WO2018066629A1 - Copper compound-graphene oxide complex - Google Patents

Copper compound-graphene oxide complex Download PDF

Info

Publication number
WO2018066629A1
WO2018066629A1 PCT/JP2017/036219 JP2017036219W WO2018066629A1 WO 2018066629 A1 WO2018066629 A1 WO 2018066629A1 JP 2017036219 W JP2017036219 W JP 2017036219W WO 2018066629 A1 WO2018066629 A1 WO 2018066629A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
copper compound
copper
oxide complex
compound
Prior art date
Application number
PCT/JP2017/036219
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 橋本
清 磯邉
智子 堀部
佳彦 世良
栄次 山下
Original Assignee
学校法人関西学院
富士化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, 富士化学工業株式会社 filed Critical 学校法人関西学院
Priority to JP2018543954A priority Critical patent/JPWO2018066629A1/en
Publication of WO2018066629A1 publication Critical patent/WO2018066629A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a copper compound-graphene oxide composite.
  • Non-patent Document 1 a method of using a photohydrogen generation catalyst in which semiconductor titanium oxide and copper are supported on graphene oxide and a semiconductor in which platinum, copper oxide, and graphene oxide are combined as a photohydrogen generation electrode.
  • the main object of the present invention is to provide a novel copper compound-graphene oxide complex that can be used in the production of hydrogen.
  • the present invention provides a photocatalyst including the complex, a method for producing the complex, a hydrogen production apparatus including the complex as a catalyst, and an electrode used for a water decomposition reaction including the complex. Also aimed.
  • the inventors of the present invention have made extensive studies on a novel substance excellent in hydrogen generation efficiency. As a result, it is a composite of a copper compound and graphene oxide, and there is substantially no absorption derived from OH groups and C ⁇ O groups in the infrared absorption spectrum, and absorption derived from C—O groups. It has been found that when a copper compound-graphene oxide complex in which hydrogen is present is used as a photocatalyst, hydrogen can be efficiently produced from a hydrogen source such as water. The present invention has been completed by further studies based on these findings.
  • a novel copper compound-graphene oxide complex that can be used for the production of hydrogen can be provided.
  • a photocatalyst including the complex a method for producing the complex, a hydrogen production apparatus including the complex as a catalyst, and an electrode used for a water decomposition reaction including the complex are provided. You can also
  • Item 1 A composite of a copper compound and graphene oxide, A copper compound-graphene oxide complex in which, in the infrared absorption spectrum, there is substantially no absorption derived from an OH group and a C ⁇ O group, and there is an absorption derived from a C—O group.
  • Item 2. Item 2. The copper compound-graphene oxide composite according to Item 1, wherein Cu 2 O particles having a particle size of 0.06 ⁇ m or more are supported on the surface of the graphene oxide.
  • Item 3. The copper compound-graphene oxide complex according to Item 1 or 2, which is ⁇ 50 mass%.
  • Item 4. The copper compound-graphene oxide complex according to any one of Items 1 to 3, wherein the primary particle size is 100 ⁇ m or less.
  • the copper compound as the raw material is at least one of a salt of copper and inorganic acid, a salt of copper and carboxylic acid, a salt of copper and sulfonic acid, copper hydroxide, a copper double salt, and a copper complex.
  • Item 7. A method for producing a copper compound-graphene oxide complex according to Item 6.
  • Item 8. Item 6.
  • a photocatalyst comprising the copper compound-graphene oxide complex according to any one of Items 1 to 5.
  • a method for producing hydrogen comprising a step of irradiating a hydrogen source containing at least one of water and alcohol in the presence of the copper compound-graphene oxide complex according to any one of Items 1 to 5.
  • Item 10. Item 12.
  • Item 11 Item 6.
  • a hydrogen production apparatus comprising the copper compound-graphene oxide complex according to any one of Items 1 to 5 as a catalyst.
  • FIG. 3 is data showing the results of MALDI and FT-ICR-MS analysis of graphene oxide synthesized in Synthesis Example 1.
  • FIG. 2 is an ultraviolet-visible absorption spectrum of graphene oxide synthesized in Synthesis Example-1.
  • 3 is data showing the results of powder X-ray diffraction (XRD) measurement of graphene oxide synthesized in Synthesis Example-1.
  • XRD powder X-ray diffraction
  • Infrared absorption spectrum (IR: ATR method) of the copper compound-graphene oxide complex (Cu-GO) obtained in Example 1 and the iron compound-graphene oxide complex (Fe-GO) obtained in the reference example Is an infrared absorption spectrum (IR: ATR method).
  • Infrared absorption spectrum (IR: ATR method) of the copper compound-graphene oxide complex obtained in Example 2 and infrared absorption spectrum of the iron compound-graphene oxide complex (Fe-GO) obtained in the reference example (IR: ATR method) 2 is an XRD spectrum of a copper compound-graphene oxide complex obtained in Example 1.
  • XRD spectrum of the copper compound-graphene oxide complex obtained in Example 2 3 is an XRD spectrum of an iron compound-graphene oxide complex obtained in Reference Example. 2 is a scanning electron micrograph of the copper compound-graphene oxide complex obtained in Example 1 (magnification: 10,000 times).
  • TEM image (BF) obtained by observing the surface of the copper compound-graphene oxide complex obtained in Example 1 by transmission electron microscope / energy dispersive spectroscopy (TEM / EDX), and copper atoms It is a mapping image of (Cu—K), oxygen atom (OK), and carbon atom (CK). It is a photograph of the apparatus used for manufacture of hydrogen in a test example.
  • light irradiation time and generated hydrogen It is the graph which plotted the relationship with the total amount of. 6 is a graph plotting the relationship between the light irradiation time and the total amount of generated hydrogen in Example 2 of hydrogen production using the copper compound-graphene oxide complex obtained in Example 2.
  • Copper compound-graphene oxide complex The copper compound-graphene oxide complex of the present invention is a complex of a copper compound and graphene oxide. Furthermore, the copper compound-graphene oxide complex of the present invention has substantially no absorption derived from OH groups and C ⁇ O groups in the infrared absorption spectrum, and absorption derived from C—O groups. It is characterized by doing.
  • the copper compound-graphene oxide composite of the present invention will be described in detail.
  • the copper compound is preferably in the form of particles.
  • the copper compound is preferably dispersed and supported on the surface of graphene oxide.
  • the copper compound-graphene oxide composite of the present invention may contain one kind of copper compound or two or more kinds.
  • the Cu 2 O particles in the copper compound-graphene oxide composite of the present invention mean copper compound particles containing Cu 2 O as a main constituent, and the content of Cu 2 O in the particles is usually 50. It can be increased by mass% or more, preferably 60 mass% or more, more preferably 70 mass% or more. In the copper compound-graphene oxide composite of the present invention, it is preferable that the copper compound particles containing Cu 2 O as a main component have a structure that is supported on the surface of the graphene oxide.
  • the particle diameter of the Cu 2 O particles is preferably about 0.06 ⁇ m to 5 ⁇ m, more preferably about 0.06 ⁇ m to 3 ⁇ m.
  • the particle diameters of the particles of the copper compound-graphene oxide composite of the present invention are as follows: scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) and transmission electron microscope / energy dispersive spectroscopy (TEM / EDX) is a value that can be observed and measured.
  • the surface of the copper compound-graphene oxide complex of the present invention is analyzed by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) and transmission electron microscope / energy dispersive spectroscopy (TEM / EDX).
  • SEM / EDX scanning electron microscope / energy dispersive spectroscopy
  • TEM / EDX transmission electron microscope / energy dispersive spectroscopy
  • the particle diameter of the amorphous copper compound particles is preferably 10 nm or less, more preferably 5 nm or less, still more preferably 4 nm or less, and particularly preferably 3 nm or less from the viewpoint of enhancing hydrogen production efficiency.
  • the particle diameter of the copper compound particles is a value estimated by observing the copper compound-graphene oxide complex of the present invention with a transmission electron microscope / energy dispersive spectroscopy (TEM / EDX) or the like.
  • the copper compound particles are not particularly limited, but preferably include copper oxide, more preferably monovalent copper oxide, from the viewpoint of increasing hydrogen production efficiency.
  • the copper compound contained in the copper compound-graphene oxide complex may be one type or two or more types.
  • the copper compound may contain metallic copper, and the copper compound-graphene oxide complex partially supporting the metallic copper is also included in the scope of the present invention. It is what
  • the content of the copper compound is not particularly limited.
  • elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) The content of copper in the portion where Cu 2 O particles cannot be confirmed, calculated from the results, is preferably 0.1 to 50% by mass, more preferably 0.5 to 50% by mass, and 2 to 2%. More preferably, it is 50 mass%.
  • the graphene oxide contained in the copper compound-graphene oxide composite of the present invention is a graphene oxide.
  • graphene oxide for example, a commercially available product or a product produced by oxidizing graphite or graphene can be used.
  • a product produced by oxidizing graphite for example, graphite using sulfuric acid or permanganese. Manufactured by oxidation using potassium acid or the like).
  • Examples of commercially available graphene oxide include those sold as graphene oxide powder, graphene oxide, reductive graphene oxide, and high specific surface area graphene nanopowder, specifically from Sigma Aldrich, etc.
  • a commercially available product can be used.
  • graphite is oxidized using sulfuric acid
  • the obtained graphene oxide contains a small amount of sulfur.
  • a trace amount of sulfur is usually present also in the copper compound-graphene oxide complex produced using the graphene oxide.
  • the copper compound-graphene oxide composite of the present invention may contain a trace amount of sulfur generated in the process of producing graphene oxide.
  • any graphite may be used as long as it is suitable for the composite of the present invention.
  • shape of the graphite for example, spherical graphite, granular graphite, scaly graphite, scaly graphite, and powdered graphite can be used. From the ease of supporting a copper compound and the catalytic activity, scaly graphite, scaly graphite Use is preferred. Specifically, commercially available products such as powdered graphite manufactured by Nacalai Tesque and high specific surface area graphene nanopowder manufactured by EM Japan can be used.
  • the primary particle diameter of the graphite is preferably about 0.1 to 100 ⁇ m, more preferably about 0.5 to 80 ⁇ m, and still more preferably about 2 to 40 ⁇ m.
  • the primary particle diameter of graphene oxide is preferably about 0.1 to 100 ⁇ m, more preferably about 0.5 to 80 ⁇ m, and further preferably about 2 to 40 ⁇ m.
  • the primary particle size of the copper compound-graphene oxide composite of the present invention is preferably about 0.1 to 100 ⁇ m, more preferably about 0.5 to 80 ⁇ m, and further preferably about 2 to 40 ⁇ m. These particle diameters can be confirmed by scanning electron microscope (SEM) photographs.
  • composition formula of graphene oxide can be represented by, for example, [C x O y H z ] k .
  • x is 5-12
  • y is 2-8
  • z is 2-10
  • k is 8-15
  • more preferably x is 6-10
  • y is 3 to 6
  • z is 2 to 5
  • k is 10 to 13.
  • the molecular weight of graphene oxide is preferably about 500 to 5000, more preferably about 800 to 4000, still more preferably about 1500 to 3000, and particularly preferably about 2000 to 2500.
  • the copper compound of the present invention in the infrared absorption spectrum of the copper compound-graphene oxide complex of the present invention, there is substantially no absorption derived from OH groups and C ⁇ O groups, and there is absorption derived from C—O groups. Yes. More specifically, the copper compound of the present invention - in the case of measuring the infrared absorption spectrum of the graphene oxide complex, broad of O-H group absorption derived from (hydroxy group) (3000cm -1 ⁇ 3800cm -1 Absorption), absorption derived from C ⁇ O group (carbonyl group) (absorption near 1700 cm ⁇ 1 ) does not substantially exist, and absorption derived from C—O group (930 cm ⁇ 1 to 1310 cm ⁇ 1 ). Absorption).
  • the oxygen bonded to the carbon atom of the graphene oxide is not a hydroxyl group or a carbonyl group but substantially a C—O group.
  • the infrared absorption spectrum of the copper compound-graphene oxide complex of the present invention when the infrared absorption spectrum of the copper compound-graphene oxide complex of the present invention is measured, a slight absorption of a hydroxy group or a carbonyl group may exist. That is, in the present invention, the fact that the aforementioned absorption is substantially absent means that the relative ratio of the peak height of these absorptions to the peak height of the absorption derived from the C—O group is 0.1 or less. means.
  • the copper compound in the copper compound-graphene oxide composite of the present invention may have an amorphous structure or a crystal structure.
  • the method for producing the copper compound-graphene oxide complex of the present invention is not particularly limited.
  • the copper compound-graphene oxide complex having a crystal structure is the following “2. Method for producing copper compound-graphene oxide complex” It can be produced by the method described in the column.
  • Step 1 A step of preparing a suspension by mixing a copper compound as a raw material and graphene oxide in an inert solvent.
  • Step 2 A step of irradiating the suspension with light having a wavelength in the range of 100 nm to 800 nm.
  • Step 1 is a step of preparing a suspension by mixing a copper compound (copper compound raw material) as a raw material and graphene oxide in an inert solvent.
  • the copper compound raw material is not particularly limited as long as it can form the above-described copper compound-graphene oxide complex through Step 2 described later.
  • a copper compound raw material may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the copper compound used as a raw material examples include a salt of copper and an inorganic acid, a salt of copper and carboxylic acid, a salt of copper and sulfonic acid, copper hydroxide, a copper double salt, a copper complex, and the like.
  • copper (II) acetate and copper chloride are used.
  • a copper compound used as a raw material one kind may be used alone, or two or more kinds may be used in combination.
  • graphene oxide those described in the above-mentioned column of “1. Copper compound-graphene oxide composite” can be used.
  • the mixing ratio of the copper compound raw material and the graphene oxide is not particularly limited, and can be appropriately set according to the composition of the target copper compound-graphene oxide complex.
  • the content of copper in the portion where Cu 2 O particles cannot be confirmed which is calculated from the results of elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy.
  • the amount to 0.1 to 50% by mass about 100 parts by mass of the copper compound raw material may be used with respect to 100 parts by mass of graphene oxide.
  • the inert solvent examples include, but are not limited to, ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and propyl acetate; dimethylformamide and dimethylacetamide Amides such as: sulfoxides such as dimethyl sulfoxide; water; or a mixed solvent thereof, and the like, preferably ethers, alcohols, amides, water or a mixed solvent thereof, and the like is more preferable. Examples thereof include tetrahydrofuran, ethanol, dimethylformamide, water, or one or more mixed solvents thereof.
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • alcohols such as methanol, ethanol and isopropyl alcohol
  • esters such as ethyl acetate and propyl acetate
  • Step 2 is a step of irradiating the suspension prepared in Step 1 with light having a wavelength in the range of 100 nm to 800 nm.
  • the suspension may be irradiated with light having a wavelength in the range of 100 nm to 800 nm, more specifically, light including ultraviolet light, or only ultraviolet light, or visible light, infrared light, You may irradiate light of other wavelengths, such as light. That is, among light having a wavelength in the range of 100 nm to 800 nm, light including ultraviolet light is preferable, and light including light of other wavelengths such as visible light and infrared light in addition to ultraviolet light. It is also preferable that the light contains only ultraviolet light.
  • light having a wavelength in the range of 100 nm to 800 nm may be further irradiated.
  • Specific examples of light that can be actually used in this step include mercury lamp light (for example, high-pressure mercury lamp light).
  • the wavelength of the light applied to the suspension in step 2 is about 100 to 800 nm, preferably about 180 to 600 nm.
  • the wavelength is in such a range, and it is desirable to include light having an ultraviolet wavelength. .
  • the temperature at which the reaction proceeds by irradiating with light having a wavelength in the range of 100 nm to 800 nm may be appropriately adjusted according to the wavelength of light, irradiation time, etc. C. to about 50.degree. C., preferably about 10.degree. C. to about 30.degree.
  • the time for irradiating light having a wavelength in the range of 100 nm to 800 nm may be appropriately adjusted according to the wavelength, temperature, etc. of the light, but is usually about 1 minute to 24 hours, preferably About 10 minutes to 10 hours, more preferably about 30 minutes to 5 hours.
  • Step 2 produces the copper compound-graphene oxide complex of the present invention in the suspension.
  • step 1 and step 2 are preferably performed in an atmosphere of an inert gas (for example, nitrogen gas, argon gas, etc.).
  • an inert gas for example, nitrogen gas, argon gas, etc.
  • a step of isolating the obtained copper compound-graphene oxide complex may be further provided.
  • An isolation process can be performed by a conventional method.
  • the obtained copper compound-graphene oxide complex can be isolated by filtration, washing, and drying.
  • the copper compound-graphene oxide composite of the present invention having an amorphous structure is used, for example, in the preparation of a suspension in Step 1 of “2. Method for producing copper compound-graphene oxide composite” above.
  • graphene oxide it can manufacture suitably by using the graphene oxide of the state of the suspension which has not passed through the drying process.
  • a copper compound-graphene oxide complex having the above-described crystal structure can be preferably produced. .
  • the copper compound-graphene oxide complex of the present invention is used as a photocatalyst, in the presence of the photocatalyst including the copper compound-graphene oxide complex, for example, by a method of irradiating light to a hydrogen source containing at least one of water and alcohol, Hydrogen can be produced.
  • Examples of the hydrogen source that is a raw material for hydrogen production include at least one of water and alcohol.
  • Specific examples of the hydrogen source include water, alcohols such as methanol, ethanol, and propanol or mixtures thereof, preferably water, ethanol, mixtures thereof, and the like, and particularly preferably water. It is done.
  • Examples of water include tap water, distilled water, ion-exchanged water, pure water, and industrial water, and preferably include tap water, distilled water, and industrial water. Only one type of hydrogen source may be used, or a mixture of two or more types may be used.
  • the light to be irradiated includes, for example, sunlight, white LED light, fluorescent lamp light, mercury lamp light (for example, high-pressure mercury lamp light), and preferably sunlight and white LED light. Only one type of light to be irradiated may be used, or two or more types may be mixed and used.
  • the ratio of the photocatalyst to the hydrogen source as a raw material for hydrogen production is usually about 0.0001 to 5% by mass, preferably about 0.001 to 1% by mass, more preferably about 0.01 to 0.1% by mass. Is mentioned.
  • the copper compound-graphene oxide complex of the present invention may be dispersed in a hydrogen source.
  • the complex may be supported on a carrier and may be present in the hydrogen source.
  • a transparent plate made of glass, plastic or the like may be used as a carrier, and a copper compound-graphene oxide complex may be supported using a resin adhesive or the like.
  • a reaction aid such as a photosensitizer or an electron donor may be used. Good.
  • the photosensitizer used as a reaction aid a known photosensitizer can be used.
  • the photosensitizer include aromatic hydrocarbon dyes (for example, coumarin, fluorescein, dibromofluorescein, eosin Y, eosin B, erythrosine B, rhodamine B, rose bengal, crystal violet, malachite green, auramine O, Acridine orange, brilliant clay blue, neutral red, thionine, methylene blue, orange II, indigo, alizarin, pinacanol, berberine, tetracycline, perpurine, thiazole orange, etc.
  • aromatic hydrocarbon dyes for example, coumarin, fluorescein, dibromofluorescein, eosin Y, eosin B, erythrosine B, rhodamine B, rose bengal, crystal violet, malachite green, auramine O, Acridine orange, brilliant clay
  • Cyanine dyes oxonol dyes, merocyanine dyes, triallyl carbonium dyes, etc.]; fullerene derivatives (eg, fullerene hydroxide, amino Acid fullerene, aminocaproic acid fullerene, carboxylic acid fullerene, bismalonate diethylfullerene, bismalonate ethylfullerene, etc.); Di-aclinic acid, deuteroporphyrin IX-2,4-di-sulfonic acid, 2,4-diacetyl deuteroporphyrin IX, TSPP, phthalocyanine tetracarboxylic acid, phthalocyanine disulfonic acid, phthalocyanine tetrasulfonic acid, their zinc, copper , Cadmium, cobalt, magnesium, aluminum, platinum, palladium, gallium, germanium, silica, tin, etc.); metal complex dyes (eg ruthen
  • the amount of the photosensitizer used is preferably about 0.1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the photocatalyst.
  • the electron donor is a compound that can donate electrons to the above-described photosensitizer, and examples thereof include triethylamine, triethanolamine, ethylenediaminetetraacetic acid (EDTA), ascorbic acid, and the like. Examples include ethanolamine.
  • One type of electron donor may be used alone, or two or more types may be used in combination.
  • the amount of the electron donor used is, for example, preferably about 10 to 1000 parts by mass, more preferably about 100 to 750 parts by mass with respect to 1 part by mass of the photocatalyst.
  • the reaction temperature is, for example, about 0 to 60 ° C., more preferably about 20 to 50 ° C. Further, since hydrogen is continuously produced while the photocatalyst is irradiated with light, light may be irradiated according to the time for producing hydrogen.
  • the produced hydrogen can be continuously extracted to the outside through a gas outlet tube or the like, it can be stored in a cylinder or the like for storage and transportation as necessary.
  • the copper compound-graphene oxide composite of the present invention can also be used as an electrode material.
  • An electrode using an electrode material can be produced by a conventional method.
  • the electrode of the present invention may be constituted substantially only by the copper compound-graphene oxide complex of the present invention (the complex may be substantially contained as an active ingredient), or the surface of the electrode May be composed of the composite of the present invention, and the interior may be composed of another metal or the like.
  • the electrode of the present invention can have the same size, shape, etc. as the known (hydrogen generating) electrode, and can be used as an alternative to the known electrode used for water electrolysis. Can do.
  • the (hydrogen generation) electrode of the present invention can be manufactured at low cost, and the hydrogen generation efficiency is high, so that the production cost of hydrogen can be greatly reduced.
  • the complex of the present invention can be produced very easily by a simple apparatus or method without using a special apparatus or a complicated method. It is extremely excellent in terms of cost.
  • the composite of the present invention can be produced as a composite having crystals or an amorphous composite as described above, and each composite can be selectively produced.
  • the composite of the present invention is excellent in properties such as the ability of the copper compound to be hardly oxidized, the stability as a composite, and the stability as a photocatalyst, that is, the ability to exhibit the catalytic ability for a long time. It is what has.
  • Second Step ice (100 cm 3 ) was put into a beaker, and the light purple liquid was slowly poured into the beaker. Further, while cooling the beaker with an ice bath, a 30% aqueous solution of H 2 O 2 was slowly added until the light purple became pale green. The obtained suspension was put into a centrifuge tube and centrifuged (2600 ⁇ g, 3 hours). The supernatant was removed, and the precipitate was washed with water and then centrifuged (2600 ⁇ g, 30 minutes). The supernatant was removed and the precipitate was washed with 5% aqueous HCl and then centrifuged (2600 ⁇ g, 30 minutes).
  • the obtained graphene oxide was subjected to matrix-assisted laser desorption / ionization (MALDI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS analysis) using Solarix manufactured by Bruker Daltonics.
  • MALDI matrix-assisted laser desorption / ionization
  • FT-ICR-MS analysis Fourier transform ion cyclotron resonance mass spectrometry
  • the supernatant was removed and the precipitate was washed with 5% aqueous HCl and then centrifuged (18800 ⁇ g, 20 minutes). Similarly, the supernatant was removed, and the precipitate was washed with water and then centrifuged (18800 ⁇ g, 20 minutes). Further, the supernatant was removed, and the precipitate was washed with water and then centrifuged (18800 ⁇ g, 20 minutes). Finally, the supernatant was removed, and the resulting precipitate was diluted with water to obtain a graphene oxide suspension (prepared so that the graphene oxide contained in 1 cm 3 of the suspension was about 7.2 mg).
  • Example 1 Synthesis 1 of copper compound-graphene oxide complex 1
  • a copper compound-graphene oxide complex was synthesized using an apparatus having the configuration shown in FIG. This apparatus is provided with a stirrer, an inert gas inlet (3) and an outlet (4) in a hard glass container (1). Further, a 100 W high-pressure mercury lamp (Sen Special Light Source Co., Ltd., HL100CH-4) (2) covered with a quartz glass cooling jacket (5) is provided inside the hard glass container (1). A circulation type cooling device is connected to the cooling jacket (5), and cooling water flows.
  • the inside of the container (1) was placed in a nitrogen gas atmosphere, and acetic acid was added to a suspension of dry solid graphene oxide (0.50 g) obtained in the second step of Synthesis Example-1 and a 50% aqueous ethanol solution. Copper monohydrate (0.50 g) was added, and the mixture was stirred at room temperature (25 ° C.) for 10 minutes. Next, light was irradiated using a high-pressure mercury lamp (2) while bubbling nitrogen gas into the suspension (1.5 hours). The wavelength of the irradiated light is 180 to 600 nm. Moreover, 30 degreeC cooling water was continued to flow through the cooling jacket (5) during light irradiation. The suspension changed from brown to black by light irradiation.
  • reaction solution was filtered under a nitrogen gas atmosphere to obtain a black solid.
  • This black solid was washed with water and ethanol, and then dried under reduced pressure using a desiccator to obtain a copper compound-graphene oxide complex (black powder, 0.55 g).
  • Example 2 Synthesis 2 of copper compound-graphene oxide complex 2
  • an apparatus having the configuration shown in FIG. An aqueous solution prepared by using copper acetate monohydrate (0.30 g) in the graphene oxide suspension (50 cm 3 ) obtained in Synthesis Example-2 while the inside of the container (1) was placed in a nitrogen gas atmosphere. (50 cm 3) was added and stirred at room temperature (25 ° C.) under 20 minutes.
  • light was irradiated using a high-pressure mercury lamp (2) while bubbling nitrogen gas into the suspension (1.5 hours).
  • the wavelength of the irradiated light is 180 to 600 nm.
  • 30 degreeC cooling water was continued to flow through the cooling jacket (5) during light irradiation.
  • the suspension changed from brown to black by light irradiation.
  • the obtained reaction solution was filtered under a nitrogen gas atmosphere to obtain a black solid.
  • This black solid was washed with water and ethanol, and then dried under reduced pressure using a desiccator to obtain a copper compound-graphene oxide complex (black powder, 0.28 g).
  • Example 2 Synthesis of Iron Compound-Graphene Oxide Complex An iron compound-graphene oxide complex was synthesized using an apparatus having almost the same configuration as in Example 1. As shown in FIG. 4 (b), the reactor used was a hard glass container (3), a nitrogen supply line with a bubbler (1), a backflow stopper for the reaction solution (2), a stirrer, and inert. It has a gas inlet and outlet. Moreover, the mercury lamp with a quartz jacket (USHIO450W high pressure mercury lamp (4)) and the water bath (5) with a circulation type cooling device are provided outside the container (3) made of hard glass.
  • the reactor used was a hard glass container (3), a nitrogen supply line with a bubbler (1), a backflow stopper for the reaction solution (2), a stirrer, and inert. It has a gas inlet and outlet. Moreover, the mercury lamp with a quartz jacket (USHIO450W high pressure mercury lamp (4)) and the water bath (5) with a circulation type cooling device are provided outside the container (3)
  • the inside of the container (3) was placed in a nitrogen gas atmosphere, and graphene oxide (0.18 g) and Fe (CO) 5 (0.18 g) obtained by the method of [Synthesis Example] were added to tetrahydrofuran (THF, 20 cm 3 , The mixture was stirred for 10 minutes at room temperature (25 ° C.). Next, light irradiation was performed using a high-pressure mercury lamp (4) while bubbling nitrogen gas through the suspension (1.5 hours). The wavelength of the irradiated light is 260 to 600 nm. Moreover, the container (3) was cooled from the outside using the water bath (5) with a circulation type cooling device. The temperature of the water bath was kept at 30 ° C.
  • the suspension changed from brown to black by light irradiation.
  • the obtained reaction solution was collected by filtration under a nitrogen gas atmosphere to obtain a black solid.
  • the black solid THF (10 cm 3), dichloromethane then washed with (10 cm 3) and ether (10 cm 3), dried under reduced pressure, the iron compound - was obtained graphene oxide complex (black powder, 0.16 g) .
  • Example 1 For each metal compound-graphene oxide complex obtained in Example 1 and Reference Example, an infrared absorption spectrum (IR) was measured by ATR method using FT-IR Spectrometer FT / IR-6200 (manufactured by JASCO Corporation). It was measured by.
  • An infrared absorption spectrum of the copper compound-graphene oxide complex obtained in Example 1 is shown in FIG. 5 (Cu-GO).
  • FIG. 6 shows an infrared absorption spectrum (GO) of the graphene oxide obtained above. Note that the infrared absorption spectrum (Fe-GO) of the iron compound-graphene oxide complex obtained in the Reference Example is also shown in FIGS.
  • Example 2 In addition, the XRD measurement was performed on the copper compound-graphene oxide complex obtained in Example 2 in the same manner as described above. The results are shown in FIG. 7A. As shown in FIG. 7A, no crystallinity peak was observed in the copper compound-graphene oxide complex obtained in Example 2. This result indicates that the copper compound supported on the composite is in an amorphous state.
  • FIG. 9 shows an SEM image of the copper compound-graphene oxide complex obtained in Example 1. Further, a mapping image of copper atoms (Cu-L) (note that the portion displayed in white is a place where copper atoms are present), a mapping image of oxygen atoms (OK) (note that they are displayed in white) FIG. 10 shows a carbon atom mapping image (CK) (where the part displayed in white is the place where the carbon atom is present) arranged side by side.
  • the composition of the copper compound-graphene oxide composite obtained in Example 1 was measured by elemental analysis using a scanning electron microscope / energy dispersive spectroscopy (SEM / EDX). Specifically, the composition was measured by elemental analysis of the portion where the Cu 2 O particles could not be confirmed by analysis using a scanning electron microscope / energy dispersive spectroscopy and a transmission electron microscope / energy dispersive spectroscopy. A portion where Cu 2 O exists as particles can be confirmed by TEM image and SEM image and element mapping thereof.
  • SEM / EDX scanning electron microscope / energy dispersive spectroscopy
  • Example 2 The surface of the copper compound-graphene oxide complex obtained in Example 2 was subjected to the observation of the SEM image and the mapping image of each atom and the elemental analysis as in the complex test of Example 1. The sample was attached to a carbon tape and measured.
  • FIG. 9A An SEM image of the copper compound-graphene oxide complex obtained in Example 2 is shown in FIG. 9A. Further, a mapping image of copper atoms (Cu-L) (note that the portion displayed in white is a place where copper atoms are present), a mapping image of oxygen atoms (OK) (note that they are displayed in white) FIG. 10A shows a carbon atom mapping image (CK) (where the part displayed in white is the place where the carbon atom is present) arranged side by side, where the part is where the oxygen atom exists.
  • Cu-L a mapping image of copper atoms
  • OOK oxygen atoms
  • FIG. 10A shows a carbon atom mapping image (CK) (where the part displayed in white is the place where the carbon atom is present) arranged side by side, where the part is where the oxygen atom exists.
  • the composition of the copper compound-graphene oxide complex obtained in Example 2 was measured by elemental analysis using a scanning electron microscope / energy dispersive spectroscopy (SEM / EDX). Specifically, carbon, oxygen, copper, and other elements in region 2 surrounded by the white line in FIG. 10B are analyzed by scanning electron microscope / energy dispersive spectroscopy and transmission electron microscope / energy dispersive spectroscopy. The content (mass) was measured. The results are shown below. As a result, in this part of the copper compound-graphene oxide complex obtained in Example 2, C was 48.91% by mass, O was 31.50% by mass, Cu was 18.22% by mass, and S was 1 .25% by mass. Note that sulfur (S) is an impurity contained in graphene oxide.
  • SEM / EDX scanning electron microscope / energy dispersive spectroscopy
  • FIG. 11 shows TEM images of the copper compound-graphene oxide complex obtained in Example 1 at four magnifications.
  • FIG. 12 shows a TEM image (BF), a copper atom mapping image (Cu—K), an oxygen atom mapping image (OK), and a carbon atom mapping image (CK).
  • Mixture A1 a (10 cm 3) were placed in a vial (30 cm 3), and the septum stoppered, stirring with a stirrer, at 20 ° C., was irradiated with white LED light (OSW4XME3ClE, Optosupply) to the vial.
  • gas 0.1 mL 3 in the space in the vial was collected with a gas tight syringe and collected at regular intervals (1.5 hours, 3 hours, 4.5 hours, and 6 hours).
  • FIG. 14 is a graph showing the relationship between the light irradiation time and the total amount of generated hydrogen when the copper compound-graphene oxide complex (Cu-GO) obtained in Example 1 is used.
  • FIG. 14 is a graph showing the relationship between the light irradiation time and the total amount of hydrogen generated when the iron compound-graphene oxide complex (Fe—GO) obtained in the Reference Example is used.
  • the average value of four experiments was shown with the standard error.
  • FIG. 14 shows that the copper compound-graphene oxide complex of the present invention is excellent as a photocatalyst for generating hydrogen.
  • Example 2 Using the copper compound-graphene oxide complex obtained in Example 2 as a photocatalyst, hydrogen was produced from water and ethanol. The results are shown in FIG. 14A. From the results shown in FIG. 14A, it was confirmed that the copper compound-graphene oxide composite of the present invention is excellent as a photocatalyst for generating hydrogen even in an amorphous state.

Abstract

A novel copper compound-graphene oxide complex is provided which can be used in the production of hydrogen. In the infrared absorption spectrum of this complex of a copper compound and graphene oxide, there is substantially no absorption derived from O-H groups or C=O groups, and there is absorption derived from C-O groups.

Description

銅化合物-グラフェンオキサイド複合体Copper compound-graphene oxide complex
 本発明は、銅化合物-グラフェンオキサイド複合体に関する。 The present invention relates to a copper compound-graphene oxide composite.
 従来、太陽光等の光エネルギーを利用して、水やアルコール等から水素を発生させる技術が知られており、このような技術には、光触媒が使用されている(例えば、特許文献1を参照)。光触媒としては、助触媒として白金等を使用する酸化チタン等の金属酸化物半導体や、白金、ルテニウム、コバルト、ニッケル等を用いた金属錯体等が知られており、これらを用いて水素発生効率を高める技術が広く研究されている。 Conventionally, a technique for generating hydrogen from water, alcohol, or the like using light energy such as sunlight is known, and a photocatalyst is used for such a technique (see, for example, Patent Document 1). ). As photocatalysts, metal oxide semiconductors such as titanium oxide using platinum or the like as a cocatalyst, metal complexes using platinum, ruthenium, cobalt, nickel, etc. are known. Technology to enhance has been extensively studied.
 また、グラフェンオキサイド上に半導体酸化チタンと銅とを担持した光水素発生触媒および白金、銅酸化物、グラフェンオキサイドを組み合わせた半導体を光水素発生電極として用いる方法が知られている(非特許文献1および2)。 Also known is a method of using a photohydrogen generation catalyst in which semiconductor titanium oxide and copper are supported on graphene oxide and a semiconductor in which platinum, copper oxide, and graphene oxide are combined as a photohydrogen generation electrode (Non-patent Document 1). And 2).
特開2012-245469号公報JP 2012-245469 A
 本発明は、水素の製造に使用することができる、新規な銅化合物-グラフェンオキサイド複合体を提供することを主な目的とする。また、本発明は、当該複合体を含む光触媒、当該複合体の製造方法、当該複合体を触媒として備える水素製造装置、及び当該複合体を含む、水の分解反応に使用する電極を提供することも目的とする。 The main object of the present invention is to provide a novel copper compound-graphene oxide complex that can be used in the production of hydrogen. In addition, the present invention provides a photocatalyst including the complex, a method for producing the complex, a hydrogen production apparatus including the complex as a catalyst, and an electrode used for a water decomposition reaction including the complex. Also aimed.
 本発明者らは、水素発生効率に優れた新規な物質について鋭意検討を重ねた。その結果、銅化合物とグラフェンオキサイドとの複合体であって、赤外吸収スペクトルにおいて、O-H基及びC=O基に由来する吸収が実質上存在せず、C-O基に由来する吸収が存在する、銅化合物-グラフェンオキサイド複合体を、光触媒として用いると、水などの水素源から効率的に水素を製造できることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより、完成したものである。 The inventors of the present invention have made extensive studies on a novel substance excellent in hydrogen generation efficiency. As a result, it is a composite of a copper compound and graphene oxide, and there is substantially no absorption derived from OH groups and C═O groups in the infrared absorption spectrum, and absorption derived from C—O groups. It has been found that when a copper compound-graphene oxide complex in which hydrogen is present is used as a photocatalyst, hydrogen can be efficiently produced from a hydrogen source such as water. The present invention has been completed by further studies based on these findings.
 本発明によれば、水素の製造に使用することができる、新規な銅化合物-グラフェンオキサイド複合体を提供することができる。また、本発明によれば、当該複合体を含む光触媒、当該複合体の製造方法、当該複合体を触媒として備える水素製造装置、及び当該複合体を含む、水の分解反応に使用する電極を提供することもできる。 According to the present invention, a novel copper compound-graphene oxide complex that can be used for the production of hydrogen can be provided. In addition, according to the present invention, a photocatalyst including the complex, a method for producing the complex, a hydrogen production apparatus including the complex as a catalyst, and an electrode used for a water decomposition reaction including the complex are provided. You can also
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 銅化合物とグラフェンオキサイドとの複合体であって、
 赤外吸収スペクトルにおいて、O-H基及びC=O基に由来する吸収が実質上存在せず、C-O基に由来する吸収が存在する、銅化合物-グラフェンオキサイド複合体。
項2. 粒子径0.06μm以上のCu2O粒子が、前記グラフェンオキサイドの表面に担持されている、項1に記載の銅化合物-グラフェンオキサイド複合体。
項3. 走査型電子顕微鏡/エネルギー分散型分光法による、銅化合物-グラフェンオキサイド複合体の表面に関する元素分析測定結果から算出される、前記Cu2O粒子が確認できない部分における銅の含有量が、0.1~50質量%である、項1または2に記載の銅化合物-グラフェンオキサイド複合体。
項4. 一次粒子径が、100μm以下である、項1~3のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体。
項5. 前記グラフェンオキサイドの表面において、走査型電子顕微鏡/エネルギー分散型分光法及び透過型電子顕微鏡/エネルギー分散型分光法による分析により、前記Cu2O粒子が確認できない部分に、粒子径が10nm以下の銅化合物粒子がさらに担持されている、項1~4のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体。
項6. 原料とする銅化合物と、グラフェンオキサイドとを、不活性溶媒中で混合して懸濁液を調製する工程と、
 前記懸濁液に、波長が100nm~800nmの範囲にある光を照射する工程
を備える、銅化合物-グラフェンオキサイド複合体の製造方法。
項7. 前記原料とする銅化合物が、銅と無機酸との塩、銅とカルボン酸との塩、銅とスルホン酸との塩、水酸化銅、銅複塩、及び銅錯体の少なくとも1種である、項6に記載の銅化合物-グラフェンオキサイド複合体の製造方法。
項8. 項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体を含む、光触媒。
項9. 項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体の存在下、水及びアルコールの少なくとも一方を含む水素源に光を照射する工程を備える、水素の製造方法。
項10. 前記における照射光として、太陽光及び白色LED光の少なくとも一方を用いる、項9に記載の水素の製造方法。
項11. 項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体を触媒として備える、水素製造装置。
That is, this invention provides the invention of the aspect hung up below.
Item 1. A composite of a copper compound and graphene oxide,
A copper compound-graphene oxide complex in which, in the infrared absorption spectrum, there is substantially no absorption derived from an OH group and a C═O group, and there is an absorption derived from a C—O group.
Item 2. Item 2. The copper compound-graphene oxide composite according to Item 1, wherein Cu 2 O particles having a particle size of 0.06 µm or more are supported on the surface of the graphene oxide.
Item 3. The content of copper in the portion where the Cu 2 O particles cannot be confirmed, calculated from the results of elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy, is 0.1. Item 3. The copper compound-graphene oxide complex according to Item 1 or 2, which is ˜50 mass%.
Item 4. Item 4. The copper compound-graphene oxide complex according to any one of Items 1 to 3, wherein the primary particle size is 100 μm or less.
Item 5. On the surface of the graphene oxide, copper having a particle diameter of 10 nm or less is observed in a portion where the Cu 2 O particles cannot be confirmed by analysis using a scanning electron microscope / energy dispersive spectroscopy and a transmission electron microscope / energy dispersive spectroscopy. Item 5. The copper compound-graphene oxide complex according to any one of Items 1 to 4, wherein the compound particle is further supported.
Item 6. A step of preparing a suspension by mixing a copper compound as a raw material and graphene oxide in an inert solvent;
A method for producing a copper compound-graphene oxide complex, comprising irradiating the suspension with light having a wavelength in the range of 100 nm to 800 nm.
Item 7. The copper compound as the raw material is at least one of a salt of copper and inorganic acid, a salt of copper and carboxylic acid, a salt of copper and sulfonic acid, copper hydroxide, a copper double salt, and a copper complex. Item 7. A method for producing a copper compound-graphene oxide complex according to Item 6.
Item 8. Item 6. A photocatalyst comprising the copper compound-graphene oxide complex according to any one of Items 1 to 5.
Item 9. Item 6. A method for producing hydrogen, comprising a step of irradiating a hydrogen source containing at least one of water and alcohol in the presence of the copper compound-graphene oxide complex according to any one of Items 1 to 5.
Item 10. Item 12. The method for producing hydrogen according to Item 9, wherein at least one of sunlight and white LED light is used as the irradiation light.
Item 11. Item 6. A hydrogen production apparatus comprising the copper compound-graphene oxide complex according to any one of Items 1 to 5 as a catalyst.
合成例-1において合成した、グラフェンオキサイドのMALDI、 FT-ICR-MS分析の結果を示すデータである。3 is data showing the results of MALDI and FT-ICR-MS analysis of graphene oxide synthesized in Synthesis Example 1. FIG. 合成例-1において合成した、グラフェンオキサイドの紫外可視吸収スペクトルである。2 is an ultraviolet-visible absorption spectrum of graphene oxide synthesized in Synthesis Example-1. 合成例-1において合成した、グラフェンオキサイドの粉末X線回折(XRD)測定の結果を示すデータである。3 is data showing the results of powder X-ray diffraction (XRD) measurement of graphene oxide synthesized in Synthesis Example-1. 実施例において、銅化合物-グラフェンオキサイド複合体の合成に使用した装置の写真および模式図である。In an Example, it is the photograph and schematic diagram of the apparatus used for the synthesis | combination of a copper compound-graphene oxide composite_body | complex. 実施例1で得られた銅化合物-グラフェンオキサイド複合体(Cu-GO)の赤外吸収スペクトル(IR:ATR法)と、参考例で得られた鉄化合物-グラフェンオキサイド複合体(Fe-GO)の赤外吸収スペクトル(IR:ATR法)とを併記したグラフである。Infrared absorption spectrum (IR: ATR method) of the copper compound-graphene oxide complex (Cu-GO) obtained in Example 1 and the iron compound-graphene oxide complex (Fe-GO) obtained in the reference example Is an infrared absorption spectrum (IR: ATR method). 合成例-1で得られたグラフェンオキサイド(GO)の赤外吸収スペクトル(IR:ATR法)と、参考例で得られた鉄化合物-グラフェンオキサイド複合体(Fe-GO)の赤外吸収スペクトル(IR:ATR法)とを併記したグラフである。Infrared absorption spectrum (IR: ATR method) of graphene oxide (GO) obtained in Synthesis Example-1 and infrared absorption spectrum of iron compound-graphene oxide complex (Fe-GO) obtained in Reference Example ( IR: ATR method). 実施例2で得られた銅化合物-グラフェンオキサイド複合体の赤外吸収スペクトル(IR:ATR法)と、参考例で得られた鉄化合物-グラフェンオキサイド複合体(Fe-GO)の赤外吸収スペクトル(IR:ATR法)とを併記したグラフInfrared absorption spectrum (IR: ATR method) of the copper compound-graphene oxide complex obtained in Example 2 and infrared absorption spectrum of the iron compound-graphene oxide complex (Fe-GO) obtained in the reference example (IR: ATR method) 実施例1で得られた銅化合物-グラフェンオキサイド複合体のXRDスペクトルである。2 is an XRD spectrum of a copper compound-graphene oxide complex obtained in Example 1. 実施例2で得られた銅化合物-グラフェンオキサイド複合体のXRDスペクトルXRD spectrum of the copper compound-graphene oxide complex obtained in Example 2 参考例で得られた鉄化合物-グラフェンオキサイド複合体のXRDスペクトルである。3 is an XRD spectrum of an iron compound-graphene oxide complex obtained in Reference Example. 実施例1で得られた銅化合物-グラフェンオキサイド複合体の走査型電子顕微鏡写真である(倍率:1万倍)。2 is a scanning electron micrograph of the copper compound-graphene oxide complex obtained in Example 1 (magnification: 10,000 times). 実施例2で得られた銅化合物-グラフェンオキサイド複合体の走査型電子顕微鏡写真(倍率:1千倍)Scanning electron micrograph of the copper compound-graphene oxide complex obtained in Example 2 (magnification: 1,000 times) 走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)により、実施例1で得られた銅化合物-グラフェンオキサイド複合体の表面を観察して得られた、それぞれ、銅原子(Cu-L)、酸素原子(O-K)、及び炭素原子(C-K)のマッピング画像である(倍率:1万倍)。Copper atoms (Cu-L) obtained by observing the surface of the copper compound-graphene oxide complex obtained in Example 1 by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX), respectively. 2 is a mapping image of oxygen atoms (OK) and carbon atoms (CK) (magnification: 10,000 times). 走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)により、実施例2で得られた銅化合物-グラフェンオキサイド複合体の表面を観察して得られた、それぞれ、銅原子(Cu-L)、酸素原子(O-K)、及び炭素原子(C-K)のマッピング画像(倍率:1千倍)。Copper atoms (Cu-L) obtained by observing the surface of the copper compound-graphene oxide complex obtained in Example 2 by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX), respectively. , Oxygen atom (OK), and carbon atom (CK) mapping images (magnification: 1000 times). 走査型電子顕微鏡/エネルギー分散型分光法及び透過型電子顕微鏡/エネルギー分散型分光法分析による、炭素、酸素、銅、他の元素の含有量(質量)の測定領域(白線で囲まれた測定領域)画像。Measurement area (mass area) of the content (mass) of carbon, oxygen, copper, and other elements by scanning electron microscope / energy dispersive spectroscopy and transmission electron microscope / energy dispersive spectroscopy analysis )image. 実施例1で得られた銅化合物-グラフェンオキサイド複合体の透過型電子顕微鏡写真である(4種の倍率で測定した画像を併記。左上、右上、左下、右下の写真におけるスケールバーはそれぞれ、0.1μm、10nm、5nm、2nm)。It is a transmission electron micrograph of the copper compound-graphene oxide complex obtained in Example 1 (along with images measured at four magnifications. Scale bars in the upper left, upper right, lower left, and lower right photographs are respectively shown. 0.1 μm, 10 nm, 5 nm, 2 nm). 透過型電子顕微鏡/エネルギー分散型分光法(TEM/EDX)により、実施例1で得られた銅化合物-グラフェンオキサイド複合体の表面を観察して得られた、TEM像(BF)と、銅原子(Cu-K)、酸素原子(O-K)、及び炭素原子(C-K)のマッピング画像である。TEM image (BF) obtained by observing the surface of the copper compound-graphene oxide complex obtained in Example 1 by transmission electron microscope / energy dispersive spectroscopy (TEM / EDX), and copper atoms It is a mapping image of (Cu—K), oxygen atom (OK), and carbon atom (CK). 試験例において、水素の製造に用いた装置の写真である。It is a photograph of the apparatus used for manufacture of hydrogen in a test example. 実施例1、実施例2で得られた各銅化合物-グラフェンオキサイド複合体または参考例で得られた鉄化合物-グラフェンオキサイド複合体を用いた水素製造の試験例において、光照射時間と発生した水素の総量との関係をプロットしたグラフである。In the test example of hydrogen production using each copper compound-graphene oxide complex obtained in Example 1 and Example 2 or iron compound-graphene oxide complex obtained in Reference Example, light irradiation time and generated hydrogen It is the graph which plotted the relationship with the total amount of. 実施例2で得られた銅化合物-グラフェンオキサイド複合体を用いた水素製造の実施例2において、光照射時間と発生した水素の総量との関係をプロットしたグラフである。6 is a graph plotting the relationship between the light irradiation time and the total amount of generated hydrogen in Example 2 of hydrogen production using the copper compound-graphene oxide complex obtained in Example 2.
1.銅化合物-グラフェンオキサイド複合体
 本発明の銅化合物-グラフェンオキサイド複合体は、銅化合物と、グラフェンオキサイドとの複合体である。さらに、本発明の銅化合物-グラフェンオキサイド複合体は、赤外吸収スペクトルにおいて、O-H基及びC=O基に由来する吸収が実質上存在せず、C-O基に由来する吸収が存在することを特徴としている。以下、本発明の銅化合物-グラフェンオキサイド複合体について、詳述する。
1. Copper compound-graphene oxide complex The copper compound-graphene oxide complex of the present invention is a complex of a copper compound and graphene oxide. Furthermore, the copper compound-graphene oxide complex of the present invention has substantially no absorption derived from OH groups and C═O groups in the infrared absorption spectrum, and absorption derived from C—O groups. It is characterized by doing. Hereinafter, the copper compound-graphene oxide composite of the present invention will be described in detail.
 本発明の銅化合物-グラフェンオキサイド複合体において、銅化合物は、好ましくは粒子状である。また、当該銅化合物は、好ましくは、グラフェンオキサイドの表面に分散して担持されている。本発明の銅化合物-グラフェンオキサイド複合体に含まれる、銅化合物は、1種類であってもよいし、2種類以上であってもよい。 In the copper compound-graphene oxide complex of the present invention, the copper compound is preferably in the form of particles. The copper compound is preferably dispersed and supported on the surface of graphene oxide. The copper compound-graphene oxide composite of the present invention may contain one kind of copper compound or two or more kinds.
 本発明の銅化合物-グラフェンオキサイド複合体におけるCu2O粒子とは、Cu2Oを主な構成成分とする銅化合物の粒子を意味し、当該粒子におけるCu2Oの含有量としては、通常50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上をあげることができる。本発明の銅化合物-グラフェンオキサイド複合体においては、Cu2Oを主構成成分とする銅化合物の粒子が、グラフェンオキサイドの表面に担持されている構造を備えていることが好ましい。Cu2O粒子の粒子径としては、好ましくは0.06μm~5μm程度、より好ましくは0.06μm~3μm程度が挙げられる。なお、当該粒子の粒子径は、本発明の銅化合物-グラフェンオキサイド複合体について、走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)及び透過型電子顕微鏡/エネルギー分散型分光法(TEM/EDX)で観察して測定され得る値である。 The Cu 2 O particles in the copper compound-graphene oxide composite of the present invention mean copper compound particles containing Cu 2 O as a main constituent, and the content of Cu 2 O in the particles is usually 50. It can be increased by mass% or more, preferably 60 mass% or more, more preferably 70 mass% or more. In the copper compound-graphene oxide composite of the present invention, it is preferable that the copper compound particles containing Cu 2 O as a main component have a structure that is supported on the surface of the graphene oxide. The particle diameter of the Cu 2 O particles is preferably about 0.06 μm to 5 μm, more preferably about 0.06 μm to 3 μm. The particle diameters of the particles of the copper compound-graphene oxide composite of the present invention are as follows: scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) and transmission electron microscope / energy dispersive spectroscopy (TEM / EDX) is a value that can be observed and measured.
 また、本発明の銅化合物-グラフェンオキサイド複合体の表面のうち、走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)及び透過型電子顕微鏡/エネルギー分散型分光法(TEM/EDX)による分析により、前記のCu2Oを主な構成成分とする銅化合物の粒子が確認できない部分には、ナノメートルサイズ(例えば、後述10nm以下)のアモルファスの銅化合物粒子がさらに担持されていることが好ましい。 Further, the surface of the copper compound-graphene oxide complex of the present invention is analyzed by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) and transmission electron microscope / energy dispersive spectroscopy (TEM / EDX). Thus, it is preferable that amorphous copper compound particles having a nanometer size (for example, 10 nm or less to be described later) are further supported on a portion where the copper compound particles containing Cu 2 O as a main component cannot be confirmed. .
 上記アモルファスの銅化合物粒子の粒子径としては、水素製造効率を高める観点から、好ましくは10nm以下、より好ましくは5nm以下、さらに好ましくは4nm以下、特に好ましくは3nm以下が挙げられる。なお、当該銅化合物粒子の粒子径は、本発明の銅化合物-グラフェンオキサイド複合体について、透過型電子顕微鏡/エネルギー分散型分光法(TEM/EDX)等で観察して推定される値である。 The particle diameter of the amorphous copper compound particles is preferably 10 nm or less, more preferably 5 nm or less, still more preferably 4 nm or less, and particularly preferably 3 nm or less from the viewpoint of enhancing hydrogen production efficiency. The particle diameter of the copper compound particles is a value estimated by observing the copper compound-graphene oxide complex of the present invention with a transmission electron microscope / energy dispersive spectroscopy (TEM / EDX) or the like.
 当該銅化合物粒子としては、特に制限されないが、水素製造効率を高める観点から、好ましくは銅酸化物、より好ましくは1価の銅酸化物などが挙げられる。銅化合物-グラフェンオキサイド複合体に含まれる銅化合物は、1種類であってもよいし、2種類以上であってもよい。 The copper compound particles are not particularly limited, but preferably include copper oxide, more preferably monovalent copper oxide, from the viewpoint of increasing hydrogen production efficiency. The copper compound contained in the copper compound-graphene oxide complex may be one type or two or more types.
 なお、本発明の銅化合物-グラフェンオキサイド複合体には、銅化合物が金属銅を含んでいてもよく、金属銅が部分的に担持された銅化合物-グラフェンオキサイド複合体も本発明の範囲に含まれるものである。 In the copper compound-graphene oxide complex of the present invention, the copper compound may contain metallic copper, and the copper compound-graphene oxide complex partially supporting the metallic copper is also included in the scope of the present invention. It is what
 本発明の銅化合物-グラフェンオキサイド複合体において、銅化合物の含有量としては、特に制限されない。本発明の銅化合物-グラフェンオキサイド複合体による水素製造効率を高める観点からは、走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)による、銅化合物-グラフェンオキサイド複合体の表面に関する元素分析測定結果から算出される、Cu2O粒子が確認できない部分における銅の含有量が、0.1~50質量%であることが好ましく、0.5~50質量%であることがより好ましく、2~50質量%であることがさらに好ましい。 In the copper compound-graphene oxide composite of the present invention, the content of the copper compound is not particularly limited. From the viewpoint of increasing the hydrogen production efficiency of the copper compound-graphene oxide complex of the present invention, elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy (SEM / EDX) The content of copper in the portion where Cu 2 O particles cannot be confirmed, calculated from the results, is preferably 0.1 to 50% by mass, more preferably 0.5 to 50% by mass, and 2 to 2%. More preferably, it is 50 mass%.
 本発明の銅化合物-グラフェンオキサイド複合体に含まれるグラフェンオキサイドは、グラフェンの酸化物である。グラフェンオキサイドとしては、例えば、市販品やグラファイトもしくはグラフェンを酸化することにより製造されたものを用いることができ、好ましくは、グラファイトを酸化することにより製造されたもの(例えば、グラファイトを硫酸や過マンガン酸カリウム等を用いて酸化して、製造されたもの)である。 The graphene oxide contained in the copper compound-graphene oxide composite of the present invention is a graphene oxide. As graphene oxide, for example, a commercially available product or a product produced by oxidizing graphite or graphene can be used. Preferably, a product produced by oxidizing graphite (for example, graphite using sulfuric acid or permanganese). Manufactured by oxidation using potassium acid or the like).
 グラフェンオキサイドの市販品としては、例えば、酸化グラフェン粉末、酸化グラフェン、還元的酸化グラフェン、高比表面積グラフェンナノパウダーとして販売されているものを用いることができ、具体的には、Sigma Aldrich社などから市販されているものを使用することができる。なお、グラファイトを、硫酸を用いて酸化した場合には、得られるグラフェンオキサイドには、微量の硫黄が存在する。このため、当該グラフェンオキサイドを用いて製造された、銅化合物-グラフェンオキサイド複合体中にも、通常、微量の硫黄が存在する。本発明の銅化合物-グラフェンオキサイド複合体には、グラフェンオキサイドの製造過程で発生する微量の硫黄等が含まれていてもよい。 Examples of commercially available graphene oxide include those sold as graphene oxide powder, graphene oxide, reductive graphene oxide, and high specific surface area graphene nanopowder, specifically from Sigma Aldrich, etc. A commercially available product can be used. When graphite is oxidized using sulfuric acid, the obtained graphene oxide contains a small amount of sulfur. For this reason, a trace amount of sulfur is usually present also in the copper compound-graphene oxide complex produced using the graphene oxide. The copper compound-graphene oxide composite of the present invention may contain a trace amount of sulfur generated in the process of producing graphene oxide.
 グラフェンオキサイドの製造に用いられるグラファイトは、本発明の複合体に適しているものであれば、いずれのものを用いてもよい。グラファイトの形状としては、例えば、球状グラファイト、粒状グラファイト、鱗状グラファイト、鱗片状グラファイト、及び粉末グラファイトを使用することができ、銅化合物の担持のしやすさや触媒活性から、鱗状グラファイト、鱗片状グラファイトの使用が好ましい。具体的には、ナカライテスク社製の粉末グラファイト、イーエムジャパン社の高比表面積グラフェンナノパウダーなど、市販されているものを使用することができる。当該グラファイトの一次粒子径としては、好ましくは0.1~100μm程度、より好ましくは0.5~80μm程度、さらに好ましくは2~40μm程度が挙げられる。 Any graphite may be used as long as it is suitable for the composite of the present invention. As the shape of the graphite, for example, spherical graphite, granular graphite, scaly graphite, scaly graphite, and powdered graphite can be used. From the ease of supporting a copper compound and the catalytic activity, scaly graphite, scaly graphite Use is preferred. Specifically, commercially available products such as powdered graphite manufactured by Nacalai Tesque and high specific surface area graphene nanopowder manufactured by EM Japan can be used. The primary particle diameter of the graphite is preferably about 0.1 to 100 μm, more preferably about 0.5 to 80 μm, and still more preferably about 2 to 40 μm.
 本発明の銅化合物-グラフェンオキサイド複合体において、グラフェンオキサイドの一次粒子径としては、好ましくは0.1~100μm程度、より好ましくは0.5~80μm程度、さらに好ましくは2~40μm程度が挙げられる。また、本発明の銅化合物-グラフェンオキサイド複合体の一次粒子径としては、好ましくは0.1~100μm程度、より好ましくは0.5~80μm程度、さらに好ましくは2~40μm程度が挙げられる。これらの粒子径は、走査型電子顕微鏡(SEM)写真によって確認することができる。 In the copper compound-graphene oxide composite of the present invention, the primary particle diameter of graphene oxide is preferably about 0.1 to 100 μm, more preferably about 0.5 to 80 μm, and further preferably about 2 to 40 μm. . The primary particle size of the copper compound-graphene oxide composite of the present invention is preferably about 0.1 to 100 μm, more preferably about 0.5 to 80 μm, and further preferably about 2 to 40 μm. These particle diameters can be confirmed by scanning electron microscope (SEM) photographs.
 グラフェンオキサイドの組成式は、例えば、[Cxyzkで表すことができる。ここで、好ましくは、xは5~12であり、yは2~8であり、zは2~10であり、kは8~15であり、より好ましくは、xは6~10であり、yは3~6であり、zは2~5であり、kは10~13である。 The composition formula of graphene oxide can be represented by, for example, [C x O y H z ] k . Here, preferably, x is 5-12, y is 2-8, z is 2-10, k is 8-15, more preferably x is 6-10, y is 3 to 6, z is 2 to 5, and k is 10 to 13.
 また、グラフェンオキサイドの分子量としては、好ましくは500~5000程度、より好ましくは800~4000程度、さらに好ましくは1500~3000程度、特に好ましくは2000~2500程度が挙げられる。 Further, the molecular weight of graphene oxide is preferably about 500 to 5000, more preferably about 800 to 4000, still more preferably about 1500 to 3000, and particularly preferably about 2000 to 2500.
 本発明の銅化合物-グラフェンオキサイド複合体においては、好ましくは、上記粒子径0.06μm以上のCu2Oを主な構成成分とする銅化合物の粒子と、上記ナノサイズ(例えば、10nm以下)の銅化合物粒子とが、ミクロンサイズ(例えば、0.1~100μm)のグラフェンオキサイドの表面に担持されており、この一次粒子が凝集した粒子状態を形成している。 In the copper compound-graphene oxide composite of the present invention, preferably, the copper compound particles containing Cu 2 O having a particle diameter of 0.06 μm or more as a main constituent and the nano-size (for example, 10 nm or less) Copper compound particles are supported on the surface of graphene oxide having a micron size (for example, 0.1 to 100 μm), and the primary particles form an aggregated particle state.
 本発明の銅化合物-グラフェンオキサイド複合体は、赤外吸収スペクトルにおいて、O-H基及びC=O基に由来する吸収が実質上存在せず、C-O基に由来する吸収が存在している。より具体的には、本発明の銅化合物-グラフェンオキサイド複合体の赤外吸収スペクトルを測定した場合に、O-H基(ヒドロキシ基)に由来する吸収(3000cm-1~3800cm-1のブロードな吸収)、C=O基(カルボニル基)に由来する吸収(1700cm-1付近の吸収)が実質的に存在せず、C-O基に由来する吸収(930cm-1~1310cm-1の範囲の吸収)が存在する。 In the infrared absorption spectrum of the copper compound-graphene oxide complex of the present invention, there is substantially no absorption derived from OH groups and C═O groups, and there is absorption derived from C—O groups. Yes. More specifically, the copper compound of the present invention - in the case of measuring the infrared absorption spectrum of the graphene oxide complex, broad of O-H group absorption derived from (hydroxy group) (3000cm -1 ~ 3800cm -1 Absorption), absorption derived from C═O group (carbonyl group) (absorption near 1700 cm −1 ) does not substantially exist, and absorption derived from C—O group (930 cm −1 to 1310 cm −1 ). Absorption).
 このように、本発明の銅化合物-グラフェンオキサイド複合体においては、グラフェンオキサイドの炭素原子に結合している酸素は、水酸基またはカルボニル基ではなく、実質的にC-O基であるといえる。 Thus, in the copper compound-graphene oxide composite of the present invention, it can be said that the oxygen bonded to the carbon atom of the graphene oxide is not a hydroxyl group or a carbonyl group but substantially a C—O group.
 なお、本発明の銅化合物-グラフェンオキサイド複合体の赤外吸収スペクトルを測定した場合に、僅かにヒドロキシ基やカルボニル基の吸収が存在していてもよい。すなわち、本発明において、前述の吸収が実質的に存在しないとは、C-O基に由来する吸収のピーク高に対する、これらの吸収のピーク高の相対比が、0.1以下であることを意味する。 In addition, when the infrared absorption spectrum of the copper compound-graphene oxide complex of the present invention is measured, a slight absorption of a hydroxy group or a carbonyl group may exist. That is, in the present invention, the fact that the aforementioned absorption is substantially absent means that the relative ratio of the peak height of these absorptions to the peak height of the absorption derived from the C—O group is 0.1 or less. means.
 本発明の銅化合物-グラフェンオキサイド複合体における銅化合物は、アモルファス構造であってもよく、また結晶構造を有してもよい。結晶構造を有する場合には、粉末X線回折測定における2θ=20°以上に、前記Cu2Oを主な構成成分とする銅化合物の粒子を含む銅化合物の結晶に基づくシグナルを有していることが好ましい。 The copper compound in the copper compound-graphene oxide composite of the present invention may have an amorphous structure or a crystal structure. When it has a crystal structure, it has a signal based on a crystal of a copper compound containing particles of the copper compound containing Cu 2 O as a main constituent at 2θ = 20 ° or more in powder X-ray diffraction measurement. It is preferable.
 本発明の銅化合物-グラフェンオキサイド複合体の製造方法としては、特に制限されないが、例えば、結晶構造を有する銅化合物-グラフェンオキサイド複合体は以下の「2.銅化合物-グラフェンオキサイド複合体の製造方法」の欄に記載の方法により、製造することができる。 The method for producing the copper compound-graphene oxide complex of the present invention is not particularly limited. For example, the copper compound-graphene oxide complex having a crystal structure is the following “2. Method for producing copper compound-graphene oxide complex” It can be produced by the method described in the column.
2.銅化合物-グラフェンオキサイド複合体の製造方法
 本発明の銅化合物-グラフェンオキサイド複合体の製造方法は、以下の工程1及び工程2を備えていることを特徴としている。以下、本発明の製造方法について、詳述する。
工程1:原料とする銅化合物と、グラフェンオキサイドとを、不活性溶媒中で混合して懸濁液を調製する工程。
工程2:懸濁液に、波長が100nm~800nmの範囲にある光を照射する工程。
2. Method for Producing Copper Compound-Graphene Oxide Complex The method for producing a copper compound-graphene oxide complex of the present invention is characterized by comprising the following steps 1 and 2. Hereinafter, the production method of the present invention will be described in detail.
Step 1: A step of preparing a suspension by mixing a copper compound as a raw material and graphene oxide in an inert solvent.
Step 2: A step of irradiating the suspension with light having a wavelength in the range of 100 nm to 800 nm.
(工程1)
 工程1は、原料とする銅化合物(銅化合物原料)と、グラフェンオキサイドとを、不活性溶媒中で混合して懸濁液を調製する工程である。
(Process 1)
Step 1 is a step of preparing a suspension by mixing a copper compound (copper compound raw material) as a raw material and graphene oxide in an inert solvent.
 工程1において、銅化合物原料としては、後述の工程2を経て、前述の銅化合物-グラフェンオキサイド複合体を形成できるものであれば、特に制限されない。銅化合物原料は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In Step 1, the copper compound raw material is not particularly limited as long as it can form the above-described copper compound-graphene oxide complex through Step 2 described later. A copper compound raw material may be used individually by 1 type, and may be used in combination of 2 or more types.
 原料とする銅化合物の具体例としては、銅と無機酸との塩、銅とカルボン酸との塩、銅とスルホン酸との塩、水酸化銅、銅複塩、銅錯体などが挙げられる。好ましくは酢酸銅(II)、塩化銅などが挙げられる。原料とする銅化合物としては、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the copper compound used as a raw material include a salt of copper and an inorganic acid, a salt of copper and carboxylic acid, a salt of copper and sulfonic acid, copper hydroxide, a copper double salt, a copper complex, and the like. Preferably, copper (II) acetate and copper chloride are used. As a copper compound used as a raw material, one kind may be used alone, or two or more kinds may be used in combination.
 また、グラフェンオキサイドとしては、前述の「1.銅化合物-グラフェンオキサイド複合体」の欄に記載したものを使用することができる。 Further, as the graphene oxide, those described in the above-mentioned column of “1. Copper compound-graphene oxide composite” can be used.
 銅化合物原料とグラフェンオキサイドとの混合割合は、特に制限されず、目的とする銅化合物-グラフェンオキサイド複合体の組成に応じて、適宜設定することができる。例えば、前述のように、走査型電子顕微鏡/エネルギー分散型分光法による、銅化合物-グラフェンオキサイド複合体の表面に関する元素分析測定結果から算出される、Cu2O粒子が確認できない部分における銅の含有量が、0.1~50質量%となるようにする観点からは、グラフェンオキサイド100質量部に対して、銅化合物原料を100質量部程度使用すればよい。 The mixing ratio of the copper compound raw material and the graphene oxide is not particularly limited, and can be appropriately set according to the composition of the target copper compound-graphene oxide complex. For example, as described above, the content of copper in the portion where Cu 2 O particles cannot be confirmed, which is calculated from the results of elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy. From the viewpoint of adjusting the amount to 0.1 to 50% by mass, about 100 parts by mass of the copper compound raw material may be used with respect to 100 parts by mass of graphene oxide.
 不活性溶媒としては、特に限定されないが、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、酢酸プロピル等のエステル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;水;又はこれらの混合溶媒などが挙げられ、好ましくは、エーテル類、アルコール類、アミド類、水又はこれらの混合溶媒などが挙げられ、さらに好まくは、テトラヒドロフラン、エタノール、ジメチルホルムアミド、水又はこれらの1種以上の混合溶媒などが挙げられる。 Examples of the inert solvent include, but are not limited to, ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and propyl acetate; dimethylformamide and dimethylacetamide Amides such as: sulfoxides such as dimethyl sulfoxide; water; or a mixed solvent thereof, and the like, preferably ethers, alcohols, amides, water or a mixed solvent thereof, and the like is more preferable. Examples thereof include tetrahydrofuran, ethanol, dimethylformamide, water, or one or more mixed solvents thereof.
(工程2)
 工程2は、工程1で調製した懸濁液に、波長が100nm~800nmの範囲にある光を照射する工程である。工程2において、懸濁液には、波長が100nm~800nmの範囲にある光、より具体的には紫外光を含む光、さらには紫外光のみを照射してもよいし、可視光、赤外光などの他の波長の光を照射してもよい。すなわち、波長が100nm~800nmの範囲にある光の中でも、紫外光を含む光であることが好ましく、紫外光に加えて、可視光や赤外光などの他の波長の光を含む光であることも好ましく、紫外光のみを含む光であることも好ましい。また、波長が100nm~800nmの範囲にある光に加えて、波長が当該範囲外にある光をさらに照射してもよい。本工程で実際に使用し得る光としては、水銀灯の光(例えば高圧水銀灯光)などを具体例としてあげることができる。
(Process 2)
Step 2 is a step of irradiating the suspension prepared in Step 1 with light having a wavelength in the range of 100 nm to 800 nm. In step 2, the suspension may be irradiated with light having a wavelength in the range of 100 nm to 800 nm, more specifically, light including ultraviolet light, or only ultraviolet light, or visible light, infrared light, You may irradiate light of other wavelengths, such as light. That is, among light having a wavelength in the range of 100 nm to 800 nm, light including ultraviolet light is preferable, and light including light of other wavelengths such as visible light and infrared light in addition to ultraviolet light. It is also preferable that the light contains only ultraviolet light. In addition to light having a wavelength in the range of 100 nm to 800 nm, light having a wavelength outside the range may be further irradiated. Specific examples of light that can be actually used in this step include mercury lamp light (for example, high-pressure mercury lamp light).
 工程2で懸濁液に照射する光の波長としては、100~800nm程度、好ましくは180~600nm程度が挙げられ、波長がこのような範囲であり、紫外光の波長の光を含むことが望ましい。 The wavelength of the light applied to the suspension in step 2 is about 100 to 800 nm, preferably about 180 to 600 nm. The wavelength is in such a range, and it is desirable to include light having an ultraviolet wavelength. .
 また、工程2において、波長が100nm~800nmの範囲にある光を照射して反応を進行させる際の温度としては、光の波長や照射時間等に応じて適宜調整すればよいが、通常、0℃~50℃程度、好ましくは10℃~30℃程度、より好ましくは20℃~30℃が挙げられる。 In step 2, the temperature at which the reaction proceeds by irradiating with light having a wavelength in the range of 100 nm to 800 nm may be appropriately adjusted according to the wavelength of light, irradiation time, etc. C. to about 50.degree. C., preferably about 10.degree. C. to about 30.degree.
 また、工程2において、波長が100nm~800nmの範囲にある光を照射する時間としては、光の波長や温度等に応じて適宜調整すればよいが、通常、1分間~24時間程度、好ましくは10分間~10時間程度、より好ましくは30分間~5時間程度が挙げられる。 In Step 2, the time for irradiating light having a wavelength in the range of 100 nm to 800 nm may be appropriately adjusted according to the wavelength, temperature, etc. of the light, but is usually about 1 minute to 24 hours, preferably About 10 minutes to 10 hours, more preferably about 30 minutes to 5 hours.
 工程2により、懸濁液中に、本発明の銅化合物-グラフェンオキサイド複合体が生成する。 Step 2 produces the copper compound-graphene oxide complex of the present invention in the suspension.
 本発明の製造方法おいて、工程1及び工程2は、不活性ガス(例えば、窒素ガス、アルゴンガス等)の雰囲気下に行うことが好ましい。 In the production method of the present invention, step 1 and step 2 are preferably performed in an atmosphere of an inert gas (for example, nitrogen gas, argon gas, etc.).
 本発明の製造方法においては、工程2の後に、さらに、得られた銅化合物-グラフェンオキサイド複合体を単離する工程を備えていてもよい。単離工程は、常法によって行うことができる。例えば、得られた銅化合物-グラフェンオキサイド複合体を、濾取、洗浄、乾燥して単離することができる。 In the production method of the present invention, after the step 2, a step of isolating the obtained copper compound-graphene oxide complex may be further provided. An isolation process can be performed by a conventional method. For example, the obtained copper compound-graphene oxide complex can be isolated by filtration, washing, and drying.
 また、アモルファス構造を有する本発明の銅化合物-グラフェンオキサイド複合体は、例えば、上記の「2.銅化合物-グラフェンオキサイド複合体の製造方法」の工程1において、懸濁液の調製に使用されるグラフェンオキサイドとして、乾燥工程を経ていない懸濁液の状態のグラフェンオキサイドを用いることにより、好適に製造することができる。なお、当該工程1において、懸濁液の調製に使用されるグラフェンオキサイドとして、乾燥工程を経たものを用いると、前述の結晶構造を有する銅化合物-グラフェンオキサイド複合体を好適に製造することができる。 Further, the copper compound-graphene oxide composite of the present invention having an amorphous structure is used, for example, in the preparation of a suspension in Step 1 of “2. Method for producing copper compound-graphene oxide composite” above. As graphene oxide, it can manufacture suitably by using the graphene oxide of the state of the suspension which has not passed through the drying process. In addition, when the graphene oxide used in the preparation of the suspension in the step 1 is subjected to a drying step, a copper compound-graphene oxide complex having the above-described crystal structure can be preferably produced. .
3.銅化合物-グラフェンオキサイド複合体の用途
(1)光触媒としての用途
 本発明の銅化合物-グラフェンオキサイド複合体を光触媒として用いることにより、水やエタノールなどの水素源から、水素を製造することができる。
3. Use of Copper Compound-Graphene Oxide Complex (1) Use as Photocatalyst By using the copper compound-graphene oxide complex of the present invention as a photocatalyst, hydrogen can be produced from a hydrogen source such as water or ethanol.
 本発明の銅化合物-グラフェンオキサイド複合体を光触媒として用いる場合、銅化合物-グラフェンオキサイド複合体を含む光触媒の存在下、例えば、水及びアルコールの少なくとも一方を含む水素源に、光照射する方法により、水素を製造することができる。 When the copper compound-graphene oxide complex of the present invention is used as a photocatalyst, in the presence of the photocatalyst including the copper compound-graphene oxide complex, for example, by a method of irradiating light to a hydrogen source containing at least one of water and alcohol, Hydrogen can be produced.
 水素製造の原料となる水素源としては、水及びアルコールの少なくとも一方が挙げられる。水素源の具体例としては、水、メタノール、エタノール、プロパノール等のアルコール類又はそれらの混合物が挙げられ、好ましくは、水、エタノール、それらの混合物などが挙げられ、特に好ましくは、水などが挙げられる。また、水としては、例えば、水道水、蒸留水、イオン交換水、純水、工業用水等が挙げられ、好ましくは、水道水、蒸留水、工業用水などが挙げられる。水素源は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Examples of the hydrogen source that is a raw material for hydrogen production include at least one of water and alcohol. Specific examples of the hydrogen source include water, alcohols such as methanol, ethanol, and propanol or mixtures thereof, preferably water, ethanol, mixtures thereof, and the like, and particularly preferably water. It is done. Examples of water include tap water, distilled water, ion-exchanged water, pure water, and industrial water, and preferably include tap water, distilled water, and industrial water. Only one type of hydrogen source may be used, or a mixture of two or more types may be used.
 照射する光は、例えば、太陽光、白色LED光、蛍光灯光、水銀灯の光(例えば高圧水銀灯光)などが挙げられ、好ましくは、太陽光、白色LED光が挙げられる。照射する光は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The light to be irradiated includes, for example, sunlight, white LED light, fluorescent lamp light, mercury lamp light (for example, high-pressure mercury lamp light), and preferably sunlight and white LED light. Only one type of light to be irradiated may be used, or two or more types may be mixed and used.
 水素製造の原料である水素源に対する光触媒の割合としては、通常、0.0001~5質量%程度、好ましくは0.001~1質量%程度、より好ましくは0.01~0.1質量%程度が挙げられる。 The ratio of the photocatalyst to the hydrogen source as a raw material for hydrogen production is usually about 0.0001 to 5% by mass, preferably about 0.001 to 1% by mass, more preferably about 0.01 to 0.1% by mass. Is mentioned.
 本発明の銅化合物-グラフェンオキサイド複合体は、水素源中に分散させてもよいし、例えば、当該複合体を担体に担持させて、水素源中に存在させてもよい。担体に担持させる態様としては、例えば、ガラス、プラスチック製等の透明な板等を担体とし、樹脂系の接着剤等を用いて銅化合物-グラフェンオキサイド複合体を担持させてもいい。 The copper compound-graphene oxide complex of the present invention may be dispersed in a hydrogen source. For example, the complex may be supported on a carrier and may be present in the hydrogen source. As a mode of supporting on a carrier, for example, a transparent plate made of glass, plastic or the like may be used as a carrier, and a copper compound-graphene oxide complex may be supported using a resin adhesive or the like.
 水素の製造においては、本発明の銅化合物-グラフェンオキサイド複合体と、水及びアルコールの少なくとも一方の水素源に加えて、例えば、光増感剤、電子供与剤などの反応助剤を用いてもよい。 In the production of hydrogen, in addition to the copper compound-graphene oxide complex of the present invention and at least one hydrogen source of water and alcohol, for example, a reaction aid such as a photosensitizer or an electron donor may be used. Good.
 反応助剤として使用される光増感剤としては、公知の光増感剤を使用することができる。光増感剤としては、例えば、芳香族炭化水素系色素(例えば、クマリン、フルオレセイン、ジブロモフルオレセイン、エオシンY、エオシンB、エリトロシンB、ローダミンB、ローズベンガル、クリスタルバイオレッド、マラカイトグリーン、オーラミンO、アクリジンオレンジ、ブリリアントクレイスルブルー、ニュートラルレッド、チオニン、メチレンブルー、オレンジII、インジゴ、アリザリン、ピナシアノール、ベルベリン、テトラサイクリン、パープリン、チアゾールオレンジ等)、ピリリウム塩系色素(例えば、ピリリウム、チオピリリウム、セレノピリリウム等)、シアニン系色素、オキソノール系色素、メロシアニン系色素、トリアリルカルボニウム系色素等);フラーレン誘導体(例えば、水酸化フラーレン、アミノ酪酸フラーレン、アミノカプロン酸フラーレン、カルボン酸フラーレン、ビスマロン酸ジエチルフラーレン、ビスマロン酸エチルフラーレン等);ポルフィリン、フタロシアニン類縁体(例えば、フォトフリン、レザフィリン、ビスダイン、ヘマトポルフィリン、デュートロポルフィリンIX-2,4-ジ-アクリン酸、デュートロポルフィリンIX-2,4-ジ-スルホン酸、2,4-ジアセチルデュートロポルフィリンIX、TSPP、フタロシアニンテトラカルボン酸、フタロシアニンジスルホン酸、フタロシアニンテトラスルホン酸、それらの亜鉛、銅、カドミウム、コバルト、マグネシウム、アルミニウム、白金、パラジウム、ガリウム、ゲルマニウム、シリカ、錫等の金属錯体等);金属錯体系色素(例えば、ルテニウム-ビピリジン錯体、ルテニウム-フェナントロリン錯体、ルテニウム-ビピラジン錯体、ルテニウム-4,7-ジフェニルフェナントロリン錯体、ルテニウム-ジフェニル-フェナントロリン-4,7-ジスルホネイト錯体、白金-ジピリジルアミン錯体、パラジウム-ジピリジルアミン錯体等)などが挙げられる。これらの中でも、好ましくはフルオレセイン、ジブロモフルオレセインなどが挙げられ、より好ましくはフルオレセインが挙げられる。光増感剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 As the photosensitizer used as a reaction aid, a known photosensitizer can be used. Examples of the photosensitizer include aromatic hydrocarbon dyes (for example, coumarin, fluorescein, dibromofluorescein, eosin Y, eosin B, erythrosine B, rhodamine B, rose bengal, crystal violet, malachite green, auramine O, Acridine orange, brilliant clay blue, neutral red, thionine, methylene blue, orange II, indigo, alizarin, pinacanol, berberine, tetracycline, perpurine, thiazole orange, etc. ), Cyanine dyes, oxonol dyes, merocyanine dyes, triallyl carbonium dyes, etc.]; fullerene derivatives (eg, fullerene hydroxide, amino Acid fullerene, aminocaproic acid fullerene, carboxylic acid fullerene, bismalonate diethylfullerene, bismalonate ethylfullerene, etc.); Di-aclinic acid, deuteroporphyrin IX-2,4-di-sulfonic acid, 2,4-diacetyl deuteroporphyrin IX, TSPP, phthalocyanine tetracarboxylic acid, phthalocyanine disulfonic acid, phthalocyanine tetrasulfonic acid, their zinc, copper , Cadmium, cobalt, magnesium, aluminum, platinum, palladium, gallium, germanium, silica, tin, etc.); metal complex dyes (eg ruthenium-bipi) Din complex, ruthenium-phenanthroline complex, ruthenium-bipyrazine complex, ruthenium-4,7-diphenylphenanthroline complex, ruthenium-diphenyl-phenanthroline-4,7-disulfonate complex, platinum-dipyridylamine complex, palladium-dipyridylamine complex, etc.) Is mentioned. Among these, fluorescein, dibromofluorescein, etc. are mentioned preferably, More preferably, fluorescein is mentioned. A photosensitizer may be used individually by 1 type and may be used in combination of 2 or more type.
 光増感剤の使用量としては、光触媒1質量部に対して、好ましくは0.1~100質量部程度、より好ましくは1~10質量部が挙げられる。 The amount of the photosensitizer used is preferably about 0.1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 1 part by mass of the photocatalyst.
 また、電子供与体は、前述の光増感剤に電子を供与できる化合物であり、例えば、トリエチルアミン、トリエタノールアミン、エチレンジアミン四酢酸(EDTA)、アスコルビン酸等が挙げられ、好ましくは、トリエチルアミン、トリエタノールアミンなどが挙げられる。電子供与体は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The electron donor is a compound that can donate electrons to the above-described photosensitizer, and examples thereof include triethylamine, triethanolamine, ethylenediaminetetraacetic acid (EDTA), ascorbic acid, and the like. Examples include ethanolamine. One type of electron donor may be used alone, or two or more types may be used in combination.
 電子供与体の使用量としては、例えば、光触媒1質量部に対して、好ましくは10~1000質量部程度、より好ましくは100~750質量部程度が挙げられる。 The amount of the electron donor used is, for example, preferably about 10 to 1000 parts by mass, more preferably about 100 to 750 parts by mass with respect to 1 part by mass of the photocatalyst.
 反応温度としては、例えば0~60℃程度、より好ましくは20~50℃程度が挙げられる。また、光触媒に光を照射している間は、継続して水素が製造されるため、水素を製造する時間に応じて、光を照射すればよい。 The reaction temperature is, for example, about 0 to 60 ° C., more preferably about 20 to 50 ° C. Further, since hydrogen is continuously produced while the photocatalyst is irradiated with light, light may be irradiated according to the time for producing hydrogen.
 製造した水素は、ガス導出管などを通して、外部に継続的に導出できるので、必要に応じて、ボンベ等に入れ、保存・運搬等ができる。 Since the produced hydrogen can be continuously extracted to the outside through a gas outlet tube or the like, it can be stored in a cylinder or the like for storage and transportation as necessary.
 本発明の銅化合物-グラフェンオキサイド複合体を触媒とすることにより、これを備える水素製造装置が好適に得られる。 By using the copper compound-graphene oxide complex of the present invention as a catalyst, a hydrogen production apparatus equipped with this can be suitably obtained.
(2)電極の有効成分としての用途
 また、本発明の銅化合物-グラフェンオキサイド複合体は、電極材料として用いることもできる。電極材料を用いた電極は、常法により製造することができる。
(2) Use as an active component of an electrode The copper compound-graphene oxide composite of the present invention can also be used as an electrode material. An electrode using an electrode material can be produced by a conventional method.
 本発明の電極は、実質的に、本発明の銅化合物-グラフェンオキサイド複合体のみによって構成してもよいし(該複合体を実質的に有効成分として含有してもよいし)、電極の表面を本発明の複合体により構成し、内部を他の金属等により構成してもよい。 The electrode of the present invention may be constituted substantially only by the copper compound-graphene oxide complex of the present invention (the complex may be substantially contained as an active ingredient), or the surface of the electrode May be composed of the composite of the present invention, and the interior may be composed of another metal or the like.
 さらに、本発明の電極は、その電極の大きさ、形状等を、公知の(水素発生)電極と同様とすることができ、水の電気分解に使用される公知の電極の代替として使用することができる。 Furthermore, the electrode of the present invention can have the same size, shape, etc. as the known (hydrogen generating) electrode, and can be used as an alternative to the known electrode used for water electrolysis. Can do.
 さらにまた、本発明の(水素発生)電極は、安価で製造することができ、なおかつ、水素発生効率が高いため、水素の製造コストを大幅に低減することが可能となる。 Furthermore, the (hydrogen generation) electrode of the present invention can be manufactured at low cost, and the hydrogen generation efficiency is high, so that the production cost of hydrogen can be greatly reduced.
 以上に加え、本発明の複合体は、特別な装置や煩雑な方法を使用することなく、簡便な装置や方法により極めて容易に製造することが可能であり、製造方法としての操作の容易性やコスト面で極めて優れたものである。また、本発明の複合体は、上記のごとく結晶を有する複合体或いはアモルファス状複合体として製造し得るものであり、それぞれの複合体を選択的に製造することも可能である。更に加えて、本発明の複合体は、構成する銅化合物が酸化されにくく、複合体としての安定性や、更には光触媒としての安定性、即ち触媒能を長期間発揮する能力等において優れた性質を有するものである。 In addition to the above, the complex of the present invention can be produced very easily by a simple apparatus or method without using a special apparatus or a complicated method. It is extremely excellent in terms of cost. In addition, the composite of the present invention can be produced as a composite having crystals or an amorphous composite as described above, and each composite can be selectively produced. In addition, the composite of the present invention is excellent in properties such as the ability of the copper compound to be hardly oxidized, the stability as a composite, and the stability as a photocatalyst, that is, the ability to exhibit the catalytic ability for a long time. It is what has.
 以下に、実施例を示して、本発明をより具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[合成例-1] グラフェンオキサイドの合成
第一工程
 500cm3の一口ナスフラスコに濃硫酸(95~98%、133cm3)とグラファイト(Graphite flakes、ナカライテスク社製)(1.01g)を加え、室温(約20℃)で、15分間攪拌した。次に、KMnO4(1.04g)を加え、室温(約20℃)で、約1日攪拌した。さらに、KMnO4(1.03g)を加え、室温(約20℃)で、約1日攪拌した。さらにまた、KMnO4(1.04g)を加え、室温(約20℃)で、約1日攪拌した。最後に、KMnO4(1.03g)を加え、室温(約20℃)で、約1日攪拌して、淡紫色の懸濁液を得た。
Synthesis Example 1 First Step of Graphene Oxide Concentrated sulfuric acid (95 to 98%, 133 cm 3 ) and graphite (Graphite flakes, manufactured by Nacalai Tesque) (1.01 g) were added to a 500 cm 3 one-necked eggplant flask. The mixture was stirred at room temperature (about 20 ° C.) for 15 minutes. Next, KMnO 4 (1.04 g) was added, and the mixture was stirred at room temperature (about 20 ° C.) for about 1 day. Furthermore, KMnO 4 (1.03 g) was added, and the mixture was stirred at room temperature (about 20 ° C.) for about 1 day. Furthermore, KMnO 4 (1.04 g) was added, and the mixture was stirred at room temperature (about 20 ° C.) for about 1 day. Finally, KMnO 4 (1.03 g) was added and stirred at room temperature (about 20 ° C.) for about 1 day to obtain a light purple suspension.
第二工程
 次に、ビーカーに氷(100cm3)を入れ、上記の淡紫色の液体をゆっくりと注ぎ入れた。さらに、このビーカーを氷浴で冷却しながら、30%H22水溶液を淡紫色が淡緑色になるまでゆっくり加えた。得られた懸濁液を遠心管に小分けに入れ、遠心分離した(2600×g、3時間)。上澄み液を取り除き、沈殿物を水で洗った後、遠心分離した(2600×g、30分間)。上澄み液を取り除き、沈殿物を5%HCl水溶液で洗浄した後、遠心分離した(2600×g、30分間)。同様に、上澄み液を取り除き、沈殿物をエタノールで洗浄した後、遠心分離した(2600×g、30分間)。さらに、上澄み液を取り除き、沈殿物をエタノールで洗浄した後、遠心分離した(2600×g、30分間)。最後に、上澄み液を取り除き、沈殿物をジエチルエーテルで洗浄した後、濾取し、デシケータで減圧乾燥することにより、茶色固体のグラフェンオキサイドを得た(収量 1.80g)。
Second Step Next, ice (100 cm 3 ) was put into a beaker, and the light purple liquid was slowly poured into the beaker. Further, while cooling the beaker with an ice bath, a 30% aqueous solution of H 2 O 2 was slowly added until the light purple became pale green. The obtained suspension was put into a centrifuge tube and centrifuged (2600 × g, 3 hours). The supernatant was removed, and the precipitate was washed with water and then centrifuged (2600 × g, 30 minutes). The supernatant was removed and the precipitate was washed with 5% aqueous HCl and then centrifuged (2600 × g, 30 minutes). Similarly, the supernatant was removed, and the precipitate was washed with ethanol and then centrifuged (2600 × g, 30 minutes). Further, the supernatant was removed, and the precipitate was washed with ethanol and then centrifuged (2600 × g, 30 minutes). Finally, the supernatant was removed, and the precipitate was washed with diethyl ether, collected by filtration, and dried under reduced pressure with a desiccator to obtain a brown solid graphene oxide (yield 1.80 g).
 得られたグラフェンオキサイドについて、Bruker Daltonics社製のSolarixを用いて、マトリックス支援レーザー脱離イオン化法(MALDI)、フーリエ変換イオンサイクロトロン共鳴質量分析(FT-ICR-MS分析)を行った。結果を図1に示す。図1から、最大ピーク付近(分子量2000付近)におけるグラフェンオキサイドの化学種は[C84312.3であることが確認された。 The obtained graphene oxide was subjected to matrix-assisted laser desorption / ionization (MALDI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS analysis) using Solarix manufactured by Bruker Daltonics. The results are shown in FIG. From FIG. 1, it was confirmed that the chemical species of graphene oxide in the vicinity of the maximum peak (molecular weight of about 2000) was [C 8 O 4 H 3 ] 12.3 .
 得られたグラフェンオキサイドの、紫外可視吸収スペクトル(日本分光株式会社製、UV/VIS/NIR Spectrophotometer V-570)を図2に、粉末X線回折((株)リガク社製、デスクトップX線回折装置MiniFlex600)を図3に示す。 The UV-visible absorption spectrum of the obtained graphene oxide (manufactured by JASCO Corporation, UV / VIS / NIR Spectrophotometer V-570) is shown in FIG. MiniFlex 600) is shown in FIG.
[合成例-2] グラフェンオキサイド懸濁液の合成
 合成例1の第一工程で得られた淡紫色懸濁液を、氷(100cm3)を入れたビーカーにゆっくりと注ぎ入れた。さらに、このビーカーを氷浴で冷却しながら、30%H22水溶液を淡紫色が淡緑色になるまでゆっくり加えた。得られた懸濁液を遠心管に小分けし、遠心分離した(18800×g、20分間)。上澄み液を取り除き、沈殿物を水で洗った後、遠心分離した(18800×g、20分間)。上澄み液を取り除き、沈殿物を5%HCl水溶液で洗浄した後、遠心分離した(18800×g、20分間)。同様に、上澄み液を取り除き、沈殿物を水で洗浄した後、遠心分離した(18800×g、20分間)。さらに、上澄み液を取り除き、沈殿物を水で洗浄した後、遠心分離した(18800×g、20分間)。最後に、上澄み液を取り除き、得られた沈殿物を水で希釈し、グラフェンオキサイドの懸濁液を得た(懸濁液1cm3に含まれるグラフェンオキサイドは約7.2mgになるよう調製)。
[Synthesis Example 2] Synthesis of Graphene Oxide Suspension The light purple suspension obtained in the first step of Synthesis Example 1 was slowly poured into a beaker containing ice (100 cm 3 ). Further, while cooling the beaker with an ice bath, a 30% aqueous solution of H 2 O 2 was slowly added until the light purple became pale green. The resulting suspension was subdivided into centrifuge tubes and centrifuged (18800 × g, 20 minutes). The supernatant was removed, and the precipitate was washed with water and then centrifuged (18800 × g, 20 minutes). The supernatant was removed and the precipitate was washed with 5% aqueous HCl and then centrifuged (18800 × g, 20 minutes). Similarly, the supernatant was removed, and the precipitate was washed with water and then centrifuged (18800 × g, 20 minutes). Further, the supernatant was removed, and the precipitate was washed with water and then centrifuged (18800 × g, 20 minutes). Finally, the supernatant was removed, and the resulting precipitate was diluted with water to obtain a graphene oxide suspension (prepared so that the graphene oxide contained in 1 cm 3 of the suspension was about 7.2 mg).
[実施例1] 銅化合物-グラフェンオキサイド複合体の合成1
 図4(a)に示す構成の装置を用いて、銅化合物-グラフェンオキサイド複合体を合成した。本装置は、硬質ガラス製の容器(1)に、撹拌子及び、不活性ガスの導入口(3)及び導出口(4)を備えている。また、硬質ガラス製の容器(1)の内部に、石英ガラス製の冷却ジャケット(5)で覆った100W高圧水銀灯(セン特殊光源株式会社、HL100CH-4)(2)を備えている。冷却ジャケット(5)には循環型冷却装置が接続されており、冷却水が流れる。
[Example 1] Synthesis 1 of copper compound-graphene oxide complex 1
A copper compound-graphene oxide complex was synthesized using an apparatus having the configuration shown in FIG. This apparatus is provided with a stirrer, an inert gas inlet (3) and an outlet (4) in a hard glass container (1). Further, a 100 W high-pressure mercury lamp (Sen Special Light Source Co., Ltd., HL100CH-4) (2) covered with a quartz glass cooling jacket (5) is provided inside the hard glass container (1). A circulation type cooling device is connected to the cooling jacket (5), and cooling water flows.
 容器(1)の内部を窒素ガス雰囲気下とし、上記の合成例-1の第二工程で得られた乾燥固体状のグラフェンオキサイド(0.50g)及び50%エタノール水溶液の懸濁液に、酢酸銅・一水和物(0.50g)を加え、室温(25℃)下、10分間攪拌した。次に、懸濁液中に窒素ガスをバブリングしながら、高圧水銀灯(2)を用いて光照射した(1.5時間)。照射した光の波長は、180~600nmである。また、光照射中、冷却ジャケット(5)には30℃の冷却水を流し続けた。光照射により、懸濁液は茶色から黒色に変化した。次に、窒素ガス雰囲気下において、得られた反応液を濾過し、黒色固体を得た。この黒色固体を水とエタノールを用いて洗浄した後、デシケータを用いて減圧乾燥することにより、銅化合物-グラフェンオキサイド複合体(黒色粉末、0.55g)を得た。 The inside of the container (1) was placed in a nitrogen gas atmosphere, and acetic acid was added to a suspension of dry solid graphene oxide (0.50 g) obtained in the second step of Synthesis Example-1 and a 50% aqueous ethanol solution. Copper monohydrate (0.50 g) was added, and the mixture was stirred at room temperature (25 ° C.) for 10 minutes. Next, light was irradiated using a high-pressure mercury lamp (2) while bubbling nitrogen gas into the suspension (1.5 hours). The wavelength of the irradiated light is 180 to 600 nm. Moreover, 30 degreeC cooling water was continued to flow through the cooling jacket (5) during light irradiation. The suspension changed from brown to black by light irradiation. Next, the obtained reaction solution was filtered under a nitrogen gas atmosphere to obtain a black solid. This black solid was washed with water and ethanol, and then dried under reduced pressure using a desiccator to obtain a copper compound-graphene oxide complex (black powder, 0.55 g).
[実施例2] 銅化合物-グラフェンオキサイド複合体の合成2
 実施例1同様に図4(a)に示す構成の装置を用いた。容器(1)の内部を窒素ガス雰囲気下とし、合成例-2で得られたグラフェンオキサイド懸濁液(50cm3)に、酢酸銅・一水和物(0.30g)を用いて調製した水溶液(50cm3)を加え、室温(25℃)下、20分間攪拌した。次に、懸濁液中に窒素ガスをバブリングしながら、高圧水銀灯(2)を用いて光照射した(1.5時間)。照射した光の波長は、180~600nmである。また、光照射中、冷却ジャケット(5)には30℃の冷却水を流し続けた。光照射により、懸濁液は茶色から黒色に変化した。次に、窒素ガス雰囲気下において、得られた反応液を濾過し、黒色固体を得た。この黒色固体を水とエタノールを用いて洗浄した後、デシケータを用いて減圧乾燥することにより、銅化合物-グラフェンオキサイド複合体(黒色粉末、0.28g)を得た。
[Example 2] Synthesis 2 of copper compound-graphene oxide complex 2
As in Example 1, an apparatus having the configuration shown in FIG. An aqueous solution prepared by using copper acetate monohydrate (0.30 g) in the graphene oxide suspension (50 cm 3 ) obtained in Synthesis Example-2 while the inside of the container (1) was placed in a nitrogen gas atmosphere. (50 cm 3) was added and stirred at room temperature (25 ° C.) under 20 minutes. Next, light was irradiated using a high-pressure mercury lamp (2) while bubbling nitrogen gas into the suspension (1.5 hours). The wavelength of the irradiated light is 180 to 600 nm. Moreover, 30 degreeC cooling water was continued to flow through the cooling jacket (5) during light irradiation. The suspension changed from brown to black by light irradiation. Next, the obtained reaction solution was filtered under a nitrogen gas atmosphere to obtain a black solid. This black solid was washed with water and ethanol, and then dried under reduced pressure using a desiccator to obtain a copper compound-graphene oxide complex (black powder, 0.28 g).
[参考例] 鉄化合物-グラフェンオキサイド複合体の合成
 実施例1とほぼ同じ構成の装置を用いて、鉄化合物-グラフェンオキサイド複合体を合成した。使用した反応装置は、図4(b)に示されるように、硬質ガラス製の容器(3)に、バブラー付き窒素供給ライン(1)、反応液の逆流止め(2)、撹拌子、不活性ガス導入口、及び導出口を有している。また、硬質ガラス製の容器(3)の外部に、石英ジャケット付き水銀ランプ(USHIO450W高圧水銀灯(4))及び循環型冷却装置付水浴(5)を備えている。容器(3)の内部を窒素ガス雰囲気下とし、上記[合成例]の方法で得られたグラフェンオキサイド(0.18g)及びFe(CO)5(0.18g)をテトラヒドロフラン(THF、20cm3、脱酸素処理済み)中に加え、室温(25℃)下、10分間攪拌した。次に、懸濁液中に窒素ガスをバブリングしながら、高圧水銀灯(4)を用いて光照射した(1.5時間)。照射した光の波長は、260~600nmである。また、容器(3)は、循環型冷却装置付水浴(5)を用いて外部から冷却した。水浴の温度は30℃に保った。光照射により、懸濁液は茶色から黒色に変化した。次に、窒素ガス雰囲気下において、得られた反応液を濾取し、黒色固体を得た。この黒色固体をTHF(10cm3)、ジクロロメタン(10cm3)及びエーテル(10cm3)で洗浄したのち、減圧乾燥することにより、鉄化合物-グラフェンオキサイド複合体を得た(黒色粉末、0.16g)。
[Reference Example] Synthesis of Iron Compound-Graphene Oxide Complex An iron compound-graphene oxide complex was synthesized using an apparatus having almost the same configuration as in Example 1. As shown in FIG. 4 (b), the reactor used was a hard glass container (3), a nitrogen supply line with a bubbler (1), a backflow stopper for the reaction solution (2), a stirrer, and inert. It has a gas inlet and outlet. Moreover, the mercury lamp with a quartz jacket (USHIO450W high pressure mercury lamp (4)) and the water bath (5) with a circulation type cooling device are provided outside the container (3) made of hard glass. The inside of the container (3) was placed in a nitrogen gas atmosphere, and graphene oxide (0.18 g) and Fe (CO) 5 (0.18 g) obtained by the method of [Synthesis Example] were added to tetrahydrofuran (THF, 20 cm 3 , The mixture was stirred for 10 minutes at room temperature (25 ° C.). Next, light irradiation was performed using a high-pressure mercury lamp (4) while bubbling nitrogen gas through the suspension (1.5 hours). The wavelength of the irradiated light is 260 to 600 nm. Moreover, the container (3) was cooled from the outside using the water bath (5) with a circulation type cooling device. The temperature of the water bath was kept at 30 ° C. The suspension changed from brown to black by light irradiation. Next, the obtained reaction solution was collected by filtration under a nitrogen gas atmosphere to obtain a black solid. The black solid THF (10 cm 3), dichloromethane then washed with (10 cm 3) and ether (10 cm 3), dried under reduced pressure, the iron compound - was obtained graphene oxide complex (black powder, 0.16 g) .
<赤外吸収スペクトルの測定>
 実施例1及び参考例で得られた各金属化合物-グラフェンオキサイド複合体について、FT-IR Spectrometer FT/IR-6200(日本分光株式会社製)を用いて、赤外吸収スペクトル(IR)をATR法により測定した。実施例1で得られた銅化合物-グラフェンオキサイド複合体の赤外吸収スペクトルを図5に示す(Cu-GO)。また、図6には、上記で得られたグラフェンオキサイドの赤外吸収スペクトル(GO)を示す。なお、参考例で得られた鉄化合物-グラフェンオキサイド複合体の赤外吸収スペクトル(Fe-GO)は、図5及び図6に併記した。
<Measurement of infrared absorption spectrum>
For each metal compound-graphene oxide complex obtained in Example 1 and Reference Example, an infrared absorption spectrum (IR) was measured by ATR method using FT-IR Spectrometer FT / IR-6200 (manufactured by JASCO Corporation). It was measured by. An infrared absorption spectrum of the copper compound-graphene oxide complex obtained in Example 1 is shown in FIG. 5 (Cu-GO). FIG. 6 shows an infrared absorption spectrum (GO) of the graphene oxide obtained above. Note that the infrared absorption spectrum (Fe-GO) of the iron compound-graphene oxide complex obtained in the Reference Example is also shown in FIGS.
 なお、図5に示されるCu-GO及びFe-GOのスペクトルにおいて、原料であるグラフェンオキサイドの赤外吸収スペクトル(図6)で確認されたO-H基に由来する、3000-3800cm-1のブロードな吸収並びにC=O基に由来する1700cm-1付近の吸収が消失し(C-O基に由来する吸収のピーク高に対する、これらの吸収のピーク高の相対比が0.1以下である)、C-O基に由来する吸収(930cm-1~1310cm-1の範囲の吸収)が残存したままである。このことから、実施例1及び参考例で得られた各複合体においては、原料であるグラフェンオキサイドのカルボキシル基と水酸基が消失し、C-O基は残存していることが分かる。 In the spectrum of Cu—GO and Fe—GO shown in FIG. 5, it is 3000-3800 cm −1 derived from the O—H group identified in the infrared absorption spectrum (FIG. 6) of graphene oxide as a raw material. Broad absorption and absorption near 1700 cm −1 derived from C═O group disappeared (the relative ratio of the peak height of these absorptions to the peak height of absorption derived from C—O group is 0.1 or less. ), The absorption derived from the C—O group (absorption in the range of 930 cm −1 to 1310 cm −1 ) remains. From this, it can be seen that in the composites obtained in Example 1 and the reference example, the carboxyl group and hydroxyl group of graphene oxide as a raw material disappeared, and the CO group remains.
<粉末X線回折測定>
 実施例1及び参考例で得られた各金属化合物-グラフェンオキサイド複合体について、デスクトップX線回折装置MiniFlex600((株)リガク社製)を用いて、粉末X線回折(XRD)測定を行った。実施例1で得られた銅化合物-グラフェンオキサイド複合体のXRDスペクトル(Cu-GO)を図7に示す。参考例で得られた鉄化合物-グラフェンオキサイド複合体のXRDスペクトルを図8に示す。
<Powder X-ray diffraction measurement>
With respect to each metal compound-graphene oxide complex obtained in Example 1 and Reference Example, powder X-ray diffraction (XRD) measurement was performed using a desktop X-ray diffractometer MiniFlex600 (manufactured by Rigaku Corporation). The XRD spectrum (Cu-GO) of the copper compound-graphene oxide complex obtained in Example 1 is shown in FIG. FIG. 8 shows an XRD spectrum of the iron compound-graphene oxide complex obtained in the reference example.
 図7及び図8のXRDスペクトルから明らかな通り、実施例1及び参考例で得られた各金属化合物-グラフェンオキサイド複合体は、2θ=9.65°に比較的シャープなシグナルを有しており、グラフェンオキサイドの層間秩序は部分的に保たれていることが分かる。また、図7のXRDスペクトルから明らかな通り、実施例1で得られた銅化合物-グラフェンオキサイド複合体は、2θ=20°以上にCu2Oの結晶に基づくシグナルを有していることが分かる。なお、粉末X線回折測定の比較から、これらの複合体中におけるグラフェンオキサイドは、原料に用いたグラフェンオキサイドよりも全体がアモルファスに変化していることも分かる。 As is apparent from the XRD spectra of FIGS. 7 and 8, each metal compound-graphene oxide complex obtained in Example 1 and the reference example has a relatively sharp signal at 2θ = 9.65 °. It can be seen that the interlayer order of graphene oxide is partially maintained. Further, apparent from XRD spectrum of FIG. 7, a copper compound obtained in Example 1 - graphene oxide complex, it can be seen that a signal based on the Cu 2 O crystals than 2 [Theta] = 20 ° . From the comparison of the powder X-ray diffraction measurement, it is also found that the graphene oxide in these composites is entirely changed to amorphous rather than the graphene oxide used as the raw material.
 また、実施例2で得られた銅化合物-グラフェンオキサイド複合体について、上記と同様にしてXRD測定を行った。結果を図7Aに示す。図7Aに示されるように、実施例2で得られた銅化合物-グラフェンオキサイド複合体は、結晶性のピークが観測されなかった。この結果は同複合体に担持された銅化合物がアモルファス状態であることを示す。 In addition, the XRD measurement was performed on the copper compound-graphene oxide complex obtained in Example 2 in the same manner as described above. The results are shown in FIG. 7A. As shown in FIG. 7A, no crystallinity peak was observed in the copper compound-graphene oxide complex obtained in Example 2. This result indicates that the copper compound supported on the composite is in an amorphous state.
<走査型電子顕微鏡/エネルギー分散型分光法による分析>
 実施例1で得られた銅化合物-グラフェンオキサイド複合体の表面について、株式会社日立ハイテクノロジーズ社製の走査型電子顕微鏡SU6600及びブルッカー社製の付属装置(ブルッカーASX QUANTAX XFlash 5060FQ:エネルギー分散型分光法)を用いて、それぞれSEM画像および各原子のマッピング画像の観察、元素分析を行った。試料は炭素テープに貼付けて、測定を行った。
<Analysis by scanning electron microscope / energy dispersive spectroscopy>
About the surface of the copper compound-graphene oxide complex obtained in Example 1, a scanning electron microscope SU6600 manufactured by Hitachi High-Technologies Corporation and an accessory device manufactured by Bruker (Brucker ASX QUANTAX XFlash 5060FQ: energy dispersive spectroscopy) ), SEM images and mapping images of each atom were observed and elemental analysis was performed. The sample was attached to a carbon tape and measured.
 実施例1で得られた銅化合物-グラフェンオキサイド複合体のSEM画像を図9に示す。また、銅原子のマッピング画像(Cu-L)(なお、白く表示されている部分が銅原子の存在する場所である)、酸素原子のマッピング画像(O-K)(なお、白く表示されている部分が酸素原子の存在する場所である)、及び炭素原子のマッピング画像(C-K)(なお、白く表示されている部分が炭素原子の存在する場所である)を並べて図10に示す。 FIG. 9 shows an SEM image of the copper compound-graphene oxide complex obtained in Example 1. Further, a mapping image of copper atoms (Cu-L) (note that the portion displayed in white is a place where copper atoms are present), a mapping image of oxygen atoms (OK) (note that they are displayed in white) FIG. 10 shows a carbon atom mapping image (CK) (where the part displayed in white is the place where the carbon atom is present) arranged side by side.
 また、実施例1で得られた銅化合物-グラフェンオキサイド複合体の組成を、走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)を用いた元素分析により測定した。具体的には、走査型電子顕微鏡/エネルギー分散型分光法及び透過型電子顕微鏡/エネルギー分散型分光法による分析により、前記Cu2O粒子が確認できない部分について、組成を元素分析により測定した。Cu2Oが粒子として存在している部分は、TEM画像及びSEM画像と、これらの元素マッピングによって確認することができる。その結果、実施例1で得られた銅化合物-グラフェンオキサイド複合体の当該部分においては、Cが48.95質量%、Oが26.96質量%、Cuが23.06質量%、Sが0.39質量%であった。なお、硫黄(S)は、グラフェンオキサイドに含まれている不純物である。 Further, the composition of the copper compound-graphene oxide composite obtained in Example 1 was measured by elemental analysis using a scanning electron microscope / energy dispersive spectroscopy (SEM / EDX). Specifically, the composition was measured by elemental analysis of the portion where the Cu 2 O particles could not be confirmed by analysis using a scanning electron microscope / energy dispersive spectroscopy and a transmission electron microscope / energy dispersive spectroscopy. A portion where Cu 2 O exists as particles can be confirmed by TEM image and SEM image and element mapping thereof. As a result, in this portion of the copper compound-graphene oxide composite obtained in Example 1, C was 48.95% by mass, O was 26.96% by mass, Cu was 23.06% by mass, and S was 0 .39% by mass. Note that sulfur (S) is an impurity contained in graphene oxide.
 実施例2で得られた銅化合物-グラフェンオキサイド複合体の表面について、実施例1の複合体の試験同様に、それぞれSEM画像および各原子のマッピング画像の観察、元素分析を行った。試料は炭素テープに貼付けて、測定を行った。 The surface of the copper compound-graphene oxide complex obtained in Example 2 was subjected to the observation of the SEM image and the mapping image of each atom and the elemental analysis as in the complex test of Example 1. The sample was attached to a carbon tape and measured.
 実施例2で得られた銅化合物-グラフェンオキサイド複合体のSEM画像を図9Aに示す。また、銅原子のマッピング画像(Cu-L)(なお、白く表示されている部分が銅原子の存在する場所である)、酸素原子のマッピング画像(O-K)(なお、白く表示されている部分が酸素原子の存在する場所である)、及び炭素原子のマッピング画像(C-K)(なお、白く表示されている部分が炭素原子の存在する場所である)を並べて図10Aに示す。 An SEM image of the copper compound-graphene oxide complex obtained in Example 2 is shown in FIG. 9A. Further, a mapping image of copper atoms (Cu-L) (note that the portion displayed in white is a place where copper atoms are present), a mapping image of oxygen atoms (OK) (note that they are displayed in white) FIG. 10A shows a carbon atom mapping image (CK) (where the part displayed in white is the place where the carbon atom is present) arranged side by side, where the part is where the oxygen atom exists.
 また、実施例2で得られた銅化合物-グラフェンオキサイド複合体の組成を、走査型電子顕微鏡/エネルギー分散型分光法(SEM/EDX)を用いた元素分析により測定した。具体的には、走査型電子顕微鏡/エネルギー分散型分光法及び透過型電子顕微鏡/エネルギー分散型分光法による分析により、図10Bの白線で囲った領域2における炭素、酸素、銅、他の元素の含有量(質量)を測定した。結果を以下に示す。その結果、実施例2で得られた銅化合物-グラフェンオキサイド複合体の当該部分においては、Cが48.91質量%、Oが31.50質量%、Cuが18.22質量%、Sが1.25質量%であった。なお、硫黄(S)は、グラフェンオキサイドに含まれている不純物である。 In addition, the composition of the copper compound-graphene oxide complex obtained in Example 2 was measured by elemental analysis using a scanning electron microscope / energy dispersive spectroscopy (SEM / EDX). Specifically, carbon, oxygen, copper, and other elements in region 2 surrounded by the white line in FIG. 10B are analyzed by scanning electron microscope / energy dispersive spectroscopy and transmission electron microscope / energy dispersive spectroscopy. The content (mass) was measured. The results are shown below. As a result, in this part of the copper compound-graphene oxide complex obtained in Example 2, C was 48.91% by mass, O was 31.50% by mass, Cu was 18.22% by mass, and S was 1 .25% by mass. Note that sulfur (S) is an impurity contained in graphene oxide.
<透過型電子顕微鏡/エネルギー分散型分光法による分析>
 実施例1で得られた銅化合物-グラフェンオキサイド複合体の表面について、日本電子株式会社製、JEOL、FEG 透過型電子顕微鏡(300kV)を用いて、エネルギー分散型分光法(TEM/EDX)により観察した。
<Transmission electron microscope / analysis by energy dispersive spectroscopy>
The surface of the copper compound-graphene oxide complex obtained in Example 1 was observed by energy dispersive spectroscopy (TEM / EDX) using a JEOL, FEG transmission electron microscope (300 kV) manufactured by JEOL Ltd. did.
 実施例1で得られた銅化合物-グラフェンオキサイド複合体の4種の倍率における各TEM画像を図11に示す。また、TEM画像(BF)と、銅原子のマッピング画像(Cu-K)と、酸素原子のマッピング画像(O-K)と、炭素原子のマッピング画像(C-K)を並べて図12に示す。 FIG. 11 shows TEM images of the copper compound-graphene oxide complex obtained in Example 1 at four magnifications. FIG. 12 shows a TEM image (BF), a copper atom mapping image (Cu—K), an oxygen atom mapping image (OK), and a carbon atom mapping image (CK).
 図11及び図12から、実施例1で得られた銅化合物-グラフェンオキサイド複合体においては、それぞれ、0.06μm以上の粒子径のCu2Oがグラフェンオキサイドの表面に担持されており、さらに、銅原子と酸素原子が、グラフェンオキサイドの表面に均一性高く分散して担持されていることが分かる。この銅原子と酸素原子は、同じ場所に存在していることから、多くが、10nm以下の銅化合物(銅酸化物)としてグラフェンオキサイドの表面に存在していることが分かる。 From FIG. 11 and FIG. 12, in the copper compound-graphene oxide composite obtained in Example 1, Cu 2 O having a particle diameter of 0.06 μm or more is supported on the surface of graphene oxide, It can be seen that copper atoms and oxygen atoms are supported on the surface of graphene oxide in a highly uniform manner. Since this copper atom and oxygen atom exist in the same place, it turns out that many exist in the surface of a graphene oxide as a copper compound (copper oxide) of 10 nm or less.
[試験例1] 水素の製造
 実施例1及び参考例で得られた各金属化合物-グラフェンオキサイド複合体を光触媒として用いて、水及びエタノールから水素の製造を行った。反応装置として、図13の写真で示される装置を用いた。この装置は、バイアル[1](30cm3)に、セプタム栓[2]、および白色LED[3](OSW4XME3ClE、 Optosupply)を備えている。
[Test Example 1] Production of hydrogen Hydrogen was produced from water and ethanol using each metal compound-graphene oxide complex obtained in Example 1 and Reference Example as a photocatalyst. As the reaction apparatus, the apparatus shown in the photograph of FIG. 13 was used. This apparatus is equipped with a septum stopper [2] and a white LED [3] (OSW4XME3ClE, Optosuply) in a vial [1] (30 cm 3 ).
 まず、実施例1、実施例2及び参考例の各金属化合物-グラフェンオキサイド複合体(1mg(実施例2)または1.5mg(実施例1及び参考例))、フルオレセイン(6.6mg)、トリエチルアミン(5%v/v)、エタノール及び水(エタノールと水の体積比=1:1)を混合した(混合液A1)。混合液A1(10cm3)をバイアル(30cm3)に入れて、セプタム栓をして、スターラーで攪拌しながら、20℃において、このバイアルに白色LED光(OSW4XME3ClE、Optosupply)を照射した。光照射後、一定時間ごとに(1.5時間後、3時間後、4.5時間後、6時間後)、バイアル中の空間の気体0.1cm3をガスタイトシリンジで採取し、採取した気体中の水素の量をガスクロマトグラフィー(装置:GL Science(株)製、GC-3200、カラム:ジーエルサイエンス(株)製、Molecular Sieve 13X 60/80、外径=1/8インチ、内径=2.2mm、長さ=4m、カラム温度:60℃、TCD温度:60℃、インジェクター温度:60℃、キャリアガス:窒素ガス、TCD電流:60mA、カラム圧力:200kPa)を用いて定量した。バイアル中の空間の体積(セプタム栓と溶液を除くバイアルの容積)が20cm3であることから、以下の式により、光照射時間と発生した水素の総量との関係を算出した。なお、ガスクロマトグラフのピーク面積を水素の体積に換算する際は、気体発生によるバイアル内の圧力の変化は無視した。
(採取した気体中の水素の量)×200≒(系から発生した水素の総量)
First, each metal compound-graphene oxide complex (1 mg (Example 2) or 1.5 mg (Example 1 and Reference Example)) of Example 1, Example 2 and Reference Example, fluorescein (6.6 mg), triethylamine (5% v / v), ethanol and water (volume ratio of ethanol and water = 1: 1) were mixed (mixture A1). Mixture A1 a (10 cm 3) were placed in a vial (30 cm 3), and the septum stoppered, stirring with a stirrer, at 20 ° C., was irradiated with white LED light (OSW4XME3ClE, Optosupply) to the vial. After the light irradiation, every 0.1 hours after 1.5 hours, gas 0.1 mL 3 in the space in the vial was collected with a gas tight syringe and collected at regular intervals (1.5 hours, 3 hours, 4.5 hours, and 6 hours). The amount of hydrogen in the gas was measured by gas chromatography (apparatus: GL Science, GC-3200, column: GL Sciences, Molecular Sieve 13X 60/80, outer diameter = 1/8 inch, inner diameter = 2.2 mm, length = 4 m, column temperature: 60 ° C., TCD temperature: 60 ° C., injector temperature: 60 ° C., carrier gas: nitrogen gas, TCD current: 60 mA, column pressure: 200 kPa). Since the volume of the space in the vial (volume of the vial excluding the septum stopper and the solution) is 20 cm 3 , the relationship between the light irradiation time and the total amount of generated hydrogen was calculated by the following formula. In addition, when converting the peak area of a gas chromatograph into the volume of hydrogen, the change of the pressure in the vial by gas generation was disregarded.
(Amount of hydrogen in the collected gas) x 200 ≒ (total amount of hydrogen generated from the system)
 実施例1で得られた銅化合物-グラフェンオキサイド複合体(Cu-GO)を用いた場合の光照射時間と発生した水素の総量との関係を示すグラフを図14に示す。また、参考例で得られた鉄化合物-グラフェンオキサイド複合体(Fe-GO)を用いた場合の光照射時間と発生した水素の総量との関係示すグラフを図14に併記した。また、図14のグラフにおいては、4回の実験の平均値を標準誤差と共に示した。 FIG. 14 is a graph showing the relationship between the light irradiation time and the total amount of generated hydrogen when the copper compound-graphene oxide complex (Cu-GO) obtained in Example 1 is used. In addition, FIG. 14 is a graph showing the relationship between the light irradiation time and the total amount of hydrogen generated when the iron compound-graphene oxide complex (Fe—GO) obtained in the Reference Example is used. Moreover, in the graph of FIG. 14, the average value of four experiments was shown with the standard error.
 図14に示される結果から、本発明の銅化合物-グラフェンオキサイド複合体は、水素を発生させる光触媒として優れていることが分かる。 FIG. 14 shows that the copper compound-graphene oxide complex of the present invention is excellent as a photocatalyst for generating hydrogen.
 実施例2で得られた銅化合物-グラフェンオキサイド複合体を光触媒として用いて、水及びエタノールから水素の製造を行った。結果を図14Aに示す。図14Aに示される結果から、本発明の銅化合物-グラフェンオキサイド複合体は、アモルファス状でも水素を発生させる光触媒として優れていることが確認された。 Using the copper compound-graphene oxide complex obtained in Example 2 as a photocatalyst, hydrogen was produced from water and ethanol. The results are shown in FIG. 14A. From the results shown in FIG. 14A, it was confirmed that the copper compound-graphene oxide composite of the present invention is excellent as a photocatalyst for generating hydrogen even in an amorphous state.

Claims (11)

  1.  銅化合物とグラフェンオキサイドとの複合体であって、
     赤外吸収スペクトルにおいて、O-H基及びC=O基に由来する吸収が実質上存在せず、C-O基に由来する吸収が存在する、銅化合物-グラフェンオキサイド複合体。
    A composite of a copper compound and graphene oxide,
    A copper compound-graphene oxide complex in which, in the infrared absorption spectrum, there is substantially no absorption derived from an OH group and a C═O group, and there is an absorption derived from a C—O group.
  2.  粒子径0.06μm以上のCu2O粒子が、前記グラフェンオキサイドの表面に担持されている、請求項1に記載の銅化合物-グラフェンオキサイド複合体。 The copper compound-graphene oxide composite according to claim 1, wherein Cu 2 O particles having a particle diameter of 0.06 µm or more are supported on the surface of the graphene oxide.
  3.  走査型電子顕微鏡/エネルギー分散型分光法による、銅化合物-グラフェンオキサイド複合体の表面に関する元素分析測定結果から算出される、Cu2O粒子が確認できない部分における銅の含有量が、0.1~50質量%である、請求項1または2に記載の銅化合物-グラフェンオキサイド複合体。 The content of copper in the portion where Cu 2 O particles cannot be confirmed, calculated from the results of elemental analysis on the surface of the copper compound-graphene oxide complex by scanning electron microscope / energy dispersive spectroscopy, is 0.1 to The copper compound-graphene oxide complex according to claim 1 or 2, which is 50% by mass.
  4.  一次粒子径が、100μm以下である、請求項1~3のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体。 The copper compound-graphene oxide complex according to any one of claims 1 to 3, wherein the primary particle diameter is 100 µm or less.
  5.  前記グラフェンオキサイドの表面において、走査型電子顕微鏡/エネルギー分散型分光法及び透過型電子顕微鏡/エネルギー分散型分光法による分析により、前記Cu2O粒子が確認できない部分に、粒子径が10nm以下の銅化合物粒子がさらに担持されている、請求項1~4のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体。 On the surface of the graphene oxide, copper having a particle diameter of 10 nm or less is observed in a portion where the Cu 2 O particles cannot be confirmed by analysis using a scanning electron microscope / energy dispersive spectroscopy and a transmission electron microscope / energy dispersive spectroscopy. The copper compound-graphene oxide complex according to any one of claims 1 to 4, wherein the compound particles are further supported.
  6.  原料とする銅化合物と、グラフェンオキサイドとを、不活性溶媒中で混合して懸濁液を調製する工程と、
     前記懸濁液に、波長が100nm~800nmの範囲にある光を照射する工程
    を備える、銅化合物-グラフェンオキサイド複合体の製造方法。
    A step of preparing a suspension by mixing a copper compound as a raw material and graphene oxide in an inert solvent;
    A method for producing a copper compound-graphene oxide complex, comprising irradiating the suspension with light having a wavelength in the range of 100 nm to 800 nm.
  7.  前記原料とする銅化合物が、銅と無機酸との塩、銅とカルボン酸との塩、銅とスルホン酸との塩、水酸化銅、銅複塩、及び銅錯体の少なくとも1種である、請求項6に記載の銅化合物-グラフェンオキサイド複合体の製造方法。 The copper compound as the raw material is at least one of a salt of copper and inorganic acid, a salt of copper and carboxylic acid, a salt of copper and sulfonic acid, copper hydroxide, a copper double salt, and a copper complex. The method for producing a copper compound-graphene oxide complex according to claim 6.
  8.  請求項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体を含む、光触媒。 A photocatalyst comprising the copper compound-graphene oxide complex according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体の存在下、水及びアルコールの少なくとも一方を含む水素源に光を照射する工程を備える、水素の製造方法。 A method for producing hydrogen, comprising a step of irradiating light to a hydrogen source containing at least one of water and alcohol in the presence of the copper compound-graphene oxide complex according to any one of claims 1 to 5.
  10.  前記における照射光として、太陽光及び白色LED光の少なくとも一方を用いる、請求項9に記載の水素の製造方法。 The method for producing hydrogen according to claim 9, wherein at least one of sunlight and white LED light is used as the irradiation light in the above.
  11.  請求項1~5のいずれか1項に記載の銅化合物-グラフェンオキサイド複合体を触媒として備える、水素製造装置。 A hydrogen production apparatus comprising the copper compound-graphene oxide complex according to any one of claims 1 to 5 as a catalyst.
PCT/JP2017/036219 2016-10-05 2017-10-05 Copper compound-graphene oxide complex WO2018066629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018543954A JPWO2018066629A1 (en) 2016-10-05 2017-10-05 Copper compound-graphene oxide complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016197635 2016-10-05
JP2016-197635 2016-10-05

Publications (1)

Publication Number Publication Date
WO2018066629A1 true WO2018066629A1 (en) 2018-04-12

Family

ID=61831024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036219 WO2018066629A1 (en) 2016-10-05 2017-10-05 Copper compound-graphene oxide complex

Country Status (2)

Country Link
JP (1) JPWO2018066629A1 (en)
WO (1) WO2018066629A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320165A (en) * 2018-12-13 2020-06-23 山东欧铂新材料有限公司 Graphene oxide/carbonyl iron composite material, preparation method thereof and graphene-based wave-absorbing material
WO2022119462A1 (en) * 2020-12-02 2022-06-09 Instytut Niskich Temperatur I Badan Strukturalnych Pan Im.W.Trzebiatowskiego Hydrogen production method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120109187A (en) * 2011-03-28 2012-10-08 제주대학교 산학협력단 Photocatalytic composition comprising graphene oxide
US20120265122A1 (en) * 2009-12-10 2012-10-18 El-Shall M Samy Production of Graphene and Nanoparticle Catalysts Supposrted on Graphen Using Laser Radiation
JP2013500843A (en) * 2009-07-01 2013-01-10 ビーエーエスエフ ソシエタス・ヨーロピア Photocatalyst production method
WO2016158806A1 (en) * 2015-03-27 2016-10-06 富士化学工業株式会社 Novel composite of iron compound and graphene oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500843A (en) * 2009-07-01 2013-01-10 ビーエーエスエフ ソシエタス・ヨーロピア Photocatalyst production method
US20120265122A1 (en) * 2009-12-10 2012-10-18 El-Shall M Samy Production of Graphene and Nanoparticle Catalysts Supposrted on Graphen Using Laser Radiation
KR20120109187A (en) * 2011-03-28 2012-10-08 제주대학교 산학협력단 Photocatalytic composition comprising graphene oxide
WO2016158806A1 (en) * 2015-03-27 2016-10-06 富士化学工業株式会社 Novel composite of iron compound and graphene oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. ZHIGANG: "Reduced graphene oxide-cuprous oxide hybrid nanopowders: Hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 23, 2014, pages 78 - 84, XP028842920, DOI: doi:10.1016/j.mssp.2014.02.026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320165A (en) * 2018-12-13 2020-06-23 山东欧铂新材料有限公司 Graphene oxide/carbonyl iron composite material, preparation method thereof and graphene-based wave-absorbing material
WO2022119462A1 (en) * 2020-12-02 2022-06-09 Instytut Niskich Temperatur I Badan Strukturalnych Pan Im.W.Trzebiatowskiego Hydrogen production method and device

Also Published As

Publication number Publication date
JPWO2018066629A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
RU2706318C2 (en) Novel composite material containing iron compound and graphene oxide
Zheng et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation
Min et al. Synthesis of new TiO2/porphyrin-based composites and photocatalytic studies on methylene blue degradation
WO2018066628A1 (en) Metal compound – graphene oxide complex
Wu et al. Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots
Li et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity
Yang et al. Microwave‐assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible‐light photocatalytic activity
Liu et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation
He et al. Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution
Bian et al. Self-integrated β-Bi2O3/Bi2O2. 33@ Bi2O2CO3 ternary composites: formation mechanism and visible light photocatalytic activity
Duo et al. Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity
Zhao et al. The highly efficient and stable Cu, Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method
Gao et al. Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting
Wang et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions
Tie et al. Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production
Cai et al. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation
Mohamed Sonochemical synthesis of ZnO hollow microstructure/reduced graphene oxide for enhanced sunlight photocatalytic degradation of organic pollutants
Wang et al. Facile fabrication of CdS/UiO-66-NH2 heterojunction photocatalysts for efficient and stable photodegradation of pollution
Dinda et al. Novel Ascorbic Acid Based Ionic Liquids for the In Situ Synthesis of Quasi‐Spherical and Anisotropic Gold Nanostructures in Aqueous Medium
Zhang et al. One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu 2 O composite microspheres with enhanced visible light photocatalytic properties
Arockiasamy et al. Natural dye sensitized CuO nanorods for luminescence applications
Wu et al. Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties
Chen et al. Synthesis of C-coated ZnIn2S4 nanocomposites with enhanced visible light photocatalytic selective oxidation activity
WO2018066629A1 (en) Copper compound-graphene oxide complex
Wen et al. Constructing two-dimensional CuFeSe 2@ Au heterostructured nanosheets with an amorphous core and a crystalline shell for enhanced near-infrared light water oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858465

Country of ref document: EP

Kind code of ref document: A1