WO2018064895A1 - Method and apparatus for synchronization - Google Patents

Method and apparatus for synchronization Download PDF

Info

Publication number
WO2018064895A1
WO2018064895A1 PCT/CN2017/089095 CN2017089095W WO2018064895A1 WO 2018064895 A1 WO2018064895 A1 WO 2018064895A1 CN 2017089095 W CN2017089095 W CN 2017089095W WO 2018064895 A1 WO2018064895 A1 WO 2018064895A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific sequence
sequence
reference signal
processing circuit
ldpb
Prior art date
Application number
PCT/CN2017/089095
Other languages
French (fr)
Inventor
Jiann-Ching Guey
Chun-Hsuan Kuo
Chao-Cheng Su
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/616,277 external-priority patent/US10389558B2/en
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to EP17857776.3A priority Critical patent/EP3494643A4/en
Priority to CN201780013212.5A priority patent/CN108702174B/en
Priority to BR112019006513A priority patent/BR112019006513A2/en
Publication of WO2018064895A1 publication Critical patent/WO2018064895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/7183Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to methods and apparatus for synchronization.
  • an electronic device can transmit one or more reference signals for synchronization and/or device identification.
  • a base station broadcasts a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) . From the primary synchronization signal and the secondary synchronization signal, user equipment can acquire timing information, frequency information, and identification of the base station.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • aspects of the disclosure provide an apparatus that includes a baseband processing circuit and a transmitting circuit.
  • the baseband processing circuit is configured to encode a reference signal based on a specific sequence to generate a digital stream.
  • the specific sequence has non-zero values at selected positions, and the number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold.
  • the transmitting circuit is configured to transmit wireless signals in response to the digital stream.
  • the baseband processing circuit is configured to encode one or more reference signals for synchronization and/or device identification based on the specific sequence.
  • the baseband processing circuit is configured to encode the reference signal in at least one of a time domain, a frequency domain, or a time-frequency domain based on the specific sequence.
  • the non-zero values can be one of constant, phase modulated, and amplitude modulated.
  • the baseband processing circuit is configured to encode the reference signal in a frequency domain based on the specific sequence with the non-zero values being phase modulated to minimize a peak to average power ratio in a time domain.
  • the baseband processing circuit is configured to encode the reference signal in the frequency domain based on the specific sequence with the non-zero values being phase modulated according to a binary phase-shift keying (BPSK) .
  • BPSK binary phase-shift keying
  • the apparatus includes a sequence providing circuit configured to provide the specific sequence to the baseband processing circuit.
  • the sequence providing circuit includes a memory configured to store the specific sequence.
  • the sequence providing circuit includes a sequence generator circuit configured to generate the specific sequence.
  • the sequence providing circuit includes an interface circuit configured to receive the specific sequence from an external source that is out of the apparatus.
  • aspects of the disclosure provide a method for communication.
  • the method includes receiving a specific sequence having non-zero values at selected positions. The number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold.
  • the method further includes encoding a reference signal based on the specific sequence to generate a digital stream and transmitting wireless signals in response to the digital stream.
  • Fig. 1 shows a block diagram of an exemplary communication system 100 according to an embodiment of the disclosure
  • Fig. 2 shows a flow chart outlining a process 300 according to an embodiment of the disclosure
  • Fig. 3 shows a diagram of a low density power boosted sequence example according to an embodiment of the disclosure.
  • Fig. 4 shows a diagram of using a low density power boosted sequence in different domains according to embodiments of the disclosure.
  • Fig. 1 shows a block diagram of an exemplary communication system 100 according to an embodiment of the disclosure.
  • the communication system 100 includes a plurality of electronic devices, such as a first electronic device 110, a second electronic device 160, and the like, that communicate using wireless signals.
  • At least one of electronic devices in the communication system 100 uses a specific type of sequences that is referred to as low density power boosted (LDPB) sequence for synchronization and/or device identification.
  • LDPB low density power boosted
  • the communication system 100 can be any suitable wireless communication system that uses suitable wireless communication technology, such as second generation (2G) mobile network technology, third generation (3G) mobile network technology, fourth generation (4G) mobile network technology, fifth generation (5G) mobile network technology, global system for mobile communication (GSM) , long-term evolution (LTE) , a New Radio (NR) access technology, a wireless local area network (WLAN) , a Bluetooth technology, a wireless peer-to-peer network technology, and the like.
  • suitable wireless communication technology such as second generation (2G) mobile network technology, third generation (3G) mobile network technology, fourth generation (4G) mobile network technology, fifth generation (5G) mobile network technology, global system for mobile communication (GSM) , long-term evolution (LTE) , a New Radio (NR) access technology, a wireless local area network (WLAN) , a Bluetooth technology, a wireless peer-to-peer network technology, and the like.
  • the plurality of electronic devices can be any suitable devices.
  • one of the first electronic device 110 and the second electronic device 160 is an interface node in a telecommunication service provider, and the other electronic device is a terminal device.
  • the first electronic device 110 is the interface node
  • the second electronic device 160 is the terminal device
  • the first electronic device 110 is the terminal device
  • the second electronic device 160 is the interface node.
  • both of the first electronic device 110 and the second electronic device 160 are terminal devices.
  • the first electronic device 110 is an interface node, such as a base transceiver station, a Node B, an evolved Node B, and the like, in a telecommunication service provider.
  • the first electronic device 110 includes hardware components and software components configured to enable wireless communications between the first electronic device 110 and terminal devices, such as the second electronic device 160 and the like, that have subscribed services of the telecommunication service provider.
  • the first electronic device 110 is suitably coupled with other suitable nodes, such as core nodes in a backbone of the telecommunication service provider, other interface nodes of the telecommunication service provider, and the like.
  • the second electronic device 160 is a terminal device.
  • the second electronic device 160 is user equipment used by an end-user for mobile telecommunication, such as a cell phone, a smart phone, a tablet computer, a laptop, a wearable device and the like.
  • the second electronic device 160 is a stationary device, such as a desktop computer.
  • the second electronic device 160 is a machine type communication device, such as a wireless sensor, an Internet of things (IoT) device and the like.
  • IoT Internet of things
  • an electronic device such as the first electronic device 110, is configured to generate reference signals for synchronization and/or identification based on one or more LDPB sequences.
  • a LDPB sequence can originate from a binary sequence that has zero value positions and non-zero value positions.
  • the LDPB sequence has at least one zero value positions and at least two non-zero value positions.
  • the non-zero value positions are selected to achieve a desired autocorrelation characteristic.
  • the non-zero value positions are selected to minimize the number coincidences of non-zero value positions between a root LDPB sequence and a shifted copy (e.g., cyclically shifted or non-cyclically shifted) of the root LDPB sequence.
  • the density of non-zero value positions in an LDPB sequence is smaller than a threshold, such as lower than 1/2, and the power of the LDPB sequence is boosted (e.g., the non-zero values are increased) to match the total power with for example a related sequence.
  • the related sequence has the same length (e.g., the total number of positions) as the LDPB sequence, and has non-zero values at all the positions in an example.
  • the non-zero value positions can be selected to achieve an ideal cyclic autocorrelation characteristic.
  • ideal cyclic autocorrelation characteristic any two cyclic shifted sequences from a same root LDPB sequence have at most one coincidence of non-zero value positions when the two cyclic shifts are not the same.
  • a LDPB sequence is constructed based on a circular Golomb Ruler (CGR) sequence that has ideal cyclic autocorrelation characteristic.
  • CGR circular Golomb Ruler
  • a binary sequence of length L (e.g., the total number of positions in the binary sequence) can be denoted by Eq. 1:
  • the position when a position has binary 0, the position can be referred to as a zero value position, and when a position has binary 1, the position can be referred to as a non-zero value position.
  • the number of non-zero value positions in the binary sequence is represented by P.
  • a cyclic shift of by ⁇ positions ( ⁇ is an integer) can be denoted by In an example, when the binary sequence satisfies Eq. 2:
  • the binary sequence has the ideal cyclic autocorrelation characteristic, and the binary sequence is referred to as a circular Golomb Ruler (CGR) with P non-zero positions.
  • CGR circular Golomb Ruler
  • the circular Golomb Ruler sequence can be used to construct an LDPB sequence of the ideal cyclic autocorrelation characteristic.
  • the minimum sequence length L min satisfies Eq. 3
  • R is a prime number (e.g., 2, 3, 5, 7, 11, 13, 17%)
  • N is a positive integer (e.g., 1, 2, 3, ...)
  • CGR circular Golomb Ruler
  • the circular Golomb Ruler sequences can be constructed by various methods.
  • the circular Golomb Ruler sequences can be generated using exhaustive search.
  • exhaustive search is performed by an electronic device, such as the first electronic device 110, the second electronic device 160, a processor (not shown) at a core node of a telecommunication service provider, or any other device, to find the circular Golomb Ruler sequences corresponding to different numbers of non-zero positons.
  • the results of the exhaustive search such as the circular Golomb Ruler sequences corresponding to numbers of non-zero positions, are stored in a memory of an electronic device, such as the first electronic device 110, the second electronic device 160, core nodes in the telecommunication service provider, and the like.
  • the stored circular Golomb Ruler sequences can be used by an electronic device, such as the first electronic device 110 and the like, for synchronization and device identification.
  • the circular Golomb Ruler sequences can be constructed on the fly during operation.
  • the circular Golomb Ruler sequences are constructed based on a construction algorithm, such as disclosed by SINGER, A Theorem in Finite Projective Geometry and Some Applications to Number Theory in Transactions American Mathematical Society, 1938 pp. 377-385.
  • the density of the non-zero value positions in the circular Golomb Ruler sequences is relatively low (e.g., about ) especially when the number of non-zero value positions P is large.
  • the minimum sequence length L min of circular Golomb Ruler sequence is 7 according to Eq. 3, and the density of the non-zero value positions is lower than 1/2
  • the minimum sequence length L min of circular Golomb Ruler sequence is 13 according to Eq. 3, and the density of the non-zero value positions is lower than 1/3; when the number of non-zero value positions P is 5, the minimum sequence length L min of circular Golomb Ruler sequence is 21 according to Eq.
  • the density of the non-zero value positions is lower than 1/4; when the number of non-zero value positions P is 10, the minimum sequence length L min of circular Golomb Ruler sequence is 91 according to Eq. 3, and the density of the non-zero value positions is lower than 1/9.
  • power at the non-zero value positions of circular Golomb Ruler sequence can be suitably boosted to construct the LDPB sequence, such that the total power for sending signals according to the LDPB sequence is about the same level as sending signals according to the related sequence that has the same length as the LDPB sequence and has non-zero values at all the positions for example.
  • the LDPB sequence can be constructed based on a non-cyclic binary sequence, such as a Golomb Ruler sequence in which no two pairs of non-zero value positions are of the same distance apart.
  • a non-cyclic binary sequence such as a Golomb Ruler sequence in which no two pairs of non-zero value positions are of the same distance apart.
  • the number of non-zero value positions is the order of the Golomb Ruler sequence
  • the length of the Golomb Ruler sequence corresponds to the last non-zero value position.
  • a 11-order Golomb Ruler sequence of 73 length has non-zero values at positions 0, 1, 4, 13, 28, 33, 47, 54, 64, 70, 72.
  • the communication system 100 is configured to use a group of sequences that are generated from a same root LDPB sequence for synchronization and device identification.
  • the group of sequences includes the root LDPB sequence, cyclically and/or non-cyclically shifted copies of the root LDPB sequence.
  • the group of sequences can be respectively assigned to different devices for device identification.
  • two or more sequences in the group of sequences can be assigned to one device, such as the first electronic device 110, thus the first electronic device 110 can use the two or more sequences to respectively signal different information.
  • the communication system 100 can use a group of sequences that are generated from multiple root LDPB sequences for synchronization and device identification.
  • the multiple root LDPB sequences can be selected to have reduced number of cross coincidences.
  • a first circular Golomb Ruler sequence of length 133 and a second circular Golomb Ruler sequence of length 133 are selected.
  • the first circular Golomb Ruler sequence includes non-zero value positions at 0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104 and 109
  • the second circular Golomb Ruler sequence includes non-zero value positions at 0, 1, 25, 30, 40, 46, 53, 96, 100, 114, 122, and 131.
  • the maximum cross correlation (e.g., cross-coincidences) of the first circular Golomb Ruler sequence and the second circular Golomb Ruler sequence is two.
  • the group of sequences can include the first circular Golomb Ruler sequence, cyclically and/or non-cyclically shifted copies of the first circular Golomb Ruler sequence, the second circular Golomb Ruler sequence and cyclically and/or non-cyclically shifted copies of the second circular Golomb Ruler sequence.
  • the first electronic device 110 includes a first transceiver 113, a first baseband processing circuit 120 and an LDPB sequence providing circuit 140 coupled together.
  • the first baseband processing circuit 120 includes a transmit processing circuit 130 configured to encode a reference signal, such as a primary synchronization signal, a secondary synchronization signal, an identification signal, and the like, based on a LDPB sequence.
  • the first electronic device 110 can include other suitable components (not shown) , such as processors, memory, and the like.
  • the second electronic device 160 includes a second transceiver 163 and a second baseband processing circuit 170 coupled together.
  • the second baseband processing circuit 170 includes a receive processing circuit 180 for detecting the reference signal that is encoded based on the LDPB sequence.
  • the second electronic device 160 can include other suitable components (not shown) , such as processors, memory, and the like.
  • the communication system 100 can include other devices that are configured similarly as the first electronic device 110 or the second electronic device 160.
  • first baseband processing circuit 120 can include other suitable components, such as a receive processing circuit (not shown) and the like.
  • second baseband processing circuit 170 can include other suitable components, such as a transmit processing circuit (not shown) and the like.
  • the first transceiver 113 is configured to receive and transmit wireless signals.
  • the first transceiver 113 includes a receiving circuit RX 116 and a transmitting circuit TX 115.
  • the receiving circuit RX 116 is configured to generate electrical signals in response to captured electromagnetic waves by an antenna 114, and process the electrical signals to extract digital samples from the electrical signals.
  • the receiving circuit RX 116 can filter, amplify, down convert, and digitalize the electrical signals to generate the digital samples.
  • the receiving circuit RX 116 can provide the digital samples to the first baseband processing circuit 120 for further processing.
  • the transmitting circuit TX 115 is configured to receive digital stream (e.g., output samples) from the first baseband processing circuit 120, process the digital stream to generate radio frequency (RF) signals, and cause the antenna 114 to emit electromagnetic waves in the air to carry the digital stream.
  • the transmitting circuit TX 115 can convert the digital stream to analog signals, and amplify, filter and up-convert the analog signals to generate the RF signals.
  • the LDPB sequence providing circuit 140 is configured to provide one or more LDPB sequences to the transmit processing circuit 130.
  • the LDPB sequence providing circuit 140 is implemented as a memory circuit storing LDPB sequences.
  • the LDPB sequences are predetermined by exhaustive search or theoretical construction.
  • the LDPB sequences are assigned to the first electronic device 110.
  • the LDPB sequences can be stored in any suitable form.
  • an LDPB sequence is stored in the form of a plurality of non-zero value positions.
  • an LDPB sequence is stored with a phase modulation configuration.
  • the LDPB sequence is used to encode a reference signal in the frequency domain.
  • the phase modulation configuration is pre-determined to minimize peak to average power ratio (PAPR) of the time domain, for example to optimize performance of a power amplifier (not shown) in the first transceiver 113.
  • PAPR peak to average power ratio
  • BPSK binary phase-shift keying
  • each non-zero value position can select one of two phases for phase modulation.
  • combinations of the selected phases for the LDPB sequence are tested to determine the phase modulation configuration with the lowest PAPR.
  • the LDPB sequence providing circuit 140 can be implemented using other suitable circuit.
  • the LDPB sequence providing circuit 140 is implemented as a processor executing software instructions to generate one or more LDPB sequences on the fly.
  • the LDPB sequence providing circuit 140 is implemented using logic circuit configured to generate one or more LDPB sequences on the fly.
  • the LDPB sequence providing circuit 140 is implemented using communication interface circuit configured to receive one or more LDPB sequences from an external source that is out of the first electronic device 110, such as a core node of the telecommunication service provider.
  • the transmit processing circuit 130 is configured to receive the one or more LDPB sequences, and encode one or more reference signals that are used for synchronization and/or device identification, such as a primary synchronization signal, a secondary synchronization signal, and the like, based on the one or more LDPB sequences. Further, in an embodiment, the transmit processing circuit 130 can suitably encode other information, such as data and control information, and generate a digital stream (e.g., output samples) in response to the encoded reference signals, data and control information.
  • a digital stream e.g., output samples
  • the one or more LDPB sequences can be mapped and used in various domains, such as time domain, frequency domain, two dimensional time frequency domain, and the like.
  • the transmit processing circuit 130 can encode the reference signals in a time domain based on the one or more LDPB sequences.
  • non-zero values are placed at different time marks corresponding to the non-zero value positions in the LDPB sequence.
  • the transmit processing circuit 130 can encode the reference signals in a frequency domain based on the one or more LDPB sequences.
  • non-zero values are placed at certain sub-carriers corresponding to the non-zero value positions in the LDPB sequence.
  • the transmit processing circuit 130 can encode the reference signals in two dimensional time frequency domain based on the one or more LDPB sequences.
  • OFDM orthogonal frequency-division multiplexing
  • a set of resource elements are used to carry a reference signal, and each resource element corresponds to a specific sub-carrier in the frequency dimension and a specific symbol in the time dimension.
  • the transmit processing circuit 130 can map the LDPB sequence to the set of resource elements. For example, the transmit processing circuit 130 can place non-zero values at resource elements that are mapped to the non-zero value positions in the LDPB sequence.
  • the non-zero values are complex values for phase modulation and power boosting, and a waveform is modulated according to the complex values and the positions of the resource elements.
  • the set of resource elements can be an arbitrary set of resource elements.
  • the transmit processing circuit 130 can also process other information, such as control information, data, and the like.
  • the transmit processing circuit 130 can process data according to suitable channel coding technique, such as error detection coding technique, rate matching coding technique, low density parity check (LDPC) coding technique, polar coding technique and the like.
  • the data can be suitably modulated and multiplexed to generate OFDM symbols. Then, the OFDM symbols are interleaved and mapped to resource elements allocated for data transmission.
  • the transmit processing circuit 130 then generates the digital stream based on the resource element mapping results of various information processing, such as the reference signals processing, the data processing, the downlink control information processing, and the like.
  • the transmit processing circuit 130 can perform other suitable functions, such as scrambling, and the like. It is noted that the transmit processing circuit 130 can be implemented using various techniques. In an example, the transmit processing circuit 130 is implemented as integrated circuits. In another example, transmit processing circuit 130 is implemented as one or more processors executing software instructions.
  • the reference signals can be detected by the second electronic device 160 to provide time synchronization information, frequency synchronization information, device identification, sub-carrier spacing of data channel, location of carrier’s center frequency, and the like to the second electronic device 160.
  • the second transceiver 163 is configured to receive and transmit wireless signals.
  • the second transceiver 163 includes a receiving circuit RX 166 and a transmitting circuit TX 165.
  • the receiving circuit RX 166 is configured to generate electrical signals in response to captured electromagnetic waves by an antenna 164, and process the electrical signals to extract digital samples from the electrical signals.
  • the receiving circuit RX 166 can filter, amplify, down convert, and digitalize the electrical signals to generate the digital samples.
  • the receiving circuit RX 166 can provide the digital samples to the second baseband processing circuit 170 for further processing.
  • the transmitting circuit TX 165 is configured to receive a digital stream (e.g., output samples) from the second baseband processing circuit 170, process the digital stream to generate radio frequency (RF) signals, and cause the antenna 164 to emit electromagnetic waves in the air to carry the digital stream.
  • the transmitting circuit TX 165 can convert the digital stream to analog signals, and amplify, filter and up-convert the analog signals to generate the RF signals.
  • the receive processing circuit 180 is configured to receive the digital samples from the receiving circuit RX 166. Based on the digital samples, the receive processing circuit 180 detects one or more reference signals that are encoded based on the LDPB sequences, and establishes timing and/or frequency synchronization with the first electronic device 110 based on the LDPB sequences.
  • the communication system 100 can be suitably modified to use multiple input, multiple output (MIMO) antenna technology.
  • MIMO multiple input, multiple output
  • Fig. 2 shows a flow chart outlining a process 200 according to an embodiment of the disclosure.
  • the process 200 is executed by the first electronic device 110 to transmit wireless signals with one or more reference signals encoded based on LDPB sequences.
  • the process starts at S201 and proceeds to S210.
  • one or more LDPB sequences are received.
  • the first baseband processing circuit 130 receives one or more LDPB sequences from the sequence providing circuit 140.
  • reference signals are encoded based on the LDPB sequences.
  • the transmit processing circuit 130 can encode the reference signals in two dimensional time frequency domain based on the one or more LDPB sequences.
  • OFDM orthogonal frequency-division multiplexing
  • a set of resource elements are used to carry a reference signal, and each resource element corresponds to a specific sub-carrier in the frequency dimension and a specific symbol in the time dimension.
  • the transmit processing circuit 130 can map the LDPB sequence to the set of resource elements.
  • the transmit processing circuit 130 can place non-zero values at resource elements that are mapped to the non-zero value positions in the LDPB sequence.
  • the non-zero values are complex values for phase modulation and power boosting.
  • a waveform is modulated according to the complex values and the positions of the resource elements.
  • a digital stream is generated based on various information processing.
  • the transmit processing circuit 130 then generates the digital stream based on the resource element mapping results of various information processing, such as the reference signals processing, the data processing, the downlink control information processing, and the like.
  • wireless signals are transmitted in response to the digital stream.
  • the transmitting circuit TX 115 receives the digital stream from the first baseband processing circuit 120, processes the digital stream to generate radio frequency (RF) signals, and causes the antenna 114 to emit electromagnetic waves in the air to carry the digital stream. The process then proceeds to S299 and terminates.
  • RF radio frequency
  • Fig. 3 shows a diagram 300 of an LDPB sequence example according to an embodiment of the disclosure.
  • the diagram 300 uses a solid square to represent a non-zero value position, and uses a blank square to represent a zero value position.
  • the LDPB sequence is a circular Golomb Ruler (CGR) with 4 non-zero value positions, the length of the LDPB sequence is 13, and the density of the non-zero values is lower than 1/3.
  • CGR circular Golomb Ruler
  • the diagram 300 includes a root sequence 310, and a plurality of cyclic shifted copies 321-332.
  • the LDPB sequence in the Fig. 3 example has an ideal cyclic autocorrelation characteristic. For example, any two of the 310, and 321-332 have at most one coincidence of non-zero value positions.
  • Fig. 4 shows a diagram 400 of using a LDPB sequence in different domains according to embodiments of the disclosure.
  • the diagram 400 uses a solid square to represent a non-zero value position, and uses a blank square to represent a zero value position.
  • the LDPB sequence is a circular Golomb Ruler (CGR) with 5 non-zero value positions, the length of the LDPB sequence is 21, and the density of the non-zero values is lower than 1/4.
  • CGR circular Golomb Ruler
  • the diagram 400 includes a first mapping 410 of the LDPB in the time domain. Each position in the LDPB sequence can be mapped to a time mark in the time scale according to the first mapping 410.
  • the diagram 400 includes a second mapping 420 of the LDPB in the frequency domain. Each position in the LDPB sequence can be mapped to a sub-carrier in the frequency domain according to the second mapping 420.
  • the diagram 400 includes a third mapping 430 of the LDPB in the two dimensional time frequency domain. Each position in the LDPB sequence is mapped to a resource element in the two dimensional time frequency domain according to the third mapping 430.
  • the hardware may comprise one or more of discrete components, an integrated circuit, an application-specific integrated circuit (ASIC) , etc.
  • ASIC application-specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

Aspects of the disclosure provide an apparatus that includes a baseband processing circuit and a transmitting circuit. The baseband processing circuit is configured to encode a reference signal based on a specific sequence to generate a digital stream. The specific sequence has non-zero values at selected positions, and the number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold. The transmitting circuit is configured to transmit wireless signals in response to the digital stream.

Description

METHOD AND APPARATUS FOR SYNCHRONIZATION
CROSS REFERENCE TO RELATED APPLICATIONS
This present disclosure claims the benefit of U.S. Provisional Application No. 62/403,220, "Synchronization Signal Design based on Pulse Position Modulation" filed on October 3, 2016, U.S. Provisional Application No. 62/404,807, "Synchronization Signal Design based on Pulse Position Modulation" filed on October 6, 2016, and U.S. Utility Patent Application No. 15/616,277, filed on June 7, 2017, which are incorporated herein by references in their entirety.
TECHNICAL FIELD
The disclosed embodiments relate generally to wireless communication, and, more particularly, to methods and apparatus for synchronization.
BACKGROUND
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
In a wireless communication network, an electronic device can transmit one or more reference signals for synchronization and/or device identification. In an example, a base station broadcasts a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) . From the primary synchronization signal and the secondary synchronization signal, user equipment can acquire timing information, frequency information, and identification of the base station.
SUMMARY
Aspects of the disclosure provide an apparatus that includes a baseband processing circuit and a transmitting circuit. The baseband processing circuit is configured to encode a  reference signal based on a specific sequence to generate a digital stream. The specific sequence has non-zero values at selected positions, and the number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold. The transmitting circuit is configured to transmit wireless signals in response to the digital stream.
In an example, the baseband processing circuit is configured to encode one or more reference signals for synchronization and/or device identification based on the specific sequence.
According to an aspect of the disclosure, the baseband processing circuit is configured to encode the reference signal in at least one of a time domain, a frequency domain, or a time-frequency domain based on the specific sequence. The non-zero values can be one of constant, phase modulated, and amplitude modulated.
In an embodiment, the baseband processing circuit is configured to encode the reference signal in a frequency domain based on the specific sequence with the non-zero values being phase modulated to minimize a peak to average power ratio in a time domain. In an example, the baseband processing circuit is configured to encode the reference signal in the frequency domain based on the specific sequence with the non-zero values being phase modulated according to a binary phase-shift keying (BPSK) .
In an embodiment, the apparatus includes a sequence providing circuit configured to provide the specific sequence to the baseband processing circuit. In an example, the sequence providing circuit includes a memory configured to store the specific sequence. In another example, the sequence providing circuit includes a sequence generator circuit configured to generate the specific sequence. In another example, the sequence providing circuit includes an interface circuit configured to receive the specific sequence from an external source that is out of the apparatus.
Aspects of the disclosure provide a method for communication. The method includes receiving a specific sequence having non-zero values at selected positions. The number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold. The method further includes encoding a reference signal based on the specific sequence to generate a digital stream and transmitting wireless signals in response to the digital stream.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments of this disclosure that are proposed as examples will be described in detail with reference to the following figures, wherein like numerals reference like elements, and wherein:
Fig. 1 shows a block diagram of an exemplary communication system 100 according to an embodiment of the disclosure;
Fig. 2 shows a flow chart outlining a process 300 according to an embodiment of the disclosure;
Fig. 3 shows a diagram of a low density power boosted sequence example according to an embodiment of the disclosure; and
Fig. 4 shows a diagram of using a low density power boosted sequence in different domains according to embodiments of the disclosure.
DETAILED DESCRIPTION
Fig. 1 shows a block diagram of an exemplary communication system 100 according to an embodiment of the disclosure. The communication system 100 includes a plurality of electronic devices, such as a first electronic device 110, a second electronic device 160, and the like, that communicate using wireless signals. At least one of electronic devices in the communication system 100 uses a specific type of sequences that is referred to as low density power boosted (LDPB) sequence for synchronization and/or device identification.
The communication system 100 can be any suitable wireless communication system that uses suitable wireless communication technology, such as second generation (2G) mobile network technology, third generation (3G) mobile network technology, fourth generation (4G) mobile network technology, fifth generation (5G) mobile network technology, global system for mobile communication (GSM) , long-term evolution (LTE) , a New Radio (NR) access technology, a wireless local area network (WLAN) , a Bluetooth technology, a wireless peer-to-peer network technology, and the like.
The plurality of electronic devices can be any suitable devices. In an example, one of the first electronic device 110 and the second electronic device 160 is an interface node in a telecommunication service provider, and the other electronic device is a terminal device. For example, the first electronic device 110 is the interface node, and the second electronic device  160 is the terminal device, or the first electronic device 110 is the terminal device, and the second electronic device 160 is the interface node. In another example, both of the first electronic device 110 and the second electronic device 160 are terminal devices.
In an embodiment, the first electronic device 110 is an interface node, such as a base transceiver station, a Node B, an evolved Node B, and the like, in a telecommunication service provider. The first electronic device 110 includes hardware components and software components configured to enable wireless communications between the first electronic device 110 and terminal devices, such as the second electronic device 160 and the like, that have subscribed services of the telecommunication service provider. The first electronic device 110 is suitably coupled with other suitable nodes, such as core nodes in a backbone of the telecommunication service provider, other interface nodes of the telecommunication service provider, and the like.
Further, in the embodiment, the second electronic device 160 is a terminal device. In an example, the second electronic device 160 is user equipment used by an end-user for mobile telecommunication, such as a cell phone, a smart phone, a tablet computer, a laptop, a wearable device and the like. In another example, the second electronic device 160 is a stationary device, such as a desktop computer. In another example, the second electronic device 160 is a machine type communication device, such as a wireless sensor, an Internet of things (IoT) device and the like.
According to an aspect of the disclosure, an electronic device, such as the first electronic device 110, is configured to generate reference signals for synchronization and/or identification based on one or more LDPB sequences. In an embodiment, a LDPB sequence can originate from a binary sequence that has zero value positions and non-zero value positions. In an example, the LDPB sequence has at least one zero value positions and at least two non-zero value positions. The non-zero value positions are selected to achieve a desired autocorrelation characteristic. For example, the non-zero value positions are selected to minimize the number coincidences of non-zero value positions between a root LDPB sequence and a shifted copy (e.g., cyclically shifted or non-cyclically shifted) of the root LDPB sequence. Generally, the density of non-zero value positions in an LDPB sequence is smaller than a threshold, such as lower than 1/2, and the power of the LDPB sequence is boosted (e.g., the non-zero values are increased) to match the total power with for example a related sequence. The related sequence has the same length (e.g., the total number of positions) as the LDPB sequence, and has non-zero  values at all the positions in an example.
In an example, the non-zero value positions can be selected to achieve an ideal cyclic autocorrelation characteristic. In the example of the ideal cyclic autocorrelation characteristic, any two cyclic shifted sequences from a same root LDPB sequence have at most one coincidence of non-zero value positions when the two cyclic shifts are not the same.
In an embodiment, a LDPB sequence is constructed based on a circular Golomb Ruler (CGR) sequence that has ideal cyclic autocorrelation characteristic.
In an example, a binary sequence of length L (e.g., the total number of positions in the binary sequence) can be denoted by Eq. 1:
Figure PCTCN2017089095-appb-000001
In the binary sequence, when a position has binary 0, the position can be referred to as a zero value position, and when a position has binary 1, the position can be referred to as a non-zero value position. The number of non-zero value positions in the binary sequence 
Figure PCTCN2017089095-appb-000002
 is represented by P.
A cyclic shift of 
Figure PCTCN2017089095-appb-000003
 by τ positions (τ is an integer) can be denoted by 
Figure PCTCN2017089095-appb-000004
 In an example, when the binary sequence 
Figure PCTCN2017089095-appb-000005
 satisfies Eq. 2:
Figure PCTCN2017089095-appb-000006
where <·> denotes the inner product between the two vectors, the binary sequence 
Figure PCTCN2017089095-appb-000007
 has the ideal cyclic autocorrelation characteristic, and the binary sequence 
Figure PCTCN2017089095-appb-000008
 is referred to as a circular Golomb Ruler (CGR) with P non-zero positions. The circular Golomb Ruler sequence can be used to construct an LDPB sequence of the ideal cyclic autocorrelation characteristic.
Further, in an embodiment, to construct a circular Golomb Ruler (CGR) with P non-zero positions, the minimum sequence length Lmin satisfies Eq. 3
Lmin=P× (P-1) +1    Eq. 3
Further, theoretically when (P-1) is a prime power that can be represented by Eq. 4:
P-1=RN    Eq. 4
where R is a prime number (e.g., 2, 3, 5, 7, 11, 13, 17…) , and N is a positive integer (e.g., 1, 2, 3, …) , one or more circular Golomb Ruler (CGR) sequences with the minimum sequence length Lmin exist.
The circular Golomb Ruler sequences can be constructed by various methods. In an embodiment, the circular Golomb Ruler sequences can be generated using exhaustive search. In  an example, exhaustive search is performed by an electronic device, such as the first electronic device 110, the second electronic device 160, a processor (not shown) at a core node of a telecommunication service provider, or any other device, to find the circular Golomb Ruler sequences corresponding to different numbers of non-zero positons. The results of the exhaustive search, such as the circular Golomb Ruler sequences corresponding to numbers of non-zero positions, are stored in a memory of an electronic device, such as the first electronic device 110, the second electronic device 160, core nodes in the telecommunication service provider, and the like. The stored circular Golomb Ruler sequences can be used by an electronic device, such as the first electronic device 110 and the like, for synchronization and device identification. Appendix A shows an example of exhaustive search results for 12 non-zero value positions (P=12) , and the exhaustive search finds 36 LDPB root sequences for minimum sequence length of 133.
In another embodiment, the circular Golomb Ruler sequences can be constructed on the fly during operation. In an example, the circular Golomb Ruler sequences are constructed based on a construction algorithm, such as disclosed by SINGER, A Theorem in Finite Projective Geometry and Some Applications to Number Theory in Transactions American Mathematical Society, 1938 pp. 377-385.
Generally, the density of the non-zero value positions in the circular Golomb Ruler sequences is relatively low (e.g., about 
Figure PCTCN2017089095-appb-000009
) especially when the number of non-zero value positions P is large. For example, when the number of non-zero value positions P is 3, the minimum sequence length Lmin of circular Golomb Ruler sequence is 7 according to Eq. 3, and the density of the non-zero value positions is lower than 1/2, when the number of non-zero value positions P is 4, the minimum sequence length Lmin of circular Golomb Ruler sequence is 13 according to Eq. 3, and the density of the non-zero value positions is lower than 1/3; when the number of non-zero value positions P is 5, the minimum sequence length Lmin of circular Golomb Ruler sequence is 21 according to Eq. 3, and the density of the non-zero value positions is lower than 1/4; when the number of non-zero value positions P is 10, the minimum sequence length Lmin of circular Golomb Ruler sequence is 91 according to Eq. 3, and the density of the non-zero value positions is lower than 1/9.
Further, according to an aspect of the disclosure, power at the non-zero value positions of circular Golomb Ruler sequence can be suitably boosted to construct the LDPB sequence, such that the total power for sending signals according to the LDPB sequence is about  the same level as sending signals according to the related sequence that has the same length as the LDPB sequence and has non-zero values at all the positions for example.
According to another aspect of the disclosure, the LDPB sequence can be constructed based on a non-cyclic binary sequence, such as a Golomb Ruler sequence in which no two pairs of non-zero value positions are of the same distance apart. In the Golomb Ruler sequence example, the number of non-zero value positions is the order of the Golomb Ruler sequence, and the length of the Golomb Ruler sequence corresponds to the last non-zero value position. For example, a 11-order Golomb Ruler sequence of 73 length has non-zero values at positions 0, 1, 4, 13, 28, 33, 47, 54, 64, 70, 72.
According to an aspect of the disclosure, the communication system 100 is configured to use a group of sequences that are generated from a same root LDPB sequence for synchronization and device identification. In an example, the group of sequences includes the root LDPB sequence, cyclically and/or non-cyclically shifted copies of the root LDPB sequence. In an example, the group of sequences can be respectively assigned to different devices for device identification. In another example, two or more sequences in the group of sequences can be assigned to one device, such as the first electronic device 110, thus the first electronic device 110 can use the two or more sequences to respectively signal different information.
In an embodiment, the communication system 100 can use a group of sequences that are generated from multiple root LDPB sequences for synchronization and device identification. In an example, the multiple root LDPB sequences can be selected to have reduced number of cross coincidences. In an example, a first circular Golomb Ruler sequence of length 133 and a second circular Golomb Ruler sequence of length 133 are selected. The first circular Golomb Ruler sequence includes non-zero value positions at 0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104 and 109, and the second circular Golomb Ruler sequence includes non-zero value positions at 0, 1, 25, 30, 40, 46, 53, 96, 100, 114, 122, and 131. In an example, the maximum cross correlation (e.g., cross-coincidences) of the first circular Golomb Ruler sequence and the second circular Golomb Ruler sequence is two. In the example, the group of sequences can include the first circular Golomb Ruler sequence, cyclically and/or non-cyclically shifted copies of the first circular Golomb Ruler sequence, the second circular Golomb Ruler sequence and cyclically and/or non-cyclically shifted copies of the second circular Golomb Ruler sequence.
Specifically, in the Fig. 1 example, the first electronic device 110 includes a first transceiver 113, a first baseband processing circuit 120 and an LDPB sequence providing circuit  140 coupled together. In an embodiment, the first baseband processing circuit 120 includes a transmit processing circuit 130 configured to encode a reference signal, such as a primary synchronization signal, a secondary synchronization signal, an identification signal, and the like, based on a LDPB sequence. The first electronic device 110 can include other suitable components (not shown) , such as processors, memory, and the like.
The second electronic device 160 includes a second transceiver 163 and a second baseband processing circuit 170 coupled together. The second baseband processing circuit 170 includes a receive processing circuit 180 for detecting the reference signal that is encoded based on the LDPB sequence. The second electronic device 160 can include other suitable components (not shown) , such as processors, memory, and the like.
It is noted that the communication system 100 can include other devices that are configured similarly as the first electronic device 110 or the second electronic device 160.
It is noted that the first baseband processing circuit 120 can include other suitable components, such as a receive processing circuit (not shown) and the like. Similarly, the second baseband processing circuit 170 can include other suitable components, such as a transmit processing circuit (not shown) and the like.
The first transceiver 113 is configured to receive and transmit wireless signals. In an example, the first transceiver 113 includes a receiving circuit RX 116 and a transmitting circuit TX 115. The receiving circuit RX 116 is configured to generate electrical signals in response to captured electromagnetic waves by an antenna 114, and process the electrical signals to extract digital samples from the electrical signals. For example, the receiving circuit RX 116 can filter, amplify, down convert, and digitalize the electrical signals to generate the digital samples. The receiving circuit RX 116 can provide the digital samples to the first baseband processing circuit 120 for further processing.
In an example, the transmitting circuit TX 115 is configured to receive digital stream (e.g., output samples) from the first baseband processing circuit 120, process the digital stream to generate radio frequency (RF) signals, and cause the antenna 114 to emit electromagnetic waves in the air to carry the digital stream. In an example, the transmitting circuit TX 115 can convert the digital stream to analog signals, and amplify, filter and up-convert the analog signals to generate the RF signals.
In the Fig. 1 example, the LDPB sequence providing circuit 140 is configured to provide one or more LDPB sequences to the transmit processing circuit 130. In an example, the  LDPB sequence providing circuit 140 is implemented as a memory circuit storing LDPB sequences. The LDPB sequences are predetermined by exhaustive search or theoretical construction. In an example, the LDPB sequences are assigned to the first electronic device 110. The LDPB sequences can be stored in any suitable form. In an example, an LDPB sequence is stored in the form of a plurality of non-zero value positions.
In an embodiment, an LDPB sequence is stored with a phase modulation configuration. In an example, the LDPB sequence is used to encode a reference signal in the frequency domain. The phase modulation configuration is pre-determined to minimize peak to average power ratio (PAPR) of the time domain, for example to optimize performance of a power amplifier (not shown) in the first transceiver 113. In an example, binary phase-shift keying (BPSK) is used in the phase modulation. Then, each non-zero value position can select one of two phases for phase modulation. In an example, combinations of the selected phases for the LDPB sequence are tested to determine the phase modulation configuration with the lowest PAPR.
It is noted that the LDPB sequence providing circuit 140 can be implemented using other suitable circuit. In another example, the LDPB sequence providing circuit 140 is implemented as a processor executing software instructions to generate one or more LDPB sequences on the fly. In another example, the LDPB sequence providing circuit 140 is implemented using logic circuit configured to generate one or more LDPB sequences on the fly. In another example, the LDPB sequence providing circuit 140 is implemented using communication interface circuit configured to receive one or more LDPB sequences from an external source that is out of the first electronic device 110, such as a core node of the telecommunication service provider.
According to an aspect of the disclosure, the transmit processing circuit 130 is configured to receive the one or more LDPB sequences, and encode one or more reference signals that are used for synchronization and/or device identification, such as a primary synchronization signal, a secondary synchronization signal, and the like, based on the one or more LDPB sequences. Further, in an embodiment, the transmit processing circuit 130 can suitably encode other information, such as data and control information, and generate a digital stream (e.g., output samples) in response to the encoded reference signals, data and control information.
It is noted that the one or more LDPB sequences can be mapped and used in various  domains, such as time domain, frequency domain, two dimensional time frequency domain, and the like. In an embodiment, the transmit processing circuit 130 can encode the reference signals in a time domain based on the one or more LDPB sequences. In an example, non-zero values are placed at different time marks corresponding to the non-zero value positions in the LDPB sequence.
In another embodiment, the transmit processing circuit 130 can encode the reference signals in a frequency domain based on the one or more LDPB sequences. In an example, non-zero values are placed at certain sub-carriers corresponding to the non-zero value positions in the LDPB sequence.
In another embodiment, the transmit processing circuit 130 can encode the reference signals in two dimensional time frequency domain based on the one or more LDPB sequences. In an orthogonal frequency-division multiplexing (OFDM) system example, a set of resource elements are used to carry a reference signal, and each resource element corresponds to a specific sub-carrier in the frequency dimension and a specific symbol in the time dimension. In the example, the transmit processing circuit 130 can map the LDPB sequence to the set of resource elements. For example, the transmit processing circuit 130 can place non-zero values at resource elements that are mapped to the non-zero value positions in the LDPB sequence. In an embodiment, the non-zero values are complex values for phase modulation and power boosting, and a waveform is modulated according to the complex values and the positions of the resource elements.
It is noted that, in an example, the set of resource elements can be an arbitrary set of resource elements.
According to an aspect of the disclosure, the transmit processing circuit 130 can also process other information, such as control information, data, and the like. For example, the transmit processing circuit 130 can process data according to suitable channel coding technique, such as error detection coding technique, rate matching coding technique, low density parity check (LDPC) coding technique, polar coding technique and the like. In an example, the data can be suitably modulated and multiplexed to generate OFDM symbols. Then, the OFDM symbols are interleaved and mapped to resource elements allocated for data transmission.
The transmit processing circuit 130 then generates the digital stream based on the resource element mapping results of various information processing, such as the reference signals processing, the data processing, the downlink control information processing, and the  like.
It is noted that the transmit processing circuit 130 can perform other suitable functions, such as scrambling, and the like. It is noted that the transmit processing circuit 130 can be implemented using various techniques. In an example, the transmit processing circuit 130 is implemented as integrated circuits. In another example, transmit processing circuit 130 is implemented as one or more processors executing software instructions.
According to an aspect of the disclosure, the reference signals can be detected by the second electronic device 160 to provide time synchronization information, frequency synchronization information, device identification, sub-carrier spacing of data channel, location of carrier’s center frequency, and the like to the second electronic device 160.
In the second electronic device 160, the second transceiver 163 is configured to receive and transmit wireless signals. In an example, the second transceiver 163 includes a receiving circuit RX 166 and a transmitting circuit TX 165. The receiving circuit RX 166 is configured to generate electrical signals in response to captured electromagnetic waves by an antenna 164, and process the electrical signals to extract digital samples from the electrical signals. For example, the receiving circuit RX 166 can filter, amplify, down convert, and digitalize the electrical signals to generate the digital samples. The receiving circuit RX 166 can provide the digital samples to the second baseband processing circuit 170 for further processing.
In an example, the transmitting circuit TX 165 is configured to receive a digital stream (e.g., output samples) from the second baseband processing circuit 170, process the digital stream to generate radio frequency (RF) signals, and cause the antenna 164 to emit electromagnetic waves in the air to carry the digital stream. In an example, the transmitting circuit TX 165 can convert the digital stream to analog signals, and amplify, filter and up-convert the analog signals to generate the RF signals.
According to an aspect of the disclosure, the receive processing circuit 180 is configured to receive the digital samples from the receiving circuit RX 166. Based on the digital samples, the receive processing circuit 180 detects one or more reference signals that are encoded based on the LDPB sequences, and establishes timing and/or frequency synchronization with the first electronic device 110 based on the LDPB sequences.
It is also noted that while single antenna per device is used in the Fig. 1 example, the communication system 100 can be suitably modified to use multiple input, multiple output (MIMO) antenna technology.
Fig. 2 shows a flow chart outlining a process 200 according to an embodiment of the disclosure. In an example, the process 200 is executed by the first electronic device 110 to transmit wireless signals with one or more reference signals encoded based on LDPB sequences. The process starts at S201 and proceeds to S210.
At S210, one or more LDPB sequences are received. In the Fig. 1 example, the first baseband processing circuit 130 receives one or more LDPB sequences from the sequence providing circuit 140.
At S220, reference signals are encoded based on the LDPB sequences. In the Fig. 1 example, the transmit processing circuit 130 can encode the reference signals in two dimensional time frequency domain based on the one or more LDPB sequences. In an orthogonal frequency-division multiplexing (OFDM) system example, a set of resource elements are used to carry a reference signal, and each resource element corresponds to a specific sub-carrier in the frequency dimension and a specific symbol in the time dimension. In the example, the transmit processing circuit 130 can map the LDPB sequence to the set of resource elements. For example, the transmit processing circuit 130 can place non-zero values at resource elements that are mapped to the non-zero value positions in the LDPB sequence. In an embodiment, the non-zero values are complex values for phase modulation and power boosting. Further, a waveform is modulated according to the complex values and the positions of the resource elements.
At S230, a digital stream is generated based on various information processing. In the Fig. 1 example, the transmit processing circuit 130 then generates the digital stream based on the resource element mapping results of various information processing, such as the reference signals processing, the data processing, the downlink control information processing, and the like.
At S240, wireless signals are transmitted in response to the digital stream. In the Fig. 1 example, the transmitting circuit TX 115 receives the digital stream from the first baseband processing circuit 120, processes the digital stream to generate radio frequency (RF) signals, and causes the antenna 114 to emit electromagnetic waves in the air to carry the digital stream. The process then proceeds to S299 and terminates.
Fig. 3 shows a diagram 300 of an LDPB sequence example according to an embodiment of the disclosure. The diagram 300 uses a solid square to represent a non-zero value position, and uses a blank square to represent a zero value position. The LDPB sequence is a circular Golomb Ruler (CGR) with 4 non-zero value positions, the length of the LDPB  sequence is 13, and the density of the non-zero values is lower than 1/3.
The diagram 300 includes a root sequence 310, and a plurality of cyclic shifted copies 321-332. The LDPB sequence in the Fig. 3 example has an ideal cyclic autocorrelation characteristic. For example, any two of the 310, and 321-332 have at most one coincidence of non-zero value positions.
Fig. 4 shows a diagram 400 of using a LDPB sequence in different domains according to embodiments of the disclosure. The diagram 400 uses a solid square to represent a non-zero value position, and uses a blank square to represent a zero value position. The LDPB sequence is a circular Golomb Ruler (CGR) with 5 non-zero value positions, the length of the LDPB sequence is 21, and the density of the non-zero values is lower than 1/4.
The diagram 400 includes a first mapping 410 of the LDPB in the time domain. Each position in the LDPB sequence can be mapped to a time mark in the time scale according to the first mapping 410.
The diagram 400 includes a second mapping 420 of the LDPB in the frequency domain. Each position in the LDPB sequence can be mapped to a sub-carrier in the frequency domain according to the second mapping 420.
The diagram 400 includes a third mapping 430 of the LDPB in the two dimensional time frequency domain. Each position in the LDPB sequence is mapped to a resource element in the two dimensional time frequency domain according to the third mapping 430.
Appendix A: EXHAUSTIVE SEARCH RESULTS FOR P=12, LMIN=133
1.   0     1     3    12    20    34    38    81    88    94   104   109
2.   0     1     3    15    46    71    75    84    94   101   112   128
3.   0     1     3    17    21    58    65    73   100   105   111   124
4.   0     1     3    17    29    61    80    86    91    95   113   126
5.   0     1     4    12    21    26    45    68    84    97    99   127
6.   0     1     4    16    50    71    73    81    90    95   101   108
7.   0     1     4    27    51    57    79    89   100   118   120   125
8.   0     1     5    12    15    31    33    39    56    76    85    98
9.   0     1     5    21    24    39    49    61    75    92   125   127
10.  0     1     5    24    44    71    74    80   105   112   120   122
11.  0     1     5    25    28    68    78    87    89   104   120   126
12.  0     1     6    18    39    68    79    82    98   102   124   126
13.  0     1     6    22    33    40    50    59    63    88   119   131
14.  0     1     7     9    42    59    73    85    95   110   113   129
15.  0     1     7    35    37    50    66    89   108   113   122   130
16.  0     1     8    10    32    36    52    55    66    95   116   128
17.  0     1     8    14    30    45    47    56    66   106   109   129
18.  0     1     8    21    33    36    47    52    70    74    76   124
19.  0     1     8    21    39    43    48    54    73   105   117   131
20.  0     1     9    14    16    34    45    55    77    83   107   130
21.  0     1     9    19    24    31    52    56    58    69    72    98
22.  0     1    10    23    29    34    61    69    76   113   117   131
23.  0     1    10    58    60    64    82    87    98   101   113   126
24.  0     1    12    14    22    29    54    60    63    90   110   129
25.  0     1    15    18    20    24    31    52    60    85    95   107
26.  0     1    15    25    45    52    58    61    63    80    84    92
27.  0     1    16    21    24    49    51    58    62    68    80    94
28.  0     1    23    37    57    62    75    83    86    90    92   102
29.  0     1    25    30    40    46    53    96   100   114   122   131
30.  0     1    26    33    39    44    53    61    63    84   118   130
31.  0     1    27    39    49    74    82   103   110   114   116   119
32.  0     1    32    42    44    48    51    59    72    77    97   111
33.  0     1    36    49    58    78    95   101   103   119   122   129
34.  0     1    36    62    65    76    78    82   103   110   115   125
35.  0     1    40    54    66    72    76    83    85   110   113   118
36.  0     1    42    50    54    71    73    76    82    89   109   119
When implemented in hardware, the hardware may comprise one or more of discrete components, an integrated circuit, an application-specific integrated circuit (ASIC) , etc.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (17)

  1. An apparatus, comprising:
    a baseband processing circuit configured to encode a reference signal based on a specific sequence to generate a digital stream, wherein the specific sequence has non-zero values at selected positions, and a number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence is smaller than a threshold; and
    a transmitting circuit configured to transmit wireless signals in response to the digital stream.
  2. The apparatus of claim 1, wherein the baseband processing circuit is configured to encode one or more reference signals for synchronization and/or device identification based on the specific sequence.
  3. The apparatus of claim 1, wherein the baseband processing circuit is configured to encode the reference signal in at least one of a time domain, a frequency domain, or a time-frequency domain based on the specific sequence.
  4. The apparatus of claim 1, wherein the baseband processing circuit is configured to encode the reference signal based on the specific sequence with the non-zero values being one of constant, phase modulated, and amplitude modulated.
  5. The apparatus of claim 1, wherein the baseband processing circuit is configured to encode the reference signal in a frequency domain based on the specific sequence with the non-zero values being phase modulated to minimize a peak to average power ratio in a time domain, wherein the non-zero values are phase modulated according to a binary phase-shift keying (BPSK) .
  6. The apparatus of claim 1, further comprising:
    a sequence providing circuit configured to provide the specific sequence to the baseband processing circuit.
  7. The apparatus of claim 6, wherein:
    the sequence providing circuit comprises a memory configured to store the specific sequence.
  8. The apparatus of claim 6, wherein:
    the sequence providing circuit comprises a sequence generator circuit configured to generate the specific sequence.
  9. The apparatus of claim 6, wherein
    the sequence providing circuit comprises an interface circuit configured to receive the specific sequence from an external source that is out of the apparatus.
  10. A method for communication, comprising:
    receiving a specific sequence having non-zero values at selected positions, a number of coincidences of non-zero value positions between the specific sequence and a shifted copy of the specific sequence being smaller than a threshold;
    encoding a reference signal based on the specific sequence to generate a digital stream; and
    transmitting wireless signals in response to the digital stream.
  11. The method of claim 10, wherein encoding the reference signal based on the specific sequence to generate the digital stream further comprises:
    encoding one or more reference signals for synchronization and/or device identification based on the specific sequence.
  12. The method of claim 10, wherein encoding the reference signal based on the specific sequence to generate the digital stream further comprises:
    encoding the reference signal in at least one of a time domain, a frequency domain, or a time-frequency domain based on the specific sequence.
  13. The method of claim 10, wherein encoding the reference signal based on the specific sequence to generate the digital stream further comprises:
    encoding the reference signal based on the specific sequence with the non-zero values being one of constant, phase modulated, and amplitude modulated.
  14. The method of claim 10, wherein encoding the reference signal based on the specific sequence to generate the digital stream further comprises:
    encoding the reference signal in a frequency domain based on the specific sequence with the non-zero values being phase modulated to minimize a peak to average power ratio in a time domain, wherein the non-zero values are phase modulated according to a binary phase-shift keying (BPSK) .
  15. The method of claim 10, wherein receiving the specific sequence having the non-zero values at the selected positions comprises:
    storing the specific sequence in a memory; and
    accessing the memory to receive the specific sequence.
  16. The method of claim 10, wherein receiving the specific sequence having the non-zero values at the selected positions comprises:
    generating the specific sequence by a sequence generator circuit; and
    receiving the specific sequence from the sequence generator circuit.
  17. The method of claim 10, wherein receiving the specific sequence having the non-zero values at the selected positions comprises:
    receiving the specific sequence from an external source.
PCT/CN2017/089095 2016-10-03 2017-06-20 Method and apparatus for synchronization WO2018064895A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17857776.3A EP3494643A4 (en) 2016-10-03 2017-06-20 Method and apparatus for synchronization
CN201780013212.5A CN108702174B (en) 2016-10-03 2017-06-20 Method and apparatus for communication
BR112019006513A BR112019006513A2 (en) 2016-10-03 2017-06-20 method and apparatus for synchronization

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662403220P 2016-10-03 2016-10-03
US62/403,220 2016-10-03
US201662404807P 2016-10-06 2016-10-06
US62/404,807 2016-10-06
US15/616,277 2017-06-07
US15/616,277 US10389558B2 (en) 2016-10-03 2017-06-07 Method and apparatus for synchronization

Publications (1)

Publication Number Publication Date
WO2018064895A1 true WO2018064895A1 (en) 2018-04-12

Family

ID=61831298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089095 WO2018064895A1 (en) 2016-10-03 2017-06-20 Method and apparatus for synchronization

Country Status (5)

Country Link
EP (1) EP3494643A4 (en)
CN (1) CN108702174B (en)
BR (1) BR112019006513A2 (en)
TW (1) TW201815205A (en)
WO (1) WO2018064895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809329A (en) * 2018-05-03 2018-11-13 东南大学 A kind of configuration method for the BP decoders that can handle polarization code and LDPC code simultaneously
US10389558B2 (en) * 2016-10-03 2019-08-20 Mediatek Inc. Method and apparatus for synchronization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430746A (en) * 1992-06-09 1995-07-04 Wandel & Goltermann Gmbh & Co. Elektronische Messtechnik Method of and circuitry for detecting synchronism failure of two word sequences
CN105493595A (en) * 2013-08-21 2016-04-13 株式会社Ntt都科摩 Wireless base station, user terminal, and wireless communication method
CN105530081A (en) * 2015-09-01 2016-04-27 广州慧睿思通信息科技有限公司 PSS timing adjustment method for LTE system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711029B2 (en) * 2005-12-02 2010-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Hopping pilot pattern for telecommunications
US8682181B2 (en) * 2011-03-05 2014-03-25 Alcatel Lucent System, method, and apparatus for high-sensitivity optical detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430746A (en) * 1992-06-09 1995-07-04 Wandel & Goltermann Gmbh & Co. Elektronische Messtechnik Method of and circuitry for detecting synchronism failure of two word sequences
CN105493595A (en) * 2013-08-21 2016-04-13 株式会社Ntt都科摩 Wireless base station, user terminal, and wireless communication method
CN105530081A (en) * 2015-09-01 2016-04-27 广州慧睿思通信息科技有限公司 PSS timing adjustment method for LTE system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "UL DMRS Base Sequences with IFDMA", PL- 167087; 3GPP TSG RAN WG1 MEETING #86, 26 August 2016 (2016-08-26), XP051125694 *
See also references of EP3494643A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389558B2 (en) * 2016-10-03 2019-08-20 Mediatek Inc. Method and apparatus for synchronization
CN108809329A (en) * 2018-05-03 2018-11-13 东南大学 A kind of configuration method for the BP decoders that can handle polarization code and LDPC code simultaneously

Also Published As

Publication number Publication date
EP3494643A1 (en) 2019-06-12
EP3494643A4 (en) 2019-10-09
CN108702174A (en) 2018-10-23
BR112019006513A2 (en) 2019-06-25
TW201815205A (en) 2018-04-16
CN108702174B (en) 2020-12-11

Similar Documents

Publication Publication Date Title
KR102093214B1 (en) System discovery and signaling
CN110365366B (en) Transmitter, receiver and method of generating synchronization signal
US8457101B2 (en) Method for transmitting preamble in scalable bandwidth system
US11153056B2 (en) Band segmented bootstraps and partitioned frames
CN116209052B (en) Synchronization signal transmitting method, synchronization signal receiving method and related equipment
WO2017000233A1 (en) Method and apparatus for transmitting pilot sequence
US11057252B2 (en) Common synchronization signal for sliced OFDM transmission
WO2018064895A1 (en) Method and apparatus for synchronization
US10389558B2 (en) Method and apparatus for synchronization
WO2019029548A1 (en) Synchronization signal transmission method and apparatus
CN112385169B (en) Frequency domain position determining method, device and equipment
US20200177297A1 (en) Communication device and communication method
US11943163B2 (en) Synchronisation and broadcasting between base station and user equipment
US10182449B2 (en) Scheduling node, transmitting node, receiving node and methods therein, for communication of data
CN110546909B (en) Method and apparatus for transmitting synchronization signal
CN112438065B (en) Method for transmitting position reference signal, node, method and equipment for determining position
CN111835452B (en) Sequence determination method and device
KR20150093562A (en) Method for signal design in wireless communication system and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017857776

Country of ref document: EP

Effective date: 20190305

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006513

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019006513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190329