WO2018066055A1 - Direct current power supply system - Google Patents

Direct current power supply system Download PDF

Info

Publication number
WO2018066055A1
WO2018066055A1 PCT/JP2016/079447 JP2016079447W WO2018066055A1 WO 2018066055 A1 WO2018066055 A1 WO 2018066055A1 JP 2016079447 W JP2016079447 W JP 2016079447W WO 2018066055 A1 WO2018066055 A1 WO 2018066055A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
voltage
output
converter
Prior art date
Application number
PCT/JP2016/079447
Other languages
French (fr)
Japanese (ja)
Inventor
章利 加藤
寛昭 満処
Original Assignee
興和株式会社
東京整流器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社, 東京整流器株式会社 filed Critical 興和株式会社
Priority to PCT/JP2016/079447 priority Critical patent/WO2018066055A1/en
Priority to JP2018543506A priority patent/JP6753940B2/en
Publication of WO2018066055A1 publication Critical patent/WO2018066055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a DC power supply system.
  • Patent Document 1 an apparatus that distributes power from a power supply source and supplies power to a plurality of loads is known (see, for example, Patent Document 1).
  • the conventional technology there is a case where power is excessively received from the power supply source.
  • the power supply source is a secondary battery
  • the secondary battery may be deteriorated due to excessive power supply.
  • the power supply source is a secondary battery for driving the vehicle
  • the remaining use of the secondary battery is reduced due to excessive power supply, so that the battery is powered up and the vehicle is driven.
  • the secondary battery cannot be used as an application.
  • An object of the present invention is to provide a DC power supply system that can receive power supply from a power supply source in an appropriate range.
  • One aspect of the present invention for solving the above problem is a first input terminal connected to an external device including a main power source and an auxiliary power source that receives power supply from the main power source via a first cable;
  • a first power converter that converts and outputs a voltage of DC power supplied from the external device via one input terminal;
  • a first input voltage detector that detects an input voltage of the first power converter;
  • the DC power supply system includes a first controller that stops the first power conversion unit.
  • power can be supplied from the power supply source within an appropriate range.
  • FIG. 1st embodiment It is a figure showing typically the direct-current power feeding system in a 1st embodiment. It is a figure which shows an example of a structure of the vehicle M carrying the power supply device. It is a figure which shows the other example of a structure of the vehicle M carrying the power supply device. It is a figure which shows an example of a structure of the power supply side power converter device 100 accommodated in the 1st housing
  • FIG. 1 is a diagram schematically illustrating a DC power supply system according to the first embodiment.
  • the DC power supply system is connected to a power supply device 10 (an example of an “external device”) mounted on the vehicle M, for example.
  • the vehicle M may be an engine vehicle that uses an internal combustion engine such as a gasoline engine as a power source, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. .
  • the power supply device 10 includes a main power supply and an auxiliary power supply that receives power supply from the main power supply.
  • the main power source is an engine and an alternator, a motor that generates electric power using kinetic energy of the vehicle, an AC-DC converter, a DC-DC converter, a secondary battery for a hybrid, an electric vehicle for traveling Either or a combination of secondary batteries, and the auxiliary power source drives an on-vehicle load (as will be described later, a so-called auxiliary machine, which may include an engine starter motor if the vehicle is equipped with an engine). Secondary battery. Details will be described later.
  • the direct current power supply system includes, for example, a power supply side power conversion device 100 accommodated in the first casing 100A and a load side power conversion device 200 accommodated in the second casing 200A.
  • a load L is connected to the load-side power conversion device 200.
  • the power supply device 10 and the power supply side power conversion device 100 are connected to each other via an input cable CAa.
  • the power supply side power converter device 100 and the load side power converter device 200 are mutually connected via the intermediate
  • the input cable CAa and the intermediate cable CAb may be detachable from the power supply side power conversion device 100 and the load side power conversion device 200, or may be fixedly connected.
  • the input cable CAa is an example of a “first cable”
  • the intermediate cable CAb is an example of a “second cable”.
  • the power-side power conversion device 100 is placed and used near the vehicle M, and the load-side power conversion device 200 is placed and used near the load L.
  • the power supply side power conversion device 100 is shown as being placed outside the vehicle M, but the power supply side power conversion device 100 may be used by being placed in the vehicle interior of the vehicle M. Good.
  • one end of the input cable CAa is inserted into the engine room through a gap of a so-called half-open bonnet where the bonnet is not completely closed and locked, and is connected to the power supply device 10.
  • the other end of the input cable CAa is introduced into the vehicle interior from the window of the vehicle M, and is connected to the power supply side power converter 100 placed in the vehicle interior.
  • the intermediate cable CAb is led out of the passenger compartment from the window of the vehicle M and connected to the load-side power converter 200. Since the power-side power conversion device 100 and the load-side power conversion device 200 are connected via the intermediate cable CAb, they can be used, for example, in a state where they are separated from each other by several tens [m] to several hundred [m].
  • the power supply side power conversion device 100 boosts DC power supplied from the power supply device 10 via the input cable CAa and outputs the boosted DC power to the load side power conversion device 200.
  • the power-side power conversion device 100 is in either an operating state or a stopped state depending on whether the switch SW provided in the first housing 100A is on or off. The switch SW is turned on or off by the user, for example.
  • the load side power conversion device 200 steps down the power output from the power source side power conversion device 100 and supplies it to the load L.
  • the load L is any electronic device or electric device such as a lighting device, radio, home appliance, smart phone or mobile phone, and operates with DC power.
  • FIG. 2 is a diagram illustrating an example of the configuration of the vehicle M on which the power supply device 10 is mounted.
  • the vehicle M is assumed to be an engine vehicle exclusively using an internal combustion engine as a power source.
  • the vehicle M includes, for example, a power supply device 10 and an in-vehicle load 20.
  • the power supply device 10 includes, for example, an engine 11, an alternator 12, a secondary battery 14, and an in-vehicle DC-DC converter 16.
  • the alternator 12 is connected to the engine 11 by a shaft SF and a belt (not shown), generates AC power using the rotational force of the engine 11, and converts it into DC power by a rectifier.
  • the in-vehicle DC-DC converter 16 steps down the direct-current power (DC) output by the alternator 12 and outputs it to the secondary battery 14 or the in-vehicle load 20.
  • the DC power converted by the in-vehicle DC-DC converter 16 has a voltage of about 13.5 to 14.0 [V], for example, and about several [V] depending on the type of the alternator 12 and the usage environment. It may vary, and may be about 11 [V].
  • the secondary battery 14 is, for example, a lead storage battery.
  • the voltage (reference voltage) of the reference power of the secondary battery 14 conforms to the in-vehicle standard and is, for example, about 12 [V] or 24 [V].
  • the reference voltage of the secondary battery 14 is a voltage called a rated voltage, a nominal voltage, etc., for example.
  • the secondary battery 14 stores (charges) the DC power output by the in-vehicle DC-DC converter 16 or discharges the stored power.
  • the in-vehicle load 20 is, for example, an air conditioner, an illuminating lamp, various display devices in the vehicle interior, audio, or the like.
  • the on-vehicle load 20 may include a starter motor that starts the engine 11.
  • the in-vehicle load 20 operates using direct-current power output from the in-vehicle DC-DC converter 16 or direct-current power discharged from the secondary battery 14.
  • the input cable CAa is connected to both the in-vehicle DC-DC converter 16 and the secondary battery 14 (for example, a terminal of the secondary battery 14) via a clip (not shown) or the like. Connected. Therefore, the DC power discharged from the secondary battery 14 and the DC power output from the in-vehicle DC-DC converter 16 can be supplied to the power supply side power converter 100 via the input cable CAa.
  • FIG. 3 is a diagram illustrating another example of the configuration of the vehicle M on which the power supply device 10 is mounted.
  • the vehicle M is assumed to be a hybrid vehicle.
  • the power supply device 10 mounted on the vehicle M which is a hybrid vehicle, includes, for example, an engine 11, an on-vehicle AD-DC converter 13, a secondary battery 14, a drive motor 15, an on-vehicle DC-DC converter 16, and a hybrid device.
  • the drive motor 15 is connected to the engine 11 by a shaft SF, generates electric power using kinetic energy that decreases when the vehicle M decelerates, and outputs the generated AC power to the in-vehicle AD-DC converter 13. Further, the drive motor 15 assists the engine 11 by rotating using the electric power output by the in-vehicle AD-DC converter 13. Instead of such a mechanism, a mechanism in which a power generation motor and a drive (or regeneration) motor are separately provided may be used.
  • the in-vehicle AD-DC converter 13 converts AC power (AC) generated by the drive motor 15 into direct-current power (DC) and steps down the voltage to output to the in-vehicle DC-DC converter 16 and the hybrid secondary battery 17. .
  • the in-vehicle AD-DC converter 13 converts the DC power discharged by the hybrid secondary battery 17 into AC power, boosts it, and outputs it to the drive motor 15 via an inverter (not shown).
  • the in-vehicle DC-DC converter 16 steps down the direct-current power output from the in-vehicle AD-DC converter 13 or the hybrid secondary battery 17 and outputs it to the secondary battery 14 or the in-vehicle load 20.
  • the hybrid secondary battery 17 is, for example, a lithium ion battery, a nickel metal hydride battery, or a redox flow battery, and has a higher output voltage than the output voltage of the secondary battery 14 and the capacity of the secondary battery 14. It has a capacity several times to several tens of times larger than that.
  • FIG. 4 is a diagram illustrating an example of the configuration of the power supply side power converter 100 housed in the first housing 100A.
  • the first casing 100A is provided with a power supply side input terminal ILa, a power supply side output terminal OLa, and a switch SW. From the outside of the first casing 100A, a power supply side input is provided.
  • the input cable CAa is connected to the terminal ILa, and the intermediate cable CAb is connected to the power supply side output terminal OLa.
  • the power supply side input terminal ILa is an example of a “first input terminal”.
  • the power supply side power converter 100 includes, for example, an input side voltage detection unit 101, an input side current detection unit 102, an output side current detection unit 103, an output side voltage detection unit 104, a diode 105, and a power supply side DC ⁇ .
  • a DC converter 110, a controller (hereinafter referred to as CTL) DC-DC converter 120, and a power supply controller 130 are provided.
  • the input side voltage detection unit 101 is an example of a “first input voltage detection unit”
  • the output side voltage detection unit 104 is an example of a “first output voltage detection unit”.
  • the power supply side DC-DC converter 110 is an example of a “first power converter”
  • the power supply controller 130 is an example of a “first controller”.
  • the power supply side DC-DC converter 110 boosts the DC power supplied via the power supply side input terminal ILa and outputs it to the power supply side output terminal OLa side.
  • the power supply side DC-DC converter 110 boosts the DC power supplied via the input terminal connected to the power supply side input terminal ILa by switching the switching element with a desired duty ratio.
  • the power supply side DC-DC converter 110 boosts the DC power to about 60 [V].
  • the input side voltage detection unit 101 and the input side current detection unit 102 are provided on the input side of the power source side DC-DC converter 110.
  • the input side voltage detection unit 101 detects a voltage (input voltage Vin) between the positive electrode and the negative electrode of the input terminal of the power supply side DC-DC converter 110.
  • the input-side current detection unit 102 detects a current (input current Iin) that flows through the positive electrode of the input terminal of the power supply-side DC-DC converter 110.
  • the output side current detection unit 103, the output side voltage detection unit 104, and the diode 105 are provided on the output side of the power source side DC-DC converter 110.
  • the output-side current detection unit 103 detects a current (output current Iout) that flows through the positive electrode of the output terminal of the power supply-side DC-DC converter 110.
  • the output side voltage detection unit 104 detects a voltage (output voltage Vout) between the positive electrode and the negative electrode of the output terminal of the power supply side DC-DC converter 110.
  • These detection units on the input side and output side output a detection signal indicating the detection value to the power supply controller 130.
  • the diode 105 prevents a current from flowing from the power supply side output terminal OLa to the output terminal of the power supply side DC-DC converter 110.
  • the CTL DC-DC converter 120 converts DC power output via the power supply side input terminal ILa into power usable by the power supply controller 130 and outputs the power to the power supply controller 130.
  • the power supply side controller 130 is realized by a processor such as a CPU (Central Processing Unit) executing a program stored in a program memory (not shown). Further, some or all of the functions of the power supply controller 130 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). It may be realized by cooperation of software and hardware.
  • the power supply controller 130 operates by being supplied with power converted by the CTL DC-DC converter 120.
  • the power supply side controller 130 controls the power supply side DC-DC converter 110 based on detection signals output by various detection units.
  • the flow of processing by the power supply controller 130 will be described with reference to flowcharts.
  • FIG. 5 is a flowchart showing an example of the flow of processing by the power supply side controller 130 in the first embodiment.
  • the power supply controller 130 may stop the power supply DC-DC converter 110 as an interrupt process.
  • the power supply controller 130 reads the program from the program memory and starts processing (step S100).
  • the power supply side controller 130 refers to the detection signal output by the input side voltage detection unit 101 and determines whether or not the input voltage Vin is within the first range (step S102).
  • the first range is a voltage range based on 12 [V], which is one of the reference voltages of the secondary battery 14.
  • the first range is a voltage range from the lower limit value 9 [V] to the upper limit value 14 [V] with 12 [V] as a reference.
  • the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 as the first parameter (step S104).
  • the control parameters include, for example, a lower limit voltage VinL and an upper limit voltage VinH for the input voltage Vin, an upper limit current IinH for the input current Iin, a boost ratio ⁇ , a lower limit voltage VoutL and an upper limit voltage VoutH for the output voltage Vout, an upper limit current IoutH for the output current Iout, and the like. including.
  • the lower limit voltage VinL is, for example, a value near the minimum value of the voltage supplied by the “main power supply” such as the alternator 12 and set to a value slightly lower than the reference voltage of the secondary battery 14 that is the “auxiliary power supply”. Is done.
  • the minimum value of the voltage supplied from the “main power supply” is, for example, the minimum value of the power generation voltage of the alternator 12 (for example, 11.0 [V]). This value is also a value less than the reference voltage of the secondary battery 14.
  • the lower limit voltage VinL is set, for example, within a fluctuation range of about 5% on the plus side and the minus side with reference to the minimum value of the voltage supplied by the “main power supply”.
  • the lower limit voltage VinL is set within the range of 10.45 to 11.55 [V].
  • the fluctuation range may be only on the minus side or only on the plus side of the minimum value of the voltage supplied by the “main power supply”.
  • the upper limit voltage VinH is, for example, a value slightly lower than the upper limit voltage in the first range.
  • the slightly lower value is, for example, a value that is about 10% lower than the value to be compared.
  • the upper limit voltage of the first range is 14 [V]
  • the upper limit voltage VinH is set to 12 [V], 13 [V], etc., which is about 10% lower.
  • the upper limit current IinH is set to, for example, a current value that is about half of the maximum current that can be discharged by the secondary battery 14.
  • the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH are set based on the DC power that is expected to be output from the power source side DC-DC converter 110. Specifically, the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH are set based on the boost ratio ⁇ in the power supply side DC-DC converter 110.
  • the power supply side controller 130 sets the lower limit voltage VinL value for the input voltage Vin to about 11 [V], the upper limit voltage VinH value to about 13 [V], and the upper limit current IinH value to 28 [ A] and the step-up ratio ⁇ are set to about 5 times.
  • the power supply side controller 130 sets the step-up ratio ⁇ to about 5 times, the upper limit voltage VoutH with respect to the output voltage Vout is further set as a first parameter to a value exceeding 5 times the assumed input voltage Vin ( For example, the output voltage Vout after boosting is set to a value that is about 10% higher), the lower limit voltage VoutL with respect to the output voltage Vout is set to a value that is about a few [V] lower than the upper limit voltage VoutH, and The input current Iin is set to a value less than 1/5 times.
  • the power supply side controller 130 further determines whether or not the input voltage Vin is within the second range (step S106).
  • the second range is a voltage range based on 24 [V], which is one of the reference voltages of the secondary battery 14.
  • the second range is a voltage range from the lower limit value 18 [V] to the upper limit value 30 [V] with 24 [V] as a reference.
  • the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 to the second parameter (step S108). For example, as the second parameter, the power supply side controller 130 sets the lower limit voltage VinL value for the input voltage Vin to about 22 [V], the upper limit voltage VinH value to about 26 [V], and the upper limit current IinH value to the input current Iin of 14 [V]. A] and the step-up ratio ⁇ are set to about 2.5 times. Further, since the power supply side controller 130 sets the step-up ratio ⁇ to about 2.5 times, the upper limit voltage VoutH with respect to the output voltage Vout is further set to 2.5 times the assumed input voltage Vin as the second parameter.
  • the lower limit voltage VoutL with respect to the output voltage Vout is set to a value that is about [V] smaller than the upper limit voltage VoutH, and the upper limit current IoutH with respect to the output current Iout is 1 ⁇ 2 of the expected input current Iin. Set to a value less than 5 times.
  • the power supply side controller 130 stops the power supply side DC-DC converter 110 (step S110). Thereby, the process of this flowchart is complete
  • the power supply side controller 130 refers to the control parameter and determines whether or not the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH (step S112).
  • the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110. As described above, the power supply side controller 130 stops the power supply side DC-DC converter 110 when the input voltage Vin is at least equal to or lower than the lower limit voltage VinL.
  • the reference voltage is a value close to the voltage when the secondary battery 14 is fully charged, the discharge power voltage becomes lower than the lower limit voltage VinL by slightly discharging. Therefore, even if the DC power supply system continues to receive power supply from the power supply device 10, the secondary battery 14 is maintained in a state of maintaining a certain charge rate. As a result, the secondary battery 14 can be prevented from being in an overdischarged state (so-called “battery exhausted state”), and power can be supplied from the power supply device 10 within an appropriate range.
  • the generated voltage of the “main power supply” may vary.
  • the lower limit voltage VinL is set to a voltage (for example, about 11.5 [V]) that is significantly higher than the minimum value of the power generation voltage of the “main power supply” without considering the variation in voltage
  • the input voltage Vin Becomes lower than the lower limit voltage VinL, and the power source side DC-DC converter 110 is stopped, and the power supply to the load L may be frequently stopped.
  • the power supply side DC-DC converter 110 receives power supply from the “main power supply” while allowing variation in voltage. Is suppressed from being stopped frequently, and it is easy to stably supply power to the load L.
  • the power supply side controller 130 refers to the detection signal output by the input side current detection unit 102 and the control parameter, and inputs It is determined whether or not the current Iin exceeds the upper limit current IinH (step S114).
  • the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110. Thereby, it is possible to suppress a large amount of electric power from being instantaneously discharged by the secondary battery 14.
  • the power supply side controller 130 controls the power supply side DC-DC converter 110 to boost the DC power at the boost ratio ⁇ indicated by the control parameter (step S116).
  • the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104 and the control parameter, and determines whether or not the output voltage Vout exceeds the lower limit voltage VoutL and is lower than the upper limit voltage VoutH. Is determined (step S118). When the output voltage Vout is equal to or lower than the lower limit voltage VoutL, or when the output voltage Vout is equal to or higher than the upper limit voltage VoutH, the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110.
  • the power supply side controller 130 refers to the detection signal output by the output side current detection unit 103 and the control parameter to output It is determined whether or not the current Iout exceeds the upper limit current IoutH (step S120). When the output current Iout does not exceed the upper limit current IoutH, the power supply controller 130 proceeds to S112.
  • the power supply controller 130 proceeds to S110 and stops the power supply DC-DC converter 110.
  • the power supply side DC-DC converter 110 can be stopped.
  • the power supply side DC-DC converter 110 can be stopped.
  • the safety of the DC power supply system can be improved.
  • FIG. 6 is a diagram illustrating an example of the configuration of the load-side power conversion device 200 housed in the second housing 200A.
  • the second housing 200A is provided with a load side input terminal ILb and a plurality of load side output terminals OLb.
  • An intermediate cable CAb (not shown) is connected to the load side input terminal ILb from the outside of the second casing 200A, and a cable for connecting to the load L (not shown) is connected to the load side output terminal OLb. Connected.
  • the plurality of load-side output terminals OLb are USB terminals to which, for example, a USB (Universal Serial Bus) standard cable can be connected, and are maintained at an output voltage of about 5 [V] and an output current of about 1 [A].
  • USB Universal Serial Bus
  • about 40 load side output terminals OLb may be provided.
  • the load side power converter 200 includes, for example, load side DC-DC converters 210-1 and 210-2. In the illustrated example, two load-side DC-DC converters are provided, but the load-side DC-DC converter is changed to one or three or more according to the number of load-side output terminals OLb provided in the second casing 200A. May be. Hereinafter, these load side DC-DC converters will be described as simply the load side DC-DC converter 210 without distinction.
  • the load side DC-DC converter 210 is an example of a “second power converter”.
  • the load side DC-DC converter 210 steps down the DC power supplied via the load side input terminal ILb and outputs it to the load side output terminal OLb side.
  • the power supply side DC-DC converter 110 performs step-down by switching the switching element with a desired duty ratio with respect to DC power supplied via an input terminal connected to the load side input terminal ILb.
  • the load side DC-DC converter 210 has a voltage range of about 36 [V] to about 72 [V] (hereinafter referred to as a first voltage) in order to correspond to the voltage of the DC power boosted by the power source side DC-DC converter 110.
  • DC power within the range (referred to as “3 range”) is stepped down and converted to 5 [V] of the USB standard.
  • the load side DC-DC converter 210 outputs the stepped down DC power to each load side output terminal OLb.
  • the input cable CAa is connected to the power supply device 10 including the main power source such as the alternator 12 and the secondary battery 14 as an auxiliary power source that receives power supply from the main power source.
  • a power supply side input terminal ILa connected via the power supply side
  • a power supply side DC-DC converter 110 that converts and outputs the voltage of the DC power supplied from the power supply device 10 via the power supply side input terminal ILa
  • a power supply side DC -The input side voltage detection unit 101 that detects the input voltage Vin of the DC converter 110 and the power source side controller 130 that stops the power source side DC-DC converter 110 when the input voltage Vin is equal to or lower than the lower limit voltage VinL
  • the power can be supplied from the power supply device 10 within such a range.
  • the power supply device 10 when the power supply device 10 is mounted on the engine vehicle, the power output to the power supply side DC-DC converter 110 is monitored to prevent the secondary battery 14 from being overdischarged. be able to. Similarly, when the power supply apparatus 10 is mounted on a hybrid vehicle, the secondary battery 14 and the hybrid secondary battery 17 can be prevented from being overdischarged.
  • the “main power source” mounted on the vehicle M by using the DC power supply system for example, when the supply of system power from the power plant is stopped in the event of a disaster, the “main power source” mounted on the vehicle M by using the DC power supply system.
  • the electric power of the “auxiliary power source” can be temporarily used to operate electronic devices around the victim.
  • the power supplied from the “main power supply” or “auxiliary power supply” is converted into a USB standard voltage having a relatively low voltage.
  • a small amount of equipment can be used for a long time. As a result, it becomes easy to acquire disaster information and the like, and in particular, convenience for the victim can be improved.
  • the second embodiment is different from the first embodiment in that a third input terminal ILa # is provided in the first housing 100A.
  • a third input terminal ILa # is provided in the first housing 100A.
  • another power supply having a reference voltage larger than the reference voltage of the “auxiliary power supply” included in the power supply device 10 is connected to the third input terminal ILa # via a cable or the like.
  • the other power source is, for example, a secondary battery mounted on a special vehicle such as a forklift, and outputs DC power of about 48 [V].
  • a secondary battery mounted on a special vehicle such as a forklift
  • FIG. 7 is a diagram illustrating another example of the configuration of the power-source-side power conversion device 100 housed in the first casing 100A.
  • the first casing 100A is provided with a power supply side input terminal ILa, a power supply side output terminal OLa, a switch SW, and a third input terminal ILa #.
  • an input cable CAa is connected to the power supply side input terminal ILa
  • an intermediate cable CAb is connected to the power supply side output terminal OLa.
  • the third input terminal ILa # is connected to a cable connected to the output terminal of the secondary battery of another power source.
  • the DC power output from the secondary battery of the other power source is output to the output side of the power source side DC-DC converter 110 via the third input terminal ILa #.
  • FIG. 8 is a flowchart showing an example of the flow of processing by the power supply side controller 130 in the second embodiment.
  • the power supply controller 130 may stop the power supply DC-DC converter 110 as an interrupt process.
  • the power supply side controller 130 reads the program from the program memory and starts processing (step S300).
  • the power supply side controller 130 refers to the detection signal output by the input side voltage detection unit 101 and determines whether or not the input voltage Vin is within the first range (step S302).
  • the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 as the first parameter (step S304).
  • the power supply side controller 130 further determines whether or not the input voltage Vin is within the second range (step S306).
  • the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 to the second parameter (step S308).
  • the power supply side controller 130 stops the power supply side DC-DC converter 110 (step S310). Thereby, the process of this flowchart is complete
  • the power supply controller 130 refers to the detection signal output by the output current detector 103 and determines whether or not another power supply is connected to the third input terminal ILa # (step S312). For example, when the output current Iout becomes larger than a predetermined value, the power supply controller 130 determines that another power supply is connected to the third input terminal ILa #.
  • the predetermined value is, for example, an average value of the output voltage detected by the output-side current detection unit 103 over a predetermined period.
  • the power supply controller 130 is connected to another power supply to the third input terminal ILa # based on the state of the switch. It may be determined whether or not.
  • the power supply controller 130 changes the boost ratio ⁇ , the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH among the set control parameters (step S314).
  • the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104, specifies the voltage of the DC power output from the secondary battery that is another power supply, and specifies The step-up ratio ⁇ is changed based on the applied voltage. Specifically, the power supply side controller 130 increases the output voltage Vout to be boosted to about 3.5 times in the first parameter so that the output voltage Vout of the secondary battery as the other power supply becomes smaller than 48 [V].
  • the step-up ratio ⁇ is changed to about 1.8 times. Further, the power supply controller 130 also changes the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH in accordance with the change of the step-up ratio ⁇ . Thereby, it is possible to suppress a current from flowing into the power supply side power conversion device 100 from another power supply connected to the third input terminal ILa #.
  • the power supply side controller 130 refers to the control parameter and determines whether or not the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH (step S316).
  • the power supply side controller 130 proceeds to the processing of S310 and stops the power supply side DC-DC converter 110.
  • the power supply side controller 130 refers to the detection signal output by the input side current detection unit 102 and the control parameter, and inputs It is determined whether or not the current Iin exceeds the upper limit current IinH (step S318).
  • the power supply controller 130 proceeds to S310 and stops the power supply DC-DC converter 110.
  • the power supply side controller 130 controls the power supply side DC-DC converter 110 to boost the DC power by the boost ratio ⁇ indicated by the control parameter (step S320).
  • the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104 and the control parameter, and determines whether or not the output voltage Vout exceeds the lower limit voltage VoutL and is lower than the upper limit voltage VoutH. Is determined (step S322). When the output voltage Vout is equal to or lower than the lower limit voltage VoutL, or when the output voltage Vout is equal to or higher than the upper limit voltage VoutH, the power supply side controller 130 proceeds to the process of S310 and stops the power supply side DC-DC converter 110.
  • the power supply side controller 130 refers to the detection signal output by the output side current detection unit 103 and the control parameter to output It is determined whether or not the current Iout exceeds the upper limit current IoutH (step S324). If the output current Iout does not exceed the upper limit current IoutH, the power supply controller 130 proceeds to the process of S312.
  • the power supply side controller 130 proceeds to the process of S310 and stops the power supply side DC-DC converter 110. Thereby, the process of this flowchart is complete
  • power can be supplied from the power supply device 10 in an appropriate range, as in the first embodiment described above.
  • the third input terminal ILa # is further provided, various types of output voltages of 12 [V], 24 [V], 48 [V] are provided. It can correspond to a power supply source, and power can be supplied to the load L for a longer time. As a result, the convenience for the user can be further improved.
  • the DC power supply system has been described as receiving power supply from the power supply device 10 mounted on the vehicle M, but is not limited to this, for example, receiving power supply from a fuel cell installed in a house. Also good.
  • SYMBOLS 10 Power supply device, 11 ... Engine, 12 ... Alternator, 13 ... In-vehicle AC-DC converter, 14 ... Secondary battery, 15 ... Drive motor, 16 ... In-vehicle DC-DC converter, 17 ... Secondary battery for hybrid, SF ... Shaft, 20 ... in-vehicle load, 100 ... power source side power converter, 101 ... input side voltage detection unit, 102 ... input side current detection unit, 103 ... output side current detection unit, 104 ... output side voltage detection unit, 105 ... diode DESCRIPTION OF SYMBOLS 110 ... Power source side DC-DC converter, 120 ... CTL DC-DC converter, 130 ...
  • Power source side controller 100A ... 1st housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This direct current power supply system is provided with: a first input terminal connected to, via a first cable, an external device, which includes a main power supply and an auxiliary power supply that receives power supply from the main power supply; a first power conversion unit, which converts the voltage of the direct current power supplied from the external device via the first input terminal, and outputs the power; a first input voltage detection unit that detects the input voltage of the first power conversion unit; and a first controller that stops the first power conversion unit in the cases where the input voltage detected by the first input voltage detection unit is equal to or lower than a lower limit voltage.

Description

直流給電システムDC power supply system
 本発明は、直流給電システムに関する。 The present invention relates to a DC power supply system.
 従来、電力供給源からの電力を分配して、複数の負荷に電力を供給する装置が知られている(例えば、特許文献1参照)。 Conventionally, an apparatus that distributes power from a power supply source and supplies power to a plurality of loads is known (see, for example, Patent Document 1).
特開2014-192994号公報JP 2014-192994 A
 しかしながら、従来の技術では、電力供給源から電力の供給を過度に受けてしまう場合があった。例えば、電力供給源が二次電池である場合、過度な電力供給によって二次電池が劣化するおそれがあった。 However, in the conventional technology, there is a case where power is excessively received from the power supply source. For example, when the power supply source is a secondary battery, the secondary battery may be deteriorated due to excessive power supply.
 また、電力供給源が車両を駆動させるための二次電池である場合、過度な電力供給によって二次電池の残量が少なくなって、いわゆるバッテリ上がりの状態となり、車両を駆動させるという本来の使用用途として二次電池を利用することができなくなってしまう場合があった。 In addition, when the power supply source is a secondary battery for driving the vehicle, the remaining use of the secondary battery is reduced due to excessive power supply, so that the battery is powered up and the vehicle is driven. In some cases, the secondary battery cannot be used as an application.
 本発明の目的は、適切な範囲で電力供給源から電力の供給を受けることができる直流給電システムを提供することである。 An object of the present invention is to provide a DC power supply system that can receive power supply from a power supply source in an appropriate range.
 上記問題を解決する本発明の一態様は、主電源と、前記主電源から電力供給を受ける補助電源と、を含む外部装置に第1ケーブルを介して接続される第1入力端子と、前記第1入力端子を介して前記外部装置から供給される直流電力の電圧を変換して出力する第1電力変換部と、前記第1電力変換部の入力電圧を検出する第1入力電圧検出部と、前記第1入力電圧検出部により検出された入力電圧が下限電圧以下である場合、前記第1電力変換部を停止させる第1コントローラとを備える直流給電システムである。 One aspect of the present invention for solving the above problem is a first input terminal connected to an external device including a main power source and an auxiliary power source that receives power supply from the main power source via a first cable; A first power converter that converts and outputs a voltage of DC power supplied from the external device via one input terminal; a first input voltage detector that detects an input voltage of the first power converter; When the input voltage detected by the first input voltage detection unit is equal to or lower than a lower limit voltage, the DC power supply system includes a first controller that stops the first power conversion unit.
 本発明によれば、適切な範囲で電力供給源から電力の供給を受けることができる。 According to the present invention, power can be supplied from the power supply source within an appropriate range.
第1の実施形態における直流給電システムを模式的に示す図である。It is a figure showing typically the direct-current power feeding system in a 1st embodiment. 電源装置10を搭載する車両Mの構成の一例を示す図である。It is a figure which shows an example of a structure of the vehicle M carrying the power supply device. 電源装置10を搭載する車両Mの構成の他の例を示す図である。It is a figure which shows the other example of a structure of the vehicle M carrying the power supply device. 第1の筐体100Aに収容された電源側電力変換装置100の構成の一例を示す図である。It is a figure which shows an example of a structure of the power supply side power converter device 100 accommodated in the 1st housing | casing 100A. 第1の実施形態における電源側コントローラ130による処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process by the power supply side controller 130 in 1st Embodiment. 第2の筐体200Aに収容された負荷側電力変換装置200の構成の一例を示す図である。It is a figure which shows an example of a structure of the load side power converter device 200 accommodated in 2nd housing | casing 200A. 第1の筐体100Aに収容された電源側電力変換装置100の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the power supply side power converter device 100 accommodated in 1st housing | casing 100A. 第2の実施形態における電源側コントローラ130による処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process by the power supply side controller 130 in 2nd Embodiment.
 以下、本発明の一実施形態における直流給電システムについて図面を参照して説明する。 Hereinafter, a DC power supply system according to an embodiment of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 [全体構成]
 図1は、第1の実施形態における直流給電システムを模式的に示す図である。図示のように、直流給電システムは、例えば、車両Mに搭載された電源装置10(「外部装置」の一例)に接続される。車両Mは、ガソリンエンジンなどの内燃機関を動力源としたエンジン車両であってもよいし、ハイブリッド自動車であってもよいし、電気自動車であってもよいし、燃料電池車であってもよい。
<First Embodiment>
[overall structure]
FIG. 1 is a diagram schematically illustrating a DC power supply system according to the first embodiment. As illustrated, the DC power supply system is connected to a power supply device 10 (an example of an “external device”) mounted on the vehicle M, for example. The vehicle M may be an engine vehicle that uses an internal combustion engine such as a gasoline engine as a power source, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. .
 電源装置10は、主電源と、主電源から電力供給を受ける補助電源とを含む。車両Mに搭載された構成としては、主電源は、エンジンおよびオルタネータ、車両の運動エネルギーを用いて発電するモータ、AC‐DCコンバータ、DC‐DCコンバータ、ハイブリッド用二次電池、電気自動車の走行用二次電池のいずれか又は組み合わせであり、補助電源は、車載負荷(後述するように、いわゆる補機であり、エンジンを搭載する車両であればエンジンのスタータモータを含んでよい)を駆動するための二次電池である。詳しくは、後述する。 The power supply device 10 includes a main power supply and an auxiliary power supply that receives power supply from the main power supply. As a configuration mounted on the vehicle M, the main power source is an engine and an alternator, a motor that generates electric power using kinetic energy of the vehicle, an AC-DC converter, a DC-DC converter, a secondary battery for a hybrid, an electric vehicle for traveling Either or a combination of secondary batteries, and the auxiliary power source drives an on-vehicle load (as will be described later, a so-called auxiliary machine, which may include an engine starter motor if the vehicle is equipped with an engine). Secondary battery. Details will be described later.
 直流給電システムは、例えば、第1の筐体100Aに収容された電源側電力変換装置100と、第2の筐体200Aに収容された負荷側電力変換装置200とを備える。負荷側電力変換装置200には、負荷Lが接続される。電源装置10と電源側電力変換装置100は、入力ケーブルCAaを介して互いに接続される。また、電源側電力変換装置100と負荷側電力変換装置200は、中間ケーブルCAbを介して互いに接続される。入力ケーブルCAaおよび中間ケーブルCAbは、電源側電力変換装置100や負荷側電力変換装置200に対して着脱可能なものであってもよいし、固定的に接続されたものであってもよい。入力ケーブルCAaは、「第1ケーブル」の一例であり、中間ケーブルCAbは、「第2ケーブル」の一例である。 The direct current power supply system includes, for example, a power supply side power conversion device 100 accommodated in the first casing 100A and a load side power conversion device 200 accommodated in the second casing 200A. A load L is connected to the load-side power conversion device 200. The power supply device 10 and the power supply side power conversion device 100 are connected to each other via an input cable CAa. Moreover, the power supply side power converter device 100 and the load side power converter device 200 are mutually connected via the intermediate | middle cable CAb. The input cable CAa and the intermediate cable CAb may be detachable from the power supply side power conversion device 100 and the load side power conversion device 200, or may be fixedly connected. The input cable CAa is an example of a “first cable”, and the intermediate cable CAb is an example of a “second cable”.
 例えば、電源側電力変換装置100は、車両Mの近傍に載置されて使用され、負荷側電力変換装置200は、負荷Lの近傍に載置されて使用される。図1では便宜上、電源側電力変換装置100が車両Mの外部に載置されているように示しているが、電源側電力変換装置100は、車両Mの車室内に置かれて使用されてもよい。この場合、入力ケーブルCAaの一方の端部は、ボンネットが完全に閉まっておらずロックされていない、いわゆる半開き状態のボンネットの隙間からエンジンルーム内部に挿入されて、電源装置10と接続される。入力ケーブルCAaの他方の端部は、車両Mの窓から車室内に導入され、車室内に置かれた電源側電力変換装置100と接続される。また、中間ケーブルCAbも同様に、車両Mの窓から車室外に導出され、負荷側電力変換装置200と接続される。電源側電力変換装置100および負荷側電力変換装置200は、中間ケーブルCAbを介して接続されるため、例えば、互いに十数[m]~数百[m]離れた状態で使用することができる。 For example, the power-side power conversion device 100 is placed and used near the vehicle M, and the load-side power conversion device 200 is placed and used near the load L. In FIG. 1, for the sake of convenience, the power supply side power conversion device 100 is shown as being placed outside the vehicle M, but the power supply side power conversion device 100 may be used by being placed in the vehicle interior of the vehicle M. Good. In this case, one end of the input cable CAa is inserted into the engine room through a gap of a so-called half-open bonnet where the bonnet is not completely closed and locked, and is connected to the power supply device 10. The other end of the input cable CAa is introduced into the vehicle interior from the window of the vehicle M, and is connected to the power supply side power converter 100 placed in the vehicle interior. Similarly, the intermediate cable CAb is led out of the passenger compartment from the window of the vehicle M and connected to the load-side power converter 200. Since the power-side power conversion device 100 and the load-side power conversion device 200 are connected via the intermediate cable CAb, they can be used, for example, in a state where they are separated from each other by several tens [m] to several hundred [m].
 電源側電力変換装置100は、電源装置10から入力ケーブルCAaを介して供給される直流電力を昇圧して、負荷側電力変換装置200に出力する。また、電源側電力変換装置100は、第1の筐体100Aに設けられたスイッチSWのオン・オフに応じて、作動状態または停止状態のいずれかの状態となる。スイッチSWは、例えば、利用者によってオンまたはオフに操作される。 The power supply side power conversion device 100 boosts DC power supplied from the power supply device 10 via the input cable CAa and outputs the boosted DC power to the load side power conversion device 200. In addition, the power-side power conversion device 100 is in either an operating state or a stopped state depending on whether the switch SW provided in the first housing 100A is on or off. The switch SW is turned on or off by the user, for example.
 負荷側電力変換装置200は、電源側電力変換装置100により出力される電力を降圧して、負荷Lに供給する。 The load side power conversion device 200 steps down the power output from the power source side power conversion device 100 and supplies it to the load L.
 負荷Lは、照明機器、ラジオ、家電機器、スマートフォンや携帯電話などの任意の電子機器または電動機器であり、直流電力によって動作する。 The load L is any electronic device or electric device such as a lighting device, radio, home appliance, smart phone or mobile phone, and operates with DC power.
 [電源装置]
 図2は、電源装置10を搭載する車両Mの構成の一例を示す図である。図示の例では、車両Mは、専ら内燃機関を動力源としたエンジン車両であるものとしている。車両Mは、例えば、電源装置10と、車載負荷20とを備える。電源装置10は、例えば、エンジン11と、オルタネータ12と、二次電池14と、車載DC‐DCコンバータ16とを備える。
[Power supply]
FIG. 2 is a diagram illustrating an example of the configuration of the vehicle M on which the power supply device 10 is mounted. In the illustrated example, the vehicle M is assumed to be an engine vehicle exclusively using an internal combustion engine as a power source. The vehicle M includes, for example, a power supply device 10 and an in-vehicle load 20. The power supply device 10 includes, for example, an engine 11, an alternator 12, a secondary battery 14, and an in-vehicle DC-DC converter 16.
 例えば、オルタネータ12は、シャフトSFおよび図示しないベルトによってエンジン11と連結されており、エンジン11の回転力を利用して交流電力を発電し、整流器によって直流電力に変換する。 For example, the alternator 12 is connected to the engine 11 by a shaft SF and a belt (not shown), generates AC power using the rotational force of the engine 11, and converts it into DC power by a rectifier.
 車載DC‐DCコンバータ16は、オルタネータ12により出力された直流電力(DC)を降圧して、二次電池14や車載負荷20に出力する。車載DC‐DCコンバータ16により変換された直流電力は、例えば、13.5~14.0[V]程度の電圧を有しており、オルタネータ12の種類や使用環境に応じて数[V]程度変動する場合があり、11[V]程度となる場合がある。 The in-vehicle DC-DC converter 16 steps down the direct-current power (DC) output by the alternator 12 and outputs it to the secondary battery 14 or the in-vehicle load 20. The DC power converted by the in-vehicle DC-DC converter 16 has a voltage of about 13.5 to 14.0 [V], for example, and about several [V] depending on the type of the alternator 12 and the usage environment. It may vary, and may be about 11 [V].
 二次電池14は、例えば、鉛蓄電池である。二次電池14の基準電力の電圧(基準電圧)は、車載規格に適合したものであり、例えば、12[V]や24[V]程度である。二次電池14の基準電圧は、例えば、定格電圧、公称電圧などと称される電圧である。二次電池14は、車載DC‐DCコンバータ16により出力された直流電力を蓄電(充電)したり、蓄電した電力を放電したりする。 The secondary battery 14 is, for example, a lead storage battery. The voltage (reference voltage) of the reference power of the secondary battery 14 conforms to the in-vehicle standard and is, for example, about 12 [V] or 24 [V]. The reference voltage of the secondary battery 14 is a voltage called a rated voltage, a nominal voltage, etc., for example. The secondary battery 14 stores (charges) the DC power output by the in-vehicle DC-DC converter 16 or discharges the stored power.
 車載負荷20は、例えば、エアコン、照明灯、車両室内の各種表示装置、オーディオなどである。車載負荷20は、エンジン11を始動させるスタータモータを含んでもよい。車載負荷20は、車載DC‐DCコンバータ16により出力された直流電力や、二次電池14により放電された直流電力を利用して動作する。 The in-vehicle load 20 is, for example, an air conditioner, an illuminating lamp, various display devices in the vehicle interior, audio, or the like. The on-vehicle load 20 may include a starter motor that starts the engine 11. The in-vehicle load 20 operates using direct-current power output from the in-vehicle DC-DC converter 16 or direct-current power discharged from the secondary battery 14.
 図示のように、入力ケーブルCAaは、車載DC‐DCコンバータ16と二次電池14との双方に接続された箇所(例えば、二次電池14の端子)に、クリップ(不図示)等を介して接続される。従って、電源側電力変換装置100には、二次電池14により放電された直流電力や、車載DC‐DCコンバータ16により出力された直流電力が、入力ケーブルCAaを介して供給され得る。 As shown in the figure, the input cable CAa is connected to both the in-vehicle DC-DC converter 16 and the secondary battery 14 (for example, a terminal of the secondary battery 14) via a clip (not shown) or the like. Connected. Therefore, the DC power discharged from the secondary battery 14 and the DC power output from the in-vehicle DC-DC converter 16 can be supplied to the power supply side power converter 100 via the input cable CAa.
 図3は、電源装置10を搭載する車両Mの構成の他の例を示す図である。図示の例では、車両Mは、ハイブリッド自動車であるものとしている。ハイブリッド自動車である車両Mに搭載される電源装置10は、例えば、エンジン11と、車載AD‐DCコンバータ13と、二次電池14と、駆動モータ15と、車載DC‐DCコンバータ16と、ハイブリッド用二次電池17とを備える。 FIG. 3 is a diagram illustrating another example of the configuration of the vehicle M on which the power supply device 10 is mounted. In the illustrated example, the vehicle M is assumed to be a hybrid vehicle. The power supply device 10 mounted on the vehicle M, which is a hybrid vehicle, includes, for example, an engine 11, an on-vehicle AD-DC converter 13, a secondary battery 14, a drive motor 15, an on-vehicle DC-DC converter 16, and a hybrid device. A secondary battery 17.
 駆動モータ15は、シャフトSFによってエンジン11と連結されており、車両Mが減速する際に減少する運動エネルギーを用いて発電し、発電した交流電力を車載AD‐DCコンバータ13に出力する。また、駆動モータ15は、車載AD‐DCコンバータ13により出力された電力を利用して回転することで、エンジン11をアシストする。なお、このような仕組みに変えて、発電用モータと駆動用(或いは回生用)モータとを別々に備える仕組みであってもよい。 The drive motor 15 is connected to the engine 11 by a shaft SF, generates electric power using kinetic energy that decreases when the vehicle M decelerates, and outputs the generated AC power to the in-vehicle AD-DC converter 13. Further, the drive motor 15 assists the engine 11 by rotating using the electric power output by the in-vehicle AD-DC converter 13. Instead of such a mechanism, a mechanism in which a power generation motor and a drive (or regeneration) motor are separately provided may be used.
 車載AD‐DCコンバータ13は、駆動モータ15により発電された交流電力(AC)を直流電力(DC)に変換すると共に降圧して、車載DC‐DCコンバータ16やハイブリッド用二次電池17に出力する。また、車載AD‐DCコンバータ13は、ハイブリッド用二次電池17により放電された直流電力を交流電力に変換すると共に昇圧して、図示しないインバータなどを介して駆動モータ15に出力する。 The in-vehicle AD-DC converter 13 converts AC power (AC) generated by the drive motor 15 into direct-current power (DC) and steps down the voltage to output to the in-vehicle DC-DC converter 16 and the hybrid secondary battery 17. . The in-vehicle AD-DC converter 13 converts the DC power discharged by the hybrid secondary battery 17 into AC power, boosts it, and outputs it to the drive motor 15 via an inverter (not shown).
 車載DC‐DCコンバータ16は、車載AD‐DCコンバータ13またはハイブリッド用二次電池17により出力された直流電力を降圧して、二次電池14や車載負荷20に出力する。 The in-vehicle DC-DC converter 16 steps down the direct-current power output from the in-vehicle AD-DC converter 13 or the hybrid secondary battery 17 and outputs it to the secondary battery 14 or the in-vehicle load 20.
 ハイブリッド用二次電池17は、例えば、リチウムイオン電池、ニッケル水素電池、レドックス・フロー電池などであり、二次電池14の出力電圧に比して高い出力電圧を有すると共に、二次電池14の容量に比して数倍から数十倍程度大きい容量を有する。 The hybrid secondary battery 17 is, for example, a lithium ion battery, a nickel metal hydride battery, or a redox flow battery, and has a higher output voltage than the output voltage of the secondary battery 14 and the capacity of the secondary battery 14. It has a capacity several times to several tens of times larger than that.
 [電源側電力変換装置]
 図4は、第1の筐体100Aに収容された電源側電力変換装置100の構成の一例を示す図である。図示のように、第1の筐体100Aには、電源側入力端子ILaと、電源側出力端子OLaと、スイッチSWとが設けられており、第1の筐体100Aの外部から、電源側入力端子ILaに入力ケーブルCAaが接続されると共に、電源側出力端子OLaに中間ケーブルCAbが接続される。電源側入力端子ILaは、「第1入力端子」の一例である。
[Power-side power converter]
FIG. 4 is a diagram illustrating an example of the configuration of the power supply side power converter 100 housed in the first housing 100A. As shown in the figure, the first casing 100A is provided with a power supply side input terminal ILa, a power supply side output terminal OLa, and a switch SW. From the outside of the first casing 100A, a power supply side input is provided. The input cable CAa is connected to the terminal ILa, and the intermediate cable CAb is connected to the power supply side output terminal OLa. The power supply side input terminal ILa is an example of a “first input terminal”.
 電源側電力変換装置100は、例えば、入力側電圧検出部101と、入力側電流検出部102と、出力側電流検出部103と、出力側電圧検出部104と、ダイオード105と、電源側DC‐DCコンバータ110と、コントローラ用(以下、CTL用)DC‐DCコンバータ120と、電源側コントローラ130とを備える。入力側電圧検出部101は、「第1入力電圧検出部」の一例であり、出力側電圧検出部104は、「第1出力電圧検出部」の一例である。また、電源側DC‐DCコンバータ110は、「第1電力変換部」の一例であり、電源側コントローラ130は、「第1コントローラ」の一例である。 The power supply side power converter 100 includes, for example, an input side voltage detection unit 101, an input side current detection unit 102, an output side current detection unit 103, an output side voltage detection unit 104, a diode 105, and a power supply side DC−. A DC converter 110, a controller (hereinafter referred to as CTL) DC-DC converter 120, and a power supply controller 130 are provided. The input side voltage detection unit 101 is an example of a “first input voltage detection unit”, and the output side voltage detection unit 104 is an example of a “first output voltage detection unit”. The power supply side DC-DC converter 110 is an example of a “first power converter”, and the power supply controller 130 is an example of a “first controller”.
 電源側DC‐DCコンバータ110は、電源側入力端子ILaを介して供給された直流電力を昇圧して、電源側出力端子OLaの側に出力する。例えば、電源側DC‐DCコンバータ110は、電源側入力端子ILaと接続される入力端子を介して供給される直流電力に対して、所望のデューティ比でスイッチング素子をスイッチングすることによって、昇圧を行う。例えば、電源側DC‐DCコンバータ110は、直流電力を60[V]程度に昇圧する。 The power supply side DC-DC converter 110 boosts the DC power supplied via the power supply side input terminal ILa and outputs it to the power supply side output terminal OLa side. For example, the power supply side DC-DC converter 110 boosts the DC power supplied via the input terminal connected to the power supply side input terminal ILa by switching the switching element with a desired duty ratio. . For example, the power supply side DC-DC converter 110 boosts the DC power to about 60 [V].
 入力側電圧検出部101および入力側電流検出部102は、電源側DC‐DCコンバータ110の入力側に設けられる。入力側電圧検出部101は、電源側DC‐DCコンバータ110の入力端子の正極と負極の間の電圧(入力電圧Vin)を検出する。入力側電流検出部102は、電源側DC‐DCコンバータ110の入力端子の正極に流れる電流(入力電流Iin)を検出する。 The input side voltage detection unit 101 and the input side current detection unit 102 are provided on the input side of the power source side DC-DC converter 110. The input side voltage detection unit 101 detects a voltage (input voltage Vin) between the positive electrode and the negative electrode of the input terminal of the power supply side DC-DC converter 110. The input-side current detection unit 102 detects a current (input current Iin) that flows through the positive electrode of the input terminal of the power supply-side DC-DC converter 110.
 出力側電流検出部103、出力側電圧検出部104およびダイオード105は、電源側DC‐DCコンバータ110の出力側に設けられる。出力側電流検出部103は、電源側DC‐DCコンバータ110の出力端子の正極に流れる電流(出力電流Iout)を検出する。出力側電圧検出部104は、電源側DC‐DCコンバータ110の出力端子の正極と負極の間の電圧(出力電圧Vout)を検出する。入力側および出力側のこれらの検出部は、検出値を示す検出信号を電源側コントローラ130に出力する。ダイオード105は、電源側出力端子OLaから電源側DC‐DCコンバータ110の出力端子に電流が流れるのを阻止する。 The output side current detection unit 103, the output side voltage detection unit 104, and the diode 105 are provided on the output side of the power source side DC-DC converter 110. The output-side current detection unit 103 detects a current (output current Iout) that flows through the positive electrode of the output terminal of the power supply-side DC-DC converter 110. The output side voltage detection unit 104 detects a voltage (output voltage Vout) between the positive electrode and the negative electrode of the output terminal of the power supply side DC-DC converter 110. These detection units on the input side and output side output a detection signal indicating the detection value to the power supply controller 130. The diode 105 prevents a current from flowing from the power supply side output terminal OLa to the output terminal of the power supply side DC-DC converter 110.
 CTL用DC‐DCコンバータ120は、電源側入力端子ILaを介して出力される直流電力を、電源側コントローラ130が利用可能な電力に変換して電源側コントローラ130に出力する。 The CTL DC-DC converter 120 converts DC power output via the power supply side input terminal ILa into power usable by the power supply controller 130 and outputs the power to the power supply controller 130.
 電源側コントローラ130は、例えばCPU(Central Processing Unit)等のプロセッサがプログラムメモリ(不図示)に格納されたプログラムを実行することにより実現される。また、電源側コントローラ130の機能の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)等のハードウェアにより実現されてもよいし、ソフトウェアとハードウェアとの協働により実現されてもよい。電源側コントローラ130は、CTL用DC‐DCコンバータ120によって変換された電力が供給されることで動作する。 The power supply side controller 130 is realized by a processor such as a CPU (Central Processing Unit) executing a program stored in a program memory (not shown). Further, some or all of the functions of the power supply controller 130 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). It may be realized by cooperation of software and hardware. The power supply controller 130 operates by being supplied with power converted by the CTL DC-DC converter 120.
 電源側コントローラ130は、各種検出部により出力された検出信号に基づいて、電源側DC‐DCコンバータ110を制御する。以下、電源側コントローラ130による処理の流れについてフローチャートを用いて説明する。 The power supply side controller 130 controls the power supply side DC-DC converter 110 based on detection signals output by various detection units. Hereinafter, the flow of processing by the power supply controller 130 will be described with reference to flowcharts.
 図5は、第1の実施形態における電源側コントローラ130による処理の流れの一例を示すフローチャートである。なお、本フローチャートの処理中にスイッチSWがオフに操作された場合、電源側コントローラ130は、割込み処理として、電源側DC‐DCコンバータ110を停止させてよい。 FIG. 5 is a flowchart showing an example of the flow of processing by the power supply side controller 130 in the first embodiment. When the switch SW is turned off during the process of this flowchart, the power supply controller 130 may stop the power supply DC-DC converter 110 as an interrupt process.
 まず、電源側コントローラ130は、CTL用DC‐DCコンバータ120から電力が供給されると、プログラムメモリからプログラムを読み出して処理を開始する(ステップS100)。 First, when power is supplied from the CTL DC-DC converter 120, the power supply controller 130 reads the program from the program memory and starts processing (step S100).
 次に、電源側コントローラ130は、入力側電圧検出部101により出力された検出信号を参照して、入力電圧Vinが第1範囲内であるか否かを判定する(ステップS102)。第1範囲とは、二次電池14の基準電圧の一つである12[V]を基準とした電圧範囲である。例えば、第1範囲は、12[V]を基準とした下限値9[V]から上限値14[V]程度の電圧範囲である。 Next, the power supply side controller 130 refers to the detection signal output by the input side voltage detection unit 101 and determines whether or not the input voltage Vin is within the first range (step S102). The first range is a voltage range based on 12 [V], which is one of the reference voltages of the secondary battery 14. For example, the first range is a voltage range from the lower limit value 9 [V] to the upper limit value 14 [V] with 12 [V] as a reference.
 電源側コントローラ130は、入力電圧Vinが第1範囲内である場合、電源側DC‐DCコンバータ110を制御する際の制御パラメータを、第1パラメータにセットする(ステップS104)。制御パラメータは、例えば、入力電圧Vinに対する下限電圧VinLおよび上限電圧VinH、入力電流Iinに対する上限電流IinH、昇圧比α、出力電圧Voutに対する下限電圧VoutLおよび上限電圧VoutH、出力電流Ioutに対する上限電流IoutHなどを含む。 When the input voltage Vin is within the first range, the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 as the first parameter (step S104). The control parameters include, for example, a lower limit voltage VinL and an upper limit voltage VinH for the input voltage Vin, an upper limit current IinH for the input current Iin, a boost ratio α, a lower limit voltage VoutL and an upper limit voltage VoutH for the output voltage Vout, an upper limit current IoutH for the output current Iout, and the like. including.
 下限電圧VinLは、例えば、オルタネータ12などの「主電源」が供給する電圧の最小値付近の値であり、且つ、「補助電源」である二次電池14の基準電圧よりも若干低い値に設定される。「主電源」が供給する電圧の最小値とは、例えばオルタネータ12の発電電圧の最小値(例えば11.0[V])である。また、この値は、二次電池14の基準電圧未満の値でもある。下限電圧VinLは、例えば、「主電源」が供給する電圧の最小値を基準に、プラス側とマイナス側に5%程度の変動幅の範囲内で設定される。例えば、「主電源」が供給する電圧の最小値が11[V]である場合、下限電圧VinLは、10.45~11.55[V]の範囲内で設定される。なお、当該変動幅は、「主電源」が供給する電圧の最小値のマイナス側のみ、またはプラス側のみであってもよい。 The lower limit voltage VinL is, for example, a value near the minimum value of the voltage supplied by the “main power supply” such as the alternator 12 and set to a value slightly lower than the reference voltage of the secondary battery 14 that is the “auxiliary power supply”. Is done. The minimum value of the voltage supplied from the “main power supply” is, for example, the minimum value of the power generation voltage of the alternator 12 (for example, 11.0 [V]). This value is also a value less than the reference voltage of the secondary battery 14. The lower limit voltage VinL is set, for example, within a fluctuation range of about 5% on the plus side and the minus side with reference to the minimum value of the voltage supplied by the “main power supply”. For example, when the minimum value of the voltage supplied from the “main power supply” is 11 [V], the lower limit voltage VinL is set within the range of 10.45 to 11.55 [V]. The fluctuation range may be only on the minus side or only on the plus side of the minimum value of the voltage supplied by the “main power supply”.
 上限電圧VinHは、例えば、第1範囲の上限電圧よりも若干低い値である。若干低い値とは、例えば、比較対象の値に比して1割程度低い値のことである。例えば、第1範囲の上限電圧を14[V]とした場合、上限電圧VinHは、1割程度低い12[V]、13[V]などに設定される。上限電流IinHは、例えば、二次電池14が放電可能な最大電流の半分程度の電流値に設定される。 The upper limit voltage VinH is, for example, a value slightly lower than the upper limit voltage in the first range. The slightly lower value is, for example, a value that is about 10% lower than the value to be compared. For example, when the upper limit voltage of the first range is 14 [V], the upper limit voltage VinH is set to 12 [V], 13 [V], etc., which is about 10% lower. The upper limit current IinH is set to, for example, a current value that is about half of the maximum current that can be discharged by the secondary battery 14.
 下限電圧VoutL、上限電圧VoutHおよび上限電流IoutHは、電源側DC‐DCコンバータ110から出力されることが想定される直流電力に基づいて設定される。具体的には、下限電圧VoutL、上限電圧VoutHおよび上限電流IoutHは、電源側DC‐DCコンバータ110における昇圧比αに基づいて設定される。 The lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH are set based on the DC power that is expected to be output from the power source side DC-DC converter 110. Specifically, the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH are set based on the boost ratio α in the power supply side DC-DC converter 110.
 例えば、電源側コントローラ130は、第1パラメータとして、入力電圧Vinに対する下限電圧VinL値を11[V]程度、上限電圧VinH値を13[V]程度、入力電流Iinに対する上限電流IinH値を28[A]程度、昇圧比αを5倍程度に設定する。また、電源側コントローラ130は、昇圧比αを5倍程度に設定したことから、第1パラメータとして、更に、出力電圧Voutに対する上限電圧VoutHを、想定される入力電圧Vinの5倍を超える値(例えば昇圧後の出力電圧Voutの1割増し程度の値)に設定し、出力電圧Voutに対する下限電圧VoutLを、上限電圧VoutHの数[V]程度小さい値に設定し、出力電流Ioutに対する上限電流IoutHを、想定される入力電流Iinの1/5倍未満の値に設定する。 For example, the power supply side controller 130 sets the lower limit voltage VinL value for the input voltage Vin to about 11 [V], the upper limit voltage VinH value to about 13 [V], and the upper limit current IinH value to 28 [ A] and the step-up ratio α are set to about 5 times. Further, since the power supply side controller 130 sets the step-up ratio α to about 5 times, the upper limit voltage VoutH with respect to the output voltage Vout is further set as a first parameter to a value exceeding 5 times the assumed input voltage Vin ( For example, the output voltage Vout after boosting is set to a value that is about 10% higher), the lower limit voltage VoutL with respect to the output voltage Vout is set to a value that is about a few [V] lower than the upper limit voltage VoutH, and The input current Iin is set to a value less than 1/5 times.
 一方、電源側コントローラ130は、入力電圧Vinが第1範囲内でない場合、更に入力電圧Vinが第2範囲内であるか否かを判定する(ステップS106)。第2範囲とは、二次電池14の基準電圧の一つである24[V]を基準とした電圧範囲である。例えば、第2範囲は、24[V]を基準とした下限値18[V]から上限値30[V]程度の電圧範囲である。 On the other hand, if the input voltage Vin is not within the first range, the power supply side controller 130 further determines whether or not the input voltage Vin is within the second range (step S106). The second range is a voltage range based on 24 [V], which is one of the reference voltages of the secondary battery 14. For example, the second range is a voltage range from the lower limit value 18 [V] to the upper limit value 30 [V] with 24 [V] as a reference.
 電源側コントローラ130は、入力電圧Vinが第2範囲内である場合、電源側DC‐DCコンバータ110を制御する際の制御パラメータを、第2パラメータにセットする(ステップS108)。例えば、電源側コントローラ130は、第2パラメータとして、入力電圧Vinに対する下限電圧VinL値を22[V]程度、上限電圧VinH値を26[V]程度、入力電流Iinに対する上限電流IinH値を14[A]程度、昇圧比αを2.5倍程度に設定する。また、電源側コントローラ130は、昇圧比αを2.5倍程度に設定したことから、第2パラメータとして、更に、出力電圧Voutに対する上限電圧VoutHを、想定される入力電圧Vinの2.5倍を超える値に設定し、出力電圧Voutに対する下限電圧VoutLを、上限電圧VoutHの数[V]程度小さい値に設定し、出力電流Ioutに対する上限電流IoutHを、想定される入力電流Iinの1/2.5倍未満の値に設定する。 When the input voltage Vin is within the second range, the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 to the second parameter (step S108). For example, as the second parameter, the power supply side controller 130 sets the lower limit voltage VinL value for the input voltage Vin to about 22 [V], the upper limit voltage VinH value to about 26 [V], and the upper limit current IinH value to the input current Iin of 14 [V]. A] and the step-up ratio α are set to about 2.5 times. Further, since the power supply side controller 130 sets the step-up ratio α to about 2.5 times, the upper limit voltage VoutH with respect to the output voltage Vout is further set to 2.5 times the assumed input voltage Vin as the second parameter. The lower limit voltage VoutL with respect to the output voltage Vout is set to a value that is about [V] smaller than the upper limit voltage VoutH, and the upper limit current IoutH with respect to the output current Iout is ½ of the expected input current Iin. Set to a value less than 5 times.
 一方、電源側コントローラ130は、入力電圧Vinが第2範囲内でない場合、電源側DC‐DCコンバータ110を停止させる(ステップS110)。これによって、本フローチャートの処理が終了する。 On the other hand, when the input voltage Vin is not within the second range, the power supply side controller 130 stops the power supply side DC-DC converter 110 (step S110). Thereby, the process of this flowchart is complete | finished.
 次に、電源側コントローラ130は、制御パラメータを参照して、入力電圧Vinが下限電圧VinLを超え、且つ上限電圧VinH未満であるか否かを判定する(ステップS112)。 Next, the power supply side controller 130 refers to the control parameter and determines whether or not the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH (step S112).
 電源側コントローラ130は、入力電圧Vinが、下限電圧VinL以下である場合、または上限電圧VinH以上である場合、S110の処理に移り、電源側DC‐DCコンバータ110を停止させる。このように、電源側コントローラ130は、入力電圧Vinが、少なくとも下限電圧VinL以下である場合、電源側DC‐DCコンバータ110を停止させる。 When the input voltage Vin is equal to or lower than the lower limit voltage VinL, or when the input voltage Vin is equal to or higher than the upper limit voltage VinH, the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110. As described above, the power supply side controller 130 stops the power supply side DC-DC converter 110 when the input voltage Vin is at least equal to or lower than the lower limit voltage VinL.
 ここで、基準電圧は、二次電池14の満充電のときの電圧に近い値であるため、少し放電することで、放電電力の電圧が下限電圧VinLを下回ることになる。従って、直流給電システムが電源装置10から電力供給を受け続けても、二次電池14は、ある程度の充電率を保った状態で維持される。この結果、二次電池14が過放電の状態(いわゆるバッテリ上がりの状態)となるのを防止することができ、適切な範囲で電源装置10から電力の供給を受けることができる。 Here, since the reference voltage is a value close to the voltage when the secondary battery 14 is fully charged, the discharge power voltage becomes lower than the lower limit voltage VinL by slightly discharging. Therefore, even if the DC power supply system continues to receive power supply from the power supply device 10, the secondary battery 14 is maintained in a state of maintaining a certain charge rate. As a result, the secondary battery 14 can be prevented from being in an overdischarged state (so-called “battery exhausted state”), and power can be supplied from the power supply device 10 within an appropriate range.
 また、電源装置10から直流電力が電源側入力端子ILaに出力されている際に、「主電源」の発電電圧にばらつきが生じる場合がある。この場合、下限電圧VinLを、電圧のばらつきを考慮せずに「主電源」の発電電圧の最小値よりも有意に高い電圧(例えば11.5[V]程度)に設定した場合、入力電圧Vinが下限電圧VinL以下となって、電源側DC‐DCコンバータ110が停止することになり、負荷Lへの電力供給が頻繁に停止してしまう場合がある。 Further, when DC power is output from the power supply device 10 to the power supply side input terminal ILa, the generated voltage of the “main power supply” may vary. In this case, when the lower limit voltage VinL is set to a voltage (for example, about 11.5 [V]) that is significantly higher than the minimum value of the power generation voltage of the “main power supply” without considering the variation in voltage, the input voltage Vin Becomes lower than the lower limit voltage VinL, and the power source side DC-DC converter 110 is stopped, and the power supply to the load L may be frequently stopped.
 これに対して、下限電圧VinLを「主電源」の発電電圧の最小値に設定することで、電圧のばらつきを許容して「主電源」から電力供給を受けるため、電源側DC‐DCコンバータ110が頻繁に停止されるのを抑制し、負荷Lに安定して電力を供給しやすくなる。 On the other hand, by setting the lower limit voltage VinL to the minimum value of the power generation voltage of the “main power supply”, the power supply side DC-DC converter 110 receives power supply from the “main power supply” while allowing variation in voltage. Is suppressed from being stopped frequently, and it is easy to stably supply power to the load L.
 一方、電源側コントローラ130は、入力電圧Vinが、下限電圧VinLを超え、且つ上限電圧VinH未満である場合、入力側電流検出部102により出力された検出信号と、制御パラメータを参照して、入力電流Iinが上限電流IinHを超えるか否かを判定する(ステップS114)。 On the other hand, when the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH, the power supply side controller 130 refers to the detection signal output by the input side current detection unit 102 and the control parameter, and inputs It is determined whether or not the current Iin exceeds the upper limit current IinH (step S114).
 電源側コントローラ130は、入力電流Iinが上限電流IinHを超える場合、S110の処理に移り、電源側DC‐DCコンバータ110を停止させる。これによって、二次電池14により瞬間的に大きな電力が放電されるのを抑制することができる。 When the input current Iin exceeds the upper limit current IinH, the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110. Thereby, it is possible to suppress a large amount of electric power from being instantaneously discharged by the secondary battery 14.
 一方、電源側コントローラ130は、入力電流Iinが上限電流IinHを超えない場合、電源側DC‐DCコンバータ110を制御して、制御パラメータが示す昇圧比αで直流電力を昇圧させる(ステップS116)。 On the other hand, when the input current Iin does not exceed the upper limit current IinH, the power supply side controller 130 controls the power supply side DC-DC converter 110 to boost the DC power at the boost ratio α indicated by the control parameter (step S116).
 次に、電源側コントローラ130は、出力側電圧検出部104により出力された検出信号と、制御パラメータとを参照して、出力電圧Voutが下限電圧VoutLを超え、且つ上限電圧VoutH未満であるか否かを判定する(ステップS118)。電源側コントローラ130は、出力電圧Voutが下限電圧VoutL以下である場合、または上限電圧VoutH以上である場合、S110の処理に移り、電源側DC‐DCコンバータ110を停止させる。 Next, the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104 and the control parameter, and determines whether or not the output voltage Vout exceeds the lower limit voltage VoutL and is lower than the upper limit voltage VoutH. Is determined (step S118). When the output voltage Vout is equal to or lower than the lower limit voltage VoutL, or when the output voltage Vout is equal to or higher than the upper limit voltage VoutH, the power supply side controller 130 proceeds to S110 and stops the power supply side DC-DC converter 110.
 一方、電源側コントローラ130は、出力電圧Voutが下限電圧VoutLを超え、且つ上限電圧VoutH未満である場合、出力側電流検出部103により出力された検出信号と、制御パラメータとを参照して、出力電流Ioutが上限電流IoutHを超えるか否かを判定する(ステップS120)。電源側コントローラ130は、出力電流Ioutが上限電流IoutHを超えない場合、S112の処理に移行する。 On the other hand, when the output voltage Vout exceeds the lower limit voltage VoutL and lower than the upper limit voltage VoutH, the power supply side controller 130 refers to the detection signal output by the output side current detection unit 103 and the control parameter to output It is determined whether or not the current Iout exceeds the upper limit current IoutH (step S120). When the output current Iout does not exceed the upper limit current IoutH, the power supply controller 130 proceeds to S112.
 一方、電源側コントローラ130は、出力電流Ioutが上限電流IoutHを超えた場合、S110の処理に移り、電源側DC‐DCコンバータ110を停止させる。これによって、例えば、電源側DC‐DCコンバータ110の故障などによって異常な直流電力が出力される場合に、電源側DC‐DCコンバータ110を停止させることができる。また、電力線が短絡などして、電源側DC‐DCコンバータ110の出力側に、電源側DC‐DCコンバータ110の出力電圧Voutよりも高電圧な電力が漏洩した場合、あるいは他の電源が接続された場合に出力電圧Voutが、下限電圧VoutL以下または上限電圧VoutH以上となるため、電源側DC‐DCコンバータ110を停止させることができる。この結果、直流給電システムの安全性を高めることができる。 On the other hand, when the output current Iout exceeds the upper limit current IoutH, the power supply controller 130 proceeds to S110 and stops the power supply DC-DC converter 110. Thereby, for example, when abnormal DC power is output due to a failure of the power supply side DC-DC converter 110, the power supply side DC-DC converter 110 can be stopped. In addition, when the power line is short-circuited and the like, power higher than the output voltage Vout of the power supply side DC-DC converter 110 leaks to the output side of the power supply side DC-DC converter 110, or another power supply is connected. In this case, since the output voltage Vout becomes equal to or lower than the lower limit voltage VoutL or higher than the upper limit voltage VoutH, the power supply side DC-DC converter 110 can be stopped. As a result, the safety of the DC power supply system can be improved.
 [負荷側電力変換装置]
 図6は、第2の筐体200Aに収容された負荷側電力変換装置200の構成の一例を示す図である。図示のように、第2の筐体200Aには、負荷側入力端子ILbと、複数の負荷側出力端子OLbとが設けられている。また、負荷側入力端子ILbには、第2の筐体200Aの外部から、不図示の中間ケーブルCAbが接続されると共に、負荷側出力端子OLbに不図示の負荷Lと接続するためのケーブルが接続される。複数の負荷側出力端子OLbは、例えば、USB(Universal Serial Bus)規格のケーブルが接続可能なUSB端子であり、出力電圧5[V]、出力電流1[A]程度に維持される。例えば、負荷側出力端子OLbは、40個程度設けられてよい。
[Load-side power converter]
FIG. 6 is a diagram illustrating an example of the configuration of the load-side power conversion device 200 housed in the second housing 200A. As illustrated, the second housing 200A is provided with a load side input terminal ILb and a plurality of load side output terminals OLb. An intermediate cable CAb (not shown) is connected to the load side input terminal ILb from the outside of the second casing 200A, and a cable for connecting to the load L (not shown) is connected to the load side output terminal OLb. Connected. The plurality of load-side output terminals OLb are USB terminals to which, for example, a USB (Universal Serial Bus) standard cable can be connected, and are maintained at an output voltage of about 5 [V] and an output current of about 1 [A]. For example, about 40 load side output terminals OLb may be provided.
 負荷側電力変換装置200は、例えば、負荷側DC‐DCコンバータ210-1、210-2を備える。図示の例では、負荷側DC‐DCコンバータは、2つずつ備えられているが、第2の筐体200Aに設ける負荷側出力端子OLbの数に応じて、1つまたは3つ以上に変更されてもよい。以下、これらの負荷側DC‐DCコンバータを区別せずに、単に負荷側DC‐DCコンバータ210として説明する。負荷側DC‐DCコンバータ210は、「第2電力変換部」の一例である。 The load side power converter 200 includes, for example, load side DC-DC converters 210-1 and 210-2. In the illustrated example, two load-side DC-DC converters are provided, but the load-side DC-DC converter is changed to one or three or more according to the number of load-side output terminals OLb provided in the second casing 200A. May be. Hereinafter, these load side DC-DC converters will be described as simply the load side DC-DC converter 210 without distinction. The load side DC-DC converter 210 is an example of a “second power converter”.
 負荷側DC‐DCコンバータ210は、負荷側入力端子ILbを介して供給された直流電力を降圧して、負荷側出力端子OLbの側に出力する。例えば、電源側DC‐DCコンバータ110は、負荷側入力端子ILbと接続される入力端子を介して供給される直流電力に対して、所望のデューティ比でスイッチング素子をスイッチングすることによって、降圧を行う。例えば、負荷側DC‐DCコンバータ210は、電源側DC‐DCコンバータ110により昇圧された直流電力の電圧に対応するために、およそ36[V]から72[V]程度の電圧範囲(以下、第3範囲と称する)内の直流電力を降圧してUSB規格の5[V]に変換する。負荷側DC‐DCコンバータ210は、降圧した直流電力を、各負荷側出力端子OLbに出力する。 The load side DC-DC converter 210 steps down the DC power supplied via the load side input terminal ILb and outputs it to the load side output terminal OLb side. For example, the power supply side DC-DC converter 110 performs step-down by switching the switching element with a desired duty ratio with respect to DC power supplied via an input terminal connected to the load side input terminal ILb. . For example, the load side DC-DC converter 210 has a voltage range of about 36 [V] to about 72 [V] (hereinafter referred to as a first voltage) in order to correspond to the voltage of the DC power boosted by the power source side DC-DC converter 110. DC power within the range (referred to as “3 range”) is stepped down and converted to 5 [V] of the USB standard. The load side DC-DC converter 210 outputs the stepped down DC power to each load side output terminal OLb.
 以上説明した第1の実施形態における直流給電システムによれば、オルタネータ12などの主電源と、主電源から電力供給を受ける補助電源としての二次電池14と、を含む電源装置10に入力ケーブルCAaを介して接続される電源側入力端子ILaと、電源側入力端子ILaを介して電源装置10から供給される直流電力の電圧を変換して出力する電源側DC-DCコンバータ110と、電源側DC-DCコンバータ110の入力電圧Vinを検出する入力側電圧検出部101と、入力電圧Vinが下限電圧VinL以下である場合、電源側DC-DCコンバータ110を停止させる電源側コントローラ130を備えるため、適切な範囲で電源装置10から電力の供給を受けることができる。この結果、電源装置10がエンジン車両に搭載された場合、電源側DC‐DCコンバータ110に対して出力される電力を監視することによって、二次電池14が過放電の状態となるのを防止することができる。また、電源装置10がハイブリッド自動車に搭載された場合も同様に、二次電池14およびハイブリッド用二次電池17が過放電の状態となるのを防止することができる。 According to the DC power supply system in the first embodiment described above, the input cable CAa is connected to the power supply device 10 including the main power source such as the alternator 12 and the secondary battery 14 as an auxiliary power source that receives power supply from the main power source. A power supply side input terminal ILa connected via the power supply side, a power supply side DC-DC converter 110 that converts and outputs the voltage of the DC power supplied from the power supply device 10 via the power supply side input terminal ILa, and a power supply side DC -The input side voltage detection unit 101 that detects the input voltage Vin of the DC converter 110 and the power source side controller 130 that stops the power source side DC-DC converter 110 when the input voltage Vin is equal to or lower than the lower limit voltage VinL The power can be supplied from the power supply device 10 within such a range. As a result, when the power supply device 10 is mounted on the engine vehicle, the power output to the power supply side DC-DC converter 110 is monitored to prevent the secondary battery 14 from being overdischarged. be able to. Similarly, when the power supply apparatus 10 is mounted on a hybrid vehicle, the secondary battery 14 and the hybrid secondary battery 17 can be prevented from being overdischarged.
 また、上述した第1の実施形態によれば、例えば、災害時に、発電所からの系統電力の供給が停止した場合、直流給電システムを利用することで、車両Mに搭載された「主電源」または「補助電源」の電力を一時的に利用して、被災者の身の回りの電子機器などを作動させることができる。 Further, according to the first embodiment described above, for example, when the supply of system power from the power plant is stopped in the event of a disaster, the “main power source” mounted on the vehicle M by using the DC power supply system. Alternatively, the electric power of the “auxiliary power source” can be temporarily used to operate electronic devices around the victim.
 また、上述した第1の実施形態によれば、中間ケーブルCAbによって電源側電力変換装置100と負荷側電力変換装置200とを接続するため、車両Mから離れた避難所などで電力を使用することができる。 Moreover, according to 1st Embodiment mentioned above, in order to connect the power supply side power converter device 100 and the load side power converter device 200 by the intermediate | middle cable CAb, using electric power in the refuge etc. which were separated from the vehicle M Can do.
 また、上述した第1の実施形態によれば、2段階で電圧変換を行うため、中間ケーブルCAbによる電圧降下の影響を抑制することができる。 In addition, according to the first embodiment described above, since voltage conversion is performed in two stages, the influence of a voltage drop caused by the intermediate cable CAb can be suppressed.
 また、上述した第1の実施形態によれば、「主電源」または「補助電源」により供給される電力を比較的低電圧なUSB規格の電圧に変換するため、ラジオや携帯電話などの消費電力量の少ない機器を長期間使用することができる。この結果、災害情報などを取得しやすくなり、特に被災者にとっての利便性を向上させることができる。 Further, according to the first embodiment described above, the power supplied from the “main power supply” or “auxiliary power supply” is converted into a USB standard voltage having a relatively low voltage. A small amount of equipment can be used for a long time. As a result, it becomes easy to acquire disaster information and the like, and in particular, convenience for the victim can be improved.
 <第2の実施形態>
 以下、第2の実施形態について説明する。第2の実施形態では、第1の筐体100Aに、第3入力端子ILa#が設けられている点で第1の実施形態と異なる。第3入力端子ILa#には、例えば、電源装置10に含まれる「補助電源」の基準電圧に比して大きい基準電圧を有する他電源がケーブルなどを介して接続される。他電源は、例えば、フォークリフトなどの特殊な車両に搭載された二次電池であり、48[V]程度の直流電力を出力する。以下では、係る相違点を中心に説明し、共通する部分についての説明は省略する。
<Second Embodiment>
Hereinafter, the second embodiment will be described. The second embodiment is different from the first embodiment in that a third input terminal ILa # is provided in the first housing 100A. For example, another power supply having a reference voltage larger than the reference voltage of the “auxiliary power supply” included in the power supply device 10 is connected to the third input terminal ILa # via a cable or the like. The other power source is, for example, a secondary battery mounted on a special vehicle such as a forklift, and outputs DC power of about 48 [V]. Below, it demonstrates centering on the difference and it abbreviate | omits description about a common part.
 図7は、第1の筐体100Aに収容された電源側電力変換装置100の構成の他の例を示す図である。図示のように、第1の筐体100Aには、電源側入力端子ILaと、電源側出力端子OLaと、スイッチSWと、第3入力端子ILa#とが設けられており、第1の筐体100Aの外部から、電源側入力端子ILaに入力ケーブルCAaが接続されると共に、電源側出力端子OLaに中間ケーブルCAbが接続される。また、第3入力端子ILa#は、他電源の二次電池の出力端子と接続されたケーブルと接続される。他電源の二次電池により出力された直流電力は、第3入力端子ILa#を介して、電源側DC‐DCコンバータ110の出力側に出力される。 FIG. 7 is a diagram illustrating another example of the configuration of the power-source-side power conversion device 100 housed in the first casing 100A. As shown in the figure, the first casing 100A is provided with a power supply side input terminal ILa, a power supply side output terminal OLa, a switch SW, and a third input terminal ILa #. From the outside of 100A, an input cable CAa is connected to the power supply side input terminal ILa, and an intermediate cable CAb is connected to the power supply side output terminal OLa. The third input terminal ILa # is connected to a cable connected to the output terminal of the secondary battery of another power source. The DC power output from the secondary battery of the other power source is output to the output side of the power source side DC-DC converter 110 via the third input terminal ILa #.
 以下、第2の実施形態における電源側コントローラ130による処理についてフローチャートを用いて説明する。 Hereinafter, processing by the power supply side controller 130 in the second embodiment will be described with reference to flowcharts.
 図8は、第2の実施形態における電源側コントローラ130による処理の流れの一例を示すフローチャートである。なお、本フローチャートの処理中にスイッチSWがオフに操作された場合、電源側コントローラ130は、割込み処理として、電源側DC‐DCコンバータ110を停止させてよい。 FIG. 8 is a flowchart showing an example of the flow of processing by the power supply side controller 130 in the second embodiment. When the switch SW is turned off during the process of this flowchart, the power supply controller 130 may stop the power supply DC-DC converter 110 as an interrupt process.
 まず、電源側コントローラ130は、CTL用DC‐DCコンバータ120から電力が供給されると、プログラムメモリからプログラムを読み出して処理を開始する(ステップS300)。 First, when power is supplied from the CTL DC-DC converter 120, the power supply side controller 130 reads the program from the program memory and starts processing (step S300).
 次に、電源側コントローラ130は、入力側電圧検出部101により出力された検出信号を参照して、入力電圧Vinが第1範囲内であるか否かを判定する(ステップS302)。 Next, the power supply side controller 130 refers to the detection signal output by the input side voltage detection unit 101 and determines whether or not the input voltage Vin is within the first range (step S302).
 電源側コントローラ130は、入力電圧Vinが第1範囲内である場合、電源側DC‐DCコンバータ110を制御する際の制御パラメータを、第1パラメータにセットする(ステップS304)。 When the input voltage Vin is within the first range, the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 as the first parameter (step S304).
 一方、電源側コントローラ130は、入力電圧Vinが第1範囲内でない場合、更に入力電圧Vinが第2範囲内であるか否かを判定する(ステップS306)。 On the other hand, when the input voltage Vin is not within the first range, the power supply side controller 130 further determines whether or not the input voltage Vin is within the second range (step S306).
 電源側コントローラ130は、入力電圧Vinが第2範囲内である場合、電源側DC‐DCコンバータ110を制御する際の制御パラメータを、第2パラメータにセットする(ステップS308)。 When the input voltage Vin is within the second range, the power supply controller 130 sets a control parameter for controlling the power supply DC-DC converter 110 to the second parameter (step S308).
 一方、電源側コントローラ130は、入力電圧Vinが第2範囲内でない場合、電源側DC‐DCコンバータ110を停止させる(ステップS310)。これによって、本フローチャートの処理が終了する。 On the other hand, when the input voltage Vin is not within the second range, the power supply side controller 130 stops the power supply side DC-DC converter 110 (step S310). Thereby, the process of this flowchart is complete | finished.
 次に、電源側コントローラ130は、出力側電流検出部103により出力された検出信号を参照して、第3入力端子ILa#に他電源が接続されたか否かを判定する(ステップS312)。例えば、電源側コントローラ130は、出力電流Ioutが所定値よりも大きくなった場合、第3入力端子ILa#に他電源が接続されたと判定する。所定値は、例えば、所定期間にわたって出力側電流検出部103により検出された出力電圧の平均値などである。また、第3入力端子ILa#に、ケーブルの嵌め込みを検知するスイッチが設けられている場合、電源側コントローラ130は、当該スイッチの状態に基づいて、第3入力端子ILa#に他電源が接続されたか否かを判定してもよい。 Next, the power supply controller 130 refers to the detection signal output by the output current detector 103 and determines whether or not another power supply is connected to the third input terminal ILa # (step S312). For example, when the output current Iout becomes larger than a predetermined value, the power supply controller 130 determines that another power supply is connected to the third input terminal ILa #. The predetermined value is, for example, an average value of the output voltage detected by the output-side current detection unit 103 over a predetermined period. In addition, when a switch that detects the insertion of the cable is provided at the third input terminal ILa #, the power supply controller 130 is connected to another power supply to the third input terminal ILa # based on the state of the switch. It may be determined whether or not.
 電源側コントローラ130は、第3入力端子ILa#に他電源が接続された場合、セットした制御パラメータのうち、昇圧比α、下限電圧VoutL、上限電圧VoutHおよび上限電流IoutHを変更する(ステップS314)。例えば、電源側コントローラ130は、出力側電圧検出部104により出力された検出信号を参照して、他電源である二次電池から出力された直流電力の電圧がいくつであるのかを特定し、特定した電圧に基づいて昇圧比αを変更する。具体的には、電源側コントローラ130は、昇圧される出力電圧Voutが他電源である二次電池の出力電圧48[V]よりも小さくなるように、第1パラメータでは3.5倍程度に、第2パラメータでは1.8倍程度に昇圧比αを変更する。また、電源側コントローラ130は、昇圧比αの変更に伴って、下限電圧VoutL、上限電圧VoutHおよび上限電流IoutHも変更する。これによって、第3入力端子ILa#に接続された他電源から、電源側電力変換装置100に対して電流が流入するのを抑制することができる。 When another power source is connected to the third input terminal ILa #, the power supply controller 130 changes the boost ratio α, the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH among the set control parameters (step S314). . For example, the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104, specifies the voltage of the DC power output from the secondary battery that is another power supply, and specifies The step-up ratio α is changed based on the applied voltage. Specifically, the power supply side controller 130 increases the output voltage Vout to be boosted to about 3.5 times in the first parameter so that the output voltage Vout of the secondary battery as the other power supply becomes smaller than 48 [V]. In the second parameter, the step-up ratio α is changed to about 1.8 times. Further, the power supply controller 130 also changes the lower limit voltage VoutL, the upper limit voltage VoutH, and the upper limit current IoutH in accordance with the change of the step-up ratio α. Thereby, it is possible to suppress a current from flowing into the power supply side power conversion device 100 from another power supply connected to the third input terminal ILa #.
 次に、電源側コントローラ130は、制御パラメータを参照して、入力電圧Vinが下限電圧VinLを超え、且つ上限電圧VinH未満であるか否かを判定する(ステップS316)。電源側コントローラ130は、入力電圧Vinが、下限電圧VinL以下である場合、または上限電圧VinH以上である場合、S310の処理に移り、電源側DC‐DCコンバータ110を停止させる。 Next, the power supply side controller 130 refers to the control parameter and determines whether or not the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH (step S316). When the input voltage Vin is equal to or lower than the lower limit voltage VinL, or when the input voltage Vin is equal to or higher than the upper limit voltage VinH, the power supply side controller 130 proceeds to the processing of S310 and stops the power supply side DC-DC converter 110.
 一方、電源側コントローラ130は、入力電圧Vinが、下限電圧VinLを超え、且つ上限電圧VinH未満である場合、入力側電流検出部102により出力された検出信号と、制御パラメータを参照して、入力電流Iinが上限電流IinHを超えるか否かを判定する(ステップS318)。 On the other hand, when the input voltage Vin exceeds the lower limit voltage VinL and is lower than the upper limit voltage VinH, the power supply side controller 130 refers to the detection signal output by the input side current detection unit 102 and the control parameter, and inputs It is determined whether or not the current Iin exceeds the upper limit current IinH (step S318).
 電源側コントローラ130は、入力電流Iinが上限電流IinHを超える場合、S310の処理に移り、電源側DC‐DCコンバータ110を停止させる。 When the input current Iin exceeds the upper limit current IinH, the power supply controller 130 proceeds to S310 and stops the power supply DC-DC converter 110.
 一方、電源側コントローラ130は、入力電流Iinが上限電流IinHを超えない場合、電源側DC‐DCコンバータ110を制御して、制御パラメータが示す昇圧比αで直流電力を昇圧させる(ステップS320)。 On the other hand, when the input current Iin does not exceed the upper limit current IinH, the power supply side controller 130 controls the power supply side DC-DC converter 110 to boost the DC power by the boost ratio α indicated by the control parameter (step S320).
 次に、電源側コントローラ130は、出力側電圧検出部104により出力された検出信号と、制御パラメータとを参照して、出力電圧Voutが下限電圧VoutLを超え、且つ上限電圧VoutH未満であるか否かを判定する(ステップS322)。電源側コントローラ130は、出力電圧Voutが下限電圧VoutL以下である場合、または上限電圧VoutH以上である場合、S310の処理に移り、電源側DC‐DCコンバータ110を停止させる。 Next, the power supply side controller 130 refers to the detection signal output by the output side voltage detection unit 104 and the control parameter, and determines whether or not the output voltage Vout exceeds the lower limit voltage VoutL and is lower than the upper limit voltage VoutH. Is determined (step S322). When the output voltage Vout is equal to or lower than the lower limit voltage VoutL, or when the output voltage Vout is equal to or higher than the upper limit voltage VoutH, the power supply side controller 130 proceeds to the process of S310 and stops the power supply side DC-DC converter 110.
 一方、電源側コントローラ130は、出力電圧Voutが下限電圧VoutLを超え、且つ上限電圧VoutH未満である場合、出力側電流検出部103により出力された検出信号と、制御パラメータとを参照して、出力電流Ioutが上限電流IoutHを超えるか否かを判定する(ステップS324)。電源側コントローラ130は、出力電流Ioutが上限電流IoutHを超えない場合、S312の処理に移行する。 On the other hand, when the output voltage Vout exceeds the lower limit voltage VoutL and lower than the upper limit voltage VoutH, the power supply side controller 130 refers to the detection signal output by the output side current detection unit 103 and the control parameter to output It is determined whether or not the current Iout exceeds the upper limit current IoutH (step S324). If the output current Iout does not exceed the upper limit current IoutH, the power supply controller 130 proceeds to the process of S312.
 一方、電源側コントローラ130は、出力電流Ioutが上限電流IoutHを超えた場合、S310の処理に移り、電源側DC‐DCコンバータ110を停止させる。これによって、本フローチャートの処理が終了する。 On the other hand, when the output current Iout exceeds the upper limit current IoutH, the power supply side controller 130 proceeds to the process of S310 and stops the power supply side DC-DC converter 110. Thereby, the process of this flowchart is complete | finished.
 以上説明した第2の実施形態における直流給電システムによれば、上述した第1の実施形態と同様に、適切な範囲で電源装置10から電力の供給を受けることができる。 According to the DC power supply system in the second embodiment described above, power can be supplied from the power supply device 10 in an appropriate range, as in the first embodiment described above.
 また、上述した第2の実施形態における直流給電システムによれば、更に第3入力端子ILa#を備えるため、出力電圧が12[V]、24[V]、48[V]といった多様な種類の電力供給源に対応することができ、より長時間にわたって電力を負荷Lに供給することができる。この結果、利用者にとっての利便性を更に向上させることができる。 Further, according to the DC power feeding system in the second embodiment described above, since the third input terminal ILa # is further provided, various types of output voltages of 12 [V], 24 [V], 48 [V] are provided. It can correspond to a power supply source, and power can be supplied to the load L for a longer time. As a result, the convenience for the user can be further improved.
 以下、他の実施形態(変形例)について説明する。上述した実施形態では、直流給電システムは、車両Mに搭載された電源装置10から電力供給を受けるものとして説明したがこれに限られず、例えば、家屋に設置された燃料電池から電力供給を受けてもよい。 Hereinafter, other embodiments (modifications) will be described. In the above-described embodiment, the DC power supply system has been described as receiving power supply from the power supply device 10 mounted on the vehicle M, but is not limited to this, for example, receiving power supply from a fuel cell installed in a house. Also good.
10…電源装置、11…エンジン、12…オルタネータ、13…車載AC‐DCコンバータ、14…二次電池、15…駆動モータ、16…車載DC‐DCコンバータ、17…ハイブリッド用二次電池、SF…シャフト、20…車載負荷、100…電源側電力変換装置、101…入力側電圧検出部、102…入力側電流検出部、103…出力側電流検出部、104…出力側電圧検出部、105…ダイオード、110…電源側DC‐DCコンバータ、120…CTL用DC‐DCコンバータ、130…電源側コントローラ、100A…第1の筐体100A、ILa…電源側入力端子、OLa…電源側出力端子、200…負荷側電力変換装置、210…負荷側DC‐DCコンバータ、200A…第2の筐体、ILb…負荷側入力端子、OLb…負荷側出力端子、L…負荷、M…車両、CAa…入力ケーブル、Cab…中間ケーブル DESCRIPTION OF SYMBOLS 10 ... Power supply device, 11 ... Engine, 12 ... Alternator, 13 ... In-vehicle AC-DC converter, 14 ... Secondary battery, 15 ... Drive motor, 16 ... In-vehicle DC-DC converter, 17 ... Secondary battery for hybrid, SF ... Shaft, 20 ... in-vehicle load, 100 ... power source side power converter, 101 ... input side voltage detection unit, 102 ... input side current detection unit, 103 ... output side current detection unit, 104 ... output side voltage detection unit, 105 ... diode DESCRIPTION OF SYMBOLS 110 ... Power source side DC-DC converter, 120 ... CTL DC-DC converter, 130 ... Power source side controller, 100A ... 1st housing | casing 100A, ILa ... Power source side input terminal, OLa ... Power source side output terminal, 200 ... Load side power conversion device, 210 ... Load side DC-DC converter, 200A ... Second housing, ILb ... Load side input terminal, OLb ... Load Output terminals, L ... load, M ... vehicle, CAa ... input cable, Cab ... intermediate cable

Claims (9)

  1.  主電源と、前記主電源から電力供給を受ける補助電源と、を含む外部装置に第1ケーブルを介して接続される第1入力端子と、
     前記第1入力端子を介して前記外部装置から供給される直流電力の電圧を変換して出力する第1電力変換部と、
     前記第1電力変換部の入力電圧を検出する第1入力電圧検出部と、
     前記第1入力電圧検出部により検出された入力電圧が下限電圧以下である場合、前記第1電力変換部を停止させる第1コントローラと、
     を備える直流給電システム。
    A first input terminal connected via a first cable to an external device including a main power source and an auxiliary power source receiving power from the main power source;
    A first power converter that converts and outputs a DC power voltage supplied from the external device via the first input terminal;
    A first input voltage detector for detecting an input voltage of the first power converter;
    A first controller that stops the first power converter when the input voltage detected by the first input voltage detector is equal to or lower than a lower limit voltage;
    DC power supply system comprising:
  2.  前記第1入力端子は、前記外部装置における前記主電源と前記補助電源との双方に接続された箇所に前記第1ケーブルを介して接続される、
     請求項1に記載の直流給電システム。
    The first input terminal is connected to the portion connected to both the main power source and the auxiliary power source in the external device via the first cable.
    The DC power supply system according to claim 1.
  3.  下限電圧は、前記主電源が出力する最小電圧付近に設定される、
     請求項1に記載の直流給電システム。
    The lower limit voltage is set near the minimum voltage output by the main power supply.
    The DC power supply system according to claim 1.
  4.  下限電圧は、前記補助電源の最大電圧よりも低い値に設定される、
     請求項3に記載の直流給電システム。
    The lower limit voltage is set to a value lower than the maximum voltage of the auxiliary power source,
    The DC power supply system according to claim 3.
  5.  前記第1電力変換部の出力側に設けられる複数の出力端子であって、それぞれ定電圧の直流電力を出力する複数の出力端子を更に備える、
     請求項1に記載の直流給電システム。
    A plurality of output terminals provided on the output side of the first power converter, each further comprising a plurality of output terminals for outputting DC power of a constant voltage.
    The DC power supply system according to claim 1.
  6.  前記第1電力変換部と前記複数の出力端子との間に設けられ、前記第1電力変換部と前記複数の出力端子に第2ケーブルを介して接続される第2電力変換部であって、前記第1電力変換部により出力される直流電力の電圧を変換して前記複数の出力端子のそれぞれに定電圧の直流電力を出力する第2電力変換部を更に備える、
     請求項5に記載の直流給電システム。
    A second power conversion unit provided between the first power conversion unit and the plurality of output terminals, and connected to the first power conversion unit and the plurality of output terminals via a second cable; A second power converter that converts the voltage of the DC power output by the first power converter and outputs a DC power of a constant voltage to each of the plurality of output terminals;
    The DC power supply system according to claim 5.
  7.  前記第1電力変換部は、前記第1入力端子が設けられた第1の筐体に収容され、
     前記第2電力変換部は、前記複数の出力端子が設けられた第2の筐体に収容され、
     前記第1の筐体には、更に、前記第1電力変換部の出力端子に接続される第1出力端子が設けられ、
     前記第2の筐体には、更に、前記第2電力変換部の入力端子に接続される第2入力端子が設けられ、
     前記第1出力端子と前記第2入力端子が前記第2ケーブルで接続される、
     請求項6に記載の直流給電システム。
    The first power conversion unit is housed in a first housing provided with the first input terminal,
    The second power conversion unit is housed in a second housing provided with the plurality of output terminals,
    The first casing is further provided with a first output terminal connected to the output terminal of the first power converter,
    The second casing is further provided with a second input terminal connected to the input terminal of the second power converter,
    The first output terminal and the second input terminal are connected by the second cable;
    The DC power supply system according to claim 6.
  8.  前記第1電力変換部の出力電圧を検出する第1出力電圧検出部を更に備え、
     前記第1電力変換部は、前記第1入力端子を介して前記外部装置から供給される直流電力の電圧を昇圧して出力し、
     前記第1コントローラは、前記第1出力電圧検出部により検出された出力電圧が、前記第1電力変換部により昇圧される直流電力の電圧以上である場合に、前記第1電力変換部を停止させる、
     請求項1に記載の直流給電システム。
    A first output voltage detector that detects an output voltage of the first power converter;
    The first power converter boosts and outputs a DC power voltage supplied from the external device via the first input terminal,
    The first controller stops the first power conversion unit when the output voltage detected by the first output voltage detection unit is equal to or higher than the voltage of DC power boosted by the first power conversion unit. ,
    The DC power supply system according to claim 1.
  9.  前記第1電力変換部の出力側には、更に、前記補助電源の基準電圧に比して大きい基準電圧を有する他の電源が接続可能であり、
     前記第1コントローラは、前記第1出力電圧検出部により検出された前記他の電源から出力された直流電力の電圧に基づいて、前記第1電力変換部による前記直流電力の昇圧の度合を低下させる、
     請求項8に記載の直流給電システム。
    To the output side of the first power converter, another power source having a reference voltage larger than the reference voltage of the auxiliary power source can be connected.
    The first controller reduces the degree of boosting of the DC power by the first power converter based on the voltage of DC power output from the other power source detected by the first output voltage detector. ,
    The DC power supply system according to claim 8.
PCT/JP2016/079447 2016-10-04 2016-10-04 Direct current power supply system WO2018066055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/079447 WO2018066055A1 (en) 2016-10-04 2016-10-04 Direct current power supply system
JP2018543506A JP6753940B2 (en) 2016-10-04 2016-10-04 DC power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079447 WO2018066055A1 (en) 2016-10-04 2016-10-04 Direct current power supply system

Publications (1)

Publication Number Publication Date
WO2018066055A1 true WO2018066055A1 (en) 2018-04-12

Family

ID=61832056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079447 WO2018066055A1 (en) 2016-10-04 2016-10-04 Direct current power supply system

Country Status (2)

Country Link
JP (1) JP6753940B2 (en)
WO (1) WO2018066055A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102606A (en) * 2011-11-08 2013-05-23 Panasonic Corp Power conversion device
JP2013183525A (en) * 2012-03-01 2013-09-12 Toyota Motor Corp Electric vehicle
JP2014096927A (en) * 2012-11-09 2014-05-22 Nyk Trading Corp Power supply system and device
US20150217656A1 (en) * 2014-01-31 2015-08-06 Ford Global Technologies, Llc Portable EV Energy Transfer Apparatus and Method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102606A (en) * 2011-11-08 2013-05-23 Panasonic Corp Power conversion device
JP2013183525A (en) * 2012-03-01 2013-09-12 Toyota Motor Corp Electric vehicle
JP2014096927A (en) * 2012-11-09 2014-05-22 Nyk Trading Corp Power supply system and device
US20150217656A1 (en) * 2014-01-31 2015-08-06 Ford Global Technologies, Llc Portable EV Energy Transfer Apparatus and Method

Also Published As

Publication number Publication date
JPWO2018066055A1 (en) 2019-07-18
JP6753940B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
CN110614930B (en) Charging and discharging method, system, controller and electric automobile
EP2921336B1 (en) Vehicle-mounted power source device
US8823206B2 (en) Power-supply control device
US10081259B2 (en) Charging facility and energy management method for charging facility
US10988043B2 (en) Vehicle and method of charging electric power storage device
JP5960580B2 (en) Electric vehicle power supply system and control method thereof
US9475439B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
JP5152746B2 (en) Fuel cell power supply
US10017138B2 (en) Power supply management system and power supply management method
US6313546B1 (en) Power supply assembly for a vehicle
WO2015140618A1 (en) Charging system mouted on vehicle
JPWO2011036758A1 (en) VEHICLE CHARGE SYSTEM AND ELECTRIC VEHICLE HAVING THE SAME
US9475456B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
KR20160038348A (en) Device for low voltage dc-dc converter-integrated charger
JP2012034488A (en) Charger
WO2018163494A1 (en) Vehicle power supply device
KR20130026765A (en) Low voltage dc-dc converter for vehicle and electric power control method thereof
JP2009225568A (en) Fuel cell electric vehicle system
CN109149679B (en) Method for improving endurance mileage of electric automobile, power management controller and automobile
JP2010273412A (en) Charge control unit for secondary battery
JP6183465B2 (en) Power storage system
WO2018066055A1 (en) Direct current power supply system
CN116141980A (en) Vehicle power control device, power control method, and vehicle
JP2022033951A (en) Charge and discharge device, charge and discharge system, and charge and discharge control method
WO2022091309A1 (en) Electricity storage machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918256

Country of ref document: EP

Kind code of ref document: A1