WO2018070023A1 - On-load tap switching device - Google Patents

On-load tap switching device Download PDF

Info

Publication number
WO2018070023A1
WO2018070023A1 PCT/JP2016/080391 JP2016080391W WO2018070023A1 WO 2018070023 A1 WO2018070023 A1 WO 2018070023A1 JP 2016080391 W JP2016080391 W JP 2016080391W WO 2018070023 A1 WO2018070023 A1 WO 2018070023A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
switching device
load tap
tank
signal
Prior art date
Application number
PCT/JP2016/080391
Other languages
French (fr)
Japanese (ja)
Inventor
正斗 上田
健史 千切
啓 高野
裕通 田井
拓 石川
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2016/080391 priority Critical patent/WO2018070023A1/en
Publication of WO2018070023A1 publication Critical patent/WO2018070023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only

Definitions

  • the embodiment of the present invention relates to an on-load tap switching device.
  • a load tap switching device that switches a transformation ratio during power supply in a transformer that supplies power to a load.
  • the on-load tap switching device switches a voltage adjustment tap provided on the transformer by a switching switch.
  • the on-load tap switching device includes a switching switch using a semiconductor switch (semiconductor element).
  • the semiconductor switch of the switching switch is supplied with a control signal for controlling the conduction state from a control circuit outside the switching switch.
  • High voltage is applied to the tap changer when loaded during testing.
  • the on-load tap changer and the control circuit must withstand the high voltage.
  • an optical trigger type semiconductor switch is used, or an electrical trigger type semiconductor switch is used to convert an optical signal into an electrical signal in the vicinity of the electric trigger type semiconductor switch.
  • There is a method of providing a drive circuit In any of the above cases, a power source for supplying power to the gate drive circuit from the outside is necessary, and the configuration of the on-load tap switching device becomes complicated.
  • the problem to be solved by the present invention is to provide an on-load tap switching device including an electric trigger type semiconductor switch in a switching switch with a simpler configuration.
  • the on-load tap switching device includes a switching switch and an insulation mediating unit.
  • the switching switch includes a semiconductor switch, and switches the transformation ratio by switching the connection relationship with the tap selector connected to the transformer.
  • the insulation mediating unit electrically insulates the semiconductor switch from the control circuit outside the transformer housing unit that houses the transformer, and mediates a signal from the control circuit to the gate terminal of the semiconductor switch. .
  • FIG. 1 is a configuration diagram of a transformer device 1 including a load tap switching device 10 according to an embodiment.
  • the block diagram which shows an example of the thyristor drive circuit of embodiment.
  • the block diagram which shows the outline
  • the block diagram which shows the outline
  • FIG. 1 is a configuration diagram of a transformer 1 including a load tap switching device 10 according to an embodiment.
  • the transformer device 1 includes a transformer tank 2 (transformer housing portion), a transformer 3, a load tap switching device 10 (tap switching device), and a control circuit 20.
  • the transformer tank 2 accommodates the transformer 3, the on-load tap switching device 10 and the like.
  • the inside of the transformer tank 2 is filled with an in-tank medium 4 such as insulating oil or gas.
  • an in-tank medium 4 such as insulating oil or gas.
  • the transformer 3 includes a winding and a plurality of taps for voltage adjustment attached to the winding.
  • the plurality of taps are connected to the on-load tap switching device 10, respectively.
  • the voltage adjustment winding may be branched from the main winding.
  • the control circuit 20 is installed outside the transformer tank 2, for example.
  • the control circuit 20 switches the transformation ratio in the transformer 1 by supplying a control signal to the on-load tap switching device 10.
  • the on-load tap switching device 10 includes a tap selector 11, a switching switch 12, a pulse transformer 14, and a tank 15.
  • the pulse transformer 14 is an example of an insulation mediator.
  • the tap selector 11 selects a pair of taps provided in one winding of the transformer 3. For example, the pair of taps are adjacent to each other among the plurality of taps for voltage adjustment of the transformer 3.
  • the tap selector 11 brings the pair of contacts into contact with the selected pair of taps.
  • One of the contacts that are paired with the tap selector 11 is in a conductive state, and the other is in a non-conductive state.
  • the tap selector 11 performs preprocessing for the switching switch 12 to switch taps by moving a contact that is not in a conductive state to a tap to be selected by an arm or the like and bringing it into contact with the tap.
  • the switching switch 12 switches the transformation ratio by switching the connection relationship with the tap selector 11 connected to the transformer 3.
  • the switching switch 12 is controlled by the control circuit 20 after the tap selector 11 brings a contact into contact with a desired tap, and switches the effective tap.
  • the tap selector 11 and the switching switch 12 it is possible to switch the transformation ratio in the transformer 1 without interrupting the circuit to which the load (not shown) is connected.
  • an electric trigger type thyristor 121 for switching the effective tap is incorporated.
  • the thyristor 121 includes a gate terminal 1211 to which a control signal is input.
  • the gate terminal 1211 is disposed on the surface of the thyristor 121 that is molded, for example.
  • a cable for connection is fixed to the gate terminal 1211 with a screw or the like.
  • the control circuit 20 switches the transformation ratio in the transformer 1 by switching the conduction state of the thyristor 121 in the switching switch 12.
  • the thyristor 121 is an example of a semiconductor switch.
  • the thyristor 121 may be replaced with a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor), IGBT (Insulated / Gate / Bipolar / Transistor), or the like.
  • MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • IGBT Insulated / Gate / Bipolar / Transistor
  • the pulse transformer 14 forms an electromagnetic connection between the control circuit 20 and the switching switch 12.
  • a gate terminal 1211 on the thyristor 121 is connected to the secondary side of the pulse transformer 14.
  • the pulse transformer 14 mediates a signal from the control circuit 20 to the gate terminal 1211 on the thyristor 121 without obtaining electric power for controlling the thyristor 121.
  • the pulse transformer 14 electrically insulates the control circuit 20 and the thyristor 121 outside the transformer tank 2 of the transformer 3.
  • the pulse transformer 14 is installed inside the on-load tap changer 10 and is impregnated in the medium 5 in the tank. Thereby, insulation can be improved rather than the withstand voltage of the pulse transformer 14 single-piece
  • the withstand voltage of the pulse transformer 14 with respect to the ground potential and the withstand voltage between the windings of the pulse transformer 14 are higher than the withstand voltage of the tap selector 11 with respect to the ground potential. Therefore, it is possible to suppress the control circuit 20 from being damaged by the high voltage on the switching switch 12 side.
  • the tank 15 is accommodated in the transformer tank 2. At least the switching switch 12 is accommodated in one tank 15.
  • the switching switch 12 and the pulse transformer 14 are accommodated in one common tank 15.
  • the inside of the tank 15 is filled with an in-tank medium 5 that is an insulating medium such as insulating oil or gas so as to ensure electrical insulation with respect to the tank 15 such as the switching switch 12 and the pulse transformer 14. .
  • hatching of the tank medium 5 is omitted.
  • the on-load tap switching device 10 may be configured without the tank 15. In this case, the tank medium 4 and the tank medium 5 are common.
  • a high voltage with respect to the ground potential is applied to the switching switch 12 and the gate terminal 1211 of the thyristor 121 from, for example, a tap of the transformer 3.
  • the high voltage with respect to the ground potential is a voltage equal to or higher than the nominal voltage of the transformer 1, for example, a voltage equal to or higher than the withstand voltage of the tap selector 11, a voltage equal to or higher than a voltage at the withstand voltage test of the transformer 1.
  • the voltage during the withstand voltage test of the transformer 1 is defined by JEC-2200 and international standards (IEC60076-3) defined in Japan, and is a voltage several times the nominal voltage of the transformer 1 .
  • the pulse transformer 14 has an insulation performance that can withstand a voltage difference between a high potential on the secondary side and a low potential on the primary side.
  • the control circuit 20 controls the on-load tap switching device 10 according to a change in the voltage on the primary side or the secondary side of the transformer 3, and generates a desired voltage from a plurality of taps. Select a possible tap.
  • the control circuit 20 can correct the voltage variation detected on the primary side or the secondary side of the transformer 3 by this control.
  • FIG. 2 is a configuration diagram illustrating an example of the thyristor driving circuit according to the embodiment.
  • the pulse transformer 14 shown in FIG. 2 is an example in the case of including a pulse transformer main body 141 and a thyristor drive circuit 142.
  • the control circuit 20 sends a control signal to the on-load tap switching device 10 to control the thyristor 121 in the switching switch 12 to either the conduction state or the cutoff state.
  • the control circuit 20 outputs a pulse signal based on an electrical signal as the control signal.
  • the control circuit 20 includes a constant current DC power source 21.
  • the pulse signal supplied from the constant current DC power source 21 is a pulse whose current value is adjusted, and the single pulse may have a rectangular, triangular or sawtooth waveform.
  • the control circuit 20 may supply a constant voltage controlled pulse to the primary side of the pulse transformer main body 141 instead of the pulse whose current value is adjusted.
  • a thyristor 121 is connected to the secondary side of the pulse transformer main body 141 via a thyristor driving circuit 142.
  • the thyristor driving circuit 142 includes resistors (R) 1421 and 1422 and a diode 1423.
  • a signal generated on the secondary side of the pulse transformer main body 141 is divided by the resistors 1421 and 1422 and supplied to the gate of the thyristor 121.
  • the diode 1423 restricts the gate of the thyristor 121 from being reverse-biased.
  • the thyristor 121 includes a pair of thyristor elements and is connected in parallel so that their polarities are reversed.
  • a pulse transformer 14 is provided corresponding to one element of the thyristor 121.
  • the circuit shown in FIG. 2 is an example of a circuit that drives one element of the thyristor 121.
  • the thyristor drive circuit 142 is composed of a combination of passive elements and does not require a power source for operation.
  • the configuration shown in FIG. 2 shows an example of the configuration of the thyristor drive circuit 142, and may include a noise prevention element (passive element) in addition to the passive element shown.
  • the electrical signal supplied to the pulse transformer 14 by the control circuit 20 is a repetitive signal having a sufficiently high frequency with respect to the basic frequency of alternating current transformed by the transformer 3, and is an asynchronous signal with the alternating current transformed by the transformer 3. There may be.
  • an electric signal is supplied from the secondary side of the pulse transformer 14 to the gate of the thyristor 121 while the anode-cathode of the thyristor 121 is biased with a positive voltage, the thyristor 121 becomes conductive. Thereafter, the conduction state is maintained until the anode-cathode of the thyristor 121 is reverse-biased.
  • FIG. 3 is a configuration diagram illustrating an outline of the on-load tap switching device 10 of the transformer device 1 according to the embodiment.
  • the range shown in FIG. 3 exemplifies one phase among the plurality of phases of the transformer 1, and the other phases are configured in the same manner.
  • FIG. 3 shows the transformer 3, the on-load tap switching device 10, and the control circuit 20.
  • the tap winding 3W of the transformer 3 shown in FIG. 3 is provided with adjustment taps T1 to T6.
  • the tap selector 11 selects a pair of adjacent taps from the taps T1 to T6 and connects them to the output side terminals TA and TB, respectively.
  • the tap selector 11 selects any odd-numbered taps such as T1, T3, and T5 as taps connected to the terminal TA, and even-numbers such as T2, T4, and T6 as taps connected to the terminal TB. Select one of the second taps.
  • the switching switch 12 includes a thyristor 121 that functions as a switch.
  • the thyristor 121 includes two systems, an A system and a B system, which form a pair corresponding to the terminal TA and the terminal TB.
  • the A system includes three switches SA, Sa, and Sar and a resistor RA
  • the B system includes three switches Sbr, Sb, and SB and a resistor RB.
  • each of the switches SA, Sa, Sar, and the switches Sbr, Sb, SB includes a pair of thyristor elements and is connected in parallel so that the polarities of the pair of thyristor elements are inverted from each other.
  • the switch SA, the switch Sa, and the switch Sar connected in series with the resistor RA are connected in parallel with each other.
  • the system B is the same as the system A.
  • the output sides (load sides) of the system A and the system B are connected to each other.
  • FIG. 3 it is shown that it is the U phase among the three phases of UVW, and the V phase and the W phase may be similarly configured.
  • control circuit 20 sequentially supplies the pulse transformer 14 with a control signal for switching the switches SA, Sa, Sar and the switches Sbr, Sb, SB in the above order, and the tap to which the system A is connected. Switch from T3 to tap T4 to which system B is connected.
  • the on-load tap switching device 10 can switch to the selected desired tap according to an instruction from the control circuit 20.
  • the switching switch 12 that switches the transformation ratio by switching the connection relationship with the tap selector 11 that includes the thyristor 121 and that is connected to the transformer 3, and the transformer that houses the transformer 3.
  • a pulse transformer 14 that is electrically insulated from the outside of the tank 2 and connected to the control circuit 20 that is insulated from the transformer 3, and mediates a signal from the control circuit 20 to the gate terminal 1211 of the thyristor 121.
  • the on-load tap switching device 10 can control the thyristor 121 (electric trigger type semiconductor switch) with a simpler configuration.
  • the control circuit 20 of the above embodiment transmits a signal (gate signal) that can directly drive the thyristor 121 with an electrical signal without using an optical signal.
  • the on-load tap switching device 10 does not require a device that converts an optical signal into an electrical signal and a power source that supplies power to the device. Thereby, it can avoid that the tap switching apparatus 10 at the time of a load becomes a complicated structure, and can comprise the apparatus at low cost.
  • the pulse transformer 14 is impregnated in the tank medium 4 made of an insulating material, insulation reinforcement at each terminal of the pulse transformer 14 can be omitted, so that the pulse transformer 14 can be reduced in size and cost. is there.
  • the tap switching device 10A of the present embodiment is different from the tap switching device 10 of the first embodiment in the position where the pulse transformer 14 is disposed.
  • FIG. 4 is a configuration diagram of the transformer device 1A including the on-load tap switching device 10A according to the embodiment.
  • symbol is attached
  • the on-load tap switching device 10 ⁇ / b> A includes a tap selector 11, a switching switch 12, a pulse transformer 14 ⁇ / b> A, and a tank 15.
  • the tank 15 is accommodated in the transformer tank 2. At least the switching switch 12 is accommodated in one tank 15.
  • the pulse transformer 14 ⁇ / b> A is accommodated in the transformer tank 2 and disposed outside the tank 15.
  • the pulse transformer 14A insulates between the control circuit 20 and the gate terminal 1211 of the thyristor 121, and can transmit a pulse signal.
  • the side wall 2SW of the transformer tank 2 is provided with a through hole 2H for passing the control line LN1 connecting the control circuit 20 and the pulse transformer 14A.
  • the through hole 2H is blocked so that the medium 4 in the tank does not leak out of the transformer tank 2 from the through hole 2H.
  • the side wall 15SW of the tank 15 is provided with a through hole 15H for passing the control line LN2 connecting the gate terminal 1211 of the thyristor 121 and the pulse transformer 14A.
  • the through hole 15H is closed so that the medium 5 in the tank does not leak from the through hole 15H to the transformer tank 2 side.
  • the on-load tap switching device 10A has the pulse transformer 14A inside the transformer tank 2 so that the pulse transformer 14A It is impregnated in the tank medium 4.
  • the insulation of each terminal of the pulse transformer 14A is enhanced, and the insulation reinforcement of each terminal of the pulse transformer 14A can be omitted, and the pulse transformer 14A can be reduced in size and cost. It is possible.
  • the on-load tap switching device 10B of the present embodiment is different in the structure of the pulse transformer 14B from the structure of the pulse transformer 14 of the first embodiment.
  • FIG. 5 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10B according to the embodiment.
  • symbol is attached
  • the on-load tap switching device 10B includes a tap selector 11, a switching switch 12, a pulse transformer 14B, and a tank 15.
  • the pulse transformer 14B is a mold transformer having an insulating structure 140.
  • the insulating structure 140 may be formed so as to wrap the entire pulse transformer 14B with a coating formed of resin or the like.
  • the on-load tap switching device 10B can collectively mold-insulate all signal lines necessary for controlling the thyristor 121.
  • the pulse transformer 14B has a robust insulation structure. Furthermore, since the pulse transformer 14B is impregnated in the medium 5 in the tank, the insulation reinforcement of each terminal of the pulse transformer 14B can be omitted, and the pulse transformer 14B can be reduced in size and cost. Is possible.
  • the on-load tap switching device 10C of this embodiment is different in the structure of the pulse transformer 14C from the structure of the pulse transformer 14 of the second embodiment.
  • FIG. 6 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10C according to the embodiment.
  • symbol is attached
  • the on-load tap switching device 10 ⁇ / b> C includes a tap selector 11, a switching switch 12, a pulse transformer 14 ⁇ / b> C, and a tank 15.
  • the pulse transformer 14 ⁇ / b> C is a mold transformer having an insulating structure 140.
  • the insulating structure 140 may be formed so as to wrap the entire pulse transformer 14C with a coating formed of resin or the like.
  • the on-load tap switching device 10C can mold-insulate all signal lines necessary for controlling the thyristor 121 at once.
  • the pulse transformer 14C has a mold insulation structure, so that the insulation structure is robust. For this reason, the insulation reinforcement of each terminal of the pulse transformer 14C can be omitted, and the pulse transformer 14C can be reduced in size and cost.
  • the on-load tap switching device 10D of this embodiment is different from the first to fourth embodiments in that a control signal from the control circuit 20 is transmitted as an optical signal via an optical fiber.
  • FIG. 7 is a configuration diagram of a transformer device 1D including the on-load tap switching device 10D according to the embodiment.
  • symbol is attached
  • the transformer device 1 includes a transformer tank 2, a transformer 3, a load tap switching device 10 ⁇ / b> D, an EO conversion circuit 16 (EO), and a control circuit 20.
  • the EO conversion circuit 16 converts a control signal from the control circuit 20 into an optical signal and supplies the optical signal to the optical fiber 30.
  • the EO conversion circuit 16 of the present embodiment is disposed outside the transformer tank 2.
  • the control circuit 20 is connected to the on-load tap switching device 10D via the EO conversion circuit 16 and the optical fiber 30.
  • the EO conversion circuit 16 converts the electric signal supplied from the control circuit 20 into an optical signal, and supplies the optical signal to the on-load tap switching device 10D via the optical fiber 30.
  • the on-load tap switching device 10 ⁇ / b> D includes a tap selector 11, a switching switch 12, an OE conversion circuit 17 (OE), and a tank 15.
  • the OE conversion circuit 17 is an example of an insulation mediation unit.
  • the switching switch 12 and the OE conversion circuit 17 are accommodated in one common tank 15, for example.
  • the inside of the tank 15 is filled with the medium 5 in the tank so as to ensure electrical insulation with respect to the tank 15 such as the switching switch 12 and the OE conversion circuit 17.
  • FIG. 8 is a configuration diagram illustrating an outline of the on-load tap switching device 10D of the transformer device 1 according to the embodiment.
  • FIG. 8 illustrates one of a plurality of phases, and the other phases are the same. A description will be given centering on differences from FIG. 3 described above.
  • the OE conversion circuit 17 converts the optical signal acquired from the outside of its own circuit into an electric signal and drives the thyristor 121.
  • the OE conversion circuit 17 includes a signal conversion unit 171 and a power supply unit 172.
  • the signal conversion unit 171 receives the optical signal transmitted from the EO conversion circuit 16 via the optical fiber 30 and converts it into an electrical signal.
  • the OE conversion circuit 17 is electrically insulated from the outside of the transformer tank 2 of the transformer 3.
  • the OE conversion circuit 17 is insulated from the control circuit 20 by being connected via the optical fiber 30.
  • the OE conversion circuit 17 may detect light output from the optical fiber 30 with a photodiode or a phototransistor, and supply the detected signal to the gate of the thyristor 121. Based on the control signal supplied as described above, the OE conversion circuit 17 controls the thyristor 121 to either the conductive state or the cut-off state.
  • the input side of the power supply unit 172 is connected to a pair of terminals TA and TB of the tap selector 11. That is, the power supply unit 172 is connected to each tap via the terminals TA and TB corresponding to the adjustment tap.
  • the power supply unit 172 has one input terminal connected to the tap T3 via the terminal TA and the other input terminal connected to the tap T4 via the terminal TB.
  • the power supply unit 172 obtains AC power from the pair of taps, and generates power for causing the signal conversion unit 171 to function.
  • the power supply unit 172 generates a direct current of a desired voltage by transforming and rectifying an alternating voltage generated between the pair of taps T3 and T4, and the generated direct-current power is converted into a signal conversion unit.
  • the power supply unit 172 has a dielectric strength with respect to the tank 15 (ground potential).
  • the power supply unit 172 may be provided for each phase, or power may be supplied to the OE conversion circuit 17 for each phase while ensuring insulation between the phases.
  • the OE conversion circuit 17 acquires power for control from the tap winding 3 ⁇ / b> W that is contacted by the tap selector 11. That is, the OE conversion circuit 17 electrically insulates the control circuit 20 outside the transformer tank 2 that houses the transformer 3 from the thyristor 121 and transforms control power for driving the thyristor 121.
  • the signal from the control circuit 20 to the gate terminal 1211 of the thyristor 121 is mediated without being obtained from other than the device 3.
  • the tap selector 11 switches the adjustment tap
  • the input to the power supply unit 172 may be interrupted.
  • the switching switch 12 switches the tap during a period that is not a period during which the tap selector 11 switches the tap.
  • the tap selector 11 and the switching switch 12 have different tap switching timings, even when the power supplied to the power supply unit 172 is interrupted when the tap selector 11 switches the tap, the switching opening / closing is performed. There is no problem in the operation of the device 12.
  • the signal conversion unit 171 receives a control signal from the control circuit 20 and converts it during a period in which power is continuously supplied from the power supply unit 172.
  • the power of the OE conversion circuit 17 can be generated inside the on-load tap switching device 10D without receiving supply of control power from the outside, which is the same as in the first to fourth embodiments. Similarly, a complicated configuration can be avoided and the configuration can be made inexpensively.
  • the on-load tap switching device 10E according to the embodiment will be described. Unlike the fifth embodiment, the on-load tap switching device 10E of the present embodiment is disposed inside the tank 15 of the on-load tap switching device 10E, unlike the fifth embodiment.
  • FIG. 9 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10E according to the embodiment.
  • symbol is attached
  • the control circuit 20 is connected to the on-load tap switching device 10E by the control line LN.
  • the on-load tap switching device 10E includes a tap selector 11, a switching switch 12, a tank 15, an EO conversion circuit 16E, and an OE conversion circuit 17E.
  • the EO conversion circuit 16E and the OE conversion circuit 17E correspond to the EO conversion circuit 16 and the OE conversion circuit 17 described above. Hereinafter, it demonstrates centering around difference with them.
  • the switching switch 12, the EO conversion circuit 16E, and the OE conversion circuit 17E are accommodated in one tank 15.
  • the inside of the tank 15 is filled with the medium 5 in the tank so that electrical insulation with respect to the tank 15 and the EO conversion circuit 16E, such as the switching switch 12 and the OE conversion circuit 17E, is ensured.
  • the EO conversion circuit 16E converts the electrical signal supplied from the control circuit 20 into an optical signal and outputs it.
  • the OE conversion circuit 17E will be described with reference to FIG.
  • the OE conversion circuit 17E includes a signal conversion unit 171E and a power supply unit 172.
  • the signal conversion unit 171E receives the optical signal transmitted from the EO conversion circuit 16 and converts it into an electrical signal.
  • the OE conversion circuit 17E is paired with the EO conversion circuit 16E to form an optical coupler.
  • the EO conversion circuit 16E and the OE conversion circuit 17E are arranged at a predetermined interval determined from the withstand voltage, and electrical insulation is ensured.
  • the medium (not shown) that transmits light from the EO conversion circuit 16E to the OE conversion circuit 17E may be the medium 5 in the tank or another medium that transmits light.
  • the power of the OE conversion circuit 17E is generated inside the on-load tap switching device 10E without receiving the supply of control power from the outside, so that the complex as in the fifth embodiment. It can be configured at low cost. Furthermore, according to the present embodiment, it can be realized without using the optical fiber 30.
  • the switching switch includes a semiconductor switch, and switches the transformation ratio by switching the connection relationship with the tap selector connected to the transformer.
  • the insulation intermediary unit electrically insulates the semiconductor switch from the control circuit outside the transformer tank housing unit that houses the transformer, and mediates a signal from the control circuit to the gate terminal of the semiconductor switch. To do.
  • the pulse transformer 14 and the OE conversion circuit 17 are an example of an insulation mediating unit.

Abstract

An on-load tap switching device according to an aspect of the present invention has a changeover switch and an insulating mediator. The changeover switch includes a semiconductor switch, and shifts the transformation ratio by switching the connection relationship with respect to a tap selector connected to a transformer. The insulating mediator electrically insulates the semiconductor switch from a control circuit located outside a transformer storage part that stores the transformer, and mediates a signal from the control circuit to a gate terminal of the semiconductor switch.

Description

負荷時タップ切換装置Load tap changer
 本発明の実施形態は、負荷時タップ切換装置に関する。 The embodiment of the present invention relates to an on-load tap switching device.
 負荷に電力を供給する変圧器において、電力を供給中にその変圧比を切換える負荷時タップ切換装置が知られている。負荷時タップ切換装置は、変圧器に設けられている電圧調整用のタップを切換開閉器によって切換える。負荷時タップ切換装置には、半導体スイッチ(半導体素子)を用いる切換開閉器がある。切換開閉器の半導体スイッチは、切換開閉器の外部にある制御回路から、その導通状態を制御するための制御信号が供給される。 2. Description of the Related Art A load tap switching device that switches a transformation ratio during power supply in a transformer that supplies power to a load is known. The on-load tap switching device switches a voltage adjustment tap provided on the transformer by a switching switch. The on-load tap switching device includes a switching switch using a semiconductor switch (semiconductor element). The semiconductor switch of the switching switch is supplied with a control signal for controlling the conduction state from a control circuit outside the switching switch.
 負荷時タップ切換装置には、試験時等に高電圧が印加される。負荷時タップ切換装置と制御回路は、その高電圧に耐えなければならない。制御回路から光信号で制御信号を伝送することにより、負荷時タップ切換装置に印加される高電圧に対する絶縁耐圧を確保する方法が知られている。ただし、この方法を半導体スイッチで実現するには、光トリガ式の半導体スイッチを用いるか、電気トリガ式の半導体スイッチを用いて、電気トリガ式の半導体スイッチ近傍に光信号を電気信号に変換するゲート駆動回路を設けるかの方法がある。上記の何れの場合も、外部からゲート駆動回路に電力を供給する電源などが必要であり、負荷時タップ切換装置の構成が複雑になる。 高 High voltage is applied to the tap changer when loaded during testing. The on-load tap changer and the control circuit must withstand the high voltage. There is known a method for ensuring a dielectric strength voltage against a high voltage applied to a load tap changer by transmitting a control signal as an optical signal from a control circuit. However, in order to realize this method with a semiconductor switch, an optical trigger type semiconductor switch is used, or an electrical trigger type semiconductor switch is used to convert an optical signal into an electrical signal in the vicinity of the electric trigger type semiconductor switch. There is a method of providing a drive circuit. In any of the above cases, a power source for supplying power to the gate drive circuit from the outside is necessary, and the configuration of the on-load tap switching device becomes complicated.
日本国特表2012-501069号公報Japan Special Table of Contents 2012-501069 日本国特表2013-520809号公報Japanese National Table 2013-520809 日本国特表2012-523681号公報Japanese National Special Table 2012-52381 日本国特表2015-511034号公報Japan Special Table 2015-511034 日本国特許2521250号公報Japanese Patent No. 2521250 日本国特表2014-501441号公報Japan Special Table 2014-14501441 日本国特許2662434号公報Japanese Patent No. 2664434
 本発明が解決しようとする課題は、切換開閉器に電気トリガ式の半導体スイッチを含む負荷時タップ切換装置を、より簡素な構成で提供することである。 The problem to be solved by the present invention is to provide an on-load tap switching device including an electric trigger type semiconductor switch in a switching switch with a simpler configuration.
 実施形態の一態様の負荷時タップ切換装置は、切換開閉器と、絶縁仲介部と、を持つ。切換開閉器は、半導体スイッチを含み、変圧器に接続されたタップ選択器との接続関係を切り換えることで変圧比を切換える。絶縁仲介部は、前記変圧器を収容する変圧器収容部の外部にある制御回路と前記半導体スイッチとを電気的に絶縁すると共に、前記制御回路から前記半導体スイッチのゲート端子への信号を仲介する。 The on-load tap switching device according to one aspect of the embodiment includes a switching switch and an insulation mediating unit. The switching switch includes a semiconductor switch, and switches the transformation ratio by switching the connection relationship with the tap selector connected to the transformer. The insulation mediating unit electrically insulates the semiconductor switch from the control circuit outside the transformer housing unit that houses the transformer, and mediates a signal from the control circuit to the gate terminal of the semiconductor switch. .
実施形態に係る負荷時タップ切換装置10を含む変圧装置1の構成図。1 is a configuration diagram of a transformer device 1 including a load tap switching device 10 according to an embodiment. 実施形態のサイリスタ駆動回路の一例を示す構成図。The block diagram which shows an example of the thyristor drive circuit of embodiment. 実施形態の変圧装置1の負荷時タップ切換装置10の概要を示す構成図。The block diagram which shows the outline | summary of the tap switching apparatus 10 at the time of the transformer device 1 of embodiment. 第2の実施形態に係る負荷時タップ切換装置10Aを含む変圧装置1Aの構成図。The block diagram of 1 A of transformers containing the tap switching apparatus 10A at the time of load which concerns on 2nd Embodiment. 第3の実施形態に係る負荷時タップ切換装置10Bを含む変圧装置1Bの構成図。The block diagram of the transformer 1B containing the tap change apparatus 10B at the time of load which concerns on 3rd Embodiment. 第4の実施形態に係る負荷時タップ切換装置10Cを含む変圧装置1Cの構成図。The block diagram of 1 C of transformers containing 10 C of on-load tap switching apparatuses which concern on 4th Embodiment. 第5の実施形態に係る負荷時タップ切換装置10Dを含む変圧装置1Dの構成図。The lineblock diagram of transformer 1D containing tap change device 10D at the time of a load concerning a 5th embodiment. 実施形態の変圧装置1Dの負荷時タップ切換装置10Dの概要を示す構成図。The block diagram which shows the outline | summary of the tap switching apparatus 10D at the time of the transformer apparatus 1D of embodiment. 第6の実施形態に係る負荷時タップ切換装置10Eを含む変圧装置1Eの構成図。The block diagram of the transformer 1E containing the tap change apparatus 10E at the time of load which concerns on 6th Embodiment.
 以下、実施形態のタップ切換装置を、図面を参照して説明する。 Hereinafter, the tap switching device of the embodiment will be described with reference to the drawings.
(第1の実施形態)
 図1は、実施形態に係る負荷時タップ切換装置10を含む変圧装置1の構成図である。変圧装置1は、変圧器タンク2(変圧器収容部)と、変圧器3と、負荷時タップ切換装置10(タップ切換装置)と、制御回路20とを備える。
(First embodiment)
FIG. 1 is a configuration diagram of a transformer 1 including a load tap switching device 10 according to an embodiment. The transformer device 1 includes a transformer tank 2 (transformer housing portion), a transformer 3, a load tap switching device 10 (tap switching device), and a control circuit 20.
 変圧器タンク2は、変圧器3、負荷時タップ切換装置10等を収容する。例えば、変圧器タンク2の内部は、絶縁油又はガスなどのタンク内媒体4が満たされていている。これによって、負荷時タップ切換装置10と変圧器3の巻線等との電気的な絶縁性が確保される。各図においてタンク内媒体4のハッチングを省略する。 The transformer tank 2 accommodates the transformer 3, the on-load tap switching device 10 and the like. For example, the inside of the transformer tank 2 is filled with an in-tank medium 4 such as insulating oil or gas. Thus, electrical insulation between the on-load tap switching device 10 and the windings of the transformer 3 is ensured. In each figure, the hatching of the tank medium 4 is omitted.
 変圧器3は、巻線と、巻線に取り付けられた電圧調整用の複数のタップとを備える。複数のタップは、負荷時タップ切換装置10にそれぞれ接続される。なお、変圧器3では、電圧調整用の巻線が主たる巻線から分岐して形成されていてもよい。 The transformer 3 includes a winding and a plurality of taps for voltage adjustment attached to the winding. The plurality of taps are connected to the on-load tap switching device 10, respectively. In the transformer 3, the voltage adjustment winding may be branched from the main winding.
 制御回路20は、例えば、変圧器タンク2の外に設置される。制御回路20は、負荷時タップ切換装置10に制御信号を供給することにより、変圧装置1における変圧比を切換える。 The control circuit 20 is installed outside the transformer tank 2, for example. The control circuit 20 switches the transformation ratio in the transformer 1 by supplying a control signal to the on-load tap switching device 10.
 負荷時タップ切換装置10は、タップ選択器11と、切換開閉器12と、パルストランス14と、槽15とを備える。パルストランス14は、絶縁仲介部の一例である。 The on-load tap switching device 10 includes a tap selector 11, a switching switch 12, a pulse transformer 14, and a tank 15. The pulse transformer 14 is an example of an insulation mediator.
 タップ選択器11は、変圧器3の1つの巻線に設けられた1対のタップを選択する。例えば、上記の1対のタップは、変圧器3の電圧調整用の複数のタップのうち互いに隣接するものである。タップ選択器11は、選択された1対のタップに、対となる接触子をそれぞれ接触させる。タップ選択器11の対となる接触子の一方が導通状態であり、他方が非導通状態である。タップ選択器11は、導通状態でない接触子を、選択すべきタップにアーム等で移動させて、そのタップに接触させることにより、切換開閉器12がタップを切換えるための前処理をする。 The tap selector 11 selects a pair of taps provided in one winding of the transformer 3. For example, the pair of taps are adjacent to each other among the plurality of taps for voltage adjustment of the transformer 3. The tap selector 11 brings the pair of contacts into contact with the selected pair of taps. One of the contacts that are paired with the tap selector 11 is in a conductive state, and the other is in a non-conductive state. The tap selector 11 performs preprocessing for the switching switch 12 to switch taps by moving a contact that is not in a conductive state to a tap to be selected by an arm or the like and bringing it into contact with the tap.
 切換開閉器12は、変圧器3に接続されたタップ選択器11との接続関係を切り換えることで変圧比を切換える。例えば、切換開閉器12は、タップ選択器11が所望のタップに接触子を接触させた後に、制御回路20により制御され、有効タップの切換を実施する。タップ選択器11と切換開閉器12が連携することにより、負荷(不図示)が接続される回路を遮断することなく変圧装置1における変圧比を切換えることができる。 The switching switch 12 switches the transformation ratio by switching the connection relationship with the tap selector 11 connected to the transformer 3. For example, the switching switch 12 is controlled by the control circuit 20 after the tap selector 11 brings a contact into contact with a desired tap, and switches the effective tap. By cooperating the tap selector 11 and the switching switch 12, it is possible to switch the transformation ratio in the transformer 1 without interrupting the circuit to which the load (not shown) is connected.
 切換開閉器12の内部には、有効タップの切換を実施するための電気トリガ型のサイリスタ121が組み込まれている。サイリスタ121は、制御信号が入力されるゲート端子1211を備える。ゲート端子1211は、例えば、モールド形成されたサイリスタ121の表面に配置される。ゲート端子1211には結線用のケーブルがネジなどにより固定される。制御回路20は、切換開閉器12におけるサイリスタ121の導通状態を切換えることで、変圧装置1における変圧比を切換える。なお、サイリスタ121は、半導体スイッチの一例である。例えば、サイリスタ121を、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などに代えてもよい。 In the switching switch 12, an electric trigger type thyristor 121 for switching the effective tap is incorporated. The thyristor 121 includes a gate terminal 1211 to which a control signal is input. The gate terminal 1211 is disposed on the surface of the thyristor 121 that is molded, for example. A cable for connection is fixed to the gate terminal 1211 with a screw or the like. The control circuit 20 switches the transformation ratio in the transformer 1 by switching the conduction state of the thyristor 121 in the switching switch 12. The thyristor 121 is an example of a semiconductor switch. For example, the thyristor 121 may be replaced with a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor), IGBT (Insulated / Gate / Bipolar / Transistor), or the like.
 パルストランス14は、制御回路20と切換開閉器12との間の電磁的な接続を形成する。パルストランス14の2次側には、サイリスタ121上のゲート端子1211が接続される。パルストランス14は、サイリスタ121を制御するための電力を得ることなく、制御回路20からサイリスタ121上のゲート端子1211への信号を仲介する。それと共に、パルストランス14は、変圧器3の変圧器タンク2の外部にある制御回路20とサイリスタ121とを電気的に絶縁する。例えば、パルストランス14は、負荷時タップ切換装置10の内部に設置され、槽内媒体5の中に含浸されている。これにより、パルストランス14単体の絶縁耐圧よりも、絶縁性を高めることができる。例えば、対地電位に対するパルストランス14の絶縁耐圧及びパルストランス14の巻線間の絶縁耐圧は、対地電位に対するタップ選択器11の絶縁耐圧より高くなっている。これにより、切換開閉器12側の高電圧によって、制御回路20が損傷することの抑制が可能である。 The pulse transformer 14 forms an electromagnetic connection between the control circuit 20 and the switching switch 12. A gate terminal 1211 on the thyristor 121 is connected to the secondary side of the pulse transformer 14. The pulse transformer 14 mediates a signal from the control circuit 20 to the gate terminal 1211 on the thyristor 121 without obtaining electric power for controlling the thyristor 121. At the same time, the pulse transformer 14 electrically insulates the control circuit 20 and the thyristor 121 outside the transformer tank 2 of the transformer 3. For example, the pulse transformer 14 is installed inside the on-load tap changer 10 and is impregnated in the medium 5 in the tank. Thereby, insulation can be improved rather than the withstand voltage of the pulse transformer 14 single-piece | unit. For example, the withstand voltage of the pulse transformer 14 with respect to the ground potential and the withstand voltage between the windings of the pulse transformer 14 are higher than the withstand voltage of the tap selector 11 with respect to the ground potential. Thereby, it is possible to suppress the control circuit 20 from being damaged by the high voltage on the switching switch 12 side.
 槽15は、変圧器タンク2に収容される。少なくとも切換開閉器12が一つの槽15に収容されている。例えば、切換開閉器12とパルストランス14は、共通の一つの槽15に収容されている。槽15の内部は、切換開閉器12とパルストランス14等の槽15に対する電気的な絶縁性が確保されるように、絶縁油又はガスなどの絶縁媒体である槽内媒体5が満たされている。各図において槽内媒体5のハッチングを省略する。
 なお、負荷時タップ切換装置10は、槽15を持たずに構成されてもよい。この場合、タンク内媒体4と槽内媒体5とは共通になる。
The tank 15 is accommodated in the transformer tank 2. At least the switching switch 12 is accommodated in one tank 15. For example, the switching switch 12 and the pulse transformer 14 are accommodated in one common tank 15. The inside of the tank 15 is filled with an in-tank medium 5 that is an insulating medium such as insulating oil or gas so as to ensure electrical insulation with respect to the tank 15 such as the switching switch 12 and the pulse transformer 14. . In each figure, hatching of the tank medium 5 is omitted.
The on-load tap switching device 10 may be configured without the tank 15. In this case, the tank medium 4 and the tank medium 5 are common.
 なお、本実施形態において、切換開閉器12及びサイリスタ121のゲート端子1211には、例えば、変圧器3のタップから接地電位に対する高電圧が印加される。接地電位に対する高電圧とは、変圧装置1の公称電圧以上の電圧、例えば、タップ選択器11の絶縁耐圧以上の電圧、変圧装置1の絶縁耐圧試験時の電圧以上の電圧等である。例えば、変圧装置1の絶縁耐圧試験時の電圧は、日本国内で規定されているJEC-2200や国際規格(IEC60076-3)等で規定され、変圧装置1の公称電圧の数倍の電圧である。上記の通り、パルストランス14の2次側には、接地電位に対する高電圧が印加される。それに対し、パルストランス14の1次側には、接地電位に対する低電位が印加される。一次側に印加される低電位は、2次側に印加される高電位に対して十分に低い電位である。このため、パルストランス14は、2次側の高電位と1次側の低電位との電圧差に耐え得る絶縁性能を有する。 In the present embodiment, a high voltage with respect to the ground potential is applied to the switching switch 12 and the gate terminal 1211 of the thyristor 121 from, for example, a tap of the transformer 3. The high voltage with respect to the ground potential is a voltage equal to or higher than the nominal voltage of the transformer 1, for example, a voltage equal to or higher than the withstand voltage of the tap selector 11, a voltage equal to or higher than a voltage at the withstand voltage test of the transformer 1. For example, the voltage during the withstand voltage test of the transformer 1 is defined by JEC-2200 and international standards (IEC60076-3) defined in Japan, and is a voltage several times the nominal voltage of the transformer 1 . As described above, a high voltage with respect to the ground potential is applied to the secondary side of the pulse transformer 14. On the other hand, a low potential with respect to the ground potential is applied to the primary side of the pulse transformer 14. The low potential applied to the primary side is sufficiently lower than the high potential applied to the secondary side. For this reason, the pulse transformer 14 has an insulation performance that can withstand a voltage difference between a high potential on the secondary side and a low potential on the primary side.
 変圧装置1において、制御回路20は、変圧器3の1次側又は2次側の電圧の変化に応じて負荷時タップ切換装置10を制御して、複数のタップのうちから所望の電圧を生成可能なタップを選択する。制御回路20は、この制御により、変圧器3の1次側又は2次側で検出された電圧変動の補正が可能である。 In the transformer device 1, the control circuit 20 controls the on-load tap switching device 10 according to a change in the voltage on the primary side or the secondary side of the transformer 3, and generates a desired voltage from a plurality of taps. Select a possible tap. The control circuit 20 can correct the voltage variation detected on the primary side or the secondary side of the transformer 3 by this control.
 図2は、実施形態のサイリスタ駆動回路の一例を示す構成図である。図2に示すパルストランス14は、パルストランス本体141とサイリスタ駆動回路142を含む場合の一例である。 FIG. 2 is a configuration diagram illustrating an example of the thyristor driving circuit according to the embodiment. The pulse transformer 14 shown in FIG. 2 is an example in the case of including a pulse transformer main body 141 and a thyristor drive circuit 142.
 制御回路20は、負荷時タップ切換装置10に対して、制御信号を送り、切換開閉器12内のサイリスタ121を導通状態と遮断状態とのいずれかに制御する。例えば、制御回路20は、制御信号として、電気信号によるパルス信号を出力する。制御回路20は、定電流直流電源21を備える。定電流直流電源21が供給するパルス信号は、電流値が調整されたパルスであり、その単一パルスは矩形、三角又は鋸状の波形を有するものであってもよい。なお、制御回路20は、電流値が調整されたパルスに代えて、定電圧制御されたパルスを、パルストランス本体141の1次側に供給してもよい。 The control circuit 20 sends a control signal to the on-load tap switching device 10 to control the thyristor 121 in the switching switch 12 to either the conduction state or the cutoff state. For example, the control circuit 20 outputs a pulse signal based on an electrical signal as the control signal. The control circuit 20 includes a constant current DC power source 21. The pulse signal supplied from the constant current DC power source 21 is a pulse whose current value is adjusted, and the single pulse may have a rectangular, triangular or sawtooth waveform. The control circuit 20 may supply a constant voltage controlled pulse to the primary side of the pulse transformer main body 141 instead of the pulse whose current value is adjusted.
 定電流直流電源21がパルストランス本体141の1次側にパルス信号を供給することで、そのパルス信号に対応する信号がパルストランス本体141の2次側に発生する。 When the constant current DC power supply 21 supplies a pulse signal to the primary side of the pulse transformer main body 141, a signal corresponding to the pulse signal is generated on the secondary side of the pulse transformer main body 141.
 パルストランス本体141の2次側には、サイリスタ駆動回路142を介してサイリスタ121が接続される。例えば、サイリスタ駆動回路142は、抵抗(R)1421、1422と、ダイオード1423を含む。パルストランス本体141の2次側に発生した信号が、抵抗1421と抵抗1422とにより分圧されてサイリスタ121のゲートに供給される。なお、ダイオード1423は、サイリスタ121のゲートが逆バイアスされることを制限する。 A thyristor 121 is connected to the secondary side of the pulse transformer main body 141 via a thyristor driving circuit 142. For example, the thyristor driving circuit 142 includes resistors (R) 1421 and 1422 and a diode 1423. A signal generated on the secondary side of the pulse transformer main body 141 is divided by the resistors 1421 and 1422 and supplied to the gate of the thyristor 121. Note that the diode 1423 restricts the gate of the thyristor 121 from being reverse-biased.
 サイリスタ121は、組を成すサイリスタ素子を含み、互いに極性が反転するように並列に接続される。なお、サイリスタ121の1つの素子に対応させて、パルストランス14が設けられている。図2に示す回路は、サイリスタ121の1つの素子を駆動する回路の一例である。 The thyristor 121 includes a pair of thyristor elements and is connected in parallel so that their polarities are reversed. A pulse transformer 14 is provided corresponding to one element of the thyristor 121. The circuit shown in FIG. 2 is an example of a circuit that drives one element of the thyristor 121.
 上記の通り、サイリスタ駆動回路142は、受動素子の組み合わせで構成されており、動作に電源を必要としない。なお、図2に示す構成は、サイリスタ駆動回路142の構成の一例を示すものであり、図示する受動素子の他にノイズ防止用の素子(受動素子)などを含めてもよい。 As described above, the thyristor drive circuit 142 is composed of a combination of passive elements and does not require a power source for operation. The configuration shown in FIG. 2 shows an example of the configuration of the thyristor drive circuit 142, and may include a noise prevention element (passive element) in addition to the passive element shown.
 制御回路20がパルストランス14に供給する電気信号は、変圧器3が変圧する交流の基本周波数に対して十分に高い周波数の繰り返し信号であって、変圧器3が変圧する交流と非同期の信号であってもよい。サイリスタ121のアノード-カソード間が正の電圧によりバイアスされた状態で、パルストランス14の2次側からサイリスタ121のゲートに電気信号が供給されると、サイリスタ121が導通状態になる。それ以降、サイリスタ121のアノード-カソード間が逆バイアスになるまで、導通状態が維持される。 The electrical signal supplied to the pulse transformer 14 by the control circuit 20 is a repetitive signal having a sufficiently high frequency with respect to the basic frequency of alternating current transformed by the transformer 3, and is an asynchronous signal with the alternating current transformed by the transformer 3. There may be. When an electric signal is supplied from the secondary side of the pulse transformer 14 to the gate of the thyristor 121 while the anode-cathode of the thyristor 121 is biased with a positive voltage, the thyristor 121 becomes conductive. Thereafter, the conduction state is maintained until the anode-cathode of the thyristor 121 is reverse-biased.
 図3は、実施形態の変圧装置1の負荷時タップ切換装置10の概要を示す構成図である。図3に示す範囲は、変圧装置1の複数の相のうちの1相を例示するものであり、他の相も同様に構成する。図3には、変圧器3と、負荷時タップ切換装置10と、制御回路20とが記載されている。図3に示す変圧器3のタップ巻線3Wには、調整用のタップT1からT6が設けられている。タップ選択器11は、タップT1からT6のうち隣接する1対のタップを選択し、出力側の端子TAとTBにそれぞれ接続する。タップ選択器11は、端子TAに接続するタップとして、T1、T3、T5のように奇数番目のタップのいずれかを選択し、端子TBに接続するタップとして、T2、T4、T6のように偶数番目のタップのいずれかを選択する。 FIG. 3 is a configuration diagram illustrating an outline of the on-load tap switching device 10 of the transformer device 1 according to the embodiment. The range shown in FIG. 3 exemplifies one phase among the plurality of phases of the transformer 1, and the other phases are configured in the same manner. FIG. 3 shows the transformer 3, the on-load tap switching device 10, and the control circuit 20. The tap winding 3W of the transformer 3 shown in FIG. 3 is provided with adjustment taps T1 to T6. The tap selector 11 selects a pair of adjacent taps from the taps T1 to T6 and connects them to the output side terminals TA and TB, respectively. The tap selector 11 selects any odd-numbered taps such as T1, T3, and T5 as taps connected to the terminal TA, and even-numbers such as T2, T4, and T6 as taps connected to the terminal TB. Select one of the second taps.
 切換開閉器12は、スイッチとして機能するサイリスタ121を含む。サイリスタ121は、上記の端子TAと端子TBとに対応する対をなすA系とB系の2系統が含まれている。A系には、スイッチSA、Sa、Sarの3個と抵抗RAが含まれ、B系には、スイッチSbr、Sb、SBの3個と抵抗RBが含まれる。例えば、スイッチSA、Sa、Sar、及び、スイッチSbr、Sb、SBのそれぞれが、1対のサイリスタ素子を含み、1対のサイリスタ素子の極性が互いに反転するように並列に接続されている。スイッチSAと、スイッチSaと、抵抗RAと直列に接続されたスイッチSarは、それぞれが互いに並列になるように接続される。系統Bについても、系統Aと同様である。系統Aと系統Bのそれぞれの出力側(負荷側)は、互いに接続される。図3に示す例では、UVWの3相のうちU相であることを示しており、V相、W相についても同様に構成されてよい。 The switching switch 12 includes a thyristor 121 that functions as a switch. The thyristor 121 includes two systems, an A system and a B system, which form a pair corresponding to the terminal TA and the terminal TB. The A system includes three switches SA, Sa, and Sar and a resistor RA, and the B system includes three switches Sbr, Sb, and SB and a resistor RB. For example, each of the switches SA, Sa, Sar, and the switches Sbr, Sb, SB includes a pair of thyristor elements and is connected in parallel so that the polarities of the pair of thyristor elements are inverted from each other. The switch SA, the switch Sa, and the switch Sar connected in series with the resistor RA are connected in parallel with each other. The system B is the same as the system A. The output sides (load sides) of the system A and the system B are connected to each other. In the example shown in FIG. 3, it is shown that it is the U phase among the three phases of UVW, and the V phase and the W phase may be similarly configured.
 例えば、制御回路20は、スイッチSA、Sa、Sarと、スイッチSbr、Sb、SBとを、上記の順に切り換えるような制御信号をパルストランス14に順次供給して、系統Aが接続されているタップT3から系統Bが接続されているタップT4に切り換える。 For example, the control circuit 20 sequentially supplies the pulse transformer 14 with a control signal for switching the switches SA, Sa, Sar and the switches Sbr, Sb, SB in the above order, and the tap to which the system A is connected. Switch from T3 to tap T4 to which system B is connected.
 これによって、負荷時タップ切換装置10は、制御回路20からの指示によって、選択された所望のタップに切り換えることができる。 Thereby, the on-load tap switching device 10 can switch to the selected desired tap according to an instruction from the control circuit 20.
 上記の実施形態によれば、サイリスタ121を含み、変圧器3に接続されたタップ選択器11との接続関係を切り換えることで変圧比を切換える切換開閉器12と、変圧器3を収容する変圧器タンク2の外部から電気的に絶縁され、変圧器3から絶縁された制御回路20に接続され、制御回路20からサイリスタ121のゲート端子1211への信号を仲介するパルストランス14と、を備えることにより、負荷時タップ切換装置10は、より簡素な構成でサイリスタ121(電気トリガ式の半導体スイッチ)を制御することができる。 According to the above embodiment, the switching switch 12 that switches the transformation ratio by switching the connection relationship with the tap selector 11 that includes the thyristor 121 and that is connected to the transformer 3, and the transformer that houses the transformer 3. A pulse transformer 14 that is electrically insulated from the outside of the tank 2 and connected to the control circuit 20 that is insulated from the transformer 3, and mediates a signal from the control circuit 20 to the gate terminal 1211 of the thyristor 121. The on-load tap switching device 10 can control the thyristor 121 (electric trigger type semiconductor switch) with a simpler configuration.
 上記の実施形態の制御回路20は、光信号を利用せずに、電気信号でサイリスタ121を直接駆動可能な信号(ゲート信号)を伝送する。これにより、負荷時タップ切換装置10では、光信号から電気信号に変換する装置及びその装置に電力を供給する電源が不要である。これにより、負荷時タップ切換装置10が複雑な構成になることを避け、同装置を安価に構成できる。
 また、パルストランス14は、絶縁物のタンク内媒体4の中に含浸されているため、パルストランス14の各端子の絶縁補強を省略できることから、パルストランス14の小型化および省コスト化が可能である。
The control circuit 20 of the above embodiment transmits a signal (gate signal) that can directly drive the thyristor 121 with an electrical signal without using an optical signal. As a result, the on-load tap switching device 10 does not require a device that converts an optical signal into an electrical signal and a power source that supplies power to the device. Thereby, it can avoid that the tap switching apparatus 10 at the time of a load becomes a complicated structure, and can comprise the apparatus at low cost.
Further, since the pulse transformer 14 is impregnated in the tank medium 4 made of an insulating material, insulation reinforcement at each terminal of the pulse transformer 14 can be omitted, so that the pulse transformer 14 can be reduced in size and cost. is there.
(第2の実施形態)
 次に、実施形態に係る負荷時タップ切換装置10Aについて説明する。本実施形態のタップ切換装置10Aは、パルストランス14の配置される位置が第1の実施形態のタップ切換装置10とは異なるものである。
(Second Embodiment)
Next, the on-load tap switching device 10A according to the embodiment will be described. The tap switching device 10A of the present embodiment is different from the tap switching device 10 of the first embodiment in the position where the pulse transformer 14 is disposed.
 図4は、実施形態に係る負荷時タップ切換装置10Aを含む変圧装置1Aの構成図である。なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 FIG. 4 is a configuration diagram of the transformer device 1A including the on-load tap switching device 10A according to the embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.
 負荷時タップ切換装置10Aは、タップ選択器11と、切換開閉器12と、パルストランス14Aと、槽15とを備える。 The on-load tap switching device 10 </ b> A includes a tap selector 11, a switching switch 12, a pulse transformer 14 </ b> A, and a tank 15.
 槽15は、変圧器タンク2に収容される。少なくとも切換開閉器12が一つの槽15に収容されている。パルストランス14Aは、変圧器タンク2に収容され且つ槽15の外に配置される。パルストランス14Aは、制御回路20とサイリスタ121のゲート端子1211との間を絶縁し、パルス信号の伝送が可能である。 The tank 15 is accommodated in the transformer tank 2. At least the switching switch 12 is accommodated in one tank 15. The pulse transformer 14 </ b> A is accommodated in the transformer tank 2 and disposed outside the tank 15. The pulse transformer 14A insulates between the control circuit 20 and the gate terminal 1211 of the thyristor 121, and can transmit a pulse signal.
 例えば、変圧器タンク2の側壁2SWには、制御回路20とパルストランス14Aとを繋ぐ制御線LN1を通線するための貫通穴2Hが設けられている。貫通穴2Hは、タンク内媒体4が貫通穴2Hから変圧器タンク2の外に漏れないように閉塞されている。 For example, the side wall 2SW of the transformer tank 2 is provided with a through hole 2H for passing the control line LN1 connecting the control circuit 20 and the pulse transformer 14A. The through hole 2H is blocked so that the medium 4 in the tank does not leak out of the transformer tank 2 from the through hole 2H.
 また、槽15の側壁15SWには、サイリスタ121のゲート端子1211とパルストランス14Aとを繋ぐ制御線LN2を通線するための貫通穴15Hが設けられている。貫通穴15Hは、槽内媒体5が変圧器タンク2側に貫通穴15Hから漏れないように閉塞されている。 Further, the side wall 15SW of the tank 15 is provided with a through hole 15H for passing the control line LN2 connecting the gate terminal 1211 of the thyristor 121 and the pulse transformer 14A. The through hole 15H is closed so that the medium 5 in the tank does not leak from the through hole 15H to the transformer tank 2 side.
 上記の実施形態によれば、第1の実施形態と同様の効果を奏することの他、負荷時タップ切換装置10Aは、パルストランス14Aを変圧器タンク2の内部に持つことにより、パルストランス14Aがタンク内媒体4の中に含浸される。上記のように構成したことにより、パルストランス14Aの各端子の絶縁性が高まり、パルストランス14Aの各端子の絶縁補強を省略することができ、パルストランス14Aの小型化と省コスト化を実現することが可能である。 According to the above embodiment, in addition to the same effects as those of the first embodiment, the on-load tap switching device 10A has the pulse transformer 14A inside the transformer tank 2 so that the pulse transformer 14A It is impregnated in the tank medium 4. By configuring as described above, the insulation of each terminal of the pulse transformer 14A is enhanced, and the insulation reinforcement of each terminal of the pulse transformer 14A can be omitted, and the pulse transformer 14A can be reduced in size and cost. It is possible.
(第3の実施形態)
 次に、実施形態に係る負荷時タップ切換装置10Bについて説明する。本実施形態の負荷時タップ切換装置10Bは、パルストランス14Bの構造が第1の実施形態のパルストランス14の構造とは異なるものである。
(Third embodiment)
Next, the on-load tap switching device 10B according to the embodiment will be described. The on-load tap switching device 10B of the present embodiment is different in the structure of the pulse transformer 14B from the structure of the pulse transformer 14 of the first embodiment.
 図5は、実施形態に係る負荷時タップ切換装置10Bを含む変圧装置1の構成図である。なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 FIG. 5 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10B according to the embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.
 負荷時タップ切換装置10Bは、タップ選択器11と、切換開閉器12と、パルストランス14Bと、槽15とを備える。 The on-load tap switching device 10B includes a tap selector 11, a switching switch 12, a pulse transformer 14B, and a tank 15.
 パルストランス14Bは、絶縁構造140を有するモールドトランスである。絶縁構造140は、樹脂などで形成された被覆によってパルストランス14B全体を包み込むように形成されていてもよい。例えば、パルストランス14Bがモールドトランスであることで、負荷時タップ切換装置10Bは、サイリスタ121の制御に必要な全ての信号線を一括でモールド絶縁することができる。 The pulse transformer 14B is a mold transformer having an insulating structure 140. The insulating structure 140 may be formed so as to wrap the entire pulse transformer 14B with a coating formed of resin or the like. For example, when the pulse transformer 14B is a mold transformer, the on-load tap switching device 10B can collectively mold-insulate all signal lines necessary for controlling the thyristor 121.
 本実施形態によれば、パルストランス14Bは、その絶縁構造が頑強である。さらに、パルストランス14Bは、槽内媒体5の中に含浸されるため、パルストランス14Bの各端子の絶縁補強を省略することができ、パルストランス14Bの小型化と省コスト化を実現することが可能である。 According to the present embodiment, the pulse transformer 14B has a robust insulation structure. Furthermore, since the pulse transformer 14B is impregnated in the medium 5 in the tank, the insulation reinforcement of each terminal of the pulse transformer 14B can be omitted, and the pulse transformer 14B can be reduced in size and cost. Is possible.
(第4の実施形態)
 次に、実施形態に係る負荷時タップ切換装置10Cについて説明する。本実施形態の負荷時タップ切換装置10Cは、パルストランス14Cの構造が第2の実施形態のパルストランス14の構造とは異なるものである。
(Fourth embodiment)
Next, the on-load tap switching device 10C according to the embodiment will be described. The on-load tap switching device 10C of this embodiment is different in the structure of the pulse transformer 14C from the structure of the pulse transformer 14 of the second embodiment.
 図6は、実施形態に係る負荷時タップ切換装置10Cを含む変圧装置1の構成図である。なお、第2の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 FIG. 6 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10C according to the embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 2nd Embodiment, and the overlapping description is abbreviate | omitted.
 負荷時タップ切換装置10Cは、タップ選択器11と、切換開閉器12と、パルストランス14Cと、槽15とを備える。 The on-load tap switching device 10 </ b> C includes a tap selector 11, a switching switch 12, a pulse transformer 14 </ b> C, and a tank 15.
 パルストランス14Cは、絶縁構造140を有するモールドトランスである。絶縁構造140は、樹脂などで形成された被覆によってパルストランス14C全体を包み込むように形成されていてもよい。例えば、パルストランス14Cがモールドトランスであることで、負荷時タップ切換装置10Cは、サイリスタ121の制御に必要な全ての信号線を一括でモールド絶縁することができる。 The pulse transformer 14 </ b> C is a mold transformer having an insulating structure 140. The insulating structure 140 may be formed so as to wrap the entire pulse transformer 14C with a coating formed of resin or the like. For example, since the pulse transformer 14C is a mold transformer, the on-load tap switching device 10C can mold-insulate all signal lines necessary for controlling the thyristor 121 at once.
 本実施形態によれば、第2の実施形態と同様の効果を奏することの他、パルストランス14Cは、モールド絶縁構造であることにより、その絶縁構造が頑強である。このため、パルストランス14Cの各端子の絶縁補強を省略することができ、パルストランス14Cの小型化と省コスト化を実現することが可能である。 According to this embodiment, in addition to the same effects as those of the second embodiment, the pulse transformer 14C has a mold insulation structure, so that the insulation structure is robust. For this reason, the insulation reinforcement of each terminal of the pulse transformer 14C can be omitted, and the pulse transformer 14C can be reduced in size and cost.
(第5の実施形態)
 次に、実施形態に係る負荷時タップ切換装置10Dについて説明する。本実施形態の負荷時タップ切換装置10Dは、制御回路20からの制御信号が光ファイバを介して光信号で伝送されることが第1から第4の実施形態とは異なるものである。
(Fifth embodiment)
Next, the on-load tap switching device 10D according to the embodiment will be described. The on-load tap switching device 10D of this embodiment is different from the first to fourth embodiments in that a control signal from the control circuit 20 is transmitted as an optical signal via an optical fiber.
 図7は、実施形態に係る負荷時タップ切換装置10Dを含む変圧装置1Dの構成図である。なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 FIG. 7 is a configuration diagram of a transformer device 1D including the on-load tap switching device 10D according to the embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.
 変圧装置1は、変圧器タンク2と、変圧器3と、負荷時タップ切換装置10Dと、EO変換回路16(EO)と、制御回路20とを備える。
 EO変換回路16は、制御回路20からの制御信号を光信号に変換して、光ファイバ30に供給する。本実施形態のEO変換回路16は、変圧器タンク2の外部に配置される。
 制御回路20は、EO変換回路16と光ファイバ30とを介して負荷時タップ切換装置10Dに接続される。EO変換回路16は、制御回路20から供給される電気信号を光信号に変換し、光ファイバ30を介して負荷時タップ切換装置10Dに供給する。
The transformer device 1 includes a transformer tank 2, a transformer 3, a load tap switching device 10 </ b> D, an EO conversion circuit 16 (EO), and a control circuit 20.
The EO conversion circuit 16 converts a control signal from the control circuit 20 into an optical signal and supplies the optical signal to the optical fiber 30. The EO conversion circuit 16 of the present embodiment is disposed outside the transformer tank 2.
The control circuit 20 is connected to the on-load tap switching device 10D via the EO conversion circuit 16 and the optical fiber 30. The EO conversion circuit 16 converts the electric signal supplied from the control circuit 20 into an optical signal, and supplies the optical signal to the on-load tap switching device 10D via the optical fiber 30.
 負荷時タップ切換装置10Dは、タップ選択器11と、切換開閉器12と、OE変換回路17(OE)と、槽15とを備える。OE変換回路17は、絶縁仲介部の一例である。 The on-load tap switching device 10 </ b> D includes a tap selector 11, a switching switch 12, an OE conversion circuit 17 (OE), and a tank 15. The OE conversion circuit 17 is an example of an insulation mediation unit.
 切換開閉器12とOE変換回路17は、例えば、共通の一つの槽15に収容されている。槽15の内部は、切換開閉器12とOE変換回路17等の槽15に対する電気的な絶縁性が確保されるように槽内媒体5が満たされている。 The switching switch 12 and the OE conversion circuit 17 are accommodated in one common tank 15, for example. The inside of the tank 15 is filled with the medium 5 in the tank so as to ensure electrical insulation with respect to the tank 15 such as the switching switch 12 and the OE conversion circuit 17.
 図8は、実施形態の変圧装置1の負荷時タップ切換装置10Dの概要を示す構成図である。図8は、複数の相のうちの1相を例示するものであり、他の相も同様である。前述の図3と異なる点を中心に説明する。 FIG. 8 is a configuration diagram illustrating an outline of the on-load tap switching device 10D of the transformer device 1 according to the embodiment. FIG. 8 illustrates one of a plurality of phases, and the other phases are the same. A description will be given centering on differences from FIG. 3 described above.
 OE変換回路17は、自回路の外部から取得される光信号を、電気信号に変換してサイリスタ121を駆動する。例えば、OE変換回路17は、信号変換部171と電源部172とを備える。信号変換部171は、EO変換回路16から送信された光信号を、光ファイバ30を介して受信して電気信号に変換する。OE変換回路17は、変圧器3の変圧器タンク2の外部から電気的に絶縁されている。例えば、OE変換回路17は、光ファイバ30を介して接続することにより制御回路20から絶縁されている。OE変換回路17は、フォトダイオード又はフォトトランジスタによって光ファイバ30から出力される光を検出し、サイリスタ121のゲートに検出した信号を供給してもよい。OE変換回路17は、上記のように供給された制御信号に基づいて、サイリスタ121を導通状態と遮断状態とのいずれかに制御する。 The OE conversion circuit 17 converts the optical signal acquired from the outside of its own circuit into an electric signal and drives the thyristor 121. For example, the OE conversion circuit 17 includes a signal conversion unit 171 and a power supply unit 172. The signal conversion unit 171 receives the optical signal transmitted from the EO conversion circuit 16 via the optical fiber 30 and converts it into an electrical signal. The OE conversion circuit 17 is electrically insulated from the outside of the transformer tank 2 of the transformer 3. For example, the OE conversion circuit 17 is insulated from the control circuit 20 by being connected via the optical fiber 30. The OE conversion circuit 17 may detect light output from the optical fiber 30 with a photodiode or a phototransistor, and supply the detected signal to the gate of the thyristor 121. Based on the control signal supplied as described above, the OE conversion circuit 17 controls the thyristor 121 to either the conductive state or the cut-off state.
 電源部172は、その入力側がタップ選択器11の1対の端子TAとTBに接続される。つまり、電源部172は、調整用のタップに対応する端子TAとTBを介して、それぞれのタップに接続される。例えば、電源部172は、一方の入力端子が端子TAを介してタップT3に接続され、他方の入力端子が端子TBを介してタップT4に接続される。電源部172は、上記の一対のタップから交流電力を得て、信号変換部171を機能させるための電力を生成する。例えば、電源部172は、1対のタップT3とタップT4との間に生じている交流電圧を変圧して整流することで、所望の電圧の直流を生成し、生成した直流電力を信号変換部171に供給する。この電源部172は、槽15(接地電位)に対する絶縁耐力を有している。例えば、電源部172は、各相にそれぞれ設けてもよく、相間の絶縁性を確保して各相のOE変換回路17に電力を供給するようにしてもよい。この場合、OE変換回路17は、タップ選択器11により接触されるタップ巻線3Wから制御用の電力を取得する。つまり、OE変換回路17は、変圧器3を収容する変圧器タンク2の外部にある制御回路20とサイリスタ121とを電気的に絶縁すると共に、サイリスタ121を駆動するための制御用の電力を変圧器3以外から得ることなく、制御回路20からサイリスタ121のゲート端子1211への信号を仲介する。 The input side of the power supply unit 172 is connected to a pair of terminals TA and TB of the tap selector 11. That is, the power supply unit 172 is connected to each tap via the terminals TA and TB corresponding to the adjustment tap. For example, the power supply unit 172 has one input terminal connected to the tap T3 via the terminal TA and the other input terminal connected to the tap T4 via the terminal TB. The power supply unit 172 obtains AC power from the pair of taps, and generates power for causing the signal conversion unit 171 to function. For example, the power supply unit 172 generates a direct current of a desired voltage by transforming and rectifying an alternating voltage generated between the pair of taps T3 and T4, and the generated direct-current power is converted into a signal conversion unit. 171. The power supply unit 172 has a dielectric strength with respect to the tank 15 (ground potential). For example, the power supply unit 172 may be provided for each phase, or power may be supplied to the OE conversion circuit 17 for each phase while ensuring insulation between the phases. In this case, the OE conversion circuit 17 acquires power for control from the tap winding 3 </ b> W that is contacted by the tap selector 11. That is, the OE conversion circuit 17 electrically insulates the control circuit 20 outside the transformer tank 2 that houses the transformer 3 from the thyristor 121 and transforms control power for driving the thyristor 121. The signal from the control circuit 20 to the gate terminal 1211 of the thyristor 121 is mediated without being obtained from other than the device 3.
 なお、タップ選択器11が調整用のタップを切換えると、電源部172への入力が途絶える時がある。負荷時タップ切換装置10Dは、タップ選択器11がタップを切換える期間ではない期間に、切換開閉器12がタップを切換える。このように、タップ選択器11と切換開閉器12が、タップを切換えるタイミングが異なることから、タップ選択器11がタップを切換える際に、電源部172に供給される電力が途絶えても、切換開閉器12の動作に支障はない。信号変換部171は、電源部172から電力が継続して供給されている期間に、制御回路20からの制御信号を受け、それを変換する。 Note that when the tap selector 11 switches the adjustment tap, the input to the power supply unit 172 may be interrupted. In the on-load tap switching device 10D, the switching switch 12 switches the tap during a period that is not a period during which the tap selector 11 switches the tap. As described above, since the tap selector 11 and the switching switch 12 have different tap switching timings, even when the power supplied to the power supply unit 172 is interrupted when the tap selector 11 switches the tap, the switching opening / closing is performed. There is no problem in the operation of the device 12. The signal conversion unit 171 receives a control signal from the control circuit 20 and converts it during a period in which power is continuously supplied from the power supply unit 172.
 本実施形態によれば、外部から制御用電力の供給を受けることなく、OE変換回路17の電力を負荷時タップ切換装置10Dの内部で生成することができ、第1から第4の実施形態と同様に、複雑な構成を避け、安価に構成できる。 According to the present embodiment, the power of the OE conversion circuit 17 can be generated inside the on-load tap switching device 10D without receiving supply of control power from the outside, which is the same as in the first to fourth embodiments. Similarly, a complicated configuration can be avoided and the configuration can be made inexpensively.
(第6の実施形態)
 次に、実施形態に係る負荷時タップ切換装置10Eについて説明する。本実施形態の負荷時タップ切換装置10Eは、EO変換回路16を配置する位置が第5の実施形態のものとは異なり、負荷時タップ切換装置10Eの槽15の内部に配置される。
(Sixth embodiment)
Next, the on-load tap switching device 10E according to the embodiment will be described. Unlike the fifth embodiment, the on-load tap switching device 10E of the present embodiment is disposed inside the tank 15 of the on-load tap switching device 10E, unlike the fifth embodiment.
 図9は、実施形態に係る負荷時タップ切換装置10Eを含む変圧装置1の構成図である。なお、第5の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 FIG. 9 is a configuration diagram of the transformer device 1 including the on-load tap switching device 10E according to the embodiment. In addition, the same code | symbol is attached | subjected to the structure same as 5th Embodiment, and the overlapping description is abbreviate | omitted.
 制御回路20は、制御線LNにより負荷時タップ切換装置10Eに接続される。 The control circuit 20 is connected to the on-load tap switching device 10E by the control line LN.
 負荷時タップ切換装置10Eは、タップ選択器11と、切換開閉器12と、槽15と、EO変換回路16Eと、OE変換回路17Eとを備える。EO変換回路16EとOE変換回路17Eは、前述のEO変換回路16とOE変換回路17に対応する。以下、それらとの相違点を中心に説明する。 The on-load tap switching device 10E includes a tap selector 11, a switching switch 12, a tank 15, an EO conversion circuit 16E, and an OE conversion circuit 17E. The EO conversion circuit 16E and the OE conversion circuit 17E correspond to the EO conversion circuit 16 and the OE conversion circuit 17 described above. Hereinafter, it demonstrates centering around difference with them.
 切換開閉器12とEO変換回路16EとOE変換回路17Eは、一つの槽15に収容されている。槽15の内部は、切換開閉器12とOE変換回路17E等の、槽15とEO変換回路16Eに対する電気的な絶縁性が確保されるように槽内媒体5が満たされている。 The switching switch 12, the EO conversion circuit 16E, and the OE conversion circuit 17E are accommodated in one tank 15. The inside of the tank 15 is filled with the medium 5 in the tank so that electrical insulation with respect to the tank 15 and the EO conversion circuit 16E, such as the switching switch 12 and the OE conversion circuit 17E, is ensured.
 EO変換回路16Eは、制御回路20から供給される電気信号を光信号に変換して出力する。 The EO conversion circuit 16E converts the electrical signal supplied from the control circuit 20 into an optical signal and outputs it.
 図8を参照しOE変換回路17Eについて説明する。OE変換回路17Eは、信号変換部171Eと電源部172とを備える。信号変換部171Eは、EO変換回路16から送信された光信号を、受信して電気信号に変換する。OE変換回路17Eは、EO変換回路16Eと対を成し、光カプラを形成する。例えば、EO変換回路16EとOE変換回路17Eは、絶縁耐圧から定まる所定の間隔を隔てて配置され、電気的な絶縁性が確保されている。EO変換回路16EからOE変換回路17Eまで光を伝える媒体(不図示)は、槽内媒体5であってもよく、光を伝える他の媒体であってもよい。 The OE conversion circuit 17E will be described with reference to FIG. The OE conversion circuit 17E includes a signal conversion unit 171E and a power supply unit 172. The signal conversion unit 171E receives the optical signal transmitted from the EO conversion circuit 16 and converts it into an electrical signal. The OE conversion circuit 17E is paired with the EO conversion circuit 16E to form an optical coupler. For example, the EO conversion circuit 16E and the OE conversion circuit 17E are arranged at a predetermined interval determined from the withstand voltage, and electrical insulation is ensured. The medium (not shown) that transmits light from the EO conversion circuit 16E to the OE conversion circuit 17E may be the medium 5 in the tank or another medium that transmits light.
 本実施形態によれば、外部から制御用電力の供給を受けることなく、OE変換回路17Eの電力を負荷時タップ切換装置10Eの内部で生成することにより、第5の実施形態と同様に、複雑な構成を避け、安価に構成できる。さらに、本実施形態によれば、光ファイバ30を利用することなく実現が可能である。 According to the present embodiment, the power of the OE conversion circuit 17E is generated inside the on-load tap switching device 10E without receiving the supply of control power from the outside, so that the complex as in the fifth embodiment. It can be configured at low cost. Furthermore, according to the present embodiment, it can be realized without using the optical fiber 30.
 以上説明した少なくともひとつの実施形態によれば、切換開閉器と、絶縁仲介部と、を持つ。切換開閉器は、半導体スイッチを含み、変圧器に接続されたタップ選択器との接続関係を切り換えることで変圧比を切換える。絶縁仲介部は、前記変圧器を収容する変圧器タンク収容部の外部にある制御回路と前記半導体スイッチとを電気的に絶縁すると共に、前記制御回路から前記半導体スイッチのゲート端子への信号を仲介する。パルストランス14とOE変換回路17は、絶縁仲介部の一例である。 According to at least one embodiment described above, it has a switching switch and an insulation mediating part. The switching switch includes a semiconductor switch, and switches the transformation ratio by switching the connection relationship with the tap selector connected to the transformer. The insulation intermediary unit electrically insulates the semiconductor switch from the control circuit outside the transformer tank housing unit that houses the transformer, and mediates a signal from the control circuit to the gate terminal of the semiconductor switch. To do. The pulse transformer 14 and the OE conversion circuit 17 are an example of an insulation mediating unit.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1、1A、1B、1C、1D、1E…変圧装置、2…変圧器タンク(変圧器収容部)、3…変圧器、4…タンク内媒体、5…槽内媒体、10、10A、10B、10C、10D、10E…負荷時タップ切換装置、11…タップ選択器、12…切換開閉器、14、14A…パルストランス(絶縁仲介部)、15…槽、16、16E…EO変換回路(EO)、電気光変換回路)、17、17E…OE変換回路(OE、絶縁仲介部、光電気変換回路)、20…制御回路、30…光ファイバ、121…サイリスタ、1211…ゲート端子、171、171E…信号変換部、172…電源部、T1、T2、T3、T4、T5、T6…タップ(巻線接続用タップ)、3W…タップ巻線 1, 1A, 1B, 1C, 1D, 1E ... transformer, 2 ... transformer tank (transformer housing), 3 ... transformer, 4 ... medium in tank, 5 ... medium in tank, 10, 10A, 10B, 10C, 10D, 10E ... tap switching device under load, 11 ... tap selector, 12 ... switching switch, 14, 14A ... pulse transformer (insulation mediator), 15 ... tank, 16, 16E ... EO conversion circuit (EO) , Electro-optical conversion circuit), 17, 17E... OE conversion circuit (OE, insulation mediator, photoelectric conversion circuit), 20 ... control circuit, 30 ... optical fiber, 121 ... thyristor, 1211 ... gate terminal, 171, 171E ... Signal conversion unit, 172... Power supply unit, T1, T2, T3, T4, T5, T6... Tap (winding connection tap), 3W.

Claims (10)

  1.  半導体スイッチを含み、変圧器に接続されたタップ選択器との接続関係を切り換えることで変圧比を切換える切換開閉器と、
     前記変圧器を収容する変圧器収容部の外部にある制御回路と前記半導体スイッチとを電気的に絶縁すると共に、前記制御回路から前記半導体スイッチのゲート端子への信号を仲介する絶縁仲介部と、
     を備える負荷時タップ切換装置。
    A switching switch that switches the transformation ratio by switching the connection relationship with the tap selector connected to the transformer, including a semiconductor switch,
    Insulating the control circuit and the semiconductor switch outside the transformer housing unit that houses the transformer, and an insulation mediation unit that mediates a signal from the control circuit to the gate terminal of the semiconductor switch;
    An on-load tap changer.
  2.  前記絶縁仲介部は、パルストランスである、
     請求項1に記載の負荷時タップ切換装置。
    The insulation mediator is a pulse transformer;
    The on-load tap switching device according to claim 1.
  3.  前記パルストランスは、モールド絶縁構造のパルストランスである、
     請求項2に記載の負荷時タップ切換装置。
    The pulse transformer is a pulse transformer having a mold insulation structure.
    The on-load tap switching device according to claim 2.
  4.  前記切換開閉器と前記絶縁仲介部とが、前記変圧器収容部に収容される一つの槽に収容されている、
     請求項1に記載の負荷時タップ切換装置。
    The switching switch and the insulation intermediary part are accommodated in one tank accommodated in the transformer accommodating part,
    The on-load tap switching device according to claim 1.
  5.  前記切換開閉器が前記変圧器収容部に収容される一つの槽に収容され、
     前記絶縁仲介部が前記変圧器収容部に収容され且つ前記槽の外に設けられている、
     請求項1に記載の負荷時タップ切換装置。
    The switching switch is accommodated in one tank accommodated in the transformer accommodating portion,
    The insulation intermediary part is accommodated in the transformer accommodating part and provided outside the tank;
    The on-load tap switching device according to claim 1.
  6.  前記絶縁仲介部は、前記半導体スイッチを制御するための電力を前記変圧器以外から得ることなく、前記制御回路から前記半導体スイッチのゲート端子への信号を仲介する、
     請求項1に記載の負荷時タップ切換装置。
    The insulation mediation unit mediates a signal from the control circuit to the gate terminal of the semiconductor switch without obtaining power for controlling the semiconductor switch from other than the transformer,
    The on-load tap switching device according to claim 1.
  7.  前記絶縁仲介部は、光信号を電気信号に変換して前記半導体スイッチを駆動する光電気変換回路を備える
     請求項1に記載の負荷時タップ切換装置。
    The on-load tap switching device according to claim 1, wherein the insulation mediating unit includes a photoelectric conversion circuit that converts an optical signal into an electrical signal to drive the semiconductor switch.
  8.  前記光電気変換回路は、自回路の外部から取得される光信号を、電気信号に変換して前記半導体スイッチを駆動する、
     請求項7に記載の負荷時タップ切換装置。
    The photoelectric conversion circuit converts an optical signal acquired from the outside of its own circuit into an electrical signal and drives the semiconductor switch.
    The on-load tap switching device according to claim 7.
  9.  前記光電気変換回路は、前記制御回路から取得される電気信号である制御信号を光信号に変換し、前記光信号を電気信号に変換して前記半導体スイッチを駆動する、
     請求項7に記載の負荷時タップ切換装置。
    The photoelectric conversion circuit converts a control signal, which is an electrical signal acquired from the control circuit, into an optical signal, converts the optical signal into an electrical signal, and drives the semiconductor switch.
    The on-load tap switching device according to claim 7.
  10.  前記光電気変換回路は、前記タップ選択器により接触されるタップ巻線から制御用の電力を取得する、
     請求項7に記載の負荷時タップ切換装置。
    The photoelectric conversion circuit acquires power for control from a tap winding contacted by the tap selector.
    The on-load tap switching device according to claim 7.
PCT/JP2016/080391 2016-10-13 2016-10-13 On-load tap switching device WO2018070023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080391 WO2018070023A1 (en) 2016-10-13 2016-10-13 On-load tap switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080391 WO2018070023A1 (en) 2016-10-13 2016-10-13 On-load tap switching device

Publications (1)

Publication Number Publication Date
WO2018070023A1 true WO2018070023A1 (en) 2018-04-19

Family

ID=61905242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080391 WO2018070023A1 (en) 2016-10-13 2016-10-13 On-load tap switching device

Country Status (1)

Country Link
WO (1) WO2018070023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097088A (en) * 2019-12-13 2021-06-24 株式会社ダイヘン Loading state tap changer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609362A (en) * 1983-06-27 1985-01-18 Hitachi Ltd Pulse transformer
JPH0822922A (en) * 1994-07-08 1996-01-23 Hitachi Ltd Tap change-over switch when loaded and abnormality diagnosing device and method
JPH0917660A (en) * 1995-06-26 1997-01-17 Shigeisa Imoto Switch circuit
JP2002270430A (en) * 2001-03-12 2002-09-20 Toshiba Corp Pulse transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609362A (en) * 1983-06-27 1985-01-18 Hitachi Ltd Pulse transformer
JPH0822922A (en) * 1994-07-08 1996-01-23 Hitachi Ltd Tap change-over switch when loaded and abnormality diagnosing device and method
JPH0917660A (en) * 1995-06-26 1997-01-17 Shigeisa Imoto Switch circuit
JP2002270430A (en) * 2001-03-12 2002-09-20 Toshiba Corp Pulse transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097088A (en) * 2019-12-13 2021-06-24 株式会社ダイヘン Loading state tap changer
JP7312099B2 (en) 2019-12-13 2023-07-20 株式会社ダイヘン on-load tap changer

Similar Documents

Publication Publication Date Title
JP6111671B2 (en) Power converter using drive signal isolation circuit
US20150145330A1 (en) Coupling-in and coupling-out of power in a branch of a DC voltage network node comprising a longitudinal voltage source
US20080309158A1 (en) Transmission System for Interchanging Information Data Between an Electrical Load and an Upstream Converter
WO2018070023A1 (en) On-load tap switching device
CN108475998B (en) Control system for power conversion device
US5486972A (en) AC powered electrical control device with logic level control
US20160149509A1 (en) Connecting power plants to high voltage networks
US10951060B2 (en) Energy supply device to supply electrical energy for at least one terminal device and method for operating an energy supply device
WO2021001888A1 (en) Power conversion device
JP6213229B2 (en) Insulation structure of power converter
US20180159429A1 (en) Auxiliary Supply for a Switched-Mode Power Supply
US8138637B2 (en) Electrical energy transmission device
US926243A (en) System of electric-circuit control.
JP6299351B2 (en) Gate drive circuit for power converter
RU2576249C2 (en) Power- and frequency-scalable inverter
KR20170103431A (en) Gate unit testing system and testing method thereof
KR102660775B1 (en) Device for controlling semiconductor power switches in the high voltage range
US11289911B2 (en) Magnetically controllable inductor in a series circuit
JP7184708B2 (en) AC power converter
EP3105895B1 (en) Transformer for providing feeding and data signals
EP2874324A1 (en) Power supply for a submarine branching unit
JP2017099100A (en) Switching circuit
JP6666261B2 (en) Voltage converter for electric machines mounted in vehicles
US20210407731A1 (en) Magnetically controllable choke coil having central connection
JP2004319298A (en) Filament heating device of x-ray tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP