WO2018064811A1 - 一种移动机器人系统的交通管制方法 - Google Patents

一种移动机器人系统的交通管制方法 Download PDF

Info

Publication number
WO2018064811A1
WO2018064811A1 PCT/CN2016/101492 CN2016101492W WO2018064811A1 WO 2018064811 A1 WO2018064811 A1 WO 2018064811A1 CN 2016101492 W CN2016101492 W CN 2016101492W WO 2018064811 A1 WO2018064811 A1 WO 2018064811A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
mobile robot
traffic control
control method
routes
Prior art date
Application number
PCT/CN2016/101492
Other languages
English (en)
French (fr)
Inventor
韦磊
陶熠昆
朱玲芬
杜鑫峰
王霞
郑洪波
沈继中
宓旭东
Original Assignee
浙江国自机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江国自机器人技术有限公司 filed Critical 浙江国自机器人技术有限公司
Priority to US15/305,422 priority Critical patent/US20180210459A1/en
Priority to PCT/CN2016/101492 priority patent/WO2018064811A1/zh
Publication of WO2018064811A1 publication Critical patent/WO2018064811A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Definitions

  • the present invention relates to a method for transporting stock materials in an inventory system, and more particularly to a traffic control method for a mobile robot system.
  • Modern inventory systems such as e-commerce warehouses, have extremely high requirements for fast and accurate inventory sorting during order fulfillment.
  • the speed, efficiency and automation of inventory goods storage and retrieval have been greatly improved by related technologies such as mobile robot cargo storage sorting.
  • the efficiency of the huge mobile robot in the inventory environment will directly affect the efficiency of the entire inventory system, while the traffic control system in the inventory system controls the movement of all mobile robots, and its efficiency directly affects the time for the mobile robot to complete the handling task.
  • the existing traffic control methods mostly use the method of resource allocation, taking the nodes of the route and the route as resources, and determining whether the mobile robot can move to the route according to the application of the mobile robot, that is, one route only allows one mobile robot to pass.
  • the mobile robot is not a mass point and has a certain physical size. Therefore, there is a mutual exclusion relationship between the route and the route.
  • the traffic control system uses the mutual exclusion relationship between these routes to approve and reject the application.
  • the existing inter-route mutually exclusive sets are mostly configured in a manual or semi-automatic manner, which is difficult to configure and has a large workload. In addition, the configuration result is prone to deadlock and it is difficult to find configuration errors.
  • the technical problem to be solved by the present invention is to provide a traffic control method for a mobile robot system capable of completely automating the mutual exclusion between routes and having a configuration result that is less likely to be deadlocked.
  • the invention provides a traffic control method for a mobile robot system, comprising the following steps:
  • Step one defining the physical size of the mobile robot and the position of the point on the running route
  • Step 2 for each point on the running route, combined with the physical size of the mobile robot, obtain contour information of the mobile robot at the point, and obtain contour information of the mobile robot of the entire running route;
  • Step 3 for the first route, calculating whether the contours of the mobile robots of the first route and the second route intersect, and if intersecting, the first route and the second route are mutually exclusive;
  • Step 4 Calculate whether the contours of the mobile robots of the first route and all other routes intersect, thereby obtaining a mutually exclusive set of all the routes.
  • the running route consists of a series of points.
  • the traffic control method performs approval and rejection of the route based on the mutually exclusive relationship between the routes.
  • the traffic control method further includes step 5, wherein the step 5 is to traverse all the running routes, and for two of the running routes, the existing route mutual exclusion set is used to detect whether there is a deadlock possibility; if there is a dead In the case of a lock, a new route mutex collection is generated.
  • the traffic control method further includes step 6.
  • the step 6 is to recalculate whether there is a deadlock possibility by using the latest mutual exclusion set until there is no possibility of deadlock, thereby obtaining a complete mutually exclusive set.
  • the traffic control method further includes step 7, the step 7 is to prevent the mobile robot from colliding and avoid deadlock according to the complete mutually exclusive set.
  • the traffic control method of the mobile robot system of the invention realizes that the mutual exclusion set between the routes is completely automated, the requirements of the configuration personnel are low, and the configuration result is not easy to appear deadlock, and the configuration error is easy to find.
  • the traffic control method of the mobile robot system of the invention does not need to manually configure the mutually exclusive set to avoid deadlock, and solves the problem that the manual configuration of the mutually exclusive set is error-prone and the workload is large.
  • Figure 1 is a schematic diagram of the running route of the mobile robot as a mass point
  • Figure 2 is a schematic diagram showing the running routes of mutually exclusive routes
  • Figure 3 is a schematic diagram showing the running route of the deadlock situation.
  • Traffic control is the approval and rejection of paths based on mutually exclusive relationships between routes.
  • route 1 ⁇ 2 with route 6 ⁇ 7 , 7 ⁇ 8 , 8 ⁇ 9 mutually exclusive, in other words, when mobile robot A applies through path 1 ⁇ 2, traffic control needs to check route 6 ⁇ 7 , 7 ⁇ 8 , 8 ⁇ 9 Whether it has been occupied by other mobile robots, if it is already occupied, then the traffic control system refuses to apply for mobile robot A, at this time mobile robot A Can only wait until the other mobile robot leaves 6 ⁇ 7 , 7 ⁇ 8 , 8 ⁇ 9 , the traffic control system approves the application of mobile robot A, then the mobile robot can pass 1 ⁇ 2 .
  • the mutually exclusive set of edges is the basis for traffic control.
  • the mutually exclusive set can be configured manually, but it is often prone to errors or omissions. In addition, the configuration of the complicated route is huge
  • a traffic control method for a mobile robot system comprising the following steps:
  • Step one defining the physical size of the mobile robot and the position of the point on the running route, wherein the running route is composed of a series of points.
  • Step 2 For each point on the running route, combined with the physical size of the mobile robot, obtain contour information of the mobile robot at the point, and obtain contour information of the mobile robot of the entire running route.
  • Step 3 For the first route, calculate whether the contours of the mobile robots of the first route and the second route intersect, and if they intersect, the first route and the second route are mutually exclusive.
  • Step 4 Calculate whether the contours of the mobile robots of the first route and all other routes intersect, thereby obtaining a mutually exclusive set of all the routes.
  • the mutually exclusive set of all routes can be completely defined.
  • Mutually exclusive by route The set of settings, in complex situations, can avoid collisions between mobile robots, but there will be deadlocks between mobile robots.
  • mobile robot A applies for the path 2 ⁇ 3
  • the mobile robot B stops at 1 ⁇ 2.
  • Mobile robot B application path When 6 ⁇ 7, since the mobile robot A is on the route 1 ⁇ 2, and the route 1 ⁇ 2 and the route 6 ⁇ 7 are mutually exclusive, the mobile robot B stops at 5 ⁇ 6 .
  • the mobile robot A waits for the mobile robot B to leave 5 ⁇ 6, and the mobile robot B waits for the mobile robot A to leave 1 ⁇ 2, and such a situation is called a deadlock.
  • the traffic control method of the preferred embodiment of the present invention further includes the following steps:
  • Step 5 traverse all the running routes, for the two running routes, through the existing route mutually exclusive set, the detection is No deadlock is possible; if there is a deadlock condition, a new route mutual exclusion set is generated.
  • the new route 1 ⁇ 2 and route 5 ⁇ 6 are mutually exclusive.
  • Step 6 Use the latest mutex set to recalculate whether there is a deadlock possibility until there is no deadlock possible, and then get a complete mutex set.
  • Step 7 According to the complete mutually exclusive set, the mobile robot avoids collision and avoids deadlock.
  • the automatic configuration of the mutually exclusive set can be implemented, and the mutual exclusion set is not manually configured to avoid deadlock, which solves the problem that the manual configuration of the mutually exclusive set is error-prone and the workload is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种移动机器人系统的交通管制方法,包括:步骤一,定义移动机器人的物理尺寸和运行路线上的点的位置;步骤二,针对所述运行路线上的每一个点,结合所述移动机器人的物理尺寸,获得该点上移动机器人的轮廓信息,进而获得整条运行路线的移动机器人的轮廓信息;步骤三,针对第一路线,计算第一路线和第二路线的移动机器人的轮廓是否相交,如果相交,则所述第一路线和所述第二路线互斥;步骤四,计算第一路线与所有其它路线的移动机器人的轮廓是否相交,进而得到所有路线的互斥集合。上述方法实现了路线间互斥集合完全自动化,配置结果不易出现死锁,解决了人工配置互斥集合容易出错、工作量大的问题。

Description

一种移动机器人系统的交通管制方法
技术领域
本发明涉及 用于在库存系统中运输库存物料的方法 ,尤其涉及一种移动机器人系统的交通管制方法。
背景技术
现代的库存系统,例如电子商务仓库,在订单执行过程中对快速、准确的库存物料分拣有极高的要求。在近几年的发展中,通过移动机器人货物存储器分拣等相关技术使得库存货物存储和检索的速度和效率、自动化程度已经得到了极大的提升。数据巨大的移动机器人在库存环境中的运行效率将直接影响整个库存系统的效率,而库存系统中的交通管制系统控制所有移动机器人的运动,其效率高低直接影响移动机器人完成搬运任务的时间。
多辆移动机器人在各自的路线中行走,独立执行其任务,单个移动机器人无法感知其他移动机器人的位置和运行状态,如何避免移动机器人间的碰撞,同时确保高效的物流就是交通管制系统需要解决的重要问题。
现有的交通管制方法多使用资源分配的方法,将路线和路线的节点作为资源,根据移动机器人的申请决定移动机器人是否可以运动到该路线上,即一条路线只允许一辆移动机器人通行。然而,移动机器人不是一个质点,具有一定的物理尺寸,因此路线和路线之间存在互斥关系,交通管制系统就是利用这些路线间的互斥关系进行申请的批准与拒绝。然而现有的路线间互斥集多采用全手动或者半自动的方式进行配置,配置难度大且工作量大,另外,配置结果容易出现死锁的情况,发现配置错误难度大。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种能够实现路线间互斥集合完全自动化、配置结果不易出现死锁的移动机器人系统的交通管制方法。
本发明提供了一种移动机器人系统的交通管制方法,包括以下步骤:
步骤一,定义移动机器人的物理尺寸和运行路线上的点的位置;
步骤二,针对所述运行路线上的每一个点,结合所述移动机器人的物理尺寸,获得该点上移动机器人的轮廓信息,进而获得整条运行路线的移动机器人的轮廓信息;
步骤三,针对第一路线,计算第一路线和第二路线的移动机器人的轮廓是否相交,如果相交,则所述第一路线和所述第二路线互斥;
步骤四,计算第一路线与所有其它路线的移动机器人的轮廓是否相交,进而得到所有路线的互斥集合。
进一步地,所述运行路线由一系列的点组成。
进一步地,所述交通管制方法基于路线间的互斥关系进行路径的批准与拒绝。
进一步地,所述交通管制方法还包括步骤五,所述步骤五为遍历所有的运行路线,针对其中两条运行路线,通过已有的路线互斥集合,检测是否存在死锁可能;如果存在死锁情况,则生成新增的路线互斥集合。
进一步地,所述交通管制方法还包括步骤六,所述步骤六为使用最新的互斥集合重新计算是否存在死锁可能,直到不存在死锁可能为止,进而得到完整的互斥集合。
进一步地,所述交通管制方法还包括步骤七,所述步骤七为根据完整的互斥集合,使移动机器人避免碰撞、避免死锁。
本发明的移动机器人系统的交通管制方法实现了路线间互斥集合完全自动化,对配置人员要求低,且配置结果不易出现死锁,发现配置错误容易。本发明的移动机器人系统的交通管制方法无需人工配置互斥集合来避免死锁,解决了人工配置互斥集合容易出错、工作量大的问题。
以下将结合附图对本 发明 的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本 发明 的目的、特征和效果。
附图说明
图 1 是移动机器人作为质点时的运行路线的示意图;
图 2 是显示路线互斥的运行路线的示意图;
图 3 是显示死锁情况的运行路线的示意图。
具体实施方式
多辆移动机器人在各自的路线中行走,独立执行其任务,单个移动机器人无法感知其他移动机器人的位置和运行状态,如何避免移动机器人间的碰撞,同时确保高效的物流就是交通管制系统需要解决的重要问题。
移动机器人 A ,从 1 → 2 → 3 → 4 运动,移动机器人 B ,从 5 → 6 → 7 → 8 运动。如果不考虑移动机器人的尺寸,即将移动机器人当作一个质点,则移动机器人 A 和移动机器人 B 不要进行交通管制,如图 1 所示。
但是移动机器人不可能不考虑其物理尺寸,因此在这种情况下需要进行管制。交通管制是基于路线间的互斥关系进行路径的批准与拒绝。如图 2 所示:路线 1 → 2 ,与路线 6 → 7 , 7 → 8 , 8 → 9 互斥,换句话说,当移动机器人 A 申请通过路径 1 → 2 时,交通管制需要检查路线 6 → 7 , 7 → 8 , 8 → 9 是否已经被其他移动机器人占用,如果已经被占用,那么交通管制系统拒绝移动机器人 A 的申请,此时移动机器人 A 只能等待,直到其他移动机器人离开 6 → 7 , 7 → 8 , 8 → 9 后,交通管制系统批准移动机器人 A 的申请,那么移动机器人才能通过 1 → 2 。边的互斥集合是进行交通管制的基础,该互斥集合可以通过人工方式进行配置,但是往往容易出现错误或者遗漏,另外对于路线复杂的情况配置工作量巨大。
因此,本发明的一个较佳实施例提供了一种移动机器人系统的交通管制方法,包括以下步骤:
步骤一,定义移动机器人的物理尺寸和运行路线上的点的位置,其中运行路线由一系列的点组成。
步骤二,针对所述运行路线上的每一个点,结合所述移动机器人的物理尺寸,获得该点上移动机器人的轮廓信息,进而获得整条运行路线的移动机器人的轮廓信息。
步骤三,针对第一路线,计算第一路线和第二路线的移动机器人的轮廓是否相交,如果相交,则所述第一路线和所述第二路线互斥。
步骤四,计算第一路线与所有其它路线的移动机器人的轮廓是否相交,进而得到所有路线的互斥集合。
通过上述方法可以完整定义所有路线的互斥集合。通过路线互斥 集合的设置,在复杂情况下,可以避免移动机器人之间不出现碰撞,但是会出现移动机器人间的死锁情况。如图 3 所示,移动机器人 A 申请路径 2 → 3 时,由于移动机器人 B 在路线 5 → 6 ,而路线 2 → 3 与路线 5 → 6 互斥,因此移动机器人 A 停止在 1 → 2 。移动机器人 B 申请路径 6 → 7 时,由于移动机器人 A 在路线 1 → 2 ,而路线 1 → 2 与路线 6 → 7 互斥,因此移动机器人 B 停止在 5 → 6 。从而出现移动机器人 A 等待移动机器人 B 离开 5 → 6 ,移动机器人 B 等待移动机器人 A 离开 1 → 2 ,此类情况称为死锁。
针对死锁情况,本发明的较佳实施例的交通管制方法还包括以下步骤:
步骤五,遍历所有的运行路线,针对其中两条运行路线,通过已有的路线互斥集合,检测是 否存在死锁可能;如果存在死锁情况,则生成新增的路线互斥集合。在图 3 中,新增路线 1→2 和路线 5→6 互斥。
步骤六,使用最新的互斥集合重新计算是否存在死锁可能,直到不存在死锁可能为止,进而得到完整的互斥集合。
步骤七,根据完整的互斥集合,使移动机器人避免碰撞、避免死锁。
通过本实施例的交通管制方法 可以实现互斥集合的自动化配置,无需人工配置互斥集合来避免死锁,解决了人工配置互斥集合容易出错、工作量大的问题。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

  1. 一种移动机器人系统的交通管制方法,其特征在于,包括以下步骤:
    步骤一,定义移动机器人的物理尺寸和运行路线上的点的位置;
    步骤二,针对所述运行路线上的每一个点,结合所述移动机器人的物理尺寸,获得该点上移动机器人的轮廓信息,进而获得整条运行路线的移动机器人的轮廓信息;
    步骤三,针对第一路线,计算第一路线和第二路线的移动机器人的轮廓是否相交,如果相交,则所述第一路线和所述第二路线互斥;
    步骤四,计算第一路线与所有其它路线的移动机器人的轮廓是否相交,进而得到所有路线的互斥集合。
  2. 根据权利要求1所述的移动机器人系统的交通管制方法,其特征在于,所述运行路线由一系列的点组成。
  3. 根据权利要求1所述的移动机器人系统的交通管制方法,其特征在于,所述交通管制方法基于路线间的互斥关系进行路径的批准与拒绝。
  4. 根据权利要求1所述的移动机器人系统的交通管制方法,其特征在于,所述交通管制方法还包括步骤五,所述步骤五为遍历所有的运行路线,针对其中两条运行路线,通过已有的路线互斥集合,检测是否存在死锁可能;如果存在死锁情况,则生成新增的路线互斥集合。
  5. 根据权利要求1所述的移动机器人系统的交通管制方法,其特征在于,所述交通管制方法还包括步骤六,所述步骤六为使用最新的互斥集合重新计算是否存在死锁可能,直到不存在死锁可能为止,进而得到完整的互斥集合。
  6. 根据权利要求1所述的移动机器人系统的交通管制方法,其特征在于,所述交通管制方法还包括步骤七,所述步骤七为根据完整的互斥集合,使移动机器人避免碰撞、避免死锁。
PCT/CN2016/101492 2016-10-08 2016-10-08 一种移动机器人系统的交通管制方法 WO2018064811A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/305,422 US20180210459A1 (en) 2016-10-08 2016-10-08 Traffic management method for mobile robotics system
PCT/CN2016/101492 WO2018064811A1 (zh) 2016-10-08 2016-10-08 一种移动机器人系统的交通管制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101492 WO2018064811A1 (zh) 2016-10-08 2016-10-08 一种移动机器人系统的交通管制方法

Publications (1)

Publication Number Publication Date
WO2018064811A1 true WO2018064811A1 (zh) 2018-04-12

Family

ID=61830759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101492 WO2018064811A1 (zh) 2016-10-08 2016-10-08 一种移动机器人系统的交通管制方法

Country Status (2)

Country Link
US (1) US20180210459A1 (zh)
WO (1) WO2018064811A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406687B2 (en) 2016-12-23 2019-09-10 X Development Llc Layered multi-agent coordination
CN110262471B (zh) * 2018-05-10 2022-09-06 北京京东乾石科技有限公司 机器人调度方法和装置、机器人及机器人调度系统
CN114326753B (zh) * 2022-03-07 2022-06-24 杭州蓝芯科技有限公司 一种调控区域内多机器人的死锁检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795923A (zh) * 2007-06-21 2010-08-04 杰维斯·B·韦布国际公司 自动运输装载系统及方法
CN102087530A (zh) * 2010-12-07 2011-06-08 东南大学 基于手绘地图和路径的移动机器人视觉导航方法
CN105607635A (zh) * 2016-01-05 2016-05-25 东莞市松迪智能机器人科技有限公司 自动导引车全景光学视觉导航控制系统及全向自动导引车
CN105938572A (zh) * 2016-01-14 2016-09-14 上海海事大学 一种物流存储系统预防干涉的多自动导引车路径规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795923A (zh) * 2007-06-21 2010-08-04 杰维斯·B·韦布国际公司 自动运输装载系统及方法
CN102087530A (zh) * 2010-12-07 2011-06-08 东南大学 基于手绘地图和路径的移动机器人视觉导航方法
CN105607635A (zh) * 2016-01-05 2016-05-25 东莞市松迪智能机器人科技有限公司 自动导引车全景光学视觉导航控制系统及全向自动导引车
CN105938572A (zh) * 2016-01-14 2016-09-14 上海海事大学 一种物流存储系统预防干涉的多自动导引车路径规划方法

Also Published As

Publication number Publication date
US20180210459A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2018064811A1 (zh) 一种移动机器人系统的交通管制方法
Yu et al. Structure and intractability of optimal multi-robot path planning on graphs
CN106548247B (zh) 一种移动机器人系统的交通管制方法
US9519532B2 (en) Handling system interrupts with long-running recovery actions
Yeh et al. Deadlock prediction and avoidance for zone-control AGVS
Wang et al. Resource oriented workflow nets and workflow resource requirement analysis
Mazzanti et al. Deadlock avoidance in train scheduling: a model checking approach
Wu et al. Real-time deadlock-free scheduling for semiconductor track systems based on colored timed Petri nets
CN101673221A (zh) 一种嵌入式片上多处理器的中断处理方法
CN108959391A (zh) 展现数据库集群架构图的设备、系统、方法、存储介质
Mosca et al. Multi-robot routing and scheduling with temporal logic and synchronization constraints
Elsayed et al. An optimal transition-based recovery policy for controlling deadlock within flexible manufacturing systems using graph technique
He et al. Deadlock Avoidance in Closed Guide-Path Based MultiAGV Systems
US7120568B1 (en) Identification of missing properties in model checking
Abdul-Hussin Flexible manufacturing system design and optimization using Petri net-based elementary siphons
Shatrov et al. Promela Formal Modelling and Verification of IEC 61499 Systems with comparison to SMV
Reddy et al. Timed Petri net: An expeditious tool for modelling and analysis of manufacturing systems
Du et al. Robust control of automated manufacturing systems with complex structures using Petri nets
Soltys Circuit complexity of shuffle
BR112016013088B1 (pt) Método de composição e de execução de um plano de sequenciamento de tarefas em tempo real
Viswanadham et al. Stochastic modelling of flexible manufacturing systems
Du et al. Robust control of backward conflict free systems with resources using Petri nets
Lu et al. A leader election based deadlock detection algorithm in distributed systems
Watanabe et al. A new deadlock prevention policy for multi-cluster tools with dual path
Sreenivasulu et al. Modeling and analysis for minimization of mean flow time in FMS simulation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15305422

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918145

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16918145

Country of ref document: EP

Kind code of ref document: A1