WO2018066372A1 - Phenolic hydroxyl group-containing resin and resist material - Google Patents

Phenolic hydroxyl group-containing resin and resist material Download PDF

Info

Publication number
WO2018066372A1
WO2018066372A1 PCT/JP2017/034062 JP2017034062W WO2018066372A1 WO 2018066372 A1 WO2018066372 A1 WO 2018066372A1 JP 2017034062 W JP2017034062 W JP 2017034062W WO 2018066372 A1 WO2018066372 A1 WO 2018066372A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phenolic hydroxyl
hydroxyl group
compound
containing resin
Prior art date
Application number
PCT/JP2017/034062
Other languages
French (fr)
Japanese (ja)
Inventor
今田 知之
教夫 長江
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020197000935A priority Critical patent/KR102432123B1/en
Priority to CN201780060031.8A priority patent/CN109790264B/en
Priority to JP2018506623A priority patent/JP6341349B1/en
Publication of WO2018066372A1 publication Critical patent/WO2018066372A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention relates to a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the same, and a resist material.
  • a naphthol novolac resin is known as one of resin materials suitable for a photoresist (see Patent Document 1 below).
  • Naphthol novolac resin is derived from a rigid naphthalene skeleton and has excellent dry etching resistance, but its low fluidity results in low coatability on uneven substrate surfaces, and the resulting film has a smooth surface. It was not enough.
  • the problem to be solved by the present invention is to provide a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the same, and a resist material. It is in.
  • a reaction product of a bisnaphthol compound and cyanuric halide having a polydispersity (Mw / Mn) of 1.01 to 1.30 The phenolic hydroxyl group-containing resin in the range of is found to be excellent in coating property to a substrate surface having irregularities due to its high fluidity, and also excellent in heat resistance and dry etching resistance in a cured product. It came to complete.
  • X represents a hydrocarbon group having 1 to 14 carbon atoms.
  • R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • M is 0. 1 or 2
  • n is 0 or an integer of 1 to 4
  • the present invention further relates to a curable composition containing the phenolic hydroxyl group-containing resin and a curing agent.
  • the present invention further relates to a cured product of the curable composition.
  • the present invention further relates to a resist material using the curable composition.
  • a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the phenolic hydroxyl group-containing resin, and a resist material.
  • FIG. 1 is a GPC chart of the phenolic hydroxyl group-containing resin (1) obtained in Example 1.
  • FIG. 1 is a GPC chart of the phenolic hydroxyl group-containing resin (1) obtained in Example 1.
  • the phenolic hydroxyl group-containing resin of the present invention has the following structural formula (1)
  • X represents a hydrocarbon group having 1 to 14 carbon atoms.
  • R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • M is 0. 1 or 2
  • n is 0 or an integer of 1 to 4
  • the polydispersity (Mw / Mn) is in the range of 1.01 to 1.30, which is a reaction product of a bisnaphthol compound (a1) and a cyanuric halide (a2) represented by To do.
  • the bisnaphthol compound (a1) can be obtained, for example, by a method of reacting a 2-naphthol compound and an aldehyde compound.
  • the 2-naphthol compound refers to a compound having one or a plurality of substituents represented by R 1 in the structural formula (1) on 2-naphthol or an aromatic nucleus of 2-naphthol. You may use, and may use 2 or more types together.
  • R 1 in the structural formula (1) is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • aliphatic hydrocarbon group include, for example, methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group and the like.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • aryl group include, for example, a phenyl group, a naphthyl group, an anthryl group, and a structural site obtained by substituting the aliphatic hydrocarbon group, alkoxy group, halogen atom or the like on the aromatic nucleus.
  • aralkyl group examples include, for example, a phenylmethyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and the aromatic hydrocarbon group, the aliphatic hydrocarbon group, an alkoxy group, a halogen atom, and the like substituted. Examples include structural sites. Especially, since the heat resistance in hardened
  • aldehyde compound examples include formaldehyde, trioxane, acetaldehyde, propionaldehyde, tetraoxymethylene, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, phenylacetaldehyde. O-tolualdehyde, salicylaldehyde, crotonaldehyde, acrolein and the like. These may be used alone or in combination of two or more. Among them, it is preferable to use formaldehyde because of excellent reactivity. That is, X in the structural formula (1) is preferably a methylene group. Formaldehyde may be used either as formalin in an aqueous solution or as paraformaldehyde in a solid state.
  • the reaction between the 2-naphthol compound and the aldehyde compound can obtain the target bisnaphthol compound (a1) in high yield, so that the temperature is gradually raised from room temperature in the presence of an alkali catalyst to 80 to 120 ° C. It is preferable to carry out at a temperature of about. You may perform reaction in an organic solvent as needed.
  • the reaction ratio between the 2-naphthol compound and the aldehyde compound is preferably in the range of 0.45 to 0.55 mol of the aldehyde compound with respect to 1 mol of the 2-naphthol compound.
  • alkali catalyst examples include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, pyridine and the like. These may be used alone or in combination of two or more.
  • the addition amount of the alkali catalyst is preferably in the range of 0.05 to 3% by mass with respect to the total mass of the reaction raw materials.
  • organic solvent examples include methanol, ethanol, propanol, butanol, ethyl lactate, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin, 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol Monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol Tylmethyl ether, ethylene glycol monophenyl ether, diethylene glycol ethyl methyl ether, propy
  • solvents may be used alone or in combination of two or more kinds.
  • alcohol solvents such as methanol, ethanol, propanol, and butanol are preferable because the bisnaphthol compound (a1) can be obtained in a high yield.
  • the organic solvent is preferably used in a range of 0.5 to 5 times the total mass of the reaction raw materials.
  • the bisnaphthol compound (a1) with higher purity can be obtained by purifying the reaction product by washing with water or reprecipitation.
  • the purity of the bisnaphthol compound (a1) is a value calculated from the area ratio of the GPC chart because it becomes a phenolic hydroxyl group-containing resin having a good balance between heat resistance and dry etching resistance in the cured product and fluidity. It is preferably 90% or more, and more preferably 99% or more.
  • the purity of the bisnaphthol compound (a1) and the content of each component in the phenolic hydroxyl group-containing resin are values calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. is there.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw / Mn) of the hydroxyl group-containing phenol resin are values measured by GPC under the following conditions.
  • the reaction method of the bisnaphthol compound (a1) and the cyanuric halide (a2) is not particularly limited, and examples thereof include a method of reacting at a temperature of about 50 to 100 ° C. in the presence of a hydrogen halide scavenger. It is done. You may perform reaction in an organic solvent as needed.
  • the reaction ratio between the bisnaphthol compound (a1) and the cyanuric halide (a2) is easy to adjust the polydispersity (Mw / Mn) of the resulting phenolic hydroxyl group-containing resin in the range of 1.0 to 1.5. Therefore, the molar ratio [(a1) / (a2)] of the two is preferably in the range of 1.5 to 5, and more preferably in the range of 2.0 to 3.5.
  • Examples of the hydrogen halide scavenger include basic amine compounds such as tertiary amine compounds such as trimethylamine and triethylamine, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate, and alkali metal carbonates of potassium carbonate. Compounds can be used. These addition amounts are preferably used in the range of 1 to 2 mol per 1 mol of the cyanuric halide (a2).
  • the organic solvent is preferably a hydrophobic solvent, and examples thereof include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and aromatic hydrocarbon solvents such as benzene, toluene and xylene.
  • the organic solvent is preferably used in a range of 0.5 to 5 times the total mass of the reaction raw materials.
  • the phenolic hydroxyl group-containing resin of the present invention is more excellent in the balance between heat resistance and dry etching resistance in a cured product and fluidity, and therefore the content of a component having a number average molecular weight (Mn) of 500 or less. Is preferably in the range of 0.1 to 3.0%, more preferably in the range of 0.1 to 2.8%, as calculated from the area ratio of the GPC chart. A range of ⁇ 2.0% is particularly preferred.
  • the content of a component having a number average molecular weight (Mn) of 500 or less can be prepared by increasing the number of times of water washing or performing reprecipitation.
  • the phenolic hydroxyl group-containing resin of the present invention has the following structural formula (2)
  • X represents a hydrocarbon group having 1 to 14 carbon atoms.
  • R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • M is 0. 1 or 2
  • n is 0 or an integer of 1 to 4
  • the content of the polynuclear compound (A) is calculated from the area ratio of the GPC chart because it becomes a phenolic hydroxyl group-containing resin having a further excellent balance between heat resistance and dry etching resistance in the cured product and fluidity. Is preferably 35% or more, more preferably in the range of 35 to 90%, and particularly preferably in the range of 55 to 80%.
  • X represents a hydrocarbon group having 1 to 14 carbon atoms.
  • R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group.
  • M is 0. 1 or 2
  • n is 0 or an integer of 1 to 4
  • a component substituted with a structural moiety represented by since the cured product is more excellent in heat resistance and dry etching resistance, one of the phenolic hydroxyl groups in the structural formula (1) is substituted with the structural formula (3) together with the polynuclear compound (A). It is preferable to contain the compound (B) made.
  • the total content of the polynuclear compound (A) and the compound (B) in the phenolic hydroxyl group-containing resin is in the range of 50 to 99% as calculated from the area ratio of the GPC chart. It is preferably in the range of 60 to 99%, more preferably in the range of 80 to 99%.
  • the phenolic hydroxyl group-containing resin of the present invention preferably has a weight average molecular weight (Mw) measured by GPC under the above conditions in the range of 980 to 1,200.
  • the phenolic hydroxyl group-containing resin of the present invention is characterized in that the polydispersity (Mw / Mn) is in the range of 1.01 to 1.30.
  • the polydispersity (Mw / Mn) is more preferably in the range of 1.01 to 1.25, and more preferably in the range of 1.01 to 1.20. A range is particularly preferred.
  • the phenolic hydroxyl group-containing resin of the present invention described in detail above can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc., as in general phenol resins.
  • the curable composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a curing agent as essential components.
  • the curable composition of the present invention may contain other resin (C) in addition to the phenolic hydroxyl group-containing resin of the present invention.
  • resins (C) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
  • various novolak resins such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds
  • Modified novolak resin phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenyl
  • the various novolak resins include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, and phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with an acid catalyst.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
  • the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (C) can be arbitrarily set according to the application, but the heat resistance exhibited by the present invention is excellent. Since the effect is more remarkably exhibited, the proportion of the other resin (C) is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention.
  • the curing agent used in the present invention is not particularly limited as long as it is a compound capable of causing a curing reaction with the phenolic hydroxyl group-containing resin of the present invention, and various compounds can be used.
  • the curing method of the curable composition of the present invention is not particularly limited, and it can be cured by an appropriate method such as thermal curing or photocuring according to the type of curing agent or the type of curing accelerator described later. it can. Curing conditions such as the heating temperature and time in thermosetting, the type of light beam in photocuring and the exposure time are appropriately adjusted according to the type of curing agent, the type of curing accelerator described below, and the like.
  • the curing agent include, for example, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and the like. Products, oxazoline compounds and the like.
  • the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
  • glycoluril compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
  • urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
  • the resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound.
  • alkylphenol such as phenol, cresol or xylenol
  • a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F
  • a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene
  • aldehyde compound examples include polymers obtained by reacting under catalytic conditions.
  • Examples of the epoxy compound include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene- Examples include phenol addition reaction type epoxy resins, phosphorus atom-containing epoxy resins, polyglycidyl ethers of cocondensates of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, and the like. That.
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
  • azide compound examples include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
  • Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether.
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
  • a glycoluril compound, a urea compound, and a resole resin are preferable, and a glycoluril compound is particularly preferable because it is a curable composition having excellent curability and heat resistance in a cured product.
  • curing agent in the curable composition of this invention becomes a composition excellent in sclerosis
  • the ratio is preferably 0.5 to 50 parts by mass.
  • the curable composition of the present invention may contain a curing accelerator together with the curing agent.
  • a curing accelerator such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate is used as a curing accelerator. Is preferred.
  • a photoacid generator it is preferable to use a photoacid generator as a curing accelerator.
  • photoacid generator examples include sulfonium salt compounds such as tris (4-methylphenyl) sulfonium trifluoromethanesulfonate and tris (4-methylphenyl) sulfonium hexafluorophosphate; bis [4-n-alkylphenyl] iodonium hexafluorophosphate Bis [4-n-alkylphenyl] iodonium hexafluoroantimonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium bis (perfluorobutanesulfonyl) imide, bis [4-n-alkylphenyl] iodonium salt compounds such as iodonium tetrakispentafluorophenylborate (n-alkyl groups in each compound are preferably those having 10 to 13 carbon atom
  • the curable composition of the present invention may be diluted with an organic solvent.
  • the organic solvent to be used is not particularly limited.
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl Dialkylene glycol dialkyl ethers such as ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Tate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers
  • the phenolic hydroxyl group-containing resin of the present invention can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc.
  • various resist members such as resist underlayer films and resist permanent films are also available. Can be used.
  • the phenolic hydroxyl group-containing resin of the present invention is used as a resist material
  • a method of using it as a positive photoresist material by combining it with a photosensitizer, or a method of using heat in combination with a curing agent examples thereof include a method used as a curable resin material, a method used as a negative photoresist material in combination with a curing agent and a photosensitive curing accelerator.
  • a thermosetting resin material in combination with a curing agent, or in combination with a curing agent and a photosensitive curing accelerator.
  • the method used as a mold photoresist material is preferred.
  • the photosensitive agent examples include aromatic (poly) hydroxy compounds and quinonediazides such as naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, and orthoanthraquinonediazidesulfonic acid.
  • compounds having a quinonediazide group such as an ester compound with a sulfonic acid having a group or an amidated compound.
  • the phenolic hydroxyl group-containing resin of the present invention When used for positive photoresist applications, the phenolic hydroxyl group-containing resin of the present invention, other resin (C), a photosensitizer, and other additives are blended, and an organic solvent
  • the composition for a positive photoresist can be produced by dissolving in a solvent and mixing with a stirrer or the like.
  • the filler or pigment When the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the positive photoresist composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, Pre-bake at a temperature of 60 to 150 ° C. Subsequently, after exposing through a resist pattern, a resist pattern is produced by dissolving an exposed part with an alkali developing solution.
  • a resist underlayer film composition can be produced by dissolving in an organic solvent and mixing using a stirrer or the like.
  • the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the resist underlayer film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and the like. Then, after drying under a temperature condition of 100 to 200 ° C., a resist underlayer film is formed by a method such as heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
  • a resist underlayer film composition can be produced by dissolving in an organic solvent and mixing using a stirrer or the like.
  • the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the resist permanent film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, and the like.
  • Pre-bake at a temperature of 150 ° C.
  • the resist pattern is formed by thermally curing at a temperature of 110 to 210 ° C. and dissolving the unexposed portion with an alkali developer.
  • the permanent film made of the resist permanent film composition is, for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a solder resist for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • the purity of the compound and the content of each component in the resin are values calculated from the area ratio of the chart obtained by GPC measurement under the following conditions.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw / Mn) of the resin are values measured by GPC under the following conditions.
  • GPC measurement conditions Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: “Shodex KF802” (8.0 mm ⁇ ⁇ 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mm ⁇ ⁇ 300 mm) manufactured by Showa Denko KK + Showa Denko Co., Ltd.
  • the obtained cake was vacuum-dried at 80 ° C. for 72 hours to obtain 550 parts by mass of a white bisnaphthol compound (a1).
  • the number average molecular weight (Mn) of the obtained bisnaphthol compound (a1) was 351, the weight average molecular weight (Mw) was 352, and the polydispersity (Mw / Mn) was 1.00.
  • Example 1 Production of phenolic hydroxyl group-containing resin (1)
  • a1 bisnaphthol compound obtained above
  • 31 parts by mass of cyanuric chloride 500 parts by mass of methyl ethyl ketone Parts were charged and dissolved by stirring.
  • 52 parts by mass of triethylamine was added dropwise over 60 minutes.
  • stirring was continued at 70 ° C. for 5 hours.
  • 200 parts by mass of water was added to dissolve triethylamine hydrochloride, and the mixture was separated to discard the aqueous layer.
  • a phenolic hydroxyl group-containing resin (1) 113 parts by mass of a phenolic hydroxyl group-containing resin (1) was obtained.
  • the resulting phenolic hydroxyl group-containing resin (1) has a number average molecular weight (Mn) of 963, a weight average molecular weight (Mw) of 1,050, a polydispersity (Mw / Mn) of 1.09, and a number average molecular weight (Mn ) Was 500 or less, the content of the component was 0.8%.
  • the content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (1) is 59.2%, and the total content of the polynuclear compound (A) and the compound (B) is 85.5%. there were.
  • a GPC chart of the phenolic hydroxyl group-containing resin (1) is shown in FIG.
  • Example 2 Production of phenolic hydroxyl group-containing resin (2)
  • the number average molecular weight (Mn) of the obtained phenolic hydroxyl group-containing resin (2) is 1,013, the weight average molecular weight (Mw) is 1,252, the polydispersity (Mw / Mn) is 1.24, and the number average molecular weight.
  • Content of the component whose (Mn) is 500 or less was 2.8%.
  • the content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (2)) is 37.9%, and the total content of the polynuclear compound (A) and the compound (B) is 61.5%. Met.
  • the component content was 5.2% by mass.
  • methyl ethyl ketone was recovered by distillation and dried under reduced pressure to obtain 124 parts by mass of a phenolic hydroxyl group-containing resin (2 ′).
  • the obtained phenolic hydroxyl group-containing resin (2 ′) has a number average molecular weight (Mn) of 958, a weight average molecular weight (Mw) of 1,258, a polydispersity (Mw / Mn) of 1.31, and a number average molecular weight ( The content of the component having Mn) of 500 or less was 12.3%.
  • the content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (1) is 51.4%, and the total content of the polynuclear compound (A) and the compound (B) is 72.0%. there were.
  • thermosetting Composition 1.6 parts by mass of phenolic hydroxyl group-containing resin, 0.4 parts by mass of curing agent (“1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 0.1 part by mass of paratoluenesulfonic acid was dissolved in 100 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 ⁇ m membrane filter to obtain a thermosetting composition.
  • curing agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril
  • thermosetting composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 110 ° C. for 180 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it heat-hardened at 210 degreeC for 60 second, and obtained the cured coating film with a film thickness of 0.3 micrometer.
  • the mass of the wafer was measured before and after the curing process at 210 ° C., and the mass reduction amount in the curing process was calculated and evaluated according to the following criteria.
  • B The mass loss in the curing process in 210 ° C. for 60 seconds exceeds 3%
  • thermosetting composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 110 ° C. for 180 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it heat-hardened at 210 degreeC for 60 second, and obtained the cured coating film with a film thickness of 0.3 micrometer. The obtained cured coating film is scraped from the wafer, and the mass reduction amount at 240 ° C. when the temperature is raised under the following conditions using a differential thermothermal gravimetric simultaneous measurement device (TG / DTA) is measured according to the following criteria. evaluated. [Mass loss measurement conditions] Measuring instrument: “TG / DTA 6200” manufactured by Seiko Instruments Inc.
  • thermosetting composition obtained above was applied by a spin coater on a silicon wafer having a diameter of 110 nm and a hole pattern having a depth of 300 nm formed on a 5-inch diameter wafer. After drying on a hot plate at 110 ° C. for 180 seconds, heat curing was performed at 210 ° C. for 60 seconds to obtain a cured coating film having a thickness of 0.3 ⁇ m. A silicon wafer is cut on a hole pattern line, and a cross section is observed with a laser microscope (Keyence Co., Ltd. “VK-X200”) to evaluate whether the flow of the curable composition into the hole pattern was sufficient under the following conditions. did. A: The whole hole is filled with the cured product B: The whole hole is not filled with the cured product and there is a gap.
  • thermosetting composition 1.6 parts by mass of phenolic hydroxyl group-containing resin, curing agent (“1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd.) 0.4 parts by mass Then, 0.2 parts by mass of a photoacid generator was dissolved in 100 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 ⁇ m membrane filter to obtain a thermosetting composition.
  • curing agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril
  • TFE-triazine (2- [2- (furan-2-yl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine) manufactured by Sanwa Chemical Co., Ltd. was used.
  • Alkali Developability (nm / s)
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m. Dried for 60 seconds. This was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds. The film thickness before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a mask corresponding to a resist pattern having a line-and-space ratio of 1: 1 and a line width of 1 to 10 ⁇ m set every 1 ⁇ m is brought into close contact with this wafer, and then a ghi line lamp (“Multi Light” manufactured by USHIO INC. )) was used for irradiation with ghi rays, and heat treatment was performed at 140 ° C. for 60 seconds.
  • the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the exposure amount (Eop exposure amount) capable of faithfully reproducing the line width of 3 ⁇ m when the ghi line exposure amount was increased from 30 mJ / cm 2 to 5 mJ / cm 2 was evaluated.
  • the photosensitive composition obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a photomask was placed on the obtained wafer, irradiated with 200 mJ / cm 2 of ghi line, cured at 210 ° C. for 180 seconds, and then subjected to an alkali developing operation.
  • Check the pattern state using a laser microscope (Keyence Co., Ltd. “VK-X200”) and resolve it with A / L / S 5 ⁇ m.
  • B was evaluated as B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The purpose of the invention is to provide: a phenolic hydroxyl group-containing resin that has excellent flowability and provides excellent heat resistance and dry etching resistance in a cured product; and a curable composition and a resist material containing said resin. Provided is a phenolic hydroxyl group-containing resin which is a reaction product of a bisnaphthol compound (a1) represented by structural formula (1) (wherein X represents a C1-14 hydrocarbon group, R1s each independently represent an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, m is 0, 1 or 2, and n is an integer of 0 or 1 to 4) and a cyanuric halide (a2), the phenolic hydroxyl group-containing resin having a polydispersity (Mw/Mn) within a range from 1.01 to 1.30.

Description

フェノール性水酸基含有樹脂及びレジスト材料Phenolic hydroxyl group-containing resin and resist material
 本発明は、流動性に優れ、硬化物における耐熱性及びドライエッチング耐性が高いフェノール性水酸基含有樹脂、これを含有する硬化性組成物、及びレジスト材料に関する。 The present invention relates to a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the same, and a resist material.
 フォトレジストの分野では、用途や機能に応じて細分化された多種多様なレジストパターン形成方法が次々に開発されており、それに伴い、レジスト用樹脂材料に対する要求性能も高度化かつ多様化している。例えば、パターン形成用の樹脂材料には、高集積化された半導体に微細なパターンを正確かつ高い生産効率で形成するための高い現像性が要求さる。下層膜、反射防止膜、BARC膜、ハードマスク等と呼ばれる用途では、ドライエッチング耐性や低反射性、凹凸のある基材表面にも対応し得る高い流動性等が求められる。また、レジスト永久膜等と呼ばれる用途では、高耐熱性に加え基材追従性等の靱性が要求される。更に、品質信頼性の観点から、世界各国の様々な環境下での長期保存安定性も重要な性能の一つである。 In the field of photoresists, a variety of resist pattern forming methods that have been subdivided according to applications and functions have been developed one after another, and accordingly, the required performance for resist resin materials has become sophisticated and diversified. For example, a resin material for forming a pattern requires high developability for forming a fine pattern accurately and with high production efficiency on a highly integrated semiconductor. In applications called underlayer films, antireflection films, BARC films, hard masks, etc., dry etching resistance, low reflectivity, and high fluidity that can be applied to uneven substrate surfaces are required. In addition, in applications such as resist permanent films, toughness such as substrate followability is required in addition to high heat resistance. Furthermore, from the viewpoint of quality and reliability, long-term storage stability in various environments around the world is one of the important performances.
 フォトレジスト用に適した樹脂材料の一つとして、ナフトールノボラック型樹脂が知られている(下記特許文献1参照)。ナフトールノボラック型樹脂は剛直なナフタレン骨格に由来してドライエッチング耐性に優れる特徴を有するものの、流動性が低いことから凹凸のある基材表面に対する塗工性が低く、得られる膜の表面平滑性も十分ではなかった。 A naphthol novolac resin is known as one of resin materials suitable for a photoresist (see Patent Document 1 below). Naphthol novolac resin is derived from a rigid naphthalene skeleton and has excellent dry etching resistance, but its low fluidity results in low coatability on uneven substrate surfaces, and the resulting film has a smooth surface. It was not enough.
特開2010-248435号公報JP 2010-248435 A
 したがって、本発明が解決しようとする課題は、流動性に優れ、硬化物における耐熱性及びドライエッチング耐性が高いフェノール性水酸基含有樹脂、これを含有する硬化性組成物、及びレジスト材料を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the same, and a resist material. It is in.
 本発明者らは上記課題を解決するため鋭意検討を行った結果、ビスナフトール化合物とハロゲン化シアヌルとの反応生成物であって、多分散度(Mw/Mn)が1.01~1.30の範囲であるフェノール性水酸基含有樹脂は、流動性が高いことから凹凸を有する基材面への塗工性に優れ、硬化物における耐熱性やドライエッチング耐性にも優れることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a reaction product of a bisnaphthol compound and cyanuric halide having a polydispersity (Mw / Mn) of 1.01 to 1.30. The phenolic hydroxyl group-containing resin in the range of is found to be excellent in coating property to a substrate surface having irregularities due to its high fluidity, and also excellent in heat resistance and dry etching resistance in a cured product. It came to complete.
 即ち、本発明は、下記構造式(1) That is, the present invention has the following structural formula (1)
Figure JPOXMLDOC01-appb-C000005
(式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
で表されるビスナフトール化合物(a1)とハロゲン化シアヌル(a2)との反応生成物であって、多分散度(Mw/Mn)が1.01~1.30の範囲であるフェノール性水酸基含有樹脂に関する。
Figure JPOXMLDOC01-appb-C000005
(In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
A phenolic hydroxyl group having a polydispersity (Mw / Mn) in the range of 1.01 to 1.30, which is a reaction product of a bisnaphthol compound (a1) and a cyanuric halide (a2) represented by It relates to resin.
 本発明は更に、前記フェノール性水酸基含有樹脂と硬化剤とを含有する硬化性組成物に関する。 The present invention further relates to a curable composition containing the phenolic hydroxyl group-containing resin and a curing agent.
 本発明は更に、前記硬化性組成物の硬化物に関する。 The present invention further relates to a cured product of the curable composition.
 本発明は更に、前記硬化性組成物を用いたレジスト材料に関する。 The present invention further relates to a resist material using the curable composition.
 本発明によれば、流動性に優れ、硬化物における耐熱性及びドライエッチング耐性が高いフェノール性水酸基含有樹脂、これを含有する硬化性組成物、及びレジスト材料を提供することができる。 According to the present invention, it is possible to provide a phenolic hydroxyl group-containing resin having excellent fluidity and high heat resistance and dry etching resistance in a cured product, a curable composition containing the phenolic hydroxyl group-containing resin, and a resist material.
図1は、実施例1で得られたフェノール性水酸基含有樹脂(1)のGPCチャート図である。1 is a GPC chart of the phenolic hydroxyl group-containing resin (1) obtained in Example 1. FIG.
 本発明のフェノール性水酸基含有樹脂は、下記構造式(1) The phenolic hydroxyl group-containing resin of the present invention has the following structural formula (1)
Figure JPOXMLDOC01-appb-C000006
(式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
で表されるビスナフトール化合物(a1)とハロゲン化シアヌル(a2)との反応生成物であって、多分散度(Mw/Mn)が1.01~1.30の範囲であることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
Wherein the polydispersity (Mw / Mn) is in the range of 1.01 to 1.30, which is a reaction product of a bisnaphthol compound (a1) and a cyanuric halide (a2) represented by To do.
 前記ビスナフトール化合物(a1)は、例えば、2-ナフトール化合物とアルデヒド化合物とを反応させる方法等により得ることができる。前記2-ナフトール化合物は、2-ナフトール或いは2-ナフトールの芳香核上に前記構造式(1)中のRで表される置換基を一つ乃至複数有する化合物を指し、1種類を単独で用いても良いし、2種類以上を併用しても良い。 The bisnaphthol compound (a1) can be obtained, for example, by a method of reacting a 2-naphthol compound and an aldehyde compound. The 2-naphthol compound refers to a compound having one or a plurality of substituents represented by R 1 in the structural formula (1) on 2-naphthol or an aromatic nucleus of 2-naphthol. You may use, and may use 2 or more types together.
 前記構造式(1)中のRはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。前記脂肪族炭化水素基の具体例としては、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子はフッ素原子、塩素原子、臭素原子が挙げられる。前記アリール基の具体例としては、例えば、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位が挙げられる。前記アラルキル基の具体例としては、例えば、フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。中でも、硬化物における耐熱性がより一層高くなることから、前記構造式(1)中のn及びmが共に0であることが好ましい。即ち、前記ビスナフトール化合物(a1)の反応原料として2-ナフトールを用いることが好ましい。 R 1 in the structural formula (1) is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. Specific examples of the aliphatic hydrocarbon group include, for example, methyl group, ethyl group, vinyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group and the like. Is mentioned. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Specific examples of the aryl group include, for example, a phenyl group, a naphthyl group, an anthryl group, and a structural site obtained by substituting the aliphatic hydrocarbon group, alkoxy group, halogen atom or the like on the aromatic nucleus. Specific examples of the aralkyl group include, for example, a phenylmethyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and the aromatic hydrocarbon group, the aliphatic hydrocarbon group, an alkoxy group, a halogen atom, and the like substituted. Examples include structural sites. Especially, since the heat resistance in hardened | cured material becomes still higher, it is preferable that both n and m in the said Structural formula (1) are 0. That is, 2-naphthol is preferably used as a reaction raw material for the bisnaphthol compound (a1).
 前記アルデヒド化合物は、例えば、ホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、テトラオキシメチレン、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、クロトンアルデヒド、アクロレイン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、反応性に優れることからホルムアルデヒドを用いることが好ましい。即ち、前記構造式(1)中のXはメチレン基であることが好ましい。ホルムアルデヒドは水溶液の状態であるホルマリンとして用いても、固形の状態であるパラホルムアルデヒドとして用いても、どちらでも良い。 Examples of the aldehyde compound include formaldehyde, trioxane, acetaldehyde, propionaldehyde, tetraoxymethylene, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, phenylacetaldehyde. O-tolualdehyde, salicylaldehyde, crotonaldehyde, acrolein and the like. These may be used alone or in combination of two or more. Among them, it is preferable to use formaldehyde because of excellent reactivity. That is, X in the structural formula (1) is preferably a methylene group. Formaldehyde may be used either as formalin in an aqueous solution or as paraformaldehyde in a solid state.
 2-ナフトール化合物とアルデヒド化合物との反応は、目的の前記ビスナフトール化合物(a1)を高収率で得られることから、アルカリ触媒の存在下、室温から徐々に温度を上げて、80~120℃程度の温度で行うことが好ましい。反応は必要に応じて有機溶媒中で行っても良い。 The reaction between the 2-naphthol compound and the aldehyde compound can obtain the target bisnaphthol compound (a1) in high yield, so that the temperature is gradually raised from room temperature in the presence of an alkali catalyst to 80 to 120 ° C. It is preferable to carry out at a temperature of about. You may perform reaction in an organic solvent as needed.
 2-ナフトール化合物とアルデヒド化合物との反応割合は、2-ナフトール化合物1モルに対し、アルデヒド化合物が0.45~0.55モルとなる範囲であることが好ましい。 The reaction ratio between the 2-naphthol compound and the aldehyde compound is preferably in the range of 0.45 to 0.55 mol of the aldehyde compound with respect to 1 mol of the 2-naphthol compound.
 前記アルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ピリジン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。アルカリ触媒の添加量は、反応原料の総質量に対し0.05~3質量%の範囲であることが好ましい。 Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, pyridine and the like. These may be used alone or in combination of two or more. The addition amount of the alkali catalyst is preferably in the range of 0.05 to 3% by mass with respect to the total mass of the reaction raw materials.
 前記有機溶媒は、例えば、メタノール、エタノール、プロパノール、ブタノール、乳酸エチル、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン、2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン、エチレングリコールアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。中でも、前記ビスナフトール化合物(a1)を高収率で得られることから、メタノール、エタノール、プロパノール、ブタノール等のアルコール溶媒が好ましい。有機溶剤は、反応原料の総質量に対し0.5~5倍量の範囲で用いることが好ましい。 Examples of the organic solvent include methanol, ethanol, propanol, butanol, ethyl lactate, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin, 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol Monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol Tylmethyl ether, ethylene glycol monophenyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran, ethylene glycol acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N- Examples include methylpyrrolidone, dimethylformamide, dimethyl sulfoxide and the like. These solvents may be used alone or in combination of two or more kinds. Of these, alcohol solvents such as methanol, ethanol, propanol, and butanol are preferable because the bisnaphthol compound (a1) can be obtained in a high yield. The organic solvent is preferably used in a range of 0.5 to 5 times the total mass of the reaction raw materials.
 反応終了後は、水洗や再沈殿等により反応生成物を精製することにより、より高純度のビスナフトール化合物(a1)を得ることができる。ビスナフトール化合物(a1)の純度は、硬化物における耐熱性及びドライエッチング耐性と、流動性とのバランスに優れるフェノール性水酸基含有樹脂となることから、GPCチャート図の面積比から算出される値で90%以上であることが好ましく、99%以上であることがより好ましい。 After completion of the reaction, the bisnaphthol compound (a1) with higher purity can be obtained by purifying the reaction product by washing with water or reprecipitation. The purity of the bisnaphthol compound (a1) is a value calculated from the area ratio of the GPC chart because it becomes a phenolic hydroxyl group-containing resin having a good balance between heat resistance and dry etching resistance in the cured product and fluidity. It is preferably 90% or more, and more preferably 99% or more.
 尚、本発明において、前記ビスナフトール化合物(a1)の純度や、フェノール性水酸基含有樹脂中の各成分の含有量は、下記条件のGPC測定にて得られるチャート図の面積比から算出した値である。また、水酸基含有フェノール樹脂の重量平均分子量(Mw)や、数平均分子量(Mn)、多分散度(Mw/Mn)は、下記条件のGPCにて測定した値である。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
In the present invention, the purity of the bisnaphthol compound (a1) and the content of each component in the phenolic hydroxyl group-containing resin are values calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. is there. The weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw / Mn) of the hydroxyl group-containing phenol resin are values measured by GPC under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF803” (8.0 mmФ ×) manufactured by Showa Denko KK 300 mm) + “Shodex KF804” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: Filtered 0.5% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
 前記ビスナフトール化合物(a1)とハロゲン化シアヌル(a2)との反応方法は特に限定されないが、例えば、ハロゲン化水素捕捉剤の存在下、50~100℃程度の温度条件下で反応させる方法が挙げられる。反応は必要に応じて有機溶媒中で行っても良い。 The reaction method of the bisnaphthol compound (a1) and the cyanuric halide (a2) is not particularly limited, and examples thereof include a method of reacting at a temperature of about 50 to 100 ° C. in the presence of a hydrogen halide scavenger. It is done. You may perform reaction in an organic solvent as needed.
 前記ビスナフトール化合物(a1)とハロゲン化シアヌル(a2)との反応割合は、得られるフェノール性水酸基含有樹脂の多分散度(Mw/Mn)を1.0~1.5の範囲に調整しやすいことから、両者のモル比[(a1)/(a2)]が1.5~5の範囲であることが好ましく、2.0~3.5の範囲であることがより好ましい。 The reaction ratio between the bisnaphthol compound (a1) and the cyanuric halide (a2) is easy to adjust the polydispersity (Mw / Mn) of the resulting phenolic hydroxyl group-containing resin in the range of 1.0 to 1.5. Therefore, the molar ratio [(a1) / (a2)] of the two is preferably in the range of 1.5 to 5, and more preferably in the range of 2.0 to 3.5.
 前記ハロゲン化水素捕捉剤としては、例えば、トリメチルアミンやトリエチルアミン等の3級アミン化合物、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムのアルカリ金属炭酸塩等、塩基性化合物を用いることができる。これらの添加量は、前記ハロゲン化シアヌル(a2)1モルに対し、1~2モルの範囲で用いることが好ましい。 Examples of the hydrogen halide scavenger include basic amine compounds such as tertiary amine compounds such as trimethylamine and triethylamine, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate, and alkali metal carbonates of potassium carbonate. Compounds can be used. These addition amounts are preferably used in the range of 1 to 2 mol per 1 mol of the cyanuric halide (a2).
 前記有機溶媒は、疎水性溶媒が好ましく、例えば、メチルエチルケトンやメチルイソブチルケトン等のケトン溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒等が挙げられる。有機溶剤は、反応原料の総質量に対し0.5~5倍量の範囲で用いることが好ましい。 The organic solvent is preferably a hydrophobic solvent, and examples thereof include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and aromatic hydrocarbon solvents such as benzene, toluene and xylene. The organic solvent is preferably used in a range of 0.5 to 5 times the total mass of the reaction raw materials.
 反応終了後は、反応生成物を水洗して生成した塩を除去する。本発明のフェノール性水酸基含有樹脂は、硬化物における耐熱性及びドライエッチング耐性と、流動性とのバランスに一層優れるものとなることから、数平均分子量(Mn)が500以下である成分の含有量が、GPCチャート図の面積比から算出される値で0.1~3.0%の範囲であることが好ましく、0.1~2.8%の範囲であることがより好ましく、0.3~2.0%の範囲であることが特に好ましい。数平均分子量(Mn)が500以下である成分の含有量は、水洗の回数を増やす、或いは再沈殿を行う等により調製することができる。 After completion of the reaction, the reaction product is washed with water to remove the generated salt. The phenolic hydroxyl group-containing resin of the present invention is more excellent in the balance between heat resistance and dry etching resistance in a cured product and fluidity, and therefore the content of a component having a number average molecular weight (Mn) of 500 or less. Is preferably in the range of 0.1 to 3.0%, more preferably in the range of 0.1 to 2.8%, as calculated from the area ratio of the GPC chart. A range of ˜2.0% is particularly preferred. The content of a component having a number average molecular weight (Mn) of 500 or less can be prepared by increasing the number of times of water washing or performing reprecipitation.
 本発明のフェノール性水酸基含有樹脂は、下記構造式(2) The phenolic hydroxyl group-containing resin of the present invention has the following structural formula (2)
Figure JPOXMLDOC01-appb-C000007
(式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
で表される多核体化合物(A)を必須の成分として含有することが好ましい。前記多核体化合物(A)の含有量は、硬化物における耐熱性及びドライエッチング耐性と、流動性とのバランスに一層優れるフェノール性水酸基含有樹脂となることから、GPCチャート図の面積比から算出される値で35%以上であることが好ましく、35~90%の範囲であることがより好ましく、55~80%の範囲であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000007
(In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
It is preferable to contain the polynuclear compound (A) represented by these as an essential component. The content of the polynuclear compound (A) is calculated from the area ratio of the GPC chart because it becomes a phenolic hydroxyl group-containing resin having a further excellent balance between heat resistance and dry etching resistance in the cured product and fluidity. Is preferably 35% or more, more preferably in the range of 35 to 90%, and particularly preferably in the range of 55 to 80%.
 本発明のフェノール性水酸基含有樹脂は、前記構造式(1)で表される多核体化合物(A)の他、例えば、前記構造式(1)中のフェノール性水酸基の一部乃至全部が下記構造式(3) In the phenolic hydroxyl group-containing resin of the present invention, in addition to the polynuclear compound (A) represented by the structural formula (1), for example, part or all of the phenolic hydroxyl groups in the structural formula (1) have the following structure. Formula (3)
Figure JPOXMLDOC01-appb-C000008
(式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
で表される構造部位で置換された成分等を含有しても良い。特に、硬化物における耐熱性及びドライエッチング耐性に一層優れることから、前記多核体化合物(A)と併せて、前記構造式(1)中のフェノール性水酸基の一つが前記構造式(3)で置換された化合物(B)を含有することが好ましい。このとき、フェノール性水酸基含有樹脂中の前記多核体化合物(A)と化合物(B)との合計の含有量は、GPCチャート図の面積比から算出される値で50~99%の範囲であることが好ましく、60~99%の範囲であることがより好ましく、80~99%の範囲であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000008
(In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
A component substituted with a structural moiety represented by In particular, since the cured product is more excellent in heat resistance and dry etching resistance, one of the phenolic hydroxyl groups in the structural formula (1) is substituted with the structural formula (3) together with the polynuclear compound (A). It is preferable to contain the compound (B) made. At this time, the total content of the polynuclear compound (A) and the compound (B) in the phenolic hydroxyl group-containing resin is in the range of 50 to 99% as calculated from the area ratio of the GPC chart. It is preferably in the range of 60 to 99%, more preferably in the range of 80 to 99%.
 本発明のフェノール性水酸基含有樹脂は、前記条件のGPCにて測定される重量平均分子量(Mw)が980~1,200の範囲であることが好ましい。また、本発明のフェノール性水酸基含有樹脂は多分散度(Mw/Mn)が1.01~1.30の範囲であることを特徴とするが、硬化物における耐熱性及びドライエッチング耐性と、流動性とのバランスに一層優れるフェノール性水酸基含有樹脂となることから、多分散度(Mw/Mn)が1.01~1.25の範囲であることがより好ましく、1.01~1.20の範囲であることが特に好ましい。 The phenolic hydroxyl group-containing resin of the present invention preferably has a weight average molecular weight (Mw) measured by GPC under the above conditions in the range of 980 to 1,200. The phenolic hydroxyl group-containing resin of the present invention is characterized in that the polydispersity (Mw / Mn) is in the range of 1.01 to 1.30. The polydispersity (Mw / Mn) is more preferably in the range of 1.01 to 1.25, and more preferably in the range of 1.01 to 1.20. A range is particularly preferred.
 以上詳述した本発明のフェノール性水酸基含有樹脂は、一般的なフェノール樹脂同様、塗料や接着剤、電気・電子部材、フォトレジスト、液晶配向膜等様々な用途に用いることができる。 The phenolic hydroxyl group-containing resin of the present invention described in detail above can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc., as in general phenol resins.
 本発明の硬化性組成物は、前記本発明のフェノール性水酸基含有樹脂と、硬化剤とを必須の成分として含有する。本発明の硬化性組成物は、前記本発明のフェノール性水酸基含有樹脂以外に、その他の樹脂(C)を含有しても良い。ここで用いるその他の樹脂(C)は、例えば、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体等が挙げられる。 The curable composition of the present invention contains the phenolic hydroxyl group-containing resin of the present invention and a curing agent as essential components. The curable composition of the present invention may contain other resin (C) in addition to the phenolic hydroxyl group-containing resin of the present invention. Other resins (C) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
 前記各種のノボラック樹脂は、より具体的には、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。 More specifically, the various novolak resins include phenols, alkylphenols such as cresol and xylenol, bisphenols such as phenylphenol, resorcinol, biphenyl, bisphenol A and bisphenol F, and phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with an acid catalyst.
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。 The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
 これらその他の樹脂を用いる場合、本発明のフェノール性水酸基含有樹脂とその他の樹脂(C)との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏する耐熱性に優れる効果がより顕著に発現することから、本発明のフェノール性水酸基含有樹脂100質量部に対し、その他の樹脂(C)が0.5~100質量部となる割合であることが好ましい。 When these other resins are used, the blending ratio of the phenolic hydroxyl group-containing resin of the present invention and the other resin (C) can be arbitrarily set according to the application, but the heat resistance exhibited by the present invention is excellent. Since the effect is more remarkably exhibited, the proportion of the other resin (C) is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenolic hydroxyl group-containing resin of the present invention.
 本発明で用いる前記硬化剤は、前記本発明のフェノール性水酸基含有樹脂と硬化反応を生じ得る化合物であれば特に限定なく、様々な化合物を用いることができる。また、本発明の硬化性組成物の硬化方法は特に限定されず、硬化剤の種類や、後述する硬化促進剤の種類等に応じて熱硬化や光硬化など、適当な方法で硬化させることができる。熱硬化における加熱温度や時間、光硬化における光線の種類や露光時間等の硬化条件は、硬化剤の種類や、後述する硬化促進剤の種類等に応じて適宜調節される。 The curing agent used in the present invention is not particularly limited as long as it is a compound capable of causing a curing reaction with the phenolic hydroxyl group-containing resin of the present invention, and various compounds can be used. Moreover, the curing method of the curable composition of the present invention is not particularly limited, and it can be cured by an appropriate method such as thermal curing or photocuring according to the type of curing agent or the type of curing accelerator described later. it can. Curing conditions such as the heating temperature and time in thermosetting, the type of light beam in photocuring and the exposure time are appropriately adjusted according to the type of curing agent, the type of curing accelerator described below, and the like.
 前記硬化剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。 Specific examples of the curing agent include, for example, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, resol resins, epoxy compounds, isocyanate compounds, azide compounds, compounds containing double bonds such as alkenyl ether groups, acid anhydrides, and the like. Products, oxazoline compounds and the like.
 前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。  Examples of the melamine compound include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol Examples include compounds in which 1 to 6 groups are acyloxymethylated. *
 前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。 Examples of the guanamine compound include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
 前記グリコールウリル化合物は、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。 Examples of the glycoluril compound include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
 前記ウレア化合物は、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。 Examples of the urea compound include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
 前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。 The resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound. Examples include polymers obtained by reacting under catalytic conditions.
 前記エポキシ化合物は、例えば、ジグリシジルオキシナフタレン、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。 Examples of the epoxy compound include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene- Examples include phenol addition reaction type epoxy resins, phosphorus atom-containing epoxy resins, polyglycidyl ethers of cocondensates of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, and the like. That.
 前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。 Examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
 前記アジド化合物は、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。  Examples of the azide compound include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
 前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether. , Neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane trivinyl ether Etc.
 前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。  Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
 これらの中でも、硬化性や硬化物における耐熱性に優れる硬化性組成物となることから、グリコールウリル化合物、ウレア化合物、レゾール樹脂が好ましく、グリコールウリル化合物が特に好ましい。 Among these, a glycoluril compound, a urea compound, and a resole resin are preferable, and a glycoluril compound is particularly preferable because it is a curable composition having excellent curability and heat resistance in a cured product.
 本発明の硬化性組成物における前記硬化剤の配合量は、硬化性に優れる組成物となることから、本発明のフェノール性水酸基含有樹脂とその他の樹脂(C)との合計100質量部に対し、0.5~50質量部となる割合であることが好ましい。 Since the compounding quantity of the said hardening | curing agent in the curable composition of this invention becomes a composition excellent in sclerosis | hardenability, with respect to a total of 100 mass parts of phenolic hydroxyl-containing resin of this invention, and other resin (C). The ratio is preferably 0.5 to 50 parts by mass.
 本発明の硬化性組成物は、前記硬化剤と合わせて硬化促進剤を含有しても良い。本発明の硬化性組成物を熱硬化させる場合には、硬化促進剤として、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等の酸化合物を用いることが好ましい。他方、本発明の硬化性組成物を光硬化させる場合には、硬化促進剤として光酸発生剤を用いることが好ましい。光酸発生剤は、例えば、トリス(4-メチルフェニル)スルホニウムトリフルオロメタンスルホネート、トリス(4-メチルフェニル)スルホニウムヘキサフルオロホスフェート等のスルホニウム塩化合物;ビス[4-n-アルキルフェニル]ヨードニウムヘキサフルオロホスフェート、ビス[4-n-アルキルフェニル]ヨードニウムヘキサフルオロアンチモネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4-t-ブチルフェニル)ヨードニウムビス(パーフルオロブタンスルホニル)イミド、ビス[4-n-アルキルフェニル]ヨードニウムテトラキスペンタフルオロフェニルボレート等のヨードニウム塩化合物(各化合物中のn-アルキル基は炭素数10~13のものが好ましい);2-[2-(フラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(メチルフラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-メトキシフェニル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(3,4-ジメトキシフェニル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン等のクロロメチルトリアジン化合物等が挙げられる。硬化促進剤はそれぞれ単独で用いても良いし、2種以上併用しても良い。硬化促進剤の添加量は、硬化性組成物中の樹脂成分及び硬化剤成分との合計に対し、0.1~10質量%となる範囲であることが好ましい。 The curable composition of the present invention may contain a curing accelerator together with the curing agent. When the curable composition of the present invention is thermally cured, an acid compound such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate is used as a curing accelerator. Is preferred. On the other hand, when photocuring the curable composition of the present invention, it is preferable to use a photoacid generator as a curing accelerator. Examples of the photoacid generator include sulfonium salt compounds such as tris (4-methylphenyl) sulfonium trifluoromethanesulfonate and tris (4-methylphenyl) sulfonium hexafluorophosphate; bis [4-n-alkylphenyl] iodonium hexafluorophosphate Bis [4-n-alkylphenyl] iodonium hexafluoroantimonate, bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium bis (perfluorobutanesulfonyl) imide, bis [4-n-alkylphenyl] iodonium salt compounds such as iodonium tetrakispentafluorophenylborate (n-alkyl groups in each compound are preferably those having 10 to 13 carbon atoms); 2- (furan-2-yl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (methylfuran-2-yl) ethynyl] -4,6-bis (trichloromethyl) ) -S-triazine, 2- (methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (4-methoxyphenyl) ethynyl] -4,6-bis (trichloromethyl) And chloromethyltriazine compounds such as -s-triazine and 2- [2- (3,4-dimethoxyphenyl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine. The curing accelerators may be used alone or in combination of two or more. The addition amount of the curing accelerator is preferably in the range of 0.1 to 10% by mass with respect to the total of the resin component and the curing agent component in the curable composition.
 本発明の硬化性組成物は、有機溶剤で希釈されていても良い。用いる有機溶剤は特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル、乳酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The curable composition of the present invention may be diluted with an organic solvent. The organic solvent to be used is not particularly limited. For example, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl Dialkylene glycol dialkyl ethers such as ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Tate; ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethoxyacetic acid Ethyl, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl formate, ethyl acetate, butyl acetate, methyl acetoacetate, ethyl acetoacetate, lactic acid Examples include ester compounds such as ethyl. These may be used alone or in combination of two or more.
 前述の通り、本発明のフェノール性水酸基含有樹脂は、塗料や接着剤、電気・電子部材、フォトレジスト、液晶配向膜等様々な用途に用いることができるが、中でも、流動性に優れる特徴や、硬化物における耐熱性、ドライエッチング耐性が高い特性を生かした用途として、特にレジスト用材料に適しており、一般的な層間絶縁膜の他、レジスト下層膜、レジスト永久膜等の様々なレジスト部材に用いることができる。 As described above, the phenolic hydroxyl group-containing resin of the present invention can be used for various applications such as paints, adhesives, electric / electronic members, photoresists, liquid crystal alignment films, etc. As an application that makes use of the high heat resistance and dry etching resistance of cured products, it is particularly suitable for resist materials. In addition to general interlayer insulation films, various resist members such as resist underlayer films and resist permanent films are also available. Can be used.
 本発明のフェノール性水酸基含有樹脂をレジスト材料に用いる場合、その利用方法は多種多様であり、例えば、感光剤と組み合わせる等してポジ型のフォトレジスト材料として用いる方法や、硬化剤と組み合わせて熱硬化性の樹脂材料として用いる方法、硬化剤及び感光性硬化促進剤と組み合わせてネガ型のフォトレジスト材料として用いる方法等が挙げられる。中でも、流動性に優れ、硬化物における耐熱性及びドライエッチング耐性が高い特性を生かし、硬化剤と組み合わせて熱硬化性の樹脂材料として用いる方法や、硬化剤及び感光性硬化促進剤と組み合わせてネガ型のフォトレジスト材料として用いる方法が好ましい。 When the phenolic hydroxyl group-containing resin of the present invention is used as a resist material, there are various uses. For example, a method of using it as a positive photoresist material by combining it with a photosensitizer, or a method of using heat in combination with a curing agent. Examples thereof include a method used as a curable resin material, a method used as a negative photoresist material in combination with a curing agent and a photosensitive curing accelerator. Above all, taking advantage of its excellent fluidity and high heat resistance and dry etching resistance in cured products, it can be used as a thermosetting resin material in combination with a curing agent, or in combination with a curing agent and a photosensitive curing accelerator. The method used as a mold photoresist material is preferred.
 前記感光剤は、例えば、芳香族(ポリ)ヒドロキシ化合物と、ナフトキノン-1,2-ジアジド-5-スルホン酸、ナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸等のキノンジアジド基を有するスルホン酸とのエステル化合物又はアミド化物等のキノンジアジド基を有する化合物等が挙げられる。 Examples of the photosensitive agent include aromatic (poly) hydroxy compounds and quinonediazides such as naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, and orthoanthraquinonediazidesulfonic acid. And compounds having a quinonediazide group such as an ester compound with a sulfonic acid having a group or an amidated compound.
 本発明のフェノール性水酸基含有樹脂をポジ型フォトレジスト用途に用いる場合には、本発明のフェノール性水酸基含有樹脂や、その他の樹脂(C)、感光剤、その他の添加剤を配合し、有機溶剤に溶解させ、攪拌機等を用いて混合することによりポジ型フォトレジスト用組成物を製造することができる。充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合することが好ましい。 When the phenolic hydroxyl group-containing resin of the present invention is used for positive photoresist applications, the phenolic hydroxyl group-containing resin of the present invention, other resin (C), a photosensitizer, and other additives are blended, and an organic solvent The composition for a positive photoresist can be produced by dissolving in a solvent and mixing with a stirrer or the like. When the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記ポジ型フォトレジスト用組成物用いたフォトリソグラフィーの一例としては、例えば、前記ポジ型フォトレジスト用組成物をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。次いで、レジストパターンを通して露光させた後、露光部をアルカリ現像液にて溶解することにより、レジストパターンを作製する。 As an example of photolithography using the positive photoresist composition, for example, the positive photoresist composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, Pre-bake at a temperature of 60 to 150 ° C. Subsequently, after exposing through a resist pattern, a resist pattern is produced by dissolving an exposed part with an alkali developing solution.
 本発明の硬化性組成物をレジスト下層膜用途に用いる場合には、本発明のフェノール性水酸基含有樹脂や、その他の樹脂(C)、硬化剤、硬化促進剤、その他の添加剤を配合し、有機溶剤に溶解させ、攪拌機等を用いて混合することによりレジスト下層膜用組成物を製造することができる。充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合することが好ましい。 When using the curable composition of the present invention for resist underlayer film applications, the phenolic hydroxyl group-containing resin of the present invention, other resins (C), curing agents, curing accelerators, other additives are blended, A resist underlayer film composition can be produced by dissolving in an organic solvent and mixing using a stirrer or the like. When the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記レジスト下層膜用組成物からレジスト下層膜を作成する方法の一例としては、例えば、前記レジスト下層膜用組成物をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等フォトリソグラフィーを行う対象物上に塗布し、100~200℃の温度条件下で乾燥させた後、更に250~400℃の温度条件下で加熱硬化させるなどの方法によりレジスト下層膜を形成する。次いで、この下層膜上で通常のフォトリソグラフィー操作を行ってレジストパターンを形成し、ハロゲン系プラズマガス等でドライエッチング処理することにより、多層レジスト法によるレジストパターンを形成することが出来る。 As an example of a method for preparing a resist underlayer film from the resist underlayer film composition, for example, the resist underlayer film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and the like. Then, after drying under a temperature condition of 100 to 200 ° C., a resist underlayer film is formed by a method such as heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
 本発明の硬化性組成物をレジスト永久膜用途に用いる場合には、本発明のフェノール性水酸基含有樹脂や、その他の樹脂(C)、硬化剤、硬化促進剤、その他の添加剤を配合し、有機溶剤に溶解させ、攪拌機等を用いて混合することによりレジスト下層膜用組成物を製造することができる。充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合することが好ましい。 When using the curable composition of the present invention for resist permanent film applications, the phenolic hydroxyl group-containing resin of the present invention, other resins (C), curing agents, curing accelerators, other additives are blended, A resist underlayer film composition can be produced by dissolving in an organic solvent and mixing using a stirrer or the like. When the filler or pigment is contained, it is preferably dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
 前記レジスト永久膜用組成物を用いたフォトリソグラフィーの一例としては、例えば、レジスト永久膜用組成物をシリコン基板、炭化シリコン基板、窒化ガリウム基盤等フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。次いで、レジストパターンを通して光で酸を発生させた後、110~210℃の温度条件で熱硬化させ、未露光部をアルカリ現像液にて溶解することにより、レジストパターンを形成する。前記レジスト永久膜用組成物からなる永久膜は、例えば、半導体デバイス関係ではソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、LCD、OELDに代表される薄型ディスプレイ関係では薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリックス、スペーサーなどに好適に用いることができる。 As an example of photolithography using the resist permanent film composition, for example, the resist permanent film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, a silicon carbide substrate, a gallium nitride base, and the like. Pre-bake at a temperature of 150 ° C. Next, after acid is generated by light through the resist pattern, the resist pattern is formed by thermally curing at a temperature of 110 to 210 ° C. and dissolving the unexposed portion with an alkali developer. The permanent film made of the resist permanent film composition is, for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices. Can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, black matrices, spacers and the like.
 以下に具体的な例を挙げて、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with specific examples.
 本実施例において、化合物の純度や、樹脂中の各成分の含有量は、下記条件のGPC測定にて得たチャート図の面積比から算出した値である。また、樹脂の重量平均分子量(Mw)や、数平均分子量(Mn)、多分散度(Mw/Mn)は、下記条件のGPCにて測定した値である。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1mL
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
In this example, the purity of the compound and the content of each component in the resin are values calculated from the area ratio of the chart obtained by GPC measurement under the following conditions. Moreover, the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw / Mn) of the resin are values measured by GPC under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK + “Shodex KF802” (8.0 mmФ × 300 mm) manufactured by Showa Denko KK
+ Showa Denko Co., Ltd. “Shodex KF803” (8.0 mmФ × 300 mm) + Showa Denko Co., Ltd. “Shodex KF804” (8.0 mmФ × 300 mm)
Column temperature: 40 ° C
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.30” manufactured by Tosoh Corporation
Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Sample: 0.5% by mass tetrahydrofuran solution filtered with a microfilter in terms of resin solids Injection volume: 0.1 mL
Standard sample: Monodispersed polystyrene below (Standard sample: Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
製造例1 ビスナフトール化合物(a1)の製造
 冷却管を設置した2000mlの4口フラスコに、イソプロピルアルコール600質量部、2-ナフトール576質量部、41.5%ホルマリン144質量部、48%水酸化ナトリウム水溶液10質量部を仕込んだ。撹拌しながら室温(約25℃)から100℃まで2時間かけて昇温した後、還流しながら3時間撹拌を継続した。室温まで冷却した後、析出した反応生成物をヌッチェで減圧濾別し、ケーキ状の残渣をイオン交換水500質量部で5回洗浄した。得られたケーキを80℃で72時間真空乾燥し、白色のビスナフトール化合物(a1)550質量部を得た。得られたビスナフトール化合物(a1)の数平均分子量(Mn)は351、重量平均分子量(Mw)は352、多分散度(Mw/Mn)は1.00であった。
Production Example 1 Production of bisnaphthol compound (a1) In a 2000 ml four-necked flask equipped with a cooling tube, 600 parts by mass of isopropyl alcohol, 576 parts by mass of 2-naphthol, 144 parts by mass of 41.5% formalin, 48% sodium hydroxide 10 parts by weight of an aqueous solution was charged. The temperature was raised from room temperature (about 25 ° C.) to 100 ° C. over 2 hours with stirring, and then stirring was continued for 3 hours while refluxing. After cooling to room temperature, the precipitated reaction product was filtered under reduced pressure using a Nutsche, and the cake-like residue was washed 5 times with 500 parts by mass of ion-exchanged water. The obtained cake was vacuum-dried at 80 ° C. for 72 hours to obtain 550 parts by mass of a white bisnaphthol compound (a1). The number average molecular weight (Mn) of the obtained bisnaphthol compound (a1) was 351, the weight average molecular weight (Mw) was 352, and the polydispersity (Mw / Mn) was 1.00.
実施例1 フェノール性水酸基含有樹脂(1)の製造
 冷却管を設置した取り付けた1000mlの4口フラスコに、先で得たビスナフトール化合物(a1)152質量部、塩化シアヌル31質量部、メチルエチルケトン500質量部を仕込み、撹拌して溶解した。50℃~70℃程度に加熱しながら、60分間かけてトリエチルアミン52質量部を滴下した。滴下終了後、70℃で5時間撹拌を続けた。次いで水200質量部を添加してトリエチルアミン塩酸塩を溶解させ、分液して水層を棄却した。さらに同量の水で2回水洗した後、メチルエチルケトンを蒸留で回収し、メタノール/水=10/1(質量比)の混合溶剤で再沈殿操作を2回行い、沈殿物を回収して減圧乾燥し、フェノール性水酸基含有樹脂(1)113質量部を得た。得られたフェノール性水酸基含有樹脂(1)の数平均分子量(Mn)は963、重量平均分子量(Mw)は1,050、多分散度(Mw/Mn)は1.09、数平均分子量(Mn)が500以下である成分の含有量は0.8%であった。また、フェノール性水酸基含有樹脂(1)中の多核体化合物(A)の含有量は59.2%、多核体化合物(A)と化合物(B)との合計の含有量は85.5%であった。フェノール性水酸基含有樹脂(1)のGPCチャート図を図1に示す。
Example 1 Production of phenolic hydroxyl group-containing resin (1) In a 1000 ml four-necked flask equipped with a cooling pipe, 152 parts by mass of the bisnaphthol compound (a1) obtained above, 31 parts by mass of cyanuric chloride, 500 parts by mass of methyl ethyl ketone Parts were charged and dissolved by stirring. While heating at about 50 ° C. to 70 ° C., 52 parts by mass of triethylamine was added dropwise over 60 minutes. After completion of the dropwise addition, stirring was continued at 70 ° C. for 5 hours. Next, 200 parts by mass of water was added to dissolve triethylamine hydrochloride, and the mixture was separated to discard the aqueous layer. Further, after washing twice with the same amount of water, methyl ethyl ketone is recovered by distillation, reprecipitation operation is performed twice with a mixed solvent of methanol / water = 10/1 (mass ratio), and the precipitate is recovered and dried under reduced pressure. As a result, 113 parts by mass of a phenolic hydroxyl group-containing resin (1) was obtained. The resulting phenolic hydroxyl group-containing resin (1) has a number average molecular weight (Mn) of 963, a weight average molecular weight (Mw) of 1,050, a polydispersity (Mw / Mn) of 1.09, and a number average molecular weight (Mn ) Was 500 or less, the content of the component was 0.8%. The content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (1) is 59.2%, and the total content of the polynuclear compound (A) and the compound (B) is 85.5%. there were. A GPC chart of the phenolic hydroxyl group-containing resin (1) is shown in FIG.
実施例2 フェノール性水酸基含有樹脂(2)の製造
 実施例1においてビスナフトール化合物(a1)の添加量を152質量部から114質量部に変更した以外は実施例1と同様にしてフェノール性水酸基含有樹脂(2)92質量部を得た。得られたフェノール性水酸基含有樹脂(2)の数平均分子量(Mn)は1,013、重量平均分子量(Mw)は1,252、多分散度(Mw/Mn)は1.24、数平均分子量(Mn)が500以下である成分の含有量は2.8%であった。また、フェノール性水酸基含有樹脂(2))中の多核体化合物(A)の含有量は37.9%、多核体化合物(A)と化合物(B)との合計の含有量は61.5%であった。
Example 2 Production of phenolic hydroxyl group-containing resin (2) In the same manner as in Example 1 except that the addition amount of the bisnaphthol compound (a1) in Example 1 was changed from 152 parts by mass to 114 parts by mass. 92 mass parts of resin (2) was obtained. The number average molecular weight (Mn) of the obtained phenolic hydroxyl group-containing resin (2) is 1,013, the weight average molecular weight (Mw) is 1,252, the polydispersity (Mw / Mn) is 1.24, and the number average molecular weight. Content of the component whose (Mn) is 500 or less was 2.8%. The content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (2)) is 37.9%, and the total content of the polynuclear compound (A) and the compound (B) is 61.5%. Met.
比較製造例1 フェノール性水酸基含有樹脂(1’)の製造
 温度計、冷却管、撹拌器を取り付けた1Lの4つ口フラスコに、2-ナフトール144質量部、n-ブタノール400質量部、水96質量部及び92%パラホルムアルデヒド27.7質量部を仕込んだ。続いて攪拌しながらパラトルエンスルホン酸一水和物2.4質量部を添加した。その後、攪拌しながら100℃に昇温し、2時間反応させた。反応終了後、n-ブタノール200質量部を加え、系内の溶液を洗浄水が中性を示すまで水洗後、有機層から溶媒を加熱減圧下に除去し、フェノール性水酸基含有樹脂(‘1)153g得た。フェノール性水酸基含有樹脂(1’)のGPCは数平均分子量(Mn)=955、重量平均分子量(Mw)=1,427、多分散度(Mw/Mn)=1.49、Mnが500以下の成分含有率は5.2質量%であった。
Comparative Production Example 1 Production of phenolic hydroxyl group-containing resin (1 ′) In a 1 L four-necked flask equipped with a thermometer, a condenser, and a stirrer, 144 parts by mass of 2-naphthol, 400 parts by mass of n-butanol, and 96 of water Part by weight and 27.7 parts by weight of 92% paraformaldehyde were charged. Subsequently, 2.4 parts by mass of paratoluenesulfonic acid monohydrate was added with stirring. Then, it heated up at 100 degreeC, stirring, and was made to react for 2 hours. After completion of the reaction, 200 parts by mass of n-butanol was added, and the solution in the system was washed with water until the washing water became neutral, and then the solvent was removed from the organic layer under heating and reduced pressure to obtain a phenolic hydroxyl group-containing resin ('1) 153 g was obtained. The GPC of the phenolic hydroxyl group-containing resin (1 ′) has a number average molecular weight (Mn) = 955, a weight average molecular weight (Mw) = 1,427, a polydispersity (Mw / Mn) = 1.49, and an Mn of 500 or less. The component content was 5.2% by mass.
比較製造例2 フェノール性水酸基含有樹脂(2’)の製造
 冷却管を設置した取り付けた1000mlの4口フラスコに、先で得たビスナフトール化合物(a1)152質量部、塩化シアヌル31質量部、メチルエチルケトン500質量部を仕込み、撹拌して溶解した。50℃~70℃程度に加熱しながら、60分間かけてトリエチルアミン52質量部を滴下した。滴下終了後、70℃で5時間撹拌を続けた。次いで水200質量部を添加してトリエチルアミン塩酸塩を溶解させ、分液して水層を棄却した。さらに同量の水で2回水洗した後、メチルエチルケトンを蒸留で回収し、減圧乾燥して、フェノール性水酸基含有樹脂(2’)124質量部を得た。得られたフェノール性水酸基含有樹脂(2’)の数平均分子量(Mn)は958、重量平均分子量(Mw)は1,258、多分散度(Mw/Mn)は1.31、数平均分子量(Mn)が500以下である成分の含有量は12.3%であった。また、フェノール性水酸基含有樹脂(1)中の多核体化合物(A)の含有量は51.4%、多核体化合物(A)と化合物(B)との合計の含有量は72.0%であった。
Comparative Production Example 2 Production of phenolic hydroxyl group-containing resin (2 ′) In a 1000 ml four-necked flask equipped with a cooling tube, 152 parts by mass of the previously obtained bisnaphthol compound (a1), 31 parts by mass of cyanuric chloride, methyl ethyl ketone 500 parts by mass were charged and dissolved by stirring. While heating at about 50 ° C. to 70 ° C., 52 parts by mass of triethylamine was added dropwise over 60 minutes. After completion of the dropwise addition, stirring was continued at 70 ° C. for 5 hours. Next, 200 parts by mass of water was added to dissolve triethylamine hydrochloride, and the mixture was separated to discard the aqueous layer. Further, after washing twice with the same amount of water, methyl ethyl ketone was recovered by distillation and dried under reduced pressure to obtain 124 parts by mass of a phenolic hydroxyl group-containing resin (2 ′). The obtained phenolic hydroxyl group-containing resin (2 ′) has a number average molecular weight (Mn) of 958, a weight average molecular weight (Mw) of 1,258, a polydispersity (Mw / Mn) of 1.31, and a number average molecular weight ( The content of the component having Mn) of 500 or less was 12.3%. The content of the polynuclear compound (A) in the phenolic hydroxyl group-containing resin (1) is 51.4%, and the total content of the polynuclear compound (A) and the compound (B) is 72.0%. there were.
実施例3、4及び比較例1、2
 実施例1、2及び比較製造例1、2で得たフェノール性水酸基含有樹脂について、下記の要領で評価した。結果を表1に示す。
Examples 3 and 4 and Comparative Examples 1 and 2
The phenolic hydroxyl group-containing resins obtained in Examples 1 and 2 and Comparative Production Examples 1 and 2 were evaluated in the following manner. The results are shown in Table 1.
熱硬化性組成物の製造
 フェノール性水酸基含有樹脂1.6質量部、硬化剤(東京化成工業株式会社製「1,3,4,6-テトラキス(メトキシメチル)グリコールウリル」)0.4質量部、パラトルエンスルホン酸0.1質量部をプロピレングリコールモノメチルエーテルアセテート100質量部に溶解させ、これを0.2μmのメンブレンフィルターで濾過し、熱硬化性組成物を得た。
Production of Thermosetting Composition 1.6 parts by mass of phenolic hydroxyl group-containing resin, 0.4 parts by mass of curing agent (“1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 0.1 part by mass of paratoluenesulfonic acid was dissolved in 100 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 μm membrane filter to obtain a thermosetting composition.
耐昇華性の評価
 先で得た熱硬化性組成物を5インチシリコンウェハ上にスピンコーターで塗布し、酸素濃度20容量%の環境下、110℃のホットプレート上で180秒乾燥させた。次いで、210℃で60秒間加熱硬化させ、膜厚0.3μmの硬化塗膜を得た。210℃での硬化過程前後でウェハの質量を測定し、硬化過程における質量減少量を算出して以下の基準で評価した。
A:210℃、60秒間の硬化過程における質量減少量が3%以下
B:210℃、60秒間の硬化過程における質量減少量が3%を超える
Evaluation of Sublimation Resistance The thermosetting composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 110 ° C. for 180 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it heat-hardened at 210 degreeC for 60 second, and obtained the cured coating film with a film thickness of 0.3 micrometer. The mass of the wafer was measured before and after the curing process at 210 ° C., and the mass reduction amount in the curing process was calculated and evaluated according to the following criteria.
A: The mass loss in the curing process at 210 ° C. for 60 seconds is 3% or less B: The mass loss in the curing process in 210 ° C. for 60 seconds exceeds 3%
耐熱性の評価
 先で得た熱硬化性組成物を5インチシリコンウェハ上にスピンコーターで塗布し、酸素濃度20容量%の環境下、110℃のホットプレート上で180秒乾燥させた。次いで、210℃で60秒間加熱硬化させ、膜厚0.3μmの硬化塗膜を得た。得られた硬化塗膜をウェハから削り取り、示差熱熱重量同時測定装置(TG/DTA)を用いて、下記条件で昇温させた時の240℃での質量減少量を測定し、下記基準で評価した。
[質量減少量測定条件]
測定機器:セイコーインスツールメント社製「TG/DTA 6200」
測定範囲:室温~400℃
昇温速度:10℃/分
[評価基準]
A:240℃での質量減少量が5質量%以下
B:240℃での質量減少量が5質量%を超える
Evaluation of heat resistance The thermosetting composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 110 ° C. for 180 seconds in an environment with an oxygen concentration of 20% by volume. Subsequently, it heat-hardened at 210 degreeC for 60 second, and obtained the cured coating film with a film thickness of 0.3 micrometer. The obtained cured coating film is scraped from the wafer, and the mass reduction amount at 240 ° C. when the temperature is raised under the following conditions using a differential thermothermal gravimetric simultaneous measurement device (TG / DTA) is measured according to the following criteria. evaluated.
[Mass loss measurement conditions]
Measuring instrument: “TG / DTA 6200” manufactured by Seiko Instruments Inc.
Measurement range: room temperature to 400 ° C
Temperature increase rate: 10 ° C./min [Evaluation criteria]
A: Mass reduction at 240 ° C. is 5% by mass or less B: Mass reduction at 240 ° C. exceeds 5% by mass
流動性の評価
 φ110nm、深さ300nmのホールパターンが形成された直径5インチのシリコンウェハ上に、先で得た熱硬化性組成物をスピンコーターで塗布し、酸素濃度20容量%の環境下、110℃のホットプレート上で180秒乾燥させた後、210℃で60秒間加熱硬化させ、膜厚0.3μmの硬化塗膜を得た。シリコンウェハをホールパターン線上で切断し、レーザー顕微鏡(キーエンス製株式会社「VK-X200」)で断面を観察して、硬化性組成物のホールパターンへの流入が十分であったかどうかを下記条件で評価した。
A:ホール全体が硬化物で満たされている
B:ホール全体が硬化物で満たされておらず、空隙がある場合。
Evaluation of fluidity The thermosetting composition obtained above was applied by a spin coater on a silicon wafer having a diameter of 110 nm and a hole pattern having a depth of 300 nm formed on a 5-inch diameter wafer. After drying on a hot plate at 110 ° C. for 180 seconds, heat curing was performed at 210 ° C. for 60 seconds to obtain a cured coating film having a thickness of 0.3 μm. A silicon wafer is cut on a hole pattern line, and a cross section is observed with a laser microscope (Keyence Co., Ltd. “VK-X200”) to evaluate whether the flow of the curable composition into the hole pattern was sufficient under the following conditions. did.
A: The whole hole is filled with the cured product B: The whole hole is not filled with the cured product and there is a gap.
ドライエッチング耐性の評価
 耐熱性の評価と同様にしてシリコンウェハ上に硬化塗膜を設置した。ウェハ上の硬化塗膜を、エッチング装置(神鋼精機社製の「EXAM」)を使用して、CF/Ar/O(CF:40mL/分、Ar:20mL/分、O:5mL/分 圧力:20Pa RFパワー:200W 処理時間:40秒 温度:15℃)の条件でエッチング処理した。このときのエッチング処理前後の膜厚を測定して、エッチングレートを算出し、エッチング耐性を評価した。評価基準は以下の通りである。
A:エッチングレートが150nm/分以下の場合
B:エッチングレートが150nm/分を超える場合
Evaluation of dry etching resistance A cured coating film was placed on a silicon wafer in the same manner as the evaluation of heat resistance. The cured coating film on the wafer was subjected to CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.). / Min Pressure: 20 Pa RF power: 200 W Processing time: 40 seconds Temperature: 15 ° C.) Etching was performed. The film thickness before and after the etching treatment at this time was measured, the etching rate was calculated, and the etching resistance was evaluated. The evaluation criteria are as follows.
A: When the etching rate is 150 nm / min or less B: When the etching rate exceeds 150 nm / min
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例5、6、比較例3、4
 実施例1、2及び比較製造例1、2で得たフェノール性水酸基含有樹脂について、下記の要領で評価した。結果を表2に示す。
Examples 5 and 6, Comparative Examples 3 and 4
The phenolic hydroxyl group-containing resins obtained in Examples 1 and 2 and Comparative Production Examples 1 and 2 were evaluated in the following manner. The results are shown in Table 2.
光硬化性組成物の製造
 フェノール性水酸基含有樹脂1.6質量部、硬化剤(東京化成工業株式会社製「1,3,4,6-テトラキス(メトキシメチル)グリコールウリル」)0.4質量部、光酸発生剤0.2質量部をプロピレングリコールモノメチルエーテルアセテート100質量部に溶解させ、これを0.2μmのメンブレンフィルターで濾過し、熱硬化性組成物を得た。
 光酸発生剤は株式会社三和ケミカル製「TFE-トリアジン」(2-[2-(フラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-s-トリアジン)を用いた。
Production of Photocurable Composition 1.6 parts by mass of phenolic hydroxyl group-containing resin, curing agent (“1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd.) 0.4 parts by mass Then, 0.2 parts by mass of a photoacid generator was dissolved in 100 parts by mass of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 μm membrane filter to obtain a thermosetting composition.
As a photoacid generator, “TFE-triazine” (2- [2- (furan-2-yl) ethynyl] -4,6-bis (trichloromethyl) -s-triazine) manufactured by Sanwa Chemical Co., Ltd. was used.
アルカリ現像性[ADR(nm/s)]の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。これをアルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性[ADR(nm/s)]とした。
Evaluation of Alkali Developability [ADR (nm / s)] The photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm. Dried for 60 seconds. This was immersed in an alkali developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds. The film thickness before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
光感度の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。このウェハ上にラインアンドスペースが1:1であり、ライン幅が1~10μmまで1μmごとに設定されたレジストパターン対応のマスクを密着させた後、ghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いてghi線を照射し、140℃、60秒間の条件で加熱処理を行った。次いで、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。
 ghi線露光量を30mJ/cmから5mJ/cm毎に増加させた場合の、ライン幅3μmを忠実に再現することのできる露光量(Eop露光量)を評価した。
Evaluation of Photosensitivity The photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds. A mask corresponding to a resist pattern having a line-and-space ratio of 1: 1 and a line width of 1 to 10 μm set every 1 μm is brought into close contact with this wafer, and then a ghi line lamp (“Multi Light” manufactured by USHIO INC. )) Was used for irradiation with ghi rays, and heat treatment was performed at 140 ° C. for 60 seconds. Next, the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
The exposure amount (Eop exposure amount) capable of faithfully reproducing the line width of 3 μm when the ghi line exposure amount was increased from 30 mJ / cm 2 to 5 mJ / cm 2 was evaluated.
解像度の評価
 先で得た感光性組成物を5インチシリコンウェハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。得られたウェハ上にフォトマスクを乗せ、ghi線200mJ/cmを照射し、210℃で180秒硬化させた後、アルカリ現像操作を行った。レーザーマイクロスコープ(株式会社キーエンス製「VK-X200」)を用いてパターン状態を確認し、L/S=5μmで解像できているものをA、L/S=5μmで解像できていないものをBとして評価した。
Evaluation of Resolution The photosensitive composition obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 μm, and dried on a hot plate at 110 ° C. for 60 seconds. A photomask was placed on the obtained wafer, irradiated with 200 mJ / cm 2 of ghi line, cured at 210 ° C. for 180 seconds, and then subjected to an alkali developing operation. Check the pattern state using a laser microscope (Keyence Co., Ltd. “VK-X200”) and resolve it with A / L / S = 5 μm. Was evaluated as B.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (7)

  1. 下記構造式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
    で表されるビスナフトール化合物(a1)とハロゲン化シアヌル(a2)との反応生成物であって、多分散度(Mw/Mn)が1.01~1.30の範囲であるフェノール性水酸基含有樹脂。
    The following structural formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
    A phenolic hydroxyl group having a polydispersity (Mw / Mn) in the range of 1.01 to 1.30, which is a reaction product of a bisnaphthol compound (a1) and a cyanuric halide (a2) represented by resin.
  2. 数平均分子量(Mn)が500以下である成分の含有量が、GPCチャート図の面積比から算出される値で0.1~3.0%の範囲である請求項1記載のフェノール性水酸基含有樹脂。 The phenolic hydroxyl group-containing composition according to claim 1, wherein the content of the component having a number average molecular weight (Mn) of 500 or less is in the range of 0.1 to 3.0% as calculated from the area ratio of the GPC chart. resin.
  3. 下記構造式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
    で表される多核体化合物(A)を必須の成分として含有し、当該多核体化合物(A)の含有量がGPCチャート図の面積比から算出される値で35%以上である請求項1記載のフェノール性水酸基含有樹脂。
    The following structural formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
    2. The polynuclear compound (A) represented by the formula (1) is contained as an essential component, and the content of the polynuclear compound (A) is 35% or more as calculated from the area ratio of the GPC chart. Phenolic hydroxyl group-containing resin.
  4. 下記構造式(2)
    Figure JPOXMLDOC01-appb-C000003
    (式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
    で表される多核体化合物(A)と、前記構造式(2)中のフェノール性水酸基の一つが下記構造式(3)
    Figure JPOXMLDOC01-appb-C000004
    (式中Xは炭素原子数1~14の炭化水素基を表す。Rはそれぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかである。mは0、1又は2、nは0又は1~4の整数である。)
    で置換された化合物(B)とを必須の成分として含有し、両者の合計の含有量がGPCチャート図の面積比から算出される値で50~99%の範囲である請求項1記載のフェノール性水酸基含有樹脂。
    The following structural formula (2)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
    And one of the phenolic hydroxyl groups in the structural formula (2) is represented by the following structural formula (3):
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X represents a hydrocarbon group having 1 to 14 carbon atoms. R 1 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, or an aralkyl group. M is 0. 1 or 2, n is 0 or an integer of 1 to 4)
    The phenol according to claim 1, wherein the compound (B) substituted with is an essential component, and the total content of both is in the range of 50 to 99% as calculated from the area ratio of the GPC chart. Functional hydroxyl group-containing resin.
  5. 請求項1~4の何れか一つに記載のフェノール性水酸基含有樹脂と硬化剤とを含有する硬化性組成物。 A curable composition comprising the phenolic hydroxyl group-containing resin according to any one of claims 1 to 4 and a curing agent.
  6. 請求項5記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 5.
  7. レジスト材料である請求項5記載の硬化性組成物。 6. The curable composition according to claim 5, which is a resist material.
PCT/JP2017/034062 2016-10-05 2017-09-21 Phenolic hydroxyl group-containing resin and resist material WO2018066372A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197000935A KR102432123B1 (en) 2016-10-05 2017-09-21 Phenolic hydroxyl group-containing resin and resist material
CN201780060031.8A CN109790264B (en) 2016-10-05 2017-09-21 Phenolic hydroxyl group-containing resin and resist material
JP2018506623A JP6341349B1 (en) 2016-10-05 2017-09-21 Phenolic hydroxyl group-containing resin and resist material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197203 2016-10-05
JP2016197203 2016-10-05

Publications (1)

Publication Number Publication Date
WO2018066372A1 true WO2018066372A1 (en) 2018-04-12

Family

ID=61832133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034062 WO2018066372A1 (en) 2016-10-05 2017-09-21 Phenolic hydroxyl group-containing resin and resist material

Country Status (5)

Country Link
JP (1) JP6341349B1 (en)
KR (1) KR102432123B1 (en)
CN (1) CN109790264B (en)
TW (1) TWI772327B (en)
WO (1) WO2018066372A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335569A (en) * 2000-05-31 2001-12-04 Dainippon Ink & Chem Inc Polyhydroxyl compound, method for producing the same, epoxy resin composition and its cured product
JP2002012588A (en) * 2000-06-29 2002-01-15 Dainippon Ink & Chem Inc Polyhydric hydroxy compound, method for producing the same, epoxy resin composition and its cured material
WO2005114331A1 (en) * 2004-05-21 2005-12-01 Mitsubishi Gas Chemical Company, Inc. Resist compound and resist composition
JP2009013169A (en) * 2007-06-08 2009-01-22 Nippon Kayaku Co Ltd (meth)acrylate compound, resin composition containing the same and its cured product
JP2012219090A (en) * 2011-04-14 2012-11-12 Shikoku Chem Corp Isocyanurate compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237558B2 (en) * 2003-06-30 2009-03-11 株式会社日清製粉グループ本社 Method for producing frozen bread dough
JP2007291246A (en) * 2006-04-25 2007-11-08 Mitsubishi Chemicals Corp Azo dye, composition for anisotropic dye film having the dye, anisotropic dye film, and polarizing element
JP4586039B2 (en) 2007-04-06 2010-11-24 大阪瓦斯株式会社 Phenolic resin and method for producing the same
WO2009038126A1 (en) * 2007-09-20 2009-03-26 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition containing branched polyhydroxystyrene
JP5549107B2 (en) 2009-04-20 2014-07-16 Dic株式会社 Method for producing novolac resin
WO2012017816A1 (en) * 2010-08-06 2012-02-09 Dic株式会社 Novel phenol resin, curable resin composition, cured article thereof, and printed wiring board
JP5965733B2 (en) 2012-06-12 2016-08-10 富士フイルム株式会社 Pattern forming method and electronic device manufacturing method
JP6244134B2 (en) 2013-08-02 2017-12-06 富士フイルム株式会社 Pattern forming method and electronic device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335569A (en) * 2000-05-31 2001-12-04 Dainippon Ink & Chem Inc Polyhydroxyl compound, method for producing the same, epoxy resin composition and its cured product
JP2002012588A (en) * 2000-06-29 2002-01-15 Dainippon Ink & Chem Inc Polyhydric hydroxy compound, method for producing the same, epoxy resin composition and its cured material
WO2005114331A1 (en) * 2004-05-21 2005-12-01 Mitsubishi Gas Chemical Company, Inc. Resist compound and resist composition
JP2009013169A (en) * 2007-06-08 2009-01-22 Nippon Kayaku Co Ltd (meth)acrylate compound, resin composition containing the same and its cured product
JP2012219090A (en) * 2011-04-14 2012-11-12 Shikoku Chem Corp Isocyanurate compound

Also Published As

Publication number Publication date
TW201815890A (en) 2018-05-01
KR102432123B1 (en) 2022-08-16
JPWO2018066372A1 (en) 2018-10-04
TWI772327B (en) 2022-08-01
JP6341349B1 (en) 2018-06-13
CN109790264B (en) 2021-09-21
KR20190067151A (en) 2019-06-14
CN109790264A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
JP6187731B1 (en) Phenolic hydroxyl group-containing resin and resist film
JP6341348B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP6816471B2 (en) Phenolic hydroxyl group-containing compounds and resist materials
WO2020153048A1 (en) Phenolic hydroxyl group-containing resin, photosensitive composition, resist film, curable composition, and cured product
JP5939450B1 (en) Phenolic hydroxyl group-containing resin, production method thereof, photosensitive composition, resist material, coating film, curable composition and cured product thereof, and resist underlayer film
WO2017029935A1 (en) Novolac-type phenolic hydroxy group-containing resin, and resist film
JP6274366B1 (en) Novolac resin and resist material
JP6269904B1 (en) Method for producing novolac resin
JP6341349B1 (en) Phenolic hydroxyl group-containing resin and resist material
JP6590085B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6590084B2 (en) Phenolic hydroxyl group-containing resin and resist material
JP6863077B2 (en) Dendrimer type resin and resist material
JP7380951B2 (en) Phenolic hydroxyl group-containing resin
JP6328350B2 (en) Novolac resin and resist material
JP2023022510A (en) Epoxy resin, photosensitive resin composition, resist film. curable composition, and cured film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506623

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000935

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858211

Country of ref document: EP

Kind code of ref document: A1