be realized, for example, as an imaging device that captures an image of a subject and obtains image data.
  • FIG. 30 is a block diagram illustrating a main configuration example of a manufacturing apparatus for manufacturing an image sensor to which the present technology is applied.
  • a manufacturing apparatus 850 illustrated in FIG. 30 includes a control unit 851 and a manufacturing unit 852.
  • the control unit 851 has, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 851 controls each unit of the manufacturing unit 852 and performs control processing related to image sensor manufacturing. Do.
  • the CPU of the control unit 851 executes various processes according to programs stored in the ROM.
  • the CPU executes various processes according to the program loaded from the storage unit 863 to the RAM.
  • the RAM also appropriately stores data necessary for the CPU to execute various processes.
  • the manufacturing unit 852 is controlled by the control unit 851 and performs processing related to the manufacture of the image sensor.
  • the manufacturing unit 852 includes a photodiode forming unit 881, a wiring layer forming unit 882, a multiphase film forming unit 883, a groove forming unit 884, a planarizing film forming unit 885, a filter forming unit 886, and a condenser lens forming unit 887.
  • the photodiode forming portion 881 forms a photodiode (photoelectric conversion element) on a silicon substrate.
  • the wiring layer forming unit 882 forms a wiring layer on the silicon substrate.
  • the multilayer film forming unit 883 forms the configuration of the multilayer film forming layer 212 (that is, the multilayer film or the like).
  • the groove forming portion 884 forms the polarizing multilayer film 100 by forming grooves in the multilayer film.
  • the planarization film forming portion 885 forms the configuration of the planarization film layer 213 (such as a planarization film).
  • the filter forming unit 886 forms the configuration of the filter layer 214 (color filter or the like).
  • the condensing lens forming unit 887 forms the configuration of the condensing lens layer 215 (such as a condensing lens).
  • These photodiode forming unit 881 to condensing lens forming unit 887 are controlled by the control unit 821 and perform processing of each process for manufacturing the image sensor.
  • the manufacturing apparatus 850 also includes an input unit 861, an output unit 862, a storage unit 863, a communication unit 864, and a drive 865.
  • the input unit 861 includes a keyboard, a mouse, a touch panel, an external input terminal, and the like.
  • the output unit 862 includes a display such as a CRT (Cathode RayubeTube) display and an LCD (Liquid Crystal Display), a speaker, and an external output terminal.
  • the output unit 862 displays various information supplied from the control unit 851 as an image, sound, or analog. Output as a signal or digital data.
  • the storage unit 863 includes an arbitrary storage medium such as a flash memory, an SSD (Solid State Drive), and a hard disk, and stores information supplied from the control unit 851 or stores it according to a request from the control unit 851. Read and supply information.
  • the communication unit 864 includes, for example, a wired LAN (Local Area Network), a wireless LAN interface, a modem, and the like, and performs communication processing with an external device via a network including the Internet. For example, the communication unit 864 transmits information supplied from the control unit 851 to the communication partner, or supplies information received from the communication partner to the control unit 851.
  • a wired LAN Local Area Network
  • a wireless LAN interface Wireless Local Area Network
  • modem Wireless Local Area Network
  • the communication unit 864 transmits information supplied from the control unit 851 to the communication partner, or supplies information received from the communication partner to the control unit 851.
  • the drive 865 is connected to the control unit 851 as necessary. Then, for example, a removable medium 871 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately attached to the drive 865. Then, the computer program read from the removable medium 871 via the drive 865 is installed in the storage unit 863 as necessary.
  • a removable medium 871 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately attached to the drive 865.
  • the computer program read from the removable medium 871 via the drive 865 is installed in the storage unit 863 as necessary.
  • step S121 the photodiode forming unit 881 is controlled by the control unit 851 to form a photodiode (photoelectric conversion element) for each pixel on a silicon substrate supplied from the outside.
  • step S122 the wiring layer formation unit 882 controls the control unit 851 to form a wiring layer including a multilayer wiring using a metal such as copper or aluminum so as to be stacked on the silicon substrate on which the photodiode is formed. To do.
  • step S123 the multilayer film forming unit 883 is controlled by the control unit 851 to form the multilayer film 111 as the configuration of the multilayer film forming layer 212.
  • step S124 the groove forming portion 884 forms the groove portion 112 in the multilayer film 111 formed in step S123 as described in the first embodiment.
  • step S125 the planarization film forming unit 885 is controlled by the control unit 851 to form a planarization film as the configuration of the planarization film layer 213.
  • step S ⁇ b> 126 the filter forming unit 886 is controlled by the control unit 851 to form a color filter or the like as the configuration of the filter layer 214.
  • step S ⁇ b> 127 the condensing lens forming unit 887 is controlled by the control unit 851 to form a condensing lens as a configuration of the condensing lens layer 215.
  • the manufacturing apparatus 850 can generate an image sensor to which the polarizing multilayer film 100 to which the present technology is applied is applied. That is, by manufacturing in this way, it is possible to generate an image sensor that can suppress a decrease in the extinction ratio of transmitted light when extracting polarized light. In addition, it is possible to generate an image sensor that can obtain spectral information together with polarization information with a simpler configuration.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be any type of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device or system mounted on the body.
  • the moving body targeted by the apparatus or system to which the present technology is applied may be any object.
  • FIG. 32 is a block diagram illustrating a schematic configuration example of a vehicle control system 7000 that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. .
  • the communication network 7010 for connecting the plurality of control units conforms to an arbitrary standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various calculations, and a drive circuit that drives various devices to be controlled. Is provided.
  • Each control unit includes a network I / F for communicating with other control units via a communication network 7010, and is connected to devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG.
  • control unit 7600 As the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, an audio image output unit 7670, An in-vehicle network I / F 7680 and a storage unit 7690 are illustrated.
  • other control units include a microcomputer, a communication I / F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an operation amount of an accelerator pedal, an operation amount of a brake pedal, and steering of a steering wheel. At least one of sensors for detecting an angle, an engine speed, a rotational speed of a wheel, or the like is included.
  • the drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, or the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 7200 can be input with radio waves or various switch signals transmitted from a portable device that substitutes for a key.
  • the body system control unit 7200 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310 that is a power supply source of the drive motor according to various programs. For example, information such as battery temperature, battery output voltage, or remaining battery capacity is input to the battery control unit 7300 from a battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
  • the outside information detection unit 7400 detects information outside the vehicle on which the vehicle control system 7000 is mounted.
  • the outside information detection unit 7400 is connected to at least one of the imaging unit 7410 and the outside information detection unit 7420.
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the outside information detection unit 7420 detects, for example, current weather or an environmental sensor for detecting weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the surrounding information detection sensors.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects sunlight intensity, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the imaging unit 7410 and the outside information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 33 shows an example of installation positions of the imaging unit 7410 and the vehicle outside information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, and 7918 are provided at, for example, at least one of the front nose, the side mirror, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior of the vehicle 7900.
  • An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • Imaging units 7912 and 7914 provided in the side mirror mainly acquire an image of the side of the vehicle 7900.
  • An imaging unit 7916 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or
  • FIG. 33 shows an example of shooting ranges of the respective imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively
  • the imaging range d The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, an overhead image when the vehicle 7900 is viewed from above is obtained.
  • the vehicle outside information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners of the vehicle 7900 and the upper part of the windshield in the vehicle interior may be, for example, an ultrasonic sensor or a radar device.
  • the vehicle outside information detection units 7920, 7926, and 7930 provided on the front nose, the rear bumper, the back door, and the windshield in the vehicle interior of the vehicle 7900 may be, for example, LIDAR devices.
  • These outside information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, and the like.
  • the vehicle exterior information detection unit 7400 causes the imaging unit 7410 to capture an image outside the vehicle and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information.
  • the outside information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information.
  • the vehicle outside information detection unit 7400 may calculate a distance to an object outside the vehicle based on the received information.
  • the outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and combines the image data captured by the different imaging units 7410 to generate an overhead image or a panoramic image. Also good.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410.
  • the vehicle interior information detection unit 7500 detects vehicle interior information.
  • a driver state detection unit 7510 that detects the driver's state is connected to the in-vehicle information detection unit 7500.
  • Driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects biometric information of the driver, a microphone that collects sound in the passenger compartment, and the like.
  • the biometric sensor is provided, for example, on a seat surface or a steering wheel, and detects biometric information of an occupant sitting on the seat or a driver holding the steering wheel.
  • the vehicle interior information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determines whether the driver is asleep. May be.
  • the vehicle interior information detection unit 7500 may perform a process such as a noise canceling process on the collected audio signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input by a passenger, such as a touch panel, a button, a microphone, a switch, or a lever.
  • the integrated control unit 7600 may be input with data obtained by recognizing voice input through a microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be.
  • the input unit 7800 may be, for example, a camera.
  • the passenger can input information using a gesture.
  • data obtained by detecting the movement of the wearable device worn by the passenger may be input.
  • the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600.
  • a passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • General-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F7620 is a cellular communication protocol such as GSM (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi (registered trademark)). Other wireless communication protocols such as Bluetooth (registered trademark) may also be implemented.
  • the general-purpose communication I / F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or an operator-specific network) via, for example, a base station or an access point.
  • the general-purpose communication I / F 7620 is a terminal (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal) that exists in the vicinity of the vehicle using, for example, P2P (Peer To Peer) technology. You may connect with.
  • a terminal for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal
  • P2P Peer To Peer
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in vehicles.
  • the dedicated communication I / F 7630 is a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of the lower layer IEEE 802.11p and the upper layer IEEE 1609. May be implemented.
  • the dedicated communication I / F 7630 typically includes vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) Perform V2X communication, which is a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), performs positioning, and performs latitude, longitude, and altitude of the vehicle.
  • the position information including is generated.
  • the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from a radio station installed on the road, and acquires information such as the current position, traffic jam, closed road, or required time. Note that the function of the beacon receiving unit 7650 may be included in the dedicated communication I / F 7630 described above.
  • the in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle.
  • the in-vehicle device I / F 7660 may establish a wireless connection using a wireless communication protocol such as a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the in-vehicle device I / F 7660 is connected to a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface), or MHL (Mobile High-definition Link) via a connection terminal (and a cable if necessary). ) Etc. may be established.
  • the in-vehicle device 7760 may include, for example, at least one of a mobile device or a wearable device that a passenger has, or an information device that is carried into or attached to the vehicle.
  • In-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.
  • In-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
  • the in-vehicle network I / F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the in-vehicle network I / F 7680 transmits and receives signals and the like in accordance with a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is connected via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680.
  • the vehicle control system 7000 is controlled according to various programs based on the acquired information. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. Also good.
  • the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning. You may perform the cooperative control for the purpose. Further, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, or the like based on the acquired information on the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform the cooperative control for the purpose of driving.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 7610 is information acquired via at least one of the general-purpose communication I / F 7620, the dedicated communication I / F 7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I / F 7660, and the in-vehicle network I / F 7680.
  • the three-dimensional distance information between the vehicle and the surrounding structure or an object such as a person may be generated based on the above and local map information including the peripheral information of the current position of the vehicle may be created.
  • the microcomputer 7610 may generate a warning signal by predicting a danger such as a collision of a vehicle, approach of a pedestrian or the like or an approach to a closed road based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices.
  • Display unit 7720 may include at least one of an on-board display and a head-up display, for example.
  • the display portion 7720 may have an AR (Augmented Reality) display function.
  • the output device may be other devices such as headphones, wearable devices such as glasses-type displays worn by passengers, projectors, and lamps.
  • the display device can display the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually. Further, when the output device is an audio output device, the audio output device converts an audio signal made up of reproduced audio data or acoustic data into an analog signal and outputs it aurally.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be configured by a plurality of control units.
  • the vehicle control system 7000 may include another control unit not shown.
  • some or all of the functions of any of the control units may be given to other control units. That is, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units.
  • a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may transmit / receive detection information to / from each other via the communication network 7010. .
  • a computer program for realizing each function of the light detection apparatus 800 according to the present embodiment described with reference to FIGS. 28 and 29 can be implemented in any control unit or the like. It is also possible to provide a computer-readable recording medium in which such a computer program is stored.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.
  • the photodetector 800 according to the present embodiment described with reference to FIGS. 28 and 29 can be applied to the integrated control unit 7600 of the application example illustrated in FIG.
  • each configuration described with reference to FIG. 28 corresponds to the microcomputer 7610, the storage unit 7690, and the in-vehicle network I / F 7680 of the integrated control unit 7600.
  • the integrated control unit 7600 can present more useful information by generating an image in the viewpoint direction corresponding to the state of the object from the captured image.
  • the components of the light detection device 800 described with reference to FIG. 28 is a module (for example, an integrated circuit module configured with one die) for the integrated control unit 7600 illustrated in FIG. It may be realized.
  • the light detection device 800 described with reference to FIGS. 28 and 29 may be realized by a plurality of control units of the vehicle control system 7000 illustrated in FIG. 32.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology may be applied to any configuration that constitutes an apparatus or system, for example, a processor as a system LSI (Large Scale Integration), a module that uses a plurality of processors, a unit that uses a plurality of modules, etc. It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
  • a processor as a system LSI (Large Scale Integration)
  • a module that uses a plurality of processors
  • a unit that uses a plurality of modules etc.
  • It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
  • the system means a set of a plurality of constituent elements (devices, modules (parts), etc.), and it does not matter whether all the constituent elements are in the same casing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are both systems. .
  • the configuration described above as one device (or one processing unit) may be divided and configured as a plurality of devices (or a plurality of processing units).
  • the configurations described above as a plurality of devices (or a plurality of processing units) may be combined into a single device (or one processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit) described above.
  • a part of the configuration of a device (or a processing unit) is included in the configuration of another device (or other processing unit). Also good.
  • the present technology can take a configuration of cloud computing in which one function is shared and processed by a plurality of devices via a network.
  • the above-described program can be executed in an arbitrary device.
  • the device may have necessary functions (functional blocks and the like) so that necessary information can be obtained.
  • each step described in the above flowchart can be executed by one device or can be executed by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • a plurality of processes included in one step can be executed as a process of a plurality of steps.
  • the processing described as a plurality of steps can be collectively executed as one step.
  • the program executed by the computer may be executed in a time series in the order described in this specification for the processing of the steps describing the program, or in parallel or called. It may be executed individually at a necessary timing. That is, as long as no contradiction occurs, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
  • a multilayer film formed in a direction from the light incident surface toward the light emission surface has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and blocks polarized light whose electric field vibrates in the predetermined direction.
  • An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
  • the detection unit includes a plurality of pixels that detect light independently of each other, and the polarization multilayer film is formed in at least some of the pixels, and the polarization multilayer film is formed in a pixel in which the polarization multilayer film is formed.
  • the optical sensor according to (8) configured to detect the polarized light transmitted through the film.
  • Sensor. (11)
  • the detection unit includes the pixel in which the polarizing multilayer film having the groove part in a predetermined first direction is formed, and the polarizing multilayer having the groove part in a second direction orthogonal to the first direction.
  • a pixel on which the film is formed, a pixel on which the polarizing multilayer film having the groove in the third direction of +45 deg with respect to the first direction is formed, and a -45 deg of the first direction with respect to the first direction.
  • the detection unit is a multilayer that blocks light in a predetermined wavelength region, which is the same as the multilayer film of the polarizing multilayer film, on at least some of the pixels in which the polarizing multilayer film is not formed.
  • the pixel in which the film is formed and the multilayer film is formed is configured to detect light in a wavelength region other than the predetermined wavelength region that has passed through the multilayer film.
  • the optical sensor according to (12), wherein the predetermined wavelength range is infrared.
  • the detection unit includes: In the pixel in which the polarizing multilayer film is formed, IR polarized light that passes through the polarizing multilayer film and vibrates in a direction perpendicular to the predetermined direction is detected.
  • the detection unit may be configured to block, on at least some of the plurality of pixels, the polarizing multilayer film and the same multilayer film of the polarizing multilayer film that blocks light in a predetermined wavelength range.
  • the predetermined wavelength band other than the predetermined wavelength band, which is transmitted through the polarizing multilayer film and the multilayer film.
  • the optical sensor according to any one of (9) to (15), configured to detect polarized light whose electric field vibrates in a direction perpendicular to the direction.
  • a first detector that detects the first polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction and transmitted through the polarizing multilayer film;
  • An optical sensor comprising: a second detection unit that detects the second polarized light reflected by the polarizing multilayer film and having an electric field oscillating in the predetermined direction.
  • the multilayer film formed at a predetermined angle with respect to the traveling direction of the reflected light of the first polarizing multilayer film and formed in the direction from the incident surface to the exit surface of the reflected light has the second direction.
  • a first detector for detecting first polarized light A second electric field that vibrates in a direction inclined by ⁇ 45 deg from a direction perpendicular to the electric field vibration direction of the transmitted light of the first polarizing multilayer film that has passed through the first polarizing multilayer film and the second polarizing multilayer film.
  • An optical sensor comprising: a fourth detection unit.
  • a light emitting unit that emits light
  • a polarizing multilayer film in which a groove portion in a predetermined direction is formed in a multilayer film formed in a direction from the incident surface of the reflected light that is emitted from the light emitting unit and reflected by the object toward the exit surface
  • An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
  • a plurality of pixels that detect light independently from each other, and at least some of the pixels are formed with grooves in a predetermined direction in a multilayer film that is formed in a direction from the light incident surface toward the light emission surface.
  • An imaging unit for imaging a subject An image processing apparatus comprising: an image processing unit that performs predetermined image processing on image data obtained by the image capturing unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The present technique relates to an optical device, an optical sensor, and an imaging device that make it possible to suppress a decrease in the extinction ratio of transmitted light. The optical device is configured with a plurality of grooves formed parallel to each other along a prescribed direction over a multilayer film formed along a direction from the light incidence surface to the light emission surface, thereby blocking the polarized light which causes the electric field to oscillate in the prescribed direction and transmitting the polarized light which causes the electric field to oscillate in a direction perpendicular to the prescribed direction. The present invention can be applied to, for example, an information processing device, an electronic device, a vehicle, a computer, a server, a program, a storage medium, and a system.

Description

光学デバイス、光学センサ、並びに、撮像装置Optical device, optical sensor, and imaging apparatus
 本技術は、光学デバイス、光学センサ、並びに、撮像装置に関し、特に、透過光の消光比の低減を抑制することができるようにした光学デバイス、光学センサ、並びに、撮像装置に関する。 The present technology relates to an optical device, an optical sensor, and an imaging apparatus, and more particularly, to an optical device, an optical sensor, and an imaging apparatus that can suppress a reduction in the extinction ratio of transmitted light.
 従来の偏光方法として、ワイヤーグリッド等で特定偏光波を透過させる方法が知られている(例えば、特許文献1参照)。これはメタルや色素等の強い吸収体をワイヤー状に入れる方法である。 As a conventional polarization method, a method of transmitting a specific polarized wave with a wire grid or the like is known (for example, see Patent Document 1). This is a method of putting a strong absorber such as metal or pigment into a wire shape.
特開2012-80065号公報JP 2012-80065 A
 しかしながら、このワイヤーグリッドには強い吸収体が用いられるため、透過率の低減が著しく、透過光の消光比が大きく低減してしまうおそれがあった。 However, since a strong absorber is used for this wire grid, the transmittance is remarkably reduced, and the extinction ratio of transmitted light may be greatly reduced.
 本技術は、このような状況に鑑みて提案されたものであり、透過光の消光比の低減を抑制することができることを目的とする。 The present technology has been proposed in view of such a situation, and an object thereof is to suppress a reduction in the extinction ratio of transmitted light.
 本技術の一側面の光学デバイスは、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が互いに平行に複数形成された構造を有し、前記所定の方向に電界が振動する偏光を遮断し、前記所定の方向と垂直な方向に電界が振動する偏光を透過する光学デバイスである。以下、振動とは電界の振動を指す。 An optical device according to one aspect of the present technology has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other in a multilayer film formed in a direction from the light incident surface toward the light emission surface, An optical device that blocks polarized light whose electric field oscillates and transmits polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction. Hereinafter, vibration refers to electric field vibration.
 前記多層膜は、屈折率が互いに異なる材料からなる複数の膜が積層された構造を有するようにすることができる。 The multilayer film may have a structure in which a plurality of films made of materials having different refractive indexes are stacked.
 前記多層膜は、酸化チタン膜と二酸化ケイ素膜とが交互に積層された構造を有するようにすることができる。 The multilayer film may have a structure in which titanium oxide films and silicon dioxide films are alternately stacked.
 前記多層膜は、所定の波長域の光を遮断する構造を有するようにすることができる。 The multilayer film may have a structure that blocks light in a predetermined wavelength range.
 前記多層膜は、赤外光を遮断する構造を有するようにすることができる。 The multilayer film may have a structure that blocks infrared light.
 前記溝部には、低屈折率の材料の膜が形成されるようにすることができる。 A film of a material having a low refractive index can be formed in the groove.
 前記溝部には、二酸化ケイ素膜が形成されるようにすることができる。 A silicon dioxide film can be formed in the groove.
 本技術の他の側面の光学センサは、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部とを備える光学センサである。 An optical sensor according to another aspect of the present technology transmits a polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface toward the light exit surface, and the polarizing multilayer film is transmitted. An optical sensor comprising: a detection unit that detects polarized light whose electric field vibrates in a direction perpendicular to the predetermined direction.
 前記検出部は、互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に前記偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出するように構成されるようにすることができる。 The detection unit includes a plurality of pixels that detect light independently of each other, and the polarization multilayer film is formed on at least some of the pixels, and the pixel on which the polarization multilayer film is formed transmits the polarization multilayer film. The polarized light can be configured to be detected.
 前記検出部は、前記偏光多層膜の前記溝部の方向が、他のいずれかの画素に形成される前記偏光多層膜の前記溝部の方向と異なる画素を有するようにすることができる。 The detection unit may include pixels in which the direction of the groove portion of the polarizing multilayer film is different from the direction of the groove portion of the polarizing multilayer film formed in any other pixel.
 前記検出部は、所定の第1の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に直交する第2の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して+45degの第3の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して-45degの第4の方向の前記溝部を有する前記偏光多層膜が形成される画素とを有するようにすることができる。 The detection unit includes a pixel on which the polarizing multilayer film having the groove part in a predetermined first direction is formed, and the polarizing multilayer film having the groove part in a second direction orthogonal to the first direction. A pixel in which the polarizing multilayer film having the groove in the third direction of +45 deg with respect to the first direction is formed, and a fourth direction of −45 deg with respect to the first direction A pixel on which the polarizing multilayer film having the groove is formed.
 前記検出部は、前記偏光多層膜が形成されていない画素の内の少なくとも一部の画素に、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜が形成され、前記多層膜が形成される画素においては、前記多層膜を透過した前記所定の波長域以外の波長域の光を検出するように構成されるようにすることができる。 In the detection unit, a multilayer film that blocks light in a predetermined wavelength region, which is the same as the multilayer film of the polarization multilayer film, is formed on at least some of the pixels in which the polarization multilayer film is not formed. The pixel in which the multilayer film is formed can be configured to detect light in a wavelength range other than the predetermined wavelength range that has passed through the multilayer film.
 前記所定の波長域は、赤外であるようにすることができる。 The predetermined wavelength range can be infrared.
 前記検出部は、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動するIR偏光を検出し、前記多層膜が形成される画素においては前記多層膜を透過した可視光を検出することができる。 The detection unit detects IR polarized light having an electric field oscillating in a direction perpendicular to the predetermined direction, which is transmitted through the polarizing multilayer film in a pixel in which the polarizing multilayer film is formed, and the multilayer film is formed. In the pixel, visible light transmitted through the multilayer film can be detected.
 前記複数の画素の内の少なくとも一部の画素に所定の波長域の光を透過する光学フィルタが形成されるようにすることができる。 It is possible to form an optical filter that transmits light in a predetermined wavelength region in at least some of the plurality of pixels.
 前記検出部は、前記複数の画素の内の少なくとも一部の画素に、前記偏光多層膜と、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜との両方が形成され、前記偏光多層膜および前記多層膜が形成される画素においては、前記偏光多層膜および前記多層膜を透過した、前記所定の波長域以外の波長域の、前記所定の方向と垂直な方向に電界が振動する偏光を検出するように構成されるようにすることができる。 The detection unit includes, on at least some of the plurality of pixels, the polarizing multilayer film and a multilayer film that blocks the light in a predetermined wavelength region that is the same as the multilayer film of the polarizing multilayer film. In the pixel in which both are formed and the polarizing multilayer film and the multilayer film are formed, the polarizing multilayer film and the multilayer film are transmitted through the polarizing multilayer film and the multilayer film, and are perpendicular to the predetermined direction in a wavelength region other than the predetermined wavelength region. It can be configured to detect polarized light whose electric field oscillates in any direction.
 本技術のさらに他の側面の光学センサは、光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する第1の偏光を検出する第1の検出部と、前記偏光多層膜において反射した、前記所定の方向に電界が振動する第2の偏光を検出する第2の検出部とを備える光学センサである。 An optical sensor according to still another aspect of the present technology is provided with a groove in a predetermined direction in a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light output surface. A polarizing multilayer film on which is formed, a first detection unit that detects the first polarized light that is transmitted through the polarizing multilayer film and whose electric field vibrates in a direction perpendicular to the predetermined direction, and reflected by the polarizing multilayer film And an optical sensor including a second detection unit that detects the second polarized light whose electric field vibrates in the predetermined direction.
 本技術のさらに他の側面の光学センサは、光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に第1の方向の溝部が形成された第1の偏光多層膜と、前記第1の偏光多層膜の透過光の進行方向に対して所定の角度で設けられた、前記透過光の入射面から出射面に向かう方向に形成される多層膜に、前記第1の方向に対して45deg傾いた第2の方向の溝部が形成された第2の偏光多層膜と、前記第1の偏光多層膜の反射光の進行方向に対して所定の角度で設けられた、前記反射光の入射面から出射面に向かう方向に形成される多層膜に、前記第2の方向の溝部が形成された第3の偏光多層膜と、前記第1の偏光多層膜を透過して前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から+45deg傾いた方向に電界が振動する第1の偏光を検出する第1の検出部と、前記第1の偏光多層膜および前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から-45deg傾いた方向に電界が振動する第2の偏光を検出する第2の検出部と、前記第1の偏光多層膜において反射して前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の反射光の電界振動方向から+45deg傾いた方向に電界が振動する第3の偏光を検出する第3の検出部と、前記第1の偏光多層膜および前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の反射光の電界振動方向から-45deg傾いた方向に電界が振動する第4の偏光を検出する第4の検出部とを備える光学センサである。 An optical sensor according to still another aspect of the present technology includes a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light emission surface in the first direction. In a direction from the incident surface of the transmitted light toward the output surface, provided at a predetermined angle with respect to the traveling direction of the transmitted light of the first polarizing multilayer film and the first polarizing multilayer film in which the groove is formed A second polarizing multilayer film in which a groove in a second direction inclined by 45 deg with respect to the first direction is formed in the multilayer film to be formed; and in a traveling direction of reflected light of the first polarizing multilayer film A third polarizing multilayer film in which a groove portion in the second direction is formed in a multilayer film formed at a predetermined angle and formed in a direction from the incident surface to the output surface of the reflected light; and The first polarized light that is transmitted through the first polarizing multilayer film and reflected by the second polarizing multilayer film. A first detector for detecting a first polarized light whose electric field vibrates in a direction inclined by +45 degrees from a direction perpendicular to the electric field vibration direction of the transmitted light of the multilayer film; the first polarizing multilayer film and the second polarized light; A second detection unit that detects second polarized light whose electric field oscillates in a direction inclined by −45 deg from a direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film transmitted through the multilayer film; The third polarized light whose electric field oscillates in a direction inclined by +45 deg from the direction of electric field oscillation of the reflected light of the first polarizing multilayer film, which is reflected by the first polarizing multilayer film and transmitted through the second polarizing multilayer film. A third detection unit to detect, and an electric field in a direction inclined by −45 deg from an electric field oscillation direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and the second polarizing multilayer film A fourth detector for detecting the fourth polarized light that vibrates. It is an optical sensor to obtain.
 本技術のさらに他の側面の光学センサは、光を発光する発光部と、前記発光部より出射されて物体において反射した反射光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部とを備える光学センサである。 An optical sensor according to still another aspect of the present technology includes a light emitting unit that emits light, and a multilayer film formed in a direction from the incident surface of the reflected light that is emitted from the light emitting unit and reflected by the object toward the exit surface. An optical sensor comprising: a polarizing multilayer film in which a groove portion in the direction is formed; and a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
 本技術のさらに他の側面の撮像装置は、互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出し、前記偏光多層膜が形成されていない画素においては前記光を検出することにより被写体を撮像する撮像部と、前記撮像部により得られた画像データに対して所定の画像処理を施す画像処理部とを備える撮像装置である。 An imaging device according to still another aspect of the present technology includes a plurality of pixels that detect light independently of each other, and includes a multilayer film formed in at least some of the pixels in a direction from the light incident surface toward the light emission surface. A pixel in which a polarizing multilayer film formed with a groove in a predetermined direction is formed, and in the pixel in which the polarizing multilayer film is formed, the polarized light transmitted through the polarizing multilayer film is detected, and the polarizing multilayer film is not formed The imaging apparatus includes an imaging unit that images a subject by detecting the light, and an image processing unit that performs predetermined image processing on image data obtained by the imaging unit.
 本技術の一側面においては、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が互いに平行に複数形成された構造が設けられ、その所定の方向に電界が振動する偏光が遮断され、所定の方向と垂直な方向に電界が振動する偏光が透過される。 In one aspect of the present technology, a multilayer film formed in a direction from the light incident surface toward the light emission surface is provided with a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and an electric field is generated in the predetermined direction. Oscillating polarized light is blocked, and polarized light whose electric field vibrates in a direction perpendicular to a predetermined direction is transmitted.
 本技術の他の側面においては、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、その偏光多層膜を透過した、その所定の方向と垂直な方向に電界が振動する偏光を検出する検出部とが備えられる。 In another aspect of the present technology, a polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface to the light emitting surface, and the predetermined light transmitted through the polarizing multilayer film. And a detector for detecting polarized light whose electric field oscillates in a direction perpendicular to the direction.
 本技術のさらに他の側面においては、光の進行方向に対して所定の角度で設けられた、その光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、その偏光多層膜を透過した、その所定の方向と垂直な方向に電界が振動する第1の偏光を検出する第1の検出部と、その偏光多層膜において反射した、その所定の方向に電界が振動する第2の偏光を検出する第2の検出部とが備えられる。 In still another aspect of the present technology, a groove in a predetermined direction is formed in a multilayer film formed at a predetermined angle with respect to the light traveling direction and formed in a direction from the light incident surface toward the light emission surface. The polarized multilayer film, the first detection unit that detects the first polarized light that passes through the polarized multilayer film and the electric field vibrates in a direction perpendicular to the predetermined direction, and is reflected by the polarized multilayer film. A second detector for detecting second polarized light whose electric field vibrates in the predetermined direction.
 本技術のさらに他の側面においては、光の進行方向に対して所定の角度で設けられた、その光の入射面から出射面に向かう方向に形成される多層膜に第1の方向の溝部が形成された第1の偏光多層膜と、その第1の偏光多層膜の透過光の進行方向に対して所定の角度で設けられた、その透過光の入射面から出射面に向かう方向に形成される多層膜に、その第1の方向に対して45deg傾いた第2の方向の溝部が形成された第2の偏光多層膜と、その第1の偏光多層膜の反射光の進行方向に対して所定の角度で設けられた、その反射光の入射面から出射面に向かう方向に形成される多層膜に、その第2の方向の溝部が形成された第3の偏光多層膜と、その第1の偏光多層膜を透過して第2の偏光多層膜において反射した、第1の偏光多層膜の透過光の電界振動方向に垂直な方向から+45deg傾いた方向に電界が振動する第1の偏光を検出する第1の検出部と、その第1の偏光多層膜および第2の偏光多層膜を透過した、第1の偏光多層膜の透過光の電界振動方向に垂直な方向から-45deg傾いた方向に電界が振動する第2の偏光を検出する第2の検出部と、第1の偏光多層膜において反射して第2の偏光多層膜を透過した、第1の偏光多層膜の反射光の電界振動方向から+45deg傾いた方向に電界が振動する第3の偏光を検出する第3の検出部と、第1の偏光多層膜および第2の偏光多層膜において反射した、第1の偏光多層膜の反射光の電界振動方向から-45deg傾いた方向に電界が振動する第4の偏光を検出する第4の検出部とが備えられる。 In still another aspect of the present technology, a groove in the first direction is formed in a multilayer film formed at a predetermined angle with respect to the light traveling direction and formed in a direction from the light incident surface toward the light emission surface. The first polarizing multilayer film formed and formed in a direction from the incident surface of the transmitted light toward the exit surface provided at a predetermined angle with respect to the traveling direction of the transmitted light of the first polarizing multilayer film. A second polarizing multilayer film in which a groove in the second direction inclined by 45 deg with respect to the first direction is formed in the multilayer film, and the traveling direction of the reflected light of the first polarizing multilayer film A third polarizing multilayer film in which grooves in the second direction are formed in a multilayer film formed at a predetermined angle and formed in a direction from the incident surface to the exit surface of the reflected light, and the first Of the first polarizing multilayer film that has been transmitted through the polarizing multilayer film and reflected by the second polarizing multilayer film. The first detection unit that detects the first polarized light whose electric field vibrates in a direction inclined by +45 deg from the direction perpendicular to the electric field vibration direction of the light, and the first polarizing multilayer film and the second polarizing multilayer film are transmitted A second detector for detecting second polarized light whose electric field oscillates in a direction inclined by −45 deg from a direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film; A third detector that detects the third polarized light whose electric field vibrates in a direction inclined by +45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film that is reflected and transmitted through the second polarizing multilayer film; A fourth polarization that detects the fourth polarized light whose electric field vibrates in the direction inclined by −45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and the second polarizing multilayer film. And a detecting unit.
 本技術のさらに他の側面においては、光を発光する発光部と、その発光部より出射されて物体において反射した反射光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、その偏光多層膜を透過した、所定の方向と垂直な方向に電界が振動する偏光を検出する検出部とが備えられる。 In still another aspect of the present technology, the light emitting unit that emits light and the multilayer film formed in the direction from the incident surface toward the emission surface of the reflected light that is emitted from the light emitting unit and reflected by the object has a predetermined direction. And a detection unit for detecting polarized light transmitted through the polarizing multilayer film and having an electric field oscillating in a direction perpendicular to a predetermined direction.
 本技術のさらに他の側面においては、互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜が形成され、その偏光多層膜が形成される画素においてはその偏光多層膜を透過した偏光を検出し、その偏光多層膜が形成されていない画素においては光を検出することにより被写体を撮像する撮像部と、その撮像部により得られた画像データに対して所定の画像処理を施す画像処理部とが備えられる。 In still another aspect of the present technology, a plurality of pixels that detect light independently of each other are provided, and at least some of the pixels are formed on a multilayer film formed in a direction from the light incident surface toward the light emission surface. A polarizing multilayer film having a groove in the direction is formed, and in a pixel in which the polarizing multilayer film is formed, polarized light transmitted through the polarizing multilayer film is detected, and in a pixel in which the polarizing multilayer film is not formed, light is emitted. And an image processing unit that performs predetermined image processing on image data obtained by the imaging unit.
 本技術によれば、偏光情報を得ることが出来る。また本技術によれば、透過光の消光比の低減を抑制することができる。 According to this technology, polarization information can be obtained. In addition, according to the present technology, it is possible to suppress a reduction in the extinction ratio of transmitted light.
偏光多層膜の構造を説明する図である。It is a figure explaining the structure of a polarizing multilayer film. シミュレーションの様子の例を示す図である。It is a figure which shows the example of the mode of simulation. シミュレーション結果の様子を示す図である。It is a figure which shows the mode of a simulation result. シミュレーション結果の様子を示す図である。It is a figure which shows the mode of a simulation result. 入射角度に対する光強度および消光比の例を示す図である。It is a figure which shows the example of the light intensity with respect to an incident angle, and an extinction ratio. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 透過分光特性の例を説明する図である。It is a figure explaining the example of a transmission spectral characteristic. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. 偏光方向の例を説明する図である。It is a figure explaining the example of a polarization direction. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. 光学ユニットの主な構成例を説明する図である。It is a figure explaining the main structural examples of an optical unit. 光学ユニットの主な構成例を説明する図である。It is a figure explaining the main structural examples of an optical unit. 生体認証デバイスの主な構成例を説明する図である。It is a figure explaining the main structural examples of a biometrics device. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. 光の反射の様子の例を説明する図である。It is a figure explaining the example of the mode of reflection of light. 生体認証デバイスの構成例を示す図である。It is a figure which shows the structural example of a biometrics device. 生体認証デバイスの構成例を示す図である。It is a figure which shows the structural example of a biometrics device. イメージセンサの主な構成例を説明する図である。It is a figure explaining the main structural examples of an image sensor. 画素配列の例を説明する図である。It is a figure explaining the example of a pixel arrangement | sequence. 光検出装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a photon detection apparatus. 光検出処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a light detection process. 製造装置の主な構成例を示すブロック図である。It is a block diagram which shows the main structural examples of a manufacturing apparatus. 製造処理の流れの例を説明するフローチャートである。It is a flowchart explaining the example of the flow of a manufacturing process. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(偏光多層膜)
2.第2の実施の形態(イメージセンサ)
3.第3の実施の形態(イメージセンサ)
4.第4の実施の形態(イメージセンサ)
5.第5の実施の形態(イメージセンサ)
6.第6の実施の形態(イメージセンサ)
7.第7の実施の形態(光学ユニット)
8.第8の実施の形態(生体認証デバイス)
9.第9の実施の形態(光検出装置)
10.第10の実施の形態(製造装置)
11.第11の実施の形態(応用例)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1st Embodiment (polarization multilayer film)
2. Second embodiment (image sensor)
3. Third embodiment (image sensor)
4). Fourth embodiment (image sensor)
5). Fifth embodiment (image sensor)
6). Sixth embodiment (image sensor)
7). Seventh embodiment (optical unit)
8). Eighth Embodiment (Biometric Authentication Device)
9. Ninth embodiment (photodetection device)
10. Tenth embodiment (manufacturing apparatus)
11. Eleventh embodiment (application example)
 <1.第1の実施の形態>
  <偏光と分光>
 従来の偏光方法として、たとえば特許文献1に記載のようなワイヤーグリッド等で特定偏光波を透過させる方法が知られている。これはメタルや色素等の強い吸収体をワイヤー状に入れる方法である。しかしながら、このワイヤーグリッドには強い吸収体が用いられるため、透過率の低減が著しく、透過光の消光比が大きく低減してしまうおそれがあった。特に、メタルを使ったグリッドの場合、斜め光に対する消光比劣化が著しかった。
<1. First Embodiment>
<Polarization and spectroscopy>
As a conventional polarization method, for example, a method of transmitting a specific polarized wave with a wire grid or the like as described in Patent Document 1 is known. This is a method of putting a strong absorber such as metal or pigment into a wire shape. However, since a strong absorber is used for this wire grid, the transmittance is remarkably reduced, and the extinction ratio of transmitted light may be greatly reduced. In particular, in the case of a grid using metal, the extinction ratio deterioration with respect to oblique light was remarkable.
 また、このワイヤーグリッドは波長を選択する機能を持たないため、これだけでは分光を行うことはできない。そのため、偏光情報とともに分光情報を得るためには、このワイヤーグリッドとは別に分光手段が必要であった。そのため、デバイスの規模(サイズ)やコストが増大してしまうおそれがあった。また、構造が複雑になることにより故障率が増大したり耐久性が低減したりする等、信頼性が低減するおそれがあった。 Moreover, since this wire grid does not have a function of selecting a wavelength, it is impossible to perform spectroscopy alone. Therefore, in order to obtain the spectral information together with the polarization information, a spectroscopic means is necessary separately from the wire grid. As a result, the scale (size) and cost of the device may increase. In addition, since the structure is complicated, the failure rate may increase or the durability may decrease, which may reduce the reliability.
  <偏光多層膜構造>
 そこで、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が互いに平行に複数形成された構造を有し、その所定の方向に電界が振動する偏光を遮断し、その所定の方向と垂直な方向に電界が振動する偏光を透過する光学デバイスを用いるようにする。このような光学デバイスを用いることにより、偏光を透過光として抽出することができ、その際の透過光の消光比の低減を抑制することができる。以下において、振動とは電界の振動を指すものとする。
<Polarized multilayer structure>
Therefore, the multilayer film formed in the direction from the light incident surface to the light exit surface has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and blocks polarized light whose electric field vibrates in the predetermined direction. An optical device that transmits polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction is used. By using such an optical device, polarized light can be extracted as transmitted light, and a reduction in the extinction ratio of transmitted light at that time can be suppressed. In the following, vibration refers to vibration of an electric field.
 また、光学デバイスの多層膜が、所定の波長域の光を遮断する構造を有するようにすることにより、偏光情報とともに分光情報を得ることができる。したがって、別途分光手段を設ける必要がなく、特許文献1に記載の方法の場合よりも構成をより簡易なものとすることができる。したがって、デバイスの規模(サイズ)やコストの増大を抑制することができ、故障率の増大や耐久性の低減を抑制する等、信頼性の低減を抑制することができる。 In addition, when the multilayer film of the optical device has a structure that blocks light in a predetermined wavelength range, spectral information can be obtained together with polarization information. Therefore, there is no need to provide a separate spectroscopic means, and the configuration can be made simpler than in the case of the method described in Patent Document 1. Therefore, an increase in the scale (size) and cost of the device can be suppressed, and a decrease in reliability can be suppressed, such as an increase in failure rate and a decrease in durability.
 本技術を適用した光学デバイスの一実施の形態である偏光多層膜の主な構成例を図1に示す。図1のAは偏光多層膜の鳥瞰図であり、図1のBは偏光多層膜を光入射面側から見た平面図である。 FIG. 1 shows a main configuration example of a polarizing multilayer film that is an embodiment of an optical device to which the present technology is applied. 1A is a bird's-eye view of the polarizing multilayer film, and FIG. 1B is a plan view of the polarizing multilayer film as viewed from the light incident surface side.
 図1のAに示される偏光多層膜100は、多層膜に所定の方向の溝部が、所定の間隔で互いに平行に複数形成された構造を有する光学デバイスである。偏光多層膜100は、その所定の方向に電界が振動する偏光を遮断し、その所定の方向と垂直な方向に電界が振動する偏光を透過する光学デバイスである。光は、偏光多層膜100の図中上側の平面から入射し、下側の面(図示せず)から出射する。図1のAに示されるように、偏光多層膜100は、多層膜111-1乃至多層膜111-4、並びに、溝部112-1乃至溝部112-4により形成されている。以下において、多層膜111-1乃至多層膜111-4を互いに区別して説明する必要が無い場合、多層膜111と称する。また、溝部112-1乃至溝部112-4を互いに区別して説明する必要が無い場合、溝部112と称する。 A polarizing multilayer film 100 shown in FIG. 1A is an optical device having a structure in which a plurality of grooves in a predetermined direction are formed in parallel with each other at predetermined intervals in the multilayer film. The polarizing multilayer film 100 is an optical device that blocks polarized light whose electric field vibrates in a predetermined direction and transmits polarized light whose electric field vibrates in a direction perpendicular to the predetermined direction. Light enters from the upper plane of the polarizing multilayer film 100 in the drawing and exits from the lower surface (not shown). As shown in FIG. 1A, the polarizing multilayer film 100 is formed by multilayer films 111-1 to 111-4 and groove portions 112-1 to 112-4. Hereinafter, the multilayer films 111-1 to 111-4 are referred to as the multilayer film 111 when it is not necessary to distinguish them from each other. Further, the groove portions 112-1 to 112-4 are referred to as the groove portions 112 when it is not necessary to distinguish them from each other.
 図1のAに示されるように、多層膜111は、二酸化ケイ素(SiO2)を成膜したSiO2膜121と酸化チタン(TiO2)を成膜したTiO2膜122とが、光の入射面から出射面に向かう方向に交互に積層された構造を有する。したがって、多層膜111は、TiO2/SiO2多層膜とも称する。また、溝部112には、SiO2が充填されてSiO2膜123が形成されている。 As shown in FIG. 1A, the multilayer film 111 includes a SiO 2 film 121 formed with silicon dioxide (SiO 2 ) and a TiO 2 film 122 formed with titanium oxide (TiO 2 ). It has a structure in which layers are alternately stacked in the direction from the surface toward the exit surface. Therefore, the multilayer film 111 is also referred to as a TiO 2 / SiO 2 multilayer film. Further, the groove 112, SiO 2 film 123 SiO 2 is filled is formed.
 溝部112は、両矢印131の方向を長手方向とするように形成されており、溝部112-1乃至溝部112-4は、互いに平行に所定の間隔で形成されている。換言するに、多層膜111も、両矢印131の方向を長手方向とするように形成されており、多層膜111-乃至多層膜111-4は、互いに平行に所定の間隔で形成されている。したがって、偏光多層膜100を光入射面側から見ると、図1のBに示されるような多層膜111と溝部112とが交互に並ぶ構成となっている。 The groove 112 is formed so that the direction of the double arrow 131 is the longitudinal direction, and the grooves 112-1 to 112-4 are formed in parallel with each other at a predetermined interval. In other words, the multilayer film 111 is also formed so that the direction of the double arrow 131 is the longitudinal direction, and the multilayer films 111- to 111-4 are formed in parallel with each other at a predetermined interval. Accordingly, when the polarizing multilayer film 100 is viewed from the light incident surface side, the multilayer film 111 and the groove 112 are arranged alternately as shown in FIG.
 溝部112の長手方向(両矢印131の方向)の偏光波をTE波とすると、そのTE波は、偏光多層膜100の光入射面で、矢印132のように反射が生じる。また、両矢印131の方向に垂直な両矢印133の方向の偏光波をTM波とすると、矢印134のように入射したTM波は、偏光多層膜100を透過し、矢印135のように偏光多層膜100の出射面(図示せず)から出射する。 If the polarized wave in the longitudinal direction of the groove 112 (the direction of the double arrow 131) is a TE wave, the TE wave is reflected on the light incident surface of the polarizing multilayer film 100 as indicated by an arrow 132. Also, if the polarized wave in the direction of the double arrow 133 perpendicular to the direction of the double arrow 131 is a TM wave, the incident TM wave as shown by the arrow 134 is transmitted through the polarizing multilayer film 100 and the polarized multilayer as shown by the arrow 135. The light is emitted from an emission surface (not shown) of the film 100.
 このように、偏光多層膜100は、両矢印133の方向の偏光波(TM波)を透過し、抽出することができる。つまり、両矢印133の方向に電界が振動する偏光(偏光情報)を抽出することができる。この場合、上述したように多層膜111は、SiO2膜121とTiO2膜122により形成されており、メタルや色素等の強い吸収体を用いずに形成されている。したがって、偏光多層膜100は、特許文献1に記載のワイヤーグリッドの場合と比べて、透過光の消光比の低減を抑制することができる。特に、所望の波長光が吸収され難い材料を用いることにより、透過光の消光比の低減をより抑制することができる。 Thus, the polarizing multilayer film 100 can transmit and extract the polarized wave (TM wave) in the direction of the double arrow 133. That is, polarized light (polarization information) whose electric field oscillates in the direction of the double arrow 133 can be extracted. In this case, as described above, the multilayer film 111 is formed of the SiO 2 film 121 and the TiO 2 film 122, and is formed without using a strong absorber such as metal or pigment. Therefore, the polarizing multilayer film 100 can suppress a reduction in the extinction ratio of transmitted light as compared to the case of the wire grid described in Patent Document 1. In particular, by using a material that does not easily absorb light of a desired wavelength, it is possible to further suppress a reduction in the extinction ratio of transmitted light.
 なお、多層膜111の積層された各膜の材料は、メタルや色素等の強い吸収体でなければどのような材料であってもよく、上述の例に限定されない。つまり、多層膜111は、互いに異なる複数の膜が光の入射面から出射面に向かう方向に積層された構造を有していればよい。例えば、多層膜111は、屈折率が互いに異なる材料からなる複数の膜が積層された構造を有するようにしてもよい。例えば、多層膜111は、低屈折率のSiO2膜と、そのSiO2膜よりも屈折率の大きな窒化ケイ素(Si3N4)を成膜したSi3N4膜とが積層された構造を有するようにしてもよい。 Note that the material of each laminated film of the multilayer film 111 may be any material as long as it is not a strong absorber such as metal or pigment, and is not limited to the above example. That is, the multilayer film 111 only needs to have a structure in which a plurality of different films are stacked in the direction from the light incident surface toward the light exit surface. For example, the multilayer film 111 may have a structure in which a plurality of films made of materials having different refractive indexes are stacked. For example, the multilayer film 111 has a structure in which a SiO 2 film having a low refractive index and a Si 3 N 4 film formed by depositing silicon nitride (Si 3 N 4 ) having a higher refractive index than the SiO 2 film are laminated. You may make it have.
 また、溝部112を形成する材料も任意である。例えば、SiO2の代わりに他の低屈折率の材料を溝部112に充填させるようにしてもよい。また、例えば、何も充填せずに溝部112を空洞(エアーギャップ)としてもよい。また、例えば、高屈折率の材料を溝部112に充填させるようにしてもよい。 The material for forming the groove 112 is also arbitrary. For example, the groove 112 may be filled with another low refractive index material instead of SiO 2 . Further, for example, the groove 112 may be a cavity (air gap) without filling anything. For example, the groove 112 may be filled with a material having a high refractive index.
 なお、偏光多層膜100およびその各構成の大きさは任意である。例えば、多層膜111の幅(溝部112の間隔)や長手方向の長さ、溝部112の幅(多層膜111の間隔)や長手方向の長さ、多層膜111および溝部112の厚さ(透過光の進行方向の長さ)、多層膜111を形成する各膜の厚さ(例えば、SiO2膜121やTiO2膜122の厚さ)は、いずれも任意である。 The size of the polarizing multilayer film 100 and each component thereof is arbitrary. For example, the width of the multilayer film 111 (interval between the groove portions 112) and the length in the longitudinal direction, the width of the groove portion 112 (interval between the multilayer films 111) and the length in the longitudinal direction, and the thickness of the multilayer film 111 and the groove portion 112 (transmitted light) ) And the thickness of each film forming the multilayer film 111 (for example, the thickness of the SiO 2 film 121 or the TiO 2 film 122) are arbitrary.
 例えば、これらの構成の大きさ(長さ、幅、厚さ等)を、偏光多層膜100が所定の波長域の光を遮断する大きさとするようにしてもよい。例えば、これらの構成の大きさを、偏光多層膜100が赤外光を遮断するような大きさとするようにしてもよい。 For example, the size (length, width, thickness, etc.) of these components may be set such that the polarizing multilayer film 100 blocks light in a predetermined wavelength range. For example, the size of these configurations may be set such that the polarizing multilayer film 100 blocks infrared light.
 このようにすることにより、偏光多層膜100が、所定の波長域以外の光(例えば、赤外光以外の光)を透過光として抽出することができる。つまり、偏光多層膜100は、入射光をその所定の波長域で分光することができる。すなわち、偏光多層膜100は、偏光情報とともに分光情報も得ることができる。したがって、別途分光手段を設ける必要がなく、特許文献1に記載の方法の場合よりも構成をより簡易なものとすることができる。したがって、偏光多層膜100の規模(サイズ)やコストの増大を抑制することができ、偏光多層膜100の故障率の増大や耐久性の低減を抑制する等、偏光多層膜100の信頼性の低減を抑制することができる。 By doing so, the polarizing multilayer film 100 can extract light outside the predetermined wavelength range (for example, light other than infrared light) as transmitted light. That is, the polarizing multilayer film 100 can split incident light in the predetermined wavelength region. That is, the polarizing multilayer film 100 can obtain spectral information as well as polarization information. Therefore, there is no need to provide a separate spectroscopic means, and the configuration can be made simpler than in the case of the method described in Patent Document 1. Accordingly, an increase in the size (size) and cost of the polarizing multilayer film 100 can be suppressed, and the reliability of the polarizing multilayer film 100 can be reduced, such as an increase in failure rate and a decrease in durability. Can be suppressed.
  <シミュレーション>
 以上の内容を、FDTD法(Finite-difference time-domain method)による波動シミュレーションで偏光特性を見積もった結果について次に述べる。図2はそのシミュレーション構造を示す。図2の例において、偏光多層膜100の各多層膜111のTiO2膜122の厚みを82.7nmとし、SiO2膜121の厚みを149.7nmとし、多層膜111の幅W1=200nmとし、溝部112の幅W2=200nmとする。
<Simulation>
The following describes the results of estimating polarization characteristics by wave simulation using the FDTD method (Finite-difference time-domain method). FIG. 2 shows the simulation structure. In the example of FIG. 2, the thickness of the TiO 2 film 122 of each multilayer film 111 of the polarizing multilayer film 100 is 82.7 nm, the thickness of the SiO 2 film 121 is 149.7 nm, the width W 1 of the multilayer film 111 is 200 nm, and the groove 112 Width W2 = 200 nm.
 また、偏光多層膜100の図中上側に光源141を設け、その光源141から、図中矢印で示されるように下方向に向かって波長850nmの平行ビーム(平行光)を照射する。この平行光は、偏光多層膜100の図中上側の入射面に垂直に照射される。この偏光多層膜100を透過した光は、偏光多層膜100の図中下側に設けられたモニタ142においてモニタされるものとする。 Further, a light source 141 is provided on the upper side of the polarizing multilayer film 100 in the drawing, and a parallel beam (parallel light) having a wavelength of 850 nm is irradiated downward from the light source 141 as indicated by an arrow in the drawing. The parallel light is irradiated perpendicularly to the upper incident surface of the polarizing multilayer film 100 in the drawing. It is assumed that the light transmitted through the polarizing multilayer film 100 is monitored by a monitor 142 provided on the lower side of the polarizing multilayer film 100 in the drawing.
 FDTD法による波動シミュレーションで得たTE波とTM波の結果を、それぞれ図3のAと図3のBに示す。つまり、図3のAがTE波のシミュレーション結果であり、図3のBがTM波のシミュレーション結果である。基本的に色が濃い部分ほど光強度が大きい事を示している。図3のAと図3のBとを比較して明らかなように、TE波の光はTM波に比べて反射が大きく生じ、偏光多層膜100を略透過しない。これに対して、TM波の光は、TE波に比べて反射があまり生じず、偏光多層膜100を略透過する。このことから、この偏光多層膜100を透過および反射した光はそれぞれ偏光特性を持つことが判る。なお、このときの透過光の消光比(TM波透過強度/TE波透過強度)は32と見積もられた。 The results of TE and TM waves obtained by wave simulation using the FDTD method are shown in FIGS. 3A and 3B, respectively. That is, A in FIG. 3 is a TE wave simulation result, and B in FIG. 3 is a TM wave simulation result. Basically, the darker the color, the higher the light intensity. As is clear from comparison between A in FIG. 3 and B in FIG. 3, the TE wave light is more largely reflected than the TM wave, and does not substantially pass through the polarizing multilayer film 100. On the other hand, the TM wave light does not reflect much compared to the TE wave and substantially transmits through the polarizing multilayer film 100. From this, it can be seen that the light transmitted and reflected through the polarizing multilayer film 100 has polarization characteristics. At this time, the extinction ratio of transmitted light (TM wave transmission intensity / TE wave transmission intensity) was estimated to be 32.
 次に斜め入射に対する光強度と消光比の特性見積りについて述べる。図4は、光源からの光が、偏光多層膜100に、左上側から垂線に対して25degの角度で斜めに入射したときのFDTD法によるシミュレーション結果である。図4のAがTE波のシミュレーション結果であり、図4のBがTM波のシミュレーション結果である。この結果から、この斜め光の場合も図3の場合と同様に、TE波は反射が支配的で偏光多層膜100を略透過せず、TM波は透過が支配的で偏光多層膜100を略透過する。 Next, the estimation of characteristics of light intensity and extinction ratio for oblique incidence will be described. FIG. 4 shows a simulation result by the FDTD method when light from the light source is incident on the polarizing multilayer film 100 obliquely at an angle of 25 deg with respect to the vertical line from the upper left side. 4A shows the simulation result of the TE wave, and B of FIG. 4 shows the simulation result of the TM wave. From this result, in the case of this oblique light, as in the case of FIG. 3, the reflection of the TE wave is dominant and does not substantially transmit the polarizing multilayer film 100, and the transmission of the TM wave is dominant and the transmission is dominant in the polarizing multilayer film 100. To Penetrate.
 このような光の入射角度を変化させてシミュレーションした例を図5に示す。図5のAに示されるグラフは、光の入射角度と、モニタ142においてモニタされたTE波およびTM波の光強度との関係を示すグラフである。このグラフにおいて、曲線161が、TE波のシミュレーション結果であり、曲線162が、TM波のシミュレーション結果である。また、図5のBに示されるグラフは、光の入射角度とモニタ142においてモニタされる消光比との関係を示すグラフである。このグラフにおいて、曲線163は、消光比(TM波/TE波)を示す。これらの結果から、入射角度が大きくなるほど、TM波の透過率が高くなって光強度が大きくなるとともにTE波の透過光強度が低下して、結果としてTM波/TE波の消光比は大きくなっていることがわかる。 An example of simulation by changing the incident angle of such light is shown in FIG. The graph shown in FIG. 5A is a graph showing the relationship between the incident angle of light and the light intensity of the TE wave and TM wave monitored by the monitor 142. In this graph, a curve 161 is a TE wave simulation result, and a curve 162 is a TM wave simulation result. The graph shown in FIG. 5B is a graph showing the relationship between the incident angle of light and the extinction ratio monitored by the monitor 142. In this graph, a curve 163 shows an extinction ratio (TM wave / TE wave). From these results, as the incident angle increases, the TM wave transmittance increases and the light intensity increases and the transmitted light intensity of the TE wave decreases. As a result, the TM wave / TE wave extinction ratio increases. You can see that
 つまり、メタルを用いたワイヤーグリッド構造の場合、斜め入射光に対する感度や消光比が低下したり、適用波長範囲が狭くなったりするおそれがあったが、偏光多層膜100は、上述のように、斜め光に対しても十分な感度と消光比がとることができる。以上においては波長850nmの赤外光の結果について説明したが、多層膜111の層の周期や、多層膜111の幅W1, 溝部112の幅W2を変化させることで、可視光や紫外光にも同様に偏光特性を有することができる。 That is, in the case of a wire grid structure using metal, the sensitivity and extinction ratio to obliquely incident light may be reduced, or the applicable wavelength range may be narrowed. Sufficient sensitivity and extinction ratio can be obtained even for oblique light. In the above, the result of infrared light with a wavelength of 850 nm has been described. However, by changing the layer period of the multilayer film 111, the width W1 of the multilayer film 111, and the width W2 of the groove portion 112, visible light and ultraviolet light can be changed. Similarly, it can have polarization characteristics.
 以上のように、偏光多層膜100は、分光と偏光情報を同時に取得することを可能にする。また吸収材料を用いないため、原理的に感度が高く、入射角度の高い斜め光に対する消光比の劣化を抑制することができる。また波長依存性が小さく、短波長の紫外光から長波長の赤外光まで、偏光子として動作させることができる。したがって、偏光多層膜100は、様々な光学デバイスに応用することができる。例えば、偏光多層膜100をイメージセンサに応用した場合、被写体の表面の法線ベクトル検出ができるために被写体形状の把握に利用することができる。また例えば車載システムのカメラに偏光多層膜100を搭載した場合、道路の中央線の把握をより容易に行うことができる。また、偏光多層膜100を産業システムのカメラに適用することにより、本技術を、キズ等の検査に利用することができる。もちろん、これらの応用例に限らず、様々な分野に応用することができる。 As described above, the polarizing multilayer film 100 makes it possible to acquire spectroscopic and polarization information at the same time. In addition, since no absorbing material is used, in principle, the sensitivity is high, and deterioration of the extinction ratio with respect to oblique light with a high incident angle can be suppressed. In addition, the wavelength dependence is small, and it can be operated as a polarizer from short wavelength ultraviolet light to long wavelength infrared light. Therefore, the polarizing multilayer film 100 can be applied to various optical devices. For example, when the polarizing multilayer film 100 is applied to an image sensor, the normal vector of the surface of the subject can be detected, so that it can be used for grasping the subject shape. For example, when the polarizing multilayer film 100 is mounted on a camera of an in-vehicle system, the center line of the road can be grasped more easily. Further, by applying the polarizing multilayer film 100 to a camera of an industrial system, the present technology can be used for inspection of scratches and the like. Of course, the present invention is not limited to these application examples, and can be applied to various fields.
 <2.第2の実施の形態>
  <イメージセンサ>
 図6は、第1の実施の形態において説明した偏光多層膜100を適用したイメージセンサの一部の主な構成例を示す断面図である。図6に示されるイメージセンサ200は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ200は、互いに独立して光を検出する画素を複数有している。図6においては、イメージセンサ200の一部の画素である画素221乃至画素225についての構成例を示している。
<2. Second Embodiment>
<Image sensor>
FIG. 6 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied. An image sensor 200 shown in FIG. 6 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 200 has a plurality of pixels that detect light independently of each other. FIG. 6 illustrates a configuration example of the pixels 221 to 225 which are some pixels of the image sensor 200.
 図6に示されるように、イメージセンサ200には、基板層211、多層膜形成層212、平坦化膜層213、フィルタ層214、および集光レンズ層215が形成される。基板層211は、シリコン基板等により形成される。画素221の基板層211には、フォトダイオード231-1が形成される。同様に、画素222の基板層211には、フォトダイオード231-2が形成され、画素223の基板層211には、フォトダイオード231-3が形成され、画素224の基板層211には、フォトダイオード231-4が形成され、画素225の基板層211には、フォトダイオード231-5が形成される。以下において、このような各フォトダイオードを互いに区別して説明する必要が無い場合、フォトダイオード231と称する。つまり、基板層211には、画素毎にフォトダイオード231が形成されている。 As shown in FIG. 6, the image sensor 200 includes a substrate layer 211, a multilayer film formation layer 212, a planarization film layer 213, a filter layer 214, and a condenser lens layer 215. The substrate layer 211 is formed of a silicon substrate or the like. A photodiode 231-1 is formed on the substrate layer 211 of the pixel 221. Similarly, a photodiode 231-2 is formed on the substrate layer 211 of the pixel 222, a photodiode 231-3 is formed on the substrate layer 211 of the pixel 223, and a photodiode is formed on the substrate layer 211 of the pixel 224. 231-4 are formed, and a photodiode 231-5 is formed on the substrate layer 211 of the pixel 225. In the following, when it is not necessary to distinguish each of these photodiodes from each other, they are referred to as photodiodes 231. In other words, the photodiode 231 is formed on the substrate layer 211 for each pixel.
 多層膜形成層212、平坦化膜層213、およびフィルタ層214の、画素221と画素222との間には、混色の発生を抑制するために、光を透過しない遮光壁232-1が形成される。同様に、多層膜形成層212乃至フィルタ層214の、画素222と画素223との間には遮光壁232-2が形成され、画素223と画素224との間には遮光壁232-3が形成され、画素224と画素225との間には遮光壁232-4が形成される。以下において、このような各遮光壁を互いに区別して説明する必要が無い場合、遮光壁232と称する。つまり、多層膜形成層212乃至フィルタ層214の各画素間には、遮光壁232が形成されており、各画素の構成は、この遮光壁232により区切られる。なお、遮光壁232を省略するようにしてももちろんよい。 A light shielding wall 232-1 that does not transmit light is formed between the pixel 221 and the pixel 222 of the multilayer film formation layer 212, the planarization film layer 213, and the filter layer 214 in order to suppress the occurrence of color mixing. The Similarly, in the multilayer film formation layer 212 to the filter layer 214, a light shielding wall 232-2 is formed between the pixel 222 and the pixel 223, and a light shielding wall 232-3 is formed between the pixel 223 and the pixel 224. In addition, a light shielding wall 232-4 is formed between the pixel 224 and the pixel 225. In the following, when it is not necessary to distinguish each of the light shielding walls from each other, they are referred to as light shielding walls 232. That is, a light shielding wall 232 is formed between the pixels of the multilayer film formation layer 212 to the filter layer 214, and the configuration of each pixel is partitioned by the light shielding wall 232. Of course, the light shielding wall 232 may be omitted.
 多層膜形成部212の、画素221には、偏光多層膜100-1が形成されている。同様に、多層膜形成部212の、画素223には偏光多層膜100-2が形成され、画素225には偏光多層膜100-3が形成されている。これらの偏光多層膜100は、第1の実施の形態において説明した偏光多層膜100と同様の構成を有し、同様の機能を有するデバイスである。すなわち、偏光多層膜100は、光の入射面から出射面に向かう方向に形成される多層膜111に所定の方向の溝部112が互いに平行に複数形成された構造を有している。そして、その多層膜111は、SiO2膜121とTiO2膜122とが光の入射面から出射面に向かう方向に交互に積層された構造を有する。溝部112には、SiO2が充填されてSiO2膜123が形成されている。 A polarizing multilayer film 100-1 is formed on the pixel 221 of the multilayer film forming section 212. Similarly, a polarizing multilayer film 100-2 is formed on the pixel 223 and a polarizing multilayer film 100-3 is formed on the pixel 225 of the multilayer film forming unit 212. The polarizing multilayer film 100 is a device having the same configuration and the same function as the polarizing multilayer film 100 described in the first embodiment. That is, the polarizing multilayer film 100 has a structure in which a plurality of grooves 112 in a predetermined direction are formed in parallel to each other in a multilayer film 111 formed in a direction from the light incident surface toward the light exit surface. The multilayer film 111 has a structure in which SiO 2 films 121 and TiO 2 films 122 are alternately stacked in the direction from the light incident surface toward the light exit surface. The groove 112, SiO 2 film 123 SiO 2 is filled is formed.
 これらに対して多層膜形成部212の画素222には、IRカットフィルタ233-1が形成されている。同様に、多層膜形成部212の画素224には、IRカットフィルタ233-2が形成されている。このような各IRカットフィルタを互いに区別して説明する必要が無い場合、IRカットフィルタ233と称する。IRカットフィルタ233は、多層膜111と同一の層構造を有する。すなわち、IRカットフィルタ233は、SiO2膜121とTiO2膜122とが光の入射面から出射面に向かう方向に交互に積層された構造を有する。そして、IRカットフィルタ233の各膜厚は、多層膜111の各膜厚と同一である。 On the other hand, an IR cut filter 233-1 is formed in the pixel 222 of the multilayer film forming unit 212. Similarly, an IR cut filter 233-2 is formed in the pixel 224 of the multilayer film forming unit 212. When there is no need to distinguish each of these IR cut filters from each other, they are referred to as IR cut filters 233. The IR cut filter 233 has the same layer structure as the multilayer film 111. That is, the IR cut filter 233 has a structure in which the SiO 2 films 121 and the TiO 2 films 122 are alternately stacked in the direction from the light incident surface toward the light exit surface. Each film thickness of the IR cut filter 233 is the same as each film thickness of the multilayer film 111.
 したがって、多層膜111およびIRカットフィルタ233は、互いに同一の工程において生成されるようにしてもよい。つまり、この多層構造をイメージセンサ200の全画素に、例えばスパッタリング法で蒸着して積層化した後に、赤外偏光画素のエリア(例えば画素、221、画素223、および画素225)に溝部112を形成するようにしてもよい。例えば、リソグラフィとRIE(Reactive Ion Etching)加工等を用いて溝部112を形成するようにしてもよい。さらに、その溝部112にSiO2を充填してSiO2膜123を形成するようにしてもよい。 Therefore, the multilayer film 111 and the IR cut filter 233 may be generated in the same process. That is, after depositing and stacking this multilayer structure on all the pixels of the image sensor 200 by, for example, sputtering, the grooves 112 are formed in the areas of the infrared polarization pixels (for example, the pixels 221, 223, and 225). You may make it do. For example, the groove 112 may be formed using lithography and RIE (Reactive Ion Etching) processing. Further, the SiO 2 film 123 may be formed by filling the groove 112 with SiO 2 .
 なお、IRカットフィルタ233および多層膜111は、誘電体多層膜としてTiO2膜122とSiO2膜121が用いられるように説明したが、TaO2膜とSiO2膜、Si3N4膜とSiO2膜などのように屈折率の高い材料と低い材料であれば他の材料系が用いられるようにしてもよい。 The IR cut filter 233 and the multilayer film 111 have been described so that the TiO 2 film 122 and the SiO 2 film 121 are used as the dielectric multilayer film, but the TaO 2 film and the SiO 2 film, the Si 3 N 4 film and the SiO 2 film are used. Other material systems may be used as long as the material has a high refractive index and a low material such as two films.
 IRカットフィルタ233は、その積層構造により、図7に示されるような透過分光特性を有する。つまり、IRカットフィルタ233は、可視光を透過し、赤外光を遮断する。なお、多層膜111もIRカットフィルタ233と同様の層構造を有するので、同様の透過分光特性を有する。したがって、偏光多層膜100は、赤外光のTM波(溝部112の長手方向に垂直な方向に電界が振動する偏光)を透過する。つまり、偏光多層膜100は、赤外光を対象とする偏光フィルタ(赤外偏光フィルタ)として機能する。 The IR cut filter 233 has transmission spectral characteristics as shown in FIG. 7 due to its laminated structure. That is, the IR cut filter 233 transmits visible light and blocks infrared light. Since the multilayer film 111 also has the same layer structure as the IR cut filter 233, it has the same transmission spectral characteristics. Therefore, the polarizing multilayer film 100 transmits TM light of infrared light (polarized light whose electric field vibrates in a direction perpendicular to the longitudinal direction of the groove portion 112). That is, the polarizing multilayer film 100 functions as a polarizing filter (infrared polarizing filter) for infrared light.
 また、フィルタ層214の画素221には、オンチップカラーフィルタ234-1が形成される。同様に、フィルタ層214の、画素222にはオンチップカラーフィルタ234-2が形成され、画素223にはオンチップカラーフィルタ234-3が形成され、画素224にはオンチップカラーフィルタ234-4が形成され、画素225にはオンチップカラーフィルタ234-5が形成される。これらのうち、画素221に形成されるオンチップカラーフィルタ234-1、画素223に形成されるオンチップカラーフィルタ234-3、並びに、画素225に形成されるオンチップカラーフィルタ234-5は、可視光を遮断するオンチップカラーフィルタ(Black-OCCF)である。 In addition, an on-chip color filter 234-1 is formed in the pixel 221 of the filter layer 214. Similarly, in the filter layer 214, an on-chip color filter 234-2 is formed in the pixel 222, an on-chip color filter 234-3 is formed in the pixel 223, and an on-chip color filter 234-4 is formed in the pixel 224. The on-chip color filter 234-5 is formed in the pixel 225. Among these, the on-chip color filter 234-1 formed on the pixel 221, the on-chip color filter 234-3 formed on the pixel 223, and the on-chip color filter 234-5 formed on the pixel 225 are visible. This is an on-chip color filter (Black-OCCF) that blocks light.
 画素222に形成されるオンチップカラーフィルタ234-2は、緑色光を透過するオンチップカラーフィルタ(G-OCCF)である。画素224に形成されるオンチップカラーフィルタ234-4は、赤色光を透過するオンチップカラーフィルタ(R-OCCF)である。なお、図6においては図示を省略しているが、青色光を透過するオンチップカラーフィルタ(B-OCCF)が形成される画素が存在してもよい。 The on-chip color filter 234-2 formed in the pixel 222 is an on-chip color filter (G-OCCF) that transmits green light. The on-chip color filter 234-4 formed in the pixel 224 is an on-chip color filter (R-OCCF) that transmits red light. Although not shown in FIG. 6, there may be a pixel on which an on-chip color filter (B-OCCF) that transmits blue light is formed.
 集光レンズ層215の各画素には、集光レンズが形成される。 A condensing lens is formed in each pixel of the condensing lens layer 215.
 つまり、画素222は可視光を受光する可視光画素として機能し、フォトダイオード231-2には、主に緑色光が入射する。ただし、IRカットフィルタ233-1がそのフォトダイオード231-2に入射する光に含まれる赤外光成分を遮断するので、画素222の色再現性を向上させることができる。同様に、画素224は可視光を受光する可視光画素として機能し、フォトダイオード231-4には、主に赤色光が入射する。ただし、IRカットフィルタ233-2がそのフォトダイオード231-4に入射する光の赤外光成分を遮断するので、画素224の色再現性を向上させることができる。 That is, the pixel 222 functions as a visible light pixel that receives visible light, and green light is mainly incident on the photodiode 231-2. However, since the IR cut filter 233-1 blocks the infrared light component contained in the light incident on the photodiode 231-2, the color reproducibility of the pixel 222 can be improved. Similarly, the pixel 224 functions as a visible light pixel that receives visible light, and red light is mainly incident on the photodiode 231-4. However, since the IR cut filter 233-2 blocks the infrared light component of the light incident on the photodiode 231-4, the color reproducibility of the pixel 224 can be improved.
 これらの画素に対して画素221、画素223、および画素225は、それぞれ、赤外光の偏光を受光するIR偏光画素として機能し、フォトダイオード231-1、フォトダイオード231-3、およびフォトダイオード231-5には、それぞれ、主に赤外光の偏光が入射する。 For these pixels, the pixel 221, the pixel 223, and the pixel 225 each function as an IR polarization pixel that receives polarized light of infrared light, and the photodiode 231-1, the photodiode 231-3, and the photodiode 231. In each of −5, mainly polarized light of infrared light is incident.
 画素配列は任意であるが、例えば、図8に示されるように、IR偏光画素を市松模様状に配置し、その他の画素を可視光画素(可視光G画素、可視光B画素、可視光R画素のいずれか)としてもよい。図8の例の場合、3×3画素に4つのIR偏光画素を配置している。この場合、各IR偏光画素において得られる偏光の電界振動方向(偏光方向)が互いに異なるようにしてもよい。図8の例の場合、イメージセンサ200は、所定の第1の方向の溝部112を有する偏光多層膜100が形成される画素と、その第1の方向に直交する第2の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して+45degの第3の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して-45degの第4の方向の溝部112を有する偏光多層膜100が形成される画素とを有する。このような4種類のIR偏光画素により、4つの偏光方向の偏光情報を取得することができる。このように4つの偏光情報を取得することで、図9のように偏光で変化のない直流成分と変化する交流成分の和を見積もることができる。この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。 Although the pixel arrangement is arbitrary, for example, as shown in FIG. 8, IR polarized pixels are arranged in a checkered pattern, and the other pixels are visible light pixels (visible light G pixels, visible light B pixels, visible light R). Any one of the pixels). In the case of the example in FIG. 8, four IR polarization pixels are arranged in 3 × 3 pixels. In this case, the electric field oscillation directions (polarization directions) of the polarization obtained in each IR polarization pixel may be different from each other. In the case of the example in FIG. 8, the image sensor 200 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction. A pixel in which the polarizing multilayer film 100 is formed, a pixel in which the polarizing multilayer film 100 having the groove 112 in the third direction of +45 deg with respect to the first direction is formed, and −45 deg with respect to the first direction. And the pixel on which the polarizing multilayer film 100 having the grooves 112 in the fourth direction is formed. With such four types of IR polarization pixels, polarization information in four polarization directions can be acquired. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a direct current component that does not change due to polarization and a alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
 例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。また、イメージセンサ200を用いて、赤外光を遮断した可視光の色情報と、赤外光の偏光情報を同時取得可能な撮像装置を実現することができる。 For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like. In addition, using the image sensor 200, it is possible to realize an imaging device that can simultaneously acquire color information of visible light that blocks infrared light and polarization information of infrared light.
 なおここではIR偏光画素の数を最も多くしているが、特にそれ以外の配列でもよい。例えば、IR偏光画素よりも可視光画素を多くしてもよい。また、各画素の配置パタンは、任意であり、図6や図8の例に限定されない。もちろん、イメージセンサ200の画素数は任意である。 Note that the number of IR polarized pixels is maximized here, but other arrangements are also possible. For example, more visible light pixels may be provided than IR polarized pixels. Moreover, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 200 is arbitrary.
 <3.第3の実施の形態>
  <イメージセンサ>
 図10は、第1の実施の形態において説明した偏光多層膜100を適用したイメージセンサの一部の主な構成例を示す断面図である。図10に示されるイメージセンサ250は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ250は、互いに独立して光を検出する画素を複数有している。図10においては、イメージセンサ250の一部の画素である画素251乃至画素255についての構成例を示している。
<3. Third Embodiment>
<Image sensor>
FIG. 10 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied. An image sensor 250 shown in FIG. 10 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 250 has a plurality of pixels that detect light independently of each other. FIG. 10 illustrates a configuration example of the pixels 251 to 255 which are some pixels of the image sensor 250.
 イメージセンサ250は、イメージセンサ200(図6)と基本的に同様の構成を有するが、多層膜形成層212の、画素251、画素253、および画素255には、偏光多層膜100が形成されない。つまり、画素251、画素253、および画素255は、赤外光を受光するIR画素として機能する。 The image sensor 250 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100 is not formed on the pixels 251, 253, and 255 of the multilayer film forming layer 212. That is, the pixel 251, the pixel 253, and the pixel 255 function as IR pixels that receive infrared light.
 これらの画素に対して、画素252および画素254は、可視光の偏光を受光する可視偏光画素として機能する。多層膜形成層212の画素252には、可視光の偏光(偏光情報)を抽出し、かつ、赤外光を遮断するフィルタとして機能する可視偏光多層膜261-1が形成される。同様に、多層膜形成層212の画素254には、可視偏光多層膜261-2が形成される。各可視偏光多層膜を互いに区別して説明する必要が無い場合、可視偏光多層膜261と称する。可視偏光多層膜261は、IRカットフィルタ262と可視偏光フィルタ263とにより構成される。IRカットフィルタ262は、IRカットフィルタ233と同一の層構造を有し、図7に示されるような透過分光特性を有し、赤外光を遮断する。可視偏光フィルタ263は、偏光多層膜100と同様の層構造を有し、可視光の偏光を透過光として抽出する。 For these pixels, the pixel 252 and the pixel 254 function as visible polarization pixels that receive the polarization of visible light. In the pixel 252 of the multilayer film formation layer 212, a visible polarization multilayer film 261-1 that functions to function as a filter that extracts polarized light (polarization information) of visible light and blocks infrared light is formed. Similarly, a visible polarizing multilayer film 261-2 is formed on the pixel 254 of the multilayer film forming layer 212. When there is no need to explain each visible polarizing multilayer film separately from each other, it will be referred to as a visible polarizing multilayer film 261. The visible polarizing multilayer film 261 includes an IR cut filter 262 and a visible polarizing filter 263. The IR cut filter 262 has the same layer structure as the IR cut filter 233, has a transmission spectral characteristic as shown in FIG. 7, and blocks infrared light. The visible polarizing filter 263 has a layer structure similar to that of the polarizing multilayer film 100, and extracts the polarized light of visible light as transmitted light.
 この可視偏光多層膜261は、まず多層膜を形成し、その多層膜の途中まで、たとえばリソグラフィとRIE加工等で溝を形成することにより、形成される。つまり、多層膜の、溝が形成された上部分が可視偏光フィルタ263として機能し、溝が形成されていない下部分がIRカットフィルタ262として機能する。多層膜の厚み周期(各膜の厚さ)は、可視光に対応できるように適切な周期に設定される。もちろん、多層膜の厚み周期は任意である。例えば、可視偏光フィルタ263の部分とIRカットフィルタ262の部分とで、多層膜の厚み周期を変化させるようにしてもよい。また、この可視偏光多層膜261を形成する方法は任意である。例えば、多層膜を全面(全画素)にスパッタリング法等により蒸着して積層し、可視偏光画素のエリアだけに溝を切って、かつ赤外光画素の多層膜のエリアはすべてを除去した後にSiO2等で埋めるようにしてもよい。 The visible polarizing multilayer film 261 is formed by first forming a multilayer film and forming a groove halfway through the multilayer film by, for example, lithography and RIE processing. That is, the upper part of the multilayer film where the groove is formed functions as the visible polarizing filter 263, and the lower part where the groove is not formed functions as the IR cut filter 262. The thickness period of the multilayer film (the thickness of each film) is set to an appropriate period so as to be compatible with visible light. Of course, the thickness cycle of the multilayer film is arbitrary. For example, the thickness cycle of the multilayer film may be changed between the visible polarizing filter 263 and the IR cut filter 262. Moreover, the method of forming this visible polarization multilayer film 261 is arbitrary. For example, a multilayer film is deposited and deposited on the entire surface (all pixels) by sputtering or the like, a groove is cut only in the area of the visible polarization pixel, and the multilayer film area of the infrared light pixel is removed and then SiO 2 It may be filled with 2 mag.
 このようなイメージセンサ250の画素配列の例を図11に示す。画素配列は任意であるが、例えば、図11に示されるように、可視偏光画素を市松模様状に配置し、その他の画素をIR画素としてもよい。図11の例の場合、3×3画素に5つの可視偏光画素を配置している。この場合、5つの可視偏光画素において、4方向の電界振動方向(偏光方向)の偏光が得られるようにしてもよい。図11の例の場合、イメージセンサ250は、所定の第1の方向の溝部112を有する可視偏光フィルタ263が形成される画素と、その第1の方向に直交する第2の方向の溝部112を有する可視偏光フィルタ263が形成される画素と、第1の方向に対して+45degの第3の方向の溝部112を有する可視偏光フィルタ263が形成される画素と、第1の方向に対して-45degの第4の方向の溝部112を有する可視偏光フィルタ263が形成される画素とを有する。このような4種類の可視偏光画素により、4つの偏光方向の偏光情報を取得することができる。このように4つの偏光情報を取得することで、図9のように偏光で変化のない直流成分と変化する交流成分の和を見積もることができる。この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。 An example of the pixel arrangement of such an image sensor 250 is shown in FIG. Although the pixel arrangement is arbitrary, for example, as shown in FIG. 11, visible polarization pixels may be arranged in a checkered pattern, and other pixels may be IR pixels. In the case of the example in FIG. 11, five visible polarization pixels are arranged in 3 × 3 pixels. In this case, polarized light in four electric field vibration directions (polarization directions) may be obtained in five visible polarization pixels. In the case of the example in FIG. 11, the image sensor 250 includes a pixel in which the visible polarization filter 263 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction. A pixel in which the visible polarizing filter 263 is formed, a pixel in which the visible polarizing filter 263 having the groove 112 in the third direction of +45 deg with respect to the first direction is formed, and −45 deg with respect to the first direction. The visible polarization filter 263 having the groove 112 in the fourth direction is formed. With such four types of visible polarization pixels, polarization information in four polarization directions can be acquired. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a direct current component that does not change due to polarization and a alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
 例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。また、イメージセンサ250を用いて、赤外光の分光と可視光の色情報とその偏光情報とを同時に取得可能な撮像装置を実現することができる。 For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like. Further, it is possible to realize an imaging apparatus that can simultaneously acquire infrared light spectrum, visible light color information, and polarization information using the image sensor 250.
 なおここではIR画素の数を最も多くしているが、特にそれ以外の配列でもよい。例えば、IR画素よりも可視偏光画素を多くしてもよい。また、各画素の配置パタンは、任意であり、図10や図11の例に限定されない。もちろん、イメージセンサ200の画素数は任意である。 Although the number of IR pixels is the largest here, other arrangements may be used. For example, more visible polarization pixels may be provided than IR pixels. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 200 is arbitrary.
 <4.第4の実施の形態>
  <イメージセンサ>
 図12は、第1の実施の形態において説明した偏光多層膜100を適用したイメージセンサの一部の主な構成例を示す断面図である。図12に示されるイメージセンサ300は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ300は、互いに独立して光を検出する画素を複数有している。図12においては、イメージセンサ300の一部の画素である画素301乃至画素305についての構成例を示している。
<4. Fourth Embodiment>
<Image sensor>
FIG. 12 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied. An image sensor 300 illustrated in FIG. 12 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 300 includes a plurality of pixels that detect light independently of each other. FIG. 12 illustrates a configuration example of the pixels 301 to 305 that are some pixels of the image sensor 300.
 イメージセンサ300は、イメージセンサ200(図6)と基本的に同様の構成を有するが、多層膜形成層212の、画素251、画素253、および画素255には、偏光多層膜100が形成されない。また、フィルタ層214の、画素301にはオンチップカラーフィルタ321-1が形成され、画素303にはオンチップカラーフィルタ321-2が形成され、画素305にはオンチップカラーフィルタ321-3が形成される。オンチップカラーフィルタ321-1は、青色光を透過するオンチップカラーフィルタ(B-OCCF)である。オンチップカラーフィルタ321-2は、緑色光を透過するオンチップカラーフィルタ(G-OCCF)である。オンチップカラーフィルタ321-3は、赤色光を透過するオンチップカラーフィルタ(R-OCCF)である。 The image sensor 300 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100 is not formed on the pixels 251, 253, and 255 of the multilayer film forming layer 212. In the filter layer 214, an on-chip color filter 321-1 is formed in the pixel 301, an on-chip color filter 321-2 is formed in the pixel 303, and an on-chip color filter 321-3 is formed in the pixel 305. Is done. The on-chip color filter 321-1 is an on-chip color filter (B-OCCF) that transmits blue light. The on-chip color filter 321-2 is an on-chip color filter (G-OCCF) that transmits green light. The on-chip color filter 321-3 is an on-chip color filter (R-OCCF) that transmits red light.
 つまり、画素301は可視光を受光する可視光画素(可視光B画素)として機能し、フォトダイオード231-2には、主に青色光が入射する。また、画素303は可視光を受光する可視光画素(可視光G画素)として機能し、フォトダイオード231-3には、主に緑色光が入射する。画素305は可視光を受光する可視光画素(可視光R画素)として機能し、フォトダイオード231-5には、主に赤色光が入射する。 That is, the pixel 301 functions as a visible light pixel (visible light B pixel) that receives visible light, and blue light is mainly incident on the photodiode 231-2. The pixel 303 functions as a visible light pixel (visible light G pixel) that receives visible light, and green light is mainly incident on the photodiode 231-3. The pixel 305 functions as a visible light pixel (visible light R pixel) that receives visible light, and red light is mainly incident on the photodiode 231-5.
 これらの画素に対して、画素302および画素304は、可視光の偏光を受光する可視偏光画素として機能する。フィルタ層214の、画素302および画素304には、オンチップカラーフィルタが形成されていない。つまり、画素302および画素304は、白色光の偏光を受光するW偏光画素として機能する。 For these pixels, the pixel 302 and the pixel 304 function as visible polarization pixels that receive the polarization of visible light. On-chip color filters are not formed in the pixels 302 and 304 of the filter layer 214. That is, the pixel 302 and the pixel 304 function as a W-polarized pixel that receives polarized light of white light.
 多層膜形成層212の画素302には、第1の実施の形態において説明した偏光多層膜100-1が形成され、可視光(白色光)の偏光(偏光情報)を抽出するフィルタとして機能する。同様に、多層膜形成層212の画素304には、第1の実施の形態において説明した偏光多層膜100-2が形成され、可視光(白色光)の偏光(偏光情報)を抽出するフィルタとして機能する。 In the pixel 302 of the multilayer film formation layer 212, the polarization multilayer film 100-1 described in the first embodiment is formed and functions as a filter for extracting the polarization (polarization information) of visible light (white light). Similarly, the polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 304 of the multilayer film forming layer 212, and serves as a filter for extracting the polarization (polarization information) of visible light (white light). Function.
 この偏光多層膜100は多層膜にたとえばリソグラフィとRIE加工等で溝を切った構造になっているが、多層膜の厚み周期を適切な周期に変えてもよい。多層膜を全面にたとえばスパッタリング法で蒸着して積層した後に、W偏光画素のエリアだけに溝を切って、かつRGB画素の多層膜のエリアはすべてを除去した後にSiO2等で埋めてもよい。 The polarizing multilayer film 100 has a structure in which grooves are cut in the multilayer film by, for example, lithography and RIE processing, but the thickness period of the multilayer film may be changed to an appropriate period. After the multilayer film is deposited on the entire surface by vapor deposition, for example, by sputtering, grooves may be cut only in the area of the W-polarized pixel, and the multilayer film area of the RGB pixel may be removed and then filled with SiO 2 or the like. .
 なおW偏光画素である画素302および画素304のフィルタ層214に可視光全域を透過するように透明なフィルタを配置するようにしてもよい。 Note that a transparent filter may be disposed so as to transmit the entire visible light to the filter layer 214 of the pixel 302 and the pixel 304 which are W-polarized pixels.
 なお、集光レンズ層215よりも図中上側(光入射側)には、全画素に亘ってIRカットフィルタ331が形成されている。つまり、イメージセンサ300の全画素に入射する光は、このIRカットフィルタ331により赤外成分が遮断されている。もちろん、このIRカットフィルタ331は、省略するようにしてもよい。 Note that an IR cut filter 331 is formed over all the pixels above the condensing lens layer 215 in the drawing (light incident side). That is, the infrared component of the light incident on all the pixels of the image sensor 300 is blocked by the IR cut filter 331. Of course, this IR cut filter 331 may be omitted.
 画素配列は任意であるが、例えば、図13に示されるように、W偏光画素を市松模様状に配置し、その他の画素を可視光画素(可視光B画素、可視光G画素、可視光R画素)としてもよい。図13の例の場合、3×3画素に4つのW偏光画素を配置している。この場合、各W偏光画素において得られる偏光の電界振動方向(偏光方向)が互いに異なるようにしてもよい。図13の例の場合、イメージセンサ300は、所定の第1の方向の溝部112を有する偏光多層膜100が形成される画素と、その第1の方向に直交する第2の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して+45degの第3の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して-45degの第4の方向の溝部112を有する偏光多層膜100が形成される画素とを有する。このような4種類のW偏光画素により、4つの偏光方向の偏光情報を取得することができる。このように4つの偏光情報を取得することで、図9のように偏光で変化のない直流成分と変化する交流成分の和を見積もることができる。この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。 The pixel arrangement is arbitrary. For example, as shown in FIG. 13, W-polarized pixels are arranged in a checkered pattern, and the other pixels are visible light pixels (visible light B pixels, visible light G pixels, visible light R). Pixel). In the case of the example in FIG. 13, four W-polarized pixels are arranged in 3 × 3 pixels. In this case, the electric field vibration directions (polarization directions) of the polarization obtained in each W-polarized pixel may be different from each other. In the case of the example in FIG. 13, the image sensor 300 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed and a groove 112 in the second direction orthogonal to the first direction. A pixel in which the polarizing multilayer film 100 is formed, a pixel in which the polarizing multilayer film 100 having the groove 112 in the third direction of +45 deg with respect to the first direction is formed, and −45 deg with respect to the first direction. And the pixel on which the polarizing multilayer film 100 having the grooves 112 in the fourth direction is formed. With such four types of W-polarized pixels, polarization information in four polarization directions can be acquired. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a direct current component that does not change due to polarization and a alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
 例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。また、イメージセンサ300を用いて、RGB分光された可視光の色情報とその可視全波長の偏光情報を同時に取得可能な撮像装置を実現することができる。 For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like. In addition, it is possible to realize an imaging apparatus that can simultaneously acquire color information of visible light subjected to RGB spectroscopy and polarization information of all visible wavelengths using the image sensor 300.
 なおここではW偏光画素の数を最も多くしているが、特にそれ以外の配列でもよい。例えば、W偏光画素よりも可視光画素を多くしてもよい。また、各画素の配置パタンは、任意であり、図12や図13の例に限定されない。もちろん、イメージセンサ300の画素数は任意である。 Note that although the number of W-polarized pixels is maximized here, other arrangements may be used. For example, more visible light pixels may be used than W polarized pixels. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 300 is arbitrary.
 <5.第5の実施の形態>
  <イメージセンサ>
 図14は、第1の実施の形態において説明した偏光多層膜100を適用したイメージセンサの一部の主な構成例を示す断面図である。図14に示されるイメージセンサ350は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ350は、互いに独立して光を検出する画素を複数有している。図14においては、イメージセンサ350の一部の画素である画素351乃至画素355についての構成例を示している。
<5. Fifth embodiment>
<Image sensor>
FIG. 14 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied. An image sensor 350 shown in FIG. 14 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 350 has a plurality of pixels that detect light independently of each other. FIG. 14 illustrates a configuration example of the pixels 351 to 355 that are some pixels of the image sensor 350.
 イメージセンサ350は、イメージセンサ200(図6)と基本的に同様の構成を有するが、多層膜形成層212の、画素351乃至画素355には、それぞれ、偏光多層膜100(偏光多層膜100-1乃至偏光多層膜100-5)が形成される。この偏光多層膜100は多層膜にたとえばリソグラフィとRIE加工等で溝を切った構造になっているが、多層膜の厚み周期を適切な周期に変えてもよい。多層膜を全面にたとえばスパッタリング法で蒸着して積層した後に、W偏光画素のエリアだけに溝を切って、かつRGB画素の多層膜のエリアはすべてを除去した後にSiO2等で埋めてもよい。 The image sensor 350 has basically the same configuration as that of the image sensor 200 (FIG. 6). However, the pixel 351 to the pixel 355 of the multilayer film forming layer 212 have a polarizing multilayer film 100 (polarizing multilayer film 100−), respectively. 1 to a polarizing multilayer film 100-5) are formed. The polarizing multilayer film 100 has a structure in which grooves are cut in the multilayer film by, for example, lithography and RIE processing, but the thickness period of the multilayer film may be changed to an appropriate period. After the multilayer film is deposited on the entire surface by vapor deposition, for example, by sputtering, grooves may be cut only in the area of the W-polarized pixel, and the multilayer film area of the RGB pixel may be removed and then filled with SiO 2 or the like. .
 また、フィルタ層214の、画素351にはオンチップカラーフィルタ361-1が形成され、画素352にはオンチップカラーフィルタ361-2が形成され、画素353にはオンチップカラーフィルタ361-3が形成され、画素354にはオンチップカラーフィルタ361-4が形成され、画素355にはオンチップカラーフィルタ361-6が形成される。オンチップカラーフィルタ361-1は、青色光を透過するオンチップカラーフィルタ(B-OCCF)である。オンチップカラーフィルタ361-2は、緑色光を透過するオンチップカラーフィルタ(G-OCCF)である。オンチップカラーフィルタ361-3は、赤色光を透過するオンチップカラーフィルタ(R-OCCF)である。オンチップカラーフィルタ361-4は、青色光を透過するオンチップカラーフィルタ(B-OCCF)である。オンチップカラーフィルタ361-5は、緑色光を透過するオンチップカラーフィルタ(G-OCCF)である。 In the filter layer 214, an on-chip color filter 361-1 is formed in the pixel 351, an on-chip color filter 361-2 is formed in the pixel 352, and an on-chip color filter 361-3 is formed in the pixel 353. Thus, an on-chip color filter 361-4 is formed in the pixel 354, and an on-chip color filter 361-6 is formed in the pixel 355. The on-chip color filter 361-1 is an on-chip color filter (B-OCCF) that transmits blue light. The on-chip color filter 361-2 is an on-chip color filter (G-OCCF) that transmits green light. The on-chip color filter 361-3 is an on-chip color filter (R-OCCF) that transmits red light. The on-chip color filter 361-4 is an on-chip color filter (B-OCCF) that transmits blue light. The on-chip color filter 361-5 is an on-chip color filter (G-OCCF) that transmits green light.
 なお、集光レンズ層215よりも図中上側(光入射側)には、全画素に亘ってIRカットフィルタ331が形成されている。もちろん、このIRカットフィルタ331は、省略するようにしてもよい。 Note that an IR cut filter 331 is formed over all the pixels above the condensing lens layer 215 in the drawing (light incident side). Of course, this IR cut filter 331 may be omitted.
 つまり、画素351は可視光の偏光を受光する可視偏光画素(可視偏光B画素)として機能し、フォトダイオード231-1には、主に青色光が入射する。画素352は可視光の偏光を受光する可視偏光画素(可視偏光G画素)として機能し、フォトダイオード231-2には、主に緑色光が入射する。画素353は可視光の偏光を受光する可視偏光画素(可視偏光R画素)として機能し、フォトダイオード231-3には、主に赤色光が入射する。画素354は可視光の偏光を受光する可視偏光画素(可視偏光B画素)として機能し、フォトダイオード231-4には、主に青色光が入射する。画素355は可視光の偏光を受光する可視偏光画素(可視偏光G画素)として機能し、フォトダイオード231-5には、主に緑色光が入射する。 That is, the pixel 351 functions as a visible polarization pixel (visible polarization B pixel) that receives the polarization of visible light, and blue light is mainly incident on the photodiode 231-1. The pixel 352 functions as a visible polarization pixel (visible polarization G pixel) that receives the polarization of visible light, and green light is mainly incident on the photodiode 231-2. The pixel 353 functions as a visible polarization pixel (visible polarization R pixel) that receives polarization of visible light, and red light is mainly incident on the photodiode 231-3. The pixel 354 functions as a visible polarization pixel (visible polarization B pixel) that receives polarization of visible light, and blue light is mainly incident on the photodiode 231-4. The pixel 355 functions as a visible polarization pixel (visible polarization G pixel) that receives polarization of visible light, and green light is mainly incident on the photodiode 231-5.
 画素配列は任意であるが、例えば、図15に示されるように、RGBのベイヤ(Bayer)配列としてもよい。図15の例の場合、3×3画素に可視偏光B画素、可視偏光G画素、および可視偏光R画素がベイヤ配列に配置されており、全ての画素において偏光情報を取得することができるようになされている。この場合、9つの可視偏光画素において、4方向の電界振動方向(偏光方向)の偏光が得られるようにしてもよい。図15の例の場合、イメージセンサ350は、所定の第1の方向の溝部112を有する偏光多層膜100が形成される画素と、その第1の方向に直交する第2の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して+45degの第3の方向の溝部112を有する偏光多層膜100が形成される画素と、第1の方向に対して-45degの第4の方向の溝部112を有する偏光多層膜100が形成される画素とを有する。このように4つの偏光情報を取得することで、図9のように偏光で変化しない直流成分と変化する交流成分の和を見積もることができる。 The pixel arrangement is arbitrary, but for example, as shown in FIG. 15, an RGB Bayer arrangement may be used. In the case of the example in FIG. 15, the visible polarization B pixel, the visible polarization G pixel, and the visible polarization R pixel are arranged in a 3 × 3 pixel in a Bayer array so that polarization information can be acquired in all pixels. Has been made. In this case, polarization in four electric field vibration directions (polarization directions) may be obtained in nine visible polarization pixels. In the case of the example in FIG. 15, the image sensor 350 includes a pixel in which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed, and a groove 112 in the second direction orthogonal to the first direction. A pixel in which the polarizing multilayer film 100 is formed, a pixel in which the polarizing multilayer film 100 having the groove 112 in the third direction of +45 deg with respect to the first direction is formed, and −45 deg with respect to the first direction. And the pixel on which the polarizing multilayer film 100 having the grooves 112 in the fourth direction is formed. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a DC component that does not change with polarization and an AC component that changes as shown in FIG.
 この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。また、イメージセンサ350を用いて、RGB分光の可視光の色情報とその偏光情報とを同時に取得可能な撮像装置を実現することができる。 The information of the non-polarized component intensity, the polarization main axis direction, and the polarized component intensity can be obtained by Fourier analysis of this intensity. For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like. In addition, it is possible to realize an imaging apparatus that can simultaneously acquire color information of visible light of RGB spectroscopy and polarization information thereof using the image sensor 350.
 なおここでは可視偏光G画素の数を最も多くしているが、特にそれ以外の配列でもよい。また、各画素の配置パタンは、任意であり、図14や図15の例に限定されない。もちろん、イメージセンサ350の画素数は任意である。 Note that the number of visible polarization G pixels is the largest here, but other arrangements may be used. Further, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 350 is arbitrary.
 <6.第6の実施の形態>
  <イメージセンサ>
 図16は、第1の実施の形態において説明した偏光多層膜100を適用したイメージセンサの一部の主な構成例を示す断面図である。図16に示されるイメージセンサ400は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ400は、互いに独立して光を検出する画素を複数有している。図16においては、イメージセンサ400の一部の画素である画素401乃至画素405についての構成例を示している。
<6. Sixth Embodiment>
<Image sensor>
FIG. 16 is a cross-sectional view illustrating a main configuration example of a part of an image sensor to which the polarizing multilayer film 100 described in the first embodiment is applied. An image sensor 400 shown in FIG. 16 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 400 includes a plurality of pixels that detect light independently of each other. FIG. 16 illustrates a configuration example of the pixels 401 to 405 which are some pixels of the image sensor 400.
 イメージセンサ400は、イメージセンサ200(図6)と基本的に同様の構成を有するが、多層膜形成層212の、画素401には第1の実施の形態において説明した偏光多層膜100-1が形成され、画素403には第1の実施の形態において説明した偏光多層膜100-2が形成され、画素405には第1の実施の形態において説明した偏光多層膜100-3が形成されている。これらに対して、多層膜形成層212の、画素402には第3の実施の形態において説明した可視偏光多層膜261-1が形成され、画素404には第3の実施の形態において説明した可視偏光多層膜261-2が形成されている。 The image sensor 400 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100-1 described in the first embodiment is included in the pixel 401 of the multilayer film formation layer 212. The polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 403, and the polarizing multilayer film 100-3 described in the first embodiment is formed in the pixel 405. . On the other hand, the visible polarizing multilayer film 261-1 described in the third embodiment is formed in the pixel 402 of the multilayer film formation layer 212, and the visible light described in the third embodiment is formed in the pixel 404. A polarizing multilayer film 261-2 is formed.
 また、フィルタ層214の、画素401には第2の実施の形態において説明したオンチップカラーフィルタ234-1(Black-OCCF)が形成され、画素402には第2の実施の形態において説明したオンチップカラーフィルタ234-2(G-OCCF)が形成され、画素403には第2の実施の形態において説明したオンチップカラーフィルタ234-3(Black-OCCF)が形成され、画素404には第2の実施の形態において説明したオンチップカラーフィルタ234-4(R-OCCF)が形成され、画素405にはオンチップカラーフィルタ234-5(Black-OCCF)が形成される。もちろん、イメージセンサ400が、青色光を透過するオンチップカラーフィルタ(B-OCCF)が形成される画素を有していてもよい。 Further, the on-chip color filter 234-1 (Black-OCCF) described in the second embodiment is formed in the pixel 401 of the filter layer 214, and the on-chip color filter 234-1 (Black-OCCF) described in the second embodiment is formed in the pixel 402. A chip color filter 234-2 (G-OCCF) is formed, the pixel 403 is formed with the on-chip color filter 234-3 (Black-OCCF) described in the second embodiment, and the pixel 404 has a second color filter. The on-chip color filter 234-4 (R-OCCF) described in the embodiment is formed, and the on-chip color filter 234-5 (Black-OCCF) is formed in the pixel 405. Of course, the image sensor 400 may include pixels on which an on-chip color filter (B-OCCF) that transmits blue light is formed.
 つまり、画素401は赤外光の偏光を受光するIR偏光画素として機能し、フォトダイオード231-1には、主に赤外光が入射する。画素402は可視光の偏光を受光する可視偏光画素(可視偏光G画素)として機能し、フォトダイオード231-2には、主に緑色光が入射する。画素403は赤外光の偏光を受光するIR偏光画素として機能し、フォトダイオード231-3には、主に赤外光が入射する。画素354は可視光の偏光を受光する可視偏光画素(可視偏光R画素)として機能し、フォトダイオード231-4には、主に青色光が入射する。画素405は赤外光の偏光を受光するIR偏光画素として機能し、フォトダイオード231-5には、主に赤外光が入射する。つまり、全ての画素において偏光情報が得られる。 That is, the pixel 401 functions as an IR polarization pixel that receives infrared polarized light, and infrared light is mainly incident on the photodiode 231-1. The pixel 402 functions as a visible polarization pixel (visible polarization G pixel) that receives the polarization of visible light, and green light is mainly incident on the photodiode 231-2. The pixel 403 functions as an IR polarized pixel that receives polarized light of infrared light, and infrared light is mainly incident on the photodiode 231-3. The pixel 354 functions as a visible polarization pixel (visible polarization R pixel) that receives polarization of visible light, and blue light is mainly incident on the photodiode 231-4. The pixel 405 functions as an IR polarization pixel that receives polarized light of infrared light, and infrared light is mainly incident on the photodiode 231-5. That is, polarization information is obtained in all pixels.
 画素配列は任意であるが、例えば、図17に示されるように、IR偏光画素を市松模様状に配置し、その他の画素を可視光画素としてもよい。図17の例の場合、3×3画素に4つのIR偏光画素を配置し、5つの可視偏光画素を配置している。この場合、各偏光画素(IR偏光画素および可視偏光画素)において4方向の電界振動方向(偏光方向)の偏光が得られるようにしてもよい。図17の例の場合、イメージセンサ400は、所定の第1の方向の溝部112を有する偏光多層膜100または可視偏光多層膜261が形成される画素と、その第1の方向に直交する第2の方向の溝部112を有する偏光多層膜100または可視偏光多層膜261が形成される画素と、第1の方向に対して+45degの第3の方向の溝部112を有する偏光多層膜100または可視偏光多層膜261が形成される画素と、第1の方向に対して-45degの第4の方向の溝部112を有する偏光多層膜100または可視偏光多層膜261が形成される画素とを有する。このような4種類の偏光画素により、4つの偏光方向の偏光情報を取得することができる。このように4つの偏光情報を取得することで、図9のように偏光で変化のない直流成分と変化する交流成分の和を見積もることができる。この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。 Although the pixel arrangement is arbitrary, for example, as shown in FIG. 17, IR polarized pixels may be arranged in a checkered pattern, and other pixels may be visible light pixels. In the case of the example of FIG. 17, 4 IR polarization pixels are arranged in 3 × 3 pixels, and 5 visible polarization pixels are arranged. In this case, polarization in four electric field vibration directions (polarization directions) may be obtained in each polarization pixel (IR polarization pixel and visible polarization pixel). In the example of FIG. 17, the image sensor 400 includes a pixel in which the polarizing multilayer film 100 or the visible polarizing multilayer film 261 having the groove 112 in a predetermined first direction is formed, and a second orthogonal to the first direction. The polarizing multilayer film 100 or the visible polarizing multilayer film 261 having the groove 112 in the first direction, and the polarizing multilayer film 100 or the visible polarizing multilayer having the groove 112 in the third direction +45 degrees with respect to the first direction. The pixel includes the pixel on which the film 261 is formed and the pixel on which the polarizing multilayer film 100 or the visible polarizing multilayer film 261 having the groove 112 in the fourth direction of −45 deg with respect to the first direction is formed. With such four types of polarization pixels, polarization information in four polarization directions can be acquired. By acquiring four pieces of polarization information in this way, it is possible to estimate the sum of a direct current component that does not change due to polarization and a alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
 例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。また、イメージセンサ400を用いて、赤外光の分光とともに可視光の色情報とその偏光情報とを同時に取得可能な撮像装置を実現することができる。 For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like. In addition, by using the image sensor 400, it is possible to realize an imaging apparatus capable of simultaneously obtaining visible light color information and polarization information thereof together with infrared light spectroscopy.
 なおここではIR偏光画素の数を最も多くしているが、特にそれ以外の配列でもよい。例えば、IR偏光画素よりも可視偏光画素を多くしてもよい。また、各画素の配置パタンは、任意であり、図16や図17の例に限定されない。もちろん、イメージセンサ400の画素数は任意である。 Note that the number of IR polarized pixels is maximized here, but other arrangements are also possible. For example, there may be more visible polarization pixels than IR polarization pixels. Moreover, the arrangement pattern of each pixel is arbitrary, and is not limited to the examples of FIGS. Of course, the number of pixels of the image sensor 400 is arbitrary.
 なお、第2の実施の形態乃至第6の実施の形態においては、偏光多層膜100をイメージセンサに適用する場合について説明したが、偏光多層膜100は、イメージセンサ以外にも適用することができる。例えば、偏光多層膜100は、任意の波長の光を検出する光学センサに適用することができる。もちろん、偏光多層膜100は、センサに限らず、任意の装置・構成に適用することができる。 In the second to sixth embodiments, the case where the polarizing multilayer film 100 is applied to the image sensor has been described. However, the polarizing multilayer film 100 can be applied to other than the image sensor. . For example, the polarizing multilayer film 100 can be applied to an optical sensor that detects light having an arbitrary wavelength. Of course, the polarizing multilayer film 100 can be applied not only to the sensor but also to any device / configuration.
 <7.第7の実施の形態>
  <光学ユニット1>
 例えば、上述した偏光多層膜100は、光に対して光学的な影響を及ぼす任意の光学ユニットに適用することができる。例えば、偏光特性を利用して入射光を分光する光学ユニットに適用することができる。図18は、第1の実施の形態において説明した偏光多層膜100を適用した光学ユニットの一部の主な構成例を示す断面図である。図18のAに示される光学ユニット500は、本技術を適用した、光を検出する光学センサの一実施の形態である。光学ユニット500は、結像レンズ501、プリズム502、イメージセンサ503-1、およびイメージセンサ503-2を有し、入射光を分光するユニットである。
<7. Seventh Embodiment>
<Optical unit 1>
For example, the above-described polarizing multilayer film 100 can be applied to any optical unit that optically affects light. For example, the present invention can be applied to an optical unit that splits incident light using polarization characteristics. FIG. 18 is a cross-sectional view illustrating a main configuration example of a part of an optical unit to which the polarizing multilayer film 100 described in the first embodiment is applied. An optical unit 500 shown in FIG. 18A is an embodiment of an optical sensor that detects light, to which the present technology is applied. The optical unit 500 includes an imaging lens 501, a prism 502, an image sensor 503-1, and an image sensor 503-2, and is a unit that splits incident light.
 入射光は、結像レンズ501を介してプリズム502に入力される。プリズム502には、偏光多層膜100が、その入射光の進行方向に対して所定の角度(例えば45deg)で設けられている。入射光は、第1の実施の形態において説明したように偏光多層膜100によって2つの偏光に分光される。 Incident light is input to the prism 502 via the imaging lens 501. The prism 502 is provided with the polarizing multilayer film 100 at a predetermined angle (for example, 45 deg) with respect to the traveling direction of the incident light. Incident light is split into two polarized light beams by the polarizing multilayer film 100 as described in the first embodiment.
 偏光多層膜100の入射面において反射したTE波は、イメージセンサ503-1により検出される。イメージセンサ503-1は、互いに独立に受光し、光電変換する複数の画素を有し、そのTE波の画像データを生成する。これに対して、偏光多層膜100を透過したTM波は、イメージセンサ503-2により検出される。イメージセンサ503-2は、イメージセンサ503-1と同様のイメージセンサであり、複数の画素を有し、そのTM波の画像データを生成する。つまり、光学ユニット500は、図18のBに示されるように、電界振動方向が互いに直交する2つの偏光からなる画像(偏光画像)を得ることができる。その際、各偏光からなる偏光画像をそれぞれ得る(つまり2つの偏光画像を得る)ようにしてもよいし、2つの偏光からなる1つの偏光画像を得るようにしてもよい。 The TE wave reflected on the incident surface of the polarizing multilayer film 100 is detected by the image sensor 503-1. The image sensor 503-1 has a plurality of pixels that receive light independently of each other and perform photoelectric conversion, and generate image data of the TE wave. In contrast, the TM wave transmitted through the polarizing multilayer film 100 is detected by the image sensor 503-2. The image sensor 503-2 is an image sensor similar to the image sensor 503-1, has a plurality of pixels, and generates image data of the TM wave. That is, as shown in FIG. 18B, the optical unit 500 can obtain an image (polarized image) composed of two polarized light beams whose electric field vibration directions are orthogonal to each other. At this time, a polarization image composed of each polarization may be obtained (that is, two polarization images are obtained), or one polarization image composed of two polarizations may be obtained.
 このとき、誘電体多層膜の構造体には吸収する材料が使われていないため、光学的な吸収ロスが発生せず、さらに両者の画像を信号処理で加算することで高い感度の画像が得られる。なおメタル等のワイヤーグリッドの吸収型偏光子は吸収ロスが顕著に発生するため、反射画像は得にくい。 At this time, no absorbing material is used in the structure of the dielectric multilayer film, so that no optical absorption loss occurs, and a high-sensitivity image can be obtained by adding both images by signal processing. It is done. It should be noted that the absorption loss of the wire grid such as metal has a significant absorption loss, so that it is difficult to obtain a reflected image.
  <光学ユニット2>
 偏光多層膜100を適用することができる光学ユニットの構成は任意であり、図18の例に限定されない。例えば、図19に示されるような構成の光学ユニットにも適用することができる。
<Optical unit 2>
The configuration of the optical unit to which the polarizing multilayer film 100 can be applied is arbitrary, and is not limited to the example of FIG. For example, the present invention can also be applied to an optical unit configured as shown in FIG.
 図19のAに示される光学ユニット550は、本技術を適用した、光を検出する光学センサの一実施の形態である。光学ユニット500は、結像レンズ501、プリズム502-1乃至プリズム502-3、イメージセンサ503-1乃至イメージセンサ503-4を有し、入射光を4つの偏光に分光するユニットである。 An optical unit 550 shown in FIG. 19A is an embodiment of an optical sensor for detecting light to which the present technology is applied. The optical unit 500 includes an imaging lens 501, prisms 502-1 to 502-3, and image sensors 503-1 to 503-4, and separates incident light into four polarized light.
 プリズム502-1乃至プリズム502-3には、それぞれ、偏光多層膜100が、入射光の進行方向に対して所定の角度(例えば45deg)で設けられている(偏光多層膜100-1乃至偏光多層膜100-3)。光入射側の1つ目の偏光ビームスプリッタ(プリズム502-1)では、プリズム表面が紙面垂直方向に平行に形成され、誘電体多層膜表面(偏光多層膜100-1の溝部112の長手方向)も紙面垂直方向に平行に形成されている。この偏光多層膜100-1の透過光の偏光方向(電界振動方向)は紙面平行方向となる。また偏光多層膜100-1の反射光の偏光方向(電界振動方向)は紙面垂直方向(透過光の偏光方向から90deg回転した方向)となる。2つ目の偏光ビームスプリッタ(プリズム502-2またはプリズム502-3)では、プリズム表面が紙面垂直方向に対して斜め45degに形成され、誘電体多層膜表面(偏光多層膜100-2および偏光多層膜100-2の溝部112の長手方向)も紙面垂直方向に対して斜め45degに形成されている。したがって、偏光多層膜100-2の透過光の偏光方向(電界振動方向)は、紙面に対して斜め-45degの方向となり、偏光多層膜100-2の反射光の偏光方向(電界振動方向)は、紙面に対して斜め+45degの方向となる。また、偏光多層膜100-3の透過光の偏光方向(電界振動方向)は、紙面に対して斜め+45degの方向となり、偏光多層膜100-3の反射光の偏光方向(電界振動方向)は、紙面に対して斜め-45deg方向となる。 In each of the prisms 502-1 to 502-3, the polarizing multilayer film 100 is provided at a predetermined angle (for example, 45 degrees) with respect to the traveling direction of the incident light (the polarizing multilayer film 100-1 to the polarizing multilayer film). Membrane 100-3). In the first polarization beam splitter (prism 502-1) on the light incident side, the prism surface is formed parallel to the direction perpendicular to the paper surface, and the surface of the dielectric multilayer film (the longitudinal direction of the groove 112 of the polarization multilayer film 100-1). Is also formed parallel to the direction perpendicular to the plane of the drawing. The polarization direction (electric field oscillation direction) of the transmitted light through the polarizing multilayer film 100-1 is parallel to the paper surface. Further, the polarization direction (electric field oscillation direction) of the reflected light of the polarizing multilayer film 100-1 is a direction perpendicular to the paper surface (a direction rotated 90 degrees from the polarization direction of the transmitted light). In the second polarization beam splitter (prism 502-2 or prism 502-3), the prism surface is formed at an angle of 45 ° with respect to the direction perpendicular to the paper surface, and the dielectric multilayer film surface (polarization multilayer film 100-2 and polarization multilayer film) is formed. The longitudinal direction of the groove 112 of the film 100-2 is also formed at an angle of 45 degrees with respect to the direction perpendicular to the paper surface. Therefore, the polarization direction (electric field vibration direction) of the transmitted light of the polarizing multilayer film 100-2 is a direction of −45 ° oblique to the paper surface, and the polarization direction (electric field vibration direction) of the reflected light of the polarizing multilayer film 100-2 is The direction is oblique +45 deg with respect to the paper surface. In addition, the polarization direction (electric field vibration direction) of the transmitted light of the polarizing multilayer film 100-3 is obliquely +45 degrees with respect to the paper surface, and the polarization direction (electric field vibration direction) of the reflected light of the polarizing multilayer film 100-3 is The direction is -45 deg oblique to the paper surface.
 イメージセンサ503-1は、入射光が偏光多層膜100-1を透過し、偏光多層膜100-2において反射した光を検出する。この光の偏光方向は、紙面に対して斜め+45degの方向である。イメージセンサ503-2は、入射光が偏光多層膜100-1および偏光多層膜100-2を透過した光を検出する。この光の偏光方向は、紙面に対して斜め-45degの方向である。イメージセンサ503-3は、入射光が偏光多層膜100-1において反射し、偏光多層膜100-3を透過した光を検出する。この光の偏光方向は、紙面に対して斜め+45degの方向である。イメージセンサ503-4は、入射光が偏光多層膜100-1および偏光多層膜100-3において反射した光を検出する。この光の偏光方向は、紙面に対して斜め-45degの方向である。 The image sensor 503-1 detects the light transmitted through the polarizing multilayer film 100-1 and reflected by the polarizing multilayer film 100-2. The polarization direction of this light is a direction of +45 degrees oblique to the paper surface. The image sensor 503-2 detects light having incident light transmitted through the polarizing multilayer film 100-1 and the polarizing multilayer film 100-2. The polarization direction of this light is a direction of −45 deg oblique to the paper surface. The image sensor 503-3 detects the incident light reflected by the polarizing multilayer film 100-1 and transmitted through the polarizing multilayer film 100-3. The polarization direction of this light is a direction of +45 degrees oblique to the paper surface. The image sensor 503-4 detects light reflected by the incident multilayer light 100-1 and the polarizing multilayer film 100-3. The polarization direction of this light is a direction of −45 deg oblique to the paper surface.
 このように検出された4つの偏光画像を信号処理で加算することで図19のBに示されるような4方向の偏光画像が得られる。例えば、イメージセンサ503-1において得られた偏光画像と、イメージセンサ503-2において得られた偏光画像とを加算することにより、偏光方向が図中水平方向の偏光よりなる偏光画像が得られる。また、イメージセンサ503-3において得られた偏光画像と、イメージセンサ503-4において得られた偏光画像とを加算することにより、偏光方向が図中垂直方向の偏光よりなる偏光画像が得られる。また、イメージセンサ503-1において得られた偏光画像と、イメージセンサ503-3において得られた偏光画像とを加算することにより、偏光方向が図中斜め+45degの方向の偏光よりなる偏光画像が得られる。また、イメージセンサ503-2において得られた偏光画像と、イメージセンサ503-4において得られた偏光画像とを加算することにより、偏光方向が図中斜め-45degの方向の偏光よりなる偏光画像が得られる。 The four polarization images detected in this way are added by signal processing to obtain a polarization image in four directions as shown in FIG. 19B. For example, by adding the polarization image obtained by the image sensor 503-1 and the polarization image obtained by the image sensor 503-2, a polarization image whose polarization direction is polarization in the horizontal direction in the figure is obtained. Further, by adding the polarization image obtained by the image sensor 503-3 and the polarization image obtained by the image sensor 503-4, a polarization image having a polarization direction of polarization in the vertical direction in the figure is obtained. In addition, by adding the polarization image obtained by the image sensor 503-1 and the polarization image obtained by the image sensor 503-3, a polarization image having a polarization direction of + 45 ° oblique in the figure is obtained. It is done. Further, by adding the polarization image obtained by the image sensor 503-2 and the polarization image obtained by the image sensor 503-4, a polarization image whose polarization direction is diagonally −45 ° in the figure is obtained. can get.
 このように4つの偏光情報を取得することで、図9のように偏光で変化しない直流成分と変化する交流成分の和を見積もることが可能となる。この強度をフーリエ解析することで、無偏光成分強度と偏光主軸方向と偏光成分強度の情報が得られる。 By acquiring the four pieces of polarization information in this way, it is possible to estimate the sum of the direct current component that does not change with polarization and the alternating current component that changes as shown in FIG. By performing Fourier analysis on this intensity, information on the non-polarized component intensity, the polarization principal axis direction, and the polarized component intensity can be obtained.
 例えば、このような手法を利用することにより、撮像する被写体表面の法線ベクトルを見積もるとともに、表面や被写体の形状を見積もることが可能となる。それ以外にも例えば、車載システム等においてこのような手法を道路の中央線の把握等に利用することができる。また例えば、産業システム等においてこのような手法をキズ等の検査に利用できる。 For example, by using such a method, it is possible to estimate the normal vector of the surface of the subject to be imaged and estimate the shape of the surface and the subject. In addition, for example, such a method can be used for grasping the center line of a road in an in-vehicle system or the like. Further, for example, such a technique can be used for inspection of scratches in an industrial system or the like.
 なお、誘電体多層膜には吸収する材料が使われていないため、光学的な吸収ロスが発生せず高い感度の画像が得られる。なおメタルのワイヤーグリッド等の吸収型の偏光子はロスが発生する。 In addition, since no material that absorbs the dielectric multilayer film is used, an optical absorption loss does not occur, and a highly sensitive image can be obtained. In addition, a loss occurs in an absorption type polarizer such as a metal wire grid.
 <8.第8の実施の形態>
  <生体認証デバイス>
 また、上述した偏光多層膜100は、例えば、光学を利用した生体認証を行う生体認証デバイスにも適用することができる。図20は、第1の実施の形態において説明した偏光多層膜100を適用した生体認証デバイスの一部の主な構成例を示す断面図である。図20に示される生体認証デバイス600は、本技術を適用した、光を検出する光学センサの一実施の形態である。生体認証デバイスは、指等の生体611に対して、指紋認証と静脈認証とを同時に可能となるようにして、偽装認証を防ぐシステムである。なお、指紋認証の代わりに、手のひら等の皮膚表面形状認証が行われるようにしてもよい。
<8. Eighth Embodiment>
<Biometric device>
Moreover, the polarizing multilayer film 100 described above can also be applied to, for example, a biometric authentication device that performs biometric authentication using optics. FIG. 20 is a cross-sectional view illustrating a main configuration example of a part of a biometric authentication device to which the polarizing multilayer film 100 described in the first embodiment is applied. A biometric authentication device 600 shown in FIG. 20 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The biometric authentication device is a system that prevents impersonation authentication by enabling fingerprint authentication and vein authentication at the same time for a living body 611 such as a finger. Instead of fingerprint authentication, skin surface shape authentication such as a palm may be performed.
 生体認証デバイス600は、発光部601、結像レンズ602、およびイメージセンサ603を有する。発光部601は、例えば、青色乃至緑色の可視光と、近赤外光の2つの波長域の光を発光することができる2波長帯LED等よりなる。イメージセンサ603は、これらの光が生体611において反射した反射光を、結像レンズ602を介して受光する。 The biometric authentication device 600 includes a light emitting unit 601, an imaging lens 602, and an image sensor 603. The light emitting unit 601 includes, for example, a two-wavelength LED that can emit light in two wavelength ranges of blue to green visible light and near-infrared light. The image sensor 603 receives the reflected light, which is reflected by the living body 611, through the imaging lens 602.
 皮膚から入射する光は長波長ほど散乱や吸収を受けにくくなり、皮膚の奥まで光が侵入する。皮膚の奥に侵入すると光路の途中で散乱されて光が拡がって戻ってくることになる。このように奥から光が戻ってくる場合には、皮膚表面を撮像するときのバックグラウンド光となり、解像度劣化になる。したがって、波長は可視光領域でなるべく短波長にするほうが皮膚表面の撮像に有利となる。これに対して例えば2mm程度までの深さのところに存在する静脈血管を撮影する場合、短波長側の光では奥まで届かず、長波長側の光で届くことになる。 The light incident from the skin becomes less susceptible to scattering and absorption as the wavelength increases, and the light penetrates deep into the skin. If it penetrates into the back of the skin, it will be scattered in the middle of the optical path and the light will spread and come back. When light returns from the back in this way, it becomes background light when imaging the skin surface, resulting in resolution degradation. Therefore, it is advantageous for imaging the skin surface that the wavelength is as short as possible in the visible light region. On the other hand, for example, when photographing a venous blood vessel existing at a depth of up to about 2 mm, the light on the short wavelength side does not reach the back, but the light on the long wavelength side.
 このため波長650nmより長波長側で主に近赤外光で静脈を高画質で撮影可能となる。つまり、イメージセンサ603は、発光部601から発光された近赤外光621が生体611内部で反射した反射光を、結像レンズ602を介して検出する(受光し、光電変換する)。また、イメージセンサ603は、発光部601から発光された可視光(青色乃至緑色)622が生体611表面で反射した反射光を、結像レンズ602を介して検出する(受光し、光電変換する)。 Therefore, it is possible to photograph veins with high image quality mainly with near-infrared light on the longer wavelength side than wavelength 650 nm. That is, the image sensor 603 detects (receives and photoelectrically converts) the reflected light reflected from the near-infrared light 621 emitted from the light emitting unit 601 inside the living body 611 via the imaging lens 602. Further, the image sensor 603 detects (receives and photoelectrically converts) reflected light reflected from the surface of the living body 611 by visible light (blue to green) 622 emitted from the light emitting unit 601 via the imaging lens 602. .
 また静脈ではヘモグロビンによる近赤外光が吸収されるために、戻ってくる光が弱くなり、暗線として認識される。しかし、内部で散乱して戻ってくる光が大きいと画像コントラストの悪化を招く。また赤外光でも皮膚表面での反射が生じて、これも画像コントラストの劣化を招くことになる。したがって表面反射と散乱光の抑圧のため、静脈画像取得では偏光画像を取得することが挙げられる。 Also, the near-infrared light from hemoglobin is absorbed in the vein, so the returning light becomes weak and recognized as a dark line. However, if the light scattered and returned inside is large, the image contrast is deteriorated. Further, even infrared light causes reflection on the skin surface, which also causes deterioration of image contrast. Therefore, in order to suppress surface reflection and scattered light, obtaining a polarization image is an example of obtaining a vein image.
 図21は、このイメージセンサ603の一部の主な構成例を示す断面図である。図21に示されるイメージセンサ603は、本技術を適用した、光を検出する光学センサの一実施の形態である。イメージセンサ603は、互いに独立して光を検出する画素を複数有している。図21においては、イメージセンサ603の一部の画素である画素631乃至画素635についての構成例を示している。 FIG. 21 is a cross-sectional view showing a main configuration example of a part of the image sensor 603. An image sensor 603 illustrated in FIG. 21 is an embodiment of an optical sensor that detects light, to which the present technology is applied. The image sensor 603 includes a plurality of pixels that detect light independently of each other. FIG. 21 illustrates a configuration example of the pixels 631 to 635 which are some pixels of the image sensor 603.
 イメージセンサ603は、イメージセンサ200(図6)と基本的に同様の構成を有するが、多層膜形成層212の、画素631には第1の実施の形態において説明した偏光多層膜100-1が形成され、画素633には第1の実施の形態において説明した偏光多層膜100-2が形成され、画素635には第1の実施の形態において説明した偏光多層膜100-3が形成される。これらに対して、多層膜形成層212の、画素632には第2の実施の形態において説明したIRカットフィルタ233-1が形成され、画素634には第2の実施の形態において説明したIRカットフィルタ233-2が形成される。これらの多層膜には、誘電体多層膜としてTiO2膜とSiO2膜を用いているが、これらの代わりに例えばTaO2膜とSiO2膜、Si3N4膜とSiO2膜を用いるようにしてもよい。屈折率の高い材料と低い材料であれば他の材料系でもよい。 The image sensor 603 has basically the same configuration as the image sensor 200 (FIG. 6), but the polarizing multilayer film 100-1 described in the first embodiment is formed in the pixel 631 of the multilayer film formation layer 212. The polarizing multilayer film 100-2 described in the first embodiment is formed in the pixel 633, and the polarizing multilayer film 100-3 described in the first embodiment is formed in the pixel 635. In contrast, the IR cut filter 233-1 described in the second embodiment is formed in the pixel 632 of the multilayer film formation layer 212, and the IR cut described in the second embodiment is formed in the pixel 634. A filter 233-2 is formed. For these multilayer films, TiO 2 film and SiO 2 film are used as dielectric multilayer films, but instead of these, for example, TaO 2 film and SiO 2 film, Si 3 N 4 film and SiO 2 film should be used. It may be. Other material systems may be used as long as the material has a high refractive index and a low material.
 また、フィルタ層214の、画素631にはオンチップカラーフィルタ641-1が形成され、画素632にはオンチップカラーフィルタ644-2が形成され、画素633にはオンチップカラーフィルタ644-3が形成され、画素634にはオンチップカラーフィルタ644-4が形成され、画素635にはオンチップカラーフィルタ644-5が形成される。オンチップカラーフィルタ641-1、オンチップカラーフィルタ641-3、および、オンチップカラーフィルタ641-5は、可視光を遮断するオンチップカラーフィルタ(Black-OCCF)である。オンチップカラーフィルタ641-2およびオンチップカラーフィルタ641-4は、青色乃至緑色の可視光を透過するオンチップカラーフィルタ(B,G-OCCF)である。 In the filter layer 214, an on-chip color filter 641-1 is formed in the pixel 631, an on-chip color filter 644-2 is formed in the pixel 632, and an on-chip color filter 644-3 is formed in the pixel 633. Thus, an on-chip color filter 644-4 is formed in the pixel 634, and an on-chip color filter 644-5 is formed in the pixel 635. The on-chip color filter 641-1, the on-chip color filter 641-3, and the on-chip color filter 641-5 are on-chip color filters (Black-OCCF) that block visible light. The on-chip color filter 641-2 and the on-chip color filter 641-4 are on-chip color filters (B, G-OCCF) that transmit blue to green visible light.
 ここで画素632および画素634は、青色乃至緑色に感度を持つ可視光画素である。この可視光画素では、多層膜構造体(IRカットフィルタ233)が図7に示される透過分光特性のような赤外光を透過せず遮断するフィルタとして働くことで単色性を良好にする。また画素631、画素633、および画素635は、赤外光を偏光させるIR偏光画素である。このIR偏光画素の多層膜構造体(偏光多層膜100)は、赤外光の偏光を得る赤外偏光フィルタとして機能する。この偏光多層膜100は、上述したように、多層膜にたとえばリソグラフィとRIE加工等で溝を切った構造になっている。なおここでは多層膜の層の厚み周期は、可視光画素もIR偏光画素も同じであるため、多層膜を全面にたとえばスパッタリング法で蒸着して積層した後に、IR偏光画素のエリアだけに溝を切った後にたとえばSiO2等で溝を埋めてもよい。 Here, the pixel 632 and the pixel 634 are visible light pixels having sensitivity from blue to green. In this visible light pixel, the multilayer structure (IR cut filter 233) works as a filter that does not transmit infrared light such as the transmission spectral characteristics shown in FIG. In addition, the pixel 631, the pixel 633, and the pixel 635 are IR polarization pixels that polarize infrared light. The multilayer structure (polarization multilayer film 100) of the IR polarization pixel functions as an infrared polarization filter that obtains polarization of infrared light. As described above, the polarizing multilayer film 100 has a structure in which a groove is cut in the multilayer film by, for example, lithography and RIE processing. In this case, since the thickness cycle of the multilayer film is the same for both the visible light pixel and the IR polarized pixel, the multilayer film is deposited on the entire surface by, for example, sputtering and laminated, and then a groove is formed only in the area of the IR polarized pixel. After cutting, the groove may be filled with, for example, SiO 2 or the like.
 また各画素の間に混色を防ぐためにこの図のように遮光壁232を配置してもよい。 Further, in order to prevent color mixture between the pixels, a light shielding wall 232 may be arranged as shown in this figure.
 画素配列は任意であるが、例えば、図22に示されるように、IR偏光画素を市松模様状に配置し、その他の画素を可視光画素としてもよい。図22の例の場合、3×3画素に4つのIR偏光画素を配置している。この場合、各IR偏光画素において得られる偏光の電界振動方向(偏光方向)が互いに同一であるようにしてもよい。図22の例の場合、イメージセンサ603は、所定の第1の方向の溝部112を有する偏光多層膜100が形成される画素を有する。このような1種類のIR偏光画素により、1つの偏光方向の偏光情報を取得することができる。偏光方向は散乱光と表面反射の抑圧できる方向、とりわけ図23のようにLED等から射出する赤外光線の入射面に対して平行方向(TM波)の偏光画像が撮れて、かつ入射面に対して垂直方向(TE波)の偏光波をカットする。これにより散乱光と表面反射を抑えることができるために、高コントラストの静脈画像を取得でき、高い精度の生体認証が可能となる。 Although the pixel arrangement is arbitrary, for example, as shown in FIG. 22, IR polarized pixels may be arranged in a checkered pattern, and other pixels may be visible light pixels. In the case of the example of FIG. 22, four IR polarization pixels are arranged in 3 × 3 pixels. In this case, the electric field oscillation directions (polarization directions) of the polarization obtained in each IR polarization pixel may be the same. In the case of the example in FIG. 22, the image sensor 603 includes a pixel on which the polarizing multilayer film 100 having the groove 112 in a predetermined first direction is formed. With such one type of IR polarization pixel, polarization information in one polarization direction can be acquired. The polarization direction is a direction in which scattered light and surface reflection can be suppressed. In particular, as shown in FIG. 23, a polarization image in a direction parallel to the incident surface of the infrared ray emitted from the LED or the like (TM wave) can be taken, and On the other hand, the polarized wave in the vertical direction (TE wave) is cut. Thereby, since scattered light and surface reflection can be suppressed, a high-contrast vein image can be acquired and biometric authentication with high accuracy becomes possible.
 この場合のカメラ光学系の構成は任意である。例えば、図24のAに示されるように、生体611を図中上側の面に配置する台部651を設け、その台部651の図中下側にイメージセンサ603を配置し、そのイメージセンサ603が、台部651を介して生体611を撮像し、生体611からの反射光を受光するようにしてもよい(接写型)。また、例えば図24のBに示されるように、さらに、台部652に、迷光が各画素に入るのを防ぐために遮光壁653を配置するようにしてもよい(接写型)。 In this case, the configuration of the camera optical system is arbitrary. For example, as shown in FIG. 24A, a base 651 for arranging the living body 611 on the upper surface in the figure is provided, and an image sensor 603 is arranged on the lower side of the base 651 in the figure, and the image sensor 603 is provided. However, you may make it image the biological body 611 via the base part 651, and receive the reflected light from the biological body 611 (close-up type). Further, for example, as shown in FIG. 24B, a light shielding wall 653 may be further arranged on the base 652 in order to prevent stray light from entering each pixel (close-up type).
 また、例えば、図25のAに示されるように、台部661に遮光膜662を用いてピンホール663を形成するようにしてもよい(ピンホール型)。さらに、例えば、図25のBに示されるように、台部671に数画素毎に結像レンズ602を設けるようにしてもよい(複眼レンズ型)。さらに、迷光を抑制するために各結像レンズ間を遮光壁653で区切るようにしてもよい。また、例えば、図25のCに示されるように、台部681に全画素をカバーする結像レンズ602を設けるようにしてもよい(単レンズ型)。 Further, for example, as shown in FIG. 25A, a pinhole 663 may be formed on the base 661 using a light shielding film 662 (pinhole type). Furthermore, for example, as shown in FIG. 25B, an imaging lens 602 may be provided on the base 671 every several pixels (compound lens type). Further, in order to suppress stray light, the imaging lenses may be separated by a light shielding wall 653. Further, for example, as shown in FIG. 25C, an imaging lens 602 that covers all the pixels may be provided on the base 681 (single lens type).
 なお、ここでは赤外光のみに対して偏光画像を取得することを述べたが、これに限らず、赤外と青色乃至緑色の可視光の両者とも偏光画像を取得するようにしてもよい。その場合、図26に示される場合のように青色乃至緑色の可視光画素では、多層膜の途中まで溝部を形成し、上側を偏光フィルタ(偏光多層膜)として用い、下側を赤外光遮断するIRカットフィルタとして用いるようにしてもよい(第3の実施の形態において説明した可視偏光多層膜261)。このようにすることにより、赤外光だけでなく可視光についても偏光画像を得ることができる。 In addition, although it has been described here that a polarization image is acquired only with respect to infrared light, the present invention is not limited to this, and polarization images may be acquired with both infrared and blue to green visible light. In that case, as shown in FIG. 26, in the blue to green visible light pixels, a groove is formed partway through the multilayer film, the upper side is used as a polarizing filter (polarized multilayer film), and the lower side is blocked by infrared light. It may be used as an IR cut filter (visible polarizing multilayer film 261 described in the third embodiment). By doing so, a polarization image can be obtained not only for infrared light but also for visible light.
 また各画素の間に混色を防ぐためにこの図のように遮光壁を配置してもよい。 Also, in order to prevent color mixing between each pixel, a light shielding wall may be arranged as shown in this figure.
 図26においては、イメージセンサ603の画素701乃至画素705の構成が示されている。この場合、画素701、画素703、および画素703がIR偏光画素であり、画素702および画素704が可視光偏光画素である。可視光偏光画素(画素702および画素704)の上側にはOCCF(On Chip Color Filter)が存在することで、たとえば青色乃至緑色の可視光の分光とともにその偏光情報取得が可能となる。また、IR偏光画素の上に可視光を遮断するように黒OCCFを配置してもよい。ここで画素配列の1つの例を図27に示す。ここではIR偏光画素が市松配列となっていて互いに同一の偏光方向を取得できるようになっている。また青色乃至緑色の可視光偏光画素も同様に市松配列で偏光方向は互いに同一となっている。LED等に光の入射方向に応じてこれらの方向を最適な方向に変えてもよい。これら偏光方向は散乱光と表面反射の抑圧できる方向、とりわけ図23のように赤外または青色乃至緑色可視LED等の光線の入射面に対して平行方向(TM波)の偏光画像が撮れて、かつ入射面に対して垂直方向(TE波)の偏光波をカットする。したがって各LED等の光線の入射方向に合わせて溝方向を作製する。これにより散乱光と表面反射を抑えることができるために、高コントラストの静脈画像と指紋認証等の画像を取得でき、高い精度の生体認証が可能となる。 FIG. 26 shows the configuration of the pixels 701 to 705 of the image sensor 603. In this case, the pixel 701, the pixel 703, and the pixel 703 are IR polarization pixels, and the pixel 702 and the pixel 704 are visible light polarization pixels. The presence of OCCF (On-Chip Color Filter) above the visible light polarization pixels (pixel 702 and pixel 704) makes it possible to acquire polarization information along with, for example, blue to green visible light spectroscopy. Further, a black OCCF may be disposed on the IR polarization pixel so as to block visible light. Here, one example of the pixel arrangement is shown in FIG. Here, the IR polarization pixels are arranged in a checkered pattern so that the same polarization direction can be acquired. Similarly, the blue to green visible light polarizing pixels are also in a checkered arrangement and the polarization directions are the same. These directions may be changed to an optimum direction according to the incident direction of light to the LED or the like. These polarization directions can suppress scattered light and surface reflection, in particular, as shown in FIG. 23, a polarization image in a parallel direction (TM wave) can be taken with respect to an incident surface of light rays such as infrared or blue to green visible LEDs, In addition, the polarized wave in the direction perpendicular to the incident surface (TE wave) is cut. Therefore, the groove direction is prepared in accordance with the incident direction of the light beam of each LED or the like. Thus, since scattered light and surface reflection can be suppressed, a high-contrast vein image and an image such as fingerprint authentication can be acquired, and biometric authentication with high accuracy is possible.
 この場合のカメラ光学系の構成は任意であり、例えば、図24のAに示されるような接写型の構成としてもよいし、図24のBに示されるような接写型の構成としてもよい。また、図25のAに示されるようなピンホール型の構成としてもよいし、図25のBに示されるような複眼レンズ型の構成としてもよいし、図25のCに示されるような単レンズ型の構成としてもよい。 The configuration of the camera optical system in this case is arbitrary, and may be a close-up type configuration as shown in FIG. 24A or a close-up type configuration as shown in FIG. Further, a pinhole type configuration as shown in FIG. 25A, a compound eye lens type configuration as shown in FIG. 25B, or a single type as shown in FIG. A lens-type configuration may be used.
 以上の各実施の形態において説明した各イメージセンサが、FD、ゲート、配線等の信号読出しやその駆動回路や駆動電源に関する構成等、説明を省略した任意の構成を備えることができることは言うまでも無い。 It goes without saying that each image sensor described in each of the above embodiments can be provided with an arbitrary configuration whose description is omitted, such as a configuration relating to signal readout of FD, gate, wiring, etc., its drive circuit, and drive power supply. No.
 <9.第9の実施の形態>
  <光検出装置>
 以上に説明した偏光多層膜100を適用したイメージセンサは、任意の装置に適用することができる。すなわち、本技術を適用した偏光多層膜100は、光学的な処理を行う光学装置に適用することもできる。
<9. Ninth Embodiment>
<Photodetection device>
The image sensor to which the polarizing multilayer film 100 described above is applied can be applied to any device. That is, the polarizing multilayer film 100 to which the present technology is applied can also be applied to an optical device that performs optical processing.
 図28は、本技術を適用した光学装置の一実施の形態である光検出装置の主な構成例を示すブロック図である。図28に示される光検出装置800は、光を検出し、その検出結果に対して所定の処理を行う装置である。 FIG. 28 is a block diagram illustrating a main configuration example of a light detection device which is an embodiment of an optical device to which the present technology is applied. The light detection device 800 shown in FIG. 28 is a device that detects light and performs predetermined processing on the detection result.
 図28に示されるように、光検出装置800は、レンズや絞り等の光学系811、偏光多層膜光検出部812、検出情報処理部813、バス820、制御部821、入力部831、出力部832、記憶部833、通信部834、およびドライブ835を有する。 As shown in FIG. 28, the light detection apparatus 800 includes an optical system 811 such as a lens and a diaphragm, a polarization multilayer film light detection unit 812, a detection information processing unit 813, a bus 820, a control unit 821, an input unit 831, and an output unit. 832, a storage unit 833, a communication unit 834, and a drive 835.
 偏光多層膜光検出部812は、上述した偏光多層膜100を備え、その偏光多層膜100によって、光学系811を介して入射された入射光から偏光を抽出したり、所定の波長光を分光したりし、抽出した偏光や所定の波長光を検出する。例えば、この偏光多層膜光検出部812は、各実施の形態において上述した、偏光多層膜100を備えるイメージセンサを有する。したがって、偏光多層膜光検出部812は、上述したように、透過光の消光比の低減を抑制することができ、より高感度に光を検出することができる。また、より簡易な構成で偏光情報とともに分光情報を得ることができる。 The polarization multilayer film light detection unit 812 includes the polarization multilayer film 100 described above, and the polarization multilayer film 100 extracts polarized light from incident light incident through the optical system 811 or separates light having a predetermined wavelength. In other words, the extracted polarized light and the predetermined wavelength light are detected. For example, the polarization multilayer film light detection unit 812 includes the image sensor including the polarization multilayer film 100 described above in each embodiment. Therefore, as described above, the polarization multilayer film light detection unit 812 can suppress a reduction in the extinction ratio of transmitted light, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration.
 偏光多層膜光検出部812は、その検出結果(検出情報)を検出情報処理部813に供給する。検出情報処理部813は、供給された検出情報に対して所定の処理を行う。検出情報処理部813は、その処理後の検出情報を、バス820を介して、制御部821、入力部831、出力部832、記憶部833、通信部834、およびドライブ835等のうちの所望の処理部に適宜供給する。 The polarization multilayer film light detection unit 812 supplies the detection result (detection information) to the detection information processing unit 813. The detection information processing unit 813 performs a predetermined process on the supplied detection information. The detection information processing unit 813 transmits the detection information after the processing to a desired one of the control unit 821, the input unit 831, the output unit 832, the storage unit 833, the communication unit 834, the drive 835, and the like via the bus 820. It supplies to a processing part suitably.
 制御部821は、光検出装置800内の各処理部の制御に関する処理を行う。入力部831は、例えばユーザ入力等の外部の任意の情報を受け付ける入力デバイスを含む。この入力デバイスはどのようなものであってもよい。例えば、キーボード、マウス、操作ボタン、タッチパネル、カメラ、マイクロホン、バーコードリーダ等であってもよい。また、加速度センサ、光センサ、温度センサ等の各種センサであってもよい。さらに、外部の任意の情報をデータ(信号)として受け付ける入力端子であってもよい。出力部832は、例えば画像や音声等の装置内部の任意の情報を出力する出力デバイスを含む。この出力デバイスはどのようなものであってもよい。例えば、ディスプレイやスピーカ等であってもよい。また、任意の情報をデータ(信号)として外部に出力する出力端子であってもよい。例えば、出力部832は、検出情報処理部813から供給される検出情報を光検出装置800の外部に出力する。 The control unit 821 performs processing related to control of each processing unit in the light detection apparatus 800. The input unit 831 includes an input device that receives arbitrary external information such as user input. This input device may be anything. For example, a keyboard, a mouse, operation buttons, a touch panel, a camera, a microphone, a barcode reader, and the like may be used. Moreover, various sensors, such as an acceleration sensor, an optical sensor, and a temperature sensor, may be used. Further, it may be an input terminal that receives arbitrary external information as data (signal). The output unit 832 includes an output device that outputs arbitrary information inside the apparatus, such as an image and sound. Any output device may be used. For example, a display or a speaker may be used. Moreover, the output terminal which outputs arbitrary information as data (signal) outside may be sufficient. For example, the output unit 832 outputs the detection information supplied from the detection information processing unit 813 to the outside of the light detection device 800.
 記憶部833は、プログラムやデータ等の情報を記憶する記憶媒体を含む。この記憶媒体はどのようなものであってもよい。例えば、ハードディスク、RAMディスク、不揮発性メモリ等であってもよい。記憶部833は、例えば、検出情報処理部813から供給される検出情報を記憶する。通信部834は、所定の通信媒体(例えばインターネット等の任意のネットワーク)を介して外部の装置とプログラムやデータ等の情報を授受する通信を行う通信デバイスを含む。この通信デバイスはどのようなものであってもよい。例えば、ネットワークインタフェースであってもよい。この通信部834による通信の通信方法や通信規格は任意である。例えば、通信部834が、有線通信を行うことができるようにしてもよいし、無線通信を行うことができるようにしてもよいし、その両方を行うことができるようにしてもよい。例えば、通信部834は、検出情報処理部813から供給される検出情報を、通信相手である他の装置に供給する。 The storage unit 833 includes a storage medium that stores information such as programs and data. This storage medium may be anything. For example, it may be a hard disk, a RAM disk, a non-volatile memory, or the like. For example, the storage unit 833 stores the detection information supplied from the detection information processing unit 813. The communication unit 834 includes a communication device that performs communication for exchanging information such as a program and data with an external apparatus via a predetermined communication medium (for example, an arbitrary network such as the Internet). This communication device may be anything. For example, a network interface may be used. A communication method and a communication standard for communication by the communication unit 834 are arbitrary. For example, the communication unit 834 may be able to perform wired communication, wireless communication, or both. For example, the communication unit 834 supplies the detection information supplied from the detection information processing unit 813 to another device that is a communication partner.
 ドライブ835は、自身に装着されたリムーバブルメディア841に対する情報(プログラムやデータ等)の読み出しや書き込みに関する処理を行う。このリムーバブルメディア841は、どのような記録媒体であってもよい。例えば、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどであってもよい。例えば、ドライブ835は、自身に装着されたリムーバブルメディア841に記憶されている情報(プログラムやデータ等)を読み出し、その情報を制御部821等に供給する。また、例えば、ドライブ835は、制御部821等の他の処理部から供給される情報(プログラムやデータ等)を取得し、その情報を自身に装着されたリムーバブルメディア841に書き込む。例えば、ドライブ835は、検出情報処理部813から供給される検出情報をリムーバブルメディア841に書き込む。 The drive 835 performs processing related to reading and writing of information (program, data, etc.) with respect to the removable medium 841 attached to the drive 835. This removable medium 841 may be any recording medium. For example, it may be a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like. For example, the drive 835 reads information (program, data, etc.) stored in the removable medium 841 attached to the drive 835 and supplies the information to the control unit 821 and the like. For example, the drive 835 acquires information (program, data, etc.) supplied from another processing unit such as the control unit 821 and writes the information to the removable medium 841 attached to the drive 835. For example, the drive 835 writes the detection information supplied from the detection information processing unit 813 into the removable medium 841.
 このような構成とすることにより、光検出装置800は、上述したように、透過光の消光比の低減を抑制することができ、より高感度に光を検出することができる。また、より簡易な構成で偏光情報とともに分光情報を得ることができる。なお、このような光検出装置800は、例えば、被写体を撮像して画像データを得る撮像装置として実現することができる。 By adopting such a configuration, as described above, the light detection device 800 can suppress a reduction in the extinction ratio of transmitted light, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration. Note that such a light detection device 800 can be realized, for example, as an imaging device that captures an image of a subject and obtains image data.
  <光検出処理の流れ>
 このような光検出装置800により実行される光検出処理の流れの例を、図29のフローチャートを参照して説明する。
<Flow of light detection processing>
An example of the flow of light detection processing executed by such a light detection device 800 will be described with reference to the flowchart of FIG.
 光検出処理が開始されると、光検出装置800の制御部821は、ステップS101において、例えばパラメータの設定や光学系811の調整等、光検出に関する処理を行う。ステップS102において、偏光多層膜光検出部812は、光学系811を介して入射される入射光を、偏光多層膜100を介して検出する。 When the light detection process is started, the control unit 821 of the light detection apparatus 800 performs a process related to light detection such as parameter setting and adjustment of the optical system 811 in step S101. In step S <b> 102, the polarization multilayer film light detection unit 812 detects incident light incident via the optical system 811 via the polarization multilayer film 100.
 ステップS103において、検出情報処理部813は、ステップS102の処理により得られた検出情報を処理する。ステップS104において、出力部832がステップS103において処理された検出情報を出力するか、記憶部833がその検出情報を記憶するか、通信部834がその検出情報を他の装置に伝送する。もちろん、このステップS104において、例えばドライブ835が検出情報をリムーバブルメディア841に書き込む等の、その他の任意の処理が行われるようにしてもよい。 In step S103, the detection information processing unit 813 processes the detection information obtained by the process in step S102. In step S104, the output unit 832 outputs the detection information processed in step S103, the storage unit 833 stores the detection information, or the communication unit 834 transmits the detection information to another device. Of course, in this step S104, for example, the drive 835 may perform other arbitrary processing such as writing the detection information in the removable medium 841.
 ステップS104の処理が終了すると、光検出処理が終了する。 When the process of step S104 is completed, the light detection process is completed.
 以上のように処理を行うことにより、光検出装置800は、上述したように、透過光の消光比の低減を抑制することができ、より高感度に光を検出することができる。また、より簡易な構成で偏光情報とともに分光情報を得ることができる。なお、このような光検出装置800は、例えば、被写体を撮像して画像データを得る撮像装置として実現することができる。 By performing the processing as described above, the light detection device 800 can suppress the reduction in the extinction ratio of the transmitted light as described above, and can detect light with higher sensitivity. Moreover, spectral information can be obtained together with polarization information with a simpler configuration. Note that such a light detection device 800 can be realized, for example, as an imaging device that captures an image of a subject and obtains image data.
 <10.第10の実施の形態>
  <製造装置>
 次に、以上に説明したような偏光多層膜100を適用したイメージセンサの製造について説明する。
<10. Tenth Embodiment>
<Manufacturing equipment>
Next, manufacture of an image sensor to which the polarizing multilayer film 100 as described above is applied will be described.
 図30は、本技術を適用したイメージセンサを製造する製造装置の主な構成例を示すブロック図である。図30に示される製造装置850は、制御部851および製造部852を有する。 FIG. 30 is a block diagram illustrating a main configuration example of a manufacturing apparatus for manufacturing an image sensor to which the present technology is applied. A manufacturing apparatus 850 illustrated in FIG. 30 includes a control unit 851 and a manufacturing unit 852.
 制御部851は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)等を有し、製造部852の各部を制御し、イメージセンサの製造に関する制御処理を行う。例えば、制御部851のCPUは、ROMに記憶されているプログラムに従って各種の処理を実行する。また、そのCPUは、記憶部863からRAMにロードされたプログラムに従って各種の処理を実行する。RAMにはまた、CPUが各種の処理を実行するにあたって必要なデータなども適宜記憶される。 The control unit 851 has, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The control unit 851 controls each unit of the manufacturing unit 852 and performs control processing related to image sensor manufacturing. Do. For example, the CPU of the control unit 851 executes various processes according to programs stored in the ROM. In addition, the CPU executes various processes according to the program loaded from the storage unit 863 to the RAM. The RAM also appropriately stores data necessary for the CPU to execute various processes.
 製造部852は、制御部851に制御されて、イメージセンサの製造に関する処理を行う。製造部852は、フォトダイオード形成部881、配線層形成部882、多相膜形成部883、溝形成部884、平坦化膜形成部885、フィルタ形成部886、および集光レンズ形成部887を有する。 The manufacturing unit 852 is controlled by the control unit 851 and performs processing related to the manufacture of the image sensor. The manufacturing unit 852 includes a photodiode forming unit 881, a wiring layer forming unit 882, a multiphase film forming unit 883, a groove forming unit 884, a planarizing film forming unit 885, a filter forming unit 886, and a condenser lens forming unit 887. .
 フォトダイオード形成部881は、シリコン基板にフォトダイオード(光電変換素子)を形成する。配線層形成部882は、シリコン基板に配線層を形成する。多層膜形成部883は、多層膜形成層212の構成(すなわち、多層膜等)を形成する。溝形成部884は、多層膜に溝部を形成して偏光多層膜100を形成する。平坦化膜形成部885は、平坦化膜層213の構成(平坦化膜等)を形成する。フィルタ形成部886は、フィルタ層214の構成(カラーフィルタ等)を形成する。集光レンズ形成部887は、集光レンズ層215の構成(集光レンズ等)を形成する。 The photodiode forming portion 881 forms a photodiode (photoelectric conversion element) on a silicon substrate. The wiring layer forming unit 882 forms a wiring layer on the silicon substrate. The multilayer film forming unit 883 forms the configuration of the multilayer film forming layer 212 (that is, the multilayer film or the like). The groove forming portion 884 forms the polarizing multilayer film 100 by forming grooves in the multilayer film. The planarization film forming portion 885 forms the configuration of the planarization film layer 213 (such as a planarization film). The filter forming unit 886 forms the configuration of the filter layer 214 (color filter or the like). The condensing lens forming unit 887 forms the configuration of the condensing lens layer 215 (such as a condensing lens).
 これらのフォトダイオード形成部881乃至集光レンズ形成部887は、制御部821に制御され、イメージセンサを製造する各工程の処理を行う。 These photodiode forming unit 881 to condensing lens forming unit 887 are controlled by the control unit 821 and perform processing of each process for manufacturing the image sensor.
 また、製造装置850は、入力部861、出力部862、記憶部863、通信部864、およびドライブ865を有する。 The manufacturing apparatus 850 also includes an input unit 861, an output unit 862, a storage unit 863, a communication unit 864, and a drive 865.
 入力部861は、キーボード、マウス、タッチパネル、および外部入力端子などよりなり、ユーザ指示や外部からの情報の入力を受け付け、制御部851に供給する。出力部862は、CRT(Cathode Ray Tube)ディスプレイやLCD(Liquid Crystal Display)等のディスプレイ、スピーカ、並びに外部出力端子などよりなり、制御部851から供給される各種情報を画像、音声、若しくは、アナログ信号やデジタルデータとして出力する。 The input unit 861 includes a keyboard, a mouse, a touch panel, an external input terminal, and the like. The output unit 862 includes a display such as a CRT (Cathode RayubeTube) display and an LCD (Liquid Crystal Display), a speaker, and an external output terminal. The output unit 862 displays various information supplied from the control unit 851 as an image, sound, or analog. Output as a signal or digital data.
 記憶部863は、例えばフラッシュメモリ、SSD(Solid State Drive)、ハードディスク等の任意の記憶媒体を有し、制御部851から供給される情報を記憶したり、制御部851からの要求に従って、記憶している情報を読み出して供給したりする。 The storage unit 863 includes an arbitrary storage medium such as a flash memory, an SSD (Solid State Drive), and a hard disk, and stores information supplied from the control unit 851 or stores it according to a request from the control unit 851. Read and supply information.
 通信部864は、例えば、有線LAN(Local Area Network)や無線LANのインタフェースやモデムなどよりなり、インターネットを含むネットワークを介して、外部の装置との通信処理を行う。例えば、通信部864は、制御部851から供給される情報を通信相手に送信したり、通信相手から受信した情報を制御部851に供給したりする。 The communication unit 864 includes, for example, a wired LAN (Local Area Network), a wireless LAN interface, a modem, and the like, and performs communication processing with an external device via a network including the Internet. For example, the communication unit 864 transmits information supplied from the control unit 851 to the communication partner, or supplies information received from the communication partner to the control unit 851.
 ドライブ865は、必要に応じて制御部851に接続される。そして、例えば磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア871がそのドライブ865に適宜装着される。そして、そのドライブ865を介してリムーバブルメディア871から読み出されたコンピュータプログラムが、必要に応じて記憶部863にインストールされる。 The drive 865 is connected to the control unit 851 as necessary. Then, for example, a removable medium 871 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately attached to the drive 865. Then, the computer program read from the removable medium 871 via the drive 865 is installed in the storage unit 863 as necessary.
  <製造処理の流れ>
 図31のフローチャートを参照して、製造装置850が実行する、イメージセンサを製造する製造処理の流れの例を説明する。
<Processing flow>
With reference to the flowchart of FIG. 31, the example of the flow of the manufacturing process which manufactures the image sensor which the manufacturing apparatus 850 performs is demonstrated.
 製造処理が開始されると、ステップS121において、フォトダイオード形成部881は、制御部851に制御されて、外部より供給されたシリコン基板にフォトダイオード(光電変換素子)を画素毎に形成する。 When the manufacturing process is started, in step S121, the photodiode forming unit 881 is controlled by the control unit 851 to form a photodiode (photoelectric conversion element) for each pixel on a silicon substrate supplied from the outside.
 ステップS122において、配線層形成部882は、制御部851に制御されて、フォトダイオードが形成されたシリコン基板に積層するように、銅やアルミニウム等の金属を用いた多層配線を含む配線層を形成する。 In step S122, the wiring layer formation unit 882 controls the control unit 851 to form a wiring layer including a multilayer wiring using a metal such as copper or aluminum so as to be stacked on the silicon substrate on which the photodiode is formed. To do.
 ステップS123において、多層膜形成部883は、制御部851に制御されて、多層膜形成層212の構成として多層膜111を形成する。ステップS124において、溝形成部884は、ステップS123において形成された多層膜111に、溝部112を、第1の実施の形態において説明したように形成する。 In step S123, the multilayer film forming unit 883 is controlled by the control unit 851 to form the multilayer film 111 as the configuration of the multilayer film forming layer 212. In step S124, the groove forming portion 884 forms the groove portion 112 in the multilayer film 111 formed in step S123 as described in the first embodiment.
 ステップS125において、平坦化膜形成部885は、制御部851に制御されて、平坦化膜層213の構成として平坦化膜を形成する。ステップS126において、フィルタ形成部886は、制御部851に制御されて、フィルタ層214の構成としてカラーフィルタ等を形成する。ステップS127において、集光レンズ形成部887は、制御部851に制御されて、集光レンズ層215の構成として集光レンズを形成する。ステップS127の処理が終了すると、製造処理が終了する。 In step S125, the planarization film forming unit 885 is controlled by the control unit 851 to form a planarization film as the configuration of the planarization film layer 213. In step S <b> 126, the filter forming unit 886 is controlled by the control unit 851 to form a color filter or the like as the configuration of the filter layer 214. In step S <b> 127, the condensing lens forming unit 887 is controlled by the control unit 851 to form a condensing lens as a configuration of the condensing lens layer 215. When the process of step S127 ends, the manufacturing process ends.
 以上のように、製造処理を実行することにより、製造装置850は、本技術を適用した偏光多層膜100を適用したイメージセンサを生成することができる。つまり、このように製造することにより、偏光を抽出する際の透過光の消光比の低減を抑制することができるイメージセンサを生成することができる。また、より簡単な構成により偏光情報とともに分光情報を得ることができるイメージセンサを生成することができる。 As described above, by performing the manufacturing process, the manufacturing apparatus 850 can generate an image sensor to which the polarizing multilayer film 100 to which the present technology is applied is applied. That is, by manufacturing in this way, it is possible to generate an image sensor that can suppress a decrease in the extinction ratio of transmitted light when extracting polarized light. In addition, it is possible to generate an image sensor that can obtain spectral information together with polarization information with a simpler configuration.
 <11.第11の実施の形態>
  <応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置やシステムとして実現されてもよい。つまり、本技術を適用する装置やシステムが対象とする移動体は、どのような物体であってもよい。本技術を適用することにより、より有用な情報を提示することができ、それにより、より多様な状況における移動体等の物体の操作の安全性を向上させることができる。
<11. Eleventh embodiment>
<Application example>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be any type of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device or system mounted on the body. In other words, the moving body targeted by the apparatus or system to which the present technology is applied may be any object. By applying this technology, it is possible to present more useful information, thereby improving the safety of operation of an object such as a moving body in more various situations.
 図32は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図32に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 32 is a block diagram illustrating a schematic configuration example of a vehicle control system 7000 that is an example of a mobile control system to which the technology according to the present disclosure can be applied. The vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010. In the example shown in FIG. 32, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. . The communication network 7010 for connecting the plurality of control units conforms to an arbitrary standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図32では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various calculations, and a drive circuit that drives various devices to be controlled. Is provided. Each control unit includes a network I / F for communicating with other control units via a communication network 7010, and is connected to devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG. 32, as the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, an audio image output unit 7670, An in-vehicle network I / F 7680 and a storage unit 7690 are illustrated. Similarly, other control units include a microcomputer, a communication I / F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 7100 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 A vehicle state detection unit 7110 is connected to the drive system control unit 7100. The vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an operation amount of an accelerator pedal, an operation amount of a brake pedal, and steering of a steering wheel. At least one of sensors for detecting an angle, an engine speed, a rotational speed of a wheel, or the like is included. The drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, or the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 7200 can be input with radio waves or various switch signals transmitted from a portable device that substitutes for a key. The body system control unit 7200 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310 that is a power supply source of the drive motor according to various programs. For example, information such as battery temperature, battery output voltage, or remaining battery capacity is input to the battery control unit 7300 from a battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The outside information detection unit 7400 detects information outside the vehicle on which the vehicle control system 7000 is mounted. For example, the outside information detection unit 7400 is connected to at least one of the imaging unit 7410 and the outside information detection unit 7420. The imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The outside information detection unit 7420 detects, for example, current weather or an environmental sensor for detecting weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the surrounding information detection sensors.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects sunlight intensity, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. The imaging unit 7410 and the outside information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図33は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 33 shows an example of installation positions of the imaging unit 7410 and the vehicle outside information detection unit 7420. The imaging units 7910, 7912, 7914, 7916, and 7918 are provided at, for example, at least one of the front nose, the side mirror, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior of the vehicle 7900. An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900. Imaging units 7912 and 7914 provided in the side mirror mainly acquire an image of the side of the vehicle 7900. An imaging unit 7916 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 7900. The imaging unit 7918 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図33には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 FIG. 33 shows an example of shooting ranges of the respective imaging units 7910, 7912, 7914, and 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively, and the imaging range d The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, an overhead image when the vehicle 7900 is viewed from above is obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle outside information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners of the vehicle 7900 and the upper part of the windshield in the vehicle interior may be, for example, an ultrasonic sensor or a radar device. The vehicle outside information detection units 7920, 7926, and 7930 provided on the front nose, the rear bumper, the back door, and the windshield in the vehicle interior of the vehicle 7900 may be, for example, LIDAR devices. These outside information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, and the like.
 図33に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Returning to FIG. 33, the description will be continued. The vehicle exterior information detection unit 7400 causes the imaging unit 7410 to capture an image outside the vehicle and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information. The outside information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received information. The vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information. The vehicle outside information detection unit 7400 may calculate a distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 Further, the outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and combines the image data captured by the different imaging units 7410 to generate an overhead image or a panoramic image. Also good. The vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The vehicle interior information detection unit 7500 detects vehicle interior information. For example, a driver state detection unit 7510 that detects the driver's state is connected to the in-vehicle information detection unit 7500. Driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects biometric information of the driver, a microphone that collects sound in the passenger compartment, and the like. The biometric sensor is provided, for example, on a seat surface or a steering wheel, and detects biometric information of an occupant sitting on the seat or a driver holding the steering wheel. The vehicle interior information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determines whether the driver is asleep. May be. The vehicle interior information detection unit 7500 may perform a process such as a noise canceling process on the collected audio signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by a device that can be input by a passenger, such as a touch panel, a button, a microphone, a switch, or a lever. The integrated control unit 7600 may be input with data obtained by recognizing voice input through a microphone. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be. The input unit 7800 may be, for example, a camera. In that case, the passenger can input information using a gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. A passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. The storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 General-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750. General-purpose communication I / F7620 is a cellular communication protocol such as GSM (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi (registered trademark)). Other wireless communication protocols such as Bluetooth (registered trademark) may also be implemented. The general-purpose communication I / F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or an operator-specific network) via, for example, a base station or an access point. May be. The general-purpose communication I / F 7620 is a terminal (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal) that exists in the vicinity of the vehicle using, for example, P2P (Peer To Peer) technology. You may connect with.
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in vehicles. The dedicated communication I / F 7630 is a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of the lower layer IEEE 802.11p and the upper layer IEEE 1609. May be implemented. The dedicated communication I / F 7630 typically includes vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) Perform V2X communication, which is a concept that includes one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), performs positioning, and performs latitude, longitude, and altitude of the vehicle. The position information including is generated. Note that the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from a radio station installed on the road, and acquires information such as the current position, traffic jam, closed road, or required time. Note that the function of the beacon receiving unit 7650 may be included in the dedicated communication I / F 7630 described above.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle. The in-vehicle device I / F 7660 may establish a wireless connection using a wireless communication protocol such as a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB). The in-vehicle device I / F 7660 is connected to a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface), or MHL (Mobile High-definition Link) via a connection terminal (and a cable if necessary). ) Etc. may be established. The in-vehicle device 7760 may include, for example, at least one of a mobile device or a wearable device that a passenger has, or an information device that is carried into or attached to the vehicle. In-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination. In-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I / F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The in-vehicle network I / F 7680 transmits and receives signals and the like in accordance with a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 is connected via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680. The vehicle control system 7000 is controlled according to various programs based on the acquired information. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. Also good. For example, the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning. You may perform the cooperative control for the purpose. Further, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, or the like based on the acquired information on the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform the cooperative control for the purpose of driving.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 The microcomputer 7610 is information acquired via at least one of the general-purpose communication I / F 7620, the dedicated communication I / F 7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I / F 7660, and the in-vehicle network I / F 7680. The three-dimensional distance information between the vehicle and the surrounding structure or an object such as a person may be generated based on the above and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may generate a warning signal by predicting a danger such as a collision of a vehicle, approach of a pedestrian or the like or an approach to a closed road based on the acquired information. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図32の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 32, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices. Display unit 7720 may include at least one of an on-board display and a head-up display, for example. The display portion 7720 may have an AR (Augmented Reality) display function. In addition to these devices, the output device may be other devices such as headphones, wearable devices such as glasses-type displays worn by passengers, projectors, and lamps. When the output device is a display device, the display device can display the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually. Further, when the output device is an audio output device, the audio output device converts an audio signal made up of reproduced audio data or acoustic data into an analog signal and outputs it aurally.
 なお、図32に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 32, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be configured by a plurality of control units. Furthermore, the vehicle control system 7000 may include another control unit not shown. In the above description, some or all of the functions of any of the control units may be given to other control units. That is, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units. Similarly, a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may transmit / receive detection information to / from each other via the communication network 7010. .
 なお、図28および図29を用いて説明した本実施形態に係る光検出装置800の各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 Note that a computer program for realizing each function of the light detection apparatus 800 according to the present embodiment described with reference to FIGS. 28 and 29 can be implemented in any control unit or the like. It is also possible to provide a computer-readable recording medium in which such a computer program is stored. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.
 以上説明した車両制御システム7000において、図28および図29を用いて説明した本実施形態に係る光検出装置800は、図32に示した応用例の統合制御ユニット7600に適用することができる。例えば、図28を参照して説明した各構成は、統合制御ユニット7600のマイクロコンピュータ7610、記憶部7690、車載ネットワークI/F7680に相当する。例えば、統合制御ユニット7600が、撮像画像から、物体の状態に応じた視点方向の画像を生成することにより、より有用な情報を提示することができる。 In the vehicle control system 7000 described above, the photodetector 800 according to the present embodiment described with reference to FIGS. 28 and 29 can be applied to the integrated control unit 7600 of the application example illustrated in FIG. For example, each configuration described with reference to FIG. 28 corresponds to the microcomputer 7610, the storage unit 7690, and the in-vehicle network I / F 7680 of the integrated control unit 7600. For example, the integrated control unit 7600 can present more useful information by generating an image in the viewpoint direction corresponding to the state of the object from the captured image.
 また、図28を用いて説明した光検出装置800の少なくとも一部の構成要素は、図32に示した統合制御ユニット7600のためのモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、図28および図29を用いて説明した光検出装置800が、図32に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。 In addition, at least a part of the components of the light detection device 800 described with reference to FIG. 28 is a module (for example, an integrated circuit module configured with one die) for the integrated control unit 7600 illustrated in FIG. It may be realized. Alternatively, the light detection device 800 described with reference to FIGS. 28 and 29 may be realized by a plurality of control units of the vehicle control system 7000 illustrated in FIG. 32.
 なお、上述した一連の処理は、一部をハードウエアにより実行させ、他をソフトウエアにより実行させることもできる。 Note that a part of the series of processes described above can be executed by hardware, and the other can be executed by software.
  <その他>
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
<Others>
Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 また、本技術は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。 In addition, the present technology may be applied to any configuration that constitutes an apparatus or system, for example, a processor as a system LSI (Large Scale Integration), a module that uses a plurality of processors, a unit that uses a plurality of modules, etc. It can also be implemented as a set or the like to which functions are added (that is, a partial configuration of the apparatus).
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムでもある。 In this specification, the system means a set of a plurality of constituent elements (devices, modules (parts), etc.), and it does not matter whether all the constituent elements are in the same casing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a single device housing a plurality of modules in one housing are both systems. .
 また、以上において1つの装置(または1つの処理部)として説明した構成を分割し、複数の装置(または複数の処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または複数の処理部)として説明した構成をまとめて1つの装置(または1つの処理部)として構成されるようにしてもよい。また、以上において説明した各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または、ある処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。 In addition, the configuration described above as one device (or one processing unit) may be divided and configured as a plurality of devices (or a plurality of processing units). Conversely, the configurations described above as a plurality of devices (or a plurality of processing units) may be combined into a single device (or one processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit) described above. Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a device (or a processing unit) is included in the configuration of another device (or other processing unit). Also good.
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 Also, for example, the present technology can take a configuration of cloud computing in which one function is shared and processed by a plurality of devices via a network.
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。 Also, for example, the above-described program can be executed in an arbitrary device. In that case, the device may have necessary functions (functional blocks and the like) so that necessary information can be obtained.
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。 Also, for example, each step described in the above flowchart can be executed by one device or can be executed by a plurality of devices. Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus. In other words, a plurality of processes included in one step can be executed as a process of a plurality of steps. Conversely, the processing described as a plurality of steps can be collectively executed as one step.
 なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。 Note that the program executed by the computer may be executed in a time series in the order described in this specification for the processing of the steps describing the program, or in parallel or called. It may be executed individually at a necessary timing. That is, as long as no contradiction occurs, the processing of each step may be executed in an order different from the order described above. Furthermore, the processing of the steps describing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
 なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。 In addition, as long as there is no contradiction, the technologies described in this specification can be implemented independently. Of course, any of a plurality of present technologies can be used in combination. For example, part or all of the present technology described in any of the embodiments can be combined with part or all of the present technology described in other embodiments. Moreover, a part or all of the arbitrary present technology described above can be implemented in combination with other technologies not described above.
 なお、本技術は以下のような構成も取ることができる。
 (1) 光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が互いに平行に複数形成された構造を有し、前記所定の方向に電界が振動する偏光を遮断し、前記所定の方向と垂直な方向に電界が振動する偏光を透過する
 光学デバイス。
 (2) 前記多層膜は、屈折率が互いに異なる材料からなる複数の膜が積層された構造を有する
 (1)に記載の光学デバイス。
 (3) 前記多層膜は、酸化チタン膜と二酸化ケイ素膜とが交互に積層された構造を有する
 (2)に記載の光学デバイス。
 (4) 前記多層膜は、所定の波長域の光を遮断する構造を有する
 (2)または(3)に記載の光学デバイス。
 (5) 前記多層膜は、赤外光を遮断する構造を有する
 (4)に記載の光学デバイス。
 (6) 前記溝部には、低屈折率の材料の膜が形成される
 (4)または(5)に記載の光学デバイス。
 (7) 前記溝部には、二酸化ケイ素膜が形成される
 (6)に記載の光学デバイス。
 (8) 光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
 前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部と
 を備える光学センサ。
 (9) 前記検出部は、互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に前記偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出するように構成される
 (8)に記載の光学センサ。
 (10) 前記検出部は、前記偏光多層膜の前記溝部の方向が、他のいずれかの画素に形成される前記偏光多層膜の前記溝部の方向と異なる画素を有する
 (9)に記載の光学センサ。
 (11) 前記検出部は、所定の第1の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に直交する第2の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して+45degの第3の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して-45degの第4の方向の前記溝部を有する前記偏光多層膜が形成される画素とを有する
 (10)に記載の光学センサ。
 (12) 前記検出部は、前記偏光多層膜が形成されていない画素の内の少なくとも一部の画素に、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜が形成され、前記多層膜が形成される画素においては、前記多層膜を透過した前記所定の波長域以外の波長域の光を検出するように構成される
 (9)乃至(11)のいずれかに記載の光学センサ。
 (13) 前記所定の波長域は、赤外である
 (12)に記載の光学センサ。
 (14) 前記検出部は、
  前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した、前記所定の方向と垂直な方向に振動するIR偏光を検出し、
  前記多層膜が形成される画素においては前記多層膜を透過した可視光を検出する
 (12)または(13)に記載の光学センサ。
 (15) 前記複数の画素の内の少なくとも一部の画素に所定の波長域の光を透過する光学フィルタが形成される
 (9)乃至(14)のいずれかに記載の光学センサ。
 (16) 前記検出部は、前記複数の画素の内の少なくとも一部の画素に、前記偏光多層膜と、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜との両方が形成され、前記偏光多層膜および前記多層膜が形成される画素においては、前記偏光多層膜および前記多層膜を透過した、前記所定の波長域以外の波長域の、前記所定の方向と垂直な方向に電界が振動する偏光を検出するように構成される
 (9)乃至(15)のいずれかに記載の光学センサ。
 (17) 光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
 前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する第1の偏光を検出する第1の検出部と、
 前記偏光多層膜において反射した、前記所定の方向に電界が振動する第2の偏光を検出する第2の検出部と
 を備える光学センサ。
 (18) 光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に第1の方向の溝部が形成された第1の偏光多層膜と、
 前記第1の偏光多層膜の透過光の進行方向に対して所定の角度で設けられた、前記透過光の入射面から出射面に向かう方向に形成される多層膜に、前記第1の方向に対して45deg傾いた第2の方向の溝部が形成された第2の偏光多層膜と、
 前記第1の偏光多層膜の反射光の進行方向に対して所定の角度で設けられた、前記反射光の入射面から出射面に向かう方向に形成される多層膜に、前記第2の方向の溝部が形成された第3の偏光多層膜と、
 前記第1の偏光多層膜を透過して前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から+45deg傾いた方向に電界が振動する第1の偏光を検出する第1の検出部と、
 前記第1の偏光多層膜および前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から-45deg傾いた方向に電界が振動する第2の偏光を検出する第2の検出部と、
 前記第1の偏光多層膜において反射して前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の反射光の電界振動方向から+45deg傾いた方向に電界が振動する第3の偏光を検出する第3の検出部と、
 前記第1の偏光多層膜および前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の反射光の電界振動方向から-45deg傾いた方向に電界が振動する第4の偏光を検出する第4の検出部と
 を備える光学センサ。
 (19) 光を発光する発光部と、
 前記発光部より出射されて物体において反射した反射光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
 前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部と
 を備える光学センサ。
 (20) 互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出し、前記偏光多層膜が形成されていない画素においては前記光を検出することにより被写体を撮像する撮像部と、
 前記撮像部により得られた画像データに対して所定の画像処理を施す画像処理部と
 を備える撮像装置。
In addition, this technique can also take the following structures.
(1) A multilayer film formed in a direction from the light incident surface toward the light emission surface has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and blocks polarized light whose electric field vibrates in the predetermined direction. An optical device that transmits polarized light whose electric field vibrates in a direction perpendicular to the predetermined direction.
(2) The optical device according to (1), wherein the multilayer film has a structure in which a plurality of films made of materials having different refractive indexes are stacked.
(3) The optical device according to (2), wherein the multilayer film has a structure in which titanium oxide films and silicon dioxide films are alternately stacked.
(4) The optical device according to (2) or (3), wherein the multilayer film has a structure that blocks light in a predetermined wavelength range.
(5) The optical device according to (4), wherein the multilayer film has a structure that blocks infrared light.
(6) The optical device according to (4) or (5), wherein a film of a low refractive index material is formed in the groove.
(7) The optical device according to (6), wherein a silicon dioxide film is formed in the groove.
(8) a polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface toward the light exit surface;
An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
(9) The detection unit includes a plurality of pixels that detect light independently of each other, and the polarization multilayer film is formed in at least some of the pixels, and the polarization multilayer film is formed in a pixel in which the polarization multilayer film is formed. The optical sensor according to (8), configured to detect the polarized light transmitted through the film.
(10) The optical unit according to (9), wherein the detection unit includes a pixel in which a direction of the groove portion of the polarizing multilayer film is different from a direction of the groove portion of the polarizing multilayer film formed in any other pixel. Sensor.
(11) The detection unit includes the pixel in which the polarizing multilayer film having the groove part in a predetermined first direction is formed, and the polarizing multilayer having the groove part in a second direction orthogonal to the first direction. A pixel on which the film is formed, a pixel on which the polarizing multilayer film having the groove in the third direction of +45 deg with respect to the first direction is formed, and a -45 deg of the first direction with respect to the first direction. The optical sensor according to (10), further including a pixel on which the polarizing multilayer film having the groove portions in the direction of 4 is formed.
(12) The detection unit is a multilayer that blocks light in a predetermined wavelength region, which is the same as the multilayer film of the polarizing multilayer film, on at least some of the pixels in which the polarizing multilayer film is not formed. The pixel in which the film is formed and the multilayer film is formed is configured to detect light in a wavelength region other than the predetermined wavelength region that has passed through the multilayer film. (9) to (11) An optical sensor according to claim 1.
(13) The optical sensor according to (12), wherein the predetermined wavelength range is infrared.
(14) The detection unit includes:
In the pixel in which the polarizing multilayer film is formed, IR polarized light that passes through the polarizing multilayer film and vibrates in a direction perpendicular to the predetermined direction is detected.
The optical sensor according to (12) or (13), wherein visible light transmitted through the multilayer film is detected in a pixel in which the multilayer film is formed.
(15) The optical sensor according to any one of (9) to (14), wherein an optical filter that transmits light in a predetermined wavelength region is formed in at least some of the plurality of pixels.
(16) The detection unit may be configured to block, on at least some of the plurality of pixels, the polarizing multilayer film and the same multilayer film of the polarizing multilayer film that blocks light in a predetermined wavelength range. In the pixel in which both the film is formed and the polarizing multilayer film and the multilayer film are formed, the predetermined wavelength band other than the predetermined wavelength band, which is transmitted through the polarizing multilayer film and the multilayer film. The optical sensor according to any one of (9) to (15), configured to detect polarized light whose electric field vibrates in a direction perpendicular to the direction.
(17) A polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed at a predetermined angle with respect to the traveling direction of light and formed in a direction from the light incident surface toward the light emitting surface,
A first detector that detects the first polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction and transmitted through the polarizing multilayer film;
An optical sensor comprising: a second detection unit that detects the second polarized light reflected by the polarizing multilayer film and having an electric field oscillating in the predetermined direction.
(18) First polarized light in which a groove portion in the first direction is formed in a multilayer film formed at a predetermined angle with respect to the traveling direction of light and formed in a direction from the light incident surface toward the light emitting surface. A multilayer film;
A multilayer film formed at a predetermined angle with respect to the traveling direction of transmitted light of the first polarizing multilayer film and formed in a direction from the incident surface to the exit surface of the transmitted light, in the first direction. A second polarizing multilayer film in which grooves in the second direction inclined by 45 deg are formed;
The multilayer film formed at a predetermined angle with respect to the traveling direction of the reflected light of the first polarizing multilayer film and formed in the direction from the incident surface to the exit surface of the reflected light has the second direction. A third polarizing multilayer film in which grooves are formed;
The electric field oscillates in a direction inclined by +45 deg from the direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film that has been transmitted through the first polarizing multilayer film and reflected by the second polarizing multilayer film. A first detector for detecting first polarized light;
A second electric field that vibrates in a direction inclined by −45 deg from a direction perpendicular to the electric field vibration direction of the transmitted light of the first polarizing multilayer film that has passed through the first polarizing multilayer film and the second polarizing multilayer film. A second detector for detecting the polarization of
Third polarization whose electric field oscillates in a direction inclined by +45 deg from the direction of electric field oscillation of the reflected light of the first polarizing multilayer film, which is reflected by the first polarizing multilayer film and transmitted through the second polarizing multilayer film A third detection unit for detecting
Detects fourth polarized light whose electric field vibrates in a direction inclined by −45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and the second polarizing multilayer film An optical sensor comprising: a fourth detection unit.
(19) a light emitting unit that emits light;
A polarizing multilayer film in which a groove portion in a predetermined direction is formed in a multilayer film formed in a direction from the incident surface of the reflected light that is emitted from the light emitting unit and reflected by the object toward the exit surface;
An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
(20) A plurality of pixels that detect light independently from each other, and at least some of the pixels are formed with grooves in a predetermined direction in a multilayer film that is formed in a direction from the light incident surface toward the light emission surface. By detecting the polarized light transmitted through the polarizing multilayer film in a pixel in which the polarizing multilayer film is formed, and detecting the light in a pixel in which the polarizing multilayer film is not formed. An imaging unit for imaging a subject;
An image processing apparatus comprising: an image processing unit that performs predetermined image processing on image data obtained by the image capturing unit.
 100 偏光多層膜, 111 多層膜, 112 溝部, 121 SiO2膜, 122 TiO2膜, 123 SiO2膜, 200 イメージセンサ, 233 IRカットフィルタ, 250 イメージセンサ, 261 可視偏光多層膜, 262 IRカットフィルタ, 263 可視偏光フィルタ, 300 イメージセンサ, 331 IRカットフィルタ, 350 イメージセンサ, 361 オンチップカラーフィルタ, 400 イメージセンサ, 500 光学ユニット, 502 プリズム, 503 イメージセンサ, 550 光学ユニット, 600 生体認証デバイス, 601 発光部, 603 イメージセンサ, 641 オンチップカラーフィルタ, 651 台部, 652 台部, 653 遮光壁, 661 台部, 662 遮光膜, 663 ピンホール, 671 台部, 681 台部, 800 光検出装置, 812 偏光多層膜光検出部, 813 検出情報処理部, 850 製造装置, 883 多層膜形成部, 884 溝形成部 100 polarization multilayer film, 111 multilayer film, 112 groove, 121 SiO 2 film, 122 TiO 2 film, 123 SiO 2 film, 200 image sensor, 233 IR cut filter, 250 image sensor, 261 visible polarization multilayer film, 262 IR cut filter , 263 Visible polarization filter, 300 Image sensor, 331 IR cut filter, 350 Image sensor, 361 On-chip color filter, 400 Image sensor, 500 Optical unit, 502 Prism, 503 Image sensor, 550 Optical unit, 600 Biometric authentication device, 601 Light emitting part, 603 image sensor, 641 on-chip color filter, 651 base part, 652 base part, 653 light shielding wall, 661 base part, 662 light shielding film, 663 pinhole, 671 base part, 681 base part, 80 Photodetector, 812 polarizing multilayer optical detection unit, 813 detection processing section, 850 manufacturing apparatus, 883 multilayer forming portion, 884 groove forming portion

Claims (20)

  1.  光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が互いに平行に複数形成された構造を有し、前記所定の方向に電界が振動する偏光を遮断し、前記所定の方向と垂直な方向に電界が振動する偏光を透過する
     光学デバイス。
    A multilayer film formed in a direction from the light incident surface toward the light exit surface has a structure in which a plurality of grooves in a predetermined direction are formed in parallel to each other, and blocks polarized light whose electric field vibrates in the predetermined direction, An optical device that transmits polarized light whose electric field vibrates in a direction perpendicular to a predetermined direction.
  2.  前記多層膜は、屈折率が互いに異なる材料からなる複数の膜が積層された構造を有する
     請求項1に記載の光学デバイス。
    The optical device according to claim 1, wherein the multilayer film has a structure in which a plurality of films made of materials having different refractive indexes are stacked.
  3.  前記多層膜は、酸化チタン膜と二酸化ケイ素膜とが交互に積層された構造を有する
     請求項2に記載の光学デバイス。
    The optical device according to claim 2, wherein the multilayer film has a structure in which titanium oxide films and silicon dioxide films are alternately stacked.
  4.  前記多層膜は、所定の波長域の光を遮断する構造を有する
     請求項2に記載の光学デバイス。
    The optical device according to claim 2, wherein the multilayer film has a structure that blocks light in a predetermined wavelength range.
  5.  前記多層膜は、赤外光を遮断する構造を有する
     請求項4に記載の光学デバイス。
    The optical device according to claim 4, wherein the multilayer film has a structure that blocks infrared light.
  6.  前記溝部には、低屈折率の材料の膜が形成される
     請求項4に記載の光学デバイス。
    The optical device according to claim 4, wherein a film of a material having a low refractive index is formed in the groove portion.
  7.  前記溝部には、二酸化ケイ素膜が形成される
     請求項6に記載の光学デバイス。
    The optical device according to claim 6, wherein a silicon dioxide film is formed in the groove portion.
  8.  光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
     前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部と
     を備える光学センサ。
    A polarizing multilayer film in which grooves in a predetermined direction are formed in a multilayer film formed in a direction from the light incident surface toward the light exit surface;
    An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
  9.  前記検出部は、互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に前記偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出するように構成される
     請求項8に記載の光学センサ。
    The detection unit includes a plurality of pixels that detect light independently of each other, and the polarization multilayer film is formed on at least some of the pixels, and the pixel on which the polarization multilayer film is formed transmits the polarization multilayer film. The optical sensor according to claim 8, wherein the optical sensor is configured to detect the polarized light.
  10.  前記検出部は、前記偏光多層膜の前記溝部の方向が、他のいずれかの画素に形成される前記偏光多層膜の前記溝部の方向と異なる画素を有する
     請求項9に記載の光学センサ。
    The optical sensor according to claim 9, wherein the detection unit includes a pixel in which a direction of the groove portion of the polarizing multilayer film is different from a direction of the groove portion of the polarizing multilayer film formed in any other pixel.
  11.  前記検出部は、所定の第1の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に直交する第2の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して+45degの第3の方向の前記溝部を有する前記偏光多層膜が形成される画素と、前記第1の方向に対して-45degの第4の方向の前記溝部を有する前記偏光多層膜が形成される画素とを有する
     請求項10に記載の光学センサ。
    The detection unit includes a pixel on which the polarizing multilayer film having the groove part in a predetermined first direction is formed, and the polarizing multilayer film having the groove part in a second direction orthogonal to the first direction. A pixel in which the polarizing multilayer film having the groove in the third direction of +45 deg with respect to the first direction is formed, and a fourth direction of −45 deg with respect to the first direction The optical sensor according to claim 10, further comprising: a pixel on which the polarizing multilayer film having the groove is formed.
  12.  前記検出部は、前記偏光多層膜が形成されていない画素の内の少なくとも一部の画素に、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜が形成され、前記多層膜が形成される画素においては、前記多層膜を透過した前記所定の波長域以外の波長域の光を検出するように構成される
     請求項9に記載の光学センサ。
    In the detection unit, a multilayer film that blocks light in a predetermined wavelength region, which is the same as the multilayer film of the polarization multilayer film, is formed on at least some of the pixels in which the polarization multilayer film is not formed. The optical sensor according to claim 9, wherein the pixel in which the multilayer film is formed is configured to detect light in a wavelength region other than the predetermined wavelength region that is transmitted through the multilayer film.
  13.  前記所定の波長域は、赤外である
     請求項12に記載の光学センサ。
    The optical sensor according to claim 12, wherein the predetermined wavelength range is infrared.
  14.  前記検出部は、
      前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動するIR偏光を検出し、
      前記多層膜が形成される画素においては前記多層膜を透過した可視光を検出する
     請求項12に記載の光学センサ。
    The detector is
    In the pixel in which the polarizing multilayer film is formed, IR polarized light that is transmitted through the polarizing multilayer film and whose electric field vibrates in a direction perpendicular to the predetermined direction is detected.
    The optical sensor according to claim 12, wherein visible light transmitted through the multilayer film is detected in a pixel in which the multilayer film is formed.
  15.  前記複数の画素の内の少なくとも一部の画素に所定の波長域の光を透過する光学フィルタが形成される
     請求項9に記載の光学センサ。
    The optical sensor according to claim 9, wherein an optical filter that transmits light in a predetermined wavelength region is formed in at least some of the plurality of pixels.
  16.  前記検出部は、前記複数の画素の内の少なくとも一部の画素に、前記偏光多層膜と、前記偏光多層膜の前記多層膜と同一の、所定の波長域の光を遮断する多層膜との両方が形成され、前記偏光多層膜および前記多層膜が形成される画素においては、前記偏光多層膜および前記多層膜を透過した、前記所定の波長域以外の波長域の、前記所定の方向と垂直な方向に電界が振動する偏光を検出するように構成される
     請求項9に記載の光学センサ。
    The detection unit includes, on at least some of the plurality of pixels, the polarizing multilayer film and a multilayer film that blocks the light in a predetermined wavelength region that is the same as the multilayer film of the polarizing multilayer film. In the pixel in which both are formed and the polarizing multilayer film and the multilayer film are formed, the polarizing multilayer film and the multilayer film are transmitted through the polarizing multilayer film and the multilayer film, and are perpendicular to the predetermined direction in a wavelength region other than the predetermined wavelength region. The optical sensor according to claim 9, configured to detect polarized light whose electric field vibrates in any direction.
  17.  光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
     前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する第1の偏光を検出する第1の検出部と、
     前記偏光多層膜において反射した、前記所定の方向に電界が振動する第2の偏光を検出する第2の検出部と
     を備える光学センサ。
    A polarizing multilayer film in which a groove portion in a predetermined direction is formed in a multilayer film formed at a predetermined angle with respect to a light traveling direction and formed in a direction from the light incident surface toward the light emitting surface;
    A first detector that detects the first polarized light whose electric field oscillates in a direction perpendicular to the predetermined direction and transmitted through the polarizing multilayer film;
    An optical sensor comprising: a second detection unit that detects the second polarized light reflected by the polarizing multilayer film and having an electric field oscillating in the predetermined direction.
  18.  光の進行方向に対して所定の角度で設けられた、前記光の入射面から出射面に向かう方向に形成される多層膜に第1の方向の溝部が形成された第1の偏光多層膜と、
     前記第1の偏光多層膜の透過光の進行方向に対して所定の角度で設けられた、前記透過光の入射面から出射面に向かう方向に形成される多層膜に、前記第1の方向に対して45deg傾いた第2の方向の溝部が形成された第2の偏光多層膜と、
     前記第1の偏光多層膜の反射光の進行方向に対して所定の角度で設けられた、前記反射光の入射面から出射面に向かう方向に形成される多層膜に、前記第2の方向の溝部が形成された第3の偏光多層膜と、
     前記第1の偏光多層膜を透過して前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から+45deg傾いた方向に電界が振動する第1の偏光を検出する第1の検出部と、
     前記第1の偏光多層膜および前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の透過光の電界振動方向に垂直な方向から-45deg傾いた方向に電界が振動する第2の偏光を検出する第2の検出部と、
     前記第1の偏光多層膜において反射して前記第2の偏光多層膜を透過した、前記第1の偏光多層膜の反射光の電界振動方向から+45deg傾いた方向に電界が振動する第3の偏光を検出する第3の検出部と、
     前記第1の偏光多層膜および前記第2の偏光多層膜において反射した、前記第1の偏光多層膜の反射光の電界振動方向から-45deg傾いた方向に電界が振動する第4の偏光を検出する第4の検出部と
     を備える光学センサ。
    A first polarizing multilayer film in which a groove portion in a first direction is formed in a multilayer film formed at a predetermined angle with respect to the light traveling direction and formed in a direction from the light incident surface toward the light emitting surface; ,
    A multilayer film formed at a predetermined angle with respect to the traveling direction of transmitted light of the first polarizing multilayer film and formed in a direction from the incident surface to the exit surface of the transmitted light, in the first direction. A second polarizing multilayer film in which grooves in the second direction inclined by 45 deg are formed;
    The multilayer film formed at a predetermined angle with respect to the traveling direction of the reflected light of the first polarizing multilayer film and formed in the direction from the incident surface to the exit surface of the reflected light has the second direction. A third polarizing multilayer film in which grooves are formed;
    The electric field oscillates in a direction inclined by +45 deg from the direction perpendicular to the direction of electric field oscillation of the transmitted light of the first polarizing multilayer film that has been transmitted through the first polarizing multilayer film and reflected by the second polarizing multilayer film. A first detector for detecting first polarized light;
    A second electric field that vibrates in a direction inclined by −45 deg from a direction perpendicular to the electric field vibration direction of the transmitted light of the first polarizing multilayer film that has passed through the first polarizing multilayer film and the second polarizing multilayer film. A second detector for detecting the polarization of
    Third polarization whose electric field oscillates in a direction inclined by +45 deg from the direction of electric field oscillation of the reflected light of the first polarizing multilayer film, which is reflected by the first polarizing multilayer film and transmitted through the second polarizing multilayer film A third detection unit for detecting
    Detects fourth polarized light whose electric field vibrates in a direction inclined by −45 deg from the electric field vibration direction of the reflected light of the first polarizing multilayer film reflected by the first polarizing multilayer film and the second polarizing multilayer film An optical sensor comprising: a fourth detection unit.
  19.  光を発光する発光部と、
     前記発光部より出射されて物体において反射した反射光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜と、
     前記偏光多層膜を透過した、前記所定の方向と垂直な方向に電界が振動する偏光を検出する検出部と
     を備える光学センサ。
    A light emitting unit that emits light;
    A polarizing multilayer film in which a groove portion in a predetermined direction is formed in a multilayer film formed in a direction from the incident surface of the reflected light that is emitted from the light emitting unit and reflected by the object toward the exit surface;
    An optical sensor comprising: a detection unit that detects polarized light that passes through the polarizing multilayer film and in which an electric field vibrates in a direction perpendicular to the predetermined direction.
  20.  互いに独立して光を検出する画素を複数有し、少なくとも一部の画素に、光の入射面から出射面に向かう方向に形成される多層膜に所定の方向の溝部が形成された偏光多層膜が形成され、前記偏光多層膜が形成される画素においては前記偏光多層膜を透過した前記偏光を検出し、前記偏光多層膜が形成されていない画素においては前記光を検出することにより被写体を撮像する撮像部と、
     前記撮像部により得られた画像データに対して所定の画像処理を施す画像処理部と
     を備える撮像装置。
    A polarizing multilayer film having a plurality of pixels that detect light independently from each other, and a groove in a predetermined direction is formed in a multilayer film that is formed in a direction from the light incident surface to the light emitting surface in at least some of the pixels In the pixel in which the polarizing multilayer film is formed, the polarized light transmitted through the polarizing multilayer film is detected, and in the pixel in which the polarizing multilayer film is not formed, the subject is imaged by detecting the light. An imaging unit to
    An image processing apparatus comprising: an image processing unit that performs predetermined image processing on image data obtained by the image capturing unit.
PCT/JP2017/035400 2016-10-14 2017-09-29 Optical device, optical sensor, and imaging device WO2018070269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016202305A JP2018063378A (en) 2016-10-14 2016-10-14 Optical device, optical sensor, and imaging device
JP2016-202305 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070269A1 true WO2018070269A1 (en) 2018-04-19

Family

ID=61905348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035400 WO2018070269A1 (en) 2016-10-14 2017-09-29 Optical device, optical sensor, and imaging device

Country Status (2)

Country Link
JP (1) JP2018063378A (en)
WO (1) WO2018070269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126104A (en) * 2019-12-27 2021-07-16 精准基因生物科技股份有限公司 Time-of-flight polarization light sensing system and light emitter thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210325801U (en) 2018-07-18 2020-04-14 索尼半导体解决方案公司 Light receiving element and distance measuring module
JP2021175048A (en) * 2020-04-22 2021-11-01 ソニーセミコンダクタソリューションズ株式会社 Electronic apparatus
JPWO2021261107A1 (en) * 2020-06-25 2021-12-30
US20240031703A1 (en) * 2020-12-16 2024-01-25 Sony Semiconductor Solutions Corporation Light detection apparatus, light detection system, electronic equipment, and mobile body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208162A (en) * 2001-01-09 2002-07-26 Nihon University Recorded information reproducing method and apparatus
JP2004170516A (en) * 2002-11-18 2004-06-17 Canon Inc Micro structure body
JP2004170508A (en) * 2002-11-18 2004-06-17 Canon Inc Micro structural body
JP2008129352A (en) * 2006-11-21 2008-06-05 Ricoh Co Ltd Optical filter element, optical filter and method for manufacturing the filter
JP2013057769A (en) * 2011-09-08 2013-03-28 Sony Corp Solid state imaging device, imaging device, focus control method and program
US20140044393A1 (en) * 2012-08-08 2014-02-13 The University Of Texas System Board Of Regents Spectrally dense comb-like filters fashioned with thick-guided-mode resonant gratings
JP2015152835A (en) * 2014-02-17 2015-08-24 キヤノン株式会社 Wavelength selective polarizing element, optical system, and projection display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208162A (en) * 2001-01-09 2002-07-26 Nihon University Recorded information reproducing method and apparatus
JP2004170516A (en) * 2002-11-18 2004-06-17 Canon Inc Micro structure body
JP2004170508A (en) * 2002-11-18 2004-06-17 Canon Inc Micro structural body
JP2008129352A (en) * 2006-11-21 2008-06-05 Ricoh Co Ltd Optical filter element, optical filter and method for manufacturing the filter
JP2013057769A (en) * 2011-09-08 2013-03-28 Sony Corp Solid state imaging device, imaging device, focus control method and program
US20140044393A1 (en) * 2012-08-08 2014-02-13 The University Of Texas System Board Of Regents Spectrally dense comb-like filters fashioned with thick-guided-mode resonant gratings
JP2015152835A (en) * 2014-02-17 2015-08-24 キヤノン株式会社 Wavelength selective polarizing element, optical system, and projection display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126104A (en) * 2019-12-27 2021-07-16 精准基因生物科技股份有限公司 Time-of-flight polarization light sensing system and light emitter thereof

Also Published As

Publication number Publication date
JP2018063378A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
US11743604B2 (en) Imaging device and image processing system
US10812735B2 (en) Image processing device and image processing method
WO2018070269A1 (en) Optical device, optical sensor, and imaging device
JP7070423B2 (en) Image processing device and image processing method and image pickup device
JP7040447B2 (en) Image processing device and information generation device and information generation method
JP7134952B2 (en) IMAGE SENSOR AND ELECTRONIC DEVICE INCLUDING IMAGE SENSOR
US10847561B2 (en) Solid-state imaging element and method for manufacturing the same, and electronic device
WO2019163315A1 (en) Information processing device, imaging device, and imaging system
US10910289B2 (en) Electronic substrate and electronic apparatus
JP7484904B2 (en) Image pickup device, signal processing device, signal processing method, program, and image pickup device
JP7059185B2 (en) Image processing equipment, image processing method, and imaging equipment
WO2023219045A1 (en) Light-receiving device, control method, and distance measuring system
JP2023174137A (en) light detection device
JP2023152551A (en) Light detection device and electronic apparatus
WO2018135208A1 (en) Imaging device and imaging system
JP2022147021A (en) Imaging element, imaging device, and method for controlling imaging element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859595

Country of ref document: EP

Kind code of ref document: A1