WO2018068767A1 - 核电站安全壳内置换料水箱 - Google Patents

核电站安全壳内置换料水箱 Download PDF

Info

Publication number
WO2018068767A1
WO2018068767A1 PCT/CN2017/106195 CN2017106195W WO2018068767A1 WO 2018068767 A1 WO2018068767 A1 WO 2018068767A1 CN 2017106195 W CN2017106195 W CN 2017106195W WO 2018068767 A1 WO2018068767 A1 WO 2018068767A1
Authority
WO
WIPO (PCT)
Prior art keywords
pool
tank
nuclear power
power plant
inner ring
Prior art date
Application number
PCT/CN2017/106195
Other languages
English (en)
French (fr)
Inventor
彭国胜
周媛霞
程浩
王庆礼
丁楠
韩浪
Original Assignee
中广核工程有限公司
中国广核集团有限公司
深圳中广核工程设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610898224.8A external-priority patent/CN106340327B/zh
Priority claimed from CN201611160958.2A external-priority patent/CN106782691B/zh
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 深圳中广核工程设计有限公司 filed Critical 中广核工程有限公司
Publication of WO2018068767A1 publication Critical patent/WO2018068767A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of nuclear power engineering, and more particularly to a water tank for replacing a material in a containment of a nuclear power plant.
  • nuclear power technology is also developing as one of the clean energy technologies.
  • the world's major nuclear power technology suppliers have developed three generations of nuclear power technology to improve the safety of nuclear power plants.
  • the containment water tank (IRWST) has become the development trend of the international three-generation nuclear power technology.
  • the refueling tank is arranged at the bottom of the reactor building, which will increase the overall height of the reactor building and affect the overall seismic performance of the reactor building. Therefore, the design of the replacement tank in the containment has a critical impact on the seismic performance of the reactor building.
  • the related art nuclear power plant containment water tank includes a containment water tank pool 10 located between the nuclear power plant reactor stack 41 and the secondary shield wall 42 and a replacement tank water tank pool located in the containment tank.
  • the load-bearing floor 20 above the 10, the load-bearing floor 20 is provided with a water return hole 200 and a trash rack 202 on the water return hole 200.
  • the lock-in basket 30 corresponding to the water return hole 200 is provided in the water tank water tank 10 of the containment.
  • the stagnant basket 30 is fixed at the bottom of the pool and the wall of the tank.
  • the upper opening of the stagnant basket 30 is higher than the highest liquid level in the refueling tank, and the annular space 40 between the secondary shielding wall 42 and the containment 44 and the annular space.
  • the water return hole 400, the replacement tank water tank pool 10 in the containment is in communication with the annular space 40 through the water return hole 400.
  • the detention basket needs to filter the debris of the main equipment area, the annular space area and other areas, and the load of the single equipment is large, which affects the reliability and layout convenience of the equipment;
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a water tank for replacing the material in the containment of a nuclear power plant, which can significantly reduce the depth of the pool and improve the seismic capacity of the reactor building.
  • the present invention provides a nuclear power plant containment replacement tank, which comprises an inner ring pool located between a nuclear power plant reactor pit and a secondary shield wall, and a load bearing floor above the inner ring pool, and a load bearing floor slab.
  • an inner ring returning water hole there is an inner ring returning water hole, and an inner ring retaining basket corresponding to the inner ring returning water hole is arranged in the inner ring pool, wherein an annular space is arranged between the secondary shielding wall and the nuclear power plant safety shell, and the annular space floor is provided with an outer space
  • the annular pool, the outer ring pool and the annular space are connected through the outer ring returning water hole, and the outer ring pool is provided with an outer ring stagnant basket corresponding to the outer ring returning water hole, and the outer ring pool is connected with the inner ring pool through the passage.
  • the outer ring retention basket is fixed at the bottom of the outer ring pool, the upper opening is located in the outer ring return hole, and the opening is higher than the highest liquid level of the pool.
  • the outer ring is surrounded by the water return hole It has a concrete cofferdam.
  • the passage is located at the bottom section of the secondary shield wall.
  • the passage is provided with a slag gate.
  • the slag gate is movably connected to the predetermined structure of the side wall of the passage.
  • the inner ring pool and the outer ring pool form a double C-shaped ring pool structure.
  • the inner ring pool is stirred in a counterclockwise direction
  • the outer ring pool is stirred in a clockwise direction
  • the inner and outer ring pools provide a water source for the nuclear power plant safety injection system and the containment heat removal system as a whole, and the safety injection system filter is arranged in the inner ring pool, the safety shell The heat export system filter is placed in the outer ring pool.
  • the outer ring pool is provided with a containment heat removal system screen, and the containment heat extraction system filter passes through the manifold and the pit in the inner ring pool.
  • the cover plate is connected, and the pit cover is located on the water intake pit.
  • an inner loop return buffer tank is disposed between the inner loop return hole and the inner ring stagnant basket.
  • the inner loop return buffer tank is provided with a shallow pool, a deep pool and a middle wall between the shallow pool and the deep pool, and the bottom of the deep pool is lower than the shallow pool. The elevation at the bottom.
  • the height of the middle wall is smaller than the height of the pool wall of the inner ring return buffer tank.
  • the deep pool is located directly below the inner loop return hole.
  • the shallow pool is provided with an inner ring stagnant basket flow passage communicating with the inner ring stagnant basket.
  • a concrete cofferdam is arranged around the inner ring return hole, and a trash rack is arranged on the cofferdam.
  • the replacement tank of the nuclear power plant containment has the following beneficial technical effects:
  • the double C-ring ring structure design increases the pool area by about 70%, better realizes the reasonable arrangement of equipment in the IRWST, improves the mixing effect, and ensures the water quality stability and reliability in the pool;
  • the backwater in IRWST realizes the partition return and the fragment partition isolation.
  • the safe injection system and the containment heat extraction system take water to realize the partition water intake, which effectively reduces the debris load of the single basket of the detention basket and the filter, and improves the reliability of the equipment. Convenience;
  • the setting of the inner loop return buffer tank can significantly reduce the impact force on the inner ring retention basket, which is beneficial to the simplified design of the equipment and the selection of equipment materials.
  • Figure 1 is a schematic view showing the structure of a replacement tank in the containment of a nuclear power plant.
  • FIG. 2 is a schematic structural view of a water tank for replacing a material in a containment of a nuclear power plant according to the present invention.
  • Fig. 3 is a schematic view showing the water intake of the outer ring pool of the replacement tank in the safety shell of the nuclear power plant of the present invention.
  • FIG. 4 is a schematic view showing the mixing and mixing of the double-ring structure of the water tank of the replacement tank in the safety shell of the nuclear power plant of the present invention.
  • the replacement tank water tank in the nuclear power plant containment of the present invention comprises: an inner ring pool 10 located between the nuclear power plant reactor stack 41 and the secondary shield wall 42 and a load bearing floor 20 located above the inner ring pool 10, bearing capacity
  • the floor 20 is provided with an inner ring return hole 200.
  • the inner ring pool 10 is provided with an inner ring retaining basket 30 corresponding to the inner ring return hole 200, and an inner ring return hole 200 and an inner ring retaining basket 30 are disposed therein.
  • the annular return buffer pool 32 wherein an annular space 40 is disposed between the secondary shielding wall 42 and the containment 44, and an outer ring pool 60 is disposed under the annular space 40 floor, and the outer ring pool 60 and the annular space 40 are returned to the outer ring.
  • the hole 90 is connected, and the outer ring pool 60 is provided with an outer ring retention basket 70 corresponding to the outer ring return hole 90.
  • the outer ring pool 60 communicates with the inner ring pool 10 through the passage 80.
  • the bearing floor 20 is provided with an inner ring return hole 200, and a concrete cofferdam 204 is disposed around the inner ring return hole 200, and the concrete dam 204 is provided with a trash rack 202.
  • the trash rack 202 blocks large size, large specific gravity backflow debris, and achieves primary filtration of the recirculating debris.
  • the inner ring retention basket 30 is disposed in the inner water tank 10 of the displacement tank in the containment vessel for fine filtration of the recirculating debris.
  • the inner ring return buffer tank 32 is located below the inner ring return hole 200 to receive and collect the water drop from the inner ring return hole 200, and the inner ring return buffer pool 32 is provided with the inner ring staying in communication with the inner ring retention basket 30.
  • the basket flow path 320, the water falling from the inner ring return hole 200 is buffered by the inner ring buffer pool 32, and then enters the inner ring retention basket 30 through the inner ring retention basket flow path 320, and is filtered by the filter unit in the inner ring retention basket 30. Enter the inner water tank 10 of the replacement tank in the containment.
  • the inner ring return buffer pool 32 is provided with a shallow pool 304, a deep pool 300, and a middle wall 302 between the shallow pool 304 and the deep pool 300.
  • the elevation of the bottom of the deep pool 300 is lower than the bottom of the shallow pool 304.
  • the elevation of the center wall 302 is less than the height of the pool wall (not labeled) of the return buffer tank 30.
  • the deep pool 300 is located directly below the inner ring return hole 200 and can receive and collect the falling water from the inner ring return hole 200 and diffuse into the shallow pool 304.
  • the shallow pool 304 is provided with an inner ring stagnant basket flow passage 320 communicating with the inner ring retention basket 20, and the falling water from the deep pool 300 enters the inner ring stagnant basket 30 through the shallow pool 304 and the inner ring stagnant basket flow passage 320.
  • the filter element in the inner ring retention basket 30 is filtered and then enters the inner water tank 10 of the replacement tank in the containment tank.
  • the annular space 40 is located between the secondary shielding wall 42 and the safety shell 44, and is surrounded by the secondary shielding wall 42, the safety shell 44, the bearing floor 20 and the floor below the annular space 40, and the upper part is provided with an inflow hole ( Not marked).
  • the annular space 40 is provided with an outer ring return hole 90 communicating with the outer ring retaining basket 70, and a concrete coam 902 is disposed around the outer ring return hole 90. After the accident, the return water is buffered by the annular space 40, and then enters the outer ring retention basket 70 from the outer ring return hole 90, filtered by the filter component in the outer ring retention basket 70, and then enters the outer ring water tank 60 of the replacement tank in the containment tank.
  • the outer ring pool 60 is located below the floor of the annular space 40.
  • the design of the outer ring pool 60 increases the bottom area of the IRWST pool. Under the condition of ensuring the volume of the pool, the water depth is lowered, the overall height of the reactor building is further reduced, and the reactor is raised. The seismic capacity of the plant.
  • the outer ring retention basket 70 is disposed in the outer ring pool 60, the outer ring retention basket 70 is fixed at the bottom of the pool, the upper opening is located in the outer ring return hole 90, and the opening is higher than the highest liquid level of the pool for use after the accident
  • the reflux debris in the outer ring return hole 90 is filtered.
  • the passage 80 is located at the bottom section of the secondary shielding wall 42 and communicates with the inner ring pool 10 and the outer ring pool 60 to realize the water body communication and mutual flow in the inner and outer ring pools 10, 60.
  • the channel 80 is provided with a slag gate 800.
  • the slag gate 800 is movably connected to the predetermined structure of the side wall of the channel 80, and the bottom edge thereof is in contact with the bottom surface of the cell.
  • the slag gate 800 can realize the water body connection and the debris isolation of the inner ring pool 10 and the outer ring pool 60.
  • the slag gate 800 can be opened to realize personnel passage and equipment transfer.
  • the containment heat removal system screen 72 is located in the outer ring pool 60 for filtering the water in the outer ring pool 60 and passing through the manifold 720 and the pit cover in the inner ring pool 10.
  • the plate assembly 722 is connected, and the pit cover assembly 722 is located on the water intake pit 50 and the water intake pit 50 Connected, the water pump takes water from the water intake pit 50 through the pit penetration.
  • the inner ring pool 10 and the outer ring pool 60 form a double C-shaped ring pool structure, and are connected through three channels 80.
  • the three channels 80 are arranged as uniformly as possible, and are analyzed according to the pool space arrangement and the pool mixing. To adjust.
  • the inner ring pool 10 is provided with three inner ring retention baskets 30 and three safety injection system screens 35, five water intake pits 50 at the bottom, and an inner ring retention basket 30 and The safety injection system screens 35 are installed in the inner ring pool 10, and the safety injection system screens 35 are located between the inner ring retention baskets 30.
  • Each safety injection system screen 35 corresponds to a water intake pit 50, which is returned from the inner ring.
  • the water drop of the hole 200 is filtered by the filter member in the inner ring retention basket 30 and enters the inner ring pool 10.
  • the water from the inner ring pool 10 is filtered through the safety injection system filter 35 to provide a water source for the safety injection system.
  • the outer ring pool 60 is provided with three outer ring retention baskets 70 and two containment heat transfer system screens 72, and three outer ring retention baskets 70 are spaced apart from the outer ring pool 60. And located between the two containment heat-extracting system screens 72, each containment heat-extracting system filter 72 corresponds to a water intake pit 50, and the return water from the annular space 40 passes through the outer ring-storage basket 70 After filtering, it enters the outer ring pool 60. The water body from the outer ring pool 60 is filtered by the containment heat transfer system screen 72 and then transported through the manifold 720 to the water intake pit 50 below the pit cover assembly 722, and is taken through the pit penetration member and the water pump for safety.
  • the shell heat export system provides a water source.
  • the inner ring pool 10 is stirred in a counterclockwise direction
  • the outer ring pool 60 is stirred in a clockwise direction.
  • the mixing is started, the water flow in the inner and outer rings of the IRWST is integrated into a large circulation exchange and mixing, which can improve the IRWST.
  • the mixing effect of the internal water flow ensures the stability and reliability of the water quality in the pool.
  • the replacement tank of the nuclear power plant containment has at least the following beneficial technical effects:
  • the double C-ring ring structure design increases the pool area by about 70%, better realizes the reasonable arrangement of equipment in the IRWST, improves the mixing effect, and ensures the stability and reliability of the water quality in the pool;
  • the backwater in IRWST realizes the partition return and the fragment partition isolation.
  • the safe injection system and the containment heat extraction system take water to realize the partition water intake, which effectively reduces the debris load of the single basket of the detention basket and the filter, and improves the reliability of the equipment. Convenience;
  • the setting of the inner loop return buffer tank can significantly reduce the impact force on the inner ring retention basket, which is beneficial to the simplified design of the equipment and the selection of equipment materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种核电站安全壳内置换料水箱,包括位于核电站反应堆堆坑(41)和二次屏蔽墙(42)之间的内环水池(10)以及位于内环水池(10)上方的承重楼板(20),承重楼板(20)设有内环回水孔(200),内环水池(10)中设有与内环回水孔(200)对应的内环滞留篮(30),内环回水孔(200)与内环滞留篮(30)之间设有内环回流缓冲池(32),二次屏蔽墙(42)和核电站安全壳(44)之间设有环形空间(40),环形空间(40)楼板下方设有外环水池(60),外环水池(60)与环形空间(40)通过外环回水孔(90)连通,外环水池(60)中设有与外环回水孔(90)对应的外环滞留篮(70),外环水池(60)通过通道(80)与内环水池(10)连通,通过在安全壳(44)中内置换料水箱的外环水池(60),可增加安全壳内置换料水箱的容积,降低水深,提高反应堆厂房的抗震能力,内环回流缓冲池(32)可显著减少内环滞留篮(30)所受的冲击力,降低设备设计难度和成本。

Description

核电站安全壳内置换料水箱 技术领域
本发明属于核电工程领域,更具体地说,本发明涉及一种核电站安全壳内置换料水箱。
背景技术
随着经济社会的发展和对环境保护要求的日益提高,核电技术作为清洁能源技术之一也在不断向前发展。目前,世界主要核电技术供应商纷纷发展三代核电技术来提升核电厂的安全性。作为核电厂安全系统的一部分,安全壳内置换料水箱(IRWST)已成为国际三代核电技术的发展趋势。
采用能动安全壳内置换料水箱的三代核电技术中,换料水箱布置在反应堆厂房底部,会增加反应堆厂房的总体高度,影响到反应堆厂房的整体抗震性能。因此,安全壳内置换料水箱的设计对反应堆厂房的抗震性能具有关键性影响。
目前,IRWST回水过滤一般采取滞留篮过滤方式,对泄漏水和喷淋水进行过滤回收再利用。请参照图1所示,相关技术的核电站安全壳内置换料水箱包括位于核电站反应堆堆坑41和二次屏蔽墙42之间的安全壳内置换料水箱水池10和位于安全壳内置换料水箱水池10上方的承重楼板20,承重楼板20设有回水孔200和位于回水孔200上的拦污栅202,安全壳内置换料水箱水池10中设有与回水孔200对应的滞留篮30,滞留篮30固定在池底和池壁,滞留篮30上方开口高于换料水箱内的最高液位,以及位于二次屏蔽墙42和安全壳44之间的环形空间40和位于环形空间的回水孔400,安全壳内置换料水箱水池10通过回水孔400与环形空间40连通。事故后,回水一部分经过环形空间40回水孔400进入滞留篮30内,另一部分回水回流经过回水孔200上方的拦污栅202过滤,再经过回水孔200跌入滞留篮30内,通过滞留篮30内滤网部件进行过滤,可保证进入安全壳内置换料水箱内回水的碎片要求。
但是,相关技术的核电站安全壳内置换料水箱存在以下缺点:
1)水池底部面积受到二次屏蔽墙结构限制,水深较大,增加反应堆厂房整体高度,抬高主回路设备的布置高度,影响厂房整体抗震能力;
2)内部布置空间有限,设备布置紧凑,不利于水池搅混;
3)水池水深较大,低水位取水时,不利于保证泵的汽蚀余量;
4)滞留篮需过滤主设备区域、环形空间区域及其他区域的碎片,单台设备碎片负载较大,影响设备的可靠性和布置便利性;
5)主设备区域回水直接跌入滞留篮,具有较大冲击力,增加滞留篮设备的设计难度和成本。
有鉴于此,确有必要提供一种可显著减少滞留篮碎片负载量和回水冲击力、显著降低水池深度、利于提高反应堆厂房抗震能力的核电站安全壳内置换料水箱。
发明内容
本发明的发明目的在于:克服现有技术的不足,提供一种可显著降低水池深度、利于提高反应堆厂房抗震能力的核电站安全壳内置换料水箱。
为了实现上述发明目的,本发明提供一种核电站安全壳内置换料水箱,其包括位于核电站反应堆堆坑和二次屏蔽墙之间的内环水池以及位于内环水池上方的承重楼板,承重楼板设有内环回水孔,内环水池中设有与内环回水孔对应的内环滞留篮,其中,二次屏蔽墙和核电站安全壳之间设有环形空间,环形空间楼板下方设有外环水池,外环水池与环形空间通过外环回水孔连通,外环水池中设有与外环回水孔对应的外环滞留篮,外环水池通过通道与内环水池连通。
作为本发明核电站安全壳内置换料水箱的一种改进,所述外环滞留篮固定在外环水池池底,上方开口位于外环回水孔内,且开口高于水池的最高液位。
作为本发明核电站安全壳内置换料水箱的一种改进,所述外环回水孔周围 设有混凝土围堰。
作为本发明核电站安全壳内置换料水箱的一种改进,所述通道位于二次屏蔽墙的底段。
作为本发明核电站安全壳内置换料水箱的一种改进,所述通道设有拦渣栅。
作为本发明核电站安全壳内置换料水箱的一种改进,所述拦渣栅活动连接在通道侧壁预设结构上。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内环水池和外环水池形成双C形环池结构。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内环水池搅混为逆时针方向,所述外环水池搅混为顺时针方向。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内、外环水池整体为核电站安全注入系统和安全壳热量导出系统提供水源,安全注入系统滤网设置在内环池,安全壳热量导出系统滤网设置在外环池。
作为本发明核电站安全壳内置换料水箱的一种改进,所述外环水池设有安全壳热量导出系统滤网,所述安全壳热量导出系统滤网通过汇流管与内环水池中的地坑盖板连接,所述地坑盖板位于取水地坑上。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内环回水孔与内环滞留篮之间设有内环回流缓冲池。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内环回流缓冲池设有浅池、深池以及位于浅池和深池之间的中墙,深池底部的标高低于浅池底部的标高。
作为本发明核电站安全壳内置换料水箱的一种改进,所述中墙的高度小于所述内环回流缓冲池的池壁的高度。
作为本发明核电站安全壳内置换料水箱的一种改进,所述深池位于所述内环回水孔的正下方。
作为本发明核电站安全壳内置换料水箱的一种改进,所述浅池内设有与内环滞留篮连通的内环滞留篮流道。
作为本发明核电站安全壳内置换料水箱的一种改进,所述内环回流孔周围设有混凝土围堰,围堰上设有拦污栅。
相对于现有技术,本发明核电站安全壳内置换料水箱具有以下有益技术效果:
1)采用双C形环池结构设计使水池面积增加70%左右,更好实现IRWST内设备的合理布置,提升搅混效果,保证水池内水质稳定性和可靠性;
2)水深降低35%左右,降低水池深度,提高了反应堆厂房整体抗震能力,有利于反应堆厂房外取水泵的合理布置,并保证低液位取水时取水泵的汽蚀余量;
3)IRWST内回水实现分区回流和碎片分区隔离,安全注入系统和安全壳热量导出系统取水实现分区取水,有效降低了滞留篮和滤网单台设备的碎片负载,提升了设备的可靠性和布置便利性;
4)提升了核电站的安全性;
5)内环回流缓冲池的设置可以显著减少内环滞留篮所受的冲击力,有利于设备的简化设计和设备材料的选择。
附图说明
下面结合附图和具体实施方式,对本发明核电站安全壳内置换料水箱及其技术效果进行详细说明,其中:
图1为相关核电站安全壳内置换料水箱的结构示意图。
图2为本发明核电站安全壳内置换料水箱的结构示意图。
图3为本发明核电站安全壳内置换料水箱的外环池取水示意图。
图4为本发明核电站安全壳内置换料水箱双环池结构搅混示意图。
具体实施方式
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图2所示,本发明核电站安全壳内置换料水箱包括:位于核电站反应堆堆坑41和二次屏蔽墙42之间的内环水池10以及位于内环水池10上方的承重楼板20,承重楼板20设有内环回水孔200,内环水池10中设有与内环回水孔200对应的内环滞留篮30,内环回水孔200与内环滞留篮30之间设有内环回流缓冲池32,其中,二次屏蔽墙42和安全壳44之间设有环形空间40,环形空间40楼板下方设有外环水池60,外环水池60与环形空间40通过外环回水孔90连通,外环水池60中设有与外环回水孔90对应的外环滞留篮70,外环水池60通过通道80与内环水池10连通。
承重楼板20上设有内环回水孔200,围绕内环回水孔200设有混凝土围堰204,混凝土围堰204上设有拦污栅202。拦污栅202可阻挡大尺寸、大比重回流碎片,实现对回流碎片进行的初级过滤。
内环滞留篮30设置于安全壳内置换料水箱内环水池10中,用于对回流碎片进行精细过滤。
内环回流缓冲池32位于内环回水孔200的下方,可接收和聚集来自内环回水孔200的跌水,内环回流缓冲池32设有与内环滞留篮30连通的内环滞留篮流道320,来自内环回水孔200的跌水经内环缓冲池32缓冲后经内环滞留篮流道320进入内环滞留篮30内,经内环滞留篮30内过滤部件过滤后进入安全壳内置换料水箱内环水池10内。
在图示实施方式中,内环回流缓冲池32设有浅池304、深池300以及位于浅池304和深池300之间的中墙302,深池300底部的标高低于浅池304底部的标高,中墙302的高度小于回流缓冲池30的池壁(未标注)的高度。
深池300位于内环回水孔200的正下方,可接收和聚集来自内环回水孔200的跌水,并漫流进入浅池304。浅池304内设有与内环滞留篮20连通的内环滞留篮流道320,来自深池300的跌水经浅池304、内环滞留篮流道320进入内环滞留篮30内,经内环滞留篮30内过滤部件过滤后进入安全壳内置换料水箱内环水池10内。
环形空间40位于二次屏蔽墙42和安全壳44之间,由二次屏蔽墙42、安全壳44、承重楼板20和环形空间40下方的楼板共同围设而成,且上部设有流入孔(未标注)。环形空间40设有与外环滞留篮70连通的外环回水孔90,围绕外环回水孔90设有混凝土围堰902。事故后回水经环形空间40缓冲后从外环回水孔90进入外环滞留篮70内,经外环滞留篮70内过滤部件过滤后进入安全壳内置换料水箱外环水池60内。
外环水池60位于环形空间40的楼板下方,外环水池60的设计增加了IRWST水池的底部面积,在保证水池容积的条件下,降低了水深,进一步降低了反应堆厂房的整体高度,提升了反应堆厂房的抗震能力。
外环滞留篮70设置于外环水池60中,外环滞留篮70固定在池底,上方开口位于外环回水孔90内,且开口高于水池的最高液位,用于对事故后经过外环回水孔90中的回流碎片进行过滤。
通道80位于二次屏蔽墙42的底段,并与内环水池10和外环水池60连通,实现内、外环水池10、60中的水体连通互流。通道80设有拦渣栅800,拦渣栅800活动连接在通道80侧壁预设结构上,其底边与池底表面接触。拦渣栅800可以实现内环水池10和外环水池60的水体连通和碎片隔离,在安装和检修阶段,人员或设备需通过通道时,可打开拦渣栅800,实现人员通行和设备转运。
请参阅图3所示,安全壳热量导出系统滤网72位于外环水池60内,用于为外环水池60中的水体进行过滤,并通过汇流管720与内环水池10内的地坑盖板组件722连接,地坑盖板组件722位于取水地坑50上,并与取水地坑50 连通,取水泵通过地坑贯穿件从取水地坑50中取水。
请参阅图4所示,内环水池10和外环水池60形成双C形环池结构,并通过3个通道80连通,3个通道80尽可能均匀布置,并根据水池空间布置和水池搅混分析来调整。
请继续参阅图2和4所示,内环水池10内设置有3台内环滞留篮30和3台安全注入系统滤网35,底部设置有5个取水地坑50,内环滞留篮30和安全注入系统滤网35间隔安装在内环水池10内,安全注入系统滤网35位于内环滞留篮30之间,每台安全注入系统滤网35对应一个取水地坑50,来自内环回水孔200的跌水经内环滞留篮30内过滤部件过滤后进入内环水池10内,来自内环水池10的水体经过安全注入系统滤网35过滤后为安全注入系统提供水源。
请继续参阅图3和4所示,外环水池60内设置有3台外环滞留篮70和2台安全壳热量导出系统滤网72,3台外环滞留篮70间隔安装在外环水池60内,并位于两台安全壳热量导出系统滤网72之间,每台安全壳热量导出系统滤网72对应一个取水地坑50,来自环形空间40的回水经外环滞留篮70内过滤部件过滤后进入外环水池60内。来自外环水池60的水体经过安全壳热量导出系统滤网72过滤后通过汇流管720输送至地坑盖板组件722下方的取水地坑50,并通过地坑贯穿件和取水泵取水,为安全壳热量导出系统提供水源。
根据本发明的一个优选实施方式,内环水池10搅混为逆时针方向,外环水池60搅混为顺时针方向,当启动搅混时,IRWST内外环中的水流整体实现大循环交换搅混,可提高IRWST内水流的搅混效果,保证水池内水质的稳定性和可靠性。
结合以上对本发明的详细描述可以看出,相对于现有技术,本发明核电站安全壳内置换料水箱至少具有以下有益技术效果:
1)采用双C形环池结构设计使水池面积增加70%左右,更好实现IRWST内设备的合理布置,提升搅混效果,保证水池内水质的稳定性和可靠性;
2)水深降低35%左右,降低水池深度,提高了反应堆厂房整体抗震能力,有利于反应堆厂房外取水泵的合理布置,并保证低液位取水时取水泵的汽蚀余量;
3)IRWST内回水实现分区回流和碎片分区隔离,安全注入系统和安全壳热量导出系统取水实现分区取水,有效降低了滞留篮和滤网单台设备的碎片负载,提升了设备的可靠性和布置便利性;
4)提升了核电站的安全性;
5)内环回流缓冲池的设置可以显著减少内环滞留篮所受的冲击力,有利于设备的简化设计和设备材料的选择。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (16)

  1. 一种核电站安全壳内置换料水箱,其包括位于核电站反应堆堆坑和二次屏蔽墙之间的内环水池以及位于内环水池上方的承重楼板,承重楼板设有内环回水孔,内环水池中设有与内环回水孔对应的内环滞留篮,其特征在于:二次屏蔽墙和核电站安全壳之间设有环形空间,环形空间的楼板下方设有外环水池,外环水池与环形空间通过外环回水孔连通,外环水池中设有与外环回水孔对应的外环滞留篮,外环水池通过通道与内环水池连通。
  2. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述外环滞留篮固定在外环水池池底,上方开口位于外环回水孔内,且开口高于水池的最高液位。
  3. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述外环回水孔周围设有混凝土围堰。
  4. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述通道位于二次屏蔽墙的底段。
  5. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述通道设有拦渣栅。
  6. 根据权利要求5所述的核电站安全壳内置换料水箱,其特征在于,所述拦渣栅活动连接在通道侧壁预设结构上。
  7. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述内环水池和外环水池形成双C形环池结构。
  8. 根据权利要求7所述的核电站安全壳内置换料水箱,其特征在于,所述内环水池搅混为逆时针方向,所述外环水池搅混为顺时针方向。
  9. 根据权利要求8所述的核电站安全壳内置换料水箱,其特征在于,所述内、外环水池整体为核电站安全注入系统和安全壳热量导出系统提供水源,安全注入系统滤网设置在内环池,安全壳热量导出系统滤网设置在外环池。
  10. 根据权利要求7所述的核电站安全壳内置换料水箱,其特征在于,所述外环水池设有安全壳热量导出系统滤网,所述安全壳热量导出系统滤网通过汇流管与内环水池中的地坑盖板连接,所述地坑盖板位于取水地坑上。
  11. 根据权利要求1所述的核电站安全壳内置换料水箱,其特征在于,所述内环回水孔与内环滞留篮之间设有内环回流缓冲池。
  12. 根据权利要求11所述的核电站安全壳内置换料水箱,其特征在于:所述内环回流缓冲池设有浅池、深池以及位于浅池和深池之间的中墙,深池底部的标高低于浅池底部的标高。
  13. 根据权利要求12所述的核电站安全壳内置换料水箱,其特征在于:所述中墙的高度小于所述内环回流缓冲池的池壁的高度。
  14. 根据权利要求12所述的核电站安全壳内置换料水箱,其特征在于:所述深池位于所述内环回水孔的正下方。
  15. 根据权利要求12所述的核电站安全壳内置换料水箱,其特征在于:所述浅池内设有与内环滞留篮连通的内环滞留篮流道。
  16. 根据权利要求11至15中任一项所述的核电站安全壳内置换料水箱,其特征在于:所述内环回流孔周围设有混凝土围堰,围堰上设有拦污栅。
PCT/CN2017/106195 2016-10-14 2017-10-13 核电站安全壳内置换料水箱 WO2018068767A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610898224.8 2016-10-14
CN201610898224.8A CN106340327B (zh) 2016-10-14 2016-10-14 核电站安全壳内置换料水箱
CN201611160958.2A CN106782691B (zh) 2016-12-15 2016-12-15 核电站安全壳内置换料水箱
CN201611160958.2 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018068767A1 true WO2018068767A1 (zh) 2018-04-19

Family

ID=61906097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106195 WO2018068767A1 (zh) 2016-10-14 2017-10-13 核电站安全壳内置换料水箱

Country Status (1)

Country Link
WO (1) WO2018068767A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028285A (zh) * 2012-12-17 2013-04-10 中国核电工程有限公司 安全壳内置换料水箱过滤器系统
CN104078085A (zh) * 2014-06-04 2014-10-01 中国核电工程有限公司 一种具有水洗功能的安全壳内置换料水箱
CN104078086A (zh) * 2014-06-04 2014-10-01 中国核电工程有限公司 一种能动、非能动结合的安全壳地坑水冷却系统
CN105489256A (zh) * 2015-12-11 2016-04-13 中广核工程有限公司 核电站严重事故反应堆长期水源非能动pH值调节系统及方法
CN106340327A (zh) * 2016-10-14 2017-01-18 深圳中广核工程设计有限公司 核电站安全壳内置换料水箱
CN106782691A (zh) * 2016-12-15 2017-05-31 中广核工程有限公司 核电站安全壳内置换料水箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028285A (zh) * 2012-12-17 2013-04-10 中国核电工程有限公司 安全壳内置换料水箱过滤器系统
CN104078085A (zh) * 2014-06-04 2014-10-01 中国核电工程有限公司 一种具有水洗功能的安全壳内置换料水箱
CN104078086A (zh) * 2014-06-04 2014-10-01 中国核电工程有限公司 一种能动、非能动结合的安全壳地坑水冷却系统
CN105489256A (zh) * 2015-12-11 2016-04-13 中广核工程有限公司 核电站严重事故反应堆长期水源非能动pH值调节系统及方法
CN106340327A (zh) * 2016-10-14 2017-01-18 深圳中广核工程设计有限公司 核电站安全壳内置换料水箱
CN106782691A (zh) * 2016-12-15 2017-05-31 中广核工程有限公司 核电站安全壳内置换料水箱

Similar Documents

Publication Publication Date Title
CN104919534B (zh) 用于从核反应堆加压容器移除上部内部构件的装置和方法
Zheng et al. The general design and technology innovations of CAP1400
CA1049665A (en) Nuclear reactor apparatus
US8744036B2 (en) High power density liquid-cooled pebble-channel nuclear reactor
CN103065696B (zh) 乏燃料干式贮存装置
CN102005252B (zh) 一种压水堆核电站用乏燃料贮存格架
WO2017045159A1 (zh) 核电站反应堆压力容器与屏蔽墙的组合结构
CN107610793B (zh) 用于海洋核动力平台的乏燃料贮存系统
KR101250479B1 (ko) 안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열 전달량 증가 방법
CN109461506A (zh) 一种泳池式区域低温供热堆
CN205354669U (zh) 一种具有屏蔽功能的反应堆压力容器支承结构
CN106782691B (zh) 核电站安全壳内置换料水箱
WO2018068767A1 (zh) 核电站安全壳内置换料水箱
CN106340327B (zh) 核电站安全壳内置换料水箱
US20160042820A1 (en) Chimney assembly of a reactor pressure vessel and method of storing the same during a nuclear reactor outage
CN102013277A (zh) 衰变箱
GB2541475B (en) Structural layout of primary loop of nuclear reactor coolant system
JP2016061012A (ja) 免震建屋の水没防止構造
JP2014178142A (ja) 原子炉格納容器の冷却装置及び冷却方法
CN207302651U (zh) 用于海洋核动力平台的乏燃料贮存系统
CN202025538U (zh) 衰变箱
CN216311354U (zh) 一种非能动核电厂换料水池充排水系统
CN203250543U (zh) 一种用于拦截并贮存碎渣的装置
JP2018524592A (ja) Irwstタンク内において濾過装置を備える原子炉
CN110428914A (zh) 一种具有空气自然循环能力的乏燃料水池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17859516

Country of ref document: EP

Kind code of ref document: A1