WO2018069969A1 - Elevator wireless communication system - Google Patents

Elevator wireless communication system Download PDF

Info

Publication number
WO2018069969A1
WO2018069969A1 PCT/JP2016/080130 JP2016080130W WO2018069969A1 WO 2018069969 A1 WO2018069969 A1 WO 2018069969A1 JP 2016080130 W JP2016080130 W JP 2016080130W WO 2018069969 A1 WO2018069969 A1 WO 2018069969A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
car
unit
wireless
cars
Prior art date
Application number
PCT/JP2016/080130
Other languages
French (fr)
Japanese (ja)
Inventor
真人 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/080130 priority Critical patent/WO2018069969A1/en
Publication of WO2018069969A1 publication Critical patent/WO2018069969A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators

Definitions

  • This invention relates to an elevator radio communication system.
  • a signal processing unit is provided on the elevator control device side in the car and the machine room, and the signal processing unit on the control device side is a control signal to the car. It is known that the identification code for each car is added and transmitted in a time-sharing manner, and the signal processing unit in the car transmits the control signal to the control apparatus with the identification code for each car added. (For example, refer to Patent Document 1).
  • the elevator-side radio communication device and the elevator control-side radio communication device are each frequency-modulated at different carrier frequencies.
  • Japanese Patent Application Laid-Open No. 2003-22883 discloses a method of performing wireless transmission in both directions by multiplexing each signal.
  • the present invention has been made to solve such problems.
  • the purpose is to reduce the time required for transmission when transmitting different signals to each of the two cars, and to suppress signal interference without squeezing the frequency band.
  • an elevator radio communication system capable of efficiently transmitting signals is obtained.
  • a transmission power allocating unit that allocates transmission power according to the position of each of the two cars, and each of the first signal and the second signal is assigned to the transmission power allocating unit.
  • Each of the two cars includes a wireless receiver capable of receiving a signal wirelessly transmitted by the wireless transmitter, and the first signal from the signal received by the wireless receiver.
  • the second signal A selection unit that selects a method for obtaining a signal for a car directed to the car among the first method and the second method according to a relative positional relationship between the car and the other car;
  • a self-car signal acquisition unit that acquires a self-car signal from a signal received by the wireless reception unit, and the self-car signal acquisition unit is configured when the selection unit selects the first method.
  • a signal obtained by restoring the signal received by the wireless reception unit is acquired as a signal for a car, and when the selection unit selects the second method, the signal received by the wireless reception unit is restored.
  • the radio reception unit subtracts the signal received from the signal and restores it as a signal for the car.
  • the time required for transmission can be shortened, and without pressing the frequency band, In addition, there is an effect that it is possible to efficiently transmit a signal while suppressing signal interference.
  • FIG. 1 to 5 relate to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram schematically showing the overall configuration of an elevator radio communication system
  • FIG. 2 is a radio transmission control provided in the elevator radio communication system.
  • FIG. 3 is a flowchart for explaining the operation of the transmission power allocation unit included in the radio transmission control unit
  • FIG. 4 is a block diagram of the radio reception control device included in the elevator radio communication system
  • FIG. It is a figure explaining conversion of a signal, superposition, and restoration in a communication system.
  • a first car 1a and a second car 1b are installed in a hoistway 5 of the elevator.
  • the first car 1a and the second car 1b are arranged so as to be able to move up and down in the hoistway 5 independently of each other.
  • the first car 1a and the second car 1b are collectively referred to as a car 1. That is, in the elevator hoistway 5, two cars 1 are arranged so as to be able to be raised and lowered. Each of the two cars 1 moves up and down in the hoistway 5 over a plurality of floors.
  • first main rope 4a One end of the first main rope 4a is connected to the upper end of the first car 1a. The other end of the first main rope 4a is connected to the upper end of a first counterweight (not shown).
  • a first hoisting machine 6 a is installed in the machine room at the top of the hoistway 5. An intermediate portion of the first main rope 4a is wound around a driving sheave of the first hoisting machine 6a.
  • car 1a and the 1st counterweight are suspended by the 1st main rope 4a in the shape of the slid which raises / lowers in the mutually opposite direction within the hoistway 5. As shown in FIG.
  • the second car 1b is also provided in the same manner as the first car 1a.
  • the second car 1b and the second counterweight (not shown) are suspended by the second main rope 4b in the shape of a hook that moves up and down in directions opposite to each other in the hoistway 5.
  • An intermediate portion of the second main rope 4b is wound around a driving sheave of the second hoisting machine 6b. Similar to the first hoisting machine 6a, the second hoisting machine 6b is installed in the machine room at the top of the hoistway 5.
  • the operation of the first car 1a is controlled by the first elevator control device 7a.
  • the operation of the second car 1b is controlled by the second elevator control device 7b. That is, the driving sheave of the first hoisting machine 6a is rotated by the control of the first elevator control device 7a, and the first car 1a is moved in the hoistway 5 by the rotational driving of the first hoisting machine 6a. Go up and down. Further, the driving sheave of the second hoisting machine 6b is rotated by the control of the second elevator control device 7b, and the second car 1b is moved in the hoistway 5 by the rotational driving of the second hoisting machine 6b. Go up and down.
  • a radio transmission unit 10 is installed in the hoistway 5.
  • the wireless transmission unit 10 is installed on the top of the hoistway 5 toward the hoistway 5.
  • the wireless transmission unit 10 can transmit a signal wirelessly in the hoistway 5.
  • the operation of the wireless transmission unit 10 is controlled by the wireless transmission control device 20.
  • the configuration of the wireless transmission control device 20 will be described with reference to FIG.
  • the wireless transmission control device 20 includes a car position acquisition unit 21, a transmission power allocation unit 22, a storage unit 23, a conversion unit 24, and a superimposition unit 25.
  • the car position acquisition unit 21 acquires the respective positions of the two cars 1.
  • the respective positions of the two cars 1 can be obtained from the first elevator control device 7a and the second elevator control device 7b.
  • an encoder (not shown) is attached to each sheave of the first hoisting machine 6a and the second hoisting machine 6b.
  • This encoder outputs, for example, a pulsed signal according to the rotational phase angle of the sheave. By counting the number of pulses of the pulse signal output from the encoder, the amount of rotation of the sheave can be detected.
  • the elevator is provided with a door zone detector (not shown).
  • the door zone detector is for detecting that each car 1 is in the door zone of each floor.
  • the door zone is a range of the position of the car 1 where the car 1 can land on the landing of each floor and open and close the door of the elevator.
  • the 1st elevator control device 7a and the 2nd elevator control device 7b are the amount of rotation of each sheave of the 1st hoisting machine 6a and the 2nd hoisting machine 6b, and the output of a door zone detector. Based on this, the respective positions of the first car 1a and the second car 1b can be detected.
  • the car position acquisition unit 21 acquires the position of the first car 1a detected by the first elevator control device 7a and the position of the second car 1b detected by the second elevator control device 7b in this way.
  • the transmission power allocating unit 22 responds to each position of the two cars 1 with respect to each of the first signal Sa directed to one of the two cars 1 and the second signal Sb directed to the other. Assign transmit power.
  • the first signal Sa is a signal directed to the first car 1a
  • the second signal Sb is a signal directed to the second car 1b.
  • the transmission power allocation unit 22 determines the power Pa to be allocated to the first signal Sa and the power Pb to be allocated to the second signal Sb by the following equations (1) and (2), respectively.
  • P is the total transmission power transmitted from the wireless transmission unit 10
  • is a power allocation coefficient.
  • the total transmission power P transmitted from the wireless transmission unit 10 is a constant determined by the specifications of the wireless transmission unit 10 and the like.
  • the power allocation coefficient ⁇ takes a value in the range of 0 ⁇ ⁇ 1.
  • the power allocation coefficient ⁇ is determined according to the relative positional relationship between the two cars 1. For example, when the first car 1a is closer to the wireless transmission unit 10 than the second car 1b, the power allocation coefficient ⁇ ⁇ 0.5. Further, when the first car 1a is located farther from the wireless transmission unit 10 than the second car 1b, the power allocation coefficient ⁇ > 0.5. That is, the power allocated to the car 1 located closer to the wireless transmission unit 10 is reduced, and the power allocated to the car 1 located farther from the wireless transmission unit 10 is increased.
  • the relative positional relationship between the two cars 1 is obtained by using the respective positions of the two cars 1 acquired by the car position acquisition unit 21.
  • the power allocation coefficient table is stored in the storage unit 23 in advance.
  • values of the power allocation coefficient ⁇ corresponding to the relative positional relationship between the two cars 1 are stored in advance.
  • a specific method for predetermining the value of the power allocation coefficient ⁇ corresponding to each of the relative positional relationships of the two cars 1 will be described later.
  • step S1 the transmission power allocation unit 22 determines that the first car 1a and the second car 1b are at the same position, that is, on the same floor, based on the position of the car 1 acquired by the car position acquisition unit 21. Check whether or not. If the first car 1a and the second car 1b are on the same floor, the process proceeds to step S2.
  • step S2 the transmission power allocation unit 22 sets the power allocation coefficient ⁇ to 0.5. And transmission power is allocated with respect to each of 1st signal Sa and 2nd signal Sb like (1) Formula and (2) Formula.
  • step S3 the transmission power allocation unit 22 refers to the power allocation coefficient table stored in the storage unit 23, and is stored corresponding to the relative positional relationship between the first car 1a and the second car 1b. Select a value for the power allocation coefficient ⁇ . Then, using the value of the selected power allocation coefficient ⁇ , transmission power is allocated to each of the first signal Sa and the second signal Sb, as in Expression (1) and Expression (2).
  • the conversion unit 24 converts each of the first signal Sa and the second signal Sb according to the transmission power allocated by the transmission power allocation unit 22.
  • the conversion unit 24 expands or compresses the signal amplitude of each of the first signal Sa and the second signal Sb according to the transmission power allocated by the transmission power allocation unit 22.
  • the converted signal of the first signal Sa is S′a
  • the converted signal of the second signal Sb is S′b
  • the converted S′a and S′b are expressed by the equations (1) and (2).
  • the formula it can be expressed as the following formula (3) and formula (4).
  • the superimposing unit 25 superimposes the first signal Sa and the second signal Sb converted by the converting unit 24.
  • the first signal Sa converted by the conversion unit 24 is S′a.
  • the second signal Sa converted by the conversion unit 24 is S′b. Therefore, by using the equations (3) and (4), the signal x superimposed by the superimposing unit 25 can be expressed as the following equation (5).
  • the wireless transmission unit 10 wirelessly transmits the signal x superimposed by the superimposition unit 25. Therefore, the wireless transmission unit 10 can wirelessly transmit the first signal Sa and the second signal Sb simultaneously in the same frequency band.
  • the transmission rate R when the signal x superimposed by the superimposing unit 25 is transmitted wirelessly can be expressed by the following equation (6).
  • ha is an attenuation constant for the first car 1a of the radio signal.
  • hb is an attenuation constant for the second car 1b of the radio signal.
  • the value of the power allocation coefficient ⁇ corresponding to each of the relative positional relationships of the two cars 1 is determined using the equation (6). That is, the power allocation coefficient ⁇ is determined to be a value that maximizes the value of the transmission rate R expressed by the equation (6).
  • the attenuation constants ha and hb are determined according to the distance between the wireless transmission unit 10 and a wireless reception unit 2 described later included in each car 1. That is, if the position of the first car 1a is determined, ha is also determined. If the position of the second car 1b is determined, hb is also determined. Therefore, when obtaining the power allocation coefficient ⁇ for the relative positional relationship between two cars 1, these attenuation constants ha and hb can be handled as constants. Further, the total transmission power P is a constant determined by the specifications of the wireless transmission unit 10 as described above. Therefore, the value of the power allocation coefficient ⁇ that maximizes the value of the transmission rate R expressed by the equation (6) can be determined.
  • the first wireless receiver 2a is installed in the first car 1a.
  • the first wireless reception unit 2a can receive a signal transmitted by the wireless transmission unit 10 wirelessly.
  • the second car 1b is provided with a second radio receiving unit 2b.
  • the second radio reception unit 2b can receive a signal transmitted by the radio transmission unit 10 wirelessly.
  • the first wireless receiving unit 2a and the second wireless receiving unit 2b are collectively referred to as a wireless receiving unit 2. Accordingly, each of the two cars 1 includes a wireless receiver 2 that can receive a signal transmitted wirelessly by the wireless transmitter 10.
  • the first car 1a is provided with a first radio reception control device 100a.
  • the first radio reception control device 100a controls the operation of the first radio reception unit 2a.
  • a second radio reception control device 100b is installed in the second car 1b.
  • the second radio reception control device 100b controls the operation of the second radio reception unit 2b.
  • the first radio reception control device 100a and the second radio reception control device 100b are collectively referred to as the radio reception control device 100.
  • each of the two cars 1 includes a radio reception control device 100 that controls the operation of the radio reception unit 2 of the car 1.
  • the radio reception control apparatus 100 includes a car relative positional relationship acquisition unit 110, a selection unit 120, and a signal acquisition unit 130 for the own car.
  • the car relative positional relationship acquisition unit 110 acquires the relative positional relationship between the car and the other car.
  • the own car is the car 1 of the two cars 1 (the first car 1a and the second car 1b) in which the wireless reception control device 100 of interest is provided. is there.
  • the other car is the car 1 that is not the own car among the two cars 1 (the first car 1a and the second car 1b).
  • the car relative positional relationship acquisition unit 110 includes a self-car position acquisition unit 111 and another car position acquisition unit 112.
  • the own car position acquisition unit 111 acquires the position of the own car from, for example, one of the first elevator control device 7a and the second elevator control device 7b that controls the own car.
  • the other car position acquisition unit 112 acquires the position of the other car from, for example, the first elevator control device 7a and the second elevator control device 7b that control the other car.
  • the car relative position relationship acquisition unit 110 calculates the relative of the car and the other car from the position of the car acquired by the car position acquisition unit 111 and the position of the other car acquired by the other car position acquisition unit 112. Find the positional relationship.
  • the wireless transmission unit 10 includes the car position acquisition unit 21 that acquires the positions of the two cars 1. Therefore, based on the information acquired by the car position acquisition unit 21, the car relative position relationship acquisition unit 110 may acquire the relative position relationship of each car and other cars.
  • the wireless transmission unit 10 transmits information on the relative positional relationship between the two cars 1 obtained from the car 1 acquired by the car position acquisition unit 21 together with the signal superimposed by the superimposition unit 25. . Then, the car relative position relationship acquisition unit 110 acquires the relative position relationship between the two cars 1 from the information on the relative position relationship between the two cars 1 received by the wireless reception unit 2.
  • the car relative positional relationship acquisition unit 110 may not include the own car position acquisition unit 111 and the other car position acquisition unit 112.
  • the selection unit 120 determines a method for acquiring a signal for the own car directed to the own car from the signals received by the wireless reception unit 2 from the first signal Sa and the second signal Sb.
  • the first method and the second method are selected according to the relative positional relationship. Specifically, when the own car is located farther from the wireless transmission unit 10 than the other car, the selection unit 120 selects the first method. On the other hand, when the own car is closer to the wireless transmission unit 10 than the other car, the selection unit 120 selects the second method.
  • the relative position relationship of the car and other cars used by the selection unit 120 is the one acquired by the car relative position relationship acquisition unit 110. Therefore, when the car relative positional relationship acquisition unit 110 includes the own car position acquisition unit 111 and the other car position acquisition unit 112, the selection unit 120 determines the position of the own car acquired by the own car position acquisition unit 111. Based on the position of the other car acquired by the other car position acquisition unit 112, a method for acquiring the signal for the own car is selected from the first method and the second method.
  • the selection unit 120 includes two units received by the wireless reception unit 2. Using the information on the relative positional relationship of the car 1, a method for acquiring the signal for the car is selected from the first method and the second method.
  • the own car signal acquisition unit 130 acquires the own car signal from the signal received by the wireless reception unit 2.
  • the own car signal acquisition unit 130 includes a restoration unit 131 and a subtraction unit 132.
  • the restoration unit 131 restores and outputs the input signal.
  • the restoration method at this time corresponds to the conversion method used by the conversion unit 24.
  • the subtracting unit 132 subtracts the other from one of the two input signals and outputs the result.
  • the own car signal acquisition unit 130 uses the restoration unit 131 and the subtraction unit 132 to acquire the own car signal from the signal received by the wireless reception unit 2.
  • the method for the car-acquisition signal acquisition unit 130 to acquire the car-originated signal the method selected by the selection unit 120 among the first method and the second method is used. Next, specific contents of the first method and the second method will be described.
  • the own car signal acquisition unit 130 inputs the signal received by the wireless reception unit 2 to the restoration unit 131.
  • the restoration unit 131 restores and outputs the signal received by the wireless reception unit 2.
  • the own car signal acquisition unit 130 acquires the signal output from the restoration unit 131 as the own car signal. That is, when the selection unit 120 selects the first method, the own car signal acquisition unit 130 acquires a signal obtained by restoring the signal received by the wireless reception unit 2 as the own car signal.
  • the car-acquisition signal acquisition unit 130 inputs the signal received by the wireless reception unit 2 to the restoration unit 131.
  • the restoration unit 131 restores and outputs the signal received by the wireless reception unit 2.
  • the own car signal acquisition unit 130 inputs the signal output from the restoration unit 131 and the signal received by the wireless reception unit 2 to the subtraction unit 132.
  • the subtraction unit 132 subtracts the signal restored by the restoration unit 131 from the signal received by the wireless reception unit 2 and outputs the result.
  • the restoration unit 131 restores the signal output from the subtraction unit 132.
  • the self-car signal acquisition unit 130 acquires the restored signal as a self-car signal. That is, when the selection unit 120 selects the second method, the signal acquisition unit 130 for own car subtracts the restored signal received by the wireless reception unit 2 from the signal received by the wireless reception unit 2. Then, the signal restored again is acquired as a signal for the car.
  • FIG. 5 shows an example of the positional relationship shown in FIG. That is, the example shown in FIG. 5 is in a relative positional relationship in which the first car 1 a is closer to the wireless transmission unit 10 and the second car 1 b is farther from the wireless transmission unit 10.
  • the transmission power allocation unit 22 allocates larger power to the second signal Sb. Further, since the first car 1a is closer to the wireless transmission unit 10, the transmission power allocation unit 22 allocates smaller power to the first signal Sa. Therefore, if the maximum amplitudes of the first signal Sa and the second signal Sb are equal, the maximum amplitude of the signal S′b obtained by converting the second signal Sb by the conversion unit 24 is the same as that of the first signal Sa. It becomes larger than the maximum amplitude of the signal S′a converted by the converter 24.
  • the combined signal x in which the superimposing unit 25 superimposes S′a and S′b is transmitted from the wireless transmission unit 10.
  • the composite signal x transmitted from the wireless transmission unit 10 is received by each of the first wireless reception unit 2a of the first car 1a and the second wireless reception unit 2b of the second car 1b.
  • the selection unit 120 selects the first method. Therefore, the own car signal acquisition unit 130 acquires the own car signal by the first method. That is, first, the restoration unit 131 restores the signal received by the first wireless reception unit 2a.
  • the maximum amplitude of S′b is larger than the maximum amplitude of S′a.
  • the composite signal x transmitted from the wireless transmission unit 10 is attenuated at a constant rate until it is received by the second wireless reception unit 2b, but in the attenuated signal received by the second wireless reception unit 2b
  • the relative relationship between the maximum amplitude of S′b and the maximum amplitude of S′a does not change. Therefore, even in the signal received by the second wireless reception unit 2b, the relationship that the maximum amplitude of S'b is larger than the maximum amplitude of S'a is maintained.
  • the restoration unit 131 restores S′a having a small maximum amplitude as noise. Therefore, a signal obtained by restoring the signal received by the second wireless reception unit 2b is Sb.
  • the own car signal acquisition unit 130 of the second car 1b can acquire the second signal Sb directed to the second car 1b.
  • the selection unit 120 selects the second method. Therefore, the own car signal acquisition unit 130 acquires the own car signal by the second method. That is, first, the restoration unit 131 restores the signal received by the first wireless reception unit 2a. At this time, as in the previous case, the relationship that the maximum amplitude of S'b is larger than the maximum amplitude of S'a is also maintained in the signal received by the first radio reception unit 2a. Then, the restoration unit 131 performs restoration by regarding S′a having a small maximum amplitude as noise. Therefore, a signal obtained by restoring the signal received by the first wireless reception unit 2a is Sb.
  • the subtraction unit 132 subtracts Sb obtained by restoring the signal received by the first radio reception unit 2a from the signal received by the first radio reception unit 2a. At this time, the subtraction unit 132 amplifies the signal Sb restored by the restoration unit 131 so that the maximum amplitude of the signal Sb restored by the restoration unit 131 matches the maximum amplitude of the signal received by the first wireless reception unit 2a. Subtract above.
  • the first car 1a and the second car 1b are in different positions.
  • the first signal Sa and the second signal Sb can be separated on the receiving side by using a known modulation method.
  • the power allocation coefficient ⁇ may be set to a value different from 0.5.
  • the positions of the first car 1a and the second car 1b can be changed.
  • the first signal Sa and the second signal Sb can be separated on the receiving side by the same method as in the different case.
  • the elevator radio communication system configured as described above includes two cars 1 disposed in an elevator hoistway 5 so as to be capable of being raised and lowered, and a first signal Sa directed to one of the two cars 1 and For each of the second signals Sb directed to the other side, a transmission power allocation unit 22 that allocates transmission power according to the respective positions of the two cars 1, and the first signal Sa and the second signal Sb
  • the conversion unit 24 converts each of them according to the transmission power allocated by the transmission power allocation unit 22, and the first signal Sa and the second signal Sb converted by the conversion unit 24, that is, S′a and S′b.
  • a wireless transmission unit 10 is provided that wirelessly transmits the signal x superimposed by the superposition unit 25.
  • Each of the two cars 1 includes a wireless receiver 2 that can receive a signal transmitted wirelessly by the wireless transmitter 10, and a first signal Sa and a second signal from the signal x received by the wireless receiver 2.
  • a selection unit that selects, from the first method and the second method, a method for acquiring a signal directed to the car among the signals Sb according to the relative positional relationship between the car and the other car. 120, and a car-acquisition signal acquisition unit 130 that acquires a signal for the car from the signal received by the wireless reception unit 2.
  • the own car signal acquisition unit 130 acquires a signal obtained by restoring the signal received by the wireless reception unit 2 as the own car signal.
  • the signal acquisition unit 130 for the own car subtracts the restored signal received by the wireless reception unit 2 from the signal received by the wireless reception unit 2.
  • the signal restored in step 1 is acquired as a signal for the car.
  • the wireless transmission unit 10 when a control signal is transmitted to each of the sensors mounted on each car 1, the wireless transmission unit 10 sends each of the sensors of the first car 1a and the sensors of the second car 1b. Different control signals can be transmitted simultaneously using the same frequency band. Therefore, it is possible to efficiently control the sensors of each car 1 and improve the information collection efficiency.
  • the information monitor of the first car 1a and the information monitor of the second car 1b are different. Information can be transmitted simultaneously using the same frequency band.
  • the present invention can be used in an elevator radio communication system that transmits signals to each of two elevator cars by radio.

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Provided is an elevator wireless communication system with which different signals can be simultaneously transmitted to two cars in the same frequency band. To achieve this, the elevator wireless communication system comprises: a transmission power allocation unit which allocates transmission power to a first and second signal, which are respectively directed towards one of two cars, according to the positions of the two cars; a conversion unit which converts the first and second signals according to the allocated transmission power; a superimposing unit which superimposes the converted first and second signals; and a wireless transmission unit which wirelessly transmits the superimposed signal. Each of the cars is equipped with a car-directed signal acquisition unit which acquires the signal directed to the car from the signals received from a wireless reception unit, and a selection unit which selects either a first or a second method according to the relative positional relationship between the car and the other car. If the first method is selected, the car-directed signal acquisition unit acquires a signal which is obtained by restoring the received signal. If the second method is selected, the car-directed signal acquisition unit acquires a signal which is obtained by subtracting the signal obtained by restoring the received signal from the received signal, and then restoring the subtraction result.

Description

エレベータの無線通信システムElevator wireless communication system
 この発明は、エレベータの無線通信システムに関するものである。 This invention relates to an elevator radio communication system.
 エレベータのかごと機械室との間の信号を無線で伝送するエレベータにおいて、かご内及び機械室内のエレベータの制御装置側に信号処理部を備え、制御装置側の信号処理部は、かごへの制御信号にかご毎の識別符号を付加して時分割して伝送し、かご内の信号処理部は、制御装置への制御信号に乗りかご毎の識別符号を付加して伝送するものが知られている(例えば、特許文献1参照)。 In an elevator that wirelessly transmits signals between the elevator car and the machine room, a signal processing unit is provided on the elevator control device side in the car and the machine room, and the signal processing unit on the control device side is a control signal to the car. It is known that the identification code for each car is added and transmitted in a time-sharing manner, and the signal processing unit in the car transmits the control signal to the control apparatus with the identification code for each car added. (For example, refer to Patent Document 1).
 また、エレベータかごに設けられたエレベータ側無線通信装置とエレベータの運行を監視するエレベータ制御室に接続されるエレベータ制御側無線通信装置との間で、エレベータかご及びエレベータ制御室にそれぞれ設けられた各種機器からの映像信号、音声信号及び各種制御信号のそれぞれの信号を無線伝送するエレベータ用無線通信システム装置において、エレベータ側無線通信装置及びエレベータ制御側無線通信装置は、それぞれ異なる搬送波周波数での周波数変調等を行って各信号を多重化して双方向に無線伝送を行うものが知られている(例えば、特許文献2参照)。 In addition, there are various types of elevator cars and elevator control rooms respectively provided between the elevator side wireless communication apparatus provided in the elevator car and the elevator control side wireless communication apparatus connected to the elevator control room that monitors the operation of the elevator. In an elevator radio communication system that wirelessly transmits video signals, audio signals, and various control signals from equipment, the elevator-side radio communication device and the elevator control-side radio communication device are each frequency-modulated at different carrier frequencies. For example, Japanese Patent Application Laid-Open No. 2003-22883 discloses a method of performing wireless transmission in both directions by multiplexing each signal.
日本特開平05-213549号公報Japanese Unexamined Patent Publication No. 05-213549 日本特開2001-341951号公報Japanese Unexamined Patent Publication No. 2001-341951
 しかしながら、特許文献1に示されるようなエレベータの無線通信システムにおいては、かごへの制御信号にかご毎の識別符号を付加したものを時間をずらして送信するため、例えば2台のかごのそれぞれに向けて異なる信号を送信する場合に、送信に必要な時間が長くなる。したがって、特に例えば、各かごに搭載されたセンサのそれぞれに対して制御信号を送信する場合に送信する時間をずらす必要があり、センサによる情報収集効率が低下してしまう。 However, in the elevator radio communication system as shown in Patent Document 1, since the control signal to the car added with the identification code for each car is transmitted at different times, for example, each of the two cars When different signals are transmitted, the time required for transmission becomes longer. Therefore, in particular, for example, when transmitting a control signal to each of the sensors mounted on each car, it is necessary to shift the transmission time, and the information collection efficiency by the sensor is reduced.
 また、特許文献2に示されるようなエレベータの無線通信システムにおいては、異なる搬送波周波数での周波数変調を行うため、例えば2台のかごのそれぞれに向けて異なる信号を送信する場合、複数の周波数帯を用いる必要があり、周波数帯域を圧迫してしまう。さらに、現在、無線信号で利用可能な周波数帯域は限られており、2台のかごのそれぞれに対して全く干渉が発生しない周波数帯を割り当てることは困難である。したがって、2台のかごのそれぞれに向けて異なる信号を送信する場合に信号の干渉が発生する可能性がある。 Further, in an elevator radio communication system as shown in Patent Document 2, in order to perform frequency modulation at different carrier frequencies, for example, when different signals are transmitted to each of two cars, a plurality of frequency bands are used. Need to be used, and the frequency band is compressed. Furthermore, at present, the frequency band that can be used for radio signals is limited, and it is difficult to assign a frequency band in which no interference occurs to each of the two cars. Therefore, signal interference may occur when different signals are transmitted to each of the two cars.
 この発明は、このような課題を解決するためになされたものである。その目的は、2台のかごのそれぞれに向けて異なる信号を送信する場合に、送信に必要な時間を短くすることができるとともに、周波数帯域を圧迫することなく、かつ、信号の干渉を抑制して、効率的に信号を送信することが可能であるエレベータの無線通信システムを得ることにある。 The present invention has been made to solve such problems. The purpose is to reduce the time required for transmission when transmitting different signals to each of the two cars, and to suppress signal interference without squeezing the frequency band. Thus, an elevator radio communication system capable of efficiently transmitting signals is obtained.
 この発明に係るエレベータの無線通信システムにおいては、エレベータの昇降路内に昇降可能に配置された2台のかごと、2台の前記かごの一方に向けた第1の信号及び他方に向けた第2の信号のそれぞれに対して、2台の前記かごのそれぞれの位置に応じて送信電力を割り当てる送信電力割当部と、前記第1の信号及び前記第2の信号のそれぞれを、前記送信電力割当部が割り当てた送信電力に応じて変換する変換部と、前記変換部が変換した前記第1の信号及び前記第2の信号を重畳する重畳部と、前記重畳部が重畳した信号を無線で送信する無線送信部と、を備え、2台の前記かごのそれぞれは、前記無線送信部が無線で送信した信号を受信可能な無線受信部と、前記無線受信部が受信した信号から前記第1の信号及び前記第2の信号のうちの自かごに向けられた自かご向け信号を取得する方法を、自かごと他かごとの相対位置関係に応じて、第1の方法と第2の方法とから選択する選択部と、前記無線受信部が受信した信号から自かご向け信号を取得する自かご向け信号取得部と、を備え、前記自かご向け信号取得部は、前記選択部が前記第1の方法を選択した場合に、前記無線受信部が受信した信号を復元したものを自かご向け信号として取得し、前記選択部が前記第2の方法を選択した場合に、前記無線受信部が受信した信号を復元したものを前記無線受信部が受信した信号から減算した上で復元したものを自かご向け信号として取得する構成とする。 In the elevator radio communication system according to the present invention, the two cars arranged in the elevator hoistway so as to be movable up and down, the first signal directed to one of the two cars and the second signal directed to the other. A transmission power allocating unit that allocates transmission power according to the position of each of the two cars, and each of the first signal and the second signal is assigned to the transmission power allocating unit. Wirelessly transmits a conversion unit that converts the transmission signal according to the transmission power allocated by the transmitter, a superimposition unit that superimposes the first signal and the second signal converted by the conversion unit, and a signal that is superimposed by the superposition unit. Each of the two cars includes a wireless receiver capable of receiving a signal wirelessly transmitted by the wireless transmitter, and the first signal from the signal received by the wireless receiver. And the second signal A selection unit that selects a method for obtaining a signal for a car directed to the car among the first method and the second method according to a relative positional relationship between the car and the other car; A self-car signal acquisition unit that acquires a self-car signal from a signal received by the wireless reception unit, and the self-car signal acquisition unit is configured when the selection unit selects the first method. A signal obtained by restoring the signal received by the wireless reception unit is acquired as a signal for a car, and when the selection unit selects the second method, the signal received by the wireless reception unit is restored. The radio reception unit subtracts the signal received from the signal and restores it as a signal for the car.
 この発明に係るエレベータの無線通信システムにおいては、2台のかごのそれぞれに向けて異なる信号を送信する場合に、送信に必要な時間を短くすることができるとともに、周波数帯域を圧迫することなく、かつ、信号の干渉を抑制して、効率的に信号を送信することが可能であるという効果を奏する。 In the elevator radio communication system according to the present invention, when different signals are transmitted to each of the two cars, the time required for transmission can be shortened, and without pressing the frequency band, In addition, there is an effect that it is possible to efficiently transmit a signal while suppressing signal interference.
この発明の実施の形態1に係るエレベータの無線通信システムの全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of the radio | wireless communications system of the elevator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータの無線通信システムが備える無線送信制御部のブロック図である。It is a block diagram of the radio | wireless transmission control part with which the radio | wireless communications system of the elevator which concerns on Embodiment 1 of this invention is provided. この発明の実施の形態1に係る無線送信制御部が備える送信電力割当部の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the transmission power allocation part with which the radio | wireless transmission control part which concerns on Embodiment 1 of this invention is provided. この発明の実施の形態1に係るエレベータの無線通信システムが備える無線受信制御装置のブロック図である。It is a block diagram of the radio | wireless reception control apparatus with which the radio | wireless communications system of the elevator which concerns on Embodiment 1 of this invention is provided. この発明の実施の形態1に係るエレベータの無線通信システムにおける信号の変換、重畳及び復元の原理を説明する図である。It is a figure explaining the principle of the conversion of a signal, superimposition, and decompression | restoration in the radio | wireless communications system of the elevator which concerns on Embodiment 1 of this invention.
 この発明を実施するための形態について添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜に簡略化又は省略する。なお、本発明は以下の実施の形態に限定されることなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。 DETAILED DESCRIPTION Embodiments for carrying out the invention will be described with reference to the accompanying drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are simplified or omitted as appropriate. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.
実施の形態1.
 図1から図5は、この発明の実施の形態1に係るもので、図1はエレベータの無線通信システムの全体構成を模式的に示す図、図2はエレベータの無線通信システムが備える無線送信制御部のブロック図、図3は無線送信制御部が備える送信電力割当部の動作を説明するフロー図、図4はエレベータの無線通信システムが備える無線受信制御装置のブロック図、図5はエレベータの無線通信システムにおける信号の変換、重畳及び復元を説明する図である。
Embodiment 1 FIG.
1 to 5 relate to Embodiment 1 of the present invention. FIG. 1 is a diagram schematically showing the overall configuration of an elevator radio communication system, and FIG. 2 is a radio transmission control provided in the elevator radio communication system. FIG. 3 is a flowchart for explaining the operation of the transmission power allocation unit included in the radio transmission control unit, FIG. 4 is a block diagram of the radio reception control device included in the elevator radio communication system, and FIG. It is a figure explaining conversion of a signal, superposition, and restoration in a communication system.
 図1に示すように、エレベータの昇降路5内には、第1のかご1a及び第2のかご1bが設置されている。これらの第1のかご1a及び第2のかご1bは、それぞれが互いに独立して昇降路5内を昇降可能に配置されている。第1のかご1a及び第2のかご1bを総称してかご1と呼ぶ。すなわち、エレベータの昇降路5内には、2台のかご1が昇降可能に配置されている。2台のかご1のそれぞれは、昇降路5内を複数の階床にわたって昇降する。 As shown in FIG. 1, a first car 1a and a second car 1b are installed in a hoistway 5 of the elevator. The first car 1a and the second car 1b are arranged so as to be able to move up and down in the hoistway 5 independently of each other. The first car 1a and the second car 1b are collectively referred to as a car 1. That is, in the elevator hoistway 5, two cars 1 are arranged so as to be able to be raised and lowered. Each of the two cars 1 moves up and down in the hoistway 5 over a plurality of floors.
 第1のかご1aの上端には第1の主ロープ4aの一端が連結されている。第1の主ロープ4aの他端は図示しない第1の釣合い重りの上端に連結されている。昇降路5頂部の機械室内には、第1の巻上機6aが設置されている。第1の主ロープ4aの中間部は、第1の巻上機6aの駆動綱車に巻き掛けられている。このようにして、第1のかご1a及び第1の釣合い重りは、第1の主ロープ4aによって昇降路5内で互いに相反する方向に昇降するつるべ状に吊持されている。 One end of the first main rope 4a is connected to the upper end of the first car 1a. The other end of the first main rope 4a is connected to the upper end of a first counterweight (not shown). A first hoisting machine 6 a is installed in the machine room at the top of the hoistway 5. An intermediate portion of the first main rope 4a is wound around a driving sheave of the first hoisting machine 6a. Thus, the 1st cage | basket | car 1a and the 1st counterweight are suspended by the 1st main rope 4a in the shape of the slid which raises / lowers in the mutually opposite direction within the hoistway 5. As shown in FIG.
 また、第2のかご1bについても、第1のかご1aと同様にして設けられている。すなわち、第2のかご1b及び図示しない第2の釣合い重りは、第2の主ロープ4bによって昇降路5内で互いに相反する方向に昇降するつるべ状に吊持されている。第2の主ロープ4bの中間部は、第2の巻上機6bの駆動綱車に巻き掛けられている。第2の巻上機6bは、第1の巻上機6aと同様、昇降路5頂部の機械室内に設置されている。 Further, the second car 1b is also provided in the same manner as the first car 1a. In other words, the second car 1b and the second counterweight (not shown) are suspended by the second main rope 4b in the shape of a hook that moves up and down in directions opposite to each other in the hoistway 5. An intermediate portion of the second main rope 4b is wound around a driving sheave of the second hoisting machine 6b. Similar to the first hoisting machine 6a, the second hoisting machine 6b is installed in the machine room at the top of the hoistway 5.
 第1のかご1aの運転動作は、第1のエレベータ制御装置7aにより制御される。同様に、第2のかご1bの運転動作は、第2のエレベータ制御装置7bにより制御される。すなわち、第1のエレベータ制御装置7aの制御により第1の巻上機6aの駆動綱車が回転され、この第1の巻上機6aの回転駆動により第1のかご1aが昇降路5内を昇降する。また、第2のエレベータ制御装置7bの制御により第2の巻上機6bの駆動綱車が回転され、この第2の巻上機6bの回転駆動により第2のかご1bが昇降路5内を昇降する。 The operation of the first car 1a is controlled by the first elevator control device 7a. Similarly, the operation of the second car 1b is controlled by the second elevator control device 7b. That is, the driving sheave of the first hoisting machine 6a is rotated by the control of the first elevator control device 7a, and the first car 1a is moved in the hoistway 5 by the rotational driving of the first hoisting machine 6a. Go up and down. Further, the driving sheave of the second hoisting machine 6b is rotated by the control of the second elevator control device 7b, and the second car 1b is moved in the hoistway 5 by the rotational driving of the second hoisting machine 6b. Go up and down.
 昇降路5内には、無線送信部10が設置されている。この図1に示す例では、無線送信部10は、昇降路5の頂部に昇降路5内に向けて設置されている。無線送信部10は、昇降路5内に無線で信号を送信可能である。無線送信部10の動作は、無線送信制御装置20により制御される。 A radio transmission unit 10 is installed in the hoistway 5. In the example illustrated in FIG. 1, the wireless transmission unit 10 is installed on the top of the hoistway 5 toward the hoistway 5. The wireless transmission unit 10 can transmit a signal wirelessly in the hoistway 5. The operation of the wireless transmission unit 10 is controlled by the wireless transmission control device 20.
 図2を参照しながら、無線送信制御装置20の構成について説明する。無線送信制御装置20は、かご位置取得部21、送信電力割当部22、記憶部23、変換部24及び重畳部25を備えている。かご位置取得部21は、2台のかご1のそれぞれの位置を取得する。2台のかご1のそれぞれの位置は、第1のエレベータ制御装置7a及び第2のエレベータ制御装置7bから取得することができる。 The configuration of the wireless transmission control device 20 will be described with reference to FIG. The wireless transmission control device 20 includes a car position acquisition unit 21, a transmission power allocation unit 22, a storage unit 23, a conversion unit 24, and a superimposition unit 25. The car position acquisition unit 21 acquires the respective positions of the two cars 1. The respective positions of the two cars 1 can be obtained from the first elevator control device 7a and the second elevator control device 7b.
 具体的には、第1の巻上機6a及び第2の巻上機6bのそれぞれの綱車には図示しないエンコーダが取り付けられている。このエンコーダは、綱車の回転位相角度に応じて例えばパルス状の信号を出力する。このエンコーダから出力されたパルス状信号のパルス数を計数することにより、綱車の回転量を検出することができる。 Specifically, an encoder (not shown) is attached to each sheave of the first hoisting machine 6a and the second hoisting machine 6b. This encoder outputs, for example, a pulsed signal according to the rotational phase angle of the sheave. By counting the number of pulses of the pulse signal output from the encoder, the amount of rotation of the sheave can be detected.
 また、エレベータには、図示しないドアゾーン検出器が備えられている。ドアゾーン検出器は、各かご1が、各階床のドアゾーン内にあることを検出するためのものである。ドアゾーンとは、かご1が各階床の乗場に着床してエレベータのドアを開閉することができるかご1の位置の範囲のことである。 Moreover, the elevator is provided with a door zone detector (not shown). The door zone detector is for detecting that each car 1 is in the door zone of each floor. The door zone is a range of the position of the car 1 where the car 1 can land on the landing of each floor and open and close the door of the elevator.
 そして、第1のエレベータ制御装置7a及び第2のエレベータ制御装置7bは、第1の巻上機6a及び第2の巻上機6bのそれぞれの綱車の回転量とドアゾーン検出器の出力とに基づいて、第1のかご1a及び第2のかご1bのそれぞれの位置を検出することができる。かご位置取得部21は、このようにして第1のエレベータ制御装置7aが検出した第1のかご1aの位置及び第2のエレベータ制御装置7bが検出した第2のかご1bの位置を取得する。 And the 1st elevator control device 7a and the 2nd elevator control device 7b are the amount of rotation of each sheave of the 1st hoisting machine 6a and the 2nd hoisting machine 6b, and the output of a door zone detector. Based on this, the respective positions of the first car 1a and the second car 1b can be detected. The car position acquisition unit 21 acquires the position of the first car 1a detected by the first elevator control device 7a and the position of the second car 1b detected by the second elevator control device 7b in this way.
 送信電力割当部22は、2台のかご1の一方に向けた第1の信号Sa及び他方に向けた第2の信号Sbのそれぞれに対して、2台のかご1のそれぞれの位置に応じて送信電力を割り当てる。ここでは、第1の信号Saを第1のかご1aに向けた信号とし、第2の信号Sbを第2のかご1bに向けた信号とする。 The transmission power allocating unit 22 responds to each position of the two cars 1 with respect to each of the first signal Sa directed to one of the two cars 1 and the second signal Sb directed to the other. Assign transmit power. Here, the first signal Sa is a signal directed to the first car 1a, and the second signal Sb is a signal directed to the second car 1b.
 具体的には、送信電力割当部22は、第1の信号Saに割り当てる電力Pa及び第2の信号Sbに割り当てる電力Pbを、それぞれ次の(1)式及び(2)式により決定する。ここで、Pは無線送信部10から送信する総送信電力、αは電力割当係数である。無線送信部10から送信する総送信電力Pは、無線送信部10の仕様等により決定される定数である。また、電力割当係数αは、0<α<1の範囲の値をとる。 Specifically, the transmission power allocation unit 22 determines the power Pa to be allocated to the first signal Sa and the power Pb to be allocated to the second signal Sb by the following equations (1) and (2), respectively. Here, P is the total transmission power transmitted from the wireless transmission unit 10, and α is a power allocation coefficient. The total transmission power P transmitted from the wireless transmission unit 10 is a constant determined by the specifications of the wireless transmission unit 10 and the like. Further, the power allocation coefficient α takes a value in the range of 0 <α <1.
 Pa=αP ・・・ (1)
 Pb=(1-α)P ・・・ (2)
Pa = αP (1)
Pb = (1-α) P (2)
 電力割当係数αは、2台のかご1の相対位置関係に応じて決定される。例えば、第1のかご1aの方が第2のかご1bよりも無線送信部10に近い位置にある場合、電力割当係数α<0.5である。また、第1のかご1aの方が第2のかご1bよりも無線送信部10から遠い位置にある場合、電力割当係数α>0.5である。すなわち、無線送信部10により近い位置にあるかご1に対して割り当てる電力をより小さくし、無線送信部10により遠い位置にあるかご1に対して割り当てる電力をより大きくする。2台のかご1の相対位置関係については、かご位置取得部21が取得した2台のかご1のそれぞれの位置を用いて求める。 The power allocation coefficient α is determined according to the relative positional relationship between the two cars 1. For example, when the first car 1a is closer to the wireless transmission unit 10 than the second car 1b, the power allocation coefficient α <0.5. Further, when the first car 1a is located farther from the wireless transmission unit 10 than the second car 1b, the power allocation coefficient α> 0.5. That is, the power allocated to the car 1 located closer to the wireless transmission unit 10 is reduced, and the power allocated to the car 1 located farther from the wireless transmission unit 10 is increased. The relative positional relationship between the two cars 1 is obtained by using the respective positions of the two cars 1 acquired by the car position acquisition unit 21.
 なお、ここでは、記憶部23に、電力割当係数テーブルが予め記憶されている。電力割当係数テーブルには、2台のかご1の相対位置関係のそれぞれに対応した電力割当係数αの値が予め格納されている。2台のかご1の相対位置関係のそれぞれに対応した電力割当係数αの値を予め決定しておく具体的な方法については後述する。 Here, the power allocation coefficient table is stored in the storage unit 23 in advance. In the power allocation coefficient table, values of the power allocation coefficient α corresponding to the relative positional relationship between the two cars 1 are stored in advance. A specific method for predetermining the value of the power allocation coefficient α corresponding to each of the relative positional relationships of the two cars 1 will be described later.
 図3を参照しながら、送信電力割当部22の電力割り当て時における動作の流れについて説明する。まず、ステップS1において、送信電力割当部22は、かご位置取得部21が取得したかご1の位置に基づいて、第1のかご1aと第2のかご1bとが同じ位置すなわち同一階床にあるか否かを確認する。第1のかご1aと第2のかご1bとが同一階床にある場合は、処理はステップS2へと進む。 Referring to FIG. 3, the operation flow when the transmission power allocation unit 22 allocates power will be described. First, in step S1, the transmission power allocation unit 22 determines that the first car 1a and the second car 1b are at the same position, that is, on the same floor, based on the position of the car 1 acquired by the car position acquisition unit 21. Check whether or not. If the first car 1a and the second car 1b are on the same floor, the process proceeds to step S2.
 ステップS2においては、送信電力割当部22は、電力割当係数αを0.5にする。そして、(1)式及び(2)式のように、第1の信号Sa及び第2の信号Sbのそれぞれに対して送信電力を割り当てる。ステップS2の処理が完了すると、一連の動作フローは終了となる。 In step S2, the transmission power allocation unit 22 sets the power allocation coefficient α to 0.5. And transmission power is allocated with respect to each of 1st signal Sa and 2nd signal Sb like (1) Formula and (2) Formula. When the process of step S2 is completed, a series of operation flows is completed.
 一方、ステップS1において、第1のかご1aと第2のかご1bとが同一階床にない場合は、処理はステップS3へと進む。ステップS3においては、送信電力割当部22は、記憶部23が記憶する電力割当係数テーブルを参照し、第1のかご1aと第2のかご1bとの相対位置関係に対応して記憶されている電力割当係数αの値を選択する。そして、選択した電力割当係数αの値を用いて、(1)式及び(2)式のように、第1の信号Sa及び第2の信号Sbのそれぞれに対して送信電力を割り当てる。ステップS3の処理が完了すると、一連の動作フローは終了となる。 On the other hand, if the first car 1a and the second car 1b are not on the same floor in step S1, the process proceeds to step S3. In step S3, the transmission power allocation unit 22 refers to the power allocation coefficient table stored in the storage unit 23, and is stored corresponding to the relative positional relationship between the first car 1a and the second car 1b. Select a value for the power allocation coefficient α. Then, using the value of the selected power allocation coefficient α, transmission power is allocated to each of the first signal Sa and the second signal Sb, as in Expression (1) and Expression (2). When the process of step S3 is completed, a series of operation flows is completed.
 なお、第1のかご1aと第2のかご1bとが同一階床にある場合の電力割当係数α(=0.5)についても、記憶部23が記憶する電力割当係数テーブルに予め格納しておいてもよい。この場合には、図3のフローによらずに、送信電力割当部22は、常に記憶部23が記憶する電力割当係数テーブルを参照して電力割当係数αを決定する。 Note that the power allocation coefficient α (= 0.5) when the first car 1a and the second car 1b are on the same floor is also stored in advance in the power allocation coefficient table stored in the storage unit 23. It may be left. In this case, the transmission power allocation unit 22 always determines the power allocation coefficient α by referring to the power allocation coefficient table stored in the storage unit 23 regardless of the flow of FIG.
 変換部24は、第1の信号Sa及び第2の信号Sbのそれぞれを、送信電力割当部22が割り当てた送信電力に応じて変換する。この変換において、変換部24は、具体的には、第1の信号Sa及び第2の信号Sbのそれぞれの信号振幅を、送信電力割当部22が割り当てた送信電力に応じて伸長又は圧縮する。第1の信号Saを変換したものをS’a、第2の信号Sbを変換したものをS’bとすると、変換後のS’a、S’bは、(1)式及び(2)式を用いて次の(3)式及び(4)式のように表すことができる。 The conversion unit 24 converts each of the first signal Sa and the second signal Sb according to the transmission power allocated by the transmission power allocation unit 22. In this conversion, specifically, the conversion unit 24 expands or compresses the signal amplitude of each of the first signal Sa and the second signal Sb according to the transmission power allocated by the transmission power allocation unit 22. Assuming that the converted signal of the first signal Sa is S′a and the converted signal of the second signal Sb is S′b, the converted S′a and S′b are expressed by the equations (1) and (2). Using the formula, it can be expressed as the following formula (3) and formula (4).
 S’a=(√Pa)Sa=(√(αPa))Sa ・・・ (3)
 S’b=(√Pb)Sb=(√((1-α)P))Sb ・・・ (4)
S′a = (√Pa) Sa = (√ (αPa)) Sa (3)
S′b = (√Pb) Sb = (√ ((1−α) P)) Sb (4)
 重畳部25は、変換部24が変換した第1の信号Sa及び第2の信号Sbを重畳する。ここで、変換部24が変換した第1の信号SaはS’aである。変換部24が変換した第2の信号SaはS’bである。そこで、(3)式及び(4)式を用いることで、重畳部25が重畳した信号xは、次の(5)式のように表すことができる。 The superimposing unit 25 superimposes the first signal Sa and the second signal Sb converted by the converting unit 24. Here, the first signal Sa converted by the conversion unit 24 is S′a. The second signal Sa converted by the conversion unit 24 is S′b. Therefore, by using the equations (3) and (4), the signal x superimposed by the superimposing unit 25 can be expressed as the following equation (5).
 x=S’a+S’b=(√(αPa))Sa+(√((1-α)P))Sb ・・・ (5) X = S'a + S'b = (√ (αPa)) Sa + (√ ((1-α) P)) Sb (5)
 そして、無線送信部10は、重畳部25が重畳した信号xを無線で送信する。したがって、無線送信部10は、第1の信号Sa及び第2の信号Sbを同時に同じ周波数帯で無線送信することができる。 Then, the wireless transmission unit 10 wirelessly transmits the signal x superimposed by the superimposition unit 25. Therefore, the wireless transmission unit 10 can wirelessly transmit the first signal Sa and the second signal Sb simultaneously in the same frequency band.
 ここで、(5)式から、重畳部25が重畳した信号xを無線で送信した際の伝送レートRは、次の(6)式で表すことができる。なお、(6)式において、haは、無線信号の第1のかご1aに対する減衰定数である。また、hbは、無線信号の第2のかご1bに対する減衰定数である。 Here, from equation (5), the transmission rate R when the signal x superimposed by the superimposing unit 25 is transmitted wirelessly can be expressed by the following equation (6). In the equation (6), ha is an attenuation constant for the first car 1a of the radio signal. Further, hb is an attenuation constant for the second car 1b of the radio signal.
 R=log(1+haαP)+log(1+hb((1-α)P)/(1+αP)) ・・・ (6) R = log (1 + haαP) + log (1 + hb ((1−α) P) / (1 + αP)) (6)
 次に、前述した記憶部23が記憶する電力割当係数テーブルに予め格納される、2台のかご1の相対位置関係のそれぞれに対応した電力割当係数αの値の決定方法について説明する。2台のかご1の相対位置関係のそれぞれに対応した電力割当係数αの値は、(6)式を用いて決定される。すなわち、電力割当係数αは、(6)式で表される伝送レートRの値を最大化する値に決定される。 Next, a method for determining the value of the power allocation coefficient α corresponding to each of the relative positional relationships of the two cars 1 stored in advance in the power allocation coefficient table stored in the storage unit 23 will be described. The value of the power allocation coefficient α corresponding to each of the relative positional relationships of the two cars 1 is determined using the equation (6). That is, the power allocation coefficient α is determined to be a value that maximizes the value of the transmission rate R expressed by the equation (6).
 ここで、減衰定数ha及びhbは、無線送信部10とそれぞれのかご1が備える後述する無線受信部2との距離に応じて決まる。つまり、第1のかご1aの位置が決まればhaも決まる。また、第2のかご1bの位置が決まればhbも決まる。したがって、ある2台のかご1の相対位置関係に対する電力割当係数αを求める際には、これらの減衰定数ha及びhbを定数として扱うことができる。また、総送信電力Pは、前述したように、無線送信部10の仕様等により決定される定数である。したがって、(6)式で表される伝送レートRの値を最大にする電力割当係数αの値を定めることができる。 Here, the attenuation constants ha and hb are determined according to the distance between the wireless transmission unit 10 and a wireless reception unit 2 described later included in each car 1. That is, if the position of the first car 1a is determined, ha is also determined. If the position of the second car 1b is determined, hb is also determined. Therefore, when obtaining the power allocation coefficient α for the relative positional relationship between two cars 1, these attenuation constants ha and hb can be handled as constants. Further, the total transmission power P is a constant determined by the specifications of the wireless transmission unit 10 as described above. Therefore, the value of the power allocation coefficient α that maximizes the value of the transmission rate R expressed by the equation (6) can be determined.
 第1のかご1aには、第1の無線受信部2aが設置されている。第1の無線受信部2aは、無線送信部10が無線で送信した信号を受信可能である。また、第2のかご1bには、第2の無線受信部2bが設置されている。第2の無線受信部2bは、無線送信部10が無線で送信した信号を受信可能である。以降においては、第1の無線受信部2aと第2の無線受信部2bとを総称して無線受信部2と呼ぶ。したがって、2台のかご1のそれぞれは、無線送信部10が無線で送信した信号を受信可能な無線受信部2を備えている。 The first wireless receiver 2a is installed in the first car 1a. The first wireless reception unit 2a can receive a signal transmitted by the wireless transmission unit 10 wirelessly. The second car 1b is provided with a second radio receiving unit 2b. The second radio reception unit 2b can receive a signal transmitted by the radio transmission unit 10 wirelessly. Hereinafter, the first wireless receiving unit 2a and the second wireless receiving unit 2b are collectively referred to as a wireless receiving unit 2. Accordingly, each of the two cars 1 includes a wireless receiver 2 that can receive a signal transmitted wirelessly by the wireless transmitter 10.
 第1のかご1aには、第1の無線受信制御装置100aが設置されている。第1の無線受信制御装置100aは、第1の無線受信部2aの動作を制御する。第2のかご1bには、第2の無線受信制御装置100bが設置されている。第2の無線受信制御装置100bは、第2の無線受信部2bの動作を制御する。以降においては、第1の無線受信制御装置100aと第2の無線受信制御装置100bとを総称して無線受信制御装置100と呼ぶ。したがって、2台のかご1のそれぞれは、当該かご1の無線受信部2の動作を制御する無線受信制御装置100を備えている。 The first car 1a is provided with a first radio reception control device 100a. The first radio reception control device 100a controls the operation of the first radio reception unit 2a. A second radio reception control device 100b is installed in the second car 1b. The second radio reception control device 100b controls the operation of the second radio reception unit 2b. Hereinafter, the first radio reception control device 100a and the second radio reception control device 100b are collectively referred to as the radio reception control device 100. Accordingly, each of the two cars 1 includes a radio reception control device 100 that controls the operation of the radio reception unit 2 of the car 1.
 次に、図4を参照しながら、無線受信制御装置100の構成を説明する。以下に説明する無線受信制御装置100が備える各部は、2台のかご1のそれぞれが備えている構成である。無線受信制御装置100は、かご相対位置関係取得部110、選択部120及び自かご向け信号取得部130を備えている。 Next, the configuration of the wireless reception control device 100 will be described with reference to FIG. Each unit included in the wireless reception control device 100 described below has a configuration provided in each of the two cars 1. The radio reception control apparatus 100 includes a car relative positional relationship acquisition unit 110, a selection unit 120, and a signal acquisition unit 130 for the own car.
 かご相対位置関係取得部110は、自かごと他かごとの相対位置関係を取得する。ここで、自かごとは、2台のかご1(第1のかご1a及び第2のかご1b)のうち、着目している無線受信制御装置100が設けられている方のかご1のことである。これに対し、他かごとは、2台のかご1(第1のかご1a及び第2のかご1b)のうち、自かごでない方のかご1のことである。 The car relative positional relationship acquisition unit 110 acquires the relative positional relationship between the car and the other car. Here, the own car is the car 1 of the two cars 1 (the first car 1a and the second car 1b) in which the wireless reception control device 100 of interest is provided. is there. On the other hand, the other car is the car 1 that is not the own car among the two cars 1 (the first car 1a and the second car 1b).
 図4に示す例では、かご相対位置関係取得部110は、自かご位置取得部111及び他かご位置取得部112を備えている。自かご位置取得部111は、例えば、第1のエレベータ制御装置7a及び第2のエレベータ制御装置7bのうち自かごの制御を管轄している方から、自かごの位置を取得する。また、他かご位置取得部112は、例えば、第1のエレベータ制御装置7a及び第2のエレベータ制御装置7bのうち他かごの制御を管轄している方から、他かごの位置を取得する。そして、かご相対位置関係取得部110は、自かご位置取得部111が取得した自かごの位置と、他かご位置取得部112が取得した他かごの位置とから、自かごと他かごとの相対位置関係を求める。 In the example illustrated in FIG. 4, the car relative positional relationship acquisition unit 110 includes a self-car position acquisition unit 111 and another car position acquisition unit 112. The own car position acquisition unit 111 acquires the position of the own car from, for example, one of the first elevator control device 7a and the second elevator control device 7b that controls the own car. In addition, the other car position acquisition unit 112 acquires the position of the other car from, for example, the first elevator control device 7a and the second elevator control device 7b that control the other car. Then, the car relative position relationship acquisition unit 110 calculates the relative of the car and the other car from the position of the car acquired by the car position acquisition unit 111 and the position of the other car acquired by the other car position acquisition unit 112. Find the positional relationship.
 なお、前述したように、無線送信部10は、2台のかご1のそれぞれの位置を取得するかご位置取得部21を備えている。そこで、このかご位置取得部21が取得した情報をもとにして、かご相対位置関係取得部110は、自かごと他かごとの相対位置関係を取得するようにしてもよい。 As described above, the wireless transmission unit 10 includes the car position acquisition unit 21 that acquires the positions of the two cars 1. Therefore, based on the information acquired by the car position acquisition unit 21, the car relative position relationship acquisition unit 110 may acquire the relative position relationship of each car and other cars.
 すなわち、この変形例においては、無線送信部10は、重畳部25が重畳した信号とともに、かご位置取得部21が取得したかご1から求めた2台のかご1の相対位置関係の情報を送信する。そして、かご相対位置関係取得部110は、無線受信部2が受信した2台のかご1の相対位置関係の情報から2台のかご1の相対位置関係を取得する。この構成の場合には、かご相対位置関係取得部110は、自かご位置取得部111及び他かご位置取得部112を備えなくともよい。 That is, in this modified example, the wireless transmission unit 10 transmits information on the relative positional relationship between the two cars 1 obtained from the car 1 acquired by the car position acquisition unit 21 together with the signal superimposed by the superimposition unit 25. . Then, the car relative position relationship acquisition unit 110 acquires the relative position relationship between the two cars 1 from the information on the relative position relationship between the two cars 1 received by the wireless reception unit 2. In the case of this configuration, the car relative positional relationship acquisition unit 110 may not include the own car position acquisition unit 111 and the other car position acquisition unit 112.
 選択部120は、無線受信部2が受信した信号から第1の信号Sa及び第2の信号Sbのうちの自かごに向けられた自かご向け信号を取得する方法を、自かごと他かごとの相対位置関係に応じて、第1の方法と第2の方法とから選択する。具体的には、自かごの方が他かごよりも無線送信部10から遠い位置にある場合には、選択部120は第1の方法を選択する。一方、自かごの方が他かごよりも無線送信部10に近い位置にある場合には、選択部120は第2の方法を選択する。 The selection unit 120 determines a method for acquiring a signal for the own car directed to the own car from the signals received by the wireless reception unit 2 from the first signal Sa and the second signal Sb. The first method and the second method are selected according to the relative positional relationship. Specifically, when the own car is located farther from the wireless transmission unit 10 than the other car, the selection unit 120 selects the first method. On the other hand, when the own car is closer to the wireless transmission unit 10 than the other car, the selection unit 120 selects the second method.
 なお、選択部120が用いる自かごと他かごとの相対位置関係は、かご相対位置関係取得部110が取得したものを用いる。したがって、かご相対位置関係取得部110が自かご位置取得部111及び他かご位置取得部112を備えている場合には、選択部120は、自かご位置取得部111が取得した自かごの位置と他かご位置取得部112が取得した他かごの位置とに基づいて、自かご向け信号を取得する方法を第1の方法と第2の方法とから選択する。 Note that the relative position relationship of the car and other cars used by the selection unit 120 is the one acquired by the car relative position relationship acquisition unit 110. Therefore, when the car relative positional relationship acquisition unit 110 includes the own car position acquisition unit 111 and the other car position acquisition unit 112, the selection unit 120 determines the position of the own car acquired by the own car position acquisition unit 111. Based on the position of the other car acquired by the other car position acquisition unit 112, a method for acquiring the signal for the own car is selected from the first method and the second method.
 これに対し、前述したかご相対位置関係取得部110が自かご位置取得部111及び他かご位置取得部112を備えていない変形例においては、選択部120は、無線受信部2が受信した2台のかご1の相対位置関係の情報を用いて、自かご向け信号を取得する方法を第1の方法と第2の方法とから選択する。 On the other hand, in the modified example in which the car relative position relationship acquisition unit 110 described above does not include the own car position acquisition unit 111 and the other car position acquisition unit 112, the selection unit 120 includes two units received by the wireless reception unit 2. Using the information on the relative positional relationship of the car 1, a method for acquiring the signal for the car is selected from the first method and the second method.
 自かご向け信号取得部130は、無線受信部2が受信した信号から自かご向け信号を取得する。自かご向け信号取得部130は、復元部131及び減算部132を備えている。復元部131は、入力された信号を復元して出力する。この際の復元の方式は、変換部24が用いた変換方式に対応したものである。減算部132は、入力された2つの信号の一方から他方を減算して出力する。自かご向け信号取得部130は、これらの復元部131及び減算部132を用いて、無線受信部2が受信した信号から自かご向け信号を取得する。 The own car signal acquisition unit 130 acquires the own car signal from the signal received by the wireless reception unit 2. The own car signal acquisition unit 130 includes a restoration unit 131 and a subtraction unit 132. The restoration unit 131 restores and outputs the input signal. The restoration method at this time corresponds to the conversion method used by the conversion unit 24. The subtracting unit 132 subtracts the other from one of the two input signals and outputs the result. The own car signal acquisition unit 130 uses the restoration unit 131 and the subtraction unit 132 to acquire the own car signal from the signal received by the wireless reception unit 2.
 自かご向け信号取得部130が自かご向け信号を取得する方法は、第1の方法及び第2の方法のうち、選択部120が選択した方法を用いる。次に、第1の方法及び第2の方法の具体的な内容について説明する。 As the method for the car-acquisition signal acquisition unit 130 to acquire the car-originated signal, the method selected by the selection unit 120 among the first method and the second method is used. Next, specific contents of the first method and the second method will be described.
 まず、第1の方法においては、自かご向け信号取得部130は、無線受信部2が受信した信号を復元部131に入力する。復元部131は、無線受信部2が受信した信号を復元して出力する。そして、自かご向け信号取得部130は、復元部131から出力された信号を自かご向け信号として取得する。すなわち、自かご向け信号取得部130は、選択部120が第1の方法を選択した場合に、無線受信部2が受信した信号を復元したものを自かご向け信号として取得する。 First, in the first method, the own car signal acquisition unit 130 inputs the signal received by the wireless reception unit 2 to the restoration unit 131. The restoration unit 131 restores and outputs the signal received by the wireless reception unit 2. Then, the own car signal acquisition unit 130 acquires the signal output from the restoration unit 131 as the own car signal. That is, when the selection unit 120 selects the first method, the own car signal acquisition unit 130 acquires a signal obtained by restoring the signal received by the wireless reception unit 2 as the own car signal.
 一方、第2の方法においては、まず、自かご向け信号取得部130は、無線受信部2が受信した信号を復元部131に入力する。復元部131は、無線受信部2が受信した信号を復元して出力する。次に、自かご向け信号取得部130は、復元部131から出力された信号と、無線受信部2が受信した信号とを、減算部132に入力する。減算部132は、無線受信部2が受信した信号から、復元部131が復元した信号を減算して出力する。 On the other hand, in the second method, first, the car-acquisition signal acquisition unit 130 inputs the signal received by the wireless reception unit 2 to the restoration unit 131. The restoration unit 131 restores and outputs the signal received by the wireless reception unit 2. Next, the own car signal acquisition unit 130 inputs the signal output from the restoration unit 131 and the signal received by the wireless reception unit 2 to the subtraction unit 132. The subtraction unit 132 subtracts the signal restored by the restoration unit 131 from the signal received by the wireless reception unit 2 and outputs the result.
 続いて、復元部131は、減算部132から出力された信号を復元する。こうして復元された信号を、自かご向け信号取得部130は、自かご向け信号として取得する。すなわち、自かご向け信号取得部130は、選択部120が第2の方法を選択した場合に、無線受信部2が受信した信号を復元したものを無線受信部2が受信した信号から減算した上で、もう一度復元したものを自かご向け信号として取得する。 Subsequently, the restoration unit 131 restores the signal output from the subtraction unit 132. The self-car signal acquisition unit 130 acquires the restored signal as a self-car signal. That is, when the selection unit 120 selects the second method, the signal acquisition unit 130 for own car subtracts the restored signal received by the wireless reception unit 2 from the signal received by the wireless reception unit 2. Then, the signal restored again is acquired as a signal for the car.
 次に、図5を参照しながら、以上のように構成されたエレベータの無線通信システムにおける信号の変換、重畳及び復元の原理を説明する。同図に示すのは、図1に示す位置関係における例である。すなわち、図5に示す例は、第1のかご1aの方が無線送信部10に近く、第2のかご1bの方が無線送信部10から遠いという相対位置関係におけるものである。 Next, the principle of signal conversion, superposition and restoration in the elevator radio communication system configured as described above will be described with reference to FIG. The figure shows an example of the positional relationship shown in FIG. That is, the example shown in FIG. 5 is in a relative positional relationship in which the first car 1 a is closer to the wireless transmission unit 10 and the second car 1 b is farther from the wireless transmission unit 10.
 同図に示す例では、第2のかご1bの方が無線送信部10から遠いため、送信電力割当部22は、第2の信号Sbに対してより大きい電力を割り当てる。また、第1のかご1aの方が無線送信部10に近いため、送信電力割当部22は、第1の信号Saに対してより小さい電力を割り当てる。したがって、第1の信号Sa及び第2の信号Sbの最大振幅が同等であるとすると、第2の信号Sbを変換部24が変換した信号S’bの最大振幅は、第1の信号Saを変換部24が変換した信号S’aの最大振幅より大きくなる。 In the example shown in the figure, since the second car 1b is farther from the wireless transmission unit 10, the transmission power allocation unit 22 allocates larger power to the second signal Sb. Further, since the first car 1a is closer to the wireless transmission unit 10, the transmission power allocation unit 22 allocates smaller power to the first signal Sa. Therefore, if the maximum amplitudes of the first signal Sa and the second signal Sb are equal, the maximum amplitude of the signal S′b obtained by converting the second signal Sb by the conversion unit 24 is the same as that of the first signal Sa. It becomes larger than the maximum amplitude of the signal S′a converted by the converter 24.
 そして、S’a及びS’bを重畳部25が重畳した合成信号xが、無線送信部10から送信される。無線送信部10から送信された合成信号xは、第1のかご1aの第1の無線受信部2a及び第2のかご1bの第2の無線受信部2bのそれぞれにより受信される。 Then, the combined signal x in which the superimposing unit 25 superimposes S′a and S′b is transmitted from the wireless transmission unit 10. The composite signal x transmitted from the wireless transmission unit 10 is received by each of the first wireless reception unit 2a of the first car 1a and the second wireless reception unit 2b of the second car 1b.
 まず、第2のかご1bにおいては、自かごの方が他かごよりも無線送信部10から遠い位置にあるため、選択部120は第1の方法を選択する。したがって、自かご向け信号取得部130は、第1の方法により自かご向け信号を取得する。すなわち、まず、復元部131は、第1の無線受信部2aが受信した信号を復元する。 First, in the second car 1b, since the own car is located farther from the wireless transmission unit 10 than the other car, the selection unit 120 selects the first method. Therefore, the own car signal acquisition unit 130 acquires the own car signal by the first method. That is, first, the restoration unit 131 restores the signal received by the first wireless reception unit 2a.
 この際、前述したように、S’bの最大振幅はS’aの最大振幅より大きくなる。無線送信部10から送信された合成信号xが第2の無線受信部2bに受信されるまでには一定の割合で減衰されるが、第2の無線受信部2bが受信する減衰後の信号においても、S’bの最大振幅とS’aの最大振幅との相対的な関係は変わらない。したがって、第2の無線受信部2bが受信した信号においても、S’bの最大振幅はS’aの最大振幅より大きいという関係が保たれる。 At this time, as described above, the maximum amplitude of S′b is larger than the maximum amplitude of S′a. The composite signal x transmitted from the wireless transmission unit 10 is attenuated at a constant rate until it is received by the second wireless reception unit 2b, but in the attenuated signal received by the second wireless reception unit 2b However, the relative relationship between the maximum amplitude of S′b and the maximum amplitude of S′a does not change. Therefore, even in the signal received by the second wireless reception unit 2b, the relationship that the maximum amplitude of S'b is larger than the maximum amplitude of S'a is maintained.
 復元部131は、最大振幅が小さいS’aをノイズと見なして復元を行う。したがって、第2の無線受信部2bが受信した信号を復元したものはSbとなる。こうして、第2のかご1bの自かご向け信号取得部130は、第2のかご1bに向けられた第2の信号Sbを取得することができる。 The restoration unit 131 restores S′a having a small maximum amplitude as noise. Therefore, a signal obtained by restoring the signal received by the second wireless reception unit 2b is Sb. Thus, the own car signal acquisition unit 130 of the second car 1b can acquire the second signal Sb directed to the second car 1b.
 一方、第1のかご1aにおいては、自かごの方が他かごよりも無線送信部10に近い位置にあるため、選択部120は第2の方法を選択する。したがって、自かご向け信号取得部130は、第2の方法により自かご向け信号を取得する。すなわち、まず、復元部131は、第1の無線受信部2aが受信した信号を復元する。この際、先程と同様に、第1の無線受信部2aが受信した信号においても、S’bの最大振幅はS’aの最大振幅より大きいという関係が保たれる。そして、復元部131は、最大振幅が小さいS’aをノイズと見なして復元を行う。したがって、第1の無線受信部2aが受信した信号を復元したものはSbとなる。 On the other hand, in the first car 1a, since the own car is closer to the wireless transmission unit 10 than the other car, the selection unit 120 selects the second method. Therefore, the own car signal acquisition unit 130 acquires the own car signal by the second method. That is, first, the restoration unit 131 restores the signal received by the first wireless reception unit 2a. At this time, as in the previous case, the relationship that the maximum amplitude of S'b is larger than the maximum amplitude of S'a is also maintained in the signal received by the first radio reception unit 2a. Then, the restoration unit 131 performs restoration by regarding S′a having a small maximum amplitude as noise. Therefore, a signal obtained by restoring the signal received by the first wireless reception unit 2a is Sb.
 次に、減算部132は、第1の無線受信部2aが受信した信号から、第1の無線受信部2aが受信した信号を復元したSbを減算する。この際、減算部132は、復元部131が復元した信号Sbの最大振幅が第1の無線受信部2aが受信した信号の最大振幅に合うように、復元部131が復元した信号Sbを増幅した上で減算を行う。 Next, the subtraction unit 132 subtracts Sb obtained by restoring the signal received by the first radio reception unit 2a from the signal received by the first radio reception unit 2a. At this time, the subtraction unit 132 amplifies the signal Sb restored by the restoration unit 131 so that the maximum amplitude of the signal Sb restored by the restoration unit 131 matches the maximum amplitude of the signal received by the first wireless reception unit 2a. Subtract above.
 したがって、減算部132による減算の結果として、第1の無線受信部2aが受信した信号からS’bが取り除かれて、S’aだけが残ることになる。こうして得られたS’aを復元部131が復元したものはSaとなる。このようにして、第1のかご1aの自かご向け信号取得部130は、第1のかご1aに向けられた第1の信号Sbを取得することができる。 Therefore, as a result of the subtraction by the subtraction unit 132, S'b is removed from the signal received by the first wireless reception unit 2a, and only S'a remains. The S′a obtained in this way is restored by the restoration unit 131 to be Sa. In this way, the own car signal acquisition unit 130 of the first car 1a can acquire the first signal Sb directed to the first car 1a.
 なお、以上で説明した例では、第1のかご1aと第2のかご1bの位置が異なる場合についてであった。一方、第1のかご1aと第2のかご1bの位置が同じ場合、前述したように、電力割当係数α=0.5となるため、変換後のS’a及びS’bの最大振幅が同等となる。この場合であっても、例えば、既知の変調方式を用いることにより、受信側で第1の信号Saと第2の信号Sbとを分離することは可能である。具体的に例えば、二位相偏移変調(BPSK:Binary Phase-Shift Keying)の信号空間ダイヤグラムにおける2つの信号の位相をπ/2だけずらすことにより、割り当てた電力が等しい場合であっても信号空間ダイヤグラムで2つの信号点が重なることを回避して2つの信号を分離できることが既に知られている。 In the example described above, the first car 1a and the second car 1b are in different positions. On the other hand, when the positions of the first car 1a and the second car 1b are the same, as described above, since the power allocation coefficient α = 0.5, the maximum amplitudes of S′a and S′b after conversion are It becomes equivalent. Even in this case, for example, the first signal Sa and the second signal Sb can be separated on the receiving side by using a known modulation method. Specifically, for example, by shifting the phases of two signals in a signal space diagram of binary phase-shift keying (BPSK: Binary Phase-Shift Keying) by π / 2, even if the allocated power is equal, the signal space It is already known that two signals can be separated by avoiding overlapping of two signal points in a diagram.
 または、第1のかご1aと第2のかご1bの位置が同じ場合であっても電力割当係数αを0.5とは異なる値に設定してもよい。このように、電力割当係数αを0.5とは異なる値に設定し、故意に2つの信号の最大振幅に差を生じさせることで、第1のかご1aと第2のかご1bの位置が異なる場合と同様の手法により、受信側で第1の信号Saと第2の信号Sbとを分離することができる。 Alternatively, even when the positions of the first car 1a and the second car 1b are the same, the power allocation coefficient α may be set to a value different from 0.5. Thus, by setting the power allocation coefficient α to a value different from 0.5 and intentionally causing a difference between the maximum amplitudes of the two signals, the positions of the first car 1a and the second car 1b can be changed. The first signal Sa and the second signal Sb can be separated on the receiving side by the same method as in the different case.
 以上のように構成されたエレベータの無線通信システムは、エレベータの昇降路5内に昇降可能に配置された2台のかご1と、2台のかご1の一方に向けた第1の信号Sa及び他方に向けた第2の信号Sbのそれぞれに対して、2台のかご1のそれぞれの位置に応じて送信電力を割り当てる送信電力割当部22と、第1の信号Sa及び第2の信号Sbのそれぞれを、送信電力割当部22が割り当てた送信電力に応じて変換する変換部24と、変換部24が変換した第1の信号Sa及び第2の信号Sb、すなわち、S’a及びS’bを重畳する重畳部25と、昇降路5内に設けられ、重畳部25が重畳した信号xを無線で送信する無線送信部10と、を備えている。 The elevator radio communication system configured as described above includes two cars 1 disposed in an elevator hoistway 5 so as to be capable of being raised and lowered, and a first signal Sa directed to one of the two cars 1 and For each of the second signals Sb directed to the other side, a transmission power allocation unit 22 that allocates transmission power according to the respective positions of the two cars 1, and the first signal Sa and the second signal Sb The conversion unit 24 converts each of them according to the transmission power allocated by the transmission power allocation unit 22, and the first signal Sa and the second signal Sb converted by the conversion unit 24, that is, S′a and S′b. Are provided in the hoistway 5, and a wireless transmission unit 10 is provided that wirelessly transmits the signal x superimposed by the superposition unit 25.
 また、2台のかご1のそれぞれは、無線送信部10が無線で送信した信号を受信可能な無線受信部2と、無線受信部2が受信した信号xから第1の信号Sa及び第2の信号Sbのうちの自かごに向けられた自かご向け信号を取得する方法を、自かごと他かごとの相対位置関係に応じて、第1の方法と第2の方法とから選択する選択部120と、無線受信部2が受信した信号から自かご向け信号を取得する自かご向け信号取得部130と、を備えている。 Each of the two cars 1 includes a wireless receiver 2 that can receive a signal transmitted wirelessly by the wireless transmitter 10, and a first signal Sa and a second signal from the signal x received by the wireless receiver 2. A selection unit that selects, from the first method and the second method, a method for acquiring a signal directed to the car among the signals Sb according to the relative positional relationship between the car and the other car. 120, and a car-acquisition signal acquisition unit 130 that acquires a signal for the car from the signal received by the wireless reception unit 2.
 そして、自かご向け信号取得部130は、選択部120が第1の方法を選択した場合に、無線受信部2が受信した信号を復元したものを自かご向け信号として取得する。また、自かご向け信号取得部130は、選択部120が第2の方法を選択した場合に、無線受信部2が受信した信号を復元したものを無線受信部2が受信した信号から減算した上で復元したものを自かご向け信号として取得する。 Then, when the selection unit 120 selects the first method, the own car signal acquisition unit 130 acquires a signal obtained by restoring the signal received by the wireless reception unit 2 as the own car signal. In addition, when the selection unit 120 selects the second method, the signal acquisition unit 130 for the own car subtracts the restored signal received by the wireless reception unit 2 from the signal received by the wireless reception unit 2. The signal restored in step 1 is acquired as a signal for the car.
 このため、2台のかごのそれぞれに向けて異なる信号を同時に、かつ、同周波数帯で干渉を起こすことなく送信することができる。したがって、送信に必要な時間を短くすることができるとともに、周波数帯域を圧迫することなく、かつ、信号の干渉を抑制して、効率的に信号を送信することが可能である。 For this reason, different signals can be transmitted to each of the two cars simultaneously and without causing interference in the same frequency band. Therefore, the time required for transmission can be shortened, and the signal can be efficiently transmitted without suppressing the frequency band and suppressing signal interference.
 具体的に例えば、各かご1に搭載されたセンサのそれぞれに対して、制御信号を送信する場合、無線送信部10から第1のかご1aのセンサと第2のかご1bのセンサのそれぞれに対して異なる制御信号を、同時に同周波数帯を用いる送信することができる。したがって、効率よく各かご1のセンサを制御して情報収集効率を向上することが可能である。 Specifically, for example, when a control signal is transmitted to each of the sensors mounted on each car 1, the wireless transmission unit 10 sends each of the sensors of the first car 1a and the sensors of the second car 1b. Different control signals can be transmitted simultaneously using the same frequency band. Therefore, it is possible to efficiently control the sensors of each car 1 and improve the information collection efficiency.
 また、他に例えば、各かご1内に設置された情報モニタに表示させる情報を送信する場合にも、第1のかご1aの情報モニタと第2のかご1bの情報モニタのそれぞれに対して異なる情報を、同時に同周波数帯を用いて送信することができる。 In addition, for example, when information to be displayed on an information monitor installed in each car 1 is transmitted, the information monitor of the first car 1a and the information monitor of the second car 1b are different. Information can be transmitted simultaneously using the same frequency band.
 この発明は、2台のエレベータのかごのそれぞれに対して、無線で信号を送信するエレベータの無線通信システムに利用できる。 The present invention can be used in an elevator radio communication system that transmits signals to each of two elevator cars by radio.
  1  かご
  1a 第1のかご
  1b 第2のかご
  2  無線受信部
  2a 第1の無線受信部
  2b 第2の無線受信部
  4a 第1の主ロープ
  4b 第2の主ロープ
  5  昇降路
  6a 第1の巻上機
  6b 第2の巻上機
  7a 第1のエレベータ制御装置
  7b 第2のエレベータ制御装置
 10  無線送信部
 20  無線送信制御装置
 21  かご位置取得部
 22  送信電力割当部
 23  記憶部
 24  変換部
 25  重畳部
100  無線受信制御装置
100a 第1の無線受信制御装置
100b 第2の無線受信制御装置
110  かご相対位置関係取得部
111  自かご位置取得部
112  他かご位置取得部
120  選択部
130  自かご向け信号取得部
131  復元部
132  減算部
DESCRIPTION OF SYMBOLS 1 Car 1a 1st car 1b 2nd car 2 Wireless receiving part 2a 1st wireless receiving part 2b 2nd wireless receiving part 4a 1st main rope 4b 2nd main rope 5 Hoistway 6a 1st volume Upper machine 6b Second hoisting machine 7a First elevator control device 7b Second elevator control device 10 Wireless transmission unit 20 Wireless transmission control device 21 Car position acquisition unit 22 Transmission power allocation unit 23 Storage unit 24 Conversion unit 25 Superposition Unit 100 radio reception control device 100a first radio reception control device 100b second radio reception control device 110 car relative positional relationship acquisition unit 111 own car position acquisition unit 112 other car position acquisition unit 120 selection unit 130 acquisition of signal for own car Unit 131 restoration unit 132 subtraction unit

Claims (3)

  1.  エレベータの昇降路内に昇降可能に配置された2台のかごと、
     2台の前記かごの一方に向けた第1の信号及び他方に向けた第2の信号のそれぞれに対して、2台の前記かごのそれぞれの位置に応じて送信電力を割り当てる送信電力割当部と、
     前記第1の信号及び前記第2の信号のそれぞれを、前記送信電力割当部が割り当てた送信電力に応じて変換する変換部と、
     前記変換部が変換した前記第1の信号及び前記第2の信号を重畳する重畳部と、
     前記重畳部が重畳した信号を無線で送信する無線送信部と、を備え、
     2台の前記かごのそれぞれは、
     前記無線送信部が無線で送信した信号を受信可能な無線受信部と、
     前記無線受信部が受信した信号から前記第1の信号及び前記第2の信号のうちの自かごに向けられた自かご向け信号を取得する方法を、自かごと他かごとの相対位置関係に応じて、第1の方法と第2の方法とから選択する選択部と、
     前記無線受信部が受信した信号から自かご向け信号を取得する自かご向け信号取得部と、を備え、
     前記自かご向け信号取得部は、
     前記選択部が前記第1の方法を選択した場合に、前記無線受信部が受信した信号を復元したものを自かご向け信号として取得し、
     前記選択部が前記第2の方法を選択した場合に、前記無線受信部が受信した信号を復元したものを前記無線受信部が受信した信号から減算した上で復元したものを自かご向け信号として取得するエレベータの無線通信システム。
    Two cars arranged in an elevator hoistway so that they can be raised and lowered,
    A transmission power allocating unit that allocates transmission power to each of the first signal directed to one of the two cars and the second signal directed to the other according to the position of each of the two cars; ,
    A converter that converts each of the first signal and the second signal according to the transmission power allocated by the transmission power allocation unit;
    A superimposing unit that superimposes the first signal and the second signal converted by the converting unit;
    A wireless transmission unit that wirelessly transmits the signal superimposed by the superimposition unit,
    Each of the two baskets
    A wireless receiver capable of receiving a signal transmitted wirelessly by the wireless transmitter; and
    A method of acquiring a signal for a car that is directed to a car among the first signal and the second signal from a signal received by the wireless reception unit, in a relative positional relationship between the car and another car. In response, a selection unit for selecting from the first method and the second method;
    A signal acquisition unit for a car for acquiring a signal for the car from the signal received by the wireless reception unit, and
    The signal acquisition unit for the own car
    When the selection unit has selected the first method, the signal received by the wireless reception unit is obtained as a signal for the car,
    When the selection unit selects the second method, the signal restored by subtracting the signal received by the radio reception unit from the signal received by the radio reception unit is used as the signal for the car. The wireless communication system of the elevator to acquire.
  2.  前記無線送信部は、前記重畳部が重畳した信号とともに2台の前記かごの相対位置関係の情報を送信し、
     前記選択部は、前記無線受信部が受信した2台の前記かごの相対位置関係の情報を用いて、自かご向け信号を取得する方法を第1の方法と第2の方法とから選択する請求項1に記載のエレベータの無線通信システム。
    The wireless transmission unit transmits information on the relative positional relationship between the two cars together with the signal superimposed by the superimposing unit,
    The said selection part selects the method of acquiring the signal for own cars from the 1st method and the 2nd method using the information of the relative positional relationship of the said two cars which the said radio | wireless receiving part received. Item 2. The elevator radio communication system according to Item 1.
  3.  2台の前記かごのそれぞれは、
     自かごの位置を取得する自かご位置取得部と、
     他かごの位置を取得する他かご位置取得部と、をさらに備え、
     前記選択部は、前記自かご位置取得部が取得した自かごの位置と前記他かご位置取得部が取得した他かごの位置とに基づいて、自かご向け信号を取得する方法を第1の方法と第2の方法とから選択する請求項1に記載のエレベータの無線通信システム。
    Each of the two baskets
    An own car position acquisition unit for acquiring the position of the own car;
    An other car position acquisition unit for acquiring the position of the other car,
    A first method is a method in which the selection unit acquires a signal for the own car based on the position of the own car acquired by the own car position acquisition unit and the position of the other car acquired by the other car position acquisition unit. The elevator wireless communication system according to claim 1, wherein the elevator wireless communication system is selected from:
PCT/JP2016/080130 2016-10-11 2016-10-11 Elevator wireless communication system WO2018069969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080130 WO2018069969A1 (en) 2016-10-11 2016-10-11 Elevator wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080130 WO2018069969A1 (en) 2016-10-11 2016-10-11 Elevator wireless communication system

Publications (1)

Publication Number Publication Date
WO2018069969A1 true WO2018069969A1 (en) 2018-04-19

Family

ID=61905282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080130 WO2018069969A1 (en) 2016-10-11 2016-10-11 Elevator wireless communication system

Country Status (1)

Country Link
WO (1) WO2018069969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142603A (en) * 2018-02-16 2019-08-29 株式会社日立製作所 Elevator and transmitting method of elevator signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213549A (en) * 1992-02-06 1993-08-24 Hitachi Ltd Control device for elevator
JP2001341951A (en) * 2000-06-01 2001-12-11 Mitsubishi Electric Corp Radiocommunication system device for elevator
JP2002234677A (en) * 2001-02-06 2002-08-23 Mitsubishi Electric Corp Radio communication system device for elevator
JP2004026433A (en) * 2002-06-26 2004-01-29 Hitachi Building Systems Co Ltd Data transmission device for elevator
JP2005119760A (en) * 2003-10-14 2005-05-12 Mitsubishi Electric Corp Signal transmission device for elevator
JP2006321576A (en) * 2005-05-17 2006-11-30 Toshiba Elevator Co Ltd Elevator signal transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213549A (en) * 1992-02-06 1993-08-24 Hitachi Ltd Control device for elevator
JP2001341951A (en) * 2000-06-01 2001-12-11 Mitsubishi Electric Corp Radiocommunication system device for elevator
JP2002234677A (en) * 2001-02-06 2002-08-23 Mitsubishi Electric Corp Radio communication system device for elevator
JP2004026433A (en) * 2002-06-26 2004-01-29 Hitachi Building Systems Co Ltd Data transmission device for elevator
JP2005119760A (en) * 2003-10-14 2005-05-12 Mitsubishi Electric Corp Signal transmission device for elevator
JP2006321576A (en) * 2005-05-17 2006-11-30 Toshiba Elevator Co Ltd Elevator signal transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142603A (en) * 2018-02-16 2019-08-29 株式会社日立製作所 Elevator and transmitting method of elevator signal

Similar Documents

Publication Publication Date Title
JP6311544B2 (en) Elevator control system
JP6681176B2 (en) Elevator car motion alert system
CN113336032B (en) System and method for measuring and diagnosing ride quality of elevator system
WO2018069969A1 (en) Elevator wireless communication system
CN109279462A (en) The automatic control system and method that robot is interacted with elevator
MX2018005815A (en) Vehicle antenna disc or vehicle disc antenna for a toll payment system.
WO2017208715A1 (en) Elevator monitoring device and communication confirmation method
JP2017225184A5 (en)
KR101138387B1 (en) Elevator control system by wireless communication
EP3301055A3 (en) Occupant evacuation operation by allocating a variable number of cars to floors within an evacuation zone
EP3787213A3 (en) Method for performing sidelink transmission and user equipment using the same
JP6217568B2 (en) Elevator warning system
JP5976871B1 (en) Wireless transmission system
JP2001302124A5 (en)
JP4249711B2 (en) Interference detection in wireless communication systems
JP2006321576A (en) Elevator signal transmission device
WO2016153152A8 (en) Method of determining doppler frequency transmission beam in wireless communication system and apparatus therefor
JP2016037388A (en) Elevator remote monitoring device
JP5317500B2 (en) Tail cordless elevator system
EP3485575A1 (en) Activating interference signal rejection filter path based on detection of an interference signal in a wireless distribution system (wds)
WO2012064073A3 (en) Tank communication system using the terminal of a wireless mutual transceiver set, and terminal of a wireless mutual transceiver set therefor
JP2007008707A (en) Elevator device
EP3080032A1 (en) Wireless communications with a payload handling apparatus
JP2001122541A (en) Image transmission system for elevator
JP6195387B2 (en) Elevator system and elevator control device used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP