WO2018062956A1 - Capacitive sensor device - Google Patents

Capacitive sensor device Download PDF

Info

Publication number
WO2018062956A1
WO2018062956A1 PCT/KR2017/011007 KR2017011007W WO2018062956A1 WO 2018062956 A1 WO2018062956 A1 WO 2018062956A1 KR 2017011007 W KR2017011007 W KR 2017011007W WO 2018062956 A1 WO2018062956 A1 WO 2018062956A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
capacitance
sensor device
charge amplifier
signal
Prior art date
Application number
PCT/KR2017/011007
Other languages
French (fr)
Korean (ko)
Inventor
문병권
이재표
김태운
고진석
Original Assignee
(주)세미센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세미센스 filed Critical (주)세미센스
Publication of WO2018062956A1 publication Critical patent/WO2018062956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector

Definitions

  • the present invention relates to a capacitive sensor device, and more particularly, mutual capacitance (reduced upon touch of a conductor or fingerprint) and magnetic capacitance (touch of a conductor) instead of a feedback capacitance, which is a fixed capacitance. Or increase when the fingerprint is touched), so that the output signal value of the charge amplifier is larger than when using the feedback capacitance to improve the sensitivity, and the compactness is achieved by using no capacitor to amplify the signal.
  • the present invention relates to a capacitive sensor device capable of preventing a loss of a signal due to metal packaging of a terminal device by applying a driving voltage therein.
  • a capacitive sensor device that calculates coordinates of a touch point, recognizes a fingerprint, or calculates touch pressure by using capacitance change has been widely developed.
  • FIG. 1 is a schematic configuration diagram of a sensor device using a conventional capacitance change.
  • a sensor device using a conventional capacitance change is described.
  • the sensor device touches a driving voltage. It is applied to the panel 100 to detect the capacitance change caused by touch, fingerprint contact, etc. to calculate the coordinates or pressure or to recognize the fingerprint, the signal output from the touch panel 100 is a charge amplifier 200 Amplified and analyzed by a controller (not shown).
  • the charge amplifier 200 includes an operational amplifier 210 and a capacitor 220 positioned between an inverting input terminal ( ⁇ ) and an output terminal of the operational amplifier, and an output signal amplified and output to the charge amplifier 200. (Vout) becomes equal to Equation 1 below.
  • Vout -(CS / CFB) ⁇ Vin
  • CS is the capacitance of the touch panel
  • CFB is the feedback capacitance
  • Vin is the input signal
  • the touch panel 100 is positioned above the display (not shown) and packaged to form a terminal device (not shown), and a driving voltage is provided through the metal bezel (not shown) of the touch panel 100.
  • the packaging of the terminal device is made of metal (that is, the When the housing (not shown) is made of metal) and a driving voltage applied by a finger is distributed to the housing and the sensor electrode, signal loss occurs.
  • the present invention has been made to solve the above problems,
  • the present invention uses mutual capacitance (decreased on touch of a conductor or fingerprint) and magnetic capacitance (increase on touch of a conductor or fingerprint) instead of a feedback capacitance which is a fixed capacitance. It is an object of the present invention to provide a capacitive sensor device capable of improving sensitivity by making an output signal value of an amplifier larger than when using a feedback capacitance.
  • an object of the present invention is to provide a capacitive sensor device that can be made compact by not using a capacitor in amplifying a signal.
  • Another object of the present invention is to provide a capacitive sensor device capable of preventing a loss of a signal due to metal packaging of a terminal device by applying a driving voltage therein.
  • the present invention is implemented by the embodiment having the following configuration to achieve the above object.
  • the capacitive sensor device is a sensor unit for receiving a signal and outputs a signal according to the capacitance changes according to the user's touch, and the sensor is connected to the sensor And a charge amplifier for amplifying and outputting a signal output from the unit, wherein the sensor unit includes a plurality of sensor arrays spaced at a predetermined interval, and the sensor array includes a pair of sensor electrodes spaced at a predetermined interval.
  • the sensor electrode is connected to the inverting input terminal (-) of the charge amplifier and the other sensor electrode is connected to the output terminal of the charge amplifier.
  • the sensor array further surrounds the sensor electrode and further includes a guide electrode for preventing parasitic capacitance from occurring between adjacent sensor arrays. It is characterized by including.
  • CM mutual capacitance
  • the magnetic capacitance CF formed at one sensor electrode connected to the inverting input terminal of the charge amplifier is increased.
  • the mutual capacitance CM is decreased, so that the sensitivity can be improved by making the output signal value of the charge amplifier larger than when using the feedback capacitance.
  • the capacitive sensor device is characterized by applying a signal to the non-inverting input terminal (+) of the charge amplifier.
  • the output signal value output from the charge amplifier is characterized by the following equation (2).
  • Vout (1 + CF / CM) ⁇ Vin
  • Vout is the output signal
  • CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal
  • CM is the mutual capacitance between the sensor electrodes
  • Vin is the input signal
  • the sensor unit further includes a bezel acting as an external electrode, characterized in that a signal is applied to the bezel.
  • the output signal value output from the charge amplifier is characterized by the following equation (3).
  • Vout -(CF / CM) ⁇ Vin
  • Vout is the output signal
  • CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal
  • CM is the mutual capacitance between the sensor electrodes
  • Vin is the input signal
  • the capacitive sensor device is characterized in that it is used to calculate the coordinates or pressure of the touch point or to recognize the fingerprint.
  • the capacitive sensor device is located between the inverting input terminal (-) and the output terminal of the charge amplifier, and is turned on after detecting the output signal and inputting the output terminal. It further comprises a switch for initializing the voltage of the terminal.
  • the present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
  • the present invention uses mutual capacitance (decreased on touch of a conductor or fingerprint) and magnetic capacitance (increase on touch of a conductor or fingerprint) instead of a feedback capacitance which is a fixed capacitance.
  • the sensitivity of the amplifier can be improved by making the output signal of the amplifier larger than when using the feedback capacitance.
  • the present invention has the effect that can be achieved by compacting without using a capacitor in amplifying the signal.
  • the present invention has the effect of preventing the loss of the signal by the metal packaging of the terminal device by applying a driving voltage therein.
  • FIG. 1 is a schematic configuration diagram of a sensor device using a conventional capacitance change.
  • FIG. 2 is a schematic configuration diagram of a capacitive sensor device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the sensor device of FIG.
  • FIG. 4 is a schematic configuration diagram of a capacitive sensor device according to another embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a capacitive sensor device according to the present invention.
  • insulating layer 122 shield electrode 123: sensor array
  • FIG. 2 is a schematic configuration diagram of a capacitive sensor device according to an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of the sensor device of Figure 2
  • Figure 4 is a capacitance according to another embodiment of the present invention
  • It is a schematic block diagram of a sensor system
  • FIG. 5 is a circuit diagram of the capacitive sensor device according to the present invention.
  • the capacitive sensor device will be described with reference to FIGS. 2 and 3, wherein the sensor device detects a user's touch and transmits a signal thereof, and the touch panel ( And a controller 2 for applying a signal (driving voltage) to 1) and amplifying and analyzing the signal output from the touch panel 1.
  • the sensor device may not only be used to calculate coordinates of a touch point, recognize a fingerprint, or calculate touch pressure by using capacitance change, but also may be used for a system for measuring various physical quantities using capacitance change.
  • the characteristics of the present invention apply a signal to the touch panel 1 to amplify and output the signal output from the touch panel 1, the output signal is analyzed to calculate coordinates or recognize a fingerprint or pressure. Since the measurement of various physical quantities of the known matters, a detailed description thereof will be omitted.
  • the touch panel 1 senses a user's touch and transmits a signal thereof, and includes a cover layer 11 and a sensor unit 12.
  • the cover layer 11 forms the uppermost surface of the touch panel 1, and transparent glass, a synthetic resin film, or the like may be applied to a part contacting a user's finger or other touch means.
  • the sensor unit 12 is positioned below the cover layer 11 to receive a driving voltage from the controller 2 and output a signal according to a capacitance that changes according to a user's touch.
  • the insulating layer 121, the shield electrode 122, and the sensor array 123 may be made of various materials.
  • the insulating layer 121 may be made of a transparent synthetic resin, and the shield electrode 122 and the sensor may be made of various materials.
  • the array 123 may be made of ITO material.
  • the insulating layer 121 is disposed below the cover layer 11 to accommodate the shield electrode 122 and the sensor array 123.
  • the insulating layer 121 is vertically partitioned by the shield electrode 122 to be disposed above. It is divided into a first insulating layer 121a and a lower second insulating layer 121b.
  • the shield electrode 122 is disposed in the insulating layer 121, that is, disposed between the first insulating layer 121a and the second insulating layer 121b to minimize parasitic capacitance. Or any other suitable pressure.
  • the shield electrode 122 is formed with a via hole 122a through which conductive wires connecting the sensor electrode 123a of the sensor array 123 and the charge amplifier 21 pass.
  • the sensor array 123 is positioned in the first insulating layer 121a and is configured to output a signal according to a capacitance changed according to a user's touch by receiving a driving voltage.
  • a plurality of layers are formed in the insulating layer 121a at regular left and right intervals.
  • the sensor array 123 includes a pair of sensor electrodes 123a spaced apart from each other at a predetermined interval, and a guide electrode 123b surrounding the sensor electrode 123a.
  • the pair of sensor electrodes 123a are spaced apart from each other at a predetermined interval, and one sensor electrode 1231 is connected to the inverting input terminal (-) of the charge amplifier 21, and the other sensor electrode 1232 is connected to the charge amplifier 21. It is connected to the output terminal of. Therefore, the charge amplifier 21 is connected to each sensor array 123.
  • the guide electrode 123b surrounds the sensor electrode 123b to minimize parasitic capacitance formed between adjacent sensor arrays 123 and is connected to a ground voltage or other suitable voltage.
  • the case (not shown) surrounds the insulating layer 121 to form an outer shape of the sensor unit 12.
  • the bezel 124 of the case may be made of metal and may serve as an external electrode. It is well known to apply the driving voltage through the bezel, so a detailed description thereof will be omitted.
  • the controller 2 is configured to apply a signal (driving voltage) to the touch panel 1 and amplify and analyze the signal output from the touch panel 1.
  • the signal supply unit (not shown) and the charge amplifier 21 ), And the like.
  • the signal supply unit (not shown) is configured to control the application of a signal (driving voltage) to the sensor electrode 123a, and as shown in FIG. 2, to the non-inverting input terminal (+) of the charge amplifier 21.
  • the signal is applied or the signal is applied to the bezel 124 as shown in FIG. 4.
  • the charge amplifier 21 is connected to the sensor unit 12 and amplifies and outputs a signal output from the sensor unit 12.
  • One charge amplifier 21 is used for each sensor array 123.
  • the inverting input terminal (-) of the charge amplifier 21 is connected to one sensor electrode 1231 and the output terminal is connected to the other sensor electrode 1232.
  • the switch 22 is connected between the inverting input terminal (-) and the output terminal, and after the output signal is detected (on) to turn on the voltage of the output terminal and the input terminal Can be initialized.
  • each of the sensor arrays 123 outputs a signal, and when the conductor touches the touch panel 1, the electrostatic The capacitance is changed to output the changed signal.
  • the controller 2 applies the driving voltage to the inside (non-inverting input terminal (+)) instead of the external electrode (bezel 124), at this time, bezel 124 ) Is connected to the ground voltage) .
  • a driving voltage is applied to the non-inverting input terminal (+)
  • the voltage is generated due to the virtual short characteristic of the non-inverting input terminal (+) and the inverting input terminal (-).
  • Vout (1 + CF / CM) ⁇ Vin
  • Vout is the output signal
  • CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal
  • CM is the mutual capacitance between the sensor electrodes
  • Vin is the input signal
  • a coffee sheet may not be used, thereby making the sensor device compact.
  • the terminal device is packaged with metal and a driving voltage is applied through the bezel 124, which is an external electrode as in the prior art, signal loss occurs, and the sensor device supplies the driving voltage to the inside (non-inverting input terminal (+)). Can be effectively prevented from being lost.
  • power may be applied to the bezel 124.
  • the magnetic capacitance CF connected to the output terminal of the charge amplifier is a branch of a feedback factor.
  • the circuit when the driving voltage is applied to the inverting input terminal (when the driving voltage is applied to the bezel), the circuit is expressed as shown in FIG. 5B and is output from the charge amplifier 21.
  • the output signal Vout is represented by Equation 3 below. Even in this case, the output signal value can be made larger than in the case of using the feedback capacitance as in the related art, thereby improving the sensitivity.
  • Vout -(CF / CM) ⁇ Vin
  • Vout is the output signal
  • CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal
  • CM is the mutual capacitance between the sensor electrodes
  • Vin is the input signal

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The present invention relates to a capacitive sensor device and, more particularly, to a capacitive sensor device which may improve sensitivity by using mutual capacitance, which is reduced in contact with a conductor or a fingerprint, and self-capacitance, which is increased in contact with a conductor or a fingerprint, in place of feedback capacitance, which is the fixed capacitance, and increasing an output signal value of a charge amplifier to be larger than when using the feedback capacitance, may be made compact without the use of a capacitor in amplifying a signal, and may internally apply a driving voltage to prevent signal loss due to metal packaging of a terminal device.

Description

정전용량방식 센서장치Capacitive Sensor Device
본 발명은 정전용량방식 센서장치에 대한 것으로, 더욱 상세하게는 고정 정전용량인 피드백 정전용량 대신에 상호 정전용량(도전체의 터치 또는 지문의 접촉시 감소함)과 자기 정전용량(도전체의 터치 또는 지문의 접촉시 증가함)을 이용하여 전하 증폭기의 출력 신호 값이 피드백 정전용량을 사용했을 때보다 더 크게 함으로써 감도를 개선할 수 있고, 신호를 증폭함에 있어 커패시터를 사용하지 않아 컴팩트화를 이룰 수 있으며, 구동 전압을 내부에서 인가하여 단말장치의 금속 패키징에 의한 신호의 손실을 방지할 수 있는 정전용량방식 센서장치에 대한 것이다.The present invention relates to a capacitive sensor device, and more particularly, mutual capacitance (reduced upon touch of a conductor or fingerprint) and magnetic capacitance (touch of a conductor) instead of a feedback capacitance, which is a fixed capacitance. Or increase when the fingerprint is touched), so that the output signal value of the charge amplifier is larger than when using the feedback capacitance to improve the sensitivity, and the compactness is achieved by using no capacitor to amplify the signal. The present invention relates to a capacitive sensor device capable of preventing a loss of a signal due to metal packaging of a terminal device by applying a driving voltage therein.
일반적으로 정전용량변화를 이용하여 터치 지점의 좌표를 산정하거나 지문을 인식하거나 터치 압력을 산정하는 정전용량방식 센서장치가 널리 개발되어 있다.In general, a capacitive sensor device that calculates coordinates of a touch point, recognizes a fingerprint, or calculates touch pressure by using capacitance change has been widely developed.
도 1은 종래의 정전용량변화를 이용한 센서장치의 개략적인 구성도인데, 도 1 및 아래의 특허문헌을 참조하여 종래의 정전용량변화를 이용한 센서장치를 설명하면, 상기 센서장치는 구동 전압을 터치패널(100)에 인가하여 터치, 지문 접촉 등에 의해 발생하는 정정전용량 변화를 감지하여 좌표 또는 압력을 산정하거나 지문을 인식하는데, 상기 터치패널(100)에서 출력된 신호는 전하 증폭기(200)에서 증폭되어 컨트롤러(미도시)에 의해 분석되게 되게 된다. 상기 전하 증폭기(200)는 연산증폭기(210)와 상기 연산증폭기의 반전 입력단자(-)와 출력단자 사이에 위치하는 커패시터(220)를 구성되며, 상기 전하 증폭기(200)에 증폭 출력되는 출력신호(Vout)는 하기의 수학식 1과 같아지게 된다.1 is a schematic configuration diagram of a sensor device using a conventional capacitance change. Referring to FIG. 1 and the following patent document, a sensor device using a conventional capacitance change is described. The sensor device touches a driving voltage. It is applied to the panel 100 to detect the capacitance change caused by touch, fingerprint contact, etc. to calculate the coordinates or pressure or to recognize the fingerprint, the signal output from the touch panel 100 is a charge amplifier 200 Amplified and analyzed by a controller (not shown). The charge amplifier 200 includes an operational amplifier 210 and a capacitor 220 positioned between an inverting input terminal (−) and an output terminal of the operational amplifier, and an output signal amplified and output to the charge amplifier 200. (Vout) becomes equal to Equation 1 below.
[수학식 1][Equation 1]
Vout=-(CS/CFB)×VinVout =-(CS / CFB) × Vin
(여기서, CS는 터치패널의 정전용량, CFB는 피드백 정전용량, Vin은 입력신호를 나타냄)Where CS is the capacitance of the touch panel, CFB is the feedback capacitance, and Vin is the input signal.
<특허문헌><Patent Documents>
공개특허공보 제10-2013-0008102호(2013. 01. 22. 공개) "기생정전용량을 가지는 정전용량형 센서의 정전용량 측정회로"Korean Patent Publication No. 10-2013-0008102 (published Jan. 22, 2013) "Capacitive measurement circuit of a capacitive sensor having a parasitic capacitance"
하지만, 입력 신호를 증폭하기 위해서는 정전용량(CS)뿐만 아니라 고정 정전용량인 피드백 정전용량(CFB)을 필요로 한다. 또한, 종래 경우, 상기 터치패널(100)을 디스플레이(미도시) 상측에 위치시키고 패키징하여 단말장치(미도시)를 형성하고, 상기 터치패널(100)의 금속 베젤(미도시)을 통해 구동전압을 인가하여 구동전압이 터치패널(100)을 접촉하는 손가락으로 흘러 터치패널(100)의 센서 전극(미도시)로 인가되도록 하는데, 상기 단말장치의 패키징이 금속으로 된 경우(즉, 단말장치의 하우징(미도시)이 금속으로 된 경우), 손가락으로 인가된 구동 전압이 하우징과 센서 전극으로 분산되어 신호의 손실이 발생하게 된다.However, in order to amplify the input signal, not only the capacitance CS but also the feedback capacitance CFB, which is a fixed capacitance, is required. In addition, in the related art, the touch panel 100 is positioned above the display (not shown) and packaged to form a terminal device (not shown), and a driving voltage is provided through the metal bezel (not shown) of the touch panel 100. When the driving voltage is applied to the finger that touches the touch panel 100 to be applied to the sensor electrode (not shown) of the touch panel 100, the packaging of the terminal device is made of metal (that is, the When the housing (not shown) is made of metal) and a driving voltage applied by a finger is distributed to the housing and the sensor electrode, signal loss occurs.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been made to solve the above problems,
본 발명은 고정 정전용량인 피드백 정전용량 대신에 상호 정전용량(도전체의 터치 또는 지문의 접촉시 감소함)과 자기 정전용량(도전체의 터치 또는 지문의 접촉시 증가함)을 이용하여, 전하 증폭기의 출력 신호 값이 피드백 정전용량을 사용했을 때보다 더 크게 함으로써 감도를 개선할 수 있는 정전용량방식 센서장치를 제공하는 그 목적이 있다.The present invention uses mutual capacitance (decreased on touch of a conductor or fingerprint) and magnetic capacitance (increase on touch of a conductor or fingerprint) instead of a feedback capacitance which is a fixed capacitance. It is an object of the present invention to provide a capacitive sensor device capable of improving sensitivity by making an output signal value of an amplifier larger than when using a feedback capacitance.
또한, 본 발명은 신호를 증폭함에 있어 커패시터를 사용하지 않아 컴팩트화를 이룰 수 있는 정전용량방식 센서장치를 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide a capacitive sensor device that can be made compact by not using a capacitor in amplifying a signal.
또한, 본 발명은 구동 전압을 내부에서 인가하여 단말장치의 금속 패키징에 의한 신호의 손실을 방지할 수 있는 정전용량방식 센서장치를 제공하는데 그 목적이 있다.Another object of the present invention is to provide a capacitive sensor device capable of preventing a loss of a signal due to metal packaging of a terminal device by applying a driving voltage therein.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.The present invention is implemented by the embodiment having the following configuration to achieve the above object.
본 발명의 일 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치는 신호를 인가받아 사용자의 터치에 따라 변화하는 정전용량에 따른 신호를 출력하는 센서부와, 상기 센서부에 연결되어 상기 센서부에서 출력된 신호를 증폭하여 출력하는 전하 증폭기를 포함하며, 상기 센서부는 일정 간격을 두고 위치하는 복수 개의 센서 어레이를 포함하고, 상기 센서 어레이는 일정 간격 이격되어 위치하는 한 쌍의 센서 전극을 포함하며, 일 센서 전극은 전하 증폭기의 반전 입력단자(-)에 연결되고 타 센서 전극은 전하 증폭기의 출력단자에 연결되는 것을 특징으로 한다.According to an embodiment of the present invention, the capacitive sensor device according to the present invention is a sensor unit for receiving a signal and outputs a signal according to the capacitance changes according to the user's touch, and the sensor is connected to the sensor And a charge amplifier for amplifying and outputting a signal output from the unit, wherein the sensor unit includes a plurality of sensor arrays spaced at a predetermined interval, and the sensor array includes a pair of sensor electrodes spaced at a predetermined interval. The sensor electrode is connected to the inverting input terminal (-) of the charge amplifier and the other sensor electrode is connected to the output terminal of the charge amplifier.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 센서 어레이는 상기 센서 전극을 에워싸 인접하는 센서 어레이 사이에서 기생 정전용량이 발생하는 것을 방지하는 가이드 전극을 추가로 포함하는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, the sensor array further surrounds the sensor electrode and further includes a guide electrode for preventing parasitic capacitance from occurring between adjacent sensor arrays. It is characterized by including.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 센서부에 신호 인가시 상기 일 센서 전극과 타 센서 전극 사이에는 상호 정전용량(CM)이 형성되고, 상기 센서 전극에는 자기 정전용량(CF)이 형성되고, 상기 전하 증폭기의 출력단자에 연결된 타 센서 전극에 형성된 자기 정전용량은 전하 증폭기의 출력신호 값에 영향을 미치지 않으므로 센서장치에서 고정 정전용량인 피드백 정전용량 대신에 상기 상호 정전용량(CM)이 사용되는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, when a signal is applied to the sensor unit, mutual capacitance (CM) is formed between the one sensor electrode and the other sensor electrode, and the sensor A magnetic capacitance CF is formed at the electrode, and the magnetic capacitance formed at the other sensor electrode connected to the output terminal of the charge amplifier does not affect the output signal value of the charge amplifier. Instead, the mutual capacitance CM is used.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 센서장치의 사용자 터치시 전하 증폭기의 반전 입력단자에 연결된 일 센서 전극에 형성된 자기 정전용량(CF)은 증가하고 상기 상호 정전용량(CM)은 감소하여, 전하 증폭기의 출력 신호 값이 피드백 정전용량을 사용했을 때보다 더 크게 함으로써 감도를 개선할 수 있는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, when the user touches the sensor device, the magnetic capacitance CF formed at one sensor electrode connected to the inverting input terminal of the charge amplifier is increased. The mutual capacitance CM is decreased, so that the sensitivity can be improved by making the output signal value of the charge amplifier larger than when using the feedback capacitance.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치는 상기 전하 증폭기의 비반전 입력단자(+)에 신호를 인가하는 것을 특징으로 한다.According to another embodiment of the present invention, the capacitive sensor device according to the present invention is characterized by applying a signal to the non-inverting input terminal (+) of the charge amplifier.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 전하 증폭기에서 출력되는 출력신호 값은 하기의 수학식 2에 의해서 산정되는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, the output signal value output from the charge amplifier is characterized by the following equation (2).
<수학식 2><Equation 2>
Vout=(1+CF/CM)×VinVout = (1 + CF / CM) × Vin
(여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 센서부는 외부전극으로 작용하는 베젤을 추가로 포함하며, 상기 베젤에 신호가 인가되는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, the sensor unit further includes a bezel acting as an external electrode, characterized in that a signal is applied to the bezel.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치에 있어서 상기 전하 증폭기에서 출력되는 출력신호 값은 하기의 수학식 3에 의해서 산정되는 것을 특징으로 한다.According to another embodiment of the present invention, in the capacitive sensor device according to the present invention, the output signal value output from the charge amplifier is characterized by the following equation (3).
<수학식 3><Equation 3>
Vout=-(CF/CM)×VinVout =-(CF / CM) × Vin
(여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치는 터치 지점의 좌표 또는 압력을 산정하거나 지문을 인식하는데 사용되는 것을 특징으로 한다.According to another embodiment of the invention, the capacitive sensor device according to the invention is characterized in that it is used to calculate the coordinates or pressure of the touch point or to recognize the fingerprint.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 정전용량방식 센서장치는 상기 전하 증폭기의 반전 입력단자(-)와 출력단자 사이에 위치하여, 출력 신호를 검출한 뒤 온되어 출력단자와 입력단자의 전압을 초기화하는 스위치를 추가로 포함하는 것을 특징으로 한다.According to still another embodiment of the present invention, the capacitive sensor device according to the present invention is located between the inverting input terminal (-) and the output terminal of the charge amplifier, and is turned on after detecting the output signal and inputting the output terminal. It further comprises a switch for initializing the voltage of the terminal.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
본 발명은 고정 정전용량인 피드백 정전용량 대신에 상호 정전용량(도전체의 터치 또는 지문의 접촉시 감소함)과 자기 정전용량(도전체의 터치 또는 지문의 접촉시 증가함)을 이용하여, 전하 증폭기의 출력 신호 값이 피드백 정전용량을 사용했을 때보다 더 크게 함으로써 감도를 개선할 수 있는 효과가 있다.The present invention uses mutual capacitance (decreased on touch of a conductor or fingerprint) and magnetic capacitance (increase on touch of a conductor or fingerprint) instead of a feedback capacitance which is a fixed capacitance. The sensitivity of the amplifier can be improved by making the output signal of the amplifier larger than when using the feedback capacitance.
또한, 본 발명은 신호를 증폭함에 있어 커패시터를 사용하지 않아 컴팩트화를 이룰 수 있는 효과가 있다.In addition, the present invention has the effect that can be achieved by compacting without using a capacitor in amplifying the signal.
또한, 본 발명은 구동 전압을 내부에서 인가하여 단말장치의 금속 패키징에 의한 신호의 손실을 방지할 수 있는 효과가 있다.In addition, the present invention has the effect of preventing the loss of the signal by the metal packaging of the terminal device by applying a driving voltage therein.
도 1은 종래의 정전용량변화를 이용한 센서장치의 개략적인 구성도.1 is a schematic configuration diagram of a sensor device using a conventional capacitance change.
도 2는 본 발명의 일 실시예에 따른 정전용량방식 센서장치의 개략적인 구성도.2 is a schematic configuration diagram of a capacitive sensor device according to an embodiment of the present invention.
도 3은 도 2의 센서장치의 개략적인 단면도.3 is a schematic cross-sectional view of the sensor device of FIG.
도 4는 본 발명의 다른 실시예에 따른 정전용량방식 센서장치의 개략적인 구성도.4 is a schematic configuration diagram of a capacitive sensor device according to another embodiment of the present invention.
도 5는 본 발명에 따른 정전용량방식 센서장치의 회로도.5 is a circuit diagram of a capacitive sensor device according to the present invention.
* 도면에 사용되는 부호의 설명* Explanation of symbols used in drawings
1: 터치패널 2: 컨트롤러 11: 커버층1: touch panel 2: controller 11: cover layer
12: 센서부 21: 전하 증폭기 22: 스위치12 sensor unit 21 charge amplifier 22 switch
121: 절연층 122: 실드전극 123: 센서 어레이121: insulating layer 122: shield electrode 123: sensor array
124: 베젤 121a: 제1절연층 121b: 제2절연층124: bezel 121a: first insulating layer 121b: second insulating layer
122a: 비아홀 123a: 센서 전극 123b: 가이드 전극122a: via hole 123a: sensor electrode 123b: guide electrode
1231: 일 센서전극 1232: 타 센서전극 1231: one sensor electrode 1232: another sensor electrode
이하에서는 본 발명에 따른 단층 구조의 정전용량방식 센서장치의 바람직한 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the capacitive sensor device having a single layer structure according to the present invention will be described in detail. It should be noted that the same elements in the figures are represented by the same numerals wherever possible. Unless otherwise defined, all terms in this specification are equivalent to the general meaning of the terms understood by those of ordinary skill in the art to which the present invention pertains and, if they conflict with the meanings of the terms used herein, Follow the definition used in the specification. Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding other components unless specifically stated otherwise.
도 2는 본 발명의 일 실시예에 따른 정전용량방식 센서장치의 개략적인 구성도이며, 도 3은 도 2의 센서장치의 개략적인 단면도이고, 도 4는 본 발명의 다른 실시예에 따른 정전용량방식 센서장치의 개략적인 구성도이며, 도 5는 본 발명에 따른 정전용량방식 센서장치의 회로도이다.2 is a schematic configuration diagram of a capacitive sensor device according to an embodiment of the present invention, Figure 3 is a schematic cross-sectional view of the sensor device of Figure 2, Figure 4 is a capacitance according to another embodiment of the present invention It is a schematic block diagram of a sensor system, and FIG. 5 is a circuit diagram of the capacitive sensor device according to the present invention.
본 발명의 일 실시예에 따른 정전용량방식 센서장치를 도 2 및 3을 참조하여 설명하면, 상기 센서장치는 사용자의 터치를 감지하여 그 신호를 전달하는 터치패널(1)과, 상기 터치패널(1)에 신호(구동 전압)를 인가하고 상기 터치패널(1)에서 출력된 신호를 증폭하여 분석하는 컨트롤러(2) 등을 포함한다. 상기 센서장치는 정전용량변화를 이용하여 터치 지점의 좌표를 산정하거나 지문을 인식하거나 터치 압력을 산정하는데 이용될 수 있을 뿐만 아니라, 정전용량변화를 이용하여 다양한 물리적 양을 측정하는 시스템 등에 이용될 수 있는데, 본 발명의 특징은 터치패널(1)에 신호를 인가하여 상기 터치패널(1)에서 출력된 신호를 증폭하여 출력하는데 있으므로, 출력된 신호를 분석하여 좌표를 산정하거나 지문을 인식하거나 압력 등의 다양한 물리적 양을 측정하는 사항은 공지의 사항이므로 이에 대한 자세한 설명은 생략하기로 한다.The capacitive sensor device according to an embodiment of the present invention will be described with reference to FIGS. 2 and 3, wherein the sensor device detects a user's touch and transmits a signal thereof, and the touch panel ( And a controller 2 for applying a signal (driving voltage) to 1) and amplifying and analyzing the signal output from the touch panel 1. The sensor device may not only be used to calculate coordinates of a touch point, recognize a fingerprint, or calculate touch pressure by using capacitance change, but also may be used for a system for measuring various physical quantities using capacitance change. However, since the characteristics of the present invention apply a signal to the touch panel 1 to amplify and output the signal output from the touch panel 1, the output signal is analyzed to calculate coordinates or recognize a fingerprint or pressure. Since the measurement of various physical quantities of the known matters, a detailed description thereof will be omitted.
상기 터치패널(1)은 사용자의 터치를 감지하여 그 신호를 전달하는 구성으로, 커버층(11), 센서부(12) 등을 포함한다.The touch panel 1 senses a user's touch and transmits a signal thereof, and includes a cover layer 11 and a sensor unit 12.
상기 커버층(11)은 상기 터치패널(1)의 가장 상면을 형성하며, 사용자의 손가락, 기타 터치수단과 접촉하는 부분으로 투명의 유리, 합성수지 필름 등이 적용될 수 있다.The cover layer 11 forms the uppermost surface of the touch panel 1, and transparent glass, a synthetic resin film, or the like may be applied to a part contacting a user's finger or other touch means.
상기 센서부(12)는 상기 커버층(11)의 하측에 위치하여 상기 컨트롤러(2)로부터 구동전압을 인가받아 사용자의 터치에 따라 변화하는 정전용량에 따른 신호를 출력하는 구성으로, 절연층(121), 실드전극(122), 센서 어레이(123), 케이스(미도시) 등을 포함한다. 상기 절연층(121), 실드전극(122), 센서 어레이(123)는 다양한 소재로 이루어질 수 있으나, 예컨대 상기 절연층(121)은 투명의 합성수지로 이루어질 수 있고, 상기 실드전극(122), 센서 어레이(123)는 ITO 소재로 이루어질 수 있다.The sensor unit 12 is positioned below the cover layer 11 to receive a driving voltage from the controller 2 and output a signal according to a capacitance that changes according to a user's touch. 121, a shield electrode 122, a sensor array 123, a case (not shown), and the like. The insulating layer 121, the shield electrode 122, and the sensor array 123 may be made of various materials. For example, the insulating layer 121 may be made of a transparent synthetic resin, and the shield electrode 122 and the sensor may be made of various materials. The array 123 may be made of ITO material.
상기 절연층(121)은 상기 커버층(11)의 하측에 위치하여 상기 실드전극(122), 센서 어레이(123)를 수용하는 구성으로, 상기 실드전극(122)에 의해 상하로 구획되어 상측의 제1절연층(121a)과 하측의 제2절연층(121b)으로 나누어진다.The insulating layer 121 is disposed below the cover layer 11 to accommodate the shield electrode 122 and the sensor array 123. The insulating layer 121 is vertically partitioned by the shield electrode 122 to be disposed above. It is divided into a first insulating layer 121a and a lower second insulating layer 121b.
상기 실드전극(122)은 상기 절연층(121) 내에 위치하여 즉 제1절연층(121a)과 제2절연층(121b) 사이에 위치하여 기생 정전용량을 최소화하는 구성으로, 접지(ground) 전압 또는 그 외 적절한 접압과 연결되게 된다. 상기 실드전극(122)에는 상기 센서 어레이(123)의 센서 전극(123a)과 전하 증폭기(21)를 연결하는 도선이 통과하는 비아홀(122a)이 형성된다.The shield electrode 122 is disposed in the insulating layer 121, that is, disposed between the first insulating layer 121a and the second insulating layer 121b to minimize parasitic capacitance. Or any other suitable pressure. The shield electrode 122 is formed with a via hole 122a through which conductive wires connecting the sensor electrode 123a of the sensor array 123 and the charge amplifier 21 pass.
상기 센서 어레이(123)는 상기 제1절연층(121a) 내에 위치하여 구동전압을 인가받아 사용자의 터치에 따라 변화하는 정전용량에 따른 신호를 출력하는 구성으로, 상기 센서 어레이(123)는 상기 제1절연층(121a) 내에 좌우 및 상하 일정 간격을 두고 복수 개가 형성되게 된다. 상기 센서 어레이(123)는 일정 간격을 두고 이격 위치하는 한 쌍의 센서 전극(123a)과, 상기 센서 전극(123a)를 에워싸는 가이드 전극(123b)을 포함한다.The sensor array 123 is positioned in the first insulating layer 121a and is configured to output a signal according to a capacitance changed according to a user's touch by receiving a driving voltage. A plurality of layers are formed in the insulating layer 121a at regular left and right intervals. The sensor array 123 includes a pair of sensor electrodes 123a spaced apart from each other at a predetermined interval, and a guide electrode 123b surrounding the sensor electrode 123a.
상기 센서 전극(123a)은 한 쌍이 일정 간격을 두고 이격 위치하며 일 센서 전극(1231)은 전하 증폭기(21)의 반전입력단자(-)에 연결되고 타 센서전극(1232)는 전하 증폭기(21)의 출력단자에 연결되게 된다. 따라서, 상기 센서 어레이(123)마다 전하 증폭기(21)가 연결되게 된다.The pair of sensor electrodes 123a are spaced apart from each other at a predetermined interval, and one sensor electrode 1231 is connected to the inverting input terminal (-) of the charge amplifier 21, and the other sensor electrode 1232 is connected to the charge amplifier 21. It is connected to the output terminal of. Therefore, the charge amplifier 21 is connected to each sensor array 123.
상기 가이드 전극(123b)은 상기 센서 전극(123b)을 에워싸 인접하는 센서 어레이(123) 사이에 형성되는 기생 정전용량을 최소화하기 위한 구성으로, 접지 전압 또는 그 외 적절한 전압과 연결되게 된다. The guide electrode 123b surrounds the sensor electrode 123b to minimize parasitic capacitance formed between adjacent sensor arrays 123 and is connected to a ground voltage or other suitable voltage.
상기 케이스(미도시)는 상기 절연층(121)을 에워싸 센서부(12)의 외형을 형성하는 구성으로, 상기 케이스의 베젤(124)은 금속으로 이루어지며 외부전극으로 작용할 수 있다. 베젤을 통해 구동전압을 인가하는 것은 공지된 사항이므로 이에 대한 자세한 설명은 생략하기로 한다.The case (not shown) surrounds the insulating layer 121 to form an outer shape of the sensor unit 12. The bezel 124 of the case may be made of metal and may serve as an external electrode. It is well known to apply the driving voltage through the bezel, so a detailed description thereof will be omitted.
상기 컨트롤러(2)는 상기 터치패널(1)에 신호(구동 전압)를 인가하고 상기 터치패널(1)에서 출력된 신호를 증폭하여 분석하는 구성으로, 신호공급부(미도시), 전하 증폭기(21) 등을 포함한다.The controller 2 is configured to apply a signal (driving voltage) to the touch panel 1 and amplify and analyze the signal output from the touch panel 1. The signal supply unit (not shown) and the charge amplifier 21 ), And the like.
상기 신호공급부(미도시)는 상기 센서전극(123a)으로의 신호(구동전압)의 인가를 제어하는 구성으로, 도 2에 도시된 바와 같이 전하 증폭기(21)의 비반전 입력단자(+)로 신호를 인가하거나, 도 4에 도시된 바와 같이 베젤(124)로 신호를 인가하게 된다.The signal supply unit (not shown) is configured to control the application of a signal (driving voltage) to the sensor electrode 123a, and as shown in FIG. 2, to the non-inverting input terminal (+) of the charge amplifier 21. The signal is applied or the signal is applied to the bezel 124 as shown in FIG. 4.
상기 전하 증폭기(21)는 상기 센서부(12)와 연결되어 상기 센서부(12)에서 출력된 신호를 증폭하여 출력하는 구성으로, 센서 어레이(123)마다 하나의 전하 증폭기(21)가 사용되며, 전하 증폭기(21)의 반전 입력단자(-)는 일 센서전극(1231)에 연결되고 출력단자는 타 센서전극(1232)에 연결되게 된다. 한편, 도 3에 도시된 바와 같이, 상기 반전 입력단자(-)와 상기 출력단자 사이에는 스위치(22)가 연결되어, 출력 신호를 검출한 뒤 온(on)되어 출력단자와 입력단자의 전압을 초기화시킬 수 있다.The charge amplifier 21 is connected to the sensor unit 12 and amplifies and outputs a signal output from the sensor unit 12. One charge amplifier 21 is used for each sensor array 123. The inverting input terminal (-) of the charge amplifier 21 is connected to one sensor electrode 1231 and the output terminal is connected to the other sensor electrode 1232. On the other hand, as shown in Figure 3, the switch 22 is connected between the inverting input terminal (-) and the output terminal, and after the output signal is detected (on) to turn on the voltage of the output terminal and the input terminal Can be initialized.
이하에서는 상기와 같은 구성을 포함하는 센서장치의 작동과정(사용자의 터치에 따라 정전용량이 변화하여 증폭된 신호가 출력되는 작동과정)을 도 2 내지 5를 참조하여 살펴보기로 한다.Hereinafter, an operation process (operation process of outputting an amplified signal by changing capacitance according to a user's touch) will be described with reference to FIGS. 2 to 5.
기본적으로, 상기 컨트롤러(2)가 상기 센서 어레이(123)에 순차적으로 구동 전압을 공급하면 상기 센서 어레이(123) 각각은 신호를 출력하고, 이때 상기 터치 패널(1)에 도전체가 터치하는 경우 정전용량이 변화하여 변화된 신호를 출력하게 된다. 구체적으로, 도 2 및 3에 도시된 바와 같이 컨트롤러(2)가 외부전극(베젤(124))이 아닌 내부(비반전 입력단자(+))에 구동전압을 인가하는 경우(이때, 베젤(124)은 접지 전압에 연결되게 됨)를 살펴보면, 비반전 입력단자(+)에 구동전압을 인가하면 비반전 입력단자(+)와 반전 입력단자(-)의 가상 단락(virtual short) 특징으로 인하여 전압은 반전 입력단자(-), 일 센서 전극(1231), 타 센서 전극(1232)으로 흘러 전하 증폭기(21)의 출력으로 나오게 된다. 이때, 상기 일 센서 전극(1231)와 타 센서 전극(1232)의 사이에는 상호 정전용량(CM)이 형성되고, 상기 센서 전극(123a)에는 자기 정전용량(CF)이 형성되는데, 전하 증폭기의 출력단자에 연결되는 자기 정전용량(CF)은 feedback factor의 branch에 해당이 없음으로(상기 전하 증폭기의 출력단자에 연결되는 자기 정전용량(CF)은 전하 증폭기의 Load Cap.과 같은 형태로 존재하여, DC 측면에서 봤을 때 전하 증폭기의 출력 신호 수식에 영향이 전혀 없고, AC 측면에서 전하 증폭기의 대역폭(BandWidth)에 영향을 미칠 수 있다고 생각할지 모르나 수 fF으로 작기 때문에 영향이 거의 없음), 타 센서전극(1232)에 의한 자기 정전용량(CF)은 전하 증폭기의 출력신호 수식에 영향을 미치지 않습니다. 따라서, 비반전 입력단자에 구동 전압이 인가되는 경우의 회로는 도 5의 (a)와 같이 표현되며, 상기 전하 증폭기(21)의 출력단자에서 출력되는 출력신호(Vout)는 하기의 수학식 2로 표현되게 되는데, 도전체의 터치패널(1) 터치시 자기 정전용량(CF)은 증가하고 상호 정전용량(CM)은 감소하므로, 종래처럼 피드백 정전용량을 사용했을 때보다 출력신호 값을 더 크게 할 수 있어 감도를 개선할 수 있다.Basically, when the controller 2 sequentially supplies a driving voltage to the sensor array 123, each of the sensor arrays 123 outputs a signal, and when the conductor touches the touch panel 1, the electrostatic The capacitance is changed to output the changed signal. Specifically, as shown in FIGS. 2 and 3, when the controller 2 applies the driving voltage to the inside (non-inverting input terminal (+)) instead of the external electrode (bezel 124), at this time, bezel 124 ) Is connected to the ground voltage) .When a driving voltage is applied to the non-inverting input terminal (+), the voltage is generated due to the virtual short characteristic of the non-inverting input terminal (+) and the inverting input terminal (-). Is flowed to the inverting input terminal (-), one sensor electrode (1231), the other sensor electrode (1232) to come out of the output of the charge amplifier (21). In this case, a mutual capacitance CM is formed between the one sensor electrode 1231 and the other sensor electrode 1232, and a magnetic capacitance CF is formed in the sensor electrode 123a. Since the magnetic capacitance CF connected to the terminal does not correspond to the branch of the feedback factor (the magnetic capacitance CF connected to the output terminal of the charge amplifier exists in the form of Load Cap. Of the charge amplifier, In terms of DC, there is no influence on the output signal formula of the charge amplifier, and it may be thought that it can affect the bandwidth (BandWidth) of the charge amplifier on the AC side, but it is hardly affected because it is small fF.) The magnetic capacitance (CF) by (1232) does not affect the output signal expression of the charge amplifier. Accordingly, a circuit in which a driving voltage is applied to the non-inverting input terminal is represented as shown in FIG. 5A, and the output signal Vout output from the output terminal of the charge amplifier 21 is represented by Equation 2 below. When the touch panel 1 of the conductor is touched, the self capacitance CF increases and the mutual capacitance CM decreases, so that the output signal value is larger than when the feedback capacitance is used as in the prior art. Can improve the sensitivity.
[수학식 2][Equation 2]
Vout=(1+CF/CM)×VinVout = (1 + CF / CM) × Vin
(여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
또한, 종래처럼 신호를 증폭하는데 피드백 정전용량이 필요하지 않아 커피시터를 사용하지 않을 수 있어 센서장치의 컴팩트화를 이룰 수 있다. 단말장치가 금속 패키징되어 있는데 종래처럼 외부전극인 베젤(124)을 통해 구동전압을 인가하는 경우 신호의 손실이 발생하게 되는데, 상기 센서장치는 내부(비반전 입력단자(+))에 구동전압을 인가하여 신호의 손실을 효과적으로 방지할 수 있다. 다만, 도 4에 도시된 바와 같이 다른 실시예의 센서장치에서는 상기 베젤(124)에 전원을 인가하는 것도 가능하며, 이때에도 전하 증폭기의 출력단자에 연결되는 자기 정전용량(CF)은 feedback factor의 branch에 해당이 없음으로 반전입력단자에 구동 전압이 인가되는 경우(베젤에 구동 전압이 인가되는 경우에 해당)의 회로는 도 5의 (b)와 같이 표현되며, 상기 전하 증폭기(21)에서 출력되는 출력신호(Vout)는 하기의 수학식 3으로 표현되게 된다. 이 경우에도 종래처럼 피드백 정전용량을 사용했을 때보다 출력신호 값을 더 크게 할 수 있어 감도를 개선할 수 있다. In addition, since a feedback capacitance is not required to amplify a signal as in the related art, a coffee sheet may not be used, thereby making the sensor device compact. When the terminal device is packaged with metal and a driving voltage is applied through the bezel 124, which is an external electrode as in the prior art, signal loss occurs, and the sensor device supplies the driving voltage to the inside (non-inverting input terminal (+)). Can be effectively prevented from being lost. However, as shown in FIG. 4, in the sensor device of another embodiment, power may be applied to the bezel 124. In this case, the magnetic capacitance CF connected to the output terminal of the charge amplifier is a branch of a feedback factor. In this case, when the driving voltage is applied to the inverting input terminal (when the driving voltage is applied to the bezel), the circuit is expressed as shown in FIG. 5B and is output from the charge amplifier 21. The output signal Vout is represented by Equation 3 below. Even in this case, the output signal value can be made larger than in the case of using the feedback capacitance as in the related art, thereby improving the sensitivity.
[수학식 3][Equation 3]
Vout=-(CF/CM)×VinVout =-(CF / CM) × Vin
(여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
이상에서, 출원인은 본 발명의 다양한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며, 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the Applicant has described various embodiments of the present invention, but these embodiments are merely one embodiment for implementing the technical idea of the present invention, and any changes or modifications may be made to the present invention as long as the technical idea of the present invention is implemented. It should be interpreted as falling within the scope of.

Claims (10)

  1. 신호를 인가받아 사용자의 터치에 따라 변화하는 정전용량에 따른 신호를 출력하는 센서부와, 상기 센서부에 연결되어 상기 센서부에서 출력된 신호를 증폭하여 출력하는 전하 증폭기를 포함하며,A sensor unit receiving a signal and outputting a signal according to a capacitance changed according to a user's touch, and a charge amplifier connected to the sensor unit to amplify and output the signal output from the sensor unit,
    상기 센서부는 일정 간격을 두고 위치하는 복수 개의 센서 어레이를 포함하고, 상기 센서 어레이는 일정 간격 이격되어 위치하는 한 쌍의 센서 전극을 포함하며, 일 센서 전극은 전하 증폭기의 반전 입력단자(-)에 연결되고 타 센서 전극은 전하 증폭기의 출력단자에 연결되는 것을 특징으로 하는 정전용량방식 센서장치.The sensor unit includes a plurality of sensor arrays spaced apart from each other, the sensor array includes a pair of sensor electrodes spaced apart from each other, and one sensor electrode is connected to the inverting input terminal (−) of the charge amplifier. Capacitive sensor device is connected and the other sensor electrode is connected to the output terminal of the charge amplifier.
  2. 제1항에 있어서, 상기 센서 어레이는The method of claim 1, wherein the sensor array is
    상기 센서 전극을 에워싸 인접하는 센서 어레이 사이에서 기생 정전용량이 발생하는 것을 방지하는 가이드 전극을 추가로 포함하는 것을 특징으로 하는 정전용량방식 센서장치.And a guide electrode surrounding the sensor electrode to prevent parasitic capacitance from occurring between adjacent sensor arrays.
  3. 제1항에 있어서,The method of claim 1,
    상기 센서부에 신호 인가시 상기 일 센서 전극과 타 센서 전극 사이에는 상호 정전용량(CM)이 형성되고, 상기 센서 전극에는 자기 정전용량(CF)이 형성되고, 상기 전하 증폭기의 출력단자에 연결된 타 센서 전극에 형성된 자기 정전용량은 전하 증폭기의 출력신호 값에 영향을 미치지 않으므로 센서장치에서 고정 정전용량인 피드백 정전용량 대신에 상기 상호 정전용량(CM)이 사용되는 것을 특징으로 하는 정전용량방식 센서장치.When the signal is applied to the sensor unit, a mutual capacitance CM is formed between the one sensor electrode and the other sensor electrode, and a magnetic capacitance CF is formed on the sensor electrode, and the other terminal connected to the output terminal of the charge amplifier. Since the magnetic capacitance formed on the sensor electrode does not affect the output signal value of the charge amplifier, the mutual capacitance CM is used instead of the feedback capacitance, which is a fixed capacitance, in the sensor device. .
  4. 제3항에 있어서,The method of claim 3,
    상기 센서장치의 사용자 터치시 전하 증폭기의 반전 입력단자에 연결된 일 센서 전극에 형성된 자기 정전용량(CF)은 증가하고 상기 상호 정전용량(CM)은 감소하여, 전하 증폭기의 출력 신호 값이 피드백 정전용량을 사용했을 때보다 더 크게 함으로써 감도를 개선할 수 있는 것을 특징으로 하는 정전용량방식 센서장치.When the user touches the sensor device, the magnetic capacitance CF formed at one sensor electrode connected to the inverting input terminal of the charge amplifier is increased and the mutual capacitance CM is decreased, so that the output signal value of the charge amplifier is fed back. Capacitive sensor device characterized in that the sensitivity can be improved by making it larger than when using.
  5. 제4항에 있어서, 상기 정전용량방식 센서장치는The method of claim 4, wherein the capacitive sensor device
    상기 전하 증폭기의 비반전 입력단자(+)에 신호를 인가하는 것을 특징으로 하는 정전용량방식 센서장치.Capacitive sensor device characterized in that the signal is applied to the non-inverting input terminal (+) of the charge amplifier.
  6. 제5항에 있어서,The method of claim 5,
    상기 전하 증폭기에서 출력되는 출력신호 값은 하기의 수학식 2에 의해서 산정되는 것을 특징으로 하는 정전용량방식 센서장치.Capacitance sensor device, characterized in that the output signal value output from the charge amplifier is calculated by the following equation (2).
    <수학식 2><Equation 2>
    Vout=(1+CF/CM)×VinVout = (1 + CF / CM) × Vin
    (여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 센서부는 외부전극으로 작용하는 베젤을 추가로 포함하며, 상기 베젤에 신호가 인가되는 것을 특징으로 하는 정전용량방식 센서장치.The sensor unit further includes a bezel acting as an external electrode, the capacitive sensor device characterized in that the signal is applied to the bezel.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 전하 증폭기에서 출력되는 출력신호 값은 하기의 수학식 3에 의해서 산정되는 것을 특징으로 하는 정전용량방식 센서장치.Capacitance sensor device, characterized in that the output signal value output from the charge amplifier is calculated by the following equation (3).
    <수학식 3><Equation 3>
    Vout=-(CF/CM)×VinVout =-(CF / CM) × Vin
    (여기서, Vout은 출력신호, CF는 반전 입력단자에 연결된 센서 전극에 위치한 자기 정전용량, CM은 센서 전극 사이의 상호 정전용량, Vin은 입력신호를 나타냄)Where Vout is the output signal, CF is the magnetic capacitance located at the sensor electrode connected to the inverting input terminal, CM is the mutual capacitance between the sensor electrodes, and Vin is the input signal.
  9. 제1항에 있어서, 상기 정전용량방식 센서장치는The method of claim 1, wherein the capacitive sensor device
    터치 지점의 좌표 또는 압력을 산정하거나 지문을 인식하는데 사용되는 것을 특징으로 하는 정전용량방식 센서장치.Capacitive sensor device, characterized in that used to calculate the coordinates or pressure of the touch point or to recognize the fingerprint.
  10. 제1항에 있어서,The method of claim 1,
    상기 정전용량방식 센서장치는 상기 전하 증폭기의 반전 입력단자(-)와 출력단자 사이에 위치하여, 출력 신호를 검출한 뒤 온되어 출력단자와 입력단자의 전압을 초기화하는 스위치를 추가로 포함하는 것을 특징으로 하는 정전용량방식 센서장치.The capacitive sensor device further includes a switch located between the inverting input terminal (-) and the output terminal of the charge amplifier, the switch being turned on after detecting the output signal to initialize the voltage of the output terminal and the input terminal. Capacitive sensor device characterized in that.
PCT/KR2017/011007 2016-09-29 2017-09-29 Capacitive sensor device WO2018062956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0125621 2016-09-29
KR1020160125621A KR101763589B1 (en) 2016-09-29 2016-09-29 Sensor device of capacitance type

Publications (1)

Publication Number Publication Date
WO2018062956A1 true WO2018062956A1 (en) 2018-04-05

Family

ID=59650369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011007 WO2018062956A1 (en) 2016-09-29 2017-09-29 Capacitive sensor device

Country Status (2)

Country Link
KR (1) KR101763589B1 (en)
WO (1) WO2018062956A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216274A1 (en) * 2018-05-08 2019-11-14 株式会社エヌエフ回路設計ブロック Capacitance measuring circuit, and capacitance displacement meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047851B1 (en) 2018-02-22 2019-11-22 송청담 Multi channel capacitive touch sensor circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017002A (en) * 2009-08-21 2014-02-10 애플 인크. Methods and apparatus for capacitive sensing
KR20150060565A (en) * 2013-11-26 2015-06-03 셈테크 코포레이션 Capacitive sensing interface for proximity detection
KR20150077203A (en) * 2013-12-27 2015-07-07 엘지디스플레이 주식회사 Touch sensing system and driving method thereof
KR20150089917A (en) * 2014-01-27 2015-08-05 삼성전자주식회사 touch sensing controller, touch sensing device and touch sensing system including touch sensing controller
US20150310248A1 (en) * 2014-03-24 2015-10-29 Fingerprint Cards Ab Capacitive fingerprint sensor with improved sensing element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017002A (en) * 2009-08-21 2014-02-10 애플 인크. Methods and apparatus for capacitive sensing
KR20150060565A (en) * 2013-11-26 2015-06-03 셈테크 코포레이션 Capacitive sensing interface for proximity detection
KR20150077203A (en) * 2013-12-27 2015-07-07 엘지디스플레이 주식회사 Touch sensing system and driving method thereof
KR20150089917A (en) * 2014-01-27 2015-08-05 삼성전자주식회사 touch sensing controller, touch sensing device and touch sensing system including touch sensing controller
US20150310248A1 (en) * 2014-03-24 2015-10-29 Fingerprint Cards Ab Capacitive fingerprint sensor with improved sensing element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216274A1 (en) * 2018-05-08 2019-11-14 株式会社エヌエフ回路設計ブロック Capacitance measuring circuit, and capacitance displacement meter
EP3779476B1 (en) * 2018-05-08 2022-06-15 Nf Holdings Corporation Capacitance measuring circuit, and capacitance displacement meter
US11428548B2 (en) 2018-05-08 2022-08-30 Nf Holdings Corporation Capacitance measuring circuit and electrostatic capacitive displacement meter

Also Published As

Publication number Publication date
KR101763589B1 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016182347A1 (en) Pressure sensing device, pressure detector, and device including same
WO2015016562A1 (en) Touch sensor panel, touch detection device and touch input device comprising same
WO2017023108A1 (en) Touch detector, touch detection chip and touch input device
WO2016018126A1 (en) Smart phone
WO2014208897A1 (en) Apparatus and method for detecting touch
WO2010082795A2 (en) Input device
WO2016089149A1 (en) Display panel, touch input apparatus, sensing apparatus for sensing touch position and touch pressure from display panel, and sensing method
WO2009096712A2 (en) Touch sensing apparatus with parasitic capacitance prevention structure
WO2020045739A1 (en) Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other
WO2019039807A1 (en) Self-inductive force sensor module for realizing 3d touch
WO2013069915A1 (en) Hybrid touch screen panel having stylus pen function with multi-touch, high scratch tolerance, high recognition resolution, and pressure detection capabilities, and stylus pen system
WO2014208898A1 (en) Apparatus for detecting touch
WO2013137561A1 (en) Improved contact-position detection panel having single laminated structure
WO2018062956A1 (en) Capacitive sensor device
WO2014054878A2 (en) Touchscreen panel having single laminated structure for improving sensitivity without interference
WO2011025294A2 (en) Multi-touch panel
WO2015130013A1 (en) Touch pen capable of sensing writing pressure
WO2014115957A1 (en) Transparent fingerprint recognizing sensor array
WO2010002202A2 (en) Capacitive touch panel device of a high-sensitivity digital system
WO2018169209A1 (en) Input device, electronic system and control method therefor
WO2012157930A2 (en) Touch panel sensor devicedevice for a touch panel sensor having improved accuracy in detecting a touch position
WO2015156553A1 (en) Fingerprint detection device, and method for compensating for attenuation of driving signal thereof
WO2014003518A1 (en) Touch display device
KR20180025774A (en) Driving chip, circuit film, chip on film typed driving circuit, and display device with a built-in touch screen
WO2024007917A1 (en) Touch display module and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17856842

Country of ref document: EP

Kind code of ref document: A1