WO2018068494A1 - 一种双频超宽带基站天线 - Google Patents

一种双频超宽带基站天线 Download PDF

Info

Publication number
WO2018068494A1
WO2018068494A1 PCT/CN2017/080990 CN2017080990W WO2018068494A1 WO 2018068494 A1 WO2018068494 A1 WO 2018068494A1 CN 2017080990 W CN2017080990 W CN 2017080990W WO 2018068494 A1 WO2018068494 A1 WO 2018068494A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
frequency
base station
dual
frequency radiating
Prior art date
Application number
PCT/CN2017/080990
Other languages
English (en)
French (fr)
Inventor
周献庭
杨元海
任现敏
Original Assignee
深圳国人通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621121258.8U external-priority patent/CN206098698U/zh
Priority claimed from CN201610898143.8A external-priority patent/CN106299670A/zh
Application filed by 深圳国人通信股份有限公司 filed Critical 深圳国人通信股份有限公司
Publication of WO2018068494A1 publication Critical patent/WO2018068494A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present invention relates to the field of mobile communication base station antennas, and in particular, to a dual-band ultra-wideband base station antenna.
  • antennas are required to be broadband and multi-frequency, so as to satisfy multiple systems simultaneously.
  • it is required to implement multiple systems to share antennas to reduce interference between antennas and reduce costs.
  • the core problem of current dual-band ultra-wideband base station antenna design is to continuously optimize the implementation of dual-band ultra-wideband base station antennas, including the design and reflection of radiating elements. The optimization of the boundaries allows the antenna to meet new technical requirements.
  • the object of the present invention is to overcome the deficiencies of the above techniques and to provide a dual-frequency ultra-wideband base station antenna that is small in size, light in weight, and low in cost.
  • a dual-band ultra-wideband base station antenna includes a reflector, a radiating unit disposed on a front surface of the reflector, and a feed network disposed on a back surface of the reflector, wherein the radiating unit is connected to the feed network
  • the radiation unit includes N low frequency radiation units, N+1 first high frequency radiation units, and N second high frequency radiation units, wherein the N is a positive integer greater than or equal to 1; the N low frequency radiations
  • the unit and the N+1 first high-frequency radiating units are alternately disposed on a front surface of the reflecting plate at intervals along a longitudinal axis, and the N second high-frequency radiating units are respectively disposed in the N low frequencies in a one-to-one correspondence
  • the longitudinal axis coincides with a longitudinal axis of the reflector.
  • the distance between the adjacent low frequency radiating elements is twice the distance between the adjacent first high frequency radiating unit and the second high frequency radiating unit.
  • the longitudinal sides of the reflector are respectively folded toward the front surface of the reflector to form a vertical flange, and the vertical flange is provided with a first protrusion corresponding to the low frequency radiation unit.
  • the first protrusion is bent toward the corresponding low frequency radiation unit to form a second protrusion, the second protrusion is perpendicular to the first protrusion; the center of the top end surface of the low frequency radiation unit Located on the lateral axis of the second projection.
  • an inner side of the N low frequency radiating units is respectively disposed around a metal short frame, and a size of the metal short frame is smaller than a diameter of the corresponding low frequency radiating unit and larger than the second high frequency radiating unit.
  • the metal short frame is formed by four first metal baffles, and the four first metal baffles are disposed on the front surface of the reflective plate and adjacent to the first metal baffle.
  • the first metal baffle has a square shape.
  • the outer sides of the N+1 first high-frequency radiating units are respectively disposed around a metal high frame, and the size of the metal high frame is larger than the diameter of the first high-frequency radiating unit, and the metal is high.
  • the height of the frame is less than the height of the low frequency radiating element.
  • the metal high frame is formed by four second metal baffles, and the four second metal baffles are disposed on the front surface of the reflective plate and adjacent to the second metal baffle.
  • the two sides of the second metal baffle and the top edge of the second metal baffle are respectively connected by a beveled edge.
  • the radiating surfaces of the first high frequency radiating unit and the second high frequency radiating unit are provided with support columns
  • the top end of the support column is provided with a guiding disc.
  • the low-frequency radiation array and the high-frequency radiation array of the present invention adopt a coaxial arrangement, which reduces the volume of the base station antenna, reduces the weight of the base station antenna, and has better radiation performance and high isolation.
  • the circuit performance satisfies the requirements of high performance and small size of multi-band antennas in mobile communication systems.
  • FIG. 1 is a perspective view of a dual-band ultra-wideband base station antenna according to an embodiment of the present invention
  • FIG. 2 is a top plan view of the dual-band ultra-wideband base station antenna shown in FIG. 1; [0016] FIG.
  • FIG. 3 is a perspective view of a low frequency radiation unit, a high frequency radiation unit, and a metal short frame of the dual frequency ultra-wideband base station antenna shown in FIG. 1;
  • FIG. 4 is a perspective view of a high frequency radiation unit and a metal high frame of the dual frequency ultra-wideband base station antenna shown in FIG. 1.
  • a dual-band ultra-wideband base station antenna includes a reflector 10, a radiating element disposed on a front surface of the reflector 10, and a feed network disposed on a back surface of the reflector 10.
  • the reflecting plate 10 is a metal plate.
  • the radiating element is connected to the feed network for providing parallel feeds to the radiating elements.
  • the radiating element includes N low frequency radiating elements 20 and 2N+1 high frequency radiating elements 30, N being a positive integer greater than or equal to one.
  • the 2N+1 high-frequency radiation unit 30 includes N+1 first high-frequency radiation units and N second high-frequency radiation units.
  • the first high-frequency radiation unit and the second high-frequency radiation unit structure The same, so N+1 first high frequency radiating elements are simply referred to as N+1 high frequency radiating elements 30, and N second high frequency radiating elements are simply referred to as N high frequency radiating elements 30.
  • the low-frequency radiating unit 20 adopts a square dual-polarized die-casting vibrator, each polarization is composed of two dipoles connected in parallel, two radiating arms of the dipole are at an angle of 90 degrees, and the high-frequency radiating unit 30 is adopted.
  • the double-polarized die-casting vibrator has a height higher than the height of the high-frequency radiating element 30.
  • the N low frequency radiating elements 20 and the N+1 high frequency radiating elements 30 are alternately disposed on the front side of the reflecting plate 10 at intervals along a longitudinal axis, as shown in Fig. 2, and the longitudinal axis is indicated by L.
  • the N high-frequency radiating elements 30 are respectively disposed at intermediate positions inside the N low-frequency radiating elements 20 in a one-to-one correspondence.
  • the longitudinal axis L coincides with the longitudinal axis of the reflecting plate 10, so that the distance between the low-frequency radiating unit 20 and the high-frequency radiating unit 30 to the longitudinal sides of the reflecting plate 10 is equal, so that the radiation is uniform.
  • the N low frequency radiation units 20 constitute a low frequency radiation array
  • the 2N+1 high frequency radiation units 30 constitute a high frequency radiation array, so that the low frequency radiation array and the high frequency radiation array form a coaxial high and low linear array on the front surface of the reflection plate 10
  • the base station antenna has a small size index requirement, and has good circuit performance such as high and low frequency radiation performance and high isolation, and the radiation of the low frequency radiation array.
  • the surface is small, the interaction between the high and low frequency radiation arrays is small, and the high and low frequency radiation arrays have better front-to-back ratio, cross polarization discrimination index, and horizontal beam width convergence.
  • the radiating unit includes two low frequency radiating units 20 and five high frequency radiating units 30, and two low frequency radiating units 20 and three high frequency radiating units 30 therein are alternately disposed on the reflecting plate 10 at intervals along the longitudinal axis L.
  • the remaining two high-frequency radiating elements 30 are respectively disposed one-to-one at an intermediate position inside the two low-frequency radiating elements 20.
  • the low frequency radiation array operates from 790MHz to 960MHz and the high frequency radiation array operates from 1710MHz to 2690MHz.
  • the distance between adjacent low frequency radiating elements 20 is twice the distance between adjacent high frequency radiating elements 30, so that the mutual influence between the high and low frequency bands is small.
  • the distance between adjacent low frequency radiating elements 20 is 250 mm
  • the distance between adjacent high frequency radiating elements 30 is 125 mm.
  • the longitudinal side edges of the reflecting plate 10 are respectively folded toward the front surface of the reflecting plate 10 to form a vertical flange 11, and the vertical flange 11 is provided with a first protrusion 12 corresponding to the low frequency radiating unit 20.
  • the first protrusion 12 is bent toward the corresponding low frequency radiation unit 20 to form a second protrusion 13, and the second protrusion 13 is perpendicular to the first protrusion 12.
  • the center of the top end face of the low frequency radiating element 20 is located on the lateral axis of the second projection 13.
  • the vertical flange 11, the first projection 12 and the second projection 13 are mainly used to adjust the radiation pattern of the low frequency radiation array, so that the base station antenna has better radiation characteristics in the low frequency band.
  • the inner sides of the N low-frequency radiating elements 20 are respectively disposed around the metal short frame 40, and the size of the metal short frame 40 is smaller than the diameter of the corresponding low-frequency radiating unit 20 and larger than the high-frequency radiating unit 30. caliber.
  • the metal short frame 40 has a square shape in cross section.
  • the metal short frame 40 is formed by enclosing four first metal baffles 41, and four first metal baffles 41 are disposed on the front surface of the reflecting plate 10 and fixedly connected between the adjacent first metal baffles 41.
  • the adjacent first metal baffles 41 are secured by plastic rivets.
  • the shape of the first metal fence 41 is square.
  • the outer sides of the N+1 high-frequency radiating units 30 are respectively disposed around the metal high frame 50, the size of the metal high frame 50 is larger than the diameter of the high-frequency radiating unit 30, and the height of the metal high frame 50 is smaller than the low-frequency radiating unit 20 the height of.
  • the metal high frame 50 has a square shape in cross section.
  • the metal high frame 50 is formed by enclosing the four second metal baffles 51, and the four second metal baffles 51 are disposed on the front surface of the reflecting plate 10 and fixedly connected between the adjacent second metal baffles 51.
  • the adjacent second metal baffles 51 are secured by plastic rivets.
  • the side edges of the second metal shield 51 and the top edge of the second metal shutter 51 are respectively connected by a bevel 52.
  • the metal dwarf frame 40 and the metal high frame 50 are mainly used to adjust the radiation pattern of the high frequency radiation array, so that the base The station antenna can obtain good radiation characteristics in the high frequency range.
  • the radiating surface of the high-frequency radiating unit 30 is provided with a support post 31, and the top end of the support post 31 is provided with a bow-to-disk 32.
  • the low frequency radiation array and the high frequency radiation array of the present invention adopt a coaxial arrangement, and can effectively reduce the low frequency band and the high frequency band by reasonably setting the spacing between the radiation units and the structure of the reflection boundary.
  • the mutual coupling effect and good S-parameter index make the base station antenna have better circuit performance such as better radiation performance and high isolation, reduce the volume of the base station antenna, and ensure that the base station antenna can be obtained in a small size. It satisfies the requirements of high performance and small size of multi-band antennas in current mobile communication systems.
  • the invention has the advantages of simple structure, easy assembly, stable performance and low cost.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明涉及一种双频超宽带基站天线,包括反射板、设置在反射板正面的辐射单元以及设置在反射板背面的馈电网络,所述辐射单元与所述馈电网络连接,所述辐射单元包括N个低频辐射单元、N+1个第一高频辐射单元和N个第二高频辐射单元,所述N为大于或等于1的正整数;所述N个低频辐射单元和所述N+1个第一高频辐射单元沿一纵向轴线间隔交替设置在所述反射板的正面,所述N个第二高频辐射单元分别一一对应设置在所述N个低频辐射单元内侧的中间位置;所述N个低频辐射单元组成低频辐射阵列,所述N+1个第一高频辐射单元和N个第二高频辐射单元组成高频辐射阵列。本发明结构简单,体积小,重量轻,成本低。

Description

一种双频超宽带基站天线
技术领域
[0001] 本发明涉及移动通信基站天线领域, 具体的是涉及一种双频超宽带基站天线。
背景技术
[0002] 天线作为无线通信系统的关键前端部件, 其性能的优劣对运营商的网络质量起 到决定性作用。 近年来, 随着移动用户数量的急剧增长, 通信系统在不断更新 与扩容, 对天线的设计提出越来越高的要求, 一方面要求天线宽频化、 多频化 , 以同吋满足多个系统的通信要求; 另一方面要求实现多系统共用天线, 以减 小天线间的干扰并降低成本。 随着运行商对双频超宽带基站天线的指标要求曰 渐提高, 当前双频超宽带基站天线设计的核心问题就是不断地优化双频超宽带 基站天线的实现形式, 包括辐射单元的设计以及反射边界的优化, 使得天线满 足新的技术要求。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的在于克服上述技术的不足, 提供一种体积小、 重量轻、 成本低的 双频超宽带基站天线。
[0004] 本发明提供的一种双频超宽带基站天线, 包括反射板、 设置在反射板正面的辐 射单元以及设置在反射板背面的馈电网络, 所述辐射单元与所述馈电网络连接 , 所述辐射单元包括 N个低频辐射单元、 N+1个第一高频辐射单元和 N个第二高 频辐射单元, 所述 N为大于或等于 1的正整数; 所述 N个低频辐射单元和所述 N+1 个第一高频辐射单元沿一纵向轴线间隔交替设置在所述反射板的正面, 所述 N个 第二高频辐射单元分别一一对应设置在所述 N个低频辐射单元内侧的中间位置; 所述 N个低频辐射单元组成低频辐射阵列, 所述 N+1个第一高频辐射单元和 N个 第二高频辐射单元组成高频辐射阵列。
[0005] 进一步地, 所述纵向轴线与所述反射板的纵向轴线重合。 [0006] 进一步地, 相邻的所述低频辐射单元之间的距离是相邻的所述第一高频辐射单 元、 第二高频辐射单元之间的距离的两倍。
[0007] 进一步地, 所述反射板的纵向两侧边分别朝反射板的正面翻折形成竖直翻边, 所述竖直翻边设有与所述低频辐射单元对应的第一凸起。
[0008] 进一步地, 所述第一凸起朝对应的所述低频辐射单元弯折形成第二凸起, 所述 第二凸起垂直于第一凸起; 所述低频辐射单元顶端面的中心位于所述第二凸起 的横向轴线上。
[0009] 进一步地, 所述 N个低频辐射单元的内侧分别围绕设置有金属矮框, 所述金属 矮框的尺寸小于对应的所述低频辐射单元的口径且大于所述第二高频辐射单元 的口径。
[0010] 进一步地, 所述金属矮框由四个第一金属挡板围合形成, 所述四个第一金属挡 板设置在所述反射板的正面且相邻的第一金属挡板之间固定连接; 所述第一金 属挡板的形状为方形。
[0011] 进一步地, 所述 N+1个第一高频辐射单元的外侧分别围绕设置有金属高框, 所 述金属高框的尺寸大于所述第一高频辐射单元的口径, 且金属高框的高度小于 所述低频辐射单元的高度。
[0012] 进一步地, 所述金属高框由四个第二金属挡板围合形成, 所述四个第二金属挡 板设置在所述反射板的正面且相邻的第二金属挡板之间固定连接; 所述第二金 属挡板的两侧边与第二金属挡板的顶边之间分别通过一斜边连接。
[0013] 进一步地, 所述第一高频辐射单元和第二高频辐射单元的辐射面都设有支撑柱
, 所述支撑柱的顶端设有引向圆片。
发明的有益效果
有益效果
[0014] 本发明的低频辐射阵列和高频辐射阵列采用共轴的排列方式, 减小了基站天线 的体积, 减轻了基站天线的重量, 并具有较佳的辐射性能和高隔离度等良好的 电路性能, 满足了目前移动通信系统对多频段天线的高性能、 小尺寸的指标要 求。
对附图的简要说明 附图说明
[0015] 图 1为本发明一实施例提供的一种双频超宽带基站天线的立体图;
[0016] 图 2是图 1所示双频超宽带基站天线的俯视图;
[0017] 图 3是图 1所示双频超宽带基站天线的低频辐射单元与高频辐射单元、 金属矮框 的立体图;
[0018] 图 4是图 1所示双频超宽带基站天线的高频辐射单元与金属高框的立体图。
本发明的实施方式
[0019] 下面结合附图和实施例对本发明作进一步的描述。
[0020] 参考图 1和图 2, 本发明提供的一种双频超宽带基站天线, 包括反射板 10、 设置 在反射板 10正面的辐射单元以及设置在反射板 10背面的馈电网络。 反射板 10为 一金属板。 辐射单元与馈电网络连接, 用于对辐射单元提供并联馈电。
[0021] 辐射单元包括 N个低频辐射单元 20和 2N+1个高频辐射单元 30, N为大于或等于 1 的正整数。 该 2N+1个高频辐射单元 30包括 N+1个第一高频辐射单元和 N个第二高 频辐射单元, 本实施例中, 第一高频辐射单元和第二高频辐射单元结构相同, 所以下文将 N+1个第一高频辐射单元简称为 N+1个高频辐射单元 30, 将 N个第二 高频辐射单元简称为 N个高频辐射单元 30。
[0022] 低频辐射单元 20采用的是方形的双极化压铸振子, 每个极化由两个偶极子并联 构成, 偶极子的两个辐射臂成 90度角, 高频辐射单元 30采用的是双极化压铸振 子, 低频辐射单元 20的高度大于高频辐射单元 30的高度。 N个低频辐射单元 20和 N+1个高频辐射单元 30沿一纵向轴线间隔交替设置在反射板 10的正面, 如图 2所 示, 纵向轴线用 L表示。 N个高频辐射单元 30分别一一对应设置在 N个低频辐射 单元 20内侧的中间位置。 本实施例中, 该纵向轴线 L与反射板 10的纵向轴线重合 , 因而低频辐射单元 20和高频辐射单元 30分别到反射板 10纵向两侧边的距离相 等, 使得辐射均匀。 N个低频辐射单元 20组成低频辐射阵列, 2N+1个高频辐射 单元 30组成高频辐射阵列, 因而低频辐射阵列和高频辐射阵列在反射板 10的正 面形成共轴的高低直线阵列, 实现了该基站天线小尺寸的指标要求, 同吋具有 较佳的高低频辐射性能和高隔离度等良好的电路性能, 且低频辐射阵列的辐射 面较小, 高低频辐射阵列间的相互影响较小, 高低频辐射阵列均具有的较好的 前后比、 交叉极化鉴别率指标, 水平面波束宽度收敛。 本实施例中, 辐射单元 包括 2个低频辐射单元 20和 5个高频辐射单元 30, 2个低频辐射单元 20和其中的 3 个高频辐射单元 30沿纵向轴线 L间隔交替设置在反射板 10的正面, 剩下的 2个高 频辐射单元 30分别一一对应设置在 2个低频辐射单元 20内侧的中间位置。 低频辐 射阵列工作于 790MHz-960MHz, 高频辐射阵列工作于 1710MHz-2690MHz。
[0023] 相邻的低频辐射单元 20之间的距离是相邻的高频辐射单元 30之间的距离的两倍 , 使得高低频段间的相互影响较小。 本实施例中, 相邻的低频辐射单元 20之间 的距离是 250毫米, 相邻的高频辐射单元 30之间的距离是 125毫米。
[0024] 反射板 10的纵向两侧边分别朝反射板 10的正面翻折形成竖直翻边 11, 竖直翻边 11设有与低频辐射单元 20对应的第一凸起 12。 第一凸起 12朝对应的低频辐射单 元 20弯折形成第二凸起 13, 第二凸起 13垂直于第一凸起 12。 低频辐射单元 20顶 端面的中心位于第二凸起 13的横向轴线上。 竖直翻边 11、 第一凸起 12和第二凸 起 13主要用于调节低频辐射阵列的辐射方向图, 可使得基站天线在低频段具有 较佳的辐射特性。
[0025] 参考图 3和图 4, N个低频辐射单元 20的内侧分别围绕设置有金属矮框 40, 金属 矮框 40的尺寸小于对应的低频辐射单元 20的口径且大于高频辐射单元 30的口径 。 金属矮框 40的截面形状为方形。 金属矮框 40由四个第一金属挡板 41围合形成 , 四个第一金属挡板 41设置在反射板 10的正面且相邻的第一金属挡板 41之间固 定连接。 优选地, 相邻的第一金属挡板 41之间通过塑料铆钉固定。 第一金属挡 板 41的形状为方形。
[0026] N+1个高频辐射单元 30的外侧分别围绕设置有金属高框 50, 金属高框 50的尺寸 大于高频辐射单元 30的口径, 且金属高框 50的高度小于低频辐射单元 20的高度 。 金属高框 50的截面形状为方形。 金属高框 50由四个第二金属挡板 51围合形成 , 四个第二金属挡板 51设置在反射板 10的正面且相邻的第二金属挡板 51之间固 定连接。 优选地, 相邻的第二金属挡板 51之间通过塑料铆钉固定。 第二金属挡 板 51的两侧边与第二金属挡板 51的顶边之间分别通过一斜边 52连接。
[0027] 金属矮框 40和金属高框 50主要用于调节高频辐射阵列的的辐射方向图, 使得基 站天线在高频段能获得良好的辐射特性。
[0028] 高频辐射单元 30的辐射面设有支撑柱 31, 支撑柱 31的顶端设有弓 I向圆片 32。
[0029] 综上, 本发明的低频辐射阵列和高频辐射阵列采用共轴的排列方式, 并通过合 理的设置辐射单元之间的间距及反射边界的结构, 能有效地减少低频段和高频 段的互耦影响, 获得良好的 S参数指标, 使得基站天线具有较佳的辐射性能和高 隔离度等良好的电路性能, 减小了基站天线的体积, 保证了基站天线在较小尺 寸下获得可以满足目前移动通信系统对多频段天线的高性能、 小尺寸的指标要 求。 本发明结构简单, 易于组装, 性能稳定, 成本低。
[0030] 以上实施例仅表达了本发明的优选实施方式, 其描述较为具体和详细, 但并不 能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 如对各个实施例中的不同特征进行组合等, 这些都属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种双频超宽带基站天线, 包括反射板、 设置在反射板正面的辐射单 元以及设置在反射板背面的馈电网络, 所述辐射单元与所述馈电网络 连接, 其特征在于: 所述辐射单元包括 N个低频辐射单元、 N+1个第 一高频辐射单元和 N个第二高频辐射单元, 所述 N为大于或等于 1的正 整数; 所述 N个低频辐射单元和所述 N+1个第一高频辐射单元沿一纵 向轴线间隔交替设置在所述反射板的正面, 所述 N个第二高频辐射单 元分别一一对应设置在所述 N个低频辐射单元内侧的中间位置; 所述 N个低频辐射单元组成低频辐射阵列, 所述 N+1个第一高频辐射单元 和 N个第二高频辐射单元组成高频辐射阵列。
[权利要求 2] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 所述纵向 轴线与所述反射板的纵向轴线重合。
[权利要求 3] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 相邻的所 述低频辐射单元之间的距离是相邻的所述第一高频辐射单元、 第二高 频辐射单元之间的距离的两倍。
[权利要求 4] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 所述反射 板的纵向两侧边分别朝反射板的正面翻折形成竖直翻边, 所述竖直翻 边设有与所述低频辐射单元对应的第一凸起。
[权利要求 5] 根据权利要求 4所述的双频超宽带基站天线, 其特征在于: 所述第一 凸起朝对应的所述低频辐射单元弯折形成第二凸起, 所述第二凸起垂 直于第一凸起; 所述低频辐射单元顶端面的中心位于所述第二凸起的 横向轴线上。
[权利要求 6] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 所述 N个 低频辐射单元的内侧分别围绕设置有金属矮框, 所述金属矮框的尺寸 小于对应的所述低频辐射单元的口径且大于所述第二高频辐射单元的 口径。
[权利要求 7] 根据权利要求 6所述的双频超宽带基站天线, 其特征在于: 所述金属 矮框由四个第一金属挡板围合形成, 所述四个第一金属挡板设置在所 述反射板的正面且相邻的第一金属挡板之间固定连接; 所述第一金属 挡板的形状为方形。
[权利要求 8] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 所述 N+1 个第一高频辐射单元的外侧分别围绕设置有金属高框, 所述金属高框 的尺寸大于所述第一高频辐射单元的口径, 且金属高框的高度小于所 述低频辐射单元的高度。
[权利要求 9] 根据权利要求 8所述的双频超宽带基站天线, 其特征在于: 所述金属 高框由四个第二金属挡板围合形成, 所述四个第二金属挡板设置在所 述反射板的正面且相邻的第二金属挡板之间固定连接; 所述第二金属 挡板的两侧边与第二金属挡板的顶边之间分别通过一斜边连接。
[权利要求 10] 根据权利要求 1所述的双频超宽带基站天线, 其特征在于: 所述第一 高频辐射单元和第二高频辐射单元的辐射面都设有支撑柱, 所述支撑 柱的顶端设有引向圆片。
PCT/CN2017/080990 2016-10-14 2017-04-19 一种双频超宽带基站天线 WO2018068494A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621121258.8U CN206098698U (zh) 2016-10-14 2016-10-14 一种双频超宽带基站天线
CN201610898143.8 2016-10-14
CN201610898143.8A CN106299670A (zh) 2016-10-14 2016-10-14 一种双频超宽带基站天线
CN201621121258.8 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018068494A1 true WO2018068494A1 (zh) 2018-04-19

Family

ID=61905828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080990 WO2018068494A1 (zh) 2016-10-14 2017-04-19 一种双频超宽带基站天线

Country Status (1)

Country Link
WO (1) WO2018068494A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205282640U (zh) * 2015-12-23 2016-06-01 安谱络(苏州)通讯技术有限公司 一种新型的天线辐射单元及天线
CN205303669U (zh) * 2016-01-18 2016-06-08 中国铁塔股份有限公司 双扇区双频段基站天线
CN205303691U (zh) * 2016-01-12 2016-06-08 深圳国人通信股份有限公司 一种双频双极化基站天线
CN106299670A (zh) * 2016-10-14 2017-01-04 深圳国人通信股份有限公司 一种双频超宽带基站天线
CN206098698U (zh) * 2016-10-14 2017-04-12 深圳国人通信股份有限公司 一种双频超宽带基站天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205282640U (zh) * 2015-12-23 2016-06-01 安谱络(苏州)通讯技术有限公司 一种新型的天线辐射单元及天线
CN205303691U (zh) * 2016-01-12 2016-06-08 深圳国人通信股份有限公司 一种双频双极化基站天线
CN205303669U (zh) * 2016-01-18 2016-06-08 中国铁塔股份有限公司 双扇区双频段基站天线
CN106299670A (zh) * 2016-10-14 2017-01-04 深圳国人通信股份有限公司 一种双频超宽带基站天线
CN206098698U (zh) * 2016-10-14 2017-04-12 深圳国人通信股份有限公司 一种双频超宽带基站天线

Similar Documents

Publication Publication Date Title
US11108135B2 (en) Base station antennas having parasitic coupling units
EP3619770B1 (en) Multi-band base station antennas having crossed-dipole radiating elements
EP3614491B1 (en) Multi-band base station antennas having broadband decoupling radiating elements and related radiating elements
US11777229B2 (en) Antennas including multi-resonance cross-dipole radiating elements and related radiating elements
CN106654603B (zh) 一种三频超宽带基站天线
CN109216945B (zh) 一种多频基站天线
CN107275808B (zh) 超宽频带辐射器和相关的天线阵列
EP3067987B1 (en) Multi-band, multi-polarized wireless communication antenna
TWI628861B (zh) 複合天線
JP2020506631A (ja) 新型のスペクトル拡散広帯域基地局アンテナ
CN106299670A (zh) 一种双频超宽带基站天线
WO2015168845A1 (zh) 超宽带双极化辐射单元和基站天线
CN103560335A (zh) 多频段阵列天线
CN206864622U (zh) 一种三频双极化基站天线
CN206098698U (zh) 一种双频超宽带基站天线
CN103474754A (zh) 一种单、双极化天线阵子辐射单元以及天线
CN106654595B (zh) 一种高增益低剖面的车载天线
TWI521798B (zh) Broadband bow tie antenna
WO2018068494A1 (zh) 一种双频超宽带基站天线
CN109755738A (zh) 一种双极化网格天线
CN107946756B (zh) 一种电磁超表面加载的窄波束wlan ap天线
WO2020159786A1 (en) Multi-band base station antenna
WO2018120709A1 (zh) 一种三频超宽带基站天线
CN107086373B (zh) 一种双频双极化宽频天线
CN210167499U (zh) 一种双极化辐射单元及其天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859428

Country of ref document: EP

Kind code of ref document: A1