WO2018064850A1 - 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法 - Google Patents

一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法 Download PDF

Info

Publication number
WO2018064850A1
WO2018064850A1 PCT/CN2016/103629 CN2016103629W WO2018064850A1 WO 2018064850 A1 WO2018064850 A1 WO 2018064850A1 CN 2016103629 W CN2016103629 W CN 2016103629W WO 2018064850 A1 WO2018064850 A1 WO 2018064850A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
nozzle
gas
pressure
measuring
Prior art date
Application number
PCT/CN2016/103629
Other languages
English (en)
French (fr)
Inventor
陈继革
吴治永
徐斌
Original Assignee
无锡洋湃科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57865623&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018064850(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 无锡洋湃科技有限公司 filed Critical 无锡洋湃科技有限公司
Priority to EP16918183.1A priority Critical patent/EP3524942A4/en
Priority to US16/339,380 priority patent/US10704937B2/en
Publication of WO2018064850A1 publication Critical patent/WO2018064850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/095Gamma-ray resonance absorption, e.g. using the Mössbauer effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1013Different kinds of radiation or particles electromagnetic radiation gamma

Definitions

  • the invention belongs to the field of multiphase flow metering.
  • the present invention relates to a critical flow nozzle flow meter and method for measuring the respective flow rates of gas-liquid two phases in a multiphase flow.
  • the oil and gas well product contains a gas-liquid mixed fluid of liquid crude oil/water and gas phase natural gas, which is called multiphase flow in the industry.
  • the gas phase comprises, for example, oil and gas field gas or any gas that does not condense at normal temperature, specifically such as methane, ethane, propane, butane, etc.
  • the liquid phase may include: an oil phase, such as crude oil itself and during crude oil production A liquid additive dissolved in crude oil, and an aqueous phase, such as formation water, water injected into the oil and gas well during use, and other liquid additives dissolved in the aqueous phase.
  • the oil phase and the water phase may be phase separated, or the oil phase and the water phase may be mixed together or completely emulsified. How to accurately measure the flow rate of gas and the flow of liquid in the gas-liquid mixed fluid extracted from oil and gas wells in real time, and how to further measure the respective flows of the oil phase, gas phase and water phase, which is the reservoir management and production optimization.
  • the necessary basic data When the gas phase mass content in the multiphase stream is higher than 80%, it is usually called moisture. In submarine oil and gas fields and shale gas mining, the produced materials are all moisture.
  • the wellhead pressure is on the order of ten megapascals.
  • the oil nozzle is widely used in the petroleum industry as a throttling device. In reality, the nozzle is not only used as a device to control the production of oil wells, but also the customer has requirements for the measurement of the nozzle.
  • Venturi flowmeter + gamma ray method uses a venturi to measure the total volumetric flow of moisture and uses a single energy
  • the gamma ray detector measures the respective phase fractions of the gas-liquid two phases, and then multiplies the total volume flow rate by the respective phase fractions of the gas-liquid two phases to obtain the respective volume flow rates of the gas-liquid two phases.
  • the nozzle throat is sonic flow, and the principle of the Venturi differential pressure method is not suitable for the measurement of sonic flow.
  • a first aspect of the invention provides a critical flow nozzle flow meter for measuring the respective flow rates of gas-liquid two phases in a multi-phase flow, comprising the following components:
  • a throttle type nozzle having an inlet, an outlet and a throat, wherein a flow area of the fluid at the throat is the smallest;
  • a gamma ray detector comprising a gamma ray emitter (2) and a gamma ray receiver (3) arranged in such a way that gamma rays emitted by the gamma ray emitter pass through the throttling type diametrically a section at the entrance of the nozzle reaching the gamma ray receiver;
  • Pressure sensors are respectively used to measure the pressure P 1 at the inlet of the throttling nozzle and the pressure P 2 at the outlet.
  • a temperature sensor for measuring the temperature T 1 at the inlet of the throttling nozzle.
  • the throttling cross-sectional area of the throttling nozzle is 1/10-1/2 of its inlet cross-sectional area.
  • the gamma ray detector is a single energy gamma ray detector.
  • a second aspect of the invention relates to a method of measuring the respective flow rates of gas-liquid two phases in a multiphase flow, using the critical flow nozzle flow meter of the first aspect of the invention, the method comprising the steps of:
  • r is the ratio of the pressure at the outlet of the nozzle to the pressure at the inlet
  • the gas phase density ⁇ g1 is determined by the measured values P 1 , T 1 ; the phase density of the gas phase is known by measuring the mixed density value ⁇ m by single energy gamma Redefine
  • the critical pressure ratio can be defined according to the characteristic that the gas phase is sonic flow when the multiphase flow reaches the critical flow.
  • the formula can be solved by iterative solution to obtain the critical pressure ratio r c , when the measured pressure ratio
  • the flow of the multiphase flow is determined as a critical flow;
  • 1Mpa usually 500kPa-1Mpa
  • Q m is the total mass flow, kg/s
  • ⁇ g1 is the density of the gas phase at the inlet of the throttling nozzle, kg/m 3
  • ⁇ l is the liquid density, kg/m 3
  • G M F is the gas mass phase content ratio
  • A is the cross-sectional area at the throat of the throttling nozzle, m 2
  • C is the throttle type nozzle outflow coefficient, which is a constant
  • k is the adiabatic index of the gas
  • r is the ratio of the pressure at the outlet of the nozzle to the pressure at the inlet
  • s is the ratio of velocity to slip between gas and liquid
  • the present invention creatively uses a single energy gamma ray detector in combination with a critical flow nozzle to measure the mass flow of each of the gas and liquid phases in a multiphase flow, wherein the single energy gamma ray detector measures the gas-liquid mixing density in real time.
  • critical flow nozzle flow meters in the prior art, but they are only used to roughly estimate the total flow rate of the gas-liquid mixture, and the mass flow rates of the gas-liquid two phases in the multi-phase flow cannot be accurately measured in real time.
  • the present invention is directed to the above-mentioned original metering equipment, and an ingenious formula is specifically used to calculate the mass flow rate of the gas-liquid two phases in the state of the critical flow nozzle.
  • Figure 1 is a schematic illustration of a critical flow nozzle flow meter of the present invention.
  • a method of measuring the respective flow rates of gas-liquid two phases in a multiphase flow using the critical flow nozzle flow meter of the present invention is described below, the method comprising the steps of:
  • r is the ratio of the pressure at the outlet of the nozzle to the pressure at the inlet
  • the gas phase density ⁇ g1 is determined by the measured values P 1 , T 1 ; the phase density of the gas phase is known by measuring the mixed density value ⁇ m by single energy gamma Redefine
  • the critical pressure ratio can be defined according to the characteristic that the gas phase is sonic flow when the multiphase flow reaches the critical flow.
  • the formula can be solved by iterative solution to obtain the critical pressure ratio r c , when the measured pressure ratio When it is determined, the flow of the multiphase flow is determined as a critical flow; Calculating the velocity-slip ratio s between gas and liquid;
  • Q m is the total mass flow, kg/s
  • ⁇ g1 is the density of the gas phase at the inlet of the throttling nozzle, kg/m 3
  • ⁇ l is the liquid density, kg/m 3
  • G M F is the gas mass phase content ratio
  • A is the cross-sectional area at the throat of the throttling nozzle, m 2
  • C is the throttle type nozzle outflow coefficient, which is a constant
  • k is the adiabatic index of the gas
  • r is the ratio of the pressure at the outlet of the nozzle to the pressure at the inlet
  • s is the ratio of velocity to slip between gas and liquid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种测量多相流中气液两相各自流量的临界流喷嘴流量计,包括:节流型喷嘴,其具有入口、出口(7)和喉部(6),其中喉部(6)处流体的流通面积最小;伽马射线探测器,其包括伽马射线发射器(3)和伽马射线接收器(5),其布置方式使得伽马射线发射器(3)发出的伽马射线沿直径方向穿过节流型喷嘴的入口处截面,到达伽马射线接收器(5);压力传感器(2,4),分别用于测量节流型喷嘴的入口处压力与出口处压力;温度传感器(2),用于测量节流型喷嘴的入口处温度。该临界流喷嘴流量计适合在油田井口使用。还提供了一种使用该临界流喷嘴流量计来测量多相流中气液两相各自流量的测量方法。

Description

一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法 技术领域
本发明属于多相流流量计量领域。具体地,本发明涉及一种用于测量多相流中气液两相各自流量的临界流喷嘴流量计和测量方法。
背景技术
油气工业中,油气井产物同时包含液相原油/水和气相天然气的气液混合流体,业内称之为多相流。其中所述气相包括例如油气田气或任何在常温下不凝的气体,具体地有如甲烷、乙烷、丙烷、丁烷等;所述液相可包括:油相,例如原油本身以及在原油开采过程中溶解在原油中的液体添加剂,以及水相,例如地层水、采用过程中注入油气井中的水以及溶解在水相中的其它液体添加剂。在实践中,油相和水相可能发生相分离,也可能油相和水相混合在一起,或是完全乳化的。如何实时准确地测量从油气井中采出的气液混合流体中气体的流量和液体的流量,以及如何更进一步地测量油相、气相和水相三相各自的流量,是油气藏管理和生产优化所必需的基础数据。当多相流中的气相质量含量高于80%时,通常称为湿气。海底油气田和页岩气开采中,采出物均为湿气。
当油气井为高压井时,井口压力为十兆帕量级,为了控制气井产量及井口压力,油嘴作为一种节流装置被广泛地应用于石油工业。现实中,油嘴不仅仅是作为控制油井产量的装置,客户对油嘴还有计量的要求。
现有技术中用于测量多相流中气液两相各自流量的一种方法是文丘里流量计+伽马射线法,其原理是利用文丘里管测量湿气的总体积流量,并用单能伽马射线探测器测量气液两相各自的相分率,然后用总体积流量乘以气液两相各自的相分率,得到气液两相各自的体积流量。然而,油嘴喉部为音速流动,文丘里差压法的原理不适合用于音速流动的计量。
现有的油田中,在井筒口处已经存在着喷嘴,地下原油经过该喷嘴喷出。人们通过长期的生产实践,已经认识到这些喷嘴处的原油流量与喷嘴入口处压力P1(油田上称为“油压”)与喷嘴出口处压力P2(油田上称为“回压”)之间的压差ΔP存在着一些定量关系以及经验关系式,可用于粗略估算原有流量,但这种计量方法误差很大;另一种方法是试井时的实测,试井时通过试量压力、温度, 再通过对油井产物进行分离后分别计量气相和液相,对数据进行拟合。这种方法不适合长期使用,因为油井的压力和原油中的气相质量相含率在生命周期内是动态变化的,如果采用一成不变的计量公式将带来很大误差,甚至误判油井的产量。
此外,人们发现,在油压P1基本不变的前提下,当差压ΔP逐渐升高时,总流量Q也逐渐增大;但当差压ΔP达到并超过某临界值ΔPc后,流量Q不再随差压ΔP而变化,而是保持某一稳定值不再增加,将这种状态称为临界流状态。
因此,人们利用油嘴控制气井产量、控制井口压力,同时希望油嘴能够对产物进行计量。但是,目前的油嘴计量功能十分有限,并不能精确实时计量多相流中气液两相各自质量流量。
发明内容
本发明的第一方面提供了一种测量多相流中气液两相各自流量的临界流喷嘴流量计,其包括以下构件:
节流型喷嘴(1),其具有入口、出口和喉部,其中喉部处流体的流通面积最小;
伽马射线探测器,其包括伽马射线发射器(2)和伽马射线接收器(3),其布置方式使得伽马射线发射器发出的伽马射线沿直径方向穿过所述节流型喷嘴的入口处截面,到达所述伽马射线接收器;
压力传感器,分别用于测量所述节流型喷嘴的入口处压力P1与出口处压力P2
温度传感器,用于测量所述节流型喷嘴的入口处温度T1
优选地,所述节流型喷嘴的喉部截面积为其入口截面积的1/10-1/2。
其中,所述伽马射线探测器为单能伽马射线探测器。
本发明的第二方面涉及一种测量多相流中气液两相各自流量的测量方法,其使用本发明第一方面所述的临界流喷嘴流量计,该方法包括以下步骤:
a)通过压力传感器测量节流型喷嘴的入口处的压力P1和出口处的压力P2,通过温度传感器测量节流型喷嘴的入口处的温度T1
b)使所述多相流以临界流方式流过所述临界流喷嘴流量计,其中通过以下方式判断多相流已达到临界流:设r为油嘴出口处压力与入口处压力之比
Figure PCTCN2016103629-appb-000001
通过测量值P1、T1确定气相密度ρg1;通过单能伽马测量混合密度值ρm,可知气相质量相含率
Figure PCTCN2016103629-appb-000002
再定义
Figure PCTCN2016103629-appb-000003
Figure PCTCN2016103629-appb-000004
根据多相流流动达到临界流时气相为音速流动的特点,可以定义临界压比
Figure PCTCN2016103629-appb-000005
该公式通过迭代求解可得到临界压比rc,当实测压比
Figure PCTCN2016103629-appb-000006
时,则判定多相流的流动为临界流;临界流时通过公式
Figure PCTCN2016103629-appb-000007
计算气液相间速度滑移比s;通常,由于井口上游压力很高,大于2Mpa、甚至高达数十MPa,而下游生产管线压力一般小于1Mpa(通常为500kPa-1Mpa,),因此压比
Figure PCTCN2016103629-appb-000008
的数值很小,因而一旦安装好本发明的临界流喷嘴,打开阀门,则多相流的流动状态即处于临界流状态。尽管如此,仍有必要在正式测量前用上述判定方法进行判定,以确保流量计算适用的前提条件是符合的;如果经验证多相流流动状态不处于临界流状态,则不建议用本发明的设备和公式去测量,这时可改用其他方法进行计量。
c)通过以下公式来分别计算多相流的总质量流量Qm、气相质量流量Qm,g和液相质量流量Qm,l
总质量流量:
Figure PCTCN2016103629-appb-000009
气相质量流量:Qm,g=QmG M F
液相质量流量:Qm,l=Qm(1-GM F)
其中:
Qm为总质量流量,kg/s
ρg1为气相在节流型喷嘴入口处状态下的密度,kg/m3
ρl为液体密度,kg/m3
G M F为气体质量相含率
A为节流型喷嘴的喉部处横截面积,m2
C为节流型喷嘴流出系数,为常数
k为气体的绝热指数
r为油嘴出口处压力与入口处压力之比
Figure PCTCN2016103629-appb-000010
s为气液相间速度滑移比,
Figure PCTCN2016103629-appb-000011
本发明的优点如下:
1、本发明创造性地使用了单能伽马射线探测器结合临界流喷嘴来测量多相流中的气液两相各自的质量流量,其中单能伽马射线探测器实时测量气液混合密度。现有技术中也有临界流喷嘴流量计,但都只是用于粗略估算气液混合物总流量的,无法实时精确测量多相流中的气液两相各自的质量流量。
2、本发明针对上述独创性计量设备,专门采用了独创性公式去计算临界流喷嘴状态下气液两相各自的质量流量。
附图说明
图1是本发明的临界流喷嘴流量计的示意图。
图中,附图标记含义如下:
1、油嘴连接端口;2、压力、温度复合传感器;3、伽马射线发射器;4、压力传感器;5、伽马射线接收器;6、油嘴喉部;7、油嘴出口。
以上附图仅用于示例性地说明本发明的技术构思和技术方案,而不以任何方式限制本发明。
具体实施方式
下面描述使用本发明的临界流喷嘴流量计测量多相流中气液两相各自流量的测量方法,该方法包括以下步骤:
a)通过压力传感器测量节流型喷嘴的入口处的压力P1和出口处的压力P2,通过温度传感器测量节流型喷嘴的入口处的温度T1
b)使所述多相流以临界流方式流过所述临界流喷嘴流量计,其中通过以下 方式判断多相流已达到临界流:设r为油嘴出口处压力与入口处压力之比
Figure PCTCN2016103629-appb-000012
通过测量值P1、T1确定气相密度ρg1;通过单能伽马测量混合密度值ρm,可知气相质量相含率
Figure PCTCN2016103629-appb-000013
再定义
Figure PCTCN2016103629-appb-000014
Figure PCTCN2016103629-appb-000015
根据多相流流动达到临界流时气相为音速流动的特点,可以定义临界压比
Figure PCTCN2016103629-appb-000016
该公式通过迭代求解可得到临界压比rc,当实测压比
Figure PCTCN2016103629-appb-000017
时,则判定多相流的流动为临界流;临界流时通过公式
Figure PCTCN2016103629-appb-000018
计算气液相间速度滑移比s;
c)通过以下公式来分别计算多相流的总质量流量Qm、气相质量流量Qm,g和液相质量流量Qm,l
总质量流量:
Figure PCTCN2016103629-appb-000019
气相质量流量:Qm,g=QmG M F
液相质量流量:Qm,l=Qm(1-G M F)
其中:
Qm为总质量流量,kg/s
ρg1为气相在节流型喷嘴入口处状态下的密度,kg/m3
ρl为液体密度,kg/m3
G M F为气体质量相含率
A为节流型喷嘴的喉部处横截面积,m2
C为节流型喷嘴流出系数,为常数
k为气体的绝热指数
r为油嘴出口处压力与入口处压力之比
Figure PCTCN2016103629-appb-000020
s为气液相间速度滑移比,
Figure PCTCN2016103629-appb-000021

Claims (4)

  1. 一种测量多相流中气液两相各自流量的临界流喷嘴流量计,其特征在于,包括以下构件:
    节流型喷嘴(1),其具有入口、出口和喉部,其中喉部处流体的流通面积最小;
    伽马射线探测器,其包括伽马射线发射器(2)和伽马射线接收器(3),其布置方式使得伽马射线发射器发出的伽马射线沿直径方向穿过所述节流型喷嘴的入口处截面,到达所述伽马射线接收器;
    压力传感器,分别用于测量所述节流型喷嘴的入口处压力与出口处压力;
    温度传感器,用于测量所述节流型喷嘴的入口处温度。
  2. 根据权利要求1所述的临界流喷嘴流量计,其特征在于:所述节流型喷嘴的喉部截面积为其入口截面积的1/10-1/2。
  3. 根据权利要求1所述的测量装置,其特征在于:所述伽马射线探测器为单能伽马射线探测器。
  4. 一种测量多相流中气液两相各自流量的测量方法,其使用前述权利要求中任一项所述的临界流喷嘴流量计,其特征在于,包括以下步骤:
    a)通过压力传感器测量节流型喷嘴的入口处的压力P1和出口处的压力P2,通过温度传感器测量节流型喷嘴的入口处的温度T1
    b)使所述多相流以临界流方式流过所述临界流喷嘴流量计,其中通过以下方式判断多相流已达到临界流:设r为油嘴出口处压力与入口处压力之比
    Figure PCTCN2016103629-appb-100001
    通过测量值P1、T1确定气相密度ρg1;通过单能伽马测量混合密度值ρm,可知气相质量相含率
    Figure PCTCN2016103629-appb-100002
    再定义
    Figure PCTCN2016103629-appb-100003
    Figure PCTCN2016103629-appb-100004
    根据多相流流动达到临界流时气相为音速流动的特点,可以定义临界压比
    Figure PCTCN2016103629-appb-100005
    该公式通过迭代求解可得到临界压比rc,当实测压比
    Figure PCTCN2016103629-appb-100006
    时,则判定多相流的流动为临界流;临界 流时通过公式
    Figure PCTCN2016103629-appb-100007
    (1+0.6e-5GMF)计算气液相间速度滑移比s;
    c)通过以下公式来分别计算多相流的总质量流量Qm、气相质量流量Qm,g和液相质量流量Qm,l
    总质量流量:
    Figure PCTCN2016103629-appb-100008
    气相质量流量:Qm,g=QmGMF
    液相质量流量:Qm,l=Qm(1-GMF)
    其中:
    Qm为总质量流量,kg/s
    ρg1为气相在节流型喷嘴入口处状态下的密度,kg/m3
    ρl为液体密度,kg/m3
    GMF为气体质量相含率
    A为节流型喷嘴的喉部处横截面积,m2
    C为节流型喷嘴流出系数,为常数
    k为气体的绝热指数
    r为油嘴出口处压力与入口处压力之比
    Figure PCTCN2016103629-appb-100009
    s为气液相间速度滑移比,
    Figure PCTCN2016103629-appb-100010
PCT/CN2016/103629 2016-10-09 2016-10-27 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法 WO2018064850A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16918183.1A EP3524942A4 (en) 2016-10-09 2016-10-27 FLOWMETERS FOR CRITICAL FLOW NOZZLES FOR MEASURING SUBSTANCES OF THE GAS AND LIQUID PHASE IN MULTIPHASE FLOWS AND MEASURING PROCESSES
US16/339,380 US10704937B2 (en) 2016-10-09 2016-10-27 Critical flow nozzle flowmeter for measuring respective flowrates of gas phase and liquid phase in multiphase fluid and measuring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610882309.7A CN106352931B (zh) 2016-10-09 2016-10-09 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法
CN201610882309.7 2016-10-09

Publications (1)

Publication Number Publication Date
WO2018064850A1 true WO2018064850A1 (zh) 2018-04-12

Family

ID=57865623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103629 WO2018064850A1 (zh) 2016-10-09 2016-10-27 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法

Country Status (4)

Country Link
US (1) US10704937B2 (zh)
EP (1) EP3524942A4 (zh)
CN (1) CN106352931B (zh)
WO (1) WO2018064850A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018583A (zh) * 2021-10-28 2022-02-08 中国航发沈阳发动机研究所 一种均匀进气的涵道喷管推力与流量同步测量进气结构
CN115342871A (zh) * 2022-10-18 2022-11-15 中国核动力研究设计院 差压流量计及流体流量的测量方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206199A1 (zh) * 2016-05-30 2017-12-07 无锡洋湃科技有限公司 一种测量湿气中气油水三相质量流量的测量装置及测量方法
CN107843308A (zh) * 2017-12-11 2018-03-27 无锡洋湃科技有限公司 一种基于豁免级放射源的湿气流量测量装置
CN109025966A (zh) * 2018-10-09 2018-12-18 重庆欣雨压力容器制造有限责任公司 一种测量页岩气井口流体质量流量的复合式装置及方法
CN109138979B (zh) * 2018-10-25 2023-06-20 中石化石油工程技术服务有限公司 等流量分支路计量油气水井产量的方法和计量设备
CN109780448B (zh) * 2018-12-10 2020-09-01 南京工程学院 一种火电厂高温高压疏水管道抗冲刷防磨损爆管的方法
CN110108446B (zh) * 2019-05-16 2020-12-18 中国科学院理化技术研究所 一种单流道喷嘴模型测试台
US10890544B1 (en) * 2019-12-18 2021-01-12 Field Service Solutions LLC Nuclear densitometer assemblies for hydraulic fracturing
US20220090947A1 (en) * 2020-09-23 2022-03-24 Saudi Arabian Oil Company Wide range multi-phase flow meter
CN113803006B (zh) * 2021-09-09 2023-05-09 中国石油大学(华东) 一种基于多相流密度实时监测恒节流压力调节的装置与方法
CN114166641B (zh) * 2021-12-06 2023-11-03 北京航空航天大学 文氏管反压性能测试装置以及测试方法
CN115855187A (zh) * 2022-12-21 2023-03-28 海默新宸水下技术(上海)有限公司 一种基于折算滑速比拟合的湿天然气计量方法
CN116050298B (zh) * 2023-01-17 2023-11-21 中国石油大学(华东) 一种多级压裂水平井多相生产油嘴工作制度优化设计方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031465A (en) * 1990-05-29 1991-07-16 Texaco Inc. Steam quality and mass flow rate measurement using critical flow choke upstream of an orifice plate
US5092159A (en) * 1990-10-15 1992-03-03 Texaco Inc. Method and apparatus utilizing a single nozzle for effecting measurment of steam characteristics
CN1494672A (zh) * 2001-12-28 2004-05-05 ��ʽ���縻ʿ�� 改良型压力式流量控制装置
TW200819712A (en) * 2006-06-30 2008-05-01 Mks Instr Inc Critical flow based mass flow verifier
CN201145592Y (zh) * 2007-12-19 2008-11-05 吉林石油集团有限责任公司 一种临界速度流量计
CN102435245A (zh) * 2012-01-06 2012-05-02 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
CN103292849A (zh) * 2013-03-25 2013-09-11 兰州海默科技股份有限公司 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法
CN103867184A (zh) * 2014-02-10 2014-06-18 中国石油天然气股份有限公司 一种气井临界携液流量确定方法及装置
CN104515562A (zh) * 2014-12-22 2015-04-15 安徽中控仪表有限公司 一种多相流微压差测量装置及流量计量方法
CN104533388A (zh) * 2014-12-23 2015-04-22 中国石油天然气股份有限公司 一种测量气井临界携液流量的方法
CN105890689A (zh) * 2016-05-30 2016-08-24 无锡洋湃科技有限公司 一种测量湿气中气油水三相质量流量的测量装置及测量方法
CN206114018U (zh) * 2016-10-09 2017-04-19 无锡洋湃科技有限公司 一种测量多相流中气液两相各自流量的临界流喷嘴流量计

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753114A (en) * 1986-11-26 1988-06-28 Chevron Research Company Critical flow detection
US4813270A (en) * 1988-03-04 1989-03-21 Atlantic Richfield Company System for measuring multiphase fluid flow
US6732596B2 (en) * 2001-11-15 2004-05-11 Calamerica Corp. Critical gas flow measurement apparatus and method
GB0312194D0 (en) * 2003-05-28 2003-07-02 Imp College Innovations Ltd Multiphase flowmeter
NO20060474L (no) * 2005-01-31 2006-08-01 Sulzer Pumpen Ag Fremgangsmate og anordning for overvakning av gjennomstromning av flerfaseblandinger
GB2497321B (en) * 2011-12-06 2014-06-18 Senico Ltd Multi-phase metering of fluid flows
WO2017206199A1 (zh) * 2016-05-30 2017-12-07 无锡洋湃科技有限公司 一种测量湿气中气油水三相质量流量的测量装置及测量方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031465A (en) * 1990-05-29 1991-07-16 Texaco Inc. Steam quality and mass flow rate measurement using critical flow choke upstream of an orifice plate
US5092159A (en) * 1990-10-15 1992-03-03 Texaco Inc. Method and apparatus utilizing a single nozzle for effecting measurment of steam characteristics
CN1494672A (zh) * 2001-12-28 2004-05-05 ��ʽ���縻ʿ�� 改良型压力式流量控制装置
TW200819712A (en) * 2006-06-30 2008-05-01 Mks Instr Inc Critical flow based mass flow verifier
CN201145592Y (zh) * 2007-12-19 2008-11-05 吉林石油集团有限责任公司 一种临界速度流量计
CN102435245A (zh) * 2012-01-06 2012-05-02 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
CN103292849A (zh) * 2013-03-25 2013-09-11 兰州海默科技股份有限公司 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法
CN103867184A (zh) * 2014-02-10 2014-06-18 中国石油天然气股份有限公司 一种气井临界携液流量确定方法及装置
CN104515562A (zh) * 2014-12-22 2015-04-15 安徽中控仪表有限公司 一种多相流微压差测量装置及流量计量方法
CN104533388A (zh) * 2014-12-23 2015-04-22 中国石油天然气股份有限公司 一种测量气井临界携液流量的方法
CN105890689A (zh) * 2016-05-30 2016-08-24 无锡洋湃科技有限公司 一种测量湿气中气油水三相质量流量的测量装置及测量方法
CN206114018U (zh) * 2016-10-09 2017-04-19 无锡洋湃科技有限公司 一种测量多相流中气液两相各自流量的临界流喷嘴流量计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3524942A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018583A (zh) * 2021-10-28 2022-02-08 中国航发沈阳发动机研究所 一种均匀进气的涵道喷管推力与流量同步测量进气结构
CN114018583B (zh) * 2021-10-28 2024-03-19 中国航发沈阳发动机研究所 一种均匀进气的涵道喷管推力与流量同步测量进气结构
CN115342871A (zh) * 2022-10-18 2022-11-15 中国核动力研究设计院 差压流量计及流体流量的测量方法

Also Published As

Publication number Publication date
CN106352931B (zh) 2018-02-13
US20190339102A1 (en) 2019-11-07
CN106352931A (zh) 2017-01-25
EP3524942A1 (en) 2019-08-14
EP3524942A4 (en) 2019-09-04
US10704937B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2018064850A1 (zh) 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法
US7987733B2 (en) Determination of density for metering a fluid flow
AU2010282333B2 (en) Method of measuring multi-phase fluid flow downhole
US9581475B2 (en) Multiphase flowmeter
US11280141B2 (en) Virtual multiphase flowmeter system
US10711594B2 (en) Method and system for determining flow rate of water in a gas production system by incorporating characteristics of water
Xu et al. Research the wet gas flow measurement based on dual-throttle device
WO2004083788A1 (en) Method and apparatus for determining the gas flow rate of a gas-liquid mixture
US10712183B2 (en) Determining flow rates of multiphase fluids
CN206114018U (zh) 一种测量多相流中气液两相各自流量的临界流喷嘴流量计
Atkinson et al. Qualification of a Nonintrusive Multiphase Flow Meter in Viscous Flows
US11199428B2 (en) Device for measuring flow rate of wet gas based on an exempt radioactive source
Falcone et al. ANUMET: A novel wet gas flowmeter
Jadid Performance evaluation of virtual flow metering models and its application to metering backup and production allocation
CN206095334U (zh) 一种气液两相流量计自动切换装置
Ajayi et al. Real time flow estimation using virtual flow measurement techniques: a field application in intelligent well completion
Atkinson et al. High-accuracy wet-gas multiphase well testing and production metering
CN105865557A (zh) 一种超高粘度气液两相分离计量装置
Morra et al. New approach for in-line production testing for mature oil fields using clamp-on SONAR flow metering system
Shen et al. Field evaluation of a multiphase meter in well-testing operation
Graham et al. The Benefits of Multiphase Flow Meters in SAGD for Production Optimization and Allocation Measurements
Karpaya et al. Unlocking Surface Constraints for High Temperature Gas Field: Production Network Compositional Variation Analysis for Wet Gas Meter PVT Calibration Approach
Delvaux et al. Combination of Dual-Energy Gamma Ray/Venturi Multiphase Flowmeter and Phase Splitter for Application in Very High Gas Volume Fraction Environment
Andreussi et al. Application of a wet gas meter to detect extremely low liquid volume fractions
GIBSON 2.17 Polyphase (Oil/Water/Gas) Flowmeters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918183

Country of ref document: EP

Effective date: 20190509