WO2018065553A1 - Method and device for thermal planar welding of a plurality of material panels - Google Patents

Method and device for thermal planar welding of a plurality of material panels Download PDF

Info

Publication number
WO2018065553A1
WO2018065553A1 PCT/EP2017/075427 EP2017075427W WO2018065553A1 WO 2018065553 A1 WO2018065553 A1 WO 2018065553A1 EP 2017075427 W EP2017075427 W EP 2017075427W WO 2018065553 A1 WO2018065553 A1 WO 2018065553A1
Authority
WO
WIPO (PCT)
Prior art keywords
material plates
welding station
plates
heat
welding
Prior art date
Application number
PCT/EP2017/075427
Other languages
German (de)
French (fr)
Inventor
Oliver Mance
Thorsten Koch
Original Assignee
Robert Bürkle GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bürkle GmbH filed Critical Robert Bürkle GmbH
Publication of WO2018065553A1 publication Critical patent/WO2018065553A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror
    • B29C65/203Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror being several single mirrors, e.g. not mounted on the same tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2053Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position
    • B29C65/2061Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • B29C65/305Electrical means involving the use of cartridge heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/782Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7861In-line machines, i.e. feeding, joining and discharging are in one production line
    • B29C65/787In-line machines, i.e. feeding, joining and discharging are in one production line using conveyor belts or conveyor chains
    • B29C65/7873In-line machines, i.e. feeding, joining and discharging are in one production line using conveyor belts or conveyor chains using cooperating conveyor belts or cooperating conveyor chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • B29C66/81465General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint one placed behind the other in a single row in the feed direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • B29C66/8432Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1027Pressing using at least one press band

Definitions

  • the present invention relates to a method for the thermal, surface welding of a plurality of material plates made of foamed and / or non-foamed material having the features according to the preamble of claim 1 and an apparatus for thermal, surface welding of several such material plates with the features according to the preamble of claim 1.
  • a “surface” welding is a welding or joining any surfaces of material plates, as understood in particular insulating panels, wherein to increase the width of the longitudinal edges, to increase the length of the transverse edges and to increase the thickness or height of the insulating panels, the surfaces To melt the surfaces to be joined, a heat element is used which is arranged horizontally in the exemplary embodiments and has a small vertical height compared to its length also be arranged vertically or at any other angle.
  • the main field of application of the present invention is the lamination or doubling of hard foam boards which are used for the production of thermal barrier coatings, in particular for buildings.
  • Such Insulation boards are used to achieve sufficient thermal insulation due to current energy-saving regulations, especially in the construction and real estate sector and in the industry, in order to save non-renewable energy sources.
  • Optimum heat insulation can significantly reduce the heating costs of a house.
  • plastic foam elements were used as insulating panels with particularly strong thicknesses of more than 100 mm for building insulation.
  • especially insulating materials such as rigid polyurethane foam, expanded polystyrene foam or extruded polystyrene foam were known.
  • Extruded material plates are usually process-related in width and height, e.g. mostly limited to 600 to 1200 mm width and 100 mm height maximum with a plate width of 1200 mm and 240 mm height with a plate width of 600 mm. Basically, however, other widths and heights are conceivable.
  • Welding station fed and moved along a separating blade.
  • the positioning of the separating blade creates a gap with a defined gap width, in which a fixedly installed heating element, preferably a heating blade, arranged downstream of the separating blade is arranged.
  • This heating blade softens by contact-free heat transfer at least one of the surfaces of the material plates to be joined or melts them.
  • the material plates are joined together by pressing elements that press the material plates against each other so that adjusts a cohesive connection due to the previous heat application during pressing and subsequent cooling of the weld.
  • multi-layer rigid foam boards can be produced or rigid foam boards are laminated.
  • due to the arrangement of the separating blade and the heating sword in a gap a diversion of the working required material plates, which can lead to bumps and bends of the finished joined material plate especially for larger thicknesses of material plates.
  • WO 2016/102292 A1 discloses a process for the production of at least two-ply thermoplastic sheets by thermal welding of sheets, the sheets having a different density.
  • a plurality of heating elements are introduced on mutually offset planes between the output plates, without the surfaces of the heating elements touching the material plates. By appropriately selected distances different amounts of energy or heating power can be transferred to the surfaces to be joined together the output plates, which are then connected to each other.
  • the welding of two material plates takes place cyclically in the mirror welding process, wherein the surfaces to be joined of the two material plates over the entire surface are heated by surface heat sources until fused. Thereafter, the mirrors are moved out and the two material plates accurately placed on each other and then pressed against each other until the melted surfaces of the material plates are cooled and thus creates a material connection of the two material plates. If necessary, then further plates can be applied to further increase the plate thickness.
  • the mirrors are usually at a small distance of, for example, 0.3 mm from the material plates, so that the latter must be supplied very accurately. Due to the movement of the mirrors, there is also the danger that the melted surfaces will cool at different speeds.
  • the mirror welding method has the disadvantage that only a small plate capacity / min.
  • the said method has in common that on the one hand a limitation of the geometry is given by the fact that the extrusion width and / or the extrusion thickness are limited.
  • a convertibility of an extruder for an order-related production is associated with a high degree of waste and effort until the process is stable and reproducible.
  • Optimum lambda values are achieved up to a thickness of approx. 80 mm, after which the values in the individual plates reduce with increasing thickness.
  • the starting plates are made as usual in the art at an angle of e.g. fed to five degrees or more, this leads to a lower performance and thickness limitation of the upper insulation board due to the associated curvature.
  • the present invention is based on the object to provide a method and an apparatus for the surface thermal welding of material plates, which allows the production of high-quality material panels at the same time energy-efficient process and high operating speed.
  • the method and the device for carrying out the method allow welding any surfaces of material plates, in particular Dämmstoffplat- th.
  • any surfaces of material plates in particular Dämmstoffplat- th.
  • Surfaces of the insulating panels themselves are welded together.
  • the invention makes use of the fact that by feeding in parallel with an angle of delivery of less than 1 °, a continuous process with continuous feeding of the material plates is possible even with rigid material plates.
  • the heat element which is preferably designed as a heating sword, touches the surfaces of the material plates and melts them before the actual welding or joining process.
  • the direct contact of the heat element to the material plates can be worked in an optimized temperature range, which melts just as much of the material plate, as required for the subsequent joining process.
  • the weld can be kept very thin, which among other things contributes to the diffusion-open nature of the end products produced. Since the melting takes place immediately before the actual welding process, and also the heat element does not have to be removed from the gap, the process can be operated with relatively little energy.
  • the low thermal conductivity of the material plates also has the advantage that heat from the minimum gap with parallel or nearly parallel feeding of the material plates can hardly escape.
  • the parallel or nearly parallel feed of the material plates also has the advantage that significantly less height is required in a device according to the invention. This is to set up, align or position the material plates to each other, e.g. create a fold or a tongue and groove on the material plates, now possible directly in the welding station. This reduces the construction costs for corresponding positioning mechanisms, as they are customary in the prior art. At the same time reduce the hitherto required changeover times, since even with a small stock of material plates in the short term, a large range of geometry can be covered in to be produced material plates. This leads to a high degree of flexibility and low storage capacities in the manufacturing companies. Any thicknesses, widths and lengths of material plates can be produced in one station as well as in several stations. A reworking after the joining process can be avoided or at least minimized, since a high precision is ensured by the location close to the welding station. This also reduces possible waste by reworking considerably and thus contributes to a resource-saving handling of the required raw materials.
  • the throughput rate can be increased to, for example, up to 200 m 3 / h, above all in the production of four or more layered plates, by allowing several plates to be welded together in a continuous process. It is advantageous if the material plates are measured during the feeding and positioned in the welding station to each other. As a result, the efficiency can be increased further, since the exact position of the plates is already known at the time of joining.
  • the material plates are positioned accurately to each other only in the welding station itself. The later the positioning takes place, the easier it is to ensure positioning, as long as it is ensured that the positioning can keep up with the throughput of the material plates.
  • the material plates are fed directly to the welding station. Due to the parallel or nearly parallel feed in connection with the dynamic planner shaft adjustment with a processing of the material plates above and / or below, a turning station and / or Plattenhubstation can be saved.
  • the heating element is preferably a heating bar, wherein a plurality of heating elements may also be provided, in particular if several layers of material plates, i. in particular, more than two layers are welded together.
  • the heating element has a plurality of surfaces which can be tempered to different temperatures. It is particularly advantageous if the heating element is heated to different temperatures on separate surfaces by means of separate heating means.
  • the independently installed heating means such as eg heating resistors or heating circuits can be operated, for example, in the temperature range from 100 ° C. to 400 ° C., the temperature being dependent on the respective softening temperatures of the materials.
  • the surfaces can then be tempered so that a material plate on one surface and the other on the opposite surface of the heat element are guided past contact.
  • the material plates can be supplied to the surfaces of the heat element with different contact pressure.
  • this allows special features of the individual material plates, such as their density, structure, material properties to be dealt with as needed, so that identical but also different material plates can be treated "in a manner appropriate to the species" before they are welded together. It is advantageous if the material plates with a small distance parallel or almost parallel with an angle of less than 1 ° are fed to the heating element.
  • the preferred gap dimension is less than or equal to 10 mm, but preferably a smaller gap of 5 mm or even no gap is present, ie the plates are superimposed on the heat element. This can go so far in the field of welding station that the material plates are fed quasi with a negative gap of, for example, up to minus 4 mm the heat element. This is to be equated with an already existing melting of the surfaces. Due to the small or no gap enters a thermal insulation of the heat element, so that with low energy optimal melting of the material plates can be achieved at the surfaces to be welded together.
  • offset heat elements may be provided so that each located between the material plates gap is associated with at least one heat element.
  • the fused surfaces of the material plates can also be connected to one another simultaneously in a welding station.
  • the method has been found to be particularly suitable, even if they have the same thickness, as occurring by the parallel, in particular symmetrical feeding occurring after welding curvatures of the finished material panels are sustainable avoided.
  • the thermal element is preferably self-cleaning due to the continuous and contact-related passing of the material plates so that residual material adhering to the surface of the surfaces is reliably dissipated and, for example, can contribute to the joining process of the next material plate.
  • the stated object is also achieved by a device for thermal, surface welding of a plurality of material plates.
  • a first conveyor and a second conveyor for continuously feeding the material plates to the welding station are provided. Upstream of the welding station, the heating element is arranged. Pressing elements downstream of the heating element provide for the joining process, which is possible due to the previous application of heat by the heating element and leads to the fluid connection of the material plates.
  • the first subsidy der adopted and the at least one further conveyor are at least in the region of the welding station at an angle of less than 1 °, preferably arranged parallel to each other, which allows a gentle supply of even rigid insulating panels.
  • the arrangement of the heat element touching the surfaces of the material plates can be accomplished with relatively little energy, a melting of the surfaces.
  • the parallel feed contributes to the fact that relatively little air reaches the heating element, which is at the same time arranged between heat-insulating material plates. This also contributes to an energy-efficient melting.
  • the heat element is preferably arranged directly in the welding station, so that the joining process can take place immediately after the melting process.
  • Means for positioning the material plates to each other are associated with the welding station, as by the parallel feed positioning shortly before or preferably in the welding station to achieve an optimum result is possible. As a result, the cost of reworking after the joining process and the accumulation of material waste can be reduced.
  • the heating element has a plurality of surfaces which can be tempered to different temperatures, or the material plates are fed to the heating element at different pressure or different "draft", i.e. with a quasi "negative" gap.
  • the tempering is accomplished in a particularly preferred manner by separate heating means.
  • the heat element is such that there is no adhesion of residual material of the melted surfaces of the material plates. This can be achieved by e.g. appropriate coatings and polishing of the heat element can be ensured. This allows a guide of the material plates close to the heat element to facilitate the parallel feed.
  • the conveyors for conveying the material plates are arranged so that plates between the material forms a gap less than or equal to 10 mm, preferably between 5 and 0 mm.
  • the material plates can also be supplied to the thermal element with a negative gap of, for example, up to minus 4 mm. Due to the low to no or even negative gap and the small angle in the feeder, the material can be supplied with a low overall height. If necessary, in the gap in front of the heat element, a separating element can be used as a positioning aid whose height is less than or equal to the height of the heat element. After the heating element The material plates are joined together, so that virtually results in a gap with a "negative gap" less than zero.
  • the gap is tuned to the vertical height corresponding to the vertical extent of the thermal element. This leads to a low-friction and low-wear promotion along the heating element.
  • a plurality of heat elements are provided which are offset from one another at least in one direction transversely to the transport direction of the material plates.
  • the heat elements With horizontal feed of the material plates and horizontally arranged heat element, the heat elements then lie vertically one above the other, but they can be exactly offset one above the other in the transport direction.
  • the at least one heat element can also be arranged vertically standing.
  • the material plates can be reliably and positionally supplied to the heating element, so that joining processes along the edges of material plates are easy to implement.
  • FIG. 2 shows an enlarged detail from FIG. 2 in the region of the heating blade 15
  • FIG. 4 shows a representation according to FIG. 2 with a plurality of material plates to be joined at the same time
  • Fig. 5 is a schematic representation of a known method according to the prior art.
  • Fig. 5 shows schematically a method for the thermal, surface welding of several material plates of foamed materials according to the prior art, as e.g. from DE 10 2012 204 822 A1 is known.
  • the existing there machines A to D are surrounded by dashed lines for explanation.
  • first material plates 10 and further material plates 1 1 are supplied.
  • the material plates 10 are arranged on a conveyor 20, the material plates 1 1 on a conveyor 21, which is formed in the original example by a vacuum conveyor. From left to right in FIG. 5, the material plates first arrive at a planner shaft 18 with which a surface treatment in region A takes place from above.
  • the machine B is a vacuum transfer station, in which now the material plates 1 1 are received by the vacuum belt conveyor. Depending on the length of the plate one or two or more plates are fed and then turned by 180 °. Then, the number of plates machined correspondingly on the opposite surface, so that corresponding pairs of pairs form, which then run into the Plattenhub- and positioning station C.
  • the Plattenhub- and positioning station C then performs the material plates at an angle accurately positioned the welding station D to.
  • a heating sword as a heating element 15, which melts the surfaces of the material plates.
  • nerisch not shown manner, the material plates 10, 1 1 pressed against each other via pressure rollers 25 and so firmly bonded together.
  • Fig. 1 shows the corresponding inventive method for thermal, surface welding of several material plates 10, 1 1 of foamed and / or not foamed material, i. not only foamed materials can be joined together with the method.
  • a "planar” welding is understood as a welding or joining any surfaces of material plates, wherein to increase the width of the longitudinal edges, to increase the length of the transverse edges and to increase the thickness or height of the insulating panels, the surfaces of the insulating panels themselves welded together become.
  • the plates according to the invention according to FIG. 1 in parallel and with respect to their surfaces already above and / or below, for. can be fed processed by the dynamically adjustable planetary wave, they can be fed directly to the dashed framed welding station D without a vacuum turning station, in which a corresponding Plattenhubstation is provided or integrated. Due to the parallel feeding of the material plates to the relatively thin heat element can be dispensed with the lifting station and due to the dynamic planner adjustment on the vacuum transfer station.
  • the further material plates 1 1 can be fed to a vacuum conveyor line 21, while the material plates 10 are arranged on the conveyor 20, which may also be designed as a vacuum conveyor.
  • the heat element At the end of the welding station D is the heat element in addition to the already in the conveying direction 14, the pressing means in the form of pressure rollers 25 can be seen.
  • the material plate 10 after entry from the conveyor 21, for example, a hanging vacuum conveyor are pressed into a lower position, so that the next material plate 1 1 can run over the first material plate.
  • This is in Fig. 1 at the second position recognizable.
  • This leads to a process that is more optimal than the prior art for highest throughput through plate pair formation in a two-level process.
  • the first material plate with eg 9.8 m / s 2 can be accelerated and at high plate performance, the plates are of small thickness.
  • the conveyor 21 has slightly lowered from the previous second position to deliver the desired gap.
  • This is the principle of angular transfer in two planes, which contributes to high throughput. It is only a small drop height of e.g. only 100 mm drop height instead of 700 to 1300 mm with a horizontal Abschubrate.
  • the plate pair is formed, which can then run directly into the welding station D.
  • the dynamic shaft adjustment Due to the dynamic shaft adjustment, an alternating machining of the upper and lower surface is to take place, which must be set in the partial gap between the material plates in the pass.
  • the material panels are regularly provided with a skin that is to be removed for processing on the welding sides. Due to the heating element and the reciprocal dynamic planner shaft adjustment, which in the exemplary embodiment covers approximately 10 mm in the exemplary embodiment, the turning station can be dispensed with.
  • At least one first material plate 10 is continuously fed to the welding station D by means of a first conveying device 20 and at least one further material plate 11 by means of at least one further conveying device 21.
  • the facing to be welded surfaces 10a, 1 1 a of a pair of plates forming material plates 10, 1 1 are applied as shown in FIG. 3 upstream of the welding station D by means of at least one located between the surfaces of the heat element 15 so heat that at least one of these surfaces 10a, 1 1 a melts.
  • more than one heat element 15 can be provided between the plates to be joined to one another.
  • the material plates 10, 11 are fed parallel or nearly parallel to the welding station 15 at an angle of less than 1 °.
  • the heat element 15 touches the surfaces 10a, 11a of the material plates 10, 11 and melts them directly. Due to the parallel feed, it is possible to position the material plates 10, 1 1 in the welding station D or near the welding station D accurately to each other and to connect with each other. Preferably, the precise positioning can also be done only in the welding station D, and it is advantageous that the material plates are measured and positioned during the feed.
  • the heat element 15 can have a plurality of surfaces 15a, 15b which can be temperature-controlled to different temperatures. This can be achieved in particular by separate heating means 16, 17, which ensure that opposing surfaces 15a, 15b of the heating element 15 - in Fig. 3 below and above the heating element - are heated to different temperatures. It is also alternatively or additionally possible to supply the material plates with different contact pressure to the heating element.
  • the heating means are electrical heating means such as e.g. Resistance heaters as well as heating circuits with suitable temperature control. Such heating means are known to those skilled in the art.
  • the first material plate 10 on one surface 15a and the further material plate 1 1 on the opposite other surface 15b of the heat element 15 are guided past contact.
  • material composition, composition and / or thickness of the material plate can be targeted to work with certain temperature ranges in order to achieve a gentle melting of the surfaces to be joined.
  • the weld skin can be adjusted as thick as necessary in order to be able to insert the material plates, but also to set them as thin as possible, in order thereby to impair as little as possible the water-diffusion resistance factor compared to the starting plates.
  • the desired temperature for melting the surfaces can be achieved with relatively little energy by arranging the heat element 15 between the material plates 10, 11, which may be supplied in parallel with a small gap 13. the.
  • the heat element 15 between the material plates 10, 1 1 which have a low thermal conductivity and thus isolate the heat element 15 at the same time in position , This contributes to a highly energy-efficient joining process.
  • only as much material is melted as is required for the joining process, so that a very thin
  • weld seam can be achieved. This in turn contributes to a good diffusion-openness of the end product also in the area of the weld.
  • the material plates are not only as parallel or nearly parallel as possible, but also with a minimum distance with a gap, e.g. less than or equal to 10 mm, preferably with a gap between 5 and 0 mm supplied to the heat element 15. This can also go so far in the area of the welding station that the material plates have a quasi negative gap of e.g. be supplied to the heating element 15 to minus 4 mm. Due to the small to negative gap, the material can be supplied with a low overall height.
  • a separating element 23 can be used as a positioning aid whose height is less than or equal to the height of the heat element. After the heating element, the material plates are joined together, so that virtually results in a gap with a "negative gap" less than zero.
  • the material plates may also be rigid insulating panels, for example, have the same thickness. Due to the parallel feed, no curvature of the material plates 10, 11 in the feed is required, so that also several material plates For example, each with a thickness of 200 mm can be joined together by this method.
  • any continuous surfaces and thicknesses of insulating panels of extruded standard formats can be produced in the case of a continuous supply of the welding partners, that is to say the material panels.
  • a subsequent cut to any geometric shapes and surfaces is possible.
  • the limits of the extrusion in the production of the material plates can be taken into account and it can be used material plates with optimum lambda values readily.
  • high throughput rates are easily possible.
  • the process can also be significantly simplified in the production of multilayer boards with more than two layers.
  • the material plates are fed continuously via conveyors 20, 21 such as vacuum conveyors.
  • the material plates 10, 1 1 to be joined are preferably aligned and positioned precisely in front of the welding station D and then guided along the heat element 15 and fused, so that they can then be joined together immediately afterwards under contact pressure.
  • the joined plates are then fed to a further assembly.
  • the material plates 10, 1 1 are parallel to each other or at least almost parallel to each other with a possibly small gap 13 of about 10 mm, preferably 5 mm or even without or with a negative gap, fed to the welding station.
  • the upper material plate 1 1 can be positioned by hanging vacuum conveyor as a conveyor 21 to the desired gap height.
  • the material plates are suitably processed in the upstream planning station A by means of planner shafts 18 alternately above and / or below, so that only one planning station is required.
  • the parallel feeding with a small or no gap 13 eliminates the lifting and turning process and thus the vacuum reversing station, which regularly represents the bottleneck in the maximum performance of a continuous thermobonding station as a welding station.
  • the apparatus for carrying out the method comprises a first conveyor 10 for continuously feeding a first material plate 10 to a welding station D and a further conveyor 21 for continuously feeding at least one further material plate 1 1 to the welding station D.
  • At least one heating element 15 is arranged upstream of the welding station between the surfaces 10a, 11a of the material plates 10, 11 to be welded onto one another which are to be welded together.
  • the first conveyor 20 and the at least one further conveyor 21 are at an angle of less than 1 °, at least in the region of the welding station D, preferably they are parallel to each other.
  • the heating element 15 is arranged relative to the conveyors 20, 21 so that it contacts the surfaces 10a, 11a of the material plates 10, 11.
  • the welding station D are associated with means for positioning the material plates 10, 1 1 to each other.
  • the means for positioning the material plates are provided in the welding station D itself.
  • the heat element 15 may have a plurality of surfaces 15a, 15b, which are temperature-controlled to different temperatures. This is preferably done by separate heating means 16, 17.
  • the conveyor 20 and the conveyor 21 for conveying the material plates 10 and 1 1 are arranged so that forms the desired gap between the material plates, which preferably has a vertical height, the the vertical extent of the heat element 15 is equal to or smaller than this height. If several layers of material plates are supplied, there is a corresponding gap or at least one corresponding thermal element between each layer of the material plates according to FIG. 4.
  • These plurality of heat elements 15, 15 ' are offset from each other at least in a direction transverse to the transport direction 14 of the material plates, i. in the embodiment, they are vertically above one another, but they could also be offset in the transport direction 14 to each other.
  • the method and apparatus and rigid insulation boards can be supplied continuously, pre-aligned, aligned, prepositioned the welding station D are supplied.
  • the material plates can be joined together longitudinally, transversely and in multiple layers. A welding of identical and dissimilar materials possibly also with different melting temperatures is possible with appropriate design of the heating element 15.
  • the heating element is a heating blade or a thin heating wire, wherein the material plates are guided past the heating element continuously.
  • the heating element 15 can be operated permanently and / or clocked.
  • the heat element can be subjected to a short time with higher energy before the supply of the semifinished product to be welded become.
  • the heat element 15 is equipped with a control unit, such as a temperature sensor, a temperature control or control.
  • the surface of the heat element 15 is preferably designed so that an adhesion of the material to be welded is reduced or completely excluded. This can be achieved on the one hand by a surface treatment e.g. be achieved with a coating or a special surface design to a polish.
  • the heating element 15 is also process-based self-cleaning, since the material plates are continuously passed contact-contacting the heat element.
  • the heating element is e.g. a thin, heatable steel band.
  • the heat element 15 a high energy density must be introduced. The energy must be supplied quickly or dynamically. If necessary, cooling can also be effected in a targeted manner via the Peltier effect.
  • the temperature ranges at which the heat element 15 is operated depend on the material to be welded. A temperature of 100 to 400 ° C is usually required. The concrete surface temperature of the material to be welded depends on the recommended processing temperatures of the materials to be joined.
  • the heat element 15 must also be mechanically durable and heat-resistant. It should have the lowest possible thermal expansion or it must be provided a device for permanent compensation of thermal expansion, such. a bias with weights, springs or the like. Multi-layer welding can take place in one station and in one work step. It is also possible to supply more than two plates, as long as it is ensured that the plate surfaces are fed in parallel or nearly parallel.
  • the positioning should preferably allow an exact feed, so that before, during and after joining a plate offset minimized, excluded, targeted and reworking is largely avoided. This can be assisted, for example, by measuring the material plates during the process and positioning them in relation to each other so that the most exact possible positioning results.
  • the supply via the conveyors 20, 21 can eg with vacuum bands, air bags, mangle rolls, alignment rolls, driven stop rulers, stationary or ange- drove, slide or pusher done.
  • a multi-layer feed is possible below by vacuum belts and in the middle, for example by a lateral conveyor 22 as shown in FIG. 4 at the outer edges. Also conceivable are slides and pushers or lateral guides and slats.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The invention relates to a method and a device for thermal planar welding of a plurality of material panels consisting of foamed and/or also non-foamed material, in which material panels (10, 11) are fed continuously to a welding station (D) by means of conveyor devices (20, 21). The material panel (10, 11) surfaces which are to face each other and be welded are subjected to the application of heat upstream of the welding station (D) by means of at least one heating element (15) located between said surfaces, such that at least one of these surfaces melts. The surfaces are then integrally interconnected under contact pressure, as the result of the preceding application of heat by said heating element (15). The features according to which the material panels (10, 11) are fed to the welding station (D) at an angle of less than 1° and preferably parallel to one another, the heating element (15) melts the surfaces of the material panels (10, 11) with contact, and the material panels (10, 11) are connected to one another positioned with an exact fit in the welding station (D), allow a method and device to be provided which allow the production of high quality material panels while achieving an energy-efficient process and a high working speed.

Description

Verfahren und Vorrichtung zum thermischen, flächigen Verschweißen  Method and device for thermal, surface welding
mehrerer Werkstoffplatten  several material plates
Beschreibung description
Bezug zu verwandten Anmeldungen Related to related applications
Die vorliegende Anmeldung bezieht sich auf und beansprucht die Priorität der deutschen Patentanmeldung 10 2016 1 19 012.8, hinterlegt am 06.10.2016 sowie der deutschen Pa- tentanmeldung 10 201 1 120 064.6, hinterlegt am 20.10.2016, deren Offenbarungsgehalt hiermit ausdrücklich auch in seiner Gesamtheit zum Gegenstand der vorliegenden Anmeldung gemacht wird. The present application relates to and claims the priority of German Patent Application 10 2016 1 19 012.8, filed on 06.10.2016 and the German patent application 10 201 1 120 064.6, filed on 20.10.2016, the disclosure of which hereby expressly also in its entirety is made the subject of the present application.
Gebiet der Erfindung Field of the invention
Die vorliegende Erfindung betrifft ein Verfahren zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten aus aufgeschäumten und/oder auch nicht aufgeschäumtem Material mit den Merkmalen nach dem Oberbegriff des Anspruches 1 sowie eine Vorrichtung zum thermischen, flächigen Verschweißen mehrerer derartiger Werkstoffplatten mit den Merkma- len nach dem Oberbegriff des Anspruches 1 1 . The present invention relates to a method for the thermal, surface welding of a plurality of material plates made of foamed and / or non-foamed material having the features according to the preamble of claim 1 and an apparatus for thermal, surface welding of several such material plates with the features according to the preamble of claim 1. 1
Unter einem„flächigen" Verschweißen wird dabei ein Verschweißen bzw. Fügen beliebiger Oberflächen von Werkstoff platten, wie insbesondere Dämmstoffplatten verstanden, wobei zur Erhöhung der Breite die Längskanten, zur Erhöhung der Länge die Querkanten und zur Steigerung der Dicke bzw. Höhe der Dämmstoffplatten die Flächen der Dämmstoffplatten selbst miteinander verschweißt werden. Zum Anschmelzen der zu fügenden Oberflächen wird dabei ein Wärmeelement verwendet, das in den Ausführungsbeispielen horizontal angeordnet ist und eine im Vergleich zu seiner Länge geringe vertikale Höhe aufweist. Grundsätzlich kann das Wärmeelement insbesondere zum Fügen der Flächen und Kanten aber auch vertikal oder in einem beliebigen anderen Winkel angeordnet sein. Under a "surface" welding is a welding or joining any surfaces of material plates, as understood in particular insulating panels, wherein to increase the width of the longitudinal edges, to increase the length of the transverse edges and to increase the thickness or height of the insulating panels, the surfaces To melt the surfaces to be joined, a heat element is used which is arranged horizontally in the exemplary embodiments and has a small vertical height compared to its length also be arranged vertically or at any other angle.
Stand der Technik State of the art
Das Hauptanwendungsgebiet der vorliegenden Erfindung, auf das die Erfindung jedoch nicht beschränkt ist, ist das Kaschieren oder Aufdoppeln von Hartschaumplatten, die zur Herstellung von Wärmedämmschichten insbesondere für Gebäude verwendet werden. Derartige Dämmstoffplatten werden aufgrund geltender Energiesparverordnungen vor allem im Bau- und Immobilienbereich sowie in der Industrie zur Erzielung einer ausreichenden Wärmedämmung eingesetzt, um nicht erneuerbare Energieträger einzusparen. Durch eine optimale Wärmedämmung können die Heizkosten eines Hauses deutlich verringert werden. Aus die- sem Grund fanden in der Vergangenheit Kunststoffschaumelemente als Dämmstoffplatten mit besonders starken Dicken von mehr als 100 mm Einsatz bei der Gebäudeisolierung. Zu diesem Zweck wurden vor allem Dämmmittel wie beispielsweise Polyurethan-Hartschaum, expandierter Polystyrol-Hartschaum oder extrudierter Polystyrol-Hartschaum bekannt. However, the main field of application of the present invention, to which the invention is not limited, is the lamination or doubling of hard foam boards which are used for the production of thermal barrier coatings, in particular for buildings. such Insulation boards are used to achieve sufficient thermal insulation due to current energy-saving regulations, especially in the construction and real estate sector and in the industry, in order to save non-renewable energy sources. Optimum heat insulation can significantly reduce the heating costs of a house. For this reason, in the past, plastic foam elements were used as insulating panels with particularly strong thicknesses of more than 100 mm for building insulation. For this purpose, especially insulating materials such as rigid polyurethane foam, expanded polystyrene foam or extruded polystyrene foam were known.
Extrudierte Werkstoff platten sind üblicherweise prozessbedingt in Breite und Höhe z.B. meist limitiert auf 600 bis 1200 mm Breite und maximal 100 mm Höhe bei einer Plattenbreite von 1200 mm und 240 mm Höhe bei einer Plattenbreite von 600 mm. Grundsätzlich sind jedoch durchaus auch andere Breiten und Höhen denkbar. Extruded material plates are usually process-related in width and height, e.g. mostly limited to 600 to 1200 mm width and 100 mm height maximum with a plate width of 1200 mm and 240 mm height with a plate width of 600 mm. Basically, however, other widths and heights are conceivable.
Nach Abkehr von den in der Vergangenheit zum Aufschäumen der Werkstoffplatten verwen- deten FCKW-haltigen Treibmitteln haben sich bei der Herstellung derartiger Kunststoffplatten jedoch Schwierigkeiten eingestellt. Diese Schwierigkeiten nehmen spätestens ab einer Dicke der Werkstoffplatten von mehr als 80 mm deutlich zu. Gleichzeitig verschlechtern sich die Isoliereigenschaften und der Lambda-Wert bei Werkstoffplatten mit einer Dicke von mehr als 80 mm, da sich die Zellstruktur des Schaums verändert. However, after turning away from the CFC-containing propellants used in the past for foaming the material plates, difficulties have arisen in the production of such plastic plates. These difficulties increase significantly at least from a thickness of the material plates of more than 80 mm. At the same time, the insulating properties and the lambda value deteriorate in the case of material plates with a thickness of more than 80 mm, since the cell structure of the foam changes.
Aus der dem Oberbegriff des Anspruches 1 zugrundeliegenden DE 10 2012 204 822 A1 ist ein Verfahren zum dauerhaften flächigen Verbinden von Werkstoffplatten aus aufgeschäumten Materialien bekannt. Die Werkstoff platten werden mit je einer Fördereinrichtung in der gewünschten Orientierung und Deckung passgenau übereinander positioniert, einer From the preamble of claim 1 underlying DE 10 2012 204 822 A1 discloses a method for permanent surface bonding of material plates made of foamed materials is known. The material plates are positioned one above the other, each with a conveyor in the desired orientation and coverage, one above the other
Schweißstation zugeführt und dort entlang eines Trennschwertes bewegt. Durch die Positionierung des Trennschwertes wird ein Spalt mit definierter Spaltbreite erzeugt, in die ein stromabwärts vom Trennschwert angeordnetes, fest installiertes Wärmeelement, vorzugsweise ein Heizschwert, angeordnet ist. Dieses Heizschwert erweicht durch berührungsfreie Wärmeübertragung mindestens eine der Oberflächen der zu fügenden Werkstoffplatten oder schmilzt sie an. Anschließend werden die Werkstoffplatten durch Andrückelemente zusammengefügt, die die Werkstoffplatten so gegeneinander drücken, dass sich aufgrund der vorangegangenen Wärmebeaufschlagung beim Andrücken und anschließenden Abkühlen der Schweißnaht eine stoffschlüssige Verbindung einstellt. Damit können auch mehrlagige Hartschaumplatten hergestellt oder Hartschaumplatten kaschiert werden. Allerdings ist durch die Anordnung von Trennschwert und Heizschwert in einem Spalt eine Umlenkung der Werk- stoffplatten erforderlich, was insbesondere bei größeren Dicken von Werkstoffplatten zu Unebenheiten und Krümmungen der fertig gefügten Werkstoffplatte führen kann. Welding station fed and moved along a separating blade. The positioning of the separating blade creates a gap with a defined gap width, in which a fixedly installed heating element, preferably a heating blade, arranged downstream of the separating blade is arranged. This heating blade softens by contact-free heat transfer at least one of the surfaces of the material plates to be joined or melts them. Subsequently, the material plates are joined together by pressing elements that press the material plates against each other so that adjusts a cohesive connection due to the previous heat application during pressing and subsequent cooling of the weld. Thus, multi-layer rigid foam boards can be produced or rigid foam boards are laminated. However, due to the arrangement of the separating blade and the heating sword in a gap, a diversion of the working required material plates, which can lead to bumps and bends of the finished joined material plate especially for larger thicknesses of material plates.
Aus der WO 2016/102292 A1 ist ein Verfahren zur Herstellung von zumindest zweilagigen thermoplastischen Platten durch thermisches Verschweißen von Platten bekannt, wobei die Platten eine unterschiedliche Dichte aufweisen. Dabei werden mehrere Heizelemente auf zueinander versetzten Ebenen zwischen die Ausgangsplatten eingeführt, ohne dass die Oberflächen der Heizelemente die Werkstoffplatten berühren. Durch entsprechend gewählte Abstände können unterschiedliche Energiemengen bzw. Heizleistungen auf die miteinander zu verbindenden Oberflächen der Ausgangsplatten übertragen werden, die anschließend miteinander verbunden werden. WO 2016/102292 A1 discloses a process for the production of at least two-ply thermoplastic sheets by thermal welding of sheets, the sheets having a different density. In this case, a plurality of heating elements are introduced on mutually offset planes between the output plates, without the surfaces of the heating elements touching the material plates. By appropriately selected distances different amounts of energy or heating power can be transferred to the surfaces to be joined together the output plates, which are then connected to each other.
Aus der EP 2 724 843 A1 ist es bekannt, extrudierte Schaumstoffplatten großer Dicke durch Verschweißen mehrerer Ausgangsplatten herzustellen, wobei die Schweißnaht durch eine kurzfristige Schockerwärmung so dünn gehalten wird, dass die Wasserdampfdiffusionswi- derstandszahl gegenüber den Ausgangsplatten möglichst wenig erhöht wird und eine gewünschte Diffusionsoffenheit zu erreichen ist. Für die Erwärmung wird ein Heizschwert oder ein Heizkeil als Wärmequelle verwendet, das oder der zumindest teilweise mit den Berührungsflächen der Ausgangsplatten in Berührung kommt. Die Ausgangsplatten werden in ei- nem Winkel zueinander zugeführt, der zwischen 1 bis 15 Grad (Absatz (0137)) beträgt. From EP 2 724 843 A1 it is known to produce extruded foam plates of large thickness by welding a plurality of starting plates, wherein the weld is kept so thin by a short-term shock heating that the Wasserdampfdiffusionswi- resistance number compared to the output plates is increased as little as possible and a desired diffusion openness reach is. For the heating, a heating blade or a heating wedge is used as the heat source, or at least partially comes into contact with the contact surfaces of the output plates. The starting plates are fed at an angle of between 1 and 15 degrees (paragraph (0137)).
Herkömmlicherweise erfolgt das Verschweißen zweier Werkstoffplatten taktweise im Spiegelschweißverfahren, wobei die zu verbindenden Oberflächen der beiden Werkstoffplatten vollflächig durch flächige Wärmequellen bis zum Anschmelzen aufgeheizt werden. Danach werden die Spiegel herausgefahren und die beiden Werkstoffplatten passgenau aufeinander gelegt und anschließend gegeneinander gedrückt, bis die angeschmolzenen Oberflächen der Werkstoffplatten erkaltet sind und hierdurch eine stoffschlüssige Verbindung der beiden Werkstoffplatten entsteht. Bedarfsweise können dann noch weitere Platten aufgebracht werden, um die Plattendicke weiter zu erhöhen. Die Spiegel stehen üblicherweise in einem ge- ringem Abstand von z.B. 0,3 mm zu den Werkstoffplatten, so dass letztere sehr exakt zugeführt werden müssen. Durch die Bewegung der Spiegel besteht auch die Gefahr, dass die angeschmolzenen Oberflächen unterschiedlich schnell abkühlen. Das Spiegelschweißverfahren hat den Nachteil, dass nur eine geringe Plattenleistung/min. und ein hoher Energieeinsatz erforderlich ist, da mit jeder Bewegung, die zwischen den Platten zum Anschmelzen aufgebrachte Wärme wieder abgeführt wird. Den genannten Verfahren ist gemeinsam, dass einerseits eine Begrenzung der Geometrie dadurch vorgegeben ist, dass die Extrusionsbreite und/oder die Extrusionsdicke limitiert sind. Zudem ist eine Umstellbarkeit eines Extruders für eine auftragsbezogene Produktion mit hohem Ausschuss und Aufwand verbunden, bis der Prozess stabil und reproduzierbar läuft. Optimale Lambda-Werte werden bis zu einer Dicke von ca. 80 mm erreicht, danach reduzieren sich die Werte in den Einzelplatten mit zunehmender Dicke. Conventionally, the welding of two material plates takes place cyclically in the mirror welding process, wherein the surfaces to be joined of the two material plates over the entire surface are heated by surface heat sources until fused. Thereafter, the mirrors are moved out and the two material plates accurately placed on each other and then pressed against each other until the melted surfaces of the material plates are cooled and thus creates a material connection of the two material plates. If necessary, then further plates can be applied to further increase the plate thickness. The mirrors are usually at a small distance of, for example, 0.3 mm from the material plates, so that the latter must be supplied very accurately. Due to the movement of the mirrors, there is also the danger that the melted surfaces will cool at different speeds. The mirror welding method has the disadvantage that only a small plate capacity / min. and a high energy input is required, since with each movement, the heat applied between the plates for melting is dissipated again. The said method has in common that on the one hand a limitation of the geometry is given by the fact that the extrusion width and / or the extrusion thickness are limited. In addition, a convertibility of an extruder for an order-related production is associated with a high degree of waste and effort until the process is stable and reproducible. Optimum lambda values are achieved up to a thickness of approx. 80 mm, after which the values in the individual plates reduce with increasing thickness.
Werden die Ausgangsplatten wie im Stand der Technik üblich unter einem Winkel von z.B. fünf Grad oder mehr zugeführt, führt dies zu einer geringeren Leistung und Dickenbegren- zung der oberen Dämmstoffplatte aufgrund der damit einhergehenden Krümmung. If the starting plates are made as usual in the art at an angle of e.g. fed to five degrees or more, this leads to a lower performance and thickness limitation of the upper insulation board due to the associated curvature.
Zusammenfassung der Erfindung Summary of the invention
Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu- gründe, ein Verfahren und eine Vorrichtung zum flächigen thermischen Verschweißen von Werkstoffplatten zu schaffen, die die Herstellung qualitativ hochwertiger Werkstoffplatten bei gleichzeitig energieeffizientem Prozess und hoher Arbeitsgeschwindigkeit erlaubt. Starting from this prior art, the present invention is based on the object to provide a method and an apparatus for the surface thermal welding of material plates, which allows the production of high-quality material panels at the same time energy-efficient process and high operating speed.
Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten aus aufgeschäumten und/oder auch nicht aufgeschäumten Materialien mit den Merkmalen des Anspruches 1 bzw. 1 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Patentansprüche. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in technologisch sinnvoller Weise miteinander kombinierbar und können durch erläuternde Sachverhalte aus der Beschreibung und durch Details aus den Figuren ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden. This object is achieved by a method and a device for thermal, surface welding of a plurality of material plates made of foamed and / or non-foamed materials with the features of claim 1 or 1 1. Advantageous developments are the subject of the dependent claims. The features listed individually in the claims can be combined in a technologically meaningful manner and can be supplemented by explanatory facts from the description and by details from the figures, with further embodiments of the invention are shown.
Das Verfahren und die Vorrichtung zur Durchführung des Verfahrens gestatten ein Verschweißen beliebiger Oberflächen von Werkstoffplatten, wie insbesondere Dämmstoffplat- ten. Dabei können zur Erhöhung der Breite die Längskanten, zur Erhöhung der Länge die Querkanten und zur Steigerung der Dicke bzw. Höhe der Dämmstoff platten die Flächen der Dämmstoffplatten selbst miteinander verschweißt werden. Die Erfindung macht sich dabei die Erkenntnis zunutze, dass durch ein möglichst paralleles Zuführen mit einem Winkel der Zuführung kleiner 1 ° ein kontinuierliches Verfahren mit kontinuierlicher Zuführung der Werk- stoffplatten auch bei biegesteifen Werkstoffplatten möglich ist. Dabei berührt das Wärmeelement, das vorzugsweise als Heizschwert ausgebildet ist, die Oberflächen der Werkstoffplatten und schmilzt diese vor dem eigentlichen Schweiß- oder Fügeprozess an. Durch die unmittelbare Anlage des Wärmeelements an den Werkstoffplatten kann in einem optimierten Temperaturbereich gearbeitet werden, der gerade so viel von der Werkstoffplatte anschmilzt, wie für den anschließenden Fügeprozess erforderlich ist. Dadurch kann die Schweißnaht sehr dünn gehalten werden, was u.a. zur Diffusionsoffenheit der hergestellten Endprodukte beiträgt. Da das Anschmelzen unmittelbar vor dem eigentlichen Schweißprozess erfolgt, und auch das Wärmeelement nicht aus dem Spalt entfernt werden muss, kann der Prozess mit verhältnismäßig wenig Energie betrieben werden. Die geringe Wärmeleitfähigkeit der Werkstoffplatten hat zudem den Vorteil, dass Wärme aus dem minimalen Spalt bei paralleler oder nahezu paralleler Zuführung der Werkstoffplatten kaum entweichen kann. Gegenüber einer Zuführung der Werkstoffplatten im Winkel, bei der die um das Wärmeelement herum befindliche Luft in der Schweißstation„herausgedrückt" wird und damit auch Wärmeenergie abgeführt wird, ergibt sich gegenüber den vorbekannten kontinuierlich arbeitenden Verfahren ein deutlich geringerer Energieaufwand zum Erwärmen des Wärmeelements zum Anschmelzen der zu fügenden Oberflächen der Werkstoff platten. The method and the device for carrying out the method allow welding any surfaces of material plates, in particular Dämmstoffplat- th. In order to increase the width of the longitudinal edges, to increase the length of the transverse edges and to increase the thickness or height of the insulating panels Surfaces of the insulating panels themselves are welded together. The invention makes use of the fact that by feeding in parallel with an angle of delivery of less than 1 °, a continuous process with continuous feeding of the material plates is possible even with rigid material plates. In this case, the heat element, which is preferably designed as a heating sword, touches the surfaces of the material plates and melts them before the actual welding or joining process. By the direct contact of the heat element to the material plates can be worked in an optimized temperature range, which melts just as much of the material plate, as required for the subsequent joining process. As a result, the weld can be kept very thin, which among other things contributes to the diffusion-open nature of the end products produced. Since the melting takes place immediately before the actual welding process, and also the heat element does not have to be removed from the gap, the process can be operated with relatively little energy. The low thermal conductivity of the material plates also has the advantage that heat from the minimum gap with parallel or nearly parallel feeding of the material plates can hardly escape. Compared to a feeding of the material plates at an angle at which the air around the heat element around "is pushed out" in the welding station and thus heat energy is dissipated, compared to the previously known continuously operating method results in a significantly lower energy consumption for heating the heating element for melting the plates to be joined surfaces of the material.
Die parallele oder nahezu parallele Zuführung der Werkstoff platten hat zudem den Vorteil, dass deutlich weniger Bauhöhe bei einer erfindungsgemäßen Vorrichtung erforderlich ist. Damit ist ein Einrichten, Ausrichten oder Positionieren der Werkstoffplatten zueinander, um z.B. einen Falz oder eine Nut und Feder an den Werkstoffplatten zu erzeugen, nun direkt in der Schweißstation möglich. Dies reduziert den baulichen Aufwand für entsprechende Positionierungsmechanismen, wie sie bisher im Stand der Technik üblich sind. Gleichzeitig verringern sich die bisher erforderlichen Umrüstzeiten, da selbst mit einem kleinen Lager an Werkstoff platten kurzfristig ein großes Geometriespektrum an zu erzeugenden Werkstoffplatten abgedeckt werden kann. Dies führt zu einem hohen Maß an Flexibilität und geringen Lagerkapazitäten bei den Herstellbetrieben. Beliebige Dicken, Breiten und Längen von Werkstoffplatten können so in einer Station aber auch in mehreren Stationen erzeugt werden. Eine Nacharbeit nach dem Fügeprozess lässt sich vermeiden oder zumindest minimieren, da durch die zur Schweißstation ortsnahe Positionierung eine hohe Präzision gewährleistet ist. Dies verringert auch mögliche Abfälle durch Nacharbeit erheblich und trägt damit zu einem resourcenschonenden Umgang mit den erforderlichen Rohstoffen bei. The parallel or nearly parallel feed of the material plates also has the advantage that significantly less height is required in a device according to the invention. This is to set up, align or position the material plates to each other, e.g. create a fold or a tongue and groove on the material plates, now possible directly in the welding station. This reduces the construction costs for corresponding positioning mechanisms, as they are customary in the prior art. At the same time reduce the hitherto required changeover times, since even with a small stock of material plates in the short term, a large range of geometry can be covered in to be produced material plates. This leads to a high degree of flexibility and low storage capacities in the manufacturing companies. Any thicknesses, widths and lengths of material plates can be produced in one station as well as in several stations. A reworking after the joining process can be avoided or at least minimized, since a high precision is ensured by the location close to the welding station. This also reduces possible waste by reworking considerably and thus contributes to a resource-saving handling of the required raw materials.
Gleichzeitig lässt sich die Durchsatzleistung auf z.B. bis zu 200 m3/h vor allem bei der Her- Stellung von vier oder mehrlagigen Platten dadurch steigern, dass sich mehrere Platten im Durchlaufverfahren miteinander verschweißen lassen. Von Vorteil ist, wenn die Werkstoffplatten während des Zuführens vermessen und in der Schweißstation zueinander positioniert werden. Dadurch kann die Effizienz weiter gesteigert werden, da bereits zum Zeitpunkt des Fügens die genaue Position der Platten bekannt ist. At the same time, the throughput rate can be increased to, for example, up to 200 m 3 / h, above all in the production of four or more layered plates, by allowing several plates to be welded together in a continuous process. It is advantageous if the material plates are measured during the feeding and positioned in the welding station to each other. As a result, the efficiency can be increased further, since the exact position of the plates is already known at the time of joining.
Vorzugsweise werden die Werkstoffplatten erst in der Schweißstation selbst zueinander passgenau positioniert. Je später die Positionierung erfolgt, desto einfacher ist die Positionierung zu gewährleisten, sofern sichergestellt ist, dass die Positionierung mit dem Durchsatz der Werkstoffplatten mithalten kann. Preferably, the material plates are positioned accurately to each other only in the welding station itself. The later the positioning takes place, the easier it is to ensure positioning, as long as it is ensured that the positioning can keep up with the throughput of the material plates.
Vorzugsweise werden die Werkstoffplatten nach einer Oberflächenbearbeitung insbesondere mit einer der Planerwellen der zu fügenden Oberflächen unmittelbar der Schweißstation zugeführt. Aufgrund der parallelen oder nahezu parallelen Zuführung in Verbindung mit der dynamischen Planerwellenverstellung mit einer Bearbeitung der Werkstoffplatten oben und/oder unten kann eine Wendestation und/oder Plattenhubstation eingespart werden. Preferably, after a surface treatment, in particular with one of the planner shafts of the surfaces to be joined, the material plates are fed directly to the welding station. Due to the parallel or nearly parallel feed in connection with the dynamic planner shaft adjustment with a processing of the material plates above and / or below, a turning station and / or Plattenhubstation can be saved.
Das Wärmeelement ist vorzugsweise ein Heizschwert, wobei auch mehrere Wärmeelemente vorgesehen sein können, insbesondere wenn mehrere Lagen von Werkstoffplatten, d.h. insbesondere mehr als zwei Lagen miteinander verschweißt werden. The heating element is preferably a heating bar, wherein a plurality of heating elements may also be provided, in particular if several layers of material plates, i. in particular, more than two layers are welded together.
Das Wärmeelement hat in einer bevorzugten Ausführungsform mehrere Oberflächen, die auf unterschiedliche Temperaturen temperierbar sind. Besonders vorteilhaft ist es, wenn das Wärmeelement mittels gesonderter Heizmittel auf einander gegenüberliegenden Oberflächen auf unterschiedliche Temperaturen erwärmt wird. Die unabhängig voneinander instal- Herten Heizmittel wie z.B. Heizwiderstände oder Heizkreisläufe können z.B. im Temperaturbereich von 100°C bis 400°C betrieben werden, wobei die Temperatur von den jeweiligen Erweichungstemperaturen der Werkstoffe abhängig ist. Über die Heizmittel können die Oberflächen dann so temperiert werden, dass eine Werkstoffplatte an der einen Oberfläche und die andere an der gegenüberliegenden Oberfläche des Wärmeelements kontaktbehaftet vorbeigeführt werden. Ebenso können alternativ oder ergänzend die Werkstoffplatten den Oberflächen des Wärmelements auch mit unterschiedlichem Anpreßdruck zugeführt werden. In beiden Fällen kann dadurch auf Besonderheiten der einzelnen Werkstoffplatten, wie ihre Dichte, Struktur, Materialbeschaffenheit ganz nach Bedarf eingegangen werden, so dass gleiche, aber auch verschiedene Werkstoffplatten„artgerecht" behandelt werden können, bevor sie miteinander verschweißt werden. Es ist von Vorteil, wenn die Werkstoffplatten mit einem geringen Abstand parallel oder nahezu parallel mit einem Winkel kleiner 1 ° dem Wärmeelement zugeführt werden. Das bevorzugte Spaltmaß beträgt kleiner gleich 10 mm, vorzugsweise ist jedoch ein kleinerer Spalt von 5 mm oder auch gar kein Spalt vorhanden, d.h. die Platten werden aufeinanderliegend dem Wärmeelement zugeführt. Dies kann im Bereich der Schweißstation auch so weit gehen, dass die Werkstoff platten quasi mit einem negativen Spaltmaß von z.B. bis zu minus 4 mm dem Wärmeelement zugeführt werden. Dies ist einem bereits erfolgten Anschmelzen der Oberflächen gleichzusetzen. Durch den geringen oder keinen Spalt tritt eine Wärmeisolierung des Wärmeelementes ein, so dass mit geringer Energie ein optimales Anschmelzen der Werkstoffplatten an den miteinander zu verschweißenden Oberflächen erreicht werden kann. In a preferred embodiment, the heating element has a plurality of surfaces which can be tempered to different temperatures. It is particularly advantageous if the heating element is heated to different temperatures on separate surfaces by means of separate heating means. The independently installed heating means such as eg heating resistors or heating circuits can be operated, for example, in the temperature range from 100 ° C. to 400 ° C., the temperature being dependent on the respective softening temperatures of the materials. About the heating means, the surfaces can then be tempered so that a material plate on one surface and the other on the opposite surface of the heat element are guided past contact. Likewise, as an alternative or in addition, the material plates can be supplied to the surfaces of the heat element with different contact pressure. In both cases, this allows special features of the individual material plates, such as their density, structure, material properties to be dealt with as needed, so that identical but also different material plates can be treated "in a manner appropriate to the species" before they are welded together. It is advantageous if the material plates with a small distance parallel or almost parallel with an angle of less than 1 ° are fed to the heating element. The preferred gap dimension is less than or equal to 10 mm, but preferably a smaller gap of 5 mm or even no gap is present, ie the plates are superimposed on the heat element. This can go so far in the field of welding station that the material plates are fed quasi with a negative gap of, for example, up to minus 4 mm the heat element. This is to be equated with an already existing melting of the surfaces. Due to the small or no gap enters a thermal insulation of the heat element, so that with low energy optimal melting of the material plates can be achieved at the surfaces to be welded together.
Werden mehr als zwei Lagen an Werkstoffplatten miteinander verschweißt, können mehrere wenigstens in einer Richtung quer zur Transportrichtung der Werkstoff platten versetzte Wärmeelemente vorgesehen sein, so dass jedem zwischen den Werkstoffplatten befindlichen Spalt wenigstens ein Wärmeelement zugeordnet ist. Die angeschmolzenen Oberflächen der Werkstoffplatten können dann gegebenenfalls auch gleichzeitig in einer Schweißstation miteinander verbunden werden. Gerade für biegesteife Dämmstoffplatten als Werkstoffplatten hat sich das Verfahren als besonders geeignet gezeigt, selbst wenn diese die gleiche Dicke aufweisen, da durch die parallele, insbesondere symmetrische Zuführung nach dem Verschweißen auftretende Krümmungen der fertig gefügten Werkstoffplatten nachhaltig vermieden werden. Vorzugsweise wird das Wärmeelement durch das kontinuierliche und kontaktbehaftete Vorbeiführen der Werkstoffplatten prozessbedingt selbst gereinigt, so dass vom Anschmelzen der Oberflächen anhaftendes Restmaterial zuverlässig abgeführt wird und z.B. zum Füge- prozess der nächsten Werkstoffplatte beitragen kann. Die genannte Aufgabe wird auch durch eine Vorrichtung zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten gelöst. Dabei sind eine erste Fördereinrichtung und eine zweite Fördereinrichtung zum kontinuierlichen Zuführen der Werkstoffplatten zur Schweißstation vorgesehen. Stromaufwärts der Schweißstation ist das Wärmeelement angeordnet. Andrückelemente sorgen stromabwärts nach dem Wärmeelement für den Füge- prozess, der aufgrund der vorangegangenen Wärmebeaufschlagung durch das Wärmeelement möglich ist und zur stoffflüssigen Verbindung der Werkstoffplatten führt. Die erste För- dereinrichtung und die wenigstens eine weitere Fördereinrichtung sind zumindest im Bereich der Schweißstation in einem Winkel kleiner 1 °, vorzugsweise parallel zueinander angeordnet, was eine schonende Zuführung selbst biegesteifer Dämmstoffplatten ermöglicht. Durch die Anordnung des Wärmeelementes berührend an den Oberflächen der Werkstoffplatten kann mit verhältnismäßig wenig Energie ein Anschmelzen der Oberflächen bewerkstelligt werden. Die parallele Zuführung trägt dazu bei, dass verhältnismäßig wenig Luft an das Wärmeelement gelangt, das zugleich zwischen wärmeisolierenden Werkstoffplatten angeordnet ist. Auch dies trägt zu einem energieeffizienten Anschmelzen bei. Das Wärmeelement ist vorzugsweise unmittelbar in der Schweißstation angeordnet, so dass der Fügepro- zess unmittelbar nach dem Anschmelzen stattfinden kann. Mittel zum Positionieren der Werkstoffplatten zueinander sind der Schweißstation zugeordnet, da durch die parallele Zuführung eine Positionierung kurz vor oder vorzugsweise in der Schweißstation zur Erzielung eines optimalen Ergebnisses möglich ist. Dadurch kann der Aufwand für Nacharbeiten nach dem Fügeprozess sowie der Anfall an Materialabfällen reduziert werden. If more than two layers of material plates welded together, several at least in one direction transverse to the transport direction of the material plates offset heat elements may be provided so that each located between the material plates gap is associated with at least one heat element. If necessary, the fused surfaces of the material plates can also be connected to one another simultaneously in a welding station. Especially for rigid insulation boards as material plates, the method has been found to be particularly suitable, even if they have the same thickness, as occurring by the parallel, in particular symmetrical feeding occurring after welding curvatures of the finished material panels are sustainable avoided. The thermal element is preferably self-cleaning due to the continuous and contact-related passing of the material plates so that residual material adhering to the surface of the surfaces is reliably dissipated and, for example, can contribute to the joining process of the next material plate. The stated object is also achieved by a device for thermal, surface welding of a plurality of material plates. In this case, a first conveyor and a second conveyor for continuously feeding the material plates to the welding station are provided. Upstream of the welding station, the heating element is arranged. Pressing elements downstream of the heating element provide for the joining process, which is possible due to the previous application of heat by the heating element and leads to the fluid connection of the material plates. The first subsidy dereinrichtung and the at least one further conveyor are at least in the region of the welding station at an angle of less than 1 °, preferably arranged parallel to each other, which allows a gentle supply of even rigid insulating panels. The arrangement of the heat element touching the surfaces of the material plates can be accomplished with relatively little energy, a melting of the surfaces. The parallel feed contributes to the fact that relatively little air reaches the heating element, which is at the same time arranged between heat-insulating material plates. This also contributes to an energy-efficient melting. The heat element is preferably arranged directly in the welding station, so that the joining process can take place immediately after the melting process. Means for positioning the material plates to each other are associated with the welding station, as by the parallel feed positioning shortly before or preferably in the welding station to achieve an optimum result is possible. As a result, the cost of reworking after the joining process and the accumulation of material waste can be reduced.
In bevorzugter Ausführung weist das Wärmeelement mehrere Oberflächen auf, die auf unterschiedliche Temperaturen temperierbar sind oder die Werkstoffplatten werden mit unterschiedlichem Druck oder unterschiedlichen„Tiefgang", d.h. mit einem quasi„negativen" Spalt dem Wärmelement zugeführt. Dadurch kann auf die unterschiedlichen Eigenarten der miteinander zu verbindenden Werkstoffplatten gezielt eingegangen werden. Die Temperierung wird dabei in besonders bevorzugter Weise durch gesonderte Heizmittel bewerkstelligt. In a preferred embodiment, the heating element has a plurality of surfaces which can be tempered to different temperatures, or the material plates are fed to the heating element at different pressure or different "draft", i.e. with a quasi "negative" gap. As a result, it is possible to specifically address the different characteristics of the material plates to be joined together. The tempering is accomplished in a particularly preferred manner by separate heating means.
Vorzugsweise ist das Wärmeelement so beschaffen, dass kein Anhaften von Restmaterial der angeschmolzenen Oberflächen der Werkstoffplatten erfolgt. Dies kann durch z.B. ent- sprechende Beschichtungen und Polieren des Wärmeelements sichergestellt werden. Dies erlaubt damit eine Führung der Werkstoffplatten eng am Wärmeelement, um die parallele Zuführung zu erleichtern. Preferably, the heat element is such that there is no adhesion of residual material of the melted surfaces of the material plates. This can be achieved by e.g. appropriate coatings and polishing of the heat element can be ensured. This allows a guide of the material plates close to the heat element to facilitate the parallel feed.
Gemäß der Vorrichtung sind die Fördereinrichtungen zum Fördern der Werkstoffplatten so angeordnet, dass sich zwischen den Werkstoff platten ein Spalt kleiner gleich 10 mm, vorzugsweise zwischen 5 und 0 mm ausbildet. Die Werkstoffplatten können auch mit einem negativen Spaltmaß von z.B. bis zu minus 4 mm dem Wärmeelement zugeführt werden. Durch den geringen bis keinen oder gar negativen Spalt und den geringen Winkel in der Zuführung kann mit einer geringen Bauhöhe das Material zugeführt werden. Bedarfsweise kann im Spalt vor dem Wärmeelement ein Trennelement als Positionierhilfe eingesetzt werden, dessen Höhe kleiner gleich der Höhe des Wärmeelements ist. Nach dem Heizelement werden die Werkstoffplatten zusammengefügt, so dass sich quasi ein Spalt mit einem„negativen Spaltmaß" kleiner Null ergibt. According to the apparatus, the conveyors for conveying the material plates are arranged so that plates between the material forms a gap less than or equal to 10 mm, preferably between 5 and 0 mm. The material plates can also be supplied to the thermal element with a negative gap of, for example, up to minus 4 mm. Due to the low to no or even negative gap and the small angle in the feeder, the material can be supplied with a low overall height. If necessary, in the gap in front of the heat element, a separating element can be used as a positioning aid whose height is less than or equal to the height of the heat element. After the heating element The material plates are joined together, so that virtually results in a gap with a "negative gap" less than zero.
Vorzugsweise ist der Spalt auf die vertikale Höhe abgestimmt, die der vertikalen Erstreckung des Wärmeelementes entspricht. Dies führt zu einer reibungsarmen und verschleißarmen Förderung entlang des Wärmeelementes. Preferably, the gap is tuned to the vertical height corresponding to the vertical extent of the thermal element. This leads to a low-friction and low-wear promotion along the heating element.
Werden mehrere Fördereinrichtungen zur Zuführung von wenigstens drei Lagen an Werkstoffplatten vorgesehen, sind vorzugsweise auch mehrere Wärmeelemente vorgesehen, die wenigstens in einer Richtung quer zur Transportrichtung der Werkstoff platten zueinander versetzt sind. In der Regel liegen bei horizontaler Zuführung der Werkstoffplatten und horizontal angeordnetem Wärmeelement die Wärmeelemente dann vertikal übereinander, sie können jedoch genau so zueinander in Transportrichtung versetzt übereinander liegen. Dadurch kann mit wenigstens einem Wärmeelement je Lage vorzugsweise in nur einer Schweißstation ein mehrlagiges Endprodukt hergestellt werden. If several conveyors provided for supplying at least three layers of material plates, preferably also a plurality of heat elements are provided which are offset from one another at least in one direction transversely to the transport direction of the material plates. As a rule, with horizontal feed of the material plates and horizontally arranged heat element, the heat elements then lie vertically one above the other, but they can be exactly offset one above the other in the transport direction. As a result, it is possible to produce a multilayer end product with at least one heat element per layer, preferably in only one welding station.
Bei einer Verschweißung von Längs- und Querkanten der Werkstoffplatten kann das wenigstens eine Wärmeelement auch vertikal stehend angeordnet werden. Dadurch lassen sich die Werkstoffplatten zuverlässig und lagegerecht dem Wärmelement zuführen, so dass auch Fügeprozesse entlang der Kanten von Werkstoffplatten leicht zu realisieren sind. In a welding of longitudinal and transverse edges of the material plates, the at least one heat element can also be arranged vertically standing. As a result, the material plates can be reliably and positionally supplied to the heating element, so that joining processes along the edges of material plates are easy to implement.
Weitere Vorteile ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels. Kurzbeschreibung der Figuren Further advantages emerge from the dependent claims and the following description of a preferred embodiment. Brief description of the figures
Im Folgenden wird die Erfindung anhand von in den beigefügten Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen: Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Prozessablaufes,In the following, the invention will be explained in more detail with reference to embodiments illustrated in the accompanying figures. 1 shows a schematic representation of a process sequence according to the invention,
Fig. 2 eine vergrößerte Darstellung der Fördereinrichtung mit daran angeordneten Werkstoffplatten im Bereich der Schweißstation D im Schnitt, 2 is an enlarged view of the conveyor with material plates arranged thereon in the region of the welding station D in section,
Fig. 3 einen vergrößerten Ausschnitt aus Fig. 2 im Bereich des Heizschwertes 15, Fig. 4 eine Darstellung gemäß Fig. 2 mit mehreren gleichzeitig zu fügenden Werkstoff- platten, Fig. 5 eine schematische Darstellung eines bekannten Verfahrens nach dem Stand der Technik. 2 shows an enlarged detail from FIG. 2 in the region of the heating blade 15, FIG. 4 shows a representation according to FIG. 2 with a plurality of material plates to be joined at the same time, Fig. 5 is a schematic representation of a known method according to the prior art.
Ausführliche Beschreibung bevorzugter Ausführungsbeispiele Detailed description of preferred embodiments
Die Erfindung wird jetzt beispielhaft unter Bezug auf die beigefügten Zeichnungen näher erläutert. Allerdings handelt es sich bei den Ausführungsbeispielen nur um Beispiele, die nicht das erfinderische Konzept auf eine bestimmte Anordnung beschränken sollen. Bevor die Erfindung im Detail beschrieben wird, ist darauf hinzuweisen, dass sie nicht auf die je- weiligen Bauteile der Vorrichtung sowie die jeweiligen Verfahrensschritte beschränkt ist, da diese Bauteile und Verfahren variieren können. Die hier verwendeten Begriffe sind lediglich dafür bestimmt, besondere Ausführungsformen zu beschreiben und werden nicht einschränkend verwendet. Wenn zudem in der Beschreibung oder in den Ansprüchen die Einzahl oder unbestimmte Artikel verwendet werden, bezieht sich dies auch auf die Mehrzahl dieser Ele- mente, solange nicht der Gesamtzusammenhang eindeutig etwas Anderes deutlich macht. The invention will now be described by way of example with reference to the accompanying drawings. However, the embodiments are only examples that are not intended to limit the inventive concept to a particular arrangement. Before the invention is described in detail, it should be noted that it is not limited to the respective components of the device and the respective method steps, since these components and methods may vary. The terms used herein are intended only to describe particular embodiments and are not intended to be limiting. Furthermore, if the singular or indefinite articles are used in the description or claims, this also applies to the majority of these elements, unless the overall context clearly indicates otherwise.
Fig. 5 zeigt schematisch ein Verfahren zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten aus aufgeschäumten Materialien nach dem Stand der Technik, wie es z.B. aus der DE 10 2012 204 822 A1 bekannt ist. Die dort vorhandenen Maschinen A bis D sind zur Erläuterung gestrichelt umrahmt. Fig. 5 shows schematically a method for the thermal, surface welding of several material plates of foamed materials according to the prior art, as e.g. from DE 10 2012 204 822 A1 is known. The existing there machines A to D are surrounded by dashed lines for explanation.
In Arbeitsrichtung von links nach rechts werden erste Werkstoffplatten 10 und weitere Werkstoffplatten 1 1 zugeführt. Die Werkstoffplatten 10 sind auf einer Fördereinrichtung 20 angeordnet, die Werkstoffplatten 1 1 auf einer Fördereinrichtung 21 , die im Ausgangsbeispiel durch einen Vakuumförderer gebildet ist. Von links nach rechts in Fig. 5 gelangen die Werkstoffplatten zunächst an eine Planerwelle 18 mit der eine Oberflächenbearbeitung im Bereich A von oben erfolgt. Die Maschine B ist eine Vakuumwendestation, in der nun die Werkstoffplatten 1 1 vom Vakuumstrangförderer aufgenommen werden. Je nach Länge der Platte werden ein oder zwei oder auch mehrere Platten zugeführt und dann um 180° gewendet. Dann läuft die entsprechend auf der gegenüberliegenden Oberfläche bearbeitete Anzahl von Platten ein, so dass sich entsprechende Fügepaare bilden, die dann in die Plattenhub- und Positionierungsstation C einlaufen. Die Plattenhub- und Positionierungsstation C führt dann die Werkstoffplatten in einem Winkel passgenau positioniert der Schweißstation D zu. Am Ende der Schweißstation D befindet sich ein Heizschwert als Wärmeelement 15, das die Oberflächen der Werkstoffplatten anschmilzt. Im anschließenden Prozess werden in zeich- nerisch nicht dargestellter Weise die Werkstoffplatten 10, 1 1 über Andrückrollen 25 aneinander gepresst und so stoffschlüssig miteinander verbunden. In the working direction from left to right first material plates 10 and further material plates 1 1 are supplied. The material plates 10 are arranged on a conveyor 20, the material plates 1 1 on a conveyor 21, which is formed in the original example by a vacuum conveyor. From left to right in FIG. 5, the material plates first arrive at a planner shaft 18 with which a surface treatment in region A takes place from above. The machine B is a vacuum transfer station, in which now the material plates 1 1 are received by the vacuum belt conveyor. Depending on the length of the plate one or two or more plates are fed and then turned by 180 °. Then, the number of plates machined correspondingly on the opposite surface, so that corresponding pairs of pairs form, which then run into the Plattenhub- and positioning station C. The Plattenhub- and positioning station C then performs the material plates at an angle accurately positioned the welding station D to. At the end of the welding station D is a heating sword as a heating element 15, which melts the surfaces of the material plates. In the subsequent process, nerisch not shown manner, the material plates 10, 1 1 pressed against each other via pressure rollers 25 and so firmly bonded together.
Fig. 1 zeigt das entsprechende erfindungsgemäße Verfahren zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten 10, 1 1 aus ausgeschäumten und/oder auch nicht aufgeschäumtem Material, d.h. es können mit dem Verfahren nicht nur geschäumte Materialien miteinander verbunden werden. Unter einem„flächigen" Verschweißen wird dabei ein Verschweißen bzw. Fügen beliebiger Oberflächen von Werkstoffplatten verstanden, wobei zur Erhöhung der Breite die Längskanten, zur Erhöhung der Länge die Querkanten und zur Steigerung der Dicke bzw. Höhe der Dämmstoffplatten die Flächen der Dämmstoffplatten selbst miteinander verschweißt werden. Fig. 1 shows the corresponding inventive method for thermal, surface welding of several material plates 10, 1 1 of foamed and / or not foamed material, i. not only foamed materials can be joined together with the method. A "planar" welding is understood as a welding or joining any surfaces of material plates, wherein to increase the width of the longitudinal edges, to increase the length of the transverse edges and to increase the thickness or height of the insulating panels, the surfaces of the insulating panels themselves welded together become.
Dabei fällt auf, dass gegenüber Fig. 5 weder eine Vakuumwendestation noch eine gesonderte Positionierungsstation erforderlich ist. Zu erkennen sind, die gestrichelt umrahmte Vorrich- tung A zur Oberflächenbearbeitung, die oben oder unten im Wechsel oder oben und unten mit dynamischer Wellenverstellung erfolgt. Hierzu sind entsprechende Planerwellen 18 vorgesehen. Die Werkstoffplatten sind dabei wechselweise oben oder unten an einer Fördereinrichtung 20, 21 befestigt, so dass ein durchgehender Transport z.B. als Vakuumtransport gewährleistet ist. It is striking that in comparison with FIG. 5, neither a vacuum reversing station nor a separate positioning station is required. Evident are the dashed framed device A for surface treatment, which is carried out alternately at the top or bottom or at the top and bottom with dynamic shaft adjustment. For this purpose, corresponding planner shafts 18 are provided. The material plates are alternately attached to the top or bottom of a conveyor 20, 21, so that a continuous transport, e.g. is guaranteed as a vacuum transport.
Da die Platten erfindungsgemäß nach Fig. 1 parallel und hinsichtlich ihrer Oberflächen bereits oben und/oder unten z.B. durch die dynamisch verstellbare Planerwelle bearbeitet zugeführt werden, können sie ohne eine Vakuumwendestation unmittelbar der gestrichelt umrahmten Schweißstation D zugeführt werden, in der eine entsprechende Plattenhubstation vorgesehen bzw. integriert ist. Aufgrund der parallelen Zuführung der Werkstoffplatten zu dem verhältnismäßig dünnen Wärmeelement kann auf die Hubstation verzichtet werden und aufgrund der dynamischen Planerverstellung auf die Vakuumwendestation. An einem Vakuumförderstrang 21 können die weiteren Werkstoffplatten 1 1 zugeführt werden, während die Werkstoffplatten 10 auf der Fördereinrichtung 20 angeordnet sind, die ggf. ebenfalls als Va- kuumförderer ausgebildet ist. Am Ende der Schweißstation D befindet sich das Wärmeelement neben dem in Förderrichtung 14 bereits die Andrückmittel in Form von Anpressrollen 25 zu erkennen sind. Since the plates according to the invention according to FIG. 1 in parallel and with respect to their surfaces already above and / or below, for. can be fed processed by the dynamically adjustable planetary wave, they can be fed directly to the dashed framed welding station D without a vacuum turning station, in which a corresponding Plattenhubstation is provided or integrated. Due to the parallel feeding of the material plates to the relatively thin heat element can be dispensed with the lifting station and due to the dynamic planner adjustment on the vacuum transfer station. The further material plates 1 1 can be fed to a vacuum conveyor line 21, while the material plates 10 are arranged on the conveyor 20, which may also be designed as a vacuum conveyor. At the end of the welding station D is the heat element in addition to the already in the conveying direction 14, the pressing means in the form of pressure rollers 25 can be seen.
Vorzugsweise soll die Werkstoffplatte 10 nach Einlauf von der Fördereinrichtung 21 , z.B. einem hängenden Vakuumförderer, abgedrückt werden in eine untere Position, so dass die nächste Werkstoffplatte 1 1 über die erste Werkstoffplatte laufen kann. Dies ist in Fig. 1 an der zweiten Position erkennbar. Dies führt zu einem gegenüber dem Stand der Technik optimaleren Ablauf für höchste Durchsatzleistungen durch eine Plattenpaarbildung im Zwei- Ebenenverfahren. Zwischen den einzelnen Werkstoffplatten kann mit einer minimalen Lücke gefahren werden, da die erste Werkstoffplatte mit z.B. 9,8 m/s2 beschleunigt werden kann und bei hoher Plattenleistung die Platten von geringer Dicke sind. Preferably, the material plate 10 after entry from the conveyor 21, for example, a hanging vacuum conveyor, are pressed into a lower position, so that the next material plate 1 1 can run over the first material plate. This is in Fig. 1 at the second position recognizable. This leads to a process that is more optimal than the prior art for highest throughput through plate pair formation in a two-level process. Between the individual material plates can be driven with a minimum gap, since the first material plate with eg 9.8 m / s 2 can be accelerated and at high plate performance, the plates are of small thickness.
In der dritten Position hat sich die Fördereinrichtung 21 gegenüber der vorherigen zweiten Position leicht abgesenkt, um das gewünschte Spaltmaß zuzustellen. Dies ist das Prinzip einer Winkelübergabe in zwei Ebenen, was zu hohen Durchsatzleistungen beiträgt. Es ist nur eine geringe Fallhöhe von z.B. nur 100 mm Fallhöhe statt 700 bis 1300 mm bei einer waagerechten Abschubstrecke. Dabei wird zugleich in dieser Station das Plattenpaar gebildet, welches dann direkt in die Schweißstation D einlaufen kann. In the third position, the conveyor 21 has slightly lowered from the previous second position to deliver the desired gap. This is the principle of angular transfer in two planes, which contributes to high throughput. It is only a small drop height of e.g. only 100 mm drop height instead of 700 to 1300 mm with a horizontal Abschubstrecke. At the same time in this station, the plate pair is formed, which can then run directly into the welding station D.
Durch die dynamische Wellenverstellung soll eine wechselnde Bearbeitung der Ober- und Unterfläche erfolgen, die sich in der Teillücke zwischen den Werkstoffplatten im Durchlauf einstellen muss. Die Werkstoffplatten sind regelmäßig mit einer Haut versehen, die zur Bearbeitung an den Schweißseiten entfernt werden soll. Durch das Wärmeelement und die wechselseitige dynamische Planerwellenverstellung, die im Ausführungsbeispiel in ca. 0,2s 10 mm zurücklegt, kann auf die Wendestation verzichtet werden. Due to the dynamic shaft adjustment, an alternating machining of the upper and lower surface is to take place, which must be set in the partial gap between the material plates in the pass. The material panels are regularly provided with a skin that is to be removed for processing on the welding sides. Due to the heating element and the reciprocal dynamic planner shaft adjustment, which in the exemplary embodiment covers approximately 10 mm in the exemplary embodiment, the turning station can be dispensed with.
Verfahrensgemäß wird wenigstens eine erste Werkstoffplatte 10 mittels einer ersten Fördereinrichtung 20 und wenigstens eine weitere Werkstoffplatte 1 1 mittels wenigstens einer weiteren Fördereinrichtung 21 jeweils kontinuierlich der Schweißstation D zugeführt. Dies bedeutet, dass auch mehr als zwei Lagen an Werkstoffplatten zugeführt werden und mehr als zwei Fördereinrichtungen vorgesehen sein können. Die aufeinander zu zeigenden, zu verschweißenden Oberflächen 10a, 1 1 a der ein Plattenpaar bildenden Werkstoffplatten 10, 1 1 werden gemäß Fig. 3 stromaufwärts der Schweißstation D mittels wenigstens eines zwischen den Oberflächen befindlichen Wärmeelements 15 so mit Wärme beaufschlagt, dass mindestens eine dieser Oberflächen 10a, 1 1 a anschmilzt. Damit kann zwischen den mitei- nander zu verbindenden Werkstoff platten auch mehr als ein Wärmeelement 15 vorgesehen sein. Zudem ist es möglich, zwischen mehreren Lagen von Werkstoffplatten mehrere Wärmeelemente 15 versetzt zueinander anzuordnen und die Platten dann beschleunigt aufeinander abzulegen. Im Anschluss an das Anschmelzen der Oberflächen 10a, 1 1 a werden die aufeinander zu zeigenden Oberflächen 10a, 1 1 a mit Anpressdruck stoffschlüssig aufgrund der vorangegangenen Wärmebeaufschlagung durch das Wärmeelement 15 miteinander verbunden. Dieser Vorgang erfolgt sehr energieeffizient, worauf noch näher eingegangen wird. According to the method, at least one first material plate 10 is continuously fed to the welding station D by means of a first conveying device 20 and at least one further material plate 11 by means of at least one further conveying device 21. This means that more than two layers of material plates are supplied and more than two conveyors can be provided. The facing to be welded surfaces 10a, 1 1 a of a pair of plates forming material plates 10, 1 1 are applied as shown in FIG. 3 upstream of the welding station D by means of at least one located between the surfaces of the heat element 15 so heat that at least one of these surfaces 10a, 1 1 a melts. Thus, more than one heat element 15 can be provided between the plates to be joined to one another. In addition, it is possible to arrange a plurality of heat elements 15 offset from each other between several layers of material plates and then to accelerate the plates to one another. Subsequent to the melting of the surfaces 10a, 11a, the surfaces 10a, 11a to be pointed toward one another become materially cohesive with contact pressure due to the preceding application of heat by the thermal element 15 connected. This process is very energy efficient, which will be discussed in more detail.
Gemäß den Figuren 1 und 2 werden die Werkstoffplatten 10, 1 1 parallel oder nahezu paral- lel in einem Winkel kleiner 1 ° bis zur Schweißstation 15 zugeführt. Dabei berührt das Wärmeelement 15 die Oberflächen 10a, 1 1 a der Werkstoffplatten 10, 1 1 und schmilzt sie unmittelbar an. Durch die parallele Zuführung ist es möglich, die Werkstoffplatten 10, 1 1 in der Schweißstation D oder nahe der Schweißstation D passgenau zu einander zu positionieren und miteinander zu verbinden. Vorzugsweise kann die passgenaue Positionierung auch erst in der Schweißstation D erfolgen, wobei es von Vorteil ist, dass die Werkstoff platten während der Zuführung vermessen und positioniert werden. According to FIGS. 1 and 2, the material plates 10, 11 are fed parallel or nearly parallel to the welding station 15 at an angle of less than 1 °. The heat element 15 touches the surfaces 10a, 11a of the material plates 10, 11 and melts them directly. Due to the parallel feed, it is possible to position the material plates 10, 1 1 in the welding station D or near the welding station D accurately to each other and to connect with each other. Preferably, the precise positioning can also be done only in the welding station D, and it is advantageous that the material plates are measured and positioned during the feed.
Das Wärmeelement 15 kann, wie in Fig. 3 dargestellt, mehrere Oberflächen 15a, 15b aufweisen, die auf unterschiedliche Temperaturen temperierbar sind. Dies kann insbesondere durch gesonderte Heizmittel 16, 17 verwirklicht werden, die dafür sorgen, dass gegenüberliegende Oberflächen 15a, 15b des Wärmeelementes 15 - in Fig. 3 unten und oben am Wärmeelement - auf unterschiedliche Temperaturen erwärmt werden. Es ist ebenso alternativ oder ergänzend möglich, die Werkstoffplatten mit unterschiedlichem Anpressdruck dem Wärmeelement zuzuführen. Als Heizmittel kommen dabei elektrische Heizmittel wie z.B. Widerstandsheizungen ebenso in Betracht wie Heizkreisläufe mit geeigneten Temperiermitteln. Derartige Heizmittel sind dem Fachmann aus dem Stand der Technik bekannt. As shown in FIG. 3, the heat element 15 can have a plurality of surfaces 15a, 15b which can be temperature-controlled to different temperatures. This can be achieved in particular by separate heating means 16, 17, which ensure that opposing surfaces 15a, 15b of the heating element 15 - in Fig. 3 below and above the heating element - are heated to different temperatures. It is also alternatively or additionally possible to supply the material plates with different contact pressure to the heating element. The heating means are electrical heating means such as e.g. Resistance heaters as well as heating circuits with suitable temperature control. Such heating means are known to those skilled in the art.
Damit kann die erste Werkstoffplatte 10 an der einen Oberfläche 15a und die weitere Werkstoffplatte 1 1 an der gegenüberliegenden anderen Oberfläche 15b des Wärmeelementes 15 kontaktbehaftet vorbeigeführt werden. Damit ist es vor allem möglich, nicht nur gleiche, sondern auch unterschiedliche Werkstoffplatten anzuschmelzen. Je nach Dichte, Materialbeschaffenheit, Zusammensetzung und/oder auch Dicke der Werkstoffplatte kann zielgerichtet mit bestimmten Temperaturbereichen gearbeitet werden, um ein schonendes Anschmelzen der zu fügenden Oberflächen zu erreichen. Dadurch lässt sich die Schweißhaut so dick wie nötig einstellen, um die Werkstoffplatten fügen zu können, aber auch so dünn wie möglich einstellen, um dadurch auch die Wasserdiffusionswiderstandszahl gegenüber den Ausgangsplatten so wenig wie möglich zu beeinträchtigen. Thus, the first material plate 10 on one surface 15a and the further material plate 1 1 on the opposite other surface 15b of the heat element 15 are guided past contact. This makes it possible, above all, to melt not only the same but also different material plates. Depending on the density, material composition, composition and / or thickness of the material plate can be targeted to work with certain temperature ranges in order to achieve a gentle melting of the surfaces to be joined. As a result, the weld skin can be adjusted as thick as necessary in order to be able to insert the material plates, but also to set them as thin as possible, in order thereby to impair as little as possible the water-diffusion resistance factor compared to the starting plates.
Gleichzeitig kann durch die Anordnung des Wärmeelementes 15 zwischen den allenfalls mit einem geringen Spalt 13 parallel zugeführten Werkstoffplatten 10, 1 1 mit verhältnismäßig wenig Energie die gewünschte Temperatur zum Anschmelzen der Oberflächen erreicht wer- den. Denn einerseits erfolgt kein zusätzlicher Luftein- oder -austrag, der für eine unerwünschte Abfuhr von Wärmeenergie sorgt, andererseits befindet sich das Wärmeelement 15 zwischen den Werkstoffplatten 10, 1 1 , die über eine geringe Wärmeleitfähigkeit verfügen und damit das Wärmeelement 15 gleichzeitig an seiner Position isolieren. Dies trägt zu ei- nem höchst energieeffizienten Fügeprozess bei. Gleichzeitig wird nur so viel Material angeschmolzen, wie für den Fügeprozess auch erforderlich ist, so dass eine sehr dünne At the same time, the desired temperature for melting the surfaces can be achieved with relatively little energy by arranging the heat element 15 between the material plates 10, 11, which may be supplied in parallel with a small gap 13. the. On the one hand there is no additional Luftein- or -austrag, which provides for an undesirable removal of heat energy, on the other hand is the heat element 15 between the material plates 10, 1 1, which have a low thermal conductivity and thus isolate the heat element 15 at the same time in position , This contributes to a highly energy-efficient joining process. At the same time, only as much material is melted as is required for the joining process, so that a very thin
Schweißnaht erzielt werden kann. Dies trägt wiederum zu einer guten Diffusionsoffenheit des Endprodukts auch im Bereich der Schweißnaht bei. Zu diesem Zweck werden die Werkstoffplatten nicht nur möglichst parallel oder nahezu parallel, sondern auch mit einem minimalen Abstand mit einem Spaltmaß z.B. kleiner gleich 10 mm, vorzugsweise mit einem Spaltmaß zwischen 5 und 0 mm dem Wärmeelement 15 zugeführt. Dies kann im Bereich der Schweißstation auch so weit gehen, dass die Werkstoffplatten quasi mit einem negativen Spaltmaß von z.B. bis zu minus 4 mm dem Wärmeelement 15 zugeführt werden. Durch den geringen bis negativen Spalt kann mit einer geringen Bauhöhe das Material zugeführt werden. Bedarfsweise kann im Spalt vor dem Wärmeelement ein Trennelement 23 als Positionierhilfe eingesetzt werden, dessen Höhe kleiner gleich der Höhe des Wärmeelements ist. Nach dem Heizelement werden die Werkstoffplatten zusammengefügt, so dass sich quasi ein Spalt mit einem„negativen Spaltmaß" kleiner Null ergibt. Weld seam can be achieved. This in turn contributes to a good diffusion-openness of the end product also in the area of the weld. For this purpose, the material plates are not only as parallel or nearly parallel as possible, but also with a minimum distance with a gap, e.g. less than or equal to 10 mm, preferably with a gap between 5 and 0 mm supplied to the heat element 15. This can also go so far in the area of the welding station that the material plates have a quasi negative gap of e.g. be supplied to the heating element 15 to minus 4 mm. Due to the small to negative gap, the material can be supplied with a low overall height. If necessary, in the gap in front of the heat element, a separating element 23 can be used as a positioning aid whose height is less than or equal to the height of the heat element. After the heating element, the material plates are joined together, so that virtually results in a gap with a "negative gap" less than zero.
Sind mehr als drei Lagen an Werkstoffplatten 10, 10', 1 1 , 1 1 ' gemäß Fig. 4 miteinander zu verschweißen, werden diese mehreren, wenigstens in einer Richtung quer zur Transportrichtung 14 der Werkstoffplatten versetzten Wärmeelementen 15, 15' (in Fig. 4 vertikal versetzt) zugeführt und in möglichst einer Schweißstation D miteinander verbunden. In diesem Fall, aber auch bei nur zwei Lagen, können ergänzend Trennelemente 23 als Positionierhilfe vorgesehen sein, die in Transportrichtung vor dem Wärmeelement 15 angeordnet sind. Um allerdings die Berührung der Werkstoffplatten 10, 10', 1 1 , 1 1 ' sicherzustellen ist die Höhe dieser Trennelemente auf die Höhe des Wärmeelements abgestimmt und in der Regel kleiner als die Höhe des Wärmeelements 15. Es versteht sich allerdings von selbst, dass auch mehrere Schweißstationen D vorgesehen sein können, wenn der Prozess oder der Werkstoff dies erfordert. If more than three layers of material plates 10, 10 ', 11', 11 'according to FIG. 4 are to be welded together, they become a plurality of heat elements 15, 15' offset transversely to the transport direction 14 of the material plates (in FIG. 4 vertically offset) fed and connected as possible in a welding station D. In this case, but also in only two layers, dividing elements 23 can additionally be provided as positioning aid, which are arranged in the transport direction in front of the heating element 15. However, in order to ensure the contact of the material plates 10, 10 ', 1 1, 1 1', the height of these separating elements is matched to the height of the heat element and usually smaller than the height of the heat element 15. It goes without saying, however, that several welding stations D can be provided if the process or the material requires it.
Vorzugsweise können die Werkstoffplatten auch biegesteife Dämmstoffplatten sein, die z.B. die gleiche Dicke aufweisen. Durch die parallele Zuführung ist keine Krümmung der Werk- stoffplatten 10, 1 1 bei der Zuführung erforderlich, so dass auch mehrere Werkstoffplatten z.B. mit je einer Dicke von 200 mm durch dieses Verfahren miteinander gefügt werden können. Preferably, the material plates may also be rigid insulating panels, for example, have the same thickness. Due to the parallel feed, no curvature of the material plates 10, 11 in the feed is required, so that also several material plates For example, each with a thickness of 200 mm can be joined together by this method.
Durch das Verfahren können bei einer kontinuierlichen Zuführung der Schweißpartner, also der Werkstoffplatten, beliebige/endlose Flächen und Dicken von Dämmstoffplatten aus extrudierten Standardformaten erzeugt werden. Ein anschließender Zuschnitt zu beliebigen geometrischen Formen und Flächen ist möglich. Dabei kann den Grenzen der Extrusion bei der Herstellung der Werkstoffplatten Rechnung getragen werden und es können Werkstoffplatten mit optimalen Lambda-Werten ohne weiteres verwenden werden. Gleichzeitig sind hohe Durchsatzmengen problemlos möglich. Zudem lässt sich der Prozess auch bei der Herstellung von mehrlagigen Platten mit mehr als zwei Lagen deutlich vereinfachen. By means of the method, any continuous surfaces and thicknesses of insulating panels of extruded standard formats can be produced in the case of a continuous supply of the welding partners, that is to say the material panels. A subsequent cut to any geometric shapes and surfaces is possible. In this case, the limits of the extrusion in the production of the material plates can be taken into account and it can be used material plates with optimum lambda values readily. At the same time, high throughput rates are easily possible. In addition, the process can also be significantly simplified in the production of multilayer boards with more than two layers.
Die Werkstoffplatten werden kontinuierlich über Fördereinrichtungen 20, 21 wie z.B. Vakuumförderer zugeführt. Die zu fügenden Werkstoffplatten 10, 1 1 werden vorzugsweise kurz vor der Schweißstation D ausgerichtet und passgenau positioniert und dann an dem Wärmeelement 15 entlanggeführt und angeschmolzen, so dass sie anschließend unmittelbar danach unter Anpressdruck miteinander gefügt werden können. Gegebenenfalls werden die gefügten Platten anschließend einer weiteren Konfektionierung zugeführt. Die Werkstoffplatten 10, 1 1 werden parallel zueinander oder zumindest nahezu parallel zueinander mit einem allenfalls kleinen Spalt 13 von etwa 10 mm, vorzugsweise 5 mm oder auch ohne oder mit einem negativen Spalt, der Schweißstation zugeführt. Die obere Werkstoff platte 1 1 kann durch hängende Vakuumförderer als Fördereinrichtung 21 auf die gewünschte Spalthöhe positioniert werden. Die Werkstoffplatten werden passend in der vorgeschalteten Planerstation A mittels Planerwellen 18 wechselweise oben und/oder unten bearbeitet, so dass nur eine Planerstation erforderlich ist. Durch die parallele Zuführung mit einem kleinen bzw. keinem Spalt 13 entfallen der Hub- und Drehprozess und damit die Vakuumwendestation, welche regelmäßig den Engpass bei der Höchstleistung einer kontinuierlichen Thermobonding- station als Schweißstation darstellt. Die Vorrichtung zur Durchführung des Verfahrens weist eine erste Fördereinrichtung 10 zum kontinuierlichen Zuführen einer ersten Werkstoffplatte 10 zu einer Schweißstation D sowie eine weitere Fördereinrichtung 21 zum kontinuierlichen Zuführen wenigstens einer weiteren Werkstoffplatte 1 1 zur Schweißstation D auf. Wenigstens ein Wärmeelement 15 ist stromaufwärts der Schweißstation zwischen den aufeinander zu zeigenden, zu verschweißenden Oberflächen 10a, 1 1 a der Werkstoffplatten 10, 1 1 angeordnet. Über Andrückelemente, die stromabwärts des Wärmeelementes 15 angeordnet sind und im Ausführungsbeispiel durch die Anpressrollen 25 gebildet sind, werden die Werkstoffplatten 10, 1 1 stromabwärts des Wärmeelementes 15 gegeneinander gepresst, so dass sich die aufeinander zu zeigenden Oberflächen aufgrund der vorangegangenen Wärmebeaufschlagung durch das Wärmeelement 15 stoffschlüssig miteinander verbinden. Die erste Fördereinrichtung 20 und die we- nigstens eine weitere Fördereinrichtung 21 stehen zumindest im Bereich der Schweißstation D in einem Winkel kleiner 1 °, vorzugsweise sind sie parallel zueinander. Das Wärmeelement 15 ist relativ zu den Fördereinrichtungen 20, 21 so angeordnet, dass es die Oberflächen 10a, 1 1 a der Werkstoffplatten 10, 1 1 berührt. Der Schweißstation D sind Mittel zum Positionieren der Werkstoffplatten 10, 1 1 zueinander zugeordnet. Vorzugsweise sind die Mittel zum Positionieren der Werkstoffplatten in der Schweißstation D selbst vorgesehen. The material plates are fed continuously via conveyors 20, 21 such as vacuum conveyors. The material plates 10, 1 1 to be joined are preferably aligned and positioned precisely in front of the welding station D and then guided along the heat element 15 and fused, so that they can then be joined together immediately afterwards under contact pressure. Optionally, the joined plates are then fed to a further assembly. The material plates 10, 1 1 are parallel to each other or at least almost parallel to each other with a possibly small gap 13 of about 10 mm, preferably 5 mm or even without or with a negative gap, fed to the welding station. The upper material plate 1 1 can be positioned by hanging vacuum conveyor as a conveyor 21 to the desired gap height. The material plates are suitably processed in the upstream planning station A by means of planner shafts 18 alternately above and / or below, so that only one planning station is required. The parallel feeding with a small or no gap 13 eliminates the lifting and turning process and thus the vacuum reversing station, which regularly represents the bottleneck in the maximum performance of a continuous thermobonding station as a welding station. The apparatus for carrying out the method comprises a first conveyor 10 for continuously feeding a first material plate 10 to a welding station D and a further conveyor 21 for continuously feeding at least one further material plate 1 1 to the welding station D. At least one heating element 15 is arranged upstream of the welding station between the surfaces 10a, 11a of the material plates 10, 11 to be welded onto one another which are to be welded together. About pressing elements, which are arranged downstream of the heating element 15 and in the embodiment by the pressure rollers 25 are formed, the material plates 10, 1 1 downstream of the heat element 15 are pressed against each other, so that connect the surfaces facing each other due to the previous heat application by the heat element 15 materially. The first conveyor 20 and the at least one further conveyor 21 are at an angle of less than 1 °, at least in the region of the welding station D, preferably they are parallel to each other. The heating element 15 is arranged relative to the conveyors 20, 21 so that it contacts the surfaces 10a, 11a of the material plates 10, 11. The welding station D are associated with means for positioning the material plates 10, 1 1 to each other. Preferably, the means for positioning the material plates are provided in the welding station D itself.
Das Wärmeelement 15 kann mehrere Oberflächen 15a, 15b aufweisen, die auf unterschiedliche Temperaturen temperierbar sind. Dies erfolgt vorzugsweise durch gesonderte Heizmittel 16, 17. Die Fördereinrichtung 20 und die Fördereinrichtung 21 zum Fördern der Werk- stoffplatten 10 bzw. 1 1 sind so angeordnet, dass sich zwischen den Werkstoffplatten der gewünschte Spalt ausbildet, der vorzugsweise eine vertikale Höhe hat, die der vertikalen Erstreckung des Wärmeelementes 15 entspricht oder kleiner als diese Höhe ist. Werden mehrere Lagen von Werkstoffplatten zugeführt, befindet sich zwischen jeder Lage der Werksstoffplatten gemäß Fig. 4 ein entsprechender Spalt bzw. wenigstens ein entsprechen- des Wärmeelement. Ergänzend können Trennelemente 23 z.B. als Positionierhilfe stromaufwärts von dem oder den Wärmeelementen 15, 15' vorgesehen sein. Diese mehreren Wärmeelemente 15, 15' sind wenigstens in einer Richtung quer zur Transportrichtung 14 der Werkstoffplatten zueinander versetzt, d.h. im Ausführungsbeispiel liegen sie vertikal übereinander, sie könnten aber auch in Transportrichtung 14 zueinander versetzt sein. The heat element 15 may have a plurality of surfaces 15a, 15b, which are temperature-controlled to different temperatures. This is preferably done by separate heating means 16, 17. The conveyor 20 and the conveyor 21 for conveying the material plates 10 and 1 1 are arranged so that forms the desired gap between the material plates, which preferably has a vertical height, the the vertical extent of the heat element 15 is equal to or smaller than this height. If several layers of material plates are supplied, there is a corresponding gap or at least one corresponding thermal element between each layer of the material plates according to FIG. 4. In addition, separating elements 23, e.g. be provided as a positioning aid upstream of the one or more heat elements 15, 15 '. These plurality of heat elements 15, 15 'are offset from each other at least in a direction transverse to the transport direction 14 of the material plates, i. in the embodiment, they are vertically above one another, but they could also be offset in the transport direction 14 to each other.
Mit dem Verfahren und der Vorrichtung können auch biegesteife Dämmstoffplatten kontinuierlich zugeführt, vorjustiert, ausgerichtet, vorpositioniert der Schweißstation D zugeführt werden. Die Werkstoffplatten können längs, quer und mehrlagig miteinander gefügt werden. Auch eine Verschweißung artgleicher und artungleicher Werkstoffe gegebenenfalls auch mit unterschiedlichen Schmelztemperaturen ist bei entsprechender Ausgestaltung des Wärmeelementes 15 möglich. With the method and apparatus and rigid insulation boards can be supplied continuously, pre-aligned, aligned, prepositioned the welding station D are supplied. The material plates can be joined together longitudinally, transversely and in multiple layers. A welding of identical and dissimilar materials possibly also with different melting temperatures is possible with appropriate design of the heating element 15.
Das Wärmeelement ist ein Heizschwert oder ein dünner Heizdraht, wobei die Werkstoffplatten an dem Wärmeelement kontinuierlich vorbeigeführt werden. Das Wärmeelement 15 kann dauerhaft und/oder getaktet betrieben werden. Zum Beispiel kann das Wärmeelement vor der Zuführung des zu schweißenden Halbzeugs kurzzeitig mit höherer Energie beaufschlagt werden. Vorzugsweise ist das Wärmeelement 15 mit einer Regelungseinheit ausgestattet, wie z.B. einem Temperaturfühler, einer Temperaturregelung oder -Steuerung. The heating element is a heating blade or a thin heating wire, wherein the material plates are guided past the heating element continuously. The heating element 15 can be operated permanently and / or clocked. For example, the heat element can be subjected to a short time with higher energy before the supply of the semifinished product to be welded become. Preferably, the heat element 15 is equipped with a control unit, such as a temperature sensor, a temperature control or control.
Die Oberfläche des Wärmeelementes 15 ist vorzugweise so ausgeführt, dass ein Anhaften des zu verschweißenden Materials reduziert oder ganz ausgeschlossen wird. Dies kann einerseits durch eine Oberflächenbehandlung z.B. mit einer Beschichtung oder eine besondere Oberflächengestaltung bis hin zu einer Politur erreicht werden. Das Wärmeelement 15 ist allerdings auch prozessbedingt selbstreinigend, da die Werkstoffplatten kontinuierlich kontaktbehaftet am Wärmeelement vorbeigeführt werden. The surface of the heat element 15 is preferably designed so that an adhesion of the material to be welded is reduced or completely excluded. This can be achieved on the one hand by a surface treatment e.g. be achieved with a coating or a special surface design to a polish. However, the heating element 15 is also process-based self-cleaning, since the material plates are continuously passed contact-contacting the heat element.
Das Wärmeelement ist z.B. ein dünnes, heizbares Stahlband. The heating element is e.g. a thin, heatable steel band.
Über das Wärmeelement 15 muss eine hohe Energiedichte eingebracht werden können. Dabei muss die Energie schnell bzw. dynamisch zugeführt werden. Bedarfsweise können auch über den Peltier-Effekt gezielt Kühlungen bewirkt werden. Die Temperaturbereiche, mit denen das Wärmeelement 15 betrieben wird, richten sich nach dem zu verschweißenden Material. Eine Temperatur von 100 bis 400° C ist in der Regel erforderlich. Die konkrete Oberflächentemperatur am zu verschweißenden Material richtet sich nach den empfohlenen Verarbeitungstemperaturen der zu fügenden Werkstoffe. About the heat element 15, a high energy density must be introduced. The energy must be supplied quickly or dynamically. If necessary, cooling can also be effected in a targeted manner via the Peltier effect. The temperature ranges at which the heat element 15 is operated, depend on the material to be welded. A temperature of 100 to 400 ° C is usually required. The concrete surface temperature of the material to be welded depends on the recommended processing temperatures of the materials to be joined.
Das Wärmeelement 15 muss zudem mechanisch dauerfest und wärmebeständig sein. Es soll eine möglichst geringe Wärmedehnung aufweisen oder es muss eine Vorrichtung zum dauerhaften Ausgleich einer Wärmedehnung vorgesehen werden, wie z.B. eine Vorspannung mit Gewichten, Federn oder dergleichen. Ein mehrlagiges Verschweißen kann in einer Station und in einem Arbeitsschritt erfolgen. Es können auch mehr als zwei Platten zugeführt werden, solange sichergestellt ist, dass die Plattenflächen parallel oder nahezu parallel zugeführt werden. The heat element 15 must also be mechanically durable and heat-resistant. It should have the lowest possible thermal expansion or it must be provided a device for permanent compensation of thermal expansion, such. a bias with weights, springs or the like. Multi-layer welding can take place in one station and in one work step. It is also possible to supply more than two plates, as long as it is ensured that the plate surfaces are fed in parallel or nearly parallel.
Die Positionierung sollte möglichst eine exakte Zuführung erlauben, so dass vor, während und nach dem Fügen ein Plattenversatz minimiert, ausgeschlossen, gezielt eingestellt wird und eine Nacharbeit weitestgehend vermieden wird. Dies kann z.B. dadurch unterstützt werden, dass die Werkstoffplatten während des Prozesses vermessen und zueinander positioniert werden, so dass sich eine möglichst exakte Positionierung ergibt. Die Zuführung über die Fördereinrichtungen 20, 21 kann z.B. mit Vakuumbändern, Luftkissen, Mangelrollen, Ausrichtrollen, angetriebenen Anschlagslinealen, stillstehend oder ange- trieben, Schieber oder Pusher erfolgen. Im Falle einer Mehrlagigkeit ist eine Zuführung unten durch Vakuumriemen und in der Mitte z.B. durch eine seitliche Fördereinrichtung 22 gemäß Fig. 4 an den Außenkanten möglich. Denkbar sind ferner Schieber und Pusher oder seitliche Führungen und Lamellen. The positioning should preferably allow an exact feed, so that before, during and after joining a plate offset minimized, excluded, targeted and reworking is largely avoided. This can be assisted, for example, by measuring the material plates during the process and positioning them in relation to each other so that the most exact possible positioning results. The supply via the conveyors 20, 21 can eg with vacuum bands, air bags, mangle rolls, alignment rolls, driven stop rulers, stationary or ange- drove, slide or pusher done. In the case of a multi-layer feed is possible below by vacuum belts and in the middle, for example by a lateral conveyor 22 as shown in FIG. 4 at the outer edges. Also conceivable are slides and pushers or lateral guides and slats.
Es versteht sich von selbst, dass diese Beschreibung verschiedensten Modifikationen, Änderungen und Anpassungen unterworfen werden kann, die sich im Bereich von Äquivalenten zu den anhängenden Ansprüchen bewegen. It will be understood that this description is susceptible of various modifications, changes and adaptations, ranging from equivalents to the appended claims.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
10, 10' erste Werkstoffplatte 10, 10 'first material plate
10a Oberfläche  10a surface
1 1 , 1 1 ' weitere Werkstoffplatte 1 1, 1 1 'further material plate
1 1 a Oberfläche  1 1 a surface
13 Spalt  13 gap
14 Transportrichtung  14 transport direction
15 Wärmeelement  15 heat element
15a, 15b Oberfläche 15a, 15b surface
16, 17 Heizmittel  16, 17 heating medium
18 Planerwelle  18 Planner shaft
20 erste Fördereinrichtung  20 first conveyor
21 weitere Fördereinrichtung  21 more conveyor
22 seitliche Fördereinrichtung  22 lateral conveyor
23 Trennelement  23 separating element
25 Anpressrolle 25 pressure roller
A Oberflächenbearbeitung A surface treatment
B Vakuumwendestation  B vacuum transfer station
C Plattenhub- und Positioniereinrichtung C plate lifting and positioning device
D Schweißstation D welding station

Claims

Patentansprüche claims
1 . Verfahren zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten aus aufgeschäumtem und/oder auch nicht aufgeschäumtem Material, 1 . Method for the thermal, surface welding of a plurality of material plates made of foamed and / or non-foamed material,
wobei wenigstens eine erste Werkstoffplatte (10) mittels einer ersten Fördereinrichtung (20) und wenigstens eine weitere Werkstoffplatte (1 1 ) mittels wenigstens einer weiteren Fördereinrichtung (21 ) jeweils kontinuierlich einer Schweißstation (D) zugeführt werden,  wherein at least one first material plate (10) by means of a first conveyor (20) and at least one further material plate (1 1) by means of at least one further conveyor (21) are each fed continuously to a welding station (D)
wobei aufeinander zu zeigende, zu verschweißende Oberflächen (10a, 1 1 a) der Werkstoffplatten (10, 1 1 ) stromaufwärts der Schweißstation (D) mittels wenigstens eines zwischen den Oberflächen (10a, 1 1 a) befindlichen Wärmeelements (15) so mit Wärme beaufschlagt werden, dass mindestens eine dieser Oberflächen (10a, 1 1 a) anschmilzt,  wherein facing surfaces to be welded (10a, 11a) of the material plates (10, 11) upstream of the welding station (D) by means of at least one between the surfaces (10a, 1 1 a) located heat element (15) so with heat be acted upon that at least one of these surfaces (10a, 1 1 a) melts,
wobei die aufeinander zu zeigenden Oberflächen (10a, 1 1 a) anschließend unter Anpressdruck aufgrund der vorangegangenen Wärmebeaufschlagung durch das Wärmelement (15) stoffschlüssig miteinander verbunden werden,  wherein the surfaces (10a, 11a) to be pointed towards one another are subsequently joined together in a material-locking manner under contact pressure due to the preceding application of heat by the heating element (15),
dadurch gekennzeichnet, dass die ersten Werkstoffplatten (10) und die weiteren Werkstoffplatten (1 1 ) in einem Winkel kleiner 1 °, vorzugsweise parallel zueinander bis zur Schweißstation (D) zugeführt werden,  characterized in that the first material plates (10) and the further material plates (1 1) are fed at an angle of less than 1 °, preferably parallel to one another, up to the welding station (D),
dass das Wärmelement (15) die Oberflächen (10a, 1 1 a) der Werkstoffplatten (10, 1 1 ) kontaktierend anschmilzt und  the heating element (15) melts the surfaces (10a, 11a) of the material plates (10, 11) in a contacting manner and
dass die Werkstoffplatten (10, 1 1 ) in der Schweißstation (D) zueinander passgenau positioniert verbunden werden.  that the material plates (10, 1 1) in the welding station (D) are connected to each other accurately positioned.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die ersten Werkstoffplatten (10) und die weiteren Werkstoffplatten (1 1 ) während des Zuführens vermessen und in der Schweißstation (D) zueinander positioniert werden und/oder erst in der Schweißstation (D) zueinander passgenau positioniert werden. 2. The method according to claim 1, characterized in that the first material plates (10) and the further material plates (1 1) are measured during feeding and positioned in the welding station (D) to each other and / or only in the welding station (D) to each other be accurately positioned.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Werkstoffplatten (10, 1 1 ) nach einer Oberflächenbearbeitung der zu fügenden Oberflächen (10a,3. The method according to claim 1 or 2, characterized in that the material plates (10, 1 1) after a surface treatment of the surfaces to be joined (10a,
10b) unmittelbar der Schweißstation (D) zugeführt werden. 10b) are fed directly to the welding station (D).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oberflächen der Werkstoffplatten (10, 10', 1 1 , 1 1 ') seriell vorzugsweise mit wenigstens einer dynamisch verstellbaren Planerwelle (18) bearbeitet werden und anschließend unter Bildung einer mit den zu fügenden Oberflächen (10a, 1 1 a) aneinanderlie- genden Paaren oder Gruppen von Werkstoffplatten der Schweißstation (D) zugeführt werden. 4. The method according to any one of the preceding claims, characterized in that the surfaces of the material plates (10, 10 ', 1 1, 1 1') are serially preferably processed with at least one dynamically adjustable plunger shaft (18) and then to form a with the surfaces to be joined (10a, 11a) adjoin one another ing pairs or groups of material plates of the welding station (D) are supplied.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das wenigstens eine Wärmeelement (15) mehrere Oberflächen (15a, 15b) aufweist, die auf unterschiedliche Temperaturen temperierbar sind und/oder denen die Werkstoffplatten (10, 1 1 ) mit unterschiedlichem Druck zugeführt werden. 5. The method according to any one of the preceding claims, characterized in that the at least one heat element (15) has a plurality of surfaces (15a, 15b) which are temperature-controlled to different temperatures and / or which the material plates (10, 1 1) with different pressure be supplied.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Wärmeelement (15) mittels gesonderter Heizmittel (16, 17) an gegenüberliegenden Oberflächen (15a, 15b) auf unterschiedliche Temperaturen erwärmt wird, wobei die ersten Werkstoffplatten6. The method according to claim 5, characterized in that the heating element (15) by means of separate heating means (16, 17) on opposite surfaces (15a, 15b) is heated to different temperatures, wherein the first material plates
(10) an der einen Oberfläche (15a) und die weiteren Werkstoffplatten (1 1 ) an den gegenüberliegenden anderen Oberflächen (15b) des Wärmeelements (15) kontaktbehaftet vorbeigeführt werden. (10) on the one surface (15 a) and the other material plates (1 1) on the opposite other surfaces (15 b) of the heat element (15) are guided past contact.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Werkstoffplatten (10) und weiteren Werkstoffplatten (1 1 ) in einem Abstand mit einem Spaltmaß kleiner gleich 10 mm, vorzugsweise mit einem Spaltmaß zwischen 5 und 0 mm, bis hin zu einem negativen Spaltmaß von vorzugsweise bis zu minus 4 mm dem Wärmelement (15) zugeführt werden. 7. The method according to any one of the preceding claims, characterized in that the first material plates (10) and further material plates (1 1) at a distance with a gap less than or equal to 10 mm, preferably with a gap between 5 and 0 mm, up to a negative gap of preferably up to minus 4 mm the heating element (15) are supplied.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens drei Lagen an Werkstoffplatten (10, 10', 1 1 , 1 1 ') mehreren wenigstens in einer Richtung quer zur Transportrichtung (14) der Werkstoffplatten versetzten Wärmeelementen (15, 15') zugeführt werden und in der einen Schweißstation (D) miteinander verbunden werden. 8. The method according to any one of the preceding claims, characterized in that at least three layers of material plates (10, 10 ', 1 1, 1 1') at least in one direction transversely to the transport direction (14) of the material plates offset heat elements (15, 15 ') are fed and connected in one welding station (D).
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Werkstoff platten (10, 1 1 ) biegesteife Dämmstoffplatten zugeführt werden, die vorzugsweise die gleiche Dicke aufweisen. 9. The method according to any one of the preceding claims, characterized in that as material plates (10, 1 1) rigid insulating panels are supplied, which preferably have the same thickness.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeelement (15) durch das kontinuierliche und kontaktbehaftete Vorbeiführen der Werkstoffplatten das Wärmeelement gereinigt wird. 10. The method according to any one of the preceding claims, characterized in that the thermal element (15) is cleaned by the continuous and contact-related passing of the material plates, the heat element.
1 1 . Vorrichtung zum thermischen, flächigen Verschweißen mehrerer Werkstoffplatten aus aufgeschäumten und/oder auch nicht aufgeschäumtem Material, insbesondere zur Durchführung des Verfahrens nach mindestens einem der Ansprüche 1 bis 10, mit einer ersten Fördereinrichtung (20) zum kontinuierlichen Zuführen wenigstens einer ersten Werkstoffplatte (10) zu einer Schweißstation (D), 1 1. Device for thermal, surface welding of a plurality of material plates of foamed and / or non-foamed material, in particular for carrying out the method according to at least one of claims 1 to 10, with a first conveyor (20) for continuously feeding at least one first material plate (10) a welding station (D),
einer weiteren Fördereinrichtung (21 ) zum kontinuierlichen Zuführen wenigstens einer weiteren Werkstoffplatte (1 1 ) zu der Schweißstation (D),  a further conveying device (21) for continuously feeding at least one further material plate (1 1) to the welding station (D),
wenigstens einem zwischen den aufeinander zu zeigenden, zu verschweißenden Oberflächen (10a, 1 1 a) der Werkstoffplatten (10, 1 1 ) stromaufwärts der Schweißstation (D) angeordneten Wärmeelement (15),  at least one thermal element (15) arranged between the surfaces (10a, 11a) of the material plates (10, 11) to be welded together facing each other, upstream of the welding station (D),
Andrückelementen, die stromabwärts des Wärmeelements (15) angeordnet sind und die Werkstoffplatten (10, 1 1 ) gegeneinander pressen, so dass sich deren aufeinander zu zeigenden Oberflächen (10a, 1 1 a) aufgrund der vorangegangenen Wärmebeaufschlagung durch das Wärmeelement (15) stoffschlüssig miteinander verbinden, dadurch gekennzeichnet, dass die erste Fördereinrichtung (20) und die wenigstens eine weitere Fördereinrichtung (21 ) zumindest im Bereich der Schweißstation (D) in einem Winkel kleiner 1 °, vorzugsweise parallel zueinander, angeordnet sind,  Pressing elements, which are arranged downstream of the heat element (15) and press the material plates (10, 1 1) against each other, so that their successive facing surfaces (10a, 1 1 a) due to the previous heat application by the heat element (15) materially together connect, characterized in that the first conveyor (20) and the at least one further conveyor (21) at least in the region of the welding station (D) at an angle less than 1 °, preferably arranged parallel to each other,
dass das Wärmelement (15) relativ zu den Fördereinrichtungen (20, 21 ) so angeordnet ist, dass es die Oberflächen (10a, 1 1 a) der Werkstoff platten (10, 1 1 ) berührt und  in that the heating element (15) is arranged relative to the conveying devices (20, 21) such that it touches the surfaces (10a, 11a) of the material plates (10, 11) and
dass der Schweißstation (D) Mittel zum Positionieren der Werkstoff platten (10, 1 1 ) zueinander zugeordnet sind.  that the welding station (D) means for positioning the material plates (10, 1 1) are associated with each other.
12. Vorrichtung nach Anspruch 1 1 , dadurch gekennzeichnet, dass die Mittel zum Positionieren der Werkstoffplatten in der Schweißstation (D) vorgesehen sind. 12. The device according to claim 1 1, characterized in that the means for positioning the material plates in the welding station (D) are provided.
13. Vorrichtung nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass das Wärmeelement (15) mehrere Oberflächen (15a, 15b) aufweist, die auf unterschiedliche Temperaturen temperierbar sind und/oder denen die Werkstoffplatten (10, 1 1 ) mit unterschiedlichem Druck zuführbar sind. 13. The apparatus of claim 1 1 or 12, characterized in that the heat element (15) has a plurality of surfaces (15a, 15b) which are temperature-controlled to different temperatures and / or which the material plates (10, 1 1) supplied with different pressure are.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass das Wärmelement (15) gesonderte Heizmittel (16, 17) zur unterschiedlichen Temperierung seiner Oberflächen (15a, 15b) aufweist. 14. The apparatus according to claim 13, characterized in that the heating element (15) separate heating means (16, 17) for different temperature control of its surfaces (15a, 15b).
15. Vorrichtung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass das Wärmeelement (15) so beschaffen ist, dass kein Anhaften von Restmaterial der angeschmolzenen Oberflächen (10a, 1 1 a) der Werkstoffplatten erfolgt. 15. Device according to one of claims 10 to 14, characterized in that the heat element (15) is such that no adhesion of residual material of the fused surfaces (10 a, 1 1 a) of the material plates takes place.
16. Vorrichtung nach einem der Ansprüche 1 1 bis 15, dadurch gekennzeichnet, dass die Fördereinrichtung (20) zum Fördern der ersten Werkstoff platte (10) und die Fördereinrichtung (21 ) zum Fördern der weiteren Werkstoffplatte (1 1 ) so angeordnet sind, dass die Werkstoffplatten zwischen sich einen Spalt (13) ausbilden, der kleiner gleich 10 mm, vorzugsweise zwischen 5 und 0 mm breit, und bis hin zu einem negativen Spaltmaß von vorzugsweise bis zu minus 4 mm ist. 16. Device according to one of claims 1 1 to 15, characterized in that the conveyor (20) for conveying the first material plate (10) and the conveyor (21) for conveying the further material plate (1 1) are arranged so that the material plates between them form a gap (13) which is less than or equal to 10 mm, preferably between 5 and 0 mm wide, and up to a negative gap of preferably up to minus 4 mm.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass der Spalt (13) eine vertikale Höhe aufweist, die kleiner gleich der vertikalen Erstreckung des Wärmeelements (15) ist. 17. The apparatus according to claim 16, characterized in that the gap (13) has a vertical height which is less than or equal to the vertical extent of the heat element (15).
18. Vorrichtung nach einem der vorhergehenden Ansprüche 1 1 bis 17, dadurch gekennzeichnet, dass mehrere Fördereinrichtungen (20, 21 ) zur Zuführung von wenigstens drei Lagen an Werkstoffplatten (10, 10', 1 1 , 1 1 ') zu mehreren Wärmeelementen (15, 15') vorgesehen sind, die wenigstens in einer Richtung quer zur Transportrichtung (14) der Werkstoffplatten zueinander versetzt sind. 18. Device according to one of the preceding claims 1 1 to 17, characterized in that a plurality of conveying devices (20, 21) for supplying at least three layers of material plates (10, 10 ', 1 1, 1 1') to a plurality of heat elements (15 , 15 ') are provided, which are offset from one another at least in one direction transversely to the transport direction (14) of the material plates.
19. Vorrichtung nach einem der vorhergehenden Ansprüche 1 1 bis 18, dadurch gekennzeichnet, dass das Wärmelement (15) zur Verschweißung von Längs- und Querkanten der Werkstoffplatten (10, 1 1 ) vertikal stehend angeordnet ist. 19. Device according to one of the preceding claims 1 1 to 18, characterized in that the heat element (15) for welding longitudinal and transverse edges of the material plates (10, 1 1) is arranged vertically standing.
PCT/EP2017/075427 2016-10-06 2017-10-05 Method and device for thermal planar welding of a plurality of material panels WO2018065553A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DEDE102016119012.8 2016-10-06
DE102016119012 2016-10-06
DE102016120064.6A DE102016120064A1 (en) 2016-10-06 2016-10-20 Method and device for the thermal, surface welding of several material plates
DEDE102016120064.6 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018065553A1 true WO2018065553A1 (en) 2018-04-12

Family

ID=61696000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/075427 WO2018065553A1 (en) 2016-10-06 2017-10-05 Method and device for thermal planar welding of a plurality of material panels

Country Status (2)

Country Link
DE (1) DE102016120064A1 (en)
WO (1) WO2018065553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1028938B1 (en) * 2020-12-23 2022-07-19 Paneltim Nv Method and equipment for the production of plastic panels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204822A1 (en) 2012-03-26 2012-08-23 Robert Bürkle GmbH Method for permanent planar connection of e.g. polystyrene foam plates for producing heat damping layer for insulation of heat in building, involves transmitting heating element to surfaces of material plates in contact free manner
EP2578381A1 (en) * 2011-10-07 2013-04-10 Sirap Insulation S.r.l. Process and apparatus for making multilayer plastic-material insulating boards with high thickness
EP2724843A1 (en) 2012-10-24 2014-04-30 Jackon Insulation GmbH Manufacture of thick XPS foam panels by means of welding
EP2923835A1 (en) * 2014-03-28 2015-09-30 Basf Se Method for the preparation of a thermoplastic foam panel by symmetrical connecting the initial panels
WO2016102292A1 (en) 2014-12-22 2016-06-30 Basf Se Method for producing multi-layered thermoplastic plates by means of thermal welding of different plates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541053A1 (en) * 1985-11-19 1987-05-21 Marquet & Cie Noel METHOD AND DEVICE FOR CONTINUOUSLY FLAT-WELDING FILMS, PLATES, RODS AND / OR TUBES MADE OF THERMOPLASTIC PLASTICS
EP2601044A1 (en) * 2010-08-03 2013-06-12 Knauf Insulation Composite xps thermal insulation panels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578381A1 (en) * 2011-10-07 2013-04-10 Sirap Insulation S.r.l. Process and apparatus for making multilayer plastic-material insulating boards with high thickness
DE102012204822A1 (en) 2012-03-26 2012-08-23 Robert Bürkle GmbH Method for permanent planar connection of e.g. polystyrene foam plates for producing heat damping layer for insulation of heat in building, involves transmitting heating element to surfaces of material plates in contact free manner
EP2724843A1 (en) 2012-10-24 2014-04-30 Jackon Insulation GmbH Manufacture of thick XPS foam panels by means of welding
EP2923835A1 (en) * 2014-03-28 2015-09-30 Basf Se Method for the preparation of a thermoplastic foam panel by symmetrical connecting the initial panels
WO2016102292A1 (en) 2014-12-22 2016-06-30 Basf Se Method for producing multi-layered thermoplastic plates by means of thermal welding of different plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1028938B1 (en) * 2020-12-23 2022-07-19 Paneltim Nv Method and equipment for the production of plastic panels

Also Published As

Publication number Publication date
DE102016120064A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
EP3172049B1 (en) Device and method for producing composite sheets using multiple lamination
DE102012204822A1 (en) Method for permanent planar connection of e.g. polystyrene foam plates for producing heat damping layer for insulation of heat in building, involves transmitting heating element to surfaces of material plates in contact free manner
EP3509830B1 (en) Tape-laying device and tape-laying method using a pivotal cutting device
EP0451455A2 (en) Method and apparatus for the manufacture of laminates from plastic sheets
WO2012156347A2 (en) Device and method for producing a customized sheet metal strip or metal profile
EP0498764B1 (en) Apparatus for producing tubular articles
EP3585595B1 (en) Method and device for joining a number of material boards
EP0622170A2 (en) Process for making insert pockets or book covers
EP2631049B1 (en) Method and device for producing a semi-finished sheet
EP3152050B1 (en) Method and device for composite material production using direct laminating gap heating
EP3330060A1 (en) Preparation of xps foam panels with large width and/or length by welding
WO2018065553A1 (en) Method and device for thermal planar welding of a plurality of material panels
DE10140450B4 (en) Method and device for coating a profile rail
EP2713708B1 (en) Method and device for casting a cheese curd
DE112019004484B4 (en) Air filter media manufacturing method and tool therefor and system for forming geometry in a filter media web.
EP3174688B1 (en) Hot-air sealing device and method for hot-air sealing plastic-containing packaging
DE102008059142A1 (en) Method for joining reinforced glass fiber polytetrafluoroethylene films by ultrasound, involves arranging reinforced glass fiber polytetrafluoroethylene films in overlapped manner
DE10113524A1 (en) Biaxial film stretching equipment for a thermoforming machine has two conveyer belts, the second moving faster than the first and also moving apart perpendicular to the film
EP3549733A1 (en) Method and device for treating material plates
DE4425498A1 (en) Method and device for producing multilayer bodies
WO2008067580A1 (en) Method and device for positioning a glass element and a plastic film on top of each other
EP2906408A1 (en) Device for permanently connecting two plastic foam elements
AT397062B (en) Process for producing mouldings from a plurality of oriented plastic films, and system for carrying out the process
DE10319752B3 (en) Garment industry assembly to combine two layers of cloth with hotmelt bonding agent
WO2012116680A2 (en) Method for processing thermoplastic films, thermoforming system, film supply station, film strip, use, and laminated part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17790969

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17790969

Country of ref document: EP

Kind code of ref document: A1