WO2018062882A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2018062882A1
WO2018062882A1 PCT/KR2017/010783 KR2017010783W WO2018062882A1 WO 2018062882 A1 WO2018062882 A1 WO 2018062882A1 KR 2017010783 W KR2017010783 W KR 2017010783W WO 2018062882 A1 WO2018062882 A1 WO 2018062882A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
secondary battery
lithium
lithium secondary
electrolyte
Prior art date
Application number
PCT/KR2017/010783
Other languages
French (fr)
Korean (ko)
Inventor
박창훈
장민철
손병국
박은경
최정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170124872A external-priority patent/KR101990617B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17856768.1A priority Critical patent/EP3442068B1/en
Priority to JP2018553894A priority patent/JP6732299B2/en
Priority to US16/093,342 priority patent/US11322777B2/en
Priority to CN201780029835.1A priority patent/CN109155427B/en
Publication of WO2018062882A1 publication Critical patent/WO2018062882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery designed to increase the stability of a lithium metal electrode and to exhibit more excellent performance and life characteristics.
  • lithium secondary batteries with high energy density and operating potential, long cycle life, and low self-discharge rate Batteries have been commercialized and widely used.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • Ni-MH secondary batteries are mainly used as power sources of such electric vehicles (EVs) and hybrid electric vehicles (HEVs).
  • lithium secondary batteries of high energy density, high discharge voltage and output stability are used. Research is actively underway and some are commercialized.
  • the lithium secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode is stacked or wound, and the electrode assembly is embedded in a battery case and a nonaqueous electrolyte is injected into the inside. do.
  • charging and discharging proceed while repeating a process in which lithium ions of a positive electrode are inserted into and detached from a negative electrode.
  • the capacity of the lithium secondary battery varies depending on the type of electrode active material, but there is a need for continuous capacity increase and stability improvement.
  • lithium metal has a high theoretical energy density of 3860 mAh / g and a very low standard hydrogen potential (SHE) of -3.045 V, thus enabling high capacity and high energy density batteries.
  • SHE standard hydrogen potential
  • lithium metal when lithium metal is used as a negative electrode of a lithium secondary battery, lithium metal reacts with electrolytes, impurities, and lithium salts to form a solid electrolyte interphase (SEI).
  • SEI solid electrolyte interphase
  • Such a passivation layer causes a local current density difference. It promotes the formation of dendritic dendrite by lithium metal during charging, and gradually grows during charging and discharging, causing internal short circuit between positive and negative electrodes.
  • dendrite has a mechanically weak neck, which forms dead lithium, which loses electrical contact with the current collector during discharge, thereby reducing battery capacity and reducing cycle life.
  • Korean Patent Laid-Open Publication No. 2009-0055224 discloses that the surface of an electrode can be protected from an electrolyte by forming a polyimide protective film on the surface of a lithium electrode.
  • Republic of Korea Patent Publication No. 2016-0052351 discloses that by including the lithium dendrite absorbent material in the polymer protective film formed on the surface of the lithium metal to suppress the growth of lithium dendrite to improve the stability and life characteristics of the lithium secondary battery Doing.
  • the present inventors have conducted various studies to solve the above problems.
  • the efficiency and stability of the positive and negative electrodes are improved by introducing a gel polymer electrolyte or a liquid electrolyte containing the most efficient organic solvent in each of the positive and negative electrodes. It was confirmed that the performance is improved.
  • an object of the present invention is to provide a lithium secondary battery comprising a gel polymer electrolyte containing an ether solvent at a negative electrode and a liquid electrolyte containing a carbonate solvent at a positive electrode.
  • the present invention includes a positive electrode, a negative electrode and a separator and an electrolyte interposed between the positive electrode and the negative electrode, a gel polymer electrolyte between the negative electrode and the separator, a liquid electrolyte between the positive electrode and the separator It provides a lithium secondary battery comprising a.
  • the negative electrode is characterized in that the lithium metal or lithium alloy.
  • the gel polymer electrolyte is characterized in that the electrolyte solution containing an ether solvent and a lithium salt is impregnated in the polymer matrix.
  • the liquid electrolyte is characterized in that it comprises a carbonate solvent and a lithium salt.
  • the present invention comprises a cathode, a cathode and a separator interposed therebetween, a gel polymer electrolyte and a liquid electrolyte, wherein the gel polymer electrolyte comprises an ether solvent, the liquid electrolyte comprises a carbonate solvent It provides a lithium secondary battery.
  • the lithium secondary battery according to the present invention uses a gel polymer electrolyte containing an ether solvent as a negative electrode, and a lithium secondary battery using a liquid electrolyte containing a carbonate solvent as a positive electrode, and thus has a high output and long-term charge and discharge.
  • a lithium secondary battery capable of satisfying efficiency and cycle characteristics can be provided.
  • FIG. 1 is a cross-sectional view illustrating a lithium secondary battery according to one embodiment of the present invention.
  • lithium secondary batteries As the information and communication industry develops rapidly and the application fields of lithium secondary batteries extend from mobile phones and wireless electronic devices to electric vehicles, they can be miniaturized, light weight, thin and portable, and have high performance and high stability. Development is required.
  • Lithium metal is expected to be a negative electrode material of a high capacity lithium secondary battery because of its high energy density (3,860 mAh / g) with low oxidation / reduction potential (-3.045 V vs. standard hydrogen electrode) and low atomic weight (6.94 g / a.u.).
  • a passivation layer is formed by reacting with organic solvents, lithium salts, and impurities present in the battery, and the passivation layer causes a local current density difference to form dendritic lithium dendrite.
  • the lithium dendrite not only shortens the life of the lithium secondary battery but also causes short circuits and inert lithium, thereby increasing physical and chemical instability of the lithium secondary battery and negatively affecting the charge and discharge capacity.
  • the passivation layer is thermally unstable, so that charging and discharging of the battery may be continuously progressed, or, in particular, during high temperature storage in a fully charged state, the passivation layer may be gradually collapsed by increased electrochemical energy and thermal energy.
  • the conventional technique used a method such as changing the composition of the electrolyte or introducing a separate protective layer on the surface of the lithium metal, but the stability of the lithium metal electrode was not effectively improved.
  • the present invention provides a lithium secondary battery including the most efficient electrolyte for each of the positive electrode and the negative electrode in order to increase the stability of the lithium metal electrode and secure the effect of improving the charge and discharge characteristics and life of the lithium secondary battery.
  • the lithium secondary battery according to the present invention includes a positive electrode, a negative electrode and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and comprises a gel polymer electrolyte between the negative electrode and the separator, the liquid between the positive electrode and the separator Electrolyte.
  • FIG. 1 is a cross-sectional view illustrating a lithium secondary battery according to one embodiment of the present invention.
  • a lithium secondary battery 100 includes a separator 40 interposed between a positive electrode 20, a negative electrode 10, and the positive electrode 20 and the negative electrode 10.
  • the electrolyte 30 includes a gel polymer electrolyte 31 between the cathode 10 and the separator 40, and a liquid electrolyte 32 between the anode 20 and the separator 40.
  • electrolytes applied to lithium secondary batteries include liquid electrolytes in which lithium salts are dissolved in an organic solvent, and gel polymer electrolytes in which the liquid electrolyte is impregnated in a polymer material.
  • liquid electrolytes the ion conductivity is high and uniformly dispersed, so that lithium ions are sufficiently diffused in the electrode, which is advantageous for high current charging, but organic membranes require the installation of separators and special protection circuits to ensure stability.
  • organic solvents do not leak out and the membrane functions simultaneously, thus ensuring superior stability and designing a variety of shapes, but having low ionic conductivity and non-uniform dispersion compared to liquid electrolytes. Due to the characteristics, there is a problem that the lifetime characteristics are degraded.
  • the electrolyte exhibits different characteristics depending on the type of the electrode active material, the type of the organic solvent included in the electrolyte, and the driving conditions of the battery.
  • the present invention introduces an electrolyte containing a specific organic solvent suitable for the active material used for the negative electrode and the positive electrode of the lithium secondary battery. That is, in the case of using lithium metal as the negative electrode, the negative electrode includes a gel polymer electrolyte containing an ether solvent and a positive electrode liquid electrolyte containing a carbonate solvent, thereby maximizing the advantages of each electrolyte, in particular lithium metal By improving the reaction efficiency and stability of the electrode to provide a lithium secondary battery having a more improved charge and discharge efficiency and life characteristics.
  • the positive electrode 20 may include a positive electrode current collector and a positive electrode active material layer coated on one or both surfaces of the positive electrode current collector.
  • the positive electrode current collector supports the positive electrode active material layer, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, surface treated with carbon, nickel, silver, etc. on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
  • the positive electrode current collector may form fine concavities and convexities on its surface to enhance bonding strength with the positive electrode active material, and may be used in various forms such as a film, a sheet, a foil, a mesh, a net, a porous body, a foam, and a nonwoven fabric.
  • the cathode active material layer may include a cathode active material, and optionally a conductive material and a binder.
  • the conductive material is to improve electrical conductivity, and there is no particular limitation as long as it is an electronic conductive material that does not cause chemical change in a lithium secondary battery.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • acetylene black, carbon black, graphite, etc. are mentioned.
  • the cathode active material layer may further include a binder having a function of maintaining the cathode active material in the current collector for the cathode and connecting the active material.
  • a binder for example, polyvinylidene fluoride-hexafluoropropylene (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacryl
  • binders such as polymethyl methacrylate, styrene-butadiene rubber (SBR), and carboxyl methyl cellulose (CMC) may be used.
  • the negative electrode 10 may include a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode 10 may be a lithium metal plate.
  • the negative electrode current collector is for supporting the negative electrode active material layer, and is not particularly limited as long as it has excellent conductivity and is electrochemically stable in the voltage range of the lithium secondary battery.
  • copper, stainless steel, aluminum, nickel, and titanium. Palladium, calcined carbon, surface treated with carbon, nickel, silver, etc. on the surface of copper or stainless steel, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may form fine irregularities on its surface to enhance bonding strength with the negative electrode active material, and may be used in various forms such as film, sheet, foil, mesh, net, porous body, foam, and nonwoven fabric.
  • the thickness of the negative electrode current collector is not particularly limited and may be appropriately determined depending on the use.
  • the thickness of the current collector may be 3 to 500 ⁇ m, preferably 5 to 100 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the thickness of the current collector is less than the range, the durability is lowered.
  • the thickness of the current collector is exceeded, the capacity per volume of the lithium secondary battery may be reduced.
  • the negative electrode active material layer may include a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal or a lithium alloy. .
  • the negative electrode active material layer may be in the form of a lithium metal thin film or lithium metal powder on the negative electrode current collector.
  • the method of forming the negative electrode active material layer is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating or vapor deposition can be used.
  • a method such as pressing, coating or vapor deposition can be used.
  • the case where the metal lithium thin film is formed on the metal plate by the initial charge after assembling the battery without the lithium thin film in the current collector is also included in the negative electrode 10 of the present invention.
  • the negative electrode active material layer or the lithium metal plate may be adjusted in width depending on the shape of the electrode to facilitate electrode production.
  • the thickness of the negative electrode active material layer or the lithium metal plate is also not particularly limited, but may be, for example, 5 to 200 ⁇ m, and preferably 10 to 100 ⁇ m. When the thickness of the lithium metal layer falls within the above range, ion and electron transfer in the cathode may be smoothly performed.
  • the separator 40 is used to physically separate both electrodes in the lithium secondary battery of the present invention. If the separator 40 is used as a separator in a lithium secondary battery, the separator 40 may be used without particular limitation, and particularly, has low resistance to ion migration of the electrolyte. At the same time, it is preferable that the electrolyte moisture storage ability be excellent.
  • the separator 40 may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate that is typically used in an electrochemical device.
  • a porous substrate that is typically used in an electrochemical device.
  • a polyolefin-based porous membrane or a nonwoven fabric may be used. It doesn't happen.
  • polyolefin-based porous membrane examples include polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyethylene such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polypentene such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • nonwoven fabrics include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like, in addition to the polyolefin nonwoven fabric; Polyamides such as polyacetal and aramid; Polycarbonate; Polyimide; Polyetheretherketone; Polyethersulfone; Polyphenylene oxide; Polyphenylenesulfide; Polytetrafluoroethylene; Polyvinylidene fluoride; Poly (vinyl chloride); Polyacrylonitrile; Cellulose; Nylon; Poly (p-phenylene benzobisoxazole); Glass; ceramic; And nonwoven fabrics formed of ionically conductive glass-ceramic or the like, alone or in combination thereof.
  • the structure of the nonwoven fabric may be a spunbond nonwoven fabric or a melt blown nonwoven fabric composed of long fibers.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the pore size and pore present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the electrolyte 30 includes lithium ions, and is used to generate an electrochemical oxidation or reduction reaction at the positive electrode and the negative electrode, and includes a gel polymer electrolyte 31 and a liquid electrolyte 32.
  • the gel polymer electrolyte 31 is included between the anode 10 and the separator 40, and an electrolyte solution including an ether solvent and a lithium salt is impregnated in the polymer matrix.
  • the ether solvent serves as a medium through which ions involved in the electrochemical reaction of the lithium secondary battery can move.
  • the lithium secondary battery 100 when the ether solvent is included, the lithium secondary battery 100 has high efficiency with lithium metal used for the negative electrode 10, thereby increasing dissociation of ions, thereby more smoothly conducting ions. Can be.
  • the ether solvent is dimethyl ether, diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, 1,3 -Dioxolane, 4-methyldioxolane, 1,4-dioxane, 3,5-dimethyl isoxazole, 2,5-dimethylfuran, furan, 2-methylfuran, tetrahydrofuran and 2-methyltetrahydrofuran It may include one or more selected from the group consisting of.
  • the ether solvent is selected from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether and 1,3-dioxolane It may be one or more. More preferably, it may be at least one selected from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and 1,3-dioxolane.
  • the lithium salt is dissolved together with the ether solvent to form an electrolyte solution. At this time, the lithium salt acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery.
  • the lithium salt may be used without limitation as long as it is conventionally used in the lithium secondary battery electrolyte.
  • LiCl, LiBr, LiFSI, LiI, LiClO 4 , LiAlO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, LiC 4 F 9 SO 3 , chloroborane lithium, lower aliphatic lithium carbonate, lithium phenyl borate and the like can be used. .
  • the concentration of the lithium salt is 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the cell, the operating temperature and other factors known in the lithium battery art. For example, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. When the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. When the lithium salt is used, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions.
  • the lithium salt-containing electrolyte solution contains, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate for the purpose of improving charge / discharge characteristics and flame retardancy.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • additives such as vinylene carbonate (VC) and vinyl ethylene carbonate may be further included to improve cycle characteristics and high temperature safety of the battery.
  • An electrolytic solution having the composition described above is impregnated into a polymer matrix and cured to prepare a gel polymer electrolyte.
  • the polymer matrix should have an internal space in which the electrolyte solution may be impregnated, and the mechanical strength should be maintained even if the electrolyte solution is impregnated therein and should not be dissolved in the electrolyte solution.
  • the polymer matrix is excellent in the lithium ion dissociation ability, but should exhibit a strong binding force with the separator 40 and the negative electrode 10, for this purpose, the material and the hydrophobicity of the separator 40 and the negative electrode 10 There must be affinity.
  • the polymer matrix is selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylchloride, polyvinylidene fluoride, polymethylmethacrylate, poly (meth) acrylate, polysiloxane and polyphosphazene It may include one or more kinds.
  • the gel polymer electrolyte 31 is impregnated with an electrolyte solution containing an ether solvent and a lithium salt in the polymer matrix, and then gelled by irradiation with heat or light. In this case, thermally decomposable to promote gelation by heat or light.
  • An initiator or a photodegradable initiator may be further added.
  • thermally decomposable initiators include peroxide initiators, ester-based and azo-based initiators, and the photodegradable initiators may be used.
  • the thermally decomposable initiator or the photodegradable initiator is added in an amount of 0.5 to 7 parts by weight based on 100 parts by weight of the polymer matrix.
  • the liquid electrolyte 32 is included between the anode 20 and the separator 40 and includes a carbonate solvent and a lithium salt.
  • high voltage stability can be ensured by using a liquid electrolyte containing a carbonate-based solvent between the anode 20 and the separator 40.
  • the carbonate solvent may be ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 2,3-pentylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, It may include one or more selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate.
  • the carbonate solvent may be at least one selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and dipropyl carbonate. More preferably, it may be one or more selected from the group consisting of ethylene carbonate, dimethyl carbonate and diethyl carbonate.
  • the lithium salt is as described above in the gel polymer electrolyte 31.
  • the present invention includes a positive electrode, a negative electrode and a separator interposed therebetween, a gel polymer electrolyte and a liquid electrolyte, wherein the gel polymer electrolyte includes an ether solvent, and the liquid electrolyte includes a carbonate solvent. It includes a lithium secondary battery.
  • the lithium secondary battery 100 includes a gel polymer electrolyte 31 between the negative electrode 10 and the separator 40, and the positive electrode 20 and the separator 40. It contains a liquid electrolyte 32 in between.
  • the gel polymer electrolyte 31 includes an ether solvent
  • the liquid electrolyte 32 includes a carbonate crab solvent.
  • the reaction efficiency with lithium metal as the negative electrode active material can be improved, and the direct reaction with the electrolyte is minimized by using a gel type polymer electrolyte and the metal eluted from the positive electrode.
  • the stability of the lithium metal electrode can be improved because ions can be prevented from moving to the cathode or metal can be reduced from being deposited at the cathode.
  • the use of a carbonate-based solvent in the positive electrode 20 can ensure high voltage stability and solve the problem of increasing the internal resistance, and the reaction area between the liquid electrolyte and the positive electrode active material becomes uniform and wide, thereby enabling an effective electrochemical reaction. Accordingly, the charging and discharging efficiency and lifespan of the lithium secondary battery can be improved, and the capacity characteristics of the battery are excellent even when charged at a high voltage as well as a general voltage.
  • Preparation of the lithium secondary battery having the above-described configuration is not particularly limited in the present invention, it can be manufactured through a known method.
  • the shape of the lithium secondary battery of the present invention is not particularly limited, and can be in various shapes such as cylindrical, stacked, coin type, etc., which can operate as a battery.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • LiFSI lithium bisfluoro sulfonyl imide
  • a Li / Li symmetric cell was prepared using the cathode and the electrolyte.
  • LiPF 6 lithium hexafluoro phosphate
  • a lithium / li symmetric cell was prepared in the same manner as in Preparation Example 1, except that 2 wt% of VC was added thereto.
  • the positive electrode active material slurry consisting of 95% by weight, 2.5% by weight and 2.5% by weight of LiCoO 2 as a positive electrode active material, Super P as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, the positive electrode active material slurry was coated on an aluminum current collector and then dried to prepare a positive electrode.
  • LiCoO 2 LiCoO 2
  • Super P as a conductive material
  • PVDF polyvinylidene fluoride
  • a lithium metal thin film having a thickness of 20 ⁇ m was used as the negative electrode.
  • LiFSI lithium bisfluoro sulfonyl imide
  • EDPTA ethoxylated trimethylol propanetriacrylate
  • the electrode assembly was manufactured by placing the gel polymer electrolyte to face the anode and the cathode to face each other, and then interposing an ion conductive glass-ceramic (manufactured by Ohara, Japan) between the anode and the cathode as a separator.
  • an ion conductive glass-ceramic manufactured by Ohara, Japan
  • lithium hexafluoro phosphate LiPF 6
  • EC: DEC: DMC 1: 2: 1 (volume ratio)
  • the lithium secondary battery was manufactured by dissolving and inject
  • An organic solvent composed of ethylene glycol dimethyl ether (DOL: DME 1: 1 (volume ratio)) after inserting an electrode assembly having an ion conductive glass-ceramic separator interposed between the same anode and cathode as Example 1 in a coin cell.
  • 100 ⁇ l of an electrolyte in which lithium bisfluoro sulfonyl imide (LiFSI) was dissolved at a concentration of 1 M was injected. Then, a lithium secondary battery was manufactured by completely sealing.
  • LiFSI lithium bisfluoro sulfonyl imide
  • EC: DEC: DMC 1: 2: 1 (volume ratio)
  • Lithium hexafluoro phosphate (LiPF 6 ) at a concentration of 1 M was dissolved in a solvent, and 100 ⁇ l of an electrolyte solution containing 2 wt% of VC was injected, and then a lithium secondary battery was prepared by completely sealing.
  • the symmetric cells prepared in Preparation Examples 1 and 2 were charged and discharged at 83% DOD (depth of discharge) and 1C charge and discharge conditions. After the charge and discharge, the cycle efficiency (%) was measured, and the results are shown in Table 1 below.
  • the lithium secondary battery (battery capacity 4.6mAh) manufactured in the above Examples and Comparative Examples was charged at 55 ° C. until a constant current of 4.6 V was reached at 0.7 C, and then charged at a constant voltage of 4.6 V. Charging was terminated when the charging current became 0.275 mA. After 10 minutes, 0.5 C It discharged until it became 3.0V by constant current. After 50 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 2.
  • lithium secondary battery 10 negative electrode
  • Lithium secondary battery according to the present invention to improve the battery performance and life by including the most efficient electrolyte to each of the negative electrode and the positive electrode to enable high capacity, high stability and long life of the lithium secondary battery.

Abstract

The present invention relates to a lithium secondary battery and, more particularly, to a lithium secondary battery, comprising: a cathode; an anode; and a separator interposed between the cathode and the anode; and an electrolyte, in which a gel polymer electrolyte is provided between the anode and the separator, and a liquid electrolyte is provided between the cathode and the separator. The lithium secondary battery according to the present invention uses the different electrolytes for the anode and the cathode, thereby improving the stability and performance of an electrode to thus enhance the performance and life span of the lithium secondary battery.

Description

리튬 이차전지Lithium secondary battery
본 출원은 2016년 9월 30일자 한국 특허 출원 제10-2016-0127000호 및 2017년 9월 27일자 한국 특허 출원 제10-2017-0124872호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0127000 dated September 30, 2016 and Korean Patent Application No. 10-2017-0124872 dated September 27, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 리튬 이차전지에 관한 것으로, 보다 구체적으로는 리튬 금속 전극의 안정성을 높이고, 보다 우수한 성능 및 수명 특성을 나타낼 수 있도록 설계된 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery designed to increase the stability of a lithium metal electrode and to exhibit more excellent performance and life characteristics.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the development and demand for mobile devices increases, the demand for secondary batteries as energy sources is increasing rapidly. Among them, lithium secondary batteries with high energy density and operating potential, long cycle life, and low self-discharge rate Batteries have been commercialized and widely used.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소 금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화되어 있다.Also, as interest in environmental issues has increased recently, electric vehicles (EVs) and hybrid electric vehicles (HEVs), which can replace vehicles using fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, There is a lot of research on the back. Ni-MH secondary batteries are mainly used as power sources of such electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, lithium secondary batteries of high energy density, high discharge voltage and output stability are used. Research is actively underway and some are commercialized.
리튬 이차전지는 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 분리막을 포함하는 전극조립체가 적층 또는 권취된 구조를 가지며, 이 전극조립체가 전지케이스에 내장되고 그 내부에 비수 전해액이 주입됨으로써 구성된다. 이러한 리튬 이차전지는 양극의 리튬 이온이 음극으로 삽입되고 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 리튬 이차전지의 용량은 전극 활물질의 종류에 따라 차이가 있으나 지속적으로 용량 증대와 안정성 향상에 대한 필요성이 대두되고 있다.The lithium secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode is stacked or wound, and the electrode assembly is embedded in a battery case and a nonaqueous electrolyte is injected into the inside. do. In such a lithium secondary battery, charging and discharging proceed while repeating a process in which lithium ions of a positive electrode are inserted into and detached from a negative electrode. The capacity of the lithium secondary battery varies depending on the type of electrode active material, but there is a need for continuous capacity increase and stability improvement.
이에 리튬과의 합금화 반응을 통해 보다 많은 리튬 이온을 흡장 및 방출하는 것이 가능하며 높은 용량 특성을 보이는 규소(4,200 mAh/g), 주석(990 mAh/g) 등의 금속계 물질이 음극 활물질로 이용되고 있다. 그러나 규소, 주석 등의 금속을 음극 활물질로 사용하는 경우, 충전시 리튬과 합금화하는 과정에서 체적이 4배 정도로 크게 팽창하고 방전 시에는 수축한다. 이러한 충·방전시 반복적으로 발생하는 전극의 큰 체적 변화에 의해 활물질이 서서히 미분화되어 전극으로부터 탈락함으로써 용량이 급격하게 감소하며 이로 인해 상용화에 어려움을 겪고 있다.Therefore, it is possible to occlude and release more lithium ions through alloying with lithium, and metal-based materials such as silicon (4,200 mAh / g) and tin (990 mAh / g), which exhibit high capacity characteristics, are used as the negative electrode active material. have. However, when a metal such as silicon or tin is used as the negative electrode active material, the volume expands to about four times in the process of alloying with lithium during charging and shrinks during discharge. Due to such a large volume change of the electrode repeatedly generated during charging and discharging, the active material is gradually micronized and dropped from the electrode, thereby rapidly decreasing the capacity, which causes difficulties in commercialization.
앞서 언급한 음극 활물질에 비해 리튬 금속은 이론 에너지 밀도가 3,860 mAh/g로 우수하고 표준 환원 전위(Standard Hydrogen Electrode; SHE)도 -3.045 V로 매우 낮기 때문에 고용량, 고에너지 밀도 전지의 구현이 가능하며, 최근 리튬-황 및 리튬-공기 전지에 대한 관심이 높아지면서 리튬 이차전지의 음극 활물질로 활발히 연구되고 있다.Compared to the negative electrode active material mentioned above, lithium metal has a high theoretical energy density of 3860 mAh / g and a very low standard hydrogen potential (SHE) of -3.045 V, thus enabling high capacity and high energy density batteries. In recent years, as interest in lithium-sulfur and lithium-air batteries increases, studies have been actively conducted as negative active materials of lithium secondary batteries.
그러나 리튬 금속을 리튬 이차전지의 음극으로 사용할 경우 리튬 금속이 전해액, 불순물, 리튬염 등과 반응하여 부동태층(Solid Electrolyte Interphase; SEI)을 형성하고, 이와 같은 부동태층은 국부상의 전류밀도 차이를 초래하여 충전시 리튬 금속에 의한 수지상의 덴드라이트의 형성을 촉진하고, 충방전시 점차적으로 성장하여 양극과 음극 사이의 내부 단락을 유발한다. 또한, 덴드라이트는 기계적으로 약한 부분(bottle neck)을 가지고 있어 방전 중에 집전체와 전기적 접촉을 상실하는 불활성 리튬(dead lithium)을 형성함으로써 전지의 용량을 감소시키고 사이클 수명을 단축시키며, 전지의 안정성에 좋지 않은 영향을 미친다. 이와 같은 리튬 금속 음극의 산화 환원 반응의 불균일성 및 전해액과의 반응성으로 인하여 리튬 금속을 음극으로 사용하는 리튬 이차전지는 아직 실용화되지 못하고 있다.However, when lithium metal is used as a negative electrode of a lithium secondary battery, lithium metal reacts with electrolytes, impurities, and lithium salts to form a solid electrolyte interphase (SEI). Such a passivation layer causes a local current density difference. It promotes the formation of dendritic dendrite by lithium metal during charging, and gradually grows during charging and discharging, causing internal short circuit between positive and negative electrodes. In addition, dendrite has a mechanically weak neck, which forms dead lithium, which loses electrical contact with the current collector during discharge, thereby reducing battery capacity and reducing cycle life. Adversely affects. Due to the heterogeneity of the redox reaction of the lithium metal negative electrode and the reactivity with the electrolyte, a lithium secondary battery using lithium metal as a negative electrode has not been put to practical use yet.
이를 해결하기 위하여 리튬 금속 표면에 폴리머 보호층 또는 무기 고체 보호층을 도입하거나, 전해액의 리튬염을 높이거나 적절한 첨가제를 도입하는 등의 다양한 방법들이 연구되고 있다.In order to solve this problem, various methods such as introducing a polymer protective layer or an inorganic solid protective layer on the lithium metal surface, increasing a lithium salt of an electrolyte solution, or introducing an appropriate additive have been studied.
일례로, 대한민국 공개특허 제2009-0055224호는 리튬 전극 표면에 폴리이미드 보호피막을 형성함으로써 전극 표면을 전해액으로부터 보호할 수 있음을 개시하고 있다.For example, Korean Patent Laid-Open Publication No. 2009-0055224 discloses that the surface of an electrode can be protected from an electrolyte by forming a polyimide protective film on the surface of a lithium electrode.
또한, 대한민국 공개특허 제2016-0052351호는 리튬 금속 표면에 형성된 고분자 보호막에 리튬 덴드라이트 흡수성 물질을 포함함으로써 리튬 덴드라이트의 성장을 억제하여 리튬 이차전지의 안정성 및 수명특성을 개선할 수 있음을 개시하고 있다.In addition, the Republic of Korea Patent Publication No. 2016-0052351 discloses that by including the lithium dendrite absorbent material in the polymer protective film formed on the surface of the lithium metal to suppress the growth of lithium dendrite to improve the stability and life characteristics of the lithium secondary battery Doing.
이들 특허들은 리튬 금속의 표면을 어느 정도 안정화하였으나 그 효과가 충분치 않다. 또한, 전지 충·방전시 보호층이 딱딱해지거나 전해액과 접촉시 팽윤 등이 변성이 일어나 리튬 이차전지에 적용에 한계가 있다. 이에 더해서 전해질의 조성을 변경하거나 별도의 보호층의 추가는 많은 시간과 비용이 요구되어 비경제적이다. 따라서, 리튬 금속 전극의 불안정성 문제를 개선하여 리튬 이차전지의 충방전 효율 및 수명 특성을 향상시킬 수 있는 리튬 이차전지의 개발이 더욱 필요한 실정이다.These patents stabilized the surface of lithium metal to some extent but the effect is insufficient. In addition, when the battery is charged or discharged, the protective layer becomes hard or swelling occurs when contacted with the electrolyte, resulting in limitations in application to the lithium secondary battery. In addition, changing the composition of the electrolyte or adding a separate protective layer is uneconomical because it requires a lot of time and money. Therefore, there is a need for further development of a lithium secondary battery capable of improving the instability problem of the lithium metal electrode and thus improving the charge and discharge efficiency and lifespan characteristics of the lithium secondary battery.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허 제2009-0055224호(2009.06.02), 폴리이미드를 포함하는 리튬 금속 전지 및 그 제조 방법Republic of Korea Patent Publication No. 2009-0055224 (2009.06.02), a lithium metal battery comprising a polyimide and a method of manufacturing the same
대한민국 공개특허 제2016-0052351호(2016.05.12), 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지Republic of Korea Patent Publication No. 2016-0052351 (2016.05.12), a lithium metal electrode having a stable protective layer and a lithium secondary battery comprising the same
이에 본 발명자들은 상기한 문제점을 해결하고자 다각적으로 연구를 수행한 결과, 양극과 음극 각각에 가장 효율적인 유기 용매를 포함하는 겔 고분자 전해질 또는 액체 전해질을 도입함으로써 양극과 음극의 효율과 안정성이 개선되어 전지성능이 향상됨을 확인하였다.Accordingly, the present inventors have conducted various studies to solve the above problems. As a result, the efficiency and stability of the positive and negative electrodes are improved by introducing a gel polymer electrolyte or a liquid electrolyte containing the most efficient organic solvent in each of the positive and negative electrodes. It was confirmed that the performance is improved.
이에 본 발명의 목적은 음극에 에테르계 용매를 포함하는 겔 고분자 전해질을, 양극에 카보네이트계 용매를 포함하는 액체 전해질을 포함하는 리튬 이차전지를 제공하는데 있다.Accordingly, an object of the present invention is to provide a lithium secondary battery comprising a gel polymer electrolyte containing an ether solvent at a negative electrode and a liquid electrolyte containing a carbonate solvent at a positive electrode.
상기 목적을 달성하기 위해, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 음극과 분리막 사이에 겔 고분자 전해질을 포함하며, 상기 양극과 분리막 사이에 액체 전해질을 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다.In order to achieve the above object, the present invention includes a positive electrode, a negative electrode and a separator and an electrolyte interposed between the positive electrode and the negative electrode, a gel polymer electrolyte between the negative electrode and the separator, a liquid electrolyte between the positive electrode and the separator It provides a lithium secondary battery comprising a.
상기 음극은 리튬 금속 또는 리튬 합금인 것을 특징으로 한다.The negative electrode is characterized in that the lithium metal or lithium alloy.
상기 겔 고분자 전해질은 에테르계 용매 및 리튬염을 포함하는 전해액이 고분자 매트릭스에 함침되어 있는 것을 특징으로 한다.The gel polymer electrolyte is characterized in that the electrolyte solution containing an ether solvent and a lithium salt is impregnated in the polymer matrix.
상기 액체 전해질은 카보네이트계 용매 및 리튬염를 포함하는 것을 특징으로 한다.The liquid electrolyte is characterized in that it comprises a carbonate solvent and a lithium salt.
또한, 본 발명은 양극, 음극 및 이들 사이에 개재되는 분리막, 겔 고분자 전해질 및 액체 전해질을 포함하고, 상기 겔 고분자 전해질은 에테르계 용매를 포함하며, 상기 액체 전해질은 카보네이트계 용매를 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다.In addition, the present invention comprises a cathode, a cathode and a separator interposed therebetween, a gel polymer electrolyte and a liquid electrolyte, wherein the gel polymer electrolyte comprises an ether solvent, the liquid electrolyte comprises a carbonate solvent It provides a lithium secondary battery.
본 발명에 따른 리튬 이차전지는 음극에 에테르계 용매를 포함하는 겔 고분자 전해질을 사용하고, 양극에 카보네이트계 용매를 포함하는 액체 전해질을 사용하여 리튬 이차전지를 제조함으로써 고출력을 가지면서, 장기 충방전 효율 및 사이클 특성을 만족시킬 수 있는 리튬 이차전지를 제공할 수 있다.The lithium secondary battery according to the present invention uses a gel polymer electrolyte containing an ether solvent as a negative electrode, and a lithium secondary battery using a liquid electrolyte containing a carbonate solvent as a positive electrode, and thus has a high output and long-term charge and discharge. A lithium secondary battery capable of satisfying efficiency and cycle characteristics can be provided.
도 1은 본 발명의 일 구현예에 따른 리튬 이차전지를 도시한 단면도이다.1 is a cross-sectional view illustrating a lithium secondary battery according to one embodiment of the present invention.
도 2는 본 발명의 실시예 및 비교예에서 제조된 리튬 이차전지의 용량 특성을 나타내는 그래프이다.2 is a graph showing the capacity characteristics of the lithium secondary battery prepared in Examples and Comparative Examples of the present invention.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail with reference to the drawings. The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 기재된 도면과 구현예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the configurations described in the drawings and embodiments described herein are only one of the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various modifications that can be substituted for them at the time of the present application It should be understood that there may be equivalents and variations.
정보통신 산업이 급속히 발전하고, 리튬 이차전지의 적용분야가 휴대폰, 무선 전자 기기부터 시작하여 전기 자동차로까지 확대됨에 따라 소형화, 경량화, 박형화 및 휴대화가 가능하고, 고성능, 고안정성을 갖는 리튬 이차전지의 개발이 요구되고 있다.As the information and communication industry develops rapidly and the application fields of lithium secondary batteries extend from mobile phones and wireless electronic devices to electric vehicles, they can be miniaturized, light weight, thin and portable, and have high performance and high stability. Development is required.
이러한 요구에 부응하여 부합하여 최근 음극으로서 리튬 금속을 사용하는 리튬 금속 전지(Lithium Metal Battery; LMB)가 각광받고 있다. 리튬 금속은 산화/환원전위(-3.045 V vs 표준수소전극)와 원자량 (6.94g/a.u.)을 낮으면서 에너지 밀도(3,860 mAh/g)가 높기 때문에 고용량 리튬 이차전지의 음극 재료로 기대되고 있다.In response to this demand, a lithium metal battery (LMB) using lithium metal as a negative electrode has been in the spotlight. Lithium metal is expected to be a negative electrode material of a high capacity lithium secondary battery because of its high energy density (3,860 mAh / g) with low oxidation / reduction potential (-3.045 V vs. standard hydrogen electrode) and low atomic weight (6.94 g / a.u.).
그러나, 리튬 금속을 음극으로 사용할 경우 전해질을 구성하는 유기 용매, 리튬염, 전지 내 존재하는 불순물 등과 반응하여 부동태층을 만들고, 부동태층은 국부적인 전류밀도 차이를 야기하여 수지상의 리튬 덴드라이트를 형성시킨다. 상기 리튬 덴드라이트는 리튬 이차전지의 수명 단축은 물론이고 전지 내부단락과 불활성 리튬을 야기하여 리튬 이차전지의 물리적, 화학적 불안정성을 가중시키고 충방전 용량에 부정적인 영향을 가져오게 된다. 이에 더해서, 상기 부동태층은 열적으로 불안정하여 전지의 충·방전이 지속적으로 진행되거나, 특히, 완전충전 상태에서의 고온 저장시, 증가된 전기 화학적 에너지와 열 에너지에 의해 서서히 붕괴될 수 있다. 이러한 부동태층의 붕괴로 인해 노출된 리튬 금속 표면이 전해액 용매와 직접 반응하여 분해되는 부반응이 지속적으로 발생하게 되며, 이로 인해 음극의 저항이 증가하고, 전지의 충방전 효율이 저하된다. 또한, 상기 부동태층 형성시 전해질의 용매가 소모되며 부동태층의 형성과 붕괴, 전해액의 분해 등의 각종 부반응시 발생하는 부산물, 가스 등으로 인해 전지의 수명이 줄어드는 문제가 발생한다.However, when lithium metal is used as a negative electrode, a passivation layer is formed by reacting with organic solvents, lithium salts, and impurities present in the battery, and the passivation layer causes a local current density difference to form dendritic lithium dendrite. . The lithium dendrite not only shortens the life of the lithium secondary battery but also causes short circuits and inert lithium, thereby increasing physical and chemical instability of the lithium secondary battery and negatively affecting the charge and discharge capacity. In addition, the passivation layer is thermally unstable, so that charging and discharging of the battery may be continuously progressed, or, in particular, during high temperature storage in a fully charged state, the passivation layer may be gradually collapsed by increased electrochemical energy and thermal energy. Due to the collapse of the passivation layer, side reactions in which the exposed lithium metal surface reacts directly with the electrolyte solvent and decompose continuously occur, thereby increasing the resistance of the negative electrode and decreasing the charge and discharge efficiency of the battery. In addition, the solvent of the electrolyte is consumed when the passivation layer is formed, and the lifespan of the battery is reduced due to the by-products and gases generated during various side reactions such as formation and collapse of the passivation layer and decomposition of the electrolyte.
이를 위해 종래 기술에서는 전해질의 조성을 변경하거나 리튬 금속 표면에 별도의 보호층을 도입하는 등의 방법을 사용하였으나 리튬 금속 전극의 안정성이 효과적으로 개선되지 못하였다.To this end, the conventional technique used a method such as changing the composition of the electrolyte or introducing a separate protective layer on the surface of the lithium metal, but the stability of the lithium metal electrode was not effectively improved.
이에 본 발명에서는 리튬 금속 전극의 안정성을 높이고 리튬 이차전지의 충방전 특성 및 수명 개선 효과를 확보하기 위해 양극과 음극 각각에 가장 효율적인 전해질을 포함하는 리튬 이차전지를 제공한다.Accordingly, the present invention provides a lithium secondary battery including the most efficient electrolyte for each of the positive electrode and the negative electrode in order to increase the stability of the lithium metal electrode and secure the effect of improving the charge and discharge characteristics and life of the lithium secondary battery.
구체적으로, 본 발명에 따른 리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 음극과 분리막 사이에 겔 고분자 전해질을 포함하며, 상기 양극과 분리막 사이에 액체 전해질을 포함한다.Specifically, the lithium secondary battery according to the present invention includes a positive electrode, a negative electrode and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and comprises a gel polymer electrolyte between the negative electrode and the separator, the liquid between the positive electrode and the separator Electrolyte.
도 1은 본 발명의 일 구현예에 따른 리튬 이차전지를 도시한 단면도이다.1 is a cross-sectional view illustrating a lithium secondary battery according to one embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 구현예에 따른 리튬 이차전지(100)는 양극(20), 음극(10) 및 상기 양극(20)과 음극(10) 사이에 개재되는 분리막(40) 및 전해질(30)을 포함하며, 이때 상기 음극(10)과 분리막(40) 사이에 겔 고분자 전해질(31)을, 상기 양극(20)과 분리막(40) 사이에 액체 전해질(32)을 포함한다.Referring to FIG. 1, a lithium secondary battery 100 according to an embodiment of the present invention includes a separator 40 interposed between a positive electrode 20, a negative electrode 10, and the positive electrode 20 and the negative electrode 10. The electrolyte 30 includes a gel polymer electrolyte 31 between the cathode 10 and the separator 40, and a liquid electrolyte 32 between the anode 20 and the separator 40.
일반적으로 리튬 이차전지에 적용되는 전해질에는 리튬염이 유기 용매에 용해된 액체 전해질과, 이 액체 전해질을 고분자 소재 내 함침시킨 겔 고분자 전해질이 있다. 액체 전해질의 경우 이온전도도가 높고, 균일하게 분산되기 때문에 전극에 리튬 이온의 확산이 충분히 이루어져 고전류 충전시 유리하다는 장점이 있으나, 유기 용매로 인하여 안정성 확보를 위한 분리막, 특수 보호회로 등의 설치가 필요하다. 반면, 겔 고분자 전해질의 경우 유기 용매가 유출될 염려가 없고 분리막의 기능을 동시에 수행하기 때문에 월등한 안정성을 보장하며 형상을 다양하게 설계하는 것이 가능하나, 액체 전해질에 비해 이온 전도도가 낮고 불균일한 분산 특성으로 인해 수명 특성이 열하되는 문제가 있다. 이에 더해서, 전해질은 전극 활물질의 종류, 전해질에 포함되는 유기 용매의 종류, 전지의 구동 조건에 따라 각기 다른 특성을 나타낸다.In general, electrolytes applied to lithium secondary batteries include liquid electrolytes in which lithium salts are dissolved in an organic solvent, and gel polymer electrolytes in which the liquid electrolyte is impregnated in a polymer material. In the case of liquid electrolytes, the ion conductivity is high and uniformly dispersed, so that lithium ions are sufficiently diffused in the electrode, which is advantageous for high current charging, but organic membranes require the installation of separators and special protection circuits to ensure stability. Do. On the other hand, in the case of gel polymer electrolytes, organic solvents do not leak out and the membrane functions simultaneously, thus ensuring superior stability and designing a variety of shapes, but having low ionic conductivity and non-uniform dispersion compared to liquid electrolytes. Due to the characteristics, there is a problem that the lifetime characteristics are degraded. In addition, the electrolyte exhibits different characteristics depending on the type of the electrode active material, the type of the organic solvent included in the electrolyte, and the driving conditions of the battery.
이에 본 발명에서는 리튬 이차전지의 음극과 양극에 사용되는 활물질에 적합한 특정 유기 용매를 포함하는 전해질을 도입하였다. 즉, 음극으로 리튬 금속을 사용하는 경우, 음극에는 에테르계 용매를 포함하는 겔 고분자 전해질을, 양극에는 카보네이트계 용매를 포함하는 액체 전해질을 포함함으로써, 각각의 전해질의 장점을 최대화하고, 특히 리튬 금속 전극의 반응 효율 및 안정성을 향상하여 보다 개선된 충방전 효율 및 수명 특성을 갖는 리튬 이차전지를 제공하게 된다.Accordingly, the present invention introduces an electrolyte containing a specific organic solvent suitable for the active material used for the negative electrode and the positive electrode of the lithium secondary battery. That is, in the case of using lithium metal as the negative electrode, the negative electrode includes a gel polymer electrolyte containing an ether solvent and a positive electrode liquid electrolyte containing a carbonate solvent, thereby maximizing the advantages of each electrolyte, in particular lithium metal By improving the reaction efficiency and stability of the electrode to provide a lithium secondary battery having a more improved charge and discharge efficiency and life characteristics.
상기 양극(20)은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질층을 포함할 수 있다.The positive electrode 20 may include a positive electrode current collector and a positive electrode active material layer coated on one or both surfaces of the positive electrode current collector.
상기 양극 집전체는 양극 활물질층을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The positive electrode current collector supports the positive electrode active material layer, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, surface treated with carbon, nickel, silver, etc. on the surface of copper or stainless steel, aluminum-cadmium alloy, and the like can be used.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.The positive electrode current collector may form fine concavities and convexities on its surface to enhance bonding strength with the positive electrode active material, and may be used in various forms such as a film, a sheet, a foil, a mesh, a net, a porous body, a foam, and a nonwoven fabric.
상기 양극 활물질층은 양극 활물질과 선택적으로 도전재 및 바인더를 포함할 수 있다.The cathode active material layer may include a cathode active material, and optionally a conductive material and a binder.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (0≤x≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga; 0.01≤x≤0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2(M = Co, Ni, Fe, Cr, Zn 또는 Ta; 0.01≤x≤0.1) 또는 Li2Mn3MO8 (M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다. 바람직하게 상기 양극 활물질은 리튬 코발트 산화물, 리튬 니켈 산화물 및 리튬 망간 산화물으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 보다 바람직하게는, 리튬 코발트 산화물일 수 있다.The positive electrode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2-x O 4 (0 ≦ x ≦ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site-type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 (M = Co, Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ≦ x ≦ 0.3); Formula LiMn 2 - x M x O 2 (M = Co, Ni, Fe, Cr, Zn or Ta; 0.01≤x≤0.1) or Li 2 Mn 3 MO 8 (M = Fe, Co, Ni, Cu or Zn Lithium manganese composite oxide represented by; Spinel-structure lithium manganese composite oxides represented by LiNi x Mn 2 - x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like may be included, but is not limited thereto. Preferably, the positive electrode active material may be at least one selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. More preferably, it may be lithium cobalt oxide.
상기 도전재는 전기 전도성을 향상시키기 위한 것으로, 리튬 이차전지에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다.The conductive material is to improve electrical conductivity, and there is no particular limitation as long as it is an electronic conductive material that does not cause chemical change in a lithium secondary battery.
일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙(Ketjen Black) EC 계열 (아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P(엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.In general, carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM). For example, acetylene black, carbon black, graphite, etc. are mentioned.
또한, 상기 양극 활물질층은 양극 활물질을 양극용 집전체에 유지시키고, 활물질 사이를 이어주는 기능을 갖는 바인더를 추가로 포함할 수 있다. 상기 바인더로서, 예를 들면, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (PVDF-co-HFP), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸 메타크릴레이트(polymethyl methacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose, CMC) 등의 다양한 종류의 바인더가 사용될 수 있다.In addition, the cathode active material layer may further include a binder having a function of maintaining the cathode active material in the current collector for the cathode and connecting the active material. As the binder, for example, polyvinylidene fluoride-hexafluoropropylene (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacryl Various kinds of binders such as polymethyl methacrylate, styrene-butadiene rubber (SBR), and carboxyl methyl cellulose (CMC) may be used.
상기 음극(10)은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함할 수 있다. 또는 상기 음극(10)은 리튬 금속판일 수 있다.The negative electrode 10 may include a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector. Alternatively, the negative electrode 10 may be a lithium metal plate.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 우수한 도전성을 가지고 리튬 이차전지의 전압영역에서 전기화학적으로 안정한 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The negative electrode current collector is for supporting the negative electrode active material layer, and is not particularly limited as long as it has excellent conductivity and is electrochemically stable in the voltage range of the lithium secondary battery. For example, copper, stainless steel, aluminum, nickel, and titanium. , Palladium, calcined carbon, surface treated with carbon, nickel, silver, etc. on the surface of copper or stainless steel, aluminum-cadmium alloy and the like can be used.
상기 음극 집전체는 그것의 표면에 미세한 요철을 형성하여 음극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.The negative electrode current collector may form fine irregularities on its surface to enhance bonding strength with the negative electrode active material, and may be used in various forms such as film, sheet, foil, mesh, net, porous body, foam, and nonwoven fabric.
상기 음극 집전체의 두께는 특별히 한정되지 않으며 용도에 따라 적절히 결정될 수 있다. 예를 들어, 상기 집전체의 두께는 3 내지 500 ㎛ 일 수 있으며, 바람직하게는 5 내지 100 ㎛, 보다 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 집전체의 두께가 상기 범위 미만인 경우 내구성이 저하되며 이와 반대로 상기 범위를 초과하는 경우 리튬 이차전지의 부피당 용량이 감소할 수 있다.The thickness of the negative electrode current collector is not particularly limited and may be appropriately determined depending on the use. For example, the thickness of the current collector may be 3 to 500 ㎛, preferably 5 to 100 ㎛, more preferably 5 to 50 ㎛. When the thickness of the current collector is less than the range, the durability is lowered. On the contrary, when the thickness of the current collector is exceeded, the capacity per volume of the lithium secondary battery may be reduced.
상기 음극 활물질층은 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다. 상기 음극 활물질층은 음극 집전체 상에 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.The negative electrode active material layer may include a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal or a lithium alloy. . The negative electrode active material layer may be in the form of a lithium metal thin film or lithium metal powder on the negative electrode current collector.
상기 음극 활물질층의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극(10)에 포함된다.The method of forming the negative electrode active material layer is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating or vapor deposition can be used. In addition, the case where the metal lithium thin film is formed on the metal plate by the initial charge after assembling the battery without the lithium thin film in the current collector is also included in the negative electrode 10 of the present invention.
상기 음극활물질층 또는 리튬 금속판은 전극 제조에 용이하도록 전극 형태에 따라 폭이 조절될 수 있다. 또한, 상기 음극활물질층 또는 리튬 금속판의 두께 역시 특별히 제한되지 않으나, 예를 들어 5 내지 200 ㎛일 수 있으며, 바람직하게는 10 내지 100 ㎛일 수 있다. 상기 리튬 금속층의 두께가 상기 범위 내에 해당하는 경우, 음극 내의 이온 및 전자 전달이 원활하게 이루어질 수 있다.The negative electrode active material layer or the lithium metal plate may be adjusted in width depending on the shape of the electrode to facilitate electrode production. In addition, the thickness of the negative electrode active material layer or the lithium metal plate is also not particularly limited, but may be, for example, 5 to 200 μm, and preferably 10 to 100 μm. When the thickness of the lithium metal layer falls within the above range, ion and electron transfer in the cathode may be smoothly performed.
상기 분리막(40)은 본 발명의 리튬 이차전지에 있어서 양 전극을 물리적으로 분리하기 위한 것으로, 통상 리튬 이자전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다.The separator 40 is used to physically separate both electrodes in the lithium secondary battery of the present invention. If the separator 40 is used as a separator in a lithium secondary battery, the separator 40 may be used without particular limitation, and particularly, has low resistance to ion migration of the electrolyte. At the same time, it is preferable that the electrolyte moisture storage ability be excellent.
상기 분리막(40)은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.The separator 40 may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate that is typically used in an electrochemical device. For example, a polyolefin-based porous membrane or a nonwoven fabric may be used. It doesn't happen.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.Examples of the polyolefin-based porous membrane, polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof One membrane may be mentioned.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌 테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌 테레프탈레이트(polybutyleneterephthalate), 폴리에틸렌 나프탈레이트(polyethylenenaphthalate) 등의 폴리에스테르(polyester); 폴리아세탈(polyacetal), 아라미드 등의 폴리아미드(polyamide); 폴리카보네이트 (polycarbonate); 폴리이미드(polyimide); 폴리에테르에테르케톤(polyetheretherketone); 폴리에테르설폰(polyethersulfone); 폴리페닐렌옥사이드(polyphenyleneoxide); 폴리페닐렌설파이드(polyphenylenesulfide) ; 폴리테트라 플루오로에틸렌 (polytetrafluoroethylene); 폴리비닐리덴 플루오라이드(polyvinylidene fluoride); 폴리염화비닐(poly(vinyl chloride)); 폴리아크릴로니트릴(polyacrylonitrile); 셀룰로오스(cellulose); 나일론(nylon); 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole)); 유리; 세라믹; 이온 전도성 유리-세라믹(ionically conductive glass-ceramic) 등을 각각 단독으로 또는 이들을 혼합하여 형성한 부직포를 들 수 있다. 상기 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.Examples of the nonwoven fabrics include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like, in addition to the polyolefin nonwoven fabric; Polyamides such as polyacetal and aramid; Polycarbonate; Polyimide; Polyetheretherketone; Polyethersulfone; Polyphenylene oxide; Polyphenylenesulfide; Polytetrafluoroethylene; Polyvinylidene fluoride; Poly (vinyl chloride); Polyacrylonitrile; Cellulose; Nylon; Poly (p-phenylene benzobisoxazole); Glass; ceramic; And nonwoven fabrics formed of ionically conductive glass-ceramic or the like, alone or in combination thereof. The structure of the nonwoven fabric may be a spunbond nonwoven fabric or a melt blown nonwoven fabric composed of long fibers.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다.The thickness of the porous substrate is not particularly limited, but may be 1 to 100 μm, preferably 5 to 50 μm.
상기 다공성 기재에 존재하는 기공의 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.The pore size and pore present in the porous substrate are also not particularly limited, but may be 0.001 to 50 μm and 10 to 95%, respectively.
상기 전해질(30)은 리튬 이온을 포함하며 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것으로, 겔 고분자 전해질(31) 및 액체 전해질(32)을 포함한다.The electrolyte 30 includes lithium ions, and is used to generate an electrochemical oxidation or reduction reaction at the positive electrode and the negative electrode, and includes a gel polymer electrolyte 31 and a liquid electrolyte 32.
상기 겔 고분자 전해질(31)은 상기 음극(10)과 분리막(40) 사이에 포함되며, 에테르계 용매 및 리튬염을 포함하는 전해액이 고분자 매트릭스에 함침(impregnation)되어 있는 형태이다.The gel polymer electrolyte 31 is included between the anode 10 and the separator 40, and an electrolyte solution including an ether solvent and a lithium salt is impregnated in the polymer matrix.
상기 에테르계 용매는 리튬 이차전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 것이다. 특히 본 발명에 따른 리튬 이차전지(100)에 있어서, 상기 에테르계 용매를 포함할 경우, 음극(10)에 사용되는 리튬 금속과의 효율이 높아 이온의 해리도를 높여 이온의 전도를 보다 원활하게 해줄 수 있다.The ether solvent serves as a medium through which ions involved in the electrochemical reaction of the lithium secondary battery can move. Particularly, in the lithium secondary battery 100 according to the present invention, when the ether solvent is included, the lithium secondary battery 100 has high efficiency with lithium metal used for the negative electrode 10, thereby increasing dissociation of ions, thereby more smoothly conducting ions. Can be.
상기 에테르계 용매는 디메틸에테르, 디에틸에테르, 디부틸에테르, 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르, 1,3-디옥솔란, 4-메틸디옥솔란, 1,4-디옥산, 3,5-디메틸 이속사졸, 2,5-디메틸퓨란, 퓨란, 2-메틸 퓨란, 테트라하이드로퓨란 및 2-메틸테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하게 상기 에테르계 용매는 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르 및 1,3-디옥솔란으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 보다 바람직하게는 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르 및 1,3-디옥솔란으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The ether solvent is dimethyl ether, diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, 1,3 -Dioxolane, 4-methyldioxolane, 1,4-dioxane, 3,5-dimethyl isoxazole, 2,5-dimethylfuran, furan, 2-methylfuran, tetrahydrofuran and 2-methyltetrahydrofuran It may include one or more selected from the group consisting of. Preferably the ether solvent is selected from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether and 1,3-dioxolane It may be one or more. More preferably, it may be at least one selected from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and 1,3-dioxolane.
상기 에테르계 용매와 함께 리튬염이 용해되어 전해액을 구성하게 된다. 이때 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차전지의 작동을 가능하게 한다.The lithium salt is dissolved together with the ether solvent to form an electrolyte solution. At this time, the lithium salt acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiFSI, LiI, LiClO4, LiAlO4 , LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, (C2F5SO2)2NLi, LiC4F9SO3, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 등이 사용될 수 있다.The lithium salt may be used without limitation as long as it is conventionally used in the lithium secondary battery electrolyte. For example, LiCl, LiBr, LiFSI, LiI, LiClO 4 , LiAlO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, LiC 4 F 9 SO 3 , chloroborane lithium, lower aliphatic lithium carbonate, lithium phenyl borate and the like can be used. .
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용 해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.6 내지 2 M, 더욱 구체적으로 0.7 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M 을 초과하여 사용하면 전해질의 점도가 증가하여 리튬이온의 이동성이 감소될 수 있다.The concentration of the lithium salt is 0.2 to 2 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the cell, the operating temperature and other factors known in the lithium battery art. For example, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. When the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. When the lithium salt is used, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions.
또한, 상기 리튬염 함유 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다. 또한, 전지의 사이클 특성 및 고온 안전성을 향상하기 위해 비닐렌 카보네이트(vinylene carbonate, VC), 비닐 에틸렌 카보네이트 등의 첨가제를 추가로 포함시킬 수 있다.In addition, the lithium salt-containing electrolyte solution contains, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate for the purpose of improving charge / discharge characteristics and flame retardancy. Triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. It may also be added. In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included. In addition, additives such as vinylene carbonate (VC) and vinyl ethylene carbonate may be further included to improve cycle characteristics and high temperature safety of the battery.
상기와 같은 조성의 전해액을 고분자 매트릭스에 함침하고 경화시켜 겔 고분자 전해질을 제조한다.An electrolytic solution having the composition described above is impregnated into a polymer matrix and cured to prepare a gel polymer electrolyte.
상기 고분자 매트릭스는 전해액이 내부에 함침될 수 있는 내부 공간이 있어야 하고, 전해액이 내부에 함침되어 있어도 기계적 강도가 유지되고 전해액에 용해되지 않아야 한다. 또한, 상기 고분자 매트릭스는 리튬 이온 해리 능력이 우수하면서도 상기 분리막(40)과 음극(10)과 강한 결착력을 나타내어야 하는데, 이를 위해서 상기 분리막(40)과 음극(10)을 구성하는 재질과 소수성 내지는 친화성이 있어야 한다.The polymer matrix should have an internal space in which the electrolyte solution may be impregnated, and the mechanical strength should be maintained even if the electrolyte solution is impregnated therein and should not be dissolved in the electrolyte solution. In addition, the polymer matrix is excellent in the lithium ion dissociation ability, but should exhibit a strong binding force with the separator 40 and the negative electrode 10, for this purpose, the material and the hydrophobicity of the separator 40 and the negative electrode 10 There must be affinity.
상기 고분자 매트릭스는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리비닐리덴 플루오라이드, 폴리메틸메타크릴레이트, 폴리(메타)아크릴레이트, 폴리실록세인 및 폴리포스파젠 으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.The polymer matrix is selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylchloride, polyvinylidene fluoride, polymethylmethacrylate, poly (meth) acrylate, polysiloxane and polyphosphazene It may include one or more kinds.
상기 겔 고분자 전해질(31)의 제조는 에테르계 용매와 리튬염을 포함하는 전해액을 상기 고분자 매트릭스에 함침시킨 후 열 또는 광을 조사하여 겔화시키게 되는데 이때 열 또는 광에 의한 겔화를 촉진하기 위하여 열분해성 개시제 또는 광분해성 개시제를 더 첨가해줄 수도 있다.The gel polymer electrolyte 31 is impregnated with an electrolyte solution containing an ether solvent and a lithium salt in the polymer matrix, and then gelled by irradiation with heat or light. In this case, thermally decomposable to promote gelation by heat or light. An initiator or a photodegradable initiator may be further added.
상기 열분해성 개시제로는 구체적으로 과산화물 개시제, 에스테르계, 아조계 개시제 등이 있으며, 상기 광분해성 개시제로는 통상적으로 사용되는 광분해성 개시제를 사용한다. 이때, 상기 열분해성 개시제 또는 광분해성 개시제가 첨가되는 함량은 고분자 매트릭스 100중량부에 대하여 0.5 내지 7 중량부 첨가한다.Specific examples of the thermally decomposable initiators include peroxide initiators, ester-based and azo-based initiators, and the photodegradable initiators may be used. In this case, the thermally decomposable initiator or the photodegradable initiator is added in an amount of 0.5 to 7 parts by weight based on 100 parts by weight of the polymer matrix.
상기 액체 전해질(32)은 상기 양극(20)과 분리막(40) 사이에 포함되며, 카보네이트계 용매 및 리튬염을 포함한다.The liquid electrolyte 32 is included between the anode 20 and the separator 40 and includes a carbonate solvent and a lithium salt.
본 발명에 있어서, 상기 양극(20)과 분리막(40) 사이에 카보네이트계 용매를 포함하는 액체 전해질을 사용함에 따라 고전압 안정성을 확보할 수 있다.In the present invention, high voltage stability can be ensured by using a liquid electrolyte containing a carbonate-based solvent between the anode 20 and the separator 40.
상기 카보네이트계 용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부 틸렌 카보네이트, 2,3-부틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하게 상기 카보네이트계 용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트 및 디프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 보다 바람직하게는 에틸렌 카보네이트, 디메틸 카보네이트 및 디에틸 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The carbonate solvent may be ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 2,3-pentylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, It may include one or more selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate. Preferably, the carbonate solvent may be at least one selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and dipropyl carbonate. More preferably, it may be one or more selected from the group consisting of ethylene carbonate, dimethyl carbonate and diethyl carbonate.
상기 리튬염은 상기 겔 고분자 전해질(31)에서 전술한 바와 같다.The lithium salt is as described above in the gel polymer electrolyte 31.
따라서, 본 발명은 양극, 음극 및 이들 사이에 개재되는 분리막, 겔 고분자 전해질 및 액체 전해질을 포함하되, 상기 겔 고분자 전해질은 에테르계 용매를 포함하며, 상기 액체 전해질은 카보네이트계 용매를 포함하는 것을 특징으로 하는 리튬 이차전지를 포함한다.Accordingly, the present invention includes a positive electrode, a negative electrode and a separator interposed therebetween, a gel polymer electrolyte and a liquid electrolyte, wherein the gel polymer electrolyte includes an ether solvent, and the liquid electrolyte includes a carbonate solvent. It includes a lithium secondary battery.
전술한 바와 같이, 본 발명의 일 구현예에 따른 리튬 이차전지(100)는 음극(10)과 분리막(40) 사이에 겔 고분자 전해질(31)을 포함하고, 양극(20)과 분리막(40) 사이에 액체 전해질(32)을 포함한다. 이때 상기 겔 고분자 전해질(31)은 에테르계 용매를, 상기 액체 전해질(32)은 카보네이트게 용매를 포함한다. 이때 상기 음극(10)에 에테르계 용매를 사용함으로써 음극 활물질인 리튬 금속과의 반응 효율을 높일 수 있고, 겔 타입의 고분자 상태의 전해질을 이용하여 전해액과의 직접적인 반응을 최소화하고 양극에서 용출된 금속이온이 음극으로 이동하는 것을 막거나 음극에서 금속이 석출되는 것을 경감시킬 수 있기 때문에 리튬 금속 전극의 안정성을 개선할 수 있다. 또한, 상기 양극(20)에 카보네이트계 용매를 사용함에 따라 고전압 안정성을 확보하고 내부 저항 증가 문제를 해결할 수 있고 액상의 전해액과 양극 활물질의 반응 면적이 균일하고 넓어짐으로써 효과적인 전기화학적 반응이 가능하다. 이에 따라 리튬 이차전지의 충방전 효율 및 수명을 향상시킬 수 있을 뿐만 아니라, 일반전압뿐만 아니라 고전압으로 충전하여도 전지의 용량 특성이 우수하다.As described above, the lithium secondary battery 100 according to the embodiment of the present invention includes a gel polymer electrolyte 31 between the negative electrode 10 and the separator 40, and the positive electrode 20 and the separator 40. It contains a liquid electrolyte 32 in between. In this case, the gel polymer electrolyte 31 includes an ether solvent, and the liquid electrolyte 32 includes a carbonate crab solvent. In this case, by using an ether solvent in the negative electrode 10, the reaction efficiency with lithium metal as the negative electrode active material can be improved, and the direct reaction with the electrolyte is minimized by using a gel type polymer electrolyte and the metal eluted from the positive electrode. The stability of the lithium metal electrode can be improved because ions can be prevented from moving to the cathode or metal can be reduced from being deposited at the cathode. In addition, the use of a carbonate-based solvent in the positive electrode 20 can ensure high voltage stability and solve the problem of increasing the internal resistance, and the reaction area between the liquid electrolyte and the positive electrode active material becomes uniform and wide, thereby enabling an effective electrochemical reaction. Accordingly, the charging and discharging efficiency and lifespan of the lithium secondary battery can be improved, and the capacity characteristics of the battery are excellent even when charged at a high voltage as well as a general voltage.
전술한 바의 구성을 갖는 리튬 이차전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법을 통해 제조가 가능하다.Preparation of the lithium secondary battery having the above-described configuration is not particularly limited in the present invention, it can be manufactured through a known method.
또한, 본 발명의 리튬 이차전지의 형상은 특별히 제한되지 않으며, 전지로서 작동할 수 있는 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.In addition, the shape of the lithium secondary battery of the present invention is not particularly limited, and can be in various shapes such as cylindrical, stacked, coin type, etc., which can operate as a battery.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
상기 전지팩은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery pack may be used as a power source for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle; EV), 하이브리드 전기자동차(Hybrid Electric Vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle; PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium-to-large device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
제조예Production Example : : LiLi /Of LiLi 대칭셀의Symmetrical 제조 Produce
[제조예 1][Production Example 1]
두께가 20 ㎛인 리튬 금속 박막을 음극으로 사용하였다. 전해액은 1,3-디옥솔란과 에틸렌글리콜 디메틸에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1M 농도의 리튬 비스플루오로 설포닐 이미드(LiFSI)를 용해시켜 제조하였다.A lithium metal thin film having a thickness of 20 μm was used as the negative electrode. The electrolyte was prepared by dissolving lithium bisfluoro sulfonyl imide (LiFSI) at a concentration of 1 M in an organic solvent consisting of 1,3-dioxolane and ethylene glycol dimethyl ether (DOL: DME = 1: 1 (volume ratio)).
상기 음극과 전해액으로 Li/Li 대칭셀(symmetric cell)을 제조하였다.A Li / Li symmetric cell was prepared using the cathode and the electrolyte.
[제조예 2][Production Example 2]
상기 제조예 1에서 전해액을 에틸렌 카보네이트, 디에틸 카보네이트 및 디메틸 카보네이트(EC:DEC:DMC=1:2:1(부피비)로 이루어진 유기 용매에 1M 농도의 리튬 헥사플루오로 포스페이트(LiPF6)을 용해시키고 2 중량%의 VC를 첨가하여 제조된 것으로 사용한 것을 제외하고는 상기 제조예 1과 동일하게 실시하여 Li/Li 대칭셀을 제조하였다.In Preparation Example 1, 1M concentration of lithium hexafluoro phosphate (LiPF 6 ) was dissolved in an organic solvent consisting of ethylene carbonate, diethyl carbonate, and dimethyl carbonate (EC: DEC: DMC = 1: 2: 1 (volume ratio). A lithium / li symmetric cell was prepared in the same manner as in Preparation Example 1, except that 2 wt% of VC was added thereto.
실시예Example  And 비교예Comparative example
[실시예 1]Example 1
양극 활물질로서 LiCoO2, 도전재로서 수퍼 P 및 바인더로서 폴리비닐리덴 풀루오라이드(PVDF)가 각각 95 중량%, 2.5 중량% 및 2.5 중량%로 이루어진 양극 활물질 슬러리를 제조한 후, 상기 양극 활물질 슬러리를 알루미늄 집전체상에 도포한 후, 건조함으로써 양극을 제조하였다.After preparing a positive electrode active material slurry consisting of 95% by weight, 2.5% by weight and 2.5% by weight of LiCoO 2 as a positive electrode active material, Super P as a conductive material, and polyvinylidene fluoride (PVDF) as a binder, the positive electrode active material slurry Was coated on an aluminum current collector and then dried to prepare a positive electrode.
두께가 20 ㎛인 리튬 금속 박막을 음극으로 사용하였다.A lithium metal thin film having a thickness of 20 μm was used as the negative electrode.
디옥솔란과 에틸렌글리콜 디메틸에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1M 농도의 리튬 비스플루오로 설포닐 이미드(LiFSI)를 용해시킨 전해액 100 ㎕를 상기 음극 표면 상에 형성된 에톡실레이티드 트리메틸올프로판 트리아크릴레이트((ethoxylated trimethylol propanetriacrylate; ETPTA)로 이루어진 고분자 매트릭스에 함침시킨 후 경화시켜 상기 음극 표면에 겔 고분자 전해질을 형성하였다.100 μl of an electrolyte solution containing 1 M of lithium bisfluoro sulfonyl imide (LiFSI) dissolved in an organic solvent composed of dioxolane and ethylene glycol dimethyl ether (DOL: DME = 1: 1 (volume ratio)) was placed on the surface of the negative electrode. It was impregnated into a polymer matrix formed of ethoxylated trimethylol propanetriacrylate (ETPTA) and cured to form a gel polymer electrolyte on the surface of the negative electrode.
상기 겔 고분자 전해질이 형성된 음극과 양극을 대면하도록 위치시킨 후 분리막으로 이온 전도성 유리-세라믹(오하라(ohara)사제, 일본)을 상기 양극과 음극 사이에 개재하여 전극 조립체를 제조하였다.The electrode assembly was manufactured by placing the gel polymer electrolyte to face the anode and the cathode to face each other, and then interposing an ion conductive glass-ceramic (manufactured by Ohara, Japan) between the anode and the cathode as a separator.
상기 전극조립체를 코인셀에 삽입한 후, 양극과 분리막 사이에 디메틸 카보네이트(EC:DEC:DMC=1:2:1(부피비)로 이루어진 유기 용매에 1M 농도의 리튬 헥사플루오로 포스페이트(LiPF6)을 용해시키고 2 중량%의 VC를 첨가한 전해액을 주입하고 완전히 밀봉함으로써 리튬 이차전지를 제조하였다.After inserting the electrode assembly into a coin cell, lithium hexafluoro phosphate (LiPF 6 ) at a concentration of 1M in an organic solvent consisting of dimethyl carbonate (EC: DEC: DMC = 1: 2: 1 (volume ratio)) between the anode and the separator. The lithium secondary battery was manufactured by dissolving and inject | pouring the electrolyte solution which added 2 weight% of VC, and sealing it completely.
[비교예 1]Comparative Example 1
상기 실시예 1과 동일한 양극과 음극 사이에 이온 전도성 유리-세라믹 분리막을 개재시킨 전극 조립체를 코인셀에 삽입한 후, 에틸렌글리콜 디메틸에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1M 농도의 리튬 비스플루오로 설포닐 이미드(LiFSI)를 용해시킨 전해액 100 ㎕을 주입하였다. 이후 완전히 밀봉함으로써 리튬 이차전지를 제조하였다.An organic solvent composed of ethylene glycol dimethyl ether (DOL: DME = 1: 1 (volume ratio)) after inserting an electrode assembly having an ion conductive glass-ceramic separator interposed between the same anode and cathode as Example 1 in a coin cell. 100 µl of an electrolyte in which lithium bisfluoro sulfonyl imide (LiFSI) was dissolved at a concentration of 1 M was injected. Then, a lithium secondary battery was manufactured by completely sealing.
[비교예 2]Comparative Example 2
상기 실시예 1과 동일한 양극과 음극 사이에 이온 전도성 유리-세라믹 분리막을 개재시킨 전극 조립체를 코인셀에 삽입한 후, 디메틸 카보네이트(EC:DEC:DMC=1:2:1(부피비)로 이루어진 유기 용매에 1M 농도의 리튬 헥사플루오로 포스페이트(LiPF6)을 용해시키고 2 중량%의 VC를 첨가한 전해액 100 ㎕을 주입하였다. 이후 완전히 밀봉함으로써 리튬 이차전지를 제조하였다.After inserting the electrode assembly with an ion conductive glass-ceramic separator between the same anode and cathode as in Example 1 in the coin cell, the organic consisting of dimethyl carbonate (EC: DEC: DMC = 1: 2: 1 (volume ratio)) Lithium hexafluoro phosphate (LiPF 6 ) at a concentration of 1 M was dissolved in a solvent, and 100 μl of an electrolyte solution containing 2 wt% of VC was injected, and then a lithium secondary battery was prepared by completely sealing.
실험예Experimental Example 1.  One. 대칭셀의Symmetrical 성능 평가 Performance evaluation
상기 제조예 1 및 2에서 제조된 대칭셀을 DOD(depth of discharge) 83%, 1C 충방전 조건으로 충방전시켰다. 상기 충방전 후, 사이클 효율(%)을 측정하였고, 그 결과를 하기 표 1에 나타내었다.The symmetric cells prepared in Preparation Examples 1 and 2 were charged and discharged at 83% DOD (depth of discharge) and 1C charge and discharge conditions. After the charge and discharge, the cycle efficiency (%) was measured, and the results are shown in Table 1 below.
Li 사이클 효율(%)Li cycle efficiency (%)
제조예 1Preparation Example 1 99.4299.42
제조예 2Preparation Example 2 94.6494.64
상기 표 1을 참고하면, 음극이 리튬 금속인 경우, 제조예 1과 같이 에테르계 용매를 포함하는 경우 카보네이트계 용매를 사용하는 제조예 2의 경우보다 Li 효율이 상승함을 확인할 수 있다.Referring to Table 1, when the negative electrode is a lithium metal, it can be seen that the Li efficiency is increased than in the case of the preparation example 2 using a carbonate solvent when the ether-based solvent as in Preparation Example 1.
실험예Experimental Example 2. 리튬 이차전지 성능 평가 2. Performance Evaluation of Lithium Secondary Battery
상기 실시예 및 비교예에서 제조된 리튬 이차전지(전지용량 4.6mAh)를 55℃에서 0.7C의 정전류 4.6V가 될때까지 충전하고, 이후 4.6V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5 C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 50 사이클 행한 후 전지 용량을 측정하여 도 2에 나타내었다.The lithium secondary battery (battery capacity 4.6mAh) manufactured in the above Examples and Comparative Examples was charged at 55 ° C. until a constant current of 4.6 V was reached at 0.7 C, and then charged at a constant voltage of 4.6 V. Charging was terminated when the charging current became 0.275 mA. After 10 minutes, 0.5 C It discharged until it became 3.0V by constant current. After 50 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 2.
도 2를 참조하면, 실시예 1의 리튬 이차전지의 경우 25 사이클까지 고전압에서도 용량 변화가 없음을 확인할 수 있다. 이와 비교하여 비교예 1의 경우 충방전 시작과 동시에 용량이 급격히 감소하였으며, 비교예 2의 경우 13 사이클 이후부터 용량이 급격히 감소하였다. 따라서, 본 발명에 따른 리튬 이차전지는 고전압 범위에서도 우수한 용량 특성을 나타냄을 확인할 수 있다.2, in the case of the lithium secondary battery of Example 1, it can be seen that there is no change in capacity even at high voltage up to 25 cycles. In comparison, in Comparative Example 1, the capacity was drastically decreased at the same time as charging and discharging started, and in Comparative Example 2, the capacity was rapidly decreased after 13 cycles. Therefore, it can be seen that the lithium secondary battery according to the present invention exhibits excellent capacity characteristics even in a high voltage range.
[부호의 설명][Description of the code]
100: 리튬 이차전지 10: 음극100: lithium secondary battery 10: negative electrode
20: 양극 30: 전해질20: anode 30: electrolyte
31: 겔 고분자 전해질 32: 액체 전해질31: gel polymer electrolyte 32: liquid electrolyte
40: 분리막40: separator
본 발명에 따른 리튬 이차전지는 음극과 양극 각각에 가장 효율적인 전해질을 분리시켜 포함함으로써 전지 성능 및 수명을 개선하여 리튬 이차전지의 고용량화, 고안정화 및 장수명화를 가능하게 한다.Lithium secondary battery according to the present invention to improve the battery performance and life by including the most efficient electrolyte to each of the negative electrode and the positive electrode to enable high capacity, high stability and long life of the lithium secondary battery.

Claims (8)

  1. 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고,A positive electrode, a negative electrode and a separator and an electrolyte interposed between the positive electrode and the negative electrode,
    상기 음극과 분리막 사이에 겔 고분자 전해질을 포함하며,It comprises a gel polymer electrolyte between the cathode and the separator,
    상기 양극과 분리막 사이에 액체 전해질을 포함하는 것을 특징으로 하는 리튬 이차전지.Lithium secondary battery comprising a liquid electrolyte between the positive electrode and the separator.
  2. 제1항에 있어서,The method of claim 1,
    상기 음극은 리튬 금속 또는 리튬 합금인 것을 특징으로 하는 리튬 이차전지.The negative electrode is a lithium secondary battery, characterized in that the lithium metal or lithium alloy.
  3. 제1항에 있어서,The method of claim 1,
    상기 겔 고분자 전해질은 에테르계 용매 및 리튬염을 포함하는 전해액이 고분자 매트릭스에 함침되어 있는 것을 특징으로 하는 리튬 이차 전지.The gel polymer electrolyte is a lithium secondary battery, characterized in that an electrolyte solution containing an ether solvent and a lithium salt is impregnated in the polymer matrix.
  4. 제3항에 있어서,The method of claim 3,
    상기 에테르계 용매는 디메틸에테르, 디에틸에테르, 디부틸에테르, 에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디에틸에테르, 1,3-디옥솔란, 4-메틸디옥솔란, 1,4-디옥산, 3,5-디메틸 이속사졸, 2,5-디메틸퓨란, 퓨란, 2-메틸 퓨란, 테트라하이드로퓨란 및 2-메틸테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차 전지.The ether solvent is dimethyl ether, diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, 1,3 -Dioxolane, 4-methyldioxolane, 1,4-dioxane, 3,5-dimethyl isoxazole, 2,5-dimethylfuran, furan, 2-methylfuran, tetrahydrofuran and 2-methyltetrahydrofuran Lithium secondary battery, characterized in that at least one selected from the group consisting of.
  5. 제3항에 있어서,The method of claim 3,
    상기 고분자 매트릭스는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리비닐리덴 플루오라이드, 폴리메틸메타크릴레이트, 폴리(메타)아크릴레이트, 폴리실록세인 및 폴리포스파젠 으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차 전지.The polymer matrix is selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylchloride, polyvinylidene fluoride, polymethylmethacrylate, poly (meth) acrylate, polysiloxane and polyphosphazene A lithium secondary battery, characterized in that at least one.
  6. 제1항에 있어서,The method of claim 1,
    상기 액체 전해질은 카보네이트계 용매 및 리튬염를 포함하는 것을 특징으로 하는 리튬 이차 전지.The liquid electrolyte is a lithium secondary battery comprising a carbonate-based solvent and a lithium salt.
  7. 제6항에 있어서,The method of claim 6,
    상기 카보네이트계 용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차 전지.The carbonate solvent is ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 2,3-pentylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, Lithium secondary battery, characterized in that at least one member selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate.
  8. 양극, 음극 및 이들 사이에 개재되는 분리막, 겔 고분자 전해질 및 액체 전해질을 포함하고,An anode, a cathode, and a separator, a gel polymer electrolyte, and a liquid electrolyte interposed therebetween,
    상기 겔 고분자 전해질은 에테르계 용매를 포함하며,The gel polymer electrolyte includes an ether solvent,
    상기 액체 전해질은 카보네이트계 용매를 포함하는 것을 특징으로 하는 리튬 이차전지.The liquid electrolyte is a lithium secondary battery comprising a carbonate-based solvent.
PCT/KR2017/010783 2016-09-30 2017-09-28 Lithium secondary battery WO2018062882A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17856768.1A EP3442068B1 (en) 2016-09-30 2017-09-28 Lithium secondary battery
JP2018553894A JP6732299B2 (en) 2016-09-30 2017-09-28 Lithium secondary battery
US16/093,342 US11322777B2 (en) 2016-09-30 2017-09-28 Lithium secondary battery
CN201780029835.1A CN109155427B (en) 2016-09-30 2017-09-28 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160127000 2016-09-30
KR10-2016-0127000 2016-09-30
KR10-2017-0124872 2017-09-27
KR1020170124872A KR101990617B1 (en) 2016-09-30 2017-09-27 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2018062882A1 true WO2018062882A1 (en) 2018-04-05

Family

ID=61759970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010783 WO2018062882A1 (en) 2016-09-30 2017-09-28 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2018062882A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987650A (en) * 2018-07-20 2018-12-11 河北金力新能源科技股份有限公司 Battery separator and preparation method thereof and battery
CN109786675A (en) * 2018-12-28 2019-05-21 中国电子科技集团公司第十八研究所 Interface modification method for metal lithium cathode of solid-state lithium battery
EP3509152A4 (en) * 2017-03-03 2019-09-11 LG Chem, Ltd. Lithium secondary battery
WO2020167021A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and method for manufacturing same
WO2020167022A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and manufacturing method therefor
WO2020167017A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and method for manufacturing same
CN114583172A (en) * 2022-03-07 2022-06-03 中南大学 Artificial SEI material, SEI film, preparation method of SEI film and application of SEI film in metal lithium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010083043A (en) * 1998-06-08 2001-08-31 추후제출 Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells
KR20130099706A (en) * 2012-02-29 2013-09-06 삼성전자주식회사 Electrolyte and lithium air battery including the same
KR101558861B1 (en) * 2012-07-10 2015-10-12 주식회사 엘지화학 Secondary Battery Including Electrolyte Additive
KR20160026648A (en) * 2014-08-28 2016-03-09 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte
KR20160102409A (en) * 2013-12-27 2016-08-30 소니 주식회사 Battery, electrolyte, battery pack, electronic device, electric vehicle, electricity-storage device, and power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010083043A (en) * 1998-06-08 2001-08-31 추후제출 Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells
KR20130099706A (en) * 2012-02-29 2013-09-06 삼성전자주식회사 Electrolyte and lithium air battery including the same
KR101558861B1 (en) * 2012-07-10 2015-10-12 주식회사 엘지화학 Secondary Battery Including Electrolyte Additive
KR20160102409A (en) * 2013-12-27 2016-08-30 소니 주식회사 Battery, electrolyte, battery pack, electronic device, electric vehicle, electricity-storage device, and power system
KR20160026648A (en) * 2014-08-28 2016-03-09 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3442068A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509152A4 (en) * 2017-03-03 2019-09-11 LG Chem, Ltd. Lithium secondary battery
US11935999B2 (en) 2017-03-03 2024-03-19 Lg Energy Solution, Ltd. Lithium secondary battery
CN108987650A (en) * 2018-07-20 2018-12-11 河北金力新能源科技股份有限公司 Battery separator and preparation method thereof and battery
CN108987650B (en) * 2018-07-20 2021-06-15 河北金力新能源科技股份有限公司 Battery separator, preparation method thereof and battery
CN109786675A (en) * 2018-12-28 2019-05-21 中国电子科技集团公司第十八研究所 Interface modification method for metal lithium cathode of solid-state lithium battery
WO2020167021A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and method for manufacturing same
WO2020167022A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and manufacturing method therefor
WO2020167017A1 (en) * 2019-02-15 2020-08-20 주식회사 유뱃 Electrochemical device and method for manufacturing same
CN114583172A (en) * 2022-03-07 2022-06-03 中南大学 Artificial SEI material, SEI film, preparation method of SEI film and application of SEI film in metal lithium battery
CN114583172B (en) * 2022-03-07 2023-12-15 中南大学 Artificial SEI material, SEI film, preparation thereof and application thereof in metal lithium battery

Similar Documents

Publication Publication Date Title
KR101990617B1 (en) Lithium secondary battery
WO2018062882A1 (en) Lithium secondary battery
KR102148504B1 (en) Lithium secondary battery
WO2011105833A2 (en) Positive electrode active material for improving output, and lithium secondary battery comprising same
WO2013122352A1 (en) Lithium secondary battery having anode containing aqueous binder
WO2016089099A1 (en) Electrolyte solution for lithium secondary battery, with improved low temperature characteristic, and lithium secondary battery containing same
WO2013157883A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery containing same
WO2014204185A1 (en) Lithium secondary battery having improved lifespan characteristics
WO2013157867A1 (en) Lithium secondary battery having improved rate characteristics
WO2019155452A2 (en) Lithium metal secondary battery and battery module including same
WO2018097555A1 (en) Pretreatment method for lithium electrode, and lithium metal battery
WO2015141997A1 (en) Positive electrode active material and lithium secondary battery comprising same
WO2013157832A1 (en) Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same
WO2013157855A1 (en) Electrolyte for secondary battery and lithium secondary battery including same
WO2014168398A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
WO2016209014A1 (en) Method for manufacturing lithium secondary battery and lithium secondary battery manufactured using same
KR20180129492A (en) Lithium secondary battery comprising phosphite-based additive
KR20180038235A (en) Lithium secondary battery comprising disulfonate additive
WO2020214009A1 (en) Solid electrolyte composite and all-solid-state battery electrode comprising same
KR102459627B1 (en) Disulfonate-based additive and Lithium secondary battery comprising the same
WO2013157862A1 (en) Electrode assembly and lithium secondary battery including same
WO2017061807A1 (en) Battery cell comprising gelled electrolyte component in air pore of separation film constituting electrode assembly
WO2019017617A1 (en) Electrode not having current collector and secondary battery comprising same
WO2019093735A1 (en) Method for improving lifespan of lithium secondary battery
KR20120138344A (en) Cathode active material and lithium secondary battery containing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553894

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017856768

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017856768

Country of ref document: EP

Effective date: 20181105

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE