WO2018062698A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2018062698A1
WO2018062698A1 PCT/KR2017/009397 KR2017009397W WO2018062698A1 WO 2018062698 A1 WO2018062698 A1 WO 2018062698A1 KR 2017009397 W KR2017009397 W KR 2017009397W WO 2018062698 A1 WO2018062698 A1 WO 2018062698A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
electrode
negative electrode
positive electrode
tab
Prior art date
Application number
PCT/KR2017/009397
Other languages
French (fr)
Korean (ko)
Inventor
방성용
Original Assignee
(주)그리너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170096954A external-priority patent/KR101935229B1/en
Application filed by (주)그리너지 filed Critical (주)그리너지
Priority to EP17856584.2A priority Critical patent/EP3522285A4/en
Publication of WO2018062698A1 publication Critical patent/WO2018062698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having excellent charge and discharge characteristics.
  • Batteries are generally used as a power supply device for the operation of portable electronic products, and secondary batteries that can be recharged and used again are mainly used.
  • Secondary batteries include lead storage batteries, nickel cadmium batteries (Nicd), nickel hydrogen batteries (NiMH), lithium ion batteries (Li-ion), lithium ion polymer batteries (Li-ion polymer), and the like. Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
  • Conventional lithium secondary batteries include a positive electrode having an active material that reversibly occludes and releases lithium ions, a negative electrode and a separator that electrically separates them, and an electrolyte solution interposed between the positive electrode and the negative electrode, and between the two electrodes, Charging and discharging are performed by ions coming and going.
  • Representative anode active materials include graphite, silicon, silicon composite, and LTO (Lithium Titanium Oxide), and cathode active materials include LCO (Lithium Cobalt Oxide) and NMC (Lithium Nickel Manganese Cobalt Oxide). ), Lithium Nickel Oxide (NCA), and Lithium Iron Phosphite (LFP).
  • LTO Lithium Titanium Oxide
  • cathode active materials include LCO (Lithium Cobalt Oxide) and NMC (Lithium Nickel Manganese Cobalt Oxide).
  • LCO Lithium Cobalt Oxide
  • NMC Lithium Nickel Manganese Cobalt Oxide
  • NCA Lithium Nickel Oxide
  • LFP Lithium Iron Phosphite
  • LTO has a spinel structure, which allows free intercalation / deintercalation of lithium ions in a 3D form, and has excellent charging properties compared to general one-dimensional intercalation of graphite.
  • LTO has a potential of 1.55V, which does not cause lithium plating and does not cause any safety problems due to lithium plating due to the deterioration of the lifetime seen in the graphite anode, and there is no SEI (Solid Electrolyte Interphase) film.
  • the resistance value is low, and the charge and discharge characteristics at low temperature are excellent in addition to the structural characteristics described above.
  • the electrode plate refers to a structure composed of an active material, a binder, and a conductive agent.
  • LTO has superior thermal mechanical stability compared to graphite, and the mechanism itself makes the inside of the cell spontaneously safe when the potential itself decreases during external short or internal short due to the difference in conductivity during charging and discharging. This prevents phenomena such as cell ignition or explosion in the worst case.
  • the LTO negative electrode based lithium secondary battery has a lower specific capacity than the graphite negative electrode, and when designed as the same positive electrode as the graphite secondary lithium based battery, has a lower energy density than the graphite secondary lithium based battery.
  • the single cell battery in which the graphite negative electrode and various kinds of positive electrodes are combined has, for example, an average voltage of about 3.8 V for the single cell battery of the LCO positive electrode and the graphite negative electrode, and about 3.7 V for the single cell battery of the NMC positive electrode and the graphite negative electrode. It has an average voltage of
  • a single cell battery in which an LTO negative electrode and various kinds of positive electrodes are combined has, for example, an average voltage of about 2.4 V for a single cell battery of an LCO positive electrode and an LTO negative electrode, and about 2.3 V for a single cell battery having an NMC positive electrode and an LTO negative electrode. It has an average voltage of
  • the LTO negative cell-based single cell battery has a problem that it is difficult to have a voltage within a voltage range of a general small battery because the voltage of the battery is lowered due to the high negative electrode potential of the LTO.
  • the present invention has been made in view of the above circumstances, and has a superior charging characteristics, longer lifespan characteristics, and safety than conventional batteries, and has a new type of jelly roll series connection structure based on an LTO negative electrode having a rated voltage available in a small battery.
  • the object is to provide a lithium secondary battery.
  • a lithium secondary battery according to an exemplary embodiment of the present invention for achieving the above object is provided between a positive electrode plate in which a positive electrode tab usable as a positive electrode terminal is formed, a negative electrode plate in which a series connection tab is formed, and a positive electrode plate and a negative electrode plate.
  • a first electrode assembly including a separator; And a second electrode assembly provided to be insulated from the first electrode assembly, wherein the second electrode assembly includes: a positive electrode plate in which a series connection tab is formed, a negative electrode plate in which a negative electrode tab usable as a negative electrode terminal is formed; And a separator provided between the positive electrode plate and the negative electrode plate, wherein the series connection tab of the first electrode assembly is connected to the series connection tab of the second electrode assembly, and the first electrode assembly and the second electrode are connected to each other.
  • the assembly may be connected in series by the series connection tabs.
  • Each of the first electrode assembly and the second electrode assembly is provided in plural to increase battery capacity, and the plurality of first electrode assemblies are stacked on each other with a separator therebetween to form a jellyroll structure, and the plurality of second electrode assemblies are provided. May be stacked on each other with a separator therebetween to form a jellyroll structure.
  • Each of the first electrode assembly and the second electrode assembly may be wound to form a jellyroll structure.
  • the first electrode assembly may be disposed to be stacked on the second electrode assembly, and may further include a rectangular case for accommodating the first and second electrode assemblies.
  • the first electrode assembly is deformed into a cylindrical shape to form an inner cylinder, and the second electrode assembly surrounds an outer circumference of the first electrode assembly to form an outer cylinder, and a cylinder housing the first and second electrode assemblies. It may further include a case of the shape.
  • the positive electrode plate of the first electrode assembly includes a positive electrode current collector to which one of the positive electrode active materials is applied among LFP, NMC, NCA, and LCO positive electrode active materials, and the positive electrode tab of the first electrode assembly is coated with the positive electrode active material.
  • the first electrode assembly may extend from one side of the positive electrode current collector of the first electrode assembly and may be connected to the positive electrode lead tab to serve as a positive electrode terminal.
  • the negative electrode plate of the first electrode assembly includes a negative electrode current collector to which an LTO negative electrode active material is applied, and the series connection tab of the first electrode assembly is not coated with the negative electrode active material, and the negative electrode collector of the first electrode assembly is provided. It may be formed extending from one side of the whole.
  • the series connection tab of the first electrode assembly and the positive electrode tab of the first electrode assembly may be configured not to overlap each other.
  • the positive electrode plate of the second electrode assembly includes a positive electrode current collector to which LFP, NMC, NCA, and LCO positive electrode active material is applied, and the series connection tab of the second electrode assembly is not coated with the positive electrode active material. It may be formed extending from one side of the positive electrode current collector of the two electrode assembly.
  • the series connection tab of the first electrode assembly and the series connection tab of the second electrode assembly may overlap each other to electrically connect the first electrode assembly and the second electrode assembly.
  • the negative electrode plate of the second electrode assembly includes a negative electrode current collector to which the LTO negative electrode active material is applied, and the negative electrode tab of the second electrode assembly is not coated with the LTO negative electrode active material, and the negative electrode collector of the second electrode assembly is provided. It extends from one side of the whole and is connected to the negative lead tab can be used as the negative terminal.
  • the positive electrode tab of the first electrode assembly and the negative electrode tab of the second electrode assembly may be configured not to overlap each other.
  • Each of the negative electrode plate of the first electrode assembly, the positive electrode plate of the first electrode assembly, the negative electrode plate of the second electrode assembly, and the negative electrode plate of the second electrode assembly may include aluminum, stainless steel, or copper. Can be.
  • the first electrode assembly and the second electrode assembly may be self-balanced using an LFP cathode active material and an LTO cathode active material to prevent imbalance between each other.
  • the lithium secondary battery according to the embodiment of the present invention by connecting the two electrode assemblies through a new type of series structure, it is possible to use the LTO negative electrode, which was limited in use due to the low voltage, through which the conventional graphite It has better charging and lower temperature characteristics than the base secondary battery, and can solve safety problems, thereby widening usability in extreme environments, and having a rated voltage available as a small battery.
  • the two electrode assemblies use the LFP positive electrode and the LTO negative electrode, it is possible to solve the problem of electrolyte oxidation and balancing between the electrode assembly, which are problems caused when two electrode assemblies are connected in series in a unit cell.
  • FIG. 1 is a plan view of a lithium secondary battery according to an exemplary embodiment of the present invention.
  • FIGS. 2A, 2B, and 2C are first exploded plan views illustrating a disassembled state of a first electrode assembly of a lithium secondary battery according to an exemplary embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of the first electrode assembly of FIGS. 2A, 2B, and 2C.
  • FIG. 4 is a second exploded plan view illustrating a disassembled state of a second electrode assembly of a lithium secondary battery according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional view of the second electrode assembly of FIGS. 4A, 4B and 4C.
  • FIG. 6 is a plan view of a lithium secondary battery having a rectangular (pouch or metal case) form including a first electrode assembly and a second electrode assembly having a stacking structure according to an exemplary embodiment of the present invention.
  • FIG. 7A, 7B, and 7C are cross-sectional views and perspective views of a lithium secondary battery in the form of a square (pouch or metal case) including a first electrode assembly and a second electrode assembly having a winding structure according to an exemplary embodiment of the present invention.
  • FIG. 8A, 8B and 8C are perspective views of a cylindrical lithium secondary battery according to an embodiment of the present invention.
  • FIG. 9 is a graph illustrating a self-balancing concept between the first and second electrode assemblies according to an exemplary embodiment of the present invention.
  • 10 is a graph showing the filling rate according to the filling rate of LTO and graphite.
  • FIG. 11 is a graph showing the discharge characteristics according to the temperature of the conventional secondary battery and the lithium secondary battery according to an embodiment of the present invention.
  • FIG. 12 is a graph showing the thermal runaway performance of a conventional secondary battery and a lithium secondary battery according to an embodiment of the present invention.
  • the lithium secondary battery 100 has excellent charge and discharge characteristics and a rated voltage available as a small battery, and includes a first electrode assembly 110 and a second electrode assembly ( 120).
  • each of the first electrode assembly 110 and the second electrode assembly 120 is a slurry containing an electrode coated with a slurry containing the LFP cathode active material and the LTO cathode active material It is provided with a coated electrode and laminated with a separator interposed therebetween to be insulated from each other, and connected to each other in a new type of serial structure through each series connection tab (aT1, cT2), so that even an LTO cathode active material is used. It can have the rated voltage (3.5 ⁇ 3.9V) available for electronics, and it has excellent low temperature, charging, and life characteristics, stable structure of Lithium Titanate, and electrochemical without Lithium plating. Properties can minimize the risk of explosions during thermal and mechanical abuse.
  • a structure of making a single cell by connecting two electrode assemblies in parallel is generally known, but a structure of connecting in series is not implemented in a lithium ion battery because there are two serious problems as follows.
  • One electrode assembly which uses graphite as a cathode, usually has a voltage of 3.3 V or higher, and a voltage of 6.6 V or higher when connected in series with another electrode assembly (jelly roll) in any anode system. You cannot use it.
  • FIG. 9 it can be seen that a typical NMC / Graphite cell has a 20% charge capacity difference due to a 0.2V charge difference. Since the two electrode assemblies are connected in series inside the cell, it is difficult to construct additional external protection circuits in the cell to suppress the imbalance, and each of the electrode assemblies (jelly rolls) may be chemically applied, such as a chemical shuttle. Overcharge and overdischarge can be suppressed by the oxidation and reduction of the chemical shuttle, but the currently available range of the chemical shuttle does not exceed 4V and there is a problem that can degrade other performance.
  • Lithium secondary battery 100 is a new type of serial structure is applied to solve the above two problems and the structural complexity when connected in series.
  • the lithium secondary battery 100 is provided such that the first electrode assembly 110 and the second electrode assembly 120 including the LTO anode active material and the LFP cathode active material are stacked, and have a new shape.
  • the first electrode assembly 110 and the second electrode assembly 120 including the LTO anode active material and the LFP cathode active material are stacked, and have a new shape.
  • they By being connected to each other in series, they have a rated voltage of approximately 4.4V, preferably 3.6 to 3.9V, which can be used as a general small battery, and have better charging and low temperature characteristics, longer life, and mechanical and thermal stability than conventional secondary batteries. It can be used for general consumer electronics.
  • the lithium secondary battery 100 may have a self-potential control characteristic using LFP and LTO material characteristics, which cause a sudden change in potential at the end of charge and discharge. 120, the voltage difference between the two electrode assemblies (jelly roll) can be kept to a minimum. As shown in the graph of FIG. 9, the capacity difference due to the potential difference between the two electrode assemblies (jelly roll) during charging and discharging compared to the NMC / Graphite cell can be minimized.
  • the lithium secondary battery 100 in contrast to simply connecting two unit cells in series, the amount of pouch or metal constituting the positive electrode / negative electrode terminal tab terminal and the case is reduced to reduce the cost It is possible to increase the energy density of about 3%.
  • the lithium secondary battery 100 may be manufactured through an existing production process, and does not require additional parts or devices during manufacturing, and may be manufactured through both a winding method and a stacking method. .
  • first electrode assembly 110 and the second electrode assembly 120 will be described in detail with reference to FIGS. 2A, 2B, 2C, and 5.
  • FIG. 2A is a plan view of a cathode electrode 111 of the first electrode assembly 110
  • FIG. 2B is a plan view of an anode electrode 113 of the first electrode assembly 110
  • FIG. 1 is a plan view illustrating a state in which the positive electrode plate 111 and the negative electrode plate 113 of the electrode assembly 110 are stacked.
  • 3 is a cross-sectional view of the first electrode assembly 110.
  • the first electrode assembly 110 may include a positive electrode plate 111, a negative electrode plate 113, and a separator 115.
  • a positive electrode tab cT1 may protrude from a left side of the positive electrode plate 111.
  • the positive electrode tab cT1 may be formed on the upper side (refer to FIG. 3) on the left side of the positive electrode plate 111.
  • a series connection tab aT1 may protrude from the left side of the negative electrode plate 113.
  • the series connection tab aT1 may be formed at the central portion of the left side of the negative electrode plate 113.
  • the series connection tab aT1 is preferably formed smaller in size than the positive electrode tab cT1.
  • FIG. 2C the stacked state of the positive electrode plate 111 and the negative electrode plate 113 may be confirmed.
  • the positive electrode tab cT1 and the series connection tab aT1 do not overlap each other.
  • a separator 115 is provided between the positive electrode plate 111 and the negative electrode plate 113 to insulate the positive electrode plate 111 and the negative electrode plate 113. This can be seen in FIG.
  • the positive electrode plate 111 may include a positive electrode current collector 111 a and a positive electrode tab cT1.
  • the positive electrode current collector 111 a is a part constituting the body of the positive electrode plate 111, and may be formed in a square plate shape as shown in FIGS. 2A, 2B, and 2C.
  • the positive electrode current collector 111 a is preferably made of aluminum or stainless steel.
  • a slurry (a cathode active material, a binder, and a conductive agent dispersed in a solvent) including the LFP cathode active material 111b may be applied to the lower surface and the upper surface of the cathode current collector 111a.
  • the LFP cathode active material 111b refers to a lithium iron phosphate (LiFePO 4) active material.
  • the LFP cathode active material 111b is generally a material for forming a cathode of a lithium secondary battery, and a detailed description thereof will be omitted.
  • the LFP cathode active material 111b may be replaced with any one of NMC, NCA, LCO, and LMO cathode active material.
  • the positive electrode tab cT1 may be formed to extend from the left side of the positive electrode current collector 111a (see FIG. 3).
  • the positive electrode tab cT1 may be made of the same material as the positive electrode current collector 111a.
  • the positive electrode tab cT1 is not coated with the positive electrode active material.
  • the positive electrode tab cT1 may be connected to a lead tab, which is a separate conductive connection component, to be used as a positive electrode terminal of the lithium secondary battery 100.
  • the negative electrode plate 113 may include a negative electrode current collector 113 a and a series connection tab aT1.
  • the negative electrode current collector 113 a is a part constituting the body of the negative electrode plate 113, and may be formed in the same square plate shape as the positive electrode current collector 111 a.
  • the negative electrode current collector 113 a is preferably made of aluminum, copper, or stainless steel.
  • a slurry (a negative electrode active material, a binder, and a conductive agent dispersed in a solvent) 113b including an LTO negative electrode active material may be applied.
  • the LTO anode active material 113b refers to lithium titanium oxide (Li 4 Ti 5 O 12). Since the LTO anode active material 113b has been described above, a detailed description thereof will be omitted.
  • the series connection tab aT1 may be formed to extend from the left side (refer to FIG. 3) of the negative electrode current collector 113a.
  • the series connection tab aT1 may be formed of the same material as the negative electrode current collector 113a.
  • the series connection tab aT1 is not coated with the negative electrode active material.
  • the series connection tab aT1 may be formed so as not to overlap the positive electrode tab cT1.
  • the series connection tab aT1 is preferably formed smaller in size than the positive electrode tab cT1.
  • the series connection tab aT1 is directly connected to the series connection tab aT2 of the second electrode assembly 120 to connect the first electrode assembly 110 and the second electrode assembly 120 in a new form of series structure. Play a role of
  • the separator 115 may be provided between the positive electrode plate 111 and the negative electrode plate 113 to insulate the positive electrode plate 111 and the negative electrode plate 113. That is, the separator 115 may be provided between the LFP cathode active material 111b on the lower surface of the cathode current collector 111a and the LTO anode active material 113b on the upper surface of the anode current collector 113a.
  • the separator 115 electrically separates the positive electrode plate 111 and the negative electrode plate 113 and may pass lithium ions through internal pores.
  • the separator 115 is usually manufactured using a polyolefine-based (polyethylene, polypropylene) material or a nonwoven fabric, and includes polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, and poly It may comprise any one of polyvinylidene fluoride hexafluoropropylene (polyvinylidene fluoride hexafluoropropylene).
  • FIGS. 4A, 4B, 4C, and 5 A configuration of the second electrode assembly 120 will be described in detail with reference to FIGS. 4A, 4B, 4C, and 5.
  • 4A is a plan view of the positive electrode plate 121 of the second electrode assembly 120
  • FIG. 4B is a plan view of the negative electrode plate 123 of the second electrode assembly 120
  • FIG. 4C is a second electrode assembly 120. Is a plan view showing a state in which the positive electrode plate 121 and the negative electrode plate 123 are stacked.
  • 5 is a cross-sectional view of the second electrode assembly 120.
  • the second electrode assembly 120 may include a positive electrode plate 121, a negative electrode plate 123, and a separator 125.
  • connection tab cT2 may protrude from the left side of the positive electrode plate 121.
  • the connection tab cT2 may be formed at the center of the left side of the positive electrode plate 121.
  • a negative electrode tab aT2 may protrude from the left side of the negative electrode plate 123.
  • the negative electrode tab aT2 may be formed to be biased downward (based on FIGS. 4A, 4B, and 4C) on the left side of the negative electrode plate 123.
  • the negative electrode tab aT2 is preferably formed larger in size than the series connection tab cT2.
  • FIG. 4C the stacked state of the positive electrode plate 121 and the negative electrode plate 123 may be confirmed.
  • the series connection tab cT2 and the negative electrode tab aT2 do not overlap each other.
  • a separator 125 is provided between the positive electrode plate 121 and the negative electrode plate 123 to insulate the positive electrode plate 121 and the negative electrode plate 123. This can be seen in FIG.
  • the positive electrode plate 121 may include a positive electrode current collector 121 a and a series connection tab cT2.
  • the positive electrode current collector 121 a is a part constituting the body of the positive electrode plate 121, and may be formed in a square plate shape as shown in FIGS. 4A, 4B, and 4C.
  • the positive electrode current collector 121 a may be made of aluminum or stainless steel.
  • a slurry including the LFP positive electrode active material 121b (a positive electrode active material, a binder, and a conductive agent dispersed in a solvent) may be applied.
  • the LFP cathode active material 121b is the same as the LFP cathode active material 111b applied to the cathode current collector 111a of the first electrode assembly 110, and a detailed description thereof will be omitted.
  • the series connection tab cT2 may be formed to extend from the left side (refer to FIG. 5) of the positive electrode current collector 121a.
  • the series connection tab cT2 may be made of the same material as the positive electrode current collector 121a.
  • the series connection tab cT2 is not coated with the positive electrode active material.
  • the series connection tab cT2 may be overlapped with the series connection tab aT1 of the first electrode assembly 110 to electrically connect the second electrode assembly 120 and the first electrode assembly 110 in series. have.
  • the negative electrode plate 123 may include a negative electrode current collector 123a and a negative electrode tab aT2.
  • the negative electrode current collector 123a is a part constituting the body of the negative electrode plate 123 and may be formed in the same square plate shape as the positive electrode plate 121.
  • the negative electrode current collector 123a may preferably be made of aluminum, copper, or stainless steel.
  • a slurry including the LTO negative electrode active material 123b (a negative electrode active material, a binder, and a conductive agent dispersed in a solvent) may be applied.
  • the LTO negative electrode active material 123b is the same as the LTO negative electrode active material 113b applied to the negative electrode current collector 113a of the first electrode assembly 110, and a detailed description thereof will be omitted.
  • the negative electrode tab aT2 may be formed to extend from the left side of the negative electrode current collector 123a.
  • the negative electrode tab aT2 may be formed of the same material as the negative electrode current collector 123a.
  • the negative electrode tab aT2 is not coated with the negative electrode active material.
  • the negative electrode tab aT2 may be formed so as not to overlap the series connection tab cT2.
  • the negative electrode tab aT2 is preferably formed larger in size than the series connection tab cT2.
  • the negative electrode tab aT2 may be connected to a lead tab, which is a separate conductive connection component, to be used as a negative electrode terminal of the lithium secondary battery 100.
  • the separator 125 may be provided between the positive electrode plate 121 and the negative electrode plate 123 to insulate the positive electrode plate 121 and the negative electrode plate 123. That is, the separator 125 may be provided between the LFP cathode active material 121b on the bottom surface of the cathode current collector 121a and the LTO anode active material 123b on the top surface of the anode current collector 123a.
  • the separator 125 may be made of the same material as the separator 115 of the first electrode assembly 110 described above.
  • FIG. 6 a plan view of a lithium secondary battery in the form of a square (pouch or metal case) including a first electrode assembly and a second electrode assembly having a stacking structure according to an embodiment of the present invention can be seen.
  • the first electrode assembly 110 and the second electrode assembly 120 may be stacked with an electrode assembly separator (not shown) therebetween. At this time, the positive electrode plate 111 of the first electrode assembly 110 is disposed at the top.
  • the positive electrode tab cT1 of the first electrode assembly 110 and the series connection tab cT2 of the second electrode assembly 120 may overlap each other, and thus, the first electrode assembly 110 and the second electrode assembly ( 120 is connected to a new type of serial structure.
  • the quadrangular case P may accommodate the first electrode assembly 110, the second electrode assembly 120, and the electrode assembly separator.
  • the rectangular case P may include a pouch, a metal can, or the like.
  • the positive electrode tab cT1 may be connected to a lead tab, which is a separate conductive connection part, to protrude and be disposed outside the rectangular case P, and may be used as a positive electrode terminal of the lithium secondary battery 100.
  • the negative electrode tab aT2 may be connected to a lead tab, which is a separate conductive connection part, to be protruded outside the rectangular case P, and used as a negative electrode terminal of the lithium secondary battery 100. have.
  • In the case P of the rectangular shape may be provided with a gel electrolyte or a solid electrolyte such as a liquid electrolyte or a polymer for the smooth movement of lithium ions.
  • each of the first electrode assembly 110 and the second electrode assembly 120 may be formed in a jellyroll structure to increase battery capacity.
  • the jellyroll structure can be formed in two ways.
  • a plurality of first electrode assemblies 110 and second electrode assemblies 120 are provided in plurality, and the plurality of first electrode assemblies 110 are stacked on each other with a separator therebetween to form a jellyroll structure.
  • the second electrode assembly 120 is laminated to each other with a separator therebetween to form a jellyroll structure.
  • lithium in the form of a square (pouch or metal case) as described above may be used.
  • the secondary battery 110 is completed.
  • the second jellyroll structure can be seen through FIGS. 7A, 7B and 7C.
  • FIG. 7A, 7B, and 7C cross-sectional views and perspective views of a first electrode assembly and a second electrode assembly of a winding structure and a lithium secondary battery in a square (pouch or metal case) form according to an embodiment of the present invention are shown. You can check it.
  • FIG. 7A is a cross-sectional view and a perspective view of the first electrode assembly of the winding structure
  • FIG. 7B is a cross-sectional view and a perspective view of the second electrode assembly of the winding structure
  • FIG. 7C is a rectangular shape in which the first electrode assembly is stacked on the second electrode assembly.
  • the first electrode assembly 110 is wound to form a jellyroll structure
  • the second electrode assembly 120 is wound to form a jellyroll structure.
  • the first electrode assembly 110 is stacked on the second electrode assembly 120, and the series connection tabs aT1 and cT2 are coupled to each other to form the first electrode assembly 110.
  • the second electrode assembly 120 may be finally completed by connecting in series.
  • the positive electrode tab cT1 of the first electrode assembly 110 is connected to the lead tab L1 and used as the positive electrode terminal
  • the negative electrode tab aT2 of the second electrode assembly 120 is connected to the lead tab L2. It is used as a negative terminal.
  • a lithium secondary battery 100 having a cylindrical shape may be identified.
  • 8A is a perspective view of the first electrode assembly 110 constituting the inner cylinder of the cylindrical lithium secondary battery 100
  • FIG. 8B is a second electrode constituting the outer cylinder of the cylindrical lithium secondary battery 100.
  • 8 is a perspective view of a cylindrical lithium secondary battery 100 in a cylindrical form.
  • the first electrode assembly 110 may be formed as an inner cylinder by holding and winding a positive electrode plate, a negative electrode plate, and a separator using a mandrel.
  • the second electrode assembly 120 may be formed as an outer cylinder by winding the positive electrode plate, the negative electrode plate, and the separator so as to surround the outer circumference of the first electrode assembly 120.
  • the first electrode assembly 110 which is an inner cylinder, is surrounded by a second electrode assembly 120 that is surrounded by an outer cylinder, and the series connection tabs aT1 and cT2 are connected to each other.
  • the first electrode assembly 110 and the second electrode assembly 120 may be combined and finally completed in series.
  • the negative electrode tab aT2 of the second electrode assembly 120 includes the positive electrode tab cT1 of the first electrode assembly 110, the series connection tab aT1 of the first electrode assembly, and the second electrode assembly 120. May be formed in a direction opposite to the direction in which the series connection tabs cT2 are formed.
  • the positive electrode tab cT1 of the first electrode assembly 110, the series connection tab aT1 of the first electrode assembly 110, and the series connection tab cT2 of the second electrode assembly 120 may have a cylindrical shape.
  • the positive electrode tab cT1 of the first electrode assembly 110 may be disposed to protrude from an upper portion of the lithium secondary battery 100 and may be connected to an upper cap assy 'to form a positive electrode terminal of the battery.
  • the negative electrode tab aT2 of the second electrode assembly 120 is disposed to protrude on the lower portion of the cylindrical lithium secondary battery 100 so as to be connected to the lower portion of the cylindrical metalken so that the metalken itself forms a negative electrode potential.
  • the cap and the lower metalken can be insulated with insulating plastic to electrically insulate the positive and negative terminals.
  • the upper and lower ends of the cylindrical lithium secondary battery 100 have a positive electrode tab cT1 of the first electrode assembly 110, a series connection tab aT1 of the first electrode assembly 110, and a second electrode assembly 120.
  • a circular protective cap (not shown) may be coupled to protect the series connection tab cT2 and the negative electrode tab aT2 of the second electrode assembly 120.
  • FIG. 9 is a graph illustrating a self-balancing concept between the first and second electrode assemblies according to an exemplary embodiment of the present invention.
  • the self-balancing characteristics of the lithium secondary battery 100 according to the embodiment of the present invention will be described in comparison with the conventional NMC / Graphite secondary battery.
  • the conventional NMC / Graphite secondary battery the discharge capacity difference of 27% due to the 0.1V voltage difference.
  • the lithium secondary battery 100 according to the embodiment of the present invention the discharge capacity difference of less than 1% due to the 0.1V voltage difference. This shows that self balancing occurs in the discharge end section.
  • the lithium secondary battery 100 has a self-balancing at the terminal during charging and discharging, and thus the capacity difference due to the voltage difference between the two electrode assemblies (jelly rolls) compared to the conventional NMC / Graphite secondary battery. It can be minimized.
  • Lithium secondary battery Lithium cobalt oxide Lithium Nickel Manganese Cobalt Oxide Lithium Iron Phosphate Lithium Titanate Nominal voltage 3.8 V 3.7 V 3.3V 1.9V 3.8 V Charge Rate 0.7C 0.7C 1C 5C 5C Cycle life 500 to 1,000 times 1,000 to 2,000 times 1,000 to 2,000 times 3,000 to 7,000 3,000 to 7,000 Thermal Runaway 150 ° C 190 ° C 230 ° C > 300 ° C > 300 ° C Application Mobile, tablet, laptop, camera Mobile devices, electric vehicles, industrial batteries Electric cars, electric bikes, industrial batteries Electric Storage System (ESS), Electric Vehicles, Solar Cells Electric Storage System (ESS), Solar Cell, Electric Vehicle, Electric Bike, Industrial Battery
  • the lithium secondary battery 100 has a series connection tab aT1 of the first electrode assembly 110 and a series connection tab cT2 of the second electrode assembly 120.
  • a new direct-connected series structure it is possible to solve various problems caused by using LTO and LFP as anode active material and cathode active material, thereby lowering the rating of a lithium secondary battery using a conventional LTO anode active material. It can have a high rated voltage (3.8V) to solve the voltage (1.9 ⁇ 2.4V) problem.
  • the lithium secondary battery 100 according to the embodiment of the present invention may have a faster charging speed (for example, 5C) than any conventional secondary battery, and also has superior charging performance even at low temperatures, and is smaller than conventional secondary batteries. It can have more than 3 times longer lifespan and shows safety that shows no thermal runaway even at high temperatures of more than 300 degrees.
  • 5C faster charging speed
  • FIG. 10 is a graph showing capacity retention according to charge rates of LTO and graphite used as a negative electrode active material of a secondary battery.
  • LTO and graphite have a similar charging rate when low-rate charging (0.5C or less) and a specific current flows below 100 mA / g, but when charging with a high-rate current (2C Above), it shows a sudden difference in charging rate, and when the specific current flows over 1000 mA / g, it shows more than 7 times of charging rate difference.
  • the secondary battery for solving the problem of rapid charging can be improved by using the battery of the present invention.
  • the conventional secondary battery includes an NMC / Graphite secondary battery, an LFP / Graphite secondary battery, and an NMC / LTO secondary battery.
  • the NMC / Graphite secondary battery, the LFP / Graphite secondary battery, the NMC / LTO secondary battery, and the lithium secondary battery (LFP / LTO) according to the embodiment of the present invention show a discharge rate close to 100% near room temperature. The lower the temperature, the lower the discharge performance. At this time, the lithium secondary battery (LFP / LTO) according to the embodiment of the present invention has a discharge rate of about 80% at -30 ° C, and thus has higher characteristics at a lower temperature than other conventional secondary batteries.
  • the conventional secondary battery includes an LCO / Graphite secondary battery, an NMC / Graphite secondary battery, and an LFP / Graphite secondary battery.
  • the LCO / Graphite secondary battery increases the temperature at a rate of 5 ° C / min from room temperature and when the thermal runaway phenomenon is reached when the temperature reaches approximately 150 ° C, thermal runaway phenomenon will appear.
  • the lithium secondary battery (LFP / LTO) according to an embodiment of the present invention does not appear thermal runaway phenomenon until the charging temperature reaches 250 ° C.
  • the lithium secondary battery according to the exemplary embodiment of the present invention may be charged faster than the conventional secondary battery, has better charge and discharge characteristics than the conventional secondary battery at low temperature, and has stronger heat resistance than the conventional secondary battery.
  • the lithium secondary battery 100 may have excellent temperature and charge / discharge characteristics of the LTO anode active material and a rated voltage available for general electronics, and structural stability of the LTO anode active material.
  • the risk of explosion due to temperature rise can be reduced due to the electrochemical properties that prevent over-liquidation and can be applied to various fields such as electric storage systems (ESS), solar cells, electric vehicles, electric bikes, industrial batteries and the like.
  • ESS electric storage systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium secondary battery according to an embodiment of the present invention may comprise: a first electrode assembly comprising a positive electrode plate having a positive electrode tab and usable as a positive electrode terminal, a negative electrode plate having a serial connection tab, and a separation film provided between the positive electrode plate and the negative electrode plate; and a second electrode assembly provided to be insulated from the first electrode assembly, wherein the second electrode assembly may comprise a positive electrode plate having a serial connection tab, a negative electrode plate having a negative electrode tab and usable as a negative electrode terminal, and a separation film provided between the positive electrode plate and the negative electrode plate, wherein the serial connection tab of the first electrode assembly may be connected to the serial connection tab of the second electrode assembly, and the first electrode assembly and the second electrode assembly may be connected in series by the serial connection tabs.

Description

리튬 이차 전지Lithium secondary battery
본 발명은 리튬 이차 전지에 관한 것으로, 특히 우수한 충방전 특성을 가지는 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having excellent charge and discharge characteristics.
전기 및 전자 기술의 발달로 작고 가벼우면서도 다양한 기능을 갖는 휴대형 전자 제품들의 사용이 급속히 증가하고 있다. 휴대형 전자 제품의 동작을 위한 전원 공급 장치로서 배터리가 일반적으로 사용되는데, 충전하여 다시 쓸 수 있는 이차전지가 주로 사용되고 있다.With the development of electrical and electronic technologies, the use of portable electronic products that are small, light, and have various functions is rapidly increasing. Batteries are generally used as a power supply device for the operation of portable electronic products, and secondary batteries that can be recharged and used again are mainly used.
종래 이차전지로는 납 축전지, 니켈 카드뮴 전지(Nicd), 니켈 수소 전지(NiMH), 리튬 이온 전지(Li-ion), 리튬 이온 폴리머 전지(Li-ion polymer) 등이 있다. 이차 전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.Conventional secondary batteries include lead storage batteries, nickel cadmium batteries (Nicd), nickel hydrogen batteries (NiMH), lithium ion batteries (Li-ion), lithium ion polymer batteries (Li-ion polymer), and the like. Secondary batteries offer both economic and environmental advantages over primary batteries that are used once and discarded.
종래 리튬 이차 전지는, 리튬 이온을 가역적으로 흡장 및 방출하는 활물질을 구비한 양극, 음극과 이들을 전기적으로 분리하는 분리막 및, 상기한 양극과 음극 사이에 개재된 전해액을 구비하고, 양 전극간을 리튬 이온이 왕래함으로써 충방전을 수행한다.Conventional lithium secondary batteries include a positive electrode having an active material that reversibly occludes and releases lithium ions, a negative electrode and a separator that electrically separates them, and an electrolyte solution interposed between the positive electrode and the negative electrode, and between the two electrodes, Charging and discharging are performed by ions coming and going.
대표적인 음극활물질로는 흑연(Graphite), 실리콘(Silicon) 및 실리콘 복합체(Silicon composite) 그리고 LTO(Lithium Titanium Oxide) 등이 있으며, 양극활물질로는 LCO(Lithium Cobalt Oxide), NMC(Lithium Nickel Manganese Cobalt Oxide), NCA(Lithium Nickel Oxide), LFP(Lithium Iron Phosphite)등이 있다.Representative anode active materials include graphite, silicon, silicon composite, and LTO (Lithium Titanium Oxide), and cathode active materials include LCO (Lithium Cobalt Oxide) and NMC (Lithium Nickel Manganese Cobalt Oxide). ), Lithium Nickel Oxide (NCA), and Lithium Iron Phosphite (LFP).
음극활물질 중 LTO는 스피넬(spinel) 구조로 이루어져 3D 형태로 리튬 이온의 삽입/탈삽입(intercalation/deintercalation)이 자유로우며 일반적인 흑연의 1차원적 층간 삽입 대비 충전 특성이 매우 우수하다.Among the cathode active materials, LTO has a spinel structure, which allows free intercalation / deintercalation of lithium ions in a 3D form, and has excellent charging properties compared to general one-dimensional intercalation of graphite.
LTO는 전위가 1.55V로 형성되어 리튬 플레이팅(Lithium Plating) 현상이 일어나지 않으며 흑연 음극에서 보이는 수명 열화에 따른 리튬 플레이팅으로 인한 안전성 문제가 없고, SEI(Solid Electrolyte Interphase) 피막이 없어 흑연대비 SEI 필름 저항값이 낮아, 앞에 설명한 구조적 특성과 더불어 저온에서의 충방전 특성이 우수하다.LTO has a potential of 1.55V, which does not cause lithium plating and does not cause any safety problems due to lithium plating due to the deterioration of the lifetime seen in the graphite anode, and there is no SEI (Solid Electrolyte Interphase) film. The resistance value is low, and the charge and discharge characteristics at low temperature are excellent in addition to the structural characteristics described above.
또한, LTO는 충방전 중에 결정 구조의 변화가 거의 없고 이로 인해 충방전 중 극판의 팽창이나 수축이 일어나지 않고 두께가 일정하게 유지되어 흑연과 달리 극판의 마이크로스트럭쳐(microstructure)가 깨짐(crack)이나 박리(delamination) 없이 일정하게 유지되어 흑연 대비 월등한 수명 특성을 보여준다. 여기서, 극판은 활물질과 바인더, 도전제로 이루어진 구조를 말한다. In addition, LTO has almost no change in crystal structure during charging and discharging. As a result, the microstructure of the electrode plate is cracked or peeled apart from graphite because the thickness of the electrode plate remains constant while the electrode plate does not expand or contract during charging and discharging. It remains constant without delamination, showing superior lifetime characteristics over graphite. Here, the electrode plate refers to a structure composed of an active material, a binder, and a conductive agent.
또한, LTO는 흑연 대비 월등한 열적 기계적 안전성을 가지고 있고, 충방전 시의 전도성 차이로 인해 외부 쇼트나 내부 쇼트시 전위가 낮아지면 물질 자체가 도전성을 잃어 자발적으로 셀 내부를 안전하게 만드는 메커니즘(Mechanism)을 가지고 있어 최악의 상황에도 셀의 발화나 폭발과 같은 현상을 방지할 수 있다.In addition, LTO has superior thermal mechanical stability compared to graphite, and the mechanism itself makes the inside of the cell spontaneously safe when the potential itself decreases during external short or internal short due to the difference in conductivity during charging and discharging. This prevents phenomena such as cell ignition or explosion in the worst case.
한편, 흑연 음극 기반의 리튬 이차 전지의 경우에는 리사이클시 리튬 플레이팅에 대한 우려로 폐기 후 소량의 메탈을 재생해내는 방법 밖에 없었으나, LTO 음극 기반의 리튬 이차 전지의 경우에는 리튬 플레이팅에 대한 우려가 없으므로, 리사이클시 안전하게 원하는 금속을 효율적으로 재생함에 다양한 방법이 적용될 수 있고, 수명 특성이 우수하고 NMC, NCA, LCO와 달리 유해금속을 포함하고 있지 않아 환경적으로 큰 메리트가 있다.Meanwhile, in the case of a lithium secondary battery based on a graphite negative electrode, there was only a method of regenerating a small amount of metal after disposal due to a concern about lithium plating during recycling, whereas in the case of a lithium secondary battery based on an LTO negative electrode, Since there is no concern, various methods can be applied to safely and efficiently recycle the desired metal during recycling, and have excellent life characteristics and, unlike NMC, NCA, and LCO, do not contain harmful metals.
다만, LTO 음극 기반의 리튬 이차 전지는, 흑연 음극 대비 비용량이 낮고, 흑연 음극 기반의 리튬 이차 전지와 동일한 양극으로 설계되면, 흑연 음극 기반의 리튬 이차 전지 대비 낮은 에너지 밀도를 가지게 된다.However, the LTO negative electrode based lithium secondary battery has a lower specific capacity than the graphite negative electrode, and when designed as the same positive electrode as the graphite secondary lithium based battery, has a lower energy density than the graphite secondary lithium based battery.
그리고, 흑연 음극과 다양한 종류의 양극이 결합된 단셀 전지는, 예컨대, LCO 양극과 흑연 음극의 단셀 전지의 경우 대략 3.8V의 평균 전압을 가지고, NMC 양극과 흑연 음극의 단셀 전지의 경우 대략 3.7V의 평균 전압을 가지게 된다.The single cell battery in which the graphite negative electrode and various kinds of positive electrodes are combined has, for example, an average voltage of about 3.8 V for the single cell battery of the LCO positive electrode and the graphite negative electrode, and about 3.7 V for the single cell battery of the NMC positive electrode and the graphite negative electrode. It has an average voltage of
반면에 LTO 음극과 다양한 종류의 양극이 결합된 단셀 전지는, 예컨대, LCO 양극과 LTO 음극의 단셀 전지의 경우 대략 2.4V의 평균 전압을 가지고, NMC 양극과 LTO 음극의 단셀 전지의 경우 대략 2.3V의 평균 전압을 가지게 된다.On the other hand, a single cell battery in which an LTO negative electrode and various kinds of positive electrodes are combined has, for example, an average voltage of about 2.4 V for a single cell battery of an LCO positive electrode and an LTO negative electrode, and about 2.3 V for a single cell battery having an NMC positive electrode and an LTO negative electrode. It has an average voltage of
이와 같이 LTO 음극 기반의 단셀 전지는 LTO의 높은 음극 전위로 인해 전지의 전압을 낮추게 되어 일반적인 소형 전지가 가지는 전압 범위 내의 전압을 갖추기 어려운 문제점이 있었다. As described above, the LTO negative cell-based single cell battery has a problem that it is difficult to have a voltage within a voltage range of a general small battery because the voltage of the battery is lowered due to the high negative electrode potential of the LTO.
이에 본 발명은 상기한 사정을 감안하여 안출된 것으로, 종래 전지보다 우수한 충전 특성과 장기수명 특성 그리고 안전성을 갖추고 새로운 형태의 젤리롤 직렬 연결 구조로 소형 전지에서 이용 가능한 정격 전압을 가지는 LTO 음극 기반의 리튬 이차 전지를 제공하는 데 그 목적이 있다.Accordingly, the present invention has been made in view of the above circumstances, and has a superior charging characteristics, longer lifespan characteristics, and safety than conventional batteries, and has a new type of jelly roll series connection structure based on an LTO negative electrode having a rated voltage available in a small battery. The object is to provide a lithium secondary battery.
상기 목적을 달성하기 위한 본 발명의 실시 예에 따른 리튬 이차 전지는, 양극 터미널로 이용 가능한 양극탭이 형성되는 양극 극판, 직렬연결탭이 형성되는 음극 극판과, 양극 극판과 음극 극판 사이에 구비되는 분리막을 포함하여 구성되는 제1 전극 조립체; 및 상기 제1 전극 조립체와 절연되도록 구비되는 제2 전극 조립체;를 포함하고, 상기 제2 전극 조립체는, 직렬연결탭이 형성되는 양극 극판, 음극 터미널로 이용 가능한 음극탭이 형성되는 음극 극판과, 양극 극판과 음극 극판 사이에 구비되는 분리막을 포함하여 구성되고, 상기 제1 전극 조립체의 직렬연결탭은, 상기 제2 전극 조립체의 직렬연결탭에 연결되며, 상기 제1 전극 조립체와 상기 제2 전극 조립체는 상기 직렬연결탭에 의해 직렬 구조로 연결될 수 있다.A lithium secondary battery according to an exemplary embodiment of the present invention for achieving the above object is provided between a positive electrode plate in which a positive electrode tab usable as a positive electrode terminal is formed, a negative electrode plate in which a series connection tab is formed, and a positive electrode plate and a negative electrode plate. A first electrode assembly including a separator; And a second electrode assembly provided to be insulated from the first electrode assembly, wherein the second electrode assembly includes: a positive electrode plate in which a series connection tab is formed, a negative electrode plate in which a negative electrode tab usable as a negative electrode terminal is formed; And a separator provided between the positive electrode plate and the negative electrode plate, wherein the series connection tab of the first electrode assembly is connected to the series connection tab of the second electrode assembly, and the first electrode assembly and the second electrode are connected to each other. The assembly may be connected in series by the series connection tabs.
상기 제1 전극 조립체와 상기 제2 전극 조립체 각각은 전지 용량 증대를 위해 복수개 구비되고, 복수의 제1 전극 조립체는 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성되고, 복수의 제2 전극 조립체는 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성될 수 있다.Each of the first electrode assembly and the second electrode assembly is provided in plural to increase battery capacity, and the plurality of first electrode assemblies are stacked on each other with a separator therebetween to form a jellyroll structure, and the plurality of second electrode assemblies are provided. May be stacked on each other with a separator therebetween to form a jellyroll structure.
상기 제1 전극 조립체와 상기 제2 전극 조립체 각각은 와인딩되어 젤리롤 구조로 형성될 수 있다.Each of the first electrode assembly and the second electrode assembly may be wound to form a jellyroll structure.
상기 제1 전극 조립체는, 상기 제2 전극 조립체 상에 적층되도록 배치되며, 상기 제1, 제2 전극 조립체를 수용하는 사각 형상의 케이스를 더 포함할 수 있다.The first electrode assembly may be disposed to be stacked on the second electrode assembly, and may further include a rectangular case for accommodating the first and second electrode assemblies.
상기 제1 전극 조립체는 원기둥 형태로 변형되어 내부 원기둥을 구성하고, 상기 제2 전극 조립체는 상기 제1 전극 조립체의 외주를 둘러싸 외부 원기둥을 구성하며, 상기 제1, 제2 전극 조립체를 수용하는 원통 형상의 케이스를 더 포함할 수 있다.The first electrode assembly is deformed into a cylindrical shape to form an inner cylinder, and the second electrode assembly surrounds an outer circumference of the first electrode assembly to form an outer cylinder, and a cylinder housing the first and second electrode assemblies. It may further include a case of the shape.
상기 제1 전극 조립체의 양극 극판은, LFP, NMC, NCA, LCO 양극활물질 중에서 어느 하나의 양극활물질이 도포되는 양극 집전체를 구비하고, 상기 제1 전극 조립체의 양극탭은, 상기 양극활물질이 도포되지 않으며, 상기 제1 전극 조립체의 양극 집전체의 일측면으로부터 연장 형성되고, 양극 리드탭과 연결되어 양극 터미널로 이용될 수 있다.The positive electrode plate of the first electrode assembly includes a positive electrode current collector to which one of the positive electrode active materials is applied among LFP, NMC, NCA, and LCO positive electrode active materials, and the positive electrode tab of the first electrode assembly is coated with the positive electrode active material. The first electrode assembly may extend from one side of the positive electrode current collector of the first electrode assembly and may be connected to the positive electrode lead tab to serve as a positive electrode terminal.
상기 제1 전극 조립체의 음극 극판은, LTO 음극활물질이 도포되는 음극 집전체를 구비하고, 상기 제1 전극 조립체의 직렬연결탭은, 상기 음극활물질이 도포되지 않으며, 상기 제1 전극 조립체의 음극 집전체의 일측면으로부터 연장 형성될 수 있다.The negative electrode plate of the first electrode assembly includes a negative electrode current collector to which an LTO negative electrode active material is applied, and the series connection tab of the first electrode assembly is not coated with the negative electrode active material, and the negative electrode collector of the first electrode assembly is provided. It may be formed extending from one side of the whole.
상기 제1 전극 조립체의 직렬연결탭과 상기 제1 전극 조립체의 양극탭은, 서로 겹치지 않도록 구성될 수 있다.The series connection tab of the first electrode assembly and the positive electrode tab of the first electrode assembly may be configured not to overlap each other.
상기 제2 전극 조립체의 양극 극판은, LFP, NMC, NCA, LCO 양극활물질이 도포되는 양극 집전체를 구비하고, 상기 제2 전극 조립체의 직렬연결탭은, 상기 양극활물질이 도포되지 않으며, 상기 제2 전극 조립체의 양극 집전체의 일측면으로부터 연장 형성될 수 있다.The positive electrode plate of the second electrode assembly includes a positive electrode current collector to which LFP, NMC, NCA, and LCO positive electrode active material is applied, and the series connection tab of the second electrode assembly is not coated with the positive electrode active material. It may be formed extending from one side of the positive electrode current collector of the two electrode assembly.
상기 제1 전극 조립체의 직렬연결탭과 상기 제2 전극 조립체의 직렬연결탭은, 서로 겹쳐져서 상기 제1 전극 조립체와 상기 제2 전극 조립체를 전기적으로 연결할 수 있다.The series connection tab of the first electrode assembly and the series connection tab of the second electrode assembly may overlap each other to electrically connect the first electrode assembly and the second electrode assembly.
상기 제2 전극 조립체의 음극 극판은, LTO 음극활물질이 도포되는 음극 집전체를 구비하고, 상기 제2 전극 조립체의 음극탭은, 상기 LTO 음극활물질이 도포되지 않으며, 상기 제2 전극 조립체의 음극 집전체의 일측면으로부터 연장 형성되고, 음극 리드탭과 연결되어 음극 터미널로 이용될 수 있다.The negative electrode plate of the second electrode assembly includes a negative electrode current collector to which the LTO negative electrode active material is applied, and the negative electrode tab of the second electrode assembly is not coated with the LTO negative electrode active material, and the negative electrode collector of the second electrode assembly is provided. It extends from one side of the whole and is connected to the negative lead tab can be used as the negative terminal.
상기 제1 전극 조립체의 양극탭과 상기 제2 전극 조립체의 음극탭은, 서로 겹치지 않도록 구성될 수 있다.The positive electrode tab of the first electrode assembly and the negative electrode tab of the second electrode assembly may be configured not to overlap each other.
상기 제1 전극 조립체의 음극 극판, 상기 제1 전극 조립체의 양극 극판, 상기 제2 전극 조립체의 음극 극판 및, 상기 제2 전극 조립체의 음극 극판 각각은, 알루미늄, 스테인레스 스틸 또는 구리를 포함하여 구성될 수 있다.Each of the negative electrode plate of the first electrode assembly, the positive electrode plate of the first electrode assembly, the negative electrode plate of the second electrode assembly, and the negative electrode plate of the second electrode assembly may include aluminum, stainless steel, or copper. Can be.
상기 제1 전극 조립체와 상기 제2 전극 조립체는, LFP 양극활물질과 LTO 음극활물질을 이용하여 셀프 밸런싱되어 서로 간의 임밸런싱을 방지할 수 있다.The first electrode assembly and the second electrode assembly may be self-balanced using an LFP cathode active material and an LTO cathode active material to prevent imbalance between each other.
따라서, 본 발명의 실시 예에 따른 리튬 이차 전지에 의하면, 두 개의 전극 조립체를 새로운 형태의 직렬구조를 통해 연결함으로써, 낮은 전압으로 인해 사용에 제약이 있었던 LTO 음극을 이용 가능하고, 이를 통해 종래 흑연기반 이차 전지보다 우수한 충전 및 저온 특성을 가지며, 안전성 문제를 해결할 수 있어 극한 환경에서의 사용성을 넓히는 동시에, 소형 전지로 이용 가능한 정격 전압을 가질 수 있다.Therefore, according to the lithium secondary battery according to the embodiment of the present invention, by connecting the two electrode assemblies through a new type of series structure, it is possible to use the LTO negative electrode, which was limited in use due to the low voltage, through which the conventional graphite It has better charging and lower temperature characteristics than the base secondary battery, and can solve safety problems, thereby widening usability in extreme environments, and having a rated voltage available as a small battery.
또한, 두 개의 전극 조립체가 LFP 양극과 LTO 음극을 사용함으로써, 단전지내에서 두 개의 전극 조립체를 직렬로 연결시 생기는 문제점인 전해액 산화와 전극 조립체 사이의 임밸런싱 문제 등을 해결 가능하다.In addition, since the two electrode assemblies use the LFP positive electrode and the LTO negative electrode, it is possible to solve the problem of electrolyte oxidation and balancing between the electrode assembly, which are problems caused when two electrode assemblies are connected in series in a unit cell.
도1은 본 발명의 실시 예에 따른 리튬 이차 전지의 평면도이다.1 is a plan view of a lithium secondary battery according to an exemplary embodiment of the present invention.
도2a, 도2b 및, 도2c는 본 발명의 실시 예에 따른 리튬 이차 전지의 제1 전극 조립체가 분해된 상태를 보여주는 제1 분해 부분 평면도이다.2A, 2B, and 2C are first exploded plan views illustrating a disassembled state of a first electrode assembly of a lithium secondary battery according to an exemplary embodiment of the present invention.
도3은 도2a, 도2b 및, 도2c의 제1 전극 조립체의 부분 단면도이다.3 is a partial cross-sectional view of the first electrode assembly of FIGS. 2A, 2B, and 2C.
도4는 본 발명의 실시 예에 따른 리튬 이차 전지의 제2 전극 조립체가 분해된 상태를 보여주는 제2 분해 부분 평면도이다.4 is a second exploded plan view illustrating a disassembled state of a second electrode assembly of a lithium secondary battery according to an exemplary embodiment of the present disclosure.
도5는 도4a, 도4b 및 도4c의 제2 전극 조립체의 부분 단면도이다.5 is a partial cross-sectional view of the second electrode assembly of FIGS. 4A, 4B and 4C.
도6은 본 발명의 실시 예에 따른 적층(Stacking)구조의 제1 전극 조립체와 제2 전극 조립체로 구성된 각형(파우치 또는 메탈 케이스) 형태의 리튬 이차 전지의 평면도이다.FIG. 6 is a plan view of a lithium secondary battery having a rectangular (pouch or metal case) form including a first electrode assembly and a second electrode assembly having a stacking structure according to an exemplary embodiment of the present invention.
도7a, 도7b 및 도7c는 본 발명의 실시 예에 따른 와인딩 구조의 제1 전극 조립체와 제2 전극 조립체로 구성된 각형(파우치 또는 메탈 케이스) 형태의 리튬 이차 전지의 단면도 및 사시도이다.7A, 7B, and 7C are cross-sectional views and perspective views of a lithium secondary battery in the form of a square (pouch or metal case) including a first electrode assembly and a second electrode assembly having a winding structure according to an exemplary embodiment of the present invention.
도8a, 도8b 및 도8c는 본 발명의 실시 예에 따른 원통 형태의 리튬 이차 전지의 사시도이다.8A, 8B and 8C are perspective views of a cylindrical lithium secondary battery according to an embodiment of the present invention.
도9는 본 발명의 실시 예에 따른 제1, 제2 전극 조립체 간의 셀프 밸런싱 개념을 보여주는 그래프이다.9 is a graph illustrating a self-balancing concept between the first and second electrode assemblies according to an exemplary embodiment of the present invention.
도10은 LTO와 흑연의 충전속도에 따른 충전율을 보여주는 그래프이다.10 is a graph showing the filling rate according to the filling rate of LTO and graphite.
도11은 종래 이차 전지와 본 발명의 실시 예에 따른 리튬 이차 전지의 온도에 따른 방전 특성을 보여주는 그래프이다.11 is a graph showing the discharge characteristics according to the temperature of the conventional secondary battery and the lithium secondary battery according to an embodiment of the present invention.
도12는 종래 이차 전지와 본 발명의 실시 예에 따른 리튬 이차 전지의 열폭주 성능을 보여주는 그래프이다.12 is a graph showing the thermal runaway performance of a conventional secondary battery and a lithium secondary battery according to an embodiment of the present invention.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시 예에 한정되는 것이 아니다. 그리고 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In addition, parts irrelevant to the description are omitted in order to clearly describe the present invention, and the same reference numerals in the drawings indicate the same members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated.
도1을 참고하면, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는, 우수한 충방전 특성 및 소형 전지로 이용 가능한 정격 전압을 가지는 것으로서, 제1 전극 조립체(110)와 제2 전극 조립체(120)를 포함하여 구성될 수 있다.Referring to FIG. 1, the lithium secondary battery 100 according to an exemplary embodiment of the present invention has excellent charge and discharge characteristics and a rated voltage available as a small battery, and includes a first electrode assembly 110 and a second electrode assembly ( 120).
본 발명의 실시 예에 따른 리튬 이차 전지(100)는, 제1 전극 조립체(110)와 제2 전극 조립체(120) 각각이 LFP 양극활물질을 포함한 슬러리를 코팅한 전극과 LTO 음극활물질을 포함한 슬러리를 코팅한 전극을 구비하고, 서로 절연되도록 분리막을 사이에 두고 적층되되 각각의 직렬 연결탭(aT1, cT2)을 통해 새로운 형태의 직렬 구조로 서로 연결됨으로써, LTO 음극활물질을 이용함에도 일반적인 전자기기(Consumer electronics)에 이용가능한 정격 전압(3.5~3.9V)을 가질 수 있으며 저온, 충전, 수명 특성이 우수하며, 리튬 타이타네이트(Lithium Titanate)의 안정한 구조와 리튬 석출(Lithium plating)이 일어나지 않는 전기화학적 특성으로 인해 열적 기계적 남용시 발생할 수 있는 폭발 위험을 최소화시킬 수 있다.Lithium secondary battery 100 according to an embodiment of the present invention, each of the first electrode assembly 110 and the second electrode assembly 120 is a slurry containing an electrode coated with a slurry containing the LFP cathode active material and the LTO cathode active material It is provided with a coated electrode and laminated with a separator interposed therebetween to be insulated from each other, and connected to each other in a new type of serial structure through each series connection tab (aT1, cT2), so that even an LTO cathode active material is used. It can have the rated voltage (3.5 ~ 3.9V) available for electronics, and it has excellent low temperature, charging, and life characteristics, stable structure of Lithium Titanate, and electrochemical without Lithium plating. Properties can minimize the risk of explosions during thermal and mechanical abuse.
먼저 본 발명의 실시 예에 따른 리튬 이차 전지(100)에 새로운 형태의 직렬 구조가 적용된 이유에 대해 설명하고, 이후 본 발명의 실시 예에 따른 리튬 이차 전지(100)의 구성에 대해 상세 설명한다. First, the reason why a new type of series structure is applied to the lithium secondary battery 100 according to the embodiment of the present invention will be described, and then the configuration of the lithium secondary battery 100 according to the embodiment of the present invention will be described in detail.
병렬로 두 개의 전극 조립체를 연결하여 단셀을 만드는 구조는 일반적으로 알려져 사용되고 있으나 직렬로 연결하는 구조는 리튬 이온 전지에서 시행하지 않고 있는데, 이는 아래와 같은 두가지 심각한 문제가 있기 때문이다.A structure of making a single cell by connecting two electrode assemblies in parallel is generally known, but a structure of connecting in series is not implemented in a lithium ion battery because there are two serious problems as follows.
첫째, 일반적으로 널리 사용되는 카보네이트(Carbonate) 용매 기반의 전해액(Ethylene carbonate, Propylene carbonate, Dimethyl carbonate, Diethyl carbonate, Ethylmethyl carbonate 등)의 경우에는, 4.6V가 넘는 전압에서 분해되는 특성이 있다. 이를 해결하기 위해서는 고체 전해액이나 새로운 이오닉리퀴드(ionic liquid)의 사용이 필요한데 이온 전도도가 떨어지고 사용할수 있는 환경의 제약이 있어 카보네이트 기반 용매를 대체할 수 있는 전해액 시스템은 아직 발견되지 않고 있다. 흑연을 음극으로 쓰는 하나의 전극 조립체(젤리롤)는 어떤 양극시스템을 적용하더라도 보통 3.3V 이상의 전압을 가지며 직렬로 다른 전극 조립체(젤리롤)와 연결될 경우 6.6V 이상의 전압을 가지므로 일반적인 전해액 시스템에서는 사용할수 없게 된다.First, in the case of commonly used carbonate (carbonate) solvent-based electrolyte (Ethylene carbonate, Propylene carbonate, Dimethyl carbonate, Diethyl carbonate, Ethylmethyl carbonate, etc.), there is a property to decompose at a voltage of more than 4.6V. To solve this problem, it is necessary to use a solid electrolyte or a new ionic liquid. However, there is no electrolyte system that can replace a carbonate-based solvent because of poor ionic conductivity and limited environmental conditions. One electrode assembly (jelly roll), which uses graphite as a cathode, usually has a voltage of 3.3 V or higher, and a voltage of 6.6 V or higher when connected in series with another electrode assembly (jelly roll) in any anode system. You cannot use it.
둘째, 두 개의 전극 조립체를 직렬 구조로 연결하는 경우 생기는 임밸런싱(imbalancing) 문제이다. 일반적인 LCO/Graphite 또는 NMC/Graphite를 이용하여 직렬구조 전지를 만들경우 두 젤리롤(전극조립체)간 임밸런싱 문제로 각각의 젤리롤의 전압의 차이가 발생할수 있으며 이는 하나의 젤리롤을 항상 과충전 또는 과방전하게 만들어 결국 전체 단전지의 열화를 가속화되게 된다. Second, an imbalancing problem occurs when two electrode assemblies are connected in series. In case of making a series battery using general LCO / Graphite or NMC / Graphite, there is an imbalance between two jelly rolls (electrode assembly), which can cause the difference in voltage of each jelly roll. It causes overdischarge and ultimately accelerates deterioration of the whole unit cell.
도면 9에서 일반적인 NMC/Graphite 셀의 경우 0.2V의 충전 차이로 인해 20% 충전 용량 차이가 나는 것을 알 수 있다. 전지 내부에 두 개의 전극 조립체가 직렬로 연결되어 있어 임밸런싱을 억제할 추가적인 외부보호 회로를 전지내에 구성하기에도 어려움이 있으며 케미컬 셔틀 (chemical Shuttle)과 같은 화학적인 방법으로 전극 조립체(젤리롤) 각각의 과충전과 과방전을 케미컬 셔틀의 산화와 환원으로 억제할수는 있으나 현재 사용 가능한 케미컬 셔틀의 사용범위는 4V를 넘지 못하고 기타 성능을 열화시킬 수 있는 문제점이 있다. In FIG. 9, it can be seen that a typical NMC / Graphite cell has a 20% charge capacity difference due to a 0.2V charge difference. Since the two electrode assemblies are connected in series inside the cell, it is difficult to construct additional external protection circuits in the cell to suppress the imbalance, and each of the electrode assemblies (jelly rolls) may be chemically applied, such as a chemical shuttle. Overcharge and overdischarge can be suppressed by the oxidation and reduction of the chemical shuttle, but the currently available range of the chemical shuttle does not exceed 4V and there is a problem that can degrade other performance.
또한 두개의 전극 조립체(젤리롤)을 연결할 시 병렬로는 구조가 간단하나 직렬로 연결시는 구조가 복잡해져 일반적인 전극형태로 직렬구조를 만들기에는 어려움이 있었다.In addition, when connecting the two electrode assembly (jelly roll) in parallel, the structure is simple, but when connected in series it is difficult to make a serial structure in the form of a common electrode.
본 발명의 실시 예에 따른 리튬 이차 전지(100)는 새로운 형태의 직렬 구조가 적용되어 상기한 두 가지 문제점들과 직렬구조 연결시 구조적 복잡함을 해소한 것이다.Lithium secondary battery 100 according to an embodiment of the present invention is a new type of serial structure is applied to solve the above two problems and the structural complexity when connected in series.
즉 본 발명의 실시 예에 따른 리튬 이차 전지(100)는, LTO 음극활물질과 LFP 양극활물질을 구비하는 제1 전극 조립체(110)와 제2 전극 조립체(120)가 적층되도록 구비되고, 새로운 형태의 직렬 구조로 서로 연결됨으로써, 일반적인 소형 전지로 이용 가능한 대략 4.4V 이내, 바람직하게 3.6~3.9V의 정격 전압을 가지게 되며, 종래 이차 전지보다 우수한 충전 및 저온 특성과 장수명 그리고 기계적 열적 안전성을 가지며 또한 단전지로 일반적 전자기기(Consumer electronics)에 이용 가능하다.That is, the lithium secondary battery 100 according to the embodiment of the present invention is provided such that the first electrode assembly 110 and the second electrode assembly 120 including the LTO anode active material and the LFP cathode active material are stacked, and have a new shape. By being connected to each other in series, they have a rated voltage of approximately 4.4V, preferably 3.6 to 3.9V, which can be used as a general small battery, and have better charging and low temperature characteristics, longer life, and mechanical and thermal stability than conventional secondary batteries. It can be used for general consumer electronics.
또한 본 발명의 실시 예에 따른 리튬 이차 전지(100)는, 충방전 말단에서 급격한 전위 변화를 일으키는 LFP, LTO 물질 특성을 이용한 자가 전위 조절 특성으로 제1 전극 조립체(110)와 제2 전극 조립체(120) 간 전압 차이를 최소화하며 두 전극 조립체(젤리롤)간 전위 균형을 계속적으로 유지할 수 있다. 도면 9 그래프에서 보듯이 NMC/Graphite 셀 대비 충전 및 방전시 두 전극 조립체 (젤리롤)간 전위 차이로 인한 용량 차이를 최소화할 수 있다.In addition, the lithium secondary battery 100 according to an exemplary embodiment of the present invention may have a self-potential control characteristic using LFP and LTO material characteristics, which cause a sudden change in potential at the end of charge and discharge. 120, the voltage difference between the two electrode assemblies (jelly roll) can be kept to a minimum. As shown in the graph of FIG. 9, the capacity difference due to the potential difference between the two electrode assemblies (jelly roll) during charging and discharging compared to the NMC / Graphite cell can be minimized.
또한 본 발명의 실시 예에 따른 리튬 이차 전지(100)는, 단순히 두 개의 단전지가 직렬 구조로 연결되는 것과 대비하면, 양극/음극 터미널 탭 단자와 케이스를 이루는 파우치 또는 메탈의 양이 줄어들어 원가 절감이 가능하고, 대략 3% 정도의 에너지 밀도가 증가하는 효과가 있다.In addition, the lithium secondary battery 100 according to the embodiment of the present invention, in contrast to simply connecting two unit cells in series, the amount of pouch or metal constituting the positive electrode / negative electrode terminal tab terminal and the case is reduced to reduce the cost It is possible to increase the energy density of about 3%.
이와 더불어, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는 기존의 생산 공정을 통해 제작될 수 있으며, 제작시 추가 부품이나 기기가 필요 없고, 와인딩 방식과 스태킹 방식 모두를 통해 제작될 수 있다.In addition, the lithium secondary battery 100 according to the exemplary embodiment of the present invention may be manufactured through an existing production process, and does not require additional parts or devices during manufacturing, and may be manufactured through both a winding method and a stacking method. .
이하 도2a, 도2b, 도2c 및 도5를 참고하여 제1 전극 조립체(110)와 제2 전극 조립체(120)의 구성에 대해 상세 설명한다.Hereinafter, the configuration of the first electrode assembly 110 and the second electrode assembly 120 will be described in detail with reference to FIGS. 2A, 2B, 2C, and 5.
먼저 도2a, 도2b, 도2c 및 도3을 참고하여 제1 전극 조립체(110)의 구성에 대해 상세 설명한다. 도2a는 제1 전극 조립체(110)의 양극 극판(111: cathode electrode)의 평면도이고, 도2b는 제1 전극 조립체(110)의 음극 극판(113: anode electrode)의 평면도이며, 도2c는 제1 전극 조립체(110)의 양극 극판(111)과 음극 극판(113)이 적층된 상태를 보여주는 평면도이다. 도3은 제1 전극 조립체(110)의 단면도이다.First, a configuration of the first electrode assembly 110 will be described in detail with reference to FIGS. 2A, 2B, 2C, and 3. FIG. 2A is a plan view of a cathode electrode 111 of the first electrode assembly 110, FIG. 2B is a plan view of an anode electrode 113 of the first electrode assembly 110, and FIG. 1 is a plan view illustrating a state in which the positive electrode plate 111 and the negative electrode plate 113 of the electrode assembly 110 are stacked. 3 is a cross-sectional view of the first electrode assembly 110.
제1 전극 조립체(110)는, 양극 극판(111), 음극 극판(113), 분리막(115)을 포함하여 구성될 수 있다.The first electrode assembly 110 may include a positive electrode plate 111, a negative electrode plate 113, and a separator 115.
도2a에서, 양극 극판(111)의 좌측면에는 양극탭(cT1)이 돌출 형성될 수 있다. 여기서, 양극탭(cT1)은 양극 극판(111)의 좌측면에서 상측(도3 기준)에 치우쳐 형성될 수 있다.In FIG. 2A, a positive electrode tab cT1 may protrude from a left side of the positive electrode plate 111. In this case, the positive electrode tab cT1 may be formed on the upper side (refer to FIG. 3) on the left side of the positive electrode plate 111.
도2b에서, 음극 극판(113)의 좌측면에는 직렬연결탭(aT1)이 돌출 형성될 수 있다. 여기서, 직렬연결탭(aT1)은 음극 극판(113)의 좌측면 중앙 부분에 형성될 수 있다. 직렬연결탭(aT1)은 양극탭(cT1)보다 크기가 작게 형성되는 것이 바람직하다.In FIG. 2B, a series connection tab aT1 may protrude from the left side of the negative electrode plate 113. Here, the series connection tab aT1 may be formed at the central portion of the left side of the negative electrode plate 113. The series connection tab aT1 is preferably formed smaller in size than the positive electrode tab cT1.
도2c에서, 양극 극판(111)과 음극 극판(113)이 적층된 상태를 확인할 수 있다. 여기서, 양극탭(cT1)과 직렬 연결탭(aT1)은 서로 겹치지 않는다. 양극 극판(111)과 음극 극판(113) 사이에는 분리막(115)이 구비되어 양극 극판(111)과 음극 극판(113)을 절연시킬 수 있다. 이는 도3에서 확인 가능하다.In FIG. 2C, the stacked state of the positive electrode plate 111 and the negative electrode plate 113 may be confirmed. Here, the positive electrode tab cT1 and the series connection tab aT1 do not overlap each other. A separator 115 is provided between the positive electrode plate 111 and the negative electrode plate 113 to insulate the positive electrode plate 111 and the negative electrode plate 113. This can be seen in FIG.
도3을 참고하면, 제1 전극 조립체(110)의 적층 구조를 확인할 수 있다. 양극 극판(111)은 양극 집전체(111a)와 양극탭(cT1)을 포함할 수 있다. 양극 집전체(111a)는 양극 극판(111)의 몸체를 구성하는 부분으로서, 도2a, 도2b, 도2c에서 본 바와 같이 사각 판 형상으로 형성될 수 있다. 양극 집전체(111a)는 알루미늄 또는 스테인레스 스틸 재질을 포함하여 구성되는 것이 바람직하다.Referring to FIG. 3, the stacked structure of the first electrode assembly 110 can be confirmed. The positive electrode plate 111 may include a positive electrode current collector 111 a and a positive electrode tab cT1. The positive electrode current collector 111 a is a part constituting the body of the positive electrode plate 111, and may be formed in a square plate shape as shown in FIGS. 2A, 2B, and 2C. The positive electrode current collector 111 a is preferably made of aluminum or stainless steel.
양극 집전체(111a)의 하면 및 상면에는 LFP 양극활물질(111b)을 포함한 슬러리(양극활물질, 바인더, 도전제가 용매에 분산된 형태)가 도포될 수 있다. 여기서, LFP 양극활물질(111b)은 리튬인산철(LiFePO4) 활물질을 말한다. LFP 양극활물질(111b)은 일반적으로 리튬 이차 전지의 양극을 형성하는 물질로서 이에 대한 상세 설명은 생략한다. 또한 LFP 양극활물질(111b)은 NMC, NCA, LCO, LMO 양극활물질 중 어느 하나로 대체 가능하다.A slurry (a cathode active material, a binder, and a conductive agent dispersed in a solvent) including the LFP cathode active material 111b may be applied to the lower surface and the upper surface of the cathode current collector 111a. Here, the LFP cathode active material 111b refers to a lithium iron phosphate (LiFePO 4) active material. The LFP cathode active material 111b is generally a material for forming a cathode of a lithium secondary battery, and a detailed description thereof will be omitted. In addition, the LFP cathode active material 111b may be replaced with any one of NMC, NCA, LCO, and LMO cathode active material.
양극탭(cT1)은 양극 집전체(111a)의 좌측면(도3 기준)으로부터 연장되어 형성될 수 있다. 양극탭(cT1)은 양극 집전체(111a)와 동일한 재질로 구성될 수 있다. 양극탭(cT1)은 양극활물질이 도포되지 않는다. 양극탭(cT1)은 별도의 전도성 접속 부품인 리드 탭(Lead Tab)과 연결되어 리튬 이차 전지(100)의 양극 터미널로 활용될 수 있다.The positive electrode tab cT1 may be formed to extend from the left side of the positive electrode current collector 111a (see FIG. 3). The positive electrode tab cT1 may be made of the same material as the positive electrode current collector 111a. The positive electrode tab cT1 is not coated with the positive electrode active material. The positive electrode tab cT1 may be connected to a lead tab, which is a separate conductive connection component, to be used as a positive electrode terminal of the lithium secondary battery 100.
음극 극판(113)은 음극 집전체(113a)와 직렬연결탭(aT1)을 포함할 수 있다. 음극 집전체(113a)는 음극 극판(113)의 몸체를 구성하는 부분으로서, 양극 집전체(111a)와 동일한 사각 판 형상으로 형성될 수 있다. 음극 집전체(113a)는 알루미늄, 구리, 또는 스테인레스 스틸 재질을 포함하여 구성되는 것이 바람직하다.The negative electrode plate 113 may include a negative electrode current collector 113 a and a series connection tab aT1. The negative electrode current collector 113 a is a part constituting the body of the negative electrode plate 113, and may be formed in the same square plate shape as the positive electrode current collector 111 a. The negative electrode current collector 113 a is preferably made of aluminum, copper, or stainless steel.
음극 집전체(113a)의 하면 및 상면에는 LTO 음극활물질을 포함한 슬러리(음극활물질, 바인더, 도전제가 용매에 분산된 형태)(113b)가 도포될 수 있다. On the lower surface and the upper surface of the negative electrode current collector 113a, a slurry (a negative electrode active material, a binder, and a conductive agent dispersed in a solvent) 113b including an LTO negative electrode active material may be applied.
여기서, LTO 음극활물질(113b)은 리튬티타늄산화물(Li4Ti5O12)을 말한다. LTO 음극활물질(113b)은 앞서 설명한 바 있으므로, 이에 대한 상세 설명은 생략한다.Here, the LTO anode active material 113b refers to lithium titanium oxide (Li 4 Ti 5 O 12). Since the LTO anode active material 113b has been described above, a detailed description thereof will be omitted.
직렬연결탭(aT1)은 음극 집전체(113a)의 좌측면(도3 기준)으로부터 연장되어 형성될 수 있다. 직렬연결탭(aT1)은 음극 집전체(113a)와 동일한 재질로 형성될 수 있다. 직렬연결탭(aT1)은 음극활물질이 도포되지 않는다. 직렬연결탭(aT1)은 양극탭(cT1)과 겹치지 않도록 형성될 수 있다. 직렬연결탭(aT1)은 양극탭(cT1)보다 크기가 작게 형성되는 것이 바람직하다. 직렬연결탭(aT1)은 제2 전극 조립체(120)의 직렬연결탭(aT2)과 직접적으로 연결되어, 제1 전극 조립체(110)와 제2 전극 조립체(120)를 새로운 형태의 직렬 구조로 연결시키는 역할을 수행한다.The series connection tab aT1 may be formed to extend from the left side (refer to FIG. 3) of the negative electrode current collector 113a. The series connection tab aT1 may be formed of the same material as the negative electrode current collector 113a. The series connection tab aT1 is not coated with the negative electrode active material. The series connection tab aT1 may be formed so as not to overlap the positive electrode tab cT1. The series connection tab aT1 is preferably formed smaller in size than the positive electrode tab cT1. The series connection tab aT1 is directly connected to the series connection tab aT2 of the second electrode assembly 120 to connect the first electrode assembly 110 and the second electrode assembly 120 in a new form of series structure. Play a role of
분리막(115)은 양극 극판(111)과 음극 극판(113) 사이에 구비되어 양극 극판(111)과 음극 극판(113)을 절연시킬 수 있다. 즉 분리막(115)은 양극 집전체(111a) 하면의 LFP 양극활물질(111b)과 음극 집전체(113a) 상면의 LTO 음극활물질(113b) 사이에 구비될 수 있다.The separator 115 may be provided between the positive electrode plate 111 and the negative electrode plate 113 to insulate the positive electrode plate 111 and the negative electrode plate 113. That is, the separator 115 may be provided between the LFP cathode active material 111b on the lower surface of the cathode current collector 111a and the LTO anode active material 113b on the upper surface of the anode current collector 113a.
분리막(115)은 전기적으로 양극 극판(111)과 음극 극판(113)을 분리시키며 내부 기공을 통해 리튬 이온을 통과시킬 수 있다. 분리막(115)은 보통 Polyolefine계(폴리에틸렌, 폴리프로필렌) 물질 또는 부직포를 이용하여 제작되며, 폴리비닐리덴 플로라이드(polyvinylidene fluoride), 폴리 에틸렌옥사이드(polyethylene oxide), 폴리아크릴로니트릴(polyacrylonitrile) 및 폴리비닐리덴 플로라이드 헥사플루오로프로필렌(polyvinylidene fluoride hexafluoropropylene) 중 어느 하나를 포함하여 구성될 수 있다.The separator 115 electrically separates the positive electrode plate 111 and the negative electrode plate 113 and may pass lithium ions through internal pores. The separator 115 is usually manufactured using a polyolefine-based (polyethylene, polypropylene) material or a nonwoven fabric, and includes polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, and poly It may comprise any one of polyvinylidene fluoride hexafluoropropylene (polyvinylidene fluoride hexafluoropropylene).
도4a, 도4b, 도4c 및 도5를 참고하여 제2 전극 조립체(120)의 구성에 대해 상세 설명한다. 도4a는 제2 전극 조립체(120)의 양극 극판(121)의 평면도이고, 도4b는 제2 전극 조립체(120)의 음극 극판(123)의 평면도이며, 도4c는 제2 전극 조립체(120)의 양극 극판(121)과 음극 극판(123)이 적층된 상태를 보여주는 평면도이다. 도5는 제2 전극 조립체(120)의 단면도이다.A configuration of the second electrode assembly 120 will be described in detail with reference to FIGS. 4A, 4B, 4C, and 5. 4A is a plan view of the positive electrode plate 121 of the second electrode assembly 120, FIG. 4B is a plan view of the negative electrode plate 123 of the second electrode assembly 120, and FIG. 4C is a second electrode assembly 120. Is a plan view showing a state in which the positive electrode plate 121 and the negative electrode plate 123 are stacked. 5 is a cross-sectional view of the second electrode assembly 120.
제2 전극 조립체(120)는, 양극 극판(121), 음극 극판(123), 분리막(125)을 포함하여 구성될 수 있다.The second electrode assembly 120 may include a positive electrode plate 121, a negative electrode plate 123, and a separator 125.
도4a에서, 양극 극판(121)의 좌측면에는 직렬연결탭(cT2)이 돌출 형성될 수 있다. 여기서, 연결탭(cT2)은 양극 극판(121)의 좌측면에서 중앙에 형성될 수 있다.In FIG. 4A, a series connection tab cT2 may protrude from the left side of the positive electrode plate 121. Here, the connection tab cT2 may be formed at the center of the left side of the positive electrode plate 121.
도4b에서, 음극 극판(123) 좌측면에는 음극탭(aT2)이 돌출 형성될 수 있다. 여기서, 음극탭(aT2)은 음극 극판(123)의 좌측면에서 하측(도4a, 도4b 및 도4c 기준)에 치우쳐 형성될 수 있다. 음극탭(aT2)은 직렬연결탭(cT2)보다 크기가 크게 형성되는 것이 바람직하다.In FIG. 4B, a negative electrode tab aT2 may protrude from the left side of the negative electrode plate 123. Here, the negative electrode tab aT2 may be formed to be biased downward (based on FIGS. 4A, 4B, and 4C) on the left side of the negative electrode plate 123. The negative electrode tab aT2 is preferably formed larger in size than the series connection tab cT2.
제4c에서, 양극 극판(121)과 음극 극판(123)이 적층된 상태를 확인할 수 있다. 여기서, 직렬연결탭(cT2)과 음극탭(aT2)은 서로 겹치지 않는다. 양극 극판(121)과 음극 극판(123) 사이에는 분리막(125)이 구비되어 양극 극판(121)과 음극 극판(123)을 절연시킬 수 있다. 이는 도5에서 확인 가능하다.In FIG. 4C, the stacked state of the positive electrode plate 121 and the negative electrode plate 123 may be confirmed. Here, the series connection tab cT2 and the negative electrode tab aT2 do not overlap each other. A separator 125 is provided between the positive electrode plate 121 and the negative electrode plate 123 to insulate the positive electrode plate 121 and the negative electrode plate 123. This can be seen in FIG.
도5를 참고하면, 제2 전극 조립체(120)의 적층 구조를 확인할 수 있다. 양극 극판(121)은 양극 집전체(121a)와 직렬연결탭(cT2)을 포함할 수 있다. 양극 집전체(121a)는 양극 극판(121)의 몸체를 구성하는 부분으로서, 도4a, 도4b 및 도4c에서 본 바와 같이 사각 판 형상으로 형성될 수 있다. 양극 집전체(121a)는 알루미늄 또는 스테인레스 스틸 재질을 포함하여 구성되는 것이 바람직하다.Referring to FIG. 5, the stacked structure of the second electrode assembly 120 may be confirmed. The positive electrode plate 121 may include a positive electrode current collector 121 a and a series connection tab cT2. The positive electrode current collector 121 a is a part constituting the body of the positive electrode plate 121, and may be formed in a square plate shape as shown in FIGS. 4A, 4B, and 4C. The positive electrode current collector 121 a may be made of aluminum or stainless steel.
양극 집전체(121a)의 하면 및 상면에는 LFP 양극활물질(121b)을 포함한 슬러리(양극활물질, 바인더, 도전제가 용매에 분산된 형태)가 도포될 수 있다. 여기서, LFP 양극활물질(121b)은 제1 전극 조립체(110)의 양극 집전체(111a)에 도포되는 LFP 양극활물질(111b)과 동일하며, 이에 대한 상세 설명은 생략한다.On the lower surface and the upper surface of the positive electrode current collector 121a, a slurry including the LFP positive electrode active material 121b (a positive electrode active material, a binder, and a conductive agent dispersed in a solvent) may be applied. Here, the LFP cathode active material 121b is the same as the LFP cathode active material 111b applied to the cathode current collector 111a of the first electrode assembly 110, and a detailed description thereof will be omitted.
직렬연결탭(cT2)은 양극 집전체(121a)의 좌측면(도5 기준)으로부터 연장되어 형성될 수 있다. 직렬연결탭(cT2)은 양극 집전체(121a)와 동일한 재질로 구성될 수 있다. 직렬연결탭(cT2)은 양극활물질이 도포되지 않는다. 직렬연결탭(cT2)은 제1 전극 조립체(110)의 직렬연결탭(aT1)과 겹쳐져 접합될 수 있으며, 제2 전극 조립체(120)와 제1 전극 조립체(110)를 전기적으로 직렬 연결시킬 수 있다.The series connection tab cT2 may be formed to extend from the left side (refer to FIG. 5) of the positive electrode current collector 121a. The series connection tab cT2 may be made of the same material as the positive electrode current collector 121a. The series connection tab cT2 is not coated with the positive electrode active material. The series connection tab cT2 may be overlapped with the series connection tab aT1 of the first electrode assembly 110 to electrically connect the second electrode assembly 120 and the first electrode assembly 110 in series. have.
음극 극판(123)은 음극 집전체(123a)와 음극탭(aT2)을 포함할 수 있다. 음극 집전체(123a)는 음극 극판(123)의 몸체를 구성하는 부분으로서, 양극 극판(121)과 동일한 사각 판 형상으로 형성될 수 있다. 음극 집전체(123a)는 알루미늄, 구리 또는 스테인레스 스틸 재질을 포함하여 구성되는 것이 바람직하다.The negative electrode plate 123 may include a negative electrode current collector 123a and a negative electrode tab aT2. The negative electrode current collector 123a is a part constituting the body of the negative electrode plate 123 and may be formed in the same square plate shape as the positive electrode plate 121. The negative electrode current collector 123a may preferably be made of aluminum, copper, or stainless steel.
음극 집전체(123a)의 하면 및 상면에는 LTO 음극활물질(123b)을 포함한 슬러리(음극활물질, 바인더, 도전제가 용매에 분산된 형태)가 도포될 수 있다. 여기서, LTO 음극활물질(123b)은 제1 전극 조립체(110)의 음극 집전체(113a)에 도포되는 LTO 음극활물질(113b)과 동일하며, 이에 대한 상세 설명은 생략한다.On the lower surface and the upper surface of the negative electrode current collector 123a, a slurry including the LTO negative electrode active material 123b (a negative electrode active material, a binder, and a conductive agent dispersed in a solvent) may be applied. Here, the LTO negative electrode active material 123b is the same as the LTO negative electrode active material 113b applied to the negative electrode current collector 113a of the first electrode assembly 110, and a detailed description thereof will be omitted.
음극탭(aT2)은 음극 집전체(123a)의 좌측면으로부터 연장되어 형성될 수 있다. 음극탭(aT2)은 음극 집전체(123a)와 동일한 재질로 형성될 수 있다. 음극탭(aT2)은 음극활물질이 도포되지 않는다. 음극탭(aT2)은 직렬연결탭(cT2)과 겹치지 않도록 형성될 수 있다. 음극탭(aT2)은 직렬연결탭(cT2)보다 크기가 크게 형성되는 것이 바람직하다. 음극탭(aT2)은 별도의 전도성 접속 부품인 리드 탭(Lead tab)과 연결되어 리튬 이차 전지(100)의 음극 터미널로 활용될 수 있다.The negative electrode tab aT2 may be formed to extend from the left side of the negative electrode current collector 123a. The negative electrode tab aT2 may be formed of the same material as the negative electrode current collector 123a. The negative electrode tab aT2 is not coated with the negative electrode active material. The negative electrode tab aT2 may be formed so as not to overlap the series connection tab cT2. The negative electrode tab aT2 is preferably formed larger in size than the series connection tab cT2. The negative electrode tab aT2 may be connected to a lead tab, which is a separate conductive connection component, to be used as a negative electrode terminal of the lithium secondary battery 100.
분리막(125)은 양극 극판(121)과 음극 극판(123) 사이에 구비되어 양극 극판(121)과 음극 극판(123)을 절연시킬 수 있다. 즉 분리막(125)은 양극 집전체(121a) 하면의 LFP 양극활물질(121b)과 음극 집전체(123a) 상면의 LTO 음극활물질(123b) 사이에 구비될 수 있다. 분리막(125)은 앞서 설명한 바 있는 제1 전극 조립체(110)의 분리막(115)과 동일한 재질로 구성될 수 있다.The separator 125 may be provided between the positive electrode plate 121 and the negative electrode plate 123 to insulate the positive electrode plate 121 and the negative electrode plate 123. That is, the separator 125 may be provided between the LFP cathode active material 121b on the bottom surface of the cathode current collector 121a and the LTO anode active material 123b on the top surface of the anode current collector 123a. The separator 125 may be made of the same material as the separator 115 of the first electrode assembly 110 described above.
도6을 참고하면, 본 발명의 실시 예에 따른 적층(Stacking)구조의 제1 전극 조립체와 제2 전극 조립체로 구성된 각형(파우치 또는 메탈 케이스) 형태의 리튬 이차 전지의 평면도를 확인할 수 있다.Referring to FIG. 6, a plan view of a lithium secondary battery in the form of a square (pouch or metal case) including a first electrode assembly and a second electrode assembly having a stacking structure according to an embodiment of the present invention can be seen.
제1 전극 조립체(110)와 제2 전극 조립체(120)는 전극 조립체 분리막(미도시)을 사이에 두고 적층될 수 있다. 이때 제1 전극 조립체(110)의 양극 극판(111)은 최상단에 배치된다.The first electrode assembly 110 and the second electrode assembly 120 may be stacked with an electrode assembly separator (not shown) therebetween. At this time, the positive electrode plate 111 of the first electrode assembly 110 is disposed at the top.
제1 전극 조립체(110)의 양극탭(cT1)과 제2 전극 조립체(120)의 직렬연결탭(cT2)이 겹쳐져 접합될 수 있고, 이를 통해 제1 전극 조립체(110)와 제2 전극 조립체(120)가 새로운 형태의 직렬 구조로 연결된다.The positive electrode tab cT1 of the first electrode assembly 110 and the series connection tab cT2 of the second electrode assembly 120 may overlap each other, and thus, the first electrode assembly 110 and the second electrode assembly ( 120 is connected to a new type of serial structure.
사각 형상의 케이스(P)는 제1 전극 조립체(110), 제2 전극 조립체(120)와 전극 조립체 분리막을 수용할 수 있다. 여기서, 사각 형상의 케이스(P)는 파우치, 메탈캔 등을 포함할 수 있다. The quadrangular case P may accommodate the first electrode assembly 110, the second electrode assembly 120, and the electrode assembly separator. Here, the rectangular case P may include a pouch, a metal can, or the like.
양극탭(cT1)은, 별도의 전도성 접속 부품인 리드 탭(lead tab)과 연결되어 사각 형상의 케이스(P) 외부에 돌출 배치될 수 있으며, 리튬 이차 전지(100)의 양극 터미널로 이용될 수 있다. 또한 음극탭(aT2)은 별도의 전도성 접속 부품인 리드 탭(lead tab)과 연결되어 사각 형상의 케이스(P) 외부에 돌출 배치될 수 있으며, 리튬 이차 전지(100)의 음극 터미널로 이용될 수 있다. 사각 형상의 케이스(P) 내부에는 리튬 이온의 원활한 이동을 위해 액체 전해질 또는 폴리머 등의 Gel 형태의 전해액 또는 고체 전해질이 구비될 수 있다.The positive electrode tab cT1 may be connected to a lead tab, which is a separate conductive connection part, to protrude and be disposed outside the rectangular case P, and may be used as a positive electrode terminal of the lithium secondary battery 100. have. In addition, the negative electrode tab aT2 may be connected to a lead tab, which is a separate conductive connection part, to be protruded outside the rectangular case P, and used as a negative electrode terminal of the lithium secondary battery 100. have. In the case P of the rectangular shape may be provided with a gel electrolyte or a solid electrolyte such as a liquid electrolyte or a polymer for the smooth movement of lithium ions.
한편, 제1 전극 조립체(110)와 제2 전극 조립체(120) 각각은 전지 용량 증대를 위해 젤리롤 구조로 형성될 수 있다. 여기서, 젤리롤 구조는 두 가지 방식에 의해 형성될 수 있다.Meanwhile, each of the first electrode assembly 110 and the second electrode assembly 120 may be formed in a jellyroll structure to increase battery capacity. Here, the jellyroll structure can be formed in two ways.
첫번째는, 제1 전극 조립체(110)와 제2 전극 조립체(120) 각각이 복수개 구비되고, 복수의 제1 전극 조립체(110)가 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성되고, 복수의 제2 전극 조립체(120)가 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성되는 것이다. 이후 젤리롤 구조의 제1 전극 조립체(110)가 전극 조립체 분리막을 사이에 두고 젤리롤 구조의 제2 전극 조립체(120) 상에 적층되면, 상기한 바 있는 각형(파우치 또는 메탈 케이스) 형태의 리튬 이차 전지(110)가 완성된다.First, a plurality of first electrode assemblies 110 and second electrode assemblies 120 are provided in plurality, and the plurality of first electrode assemblies 110 are stacked on each other with a separator therebetween to form a jellyroll structure. The second electrode assembly 120 is laminated to each other with a separator therebetween to form a jellyroll structure. Subsequently, when the first electrode assembly 110 having the jellyroll structure is stacked on the second electrode assembly 120 having the jellyroll structure with the electrode assembly separator interposed therebetween, lithium in the form of a square (pouch or metal case) as described above may be used. The secondary battery 110 is completed.
두번째 젤리롤 구조는 하기 도7a, 도7b 및 도7c를 통해 확인할 수 있다. The second jellyroll structure can be seen through FIGS. 7A, 7B and 7C.
도7a, 도7b 및 도7c를 참고하면, 본 발명의 실시 예에 따른 와인딩 구조의 제1 전극 조립체와 제2 전극 조립체 및, 각형(파우치 또는 메탈 케이스) 형태의 리튬 이차 전지의 단면도 및 사시도를 확인할 수 있다.7A, 7B, and 7C, cross-sectional views and perspective views of a first electrode assembly and a second electrode assembly of a winding structure and a lithium secondary battery in a square (pouch or metal case) form according to an embodiment of the present invention are shown. You can check it.
도7a는 와인딩 구조의 제1 전극 조립체의 단면도와 사시도이고, 도7b는 와인딩 구조의 제2 전극 조립체의 단면도와 사시도이며, 도7c는 제1 전극 조립체가 제2 전극 조립체 상에 적층된 각형 형태의 리튬 이차 전지의 사시도이다.7A is a cross-sectional view and a perspective view of the first electrode assembly of the winding structure, and FIG. 7B is a cross-sectional view and a perspective view of the second electrode assembly of the winding structure, and FIG. 7C is a rectangular shape in which the first electrode assembly is stacked on the second electrode assembly. A perspective view of a lithium secondary battery.
도7a에서 제1 전극 조립체(110)는 와인딩되어 젤리롤 구조를 형성하고, 도7b에서 제2 전극 조립체(120)는 와인딩되어 젤리롤 구조를 형성한다.In FIG. 7A, the first electrode assembly 110 is wound to form a jellyroll structure, and in FIG. 7B, the second electrode assembly 120 is wound to form a jellyroll structure.
도7c에서 리튬 이차 전지(100)는, 제1 전극 조립체(110)가 제2 전극 조립체(120) 상에 적층되고, 직렬연결탭(aT1, cT2)이 서로 결합되어 제1 전극 조립체(110)와 제2 전극 조립체(120)가 직렬 구조로 연결됨으로써 최종 완성될 수 있다. 이때 제1 전극 조립체(110)의 양극탭(cT1)은 리드 탭(L1)과 연결되어 양극 터미널로 이용되고, 제2 전극 조립체(120)의 음극탭(aT2)은 리드 탭(L2)과 연결되어 음극 터미널로 이용된다.In FIG. 7C, in the lithium secondary battery 100, the first electrode assembly 110 is stacked on the second electrode assembly 120, and the series connection tabs aT1 and cT2 are coupled to each other to form the first electrode assembly 110. And the second electrode assembly 120 may be finally completed by connecting in series. In this case, the positive electrode tab cT1 of the first electrode assembly 110 is connected to the lead tab L1 and used as the positive electrode terminal, and the negative electrode tab aT2 of the second electrode assembly 120 is connected to the lead tab L2. It is used as a negative terminal.
도8a, 도8b 및 도8c를 참고하면, 원통(Cylindrical) 형태의 리튬 이차 전지(100)를 확인할 수 있다. 도8A는 원통 형태의 리튬 이차 전지(100)의 내부 원기둥을 구성하는 제1 전극 조립체(110)의 사시도이고, 도8B는 원통 형태의 리튬 이차 전지(100)의 외부 원기둥을 구성하는 제2 전극 조립체(120)의 사시도이며, 도8C는 원통 형태의 리튬 이차 전지(100)의 사시도이다.Referring to FIGS. 8A, 8B, and 8C, a lithium secondary battery 100 having a cylindrical shape may be identified. 8A is a perspective view of the first electrode assembly 110 constituting the inner cylinder of the cylindrical lithium secondary battery 100, and FIG. 8B is a second electrode constituting the outer cylinder of the cylindrical lithium secondary battery 100. 8 is a perspective view of a cylindrical lithium secondary battery 100 in a cylindrical form.
도8a에서 제1 전극 조립체(110)는 맨드릴(Mandril)을 이용하여 양극 극판, 음극 극판 및 분리막을 잡고 와인딩 처리함으로써 내부 원기둥으로 형성될 수 있다.In FIG. 8A, the first electrode assembly 110 may be formed as an inner cylinder by holding and winding a positive electrode plate, a negative electrode plate, and a separator using a mandrel.
도8b에서 제2 전극 조립체(120)는, 제1 전극 조립체(120)의 외주를 감싸도록 양극 극판, 음극 극판 및 분리막이 와인딩 처리됨으로써 외부 원기둥으로 형성될 수 있다.In FIG. 8B, the second electrode assembly 120 may be formed as an outer cylinder by winding the positive electrode plate, the negative electrode plate, and the separator so as to surround the outer circumference of the first electrode assembly 120.
도8c에서 원통 형태의 리튬 이차 전지(100)는, 내부 원기둥인 제1 전극 조립체(110)를 외부 원기둥인 제2 전극 조립(120)가 둘러싸 결합되고, 직렬연결탭(aT1, cT2)이 서로 결합되어 제1 전극 조립체(110)와 제2 전극 조립체(120)가 직렬 구조로 연결됨으로써 최종 완성될 수 있다.In the cylindrical lithium secondary battery 100 of FIG. 8C, the first electrode assembly 110, which is an inner cylinder, is surrounded by a second electrode assembly 120 that is surrounded by an outer cylinder, and the series connection tabs aT1 and cT2 are connected to each other. The first electrode assembly 110 and the second electrode assembly 120 may be combined and finally completed in series.
여기서, 제2 전극 조립체(120)의 음극탭(aT2)은 제1 전극 조립체(110)의 양극탭(cT1), 제1 전극 조립체의 직렬연결탭(aT1) 및, 제2 전극 조립체(120)의 직렬연결탭(cT2)이 형성된 방향과 반대 방향에 형성될 수 있다. Here, the negative electrode tab aT2 of the second electrode assembly 120 includes the positive electrode tab cT1 of the first electrode assembly 110, the series connection tab aT1 of the first electrode assembly, and the second electrode assembly 120. May be formed in a direction opposite to the direction in which the series connection tabs cT2 are formed.
즉 제1 전극 조립체(110)의 양극탭(cT1), 제1 전극 조립체(110)의 직렬연결탭(aT1) 및, 제2 전극 조립체(120)의 직렬연결탭(cT2)은, 원통 형태의 리튬 이차 전지(100)의 상단 부분에 돌출되도록 배치될 수 있고 제1 전극 조립체(110)의 양극탭(cT1)은 상부 캡어세이(Cap assy')와 연결되어 전지의 양극 터미널을 형성한다. 제2 전극 조립체(120)의 음극탭(aT2)은 원통 형태의 리튬 이차 전지(100)의 하단 부분에 돌출되도록 배치되어 원통형 메탈켄에 하부와 연결되어 메탈켄 자체가 음극 전위를 형성하도록 하며 상부 캡과 하부의 메탈켄은 절연 플라스틱으로 절연되어 양극 및 음극 터미널을 전기적으로 절연시킬수 있다.That is, the positive electrode tab cT1 of the first electrode assembly 110, the series connection tab aT1 of the first electrode assembly 110, and the series connection tab cT2 of the second electrode assembly 120 may have a cylindrical shape. The positive electrode tab cT1 of the first electrode assembly 110 may be disposed to protrude from an upper portion of the lithium secondary battery 100 and may be connected to an upper cap assy 'to form a positive electrode terminal of the battery. The negative electrode tab aT2 of the second electrode assembly 120 is disposed to protrude on the lower portion of the cylindrical lithium secondary battery 100 so as to be connected to the lower portion of the cylindrical metalken so that the metalken itself forms a negative electrode potential. The cap and the lower metalken can be insulated with insulating plastic to electrically insulate the positive and negative terminals.
한편, 원통 형태의 리튬 이차 전지(100) 상단 및 하단에는 제1 전극 조립체(110)의 양극탭(cT1), 제1 전극 조립체(110)의 직렬연결탭(aT1), 제2 전극 조립체(120) 직렬연결탭(cT2) 및, 제2 전극 조립체(120)의 음극탭(aT2)을 보호할 수 있도록 원형의 보호캡(미도시)이 결합될 수 있다. Meanwhile, the upper and lower ends of the cylindrical lithium secondary battery 100 have a positive electrode tab cT1 of the first electrode assembly 110, a series connection tab aT1 of the first electrode assembly 110, and a second electrode assembly 120. A circular protective cap (not shown) may be coupled to protect the series connection tab cT2 and the negative electrode tab aT2 of the second electrode assembly 120.
도9는 본 발명의 실시 예에 따른 제1, 제2 전극 조립체 간의 셀프 밸런싱 개념을 보여주는 그래프이다.9 is a graph illustrating a self-balancing concept between the first and second electrode assemblies according to an exemplary embodiment of the present invention.
도9를 참고하면, 본 발명의 실시 예에 따른 리튬 이차 전지(100:S2 Cell(LFP/LTO))의 제1, 제2 전극 조립체(110, 120) 간 임밸런싱(Imbalancing)을 억제하고, 셀프 밸런싱(Self-balancing)의 개념을 보여주고 있다.9, imbalancing between the first and second electrode assemblies 110 and 120 of the lithium secondary battery 100 (S2 Cell (LFP / LTO)) according to an embodiment of the present invention is suppressed. Demonstrates the concept of self-balancing.
이하 본 발명의 실시 예에 따른 리튬 이차 전지(100)의 셀프 밸런싱 특성에 대해 종래 NMC/Graphite 이차 전지와 비교 설명한다.Hereinafter, the self-balancing characteristics of the lithium secondary battery 100 according to the embodiment of the present invention will be described in comparison with the conventional NMC / Graphite secondary battery.
먼저, 종래 NMC/Graphite 이차 전지의 경우, 0.2V 전압 차이(voltage difference)로 인해 20%의 충전 용량 차이(capacity difference)가 난다. 반면에, 본 발명의 실시 예에 따른 리튬 이차 전지(100)의 경우, 0.2V 전압 차이로 인해 2%의 충전 용량 차이가 난다. 이는 충전 말단 구간에서의 급격한 전위 변화로 충전량 차이를 최대한 억제하는 셀프 밸런싱이 일어남을 보여준다.First, in the case of the conventional NMC / Graphite secondary battery, there is a capacity difference of 20% due to the 0.2V voltage difference (voltage difference). On the other hand, in the case of the lithium secondary battery 100 according to the embodiment of the present invention, the charge capacity difference of 2% due to the 0.2V voltage difference. This shows that self-balancing occurs to minimize the difference in filling amount due to a sudden change of potential in the charging end section.
또한, 종래 NMC/Graphite 이차 전지의 경우, 0.1V 전압 차이로 인해 27%의 방전 용량 차이가 난다. 반면에, 본 발명의 실시 예에 따른 리튬 이차 전지(100)의 경우, 0.1V 전압 차이로 인해 1% 미만의 방전 용량 차이가 난다. 이는 방전 말단 구간에서 셀프 밸런싱이 일어남을 보여준다.In addition, the conventional NMC / Graphite secondary battery, the discharge capacity difference of 27% due to the 0.1V voltage difference. On the other hand, the lithium secondary battery 100 according to the embodiment of the present invention, the discharge capacity difference of less than 1% due to the 0.1V voltage difference. This shows that self balancing occurs in the discharge end section.
이와 같이, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는 충전 및 방전시 말단에서 셀프 밸런싱이 일어나서, 종래 NMC/Graphite 이차 전지 대비 두 전극 조립체(젤리롤)간 전압 차이로 인한 용량 차이를 최소화할 수 있다.As such, the lithium secondary battery 100 according to the embodiment of the present invention has a self-balancing at the terminal during charging and discharging, and thus the capacity difference due to the voltage difference between the two electrode assemblies (jelly rolls) compared to the conventional NMC / Graphite secondary battery. It can be minimized.
이하 표1을 참조하여, 본 발명의 실시 예에 따른 리튬 이차 전지(100)의 상세 사양에 대해 설명한다.Hereinafter, with reference to Table 1, a detailed specification of the lithium secondary battery 100 according to an embodiment of the present invention will be described.
전지 종류(Battery Type)Battery Type 종래 기술(Current Technology)Current Technology 본 발명의 실시 예에 따른 리튬 이차 전지Lithium secondary battery according to an embodiment of the present invention
리튬 코발트 산화물(Lithium cobalt Oxide)Lithium cobalt oxide 리튬 니켈망간코발트(Lithium Nickel Manganese Cobalt Oxide)Lithium Nickel Manganese Cobalt Oxide 리튬 이온인산(Lithium Iron Phosphate)Lithium Iron Phosphate 리튬 타이타 네이트 (Lithium TitanateLithium Titanate
정격 전압(Nominal voltage)Nominal voltage 3.8V3.8 V 3.7V3.7 V 3.3V3.3V 1.9V1.9V 3.8V3.8 V
충전 속도(Charge Rate)Charge Rate 0.7C0.7C 0.7C0.7 C 1C1C 5C5C 5C 5C
충방전 수명(cycle life)Cycle life 500 ~ 1,000 회500 to 1,000 times 1,000 ~ 2,000회1,000 to 2,000 times 1,000 ~ 2,000회1,000 to 2,000 times 3,000 ~ 7,000회3,000 to 7,000 3,000 ~ 7,000회3,000 to 7,000
열폭주(Thermal Runaway)Thermal Runaway 150°C150 ° C 190°C190 ° C 230°C230 ° C >300°C> 300 ° C >300°C> 300 ° C
응용분야(Application)Application 모바일, 태블릿, 랩탑, 카메라Mobile, tablet, laptop, camera 모바일 디바이스, 전기차, 산업용 전지Mobile devices, electric vehicles, industrial batteries 전기차, 전기바이크, 산업용 전지Electric cars, electric bikes, industrial batteries 전기저장 시스템(ESS),전기차, 태양열 전지Electric Storage System (ESS), Electric Vehicles, Solar Cells 전기 저장 시스템(ESS), 태양열 전지, 전기차, 전기 바이크, 산업용전지Electric Storage System (ESS), Solar Cell, Electric Vehicle, Electric Bike, Industrial Battery
표1에 나타난 바와 같이, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는 제1 전극 조립체(110)의 직렬연결탭(aT1)과 제2 전극 조립체(120)의 직렬연결탭(cT2)이 직접적으로 연결되는 새로운 형태의 직렬 구조로 구성됨으로써, LTO와 LFP 각각을 음극활물질과 양극활물질로 이용할 시 발생되는 각종 문제점을 해결할 수 있고, 이를 통해 종래 LTO 음극활물질을 이용한 리튬 이차 전지의 낮은 정격 전압(1.9~2.4V) 문제를 해결할 수 있는 높은 정격 전압(3.8V)을 가질 수 있다.As shown in Table 1, the lithium secondary battery 100 according to the embodiment of the present invention has a series connection tab aT1 of the first electrode assembly 110 and a series connection tab cT2 of the second electrode assembly 120. By constructing a new direct-connected series structure, it is possible to solve various problems caused by using LTO and LFP as anode active material and cathode active material, thereby lowering the rating of a lithium secondary battery using a conventional LTO anode active material. It can have a high rated voltage (3.8V) to solve the voltage (1.9 ~ 2.4V) problem.
또한, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는 종래 어느 종류의 이차 전지보다 빠른 충전 속도(예컨대, 5C)를 가질 수 있으며 또한 저온에서도 월등한 충전 성능을 가지며, 기존 이차 전지보다 최소 3배 이상의 수명 특성을 가질 수 있으며 300도 이상의 고온에서도 열폭주를 보이지 않는 안전성을 보여준다. In addition, the lithium secondary battery 100 according to the embodiment of the present invention may have a faster charging speed (for example, 5C) than any conventional secondary battery, and also has superior charging performance even at low temperatures, and is smaller than conventional secondary batteries. It can have more than 3 times longer lifespan and shows safety that shows no thermal runaway even at high temperatures of more than 300 degrees.
이하 도10 에서 도12를 참조하여, 본 발명의 실시 예에 따른 리튬 이차 전지(100)와 종래 이차 전지의 성능에 대해 비교 설명한다.10 to 12, the performance of the lithium secondary battery 100 and the conventional secondary battery according to an embodiment of the present invention will be described.
도10은 이차 전지의 음극활물질로 활용되는 LTO와 흑연(Graphite)의 충전속도에 따른 충전율(Capacity Retention)을 보여주는 그래프이다.FIG. 10 is a graph showing capacity retention according to charge rates of LTO and graphite used as a negative electrode active material of a secondary battery.
도10의 그래프에서, LTO와 흑연은 저율의 충전시(0.5C 이하), 비전류(specific current)가 100 mA/g 이하로 흐르는 경우 서로 유사한 충전율을 가지게 되나, 고율의 전류로 충전시(2C 이상), 급격한 충전율 차이를 보이며, 비전류가 1000 mA/g 이상으로 흐를 경우 7배의 이상의 충전율 차이를 보여준다. 이와 같이 급속 충전의 문제를 해결하기 위한 이차 전지의 경우 본 발명의 전지를 이용할 경우 개선이 가능하다. In the graph of FIG. 10, LTO and graphite have a similar charging rate when low-rate charging (0.5C or less) and a specific current flows below 100 mA / g, but when charging with a high-rate current (2C Above), it shows a sudden difference in charging rate, and when the specific current flows over 1000 mA / g, it shows more than 7 times of charging rate difference. As described above, the secondary battery for solving the problem of rapid charging can be improved by using the battery of the present invention.
도11은 종래 이차 전지와 본 발명의 실시 예에 따른 리튬 이차 전지의 온도에 따른 방전 특성을 보여주는 그래프이다. 여기서, 종래 이차 전지는 NMC/Graphite 이차 전지, LFP/Graphite 이차 전지, NMC/LTO 이차 전지를 예로 든다.11 is a graph showing the discharge characteristics according to the temperature of the conventional secondary battery and the lithium secondary battery according to an embodiment of the present invention. Here, the conventional secondary battery includes an NMC / Graphite secondary battery, an LFP / Graphite secondary battery, and an NMC / LTO secondary battery.
도11의 그래프에서, NMC/Graphite 이차 전지, LFP/Graphite 이차 전지, NMC/LTO 이차 전지 및 본 발명의 실시 예에 따른 리튬 이차 전지(LFP/LTO)는 상온부근에서 100%에 가까운 방전율을 보이고, 저온으로 갈수록 방전성능이 떨어지게 된다. 이때 본 발명의 실시 예에 따른 리튬 이차 전지(LFP/LTO)는 -30°C에서 대략 80% 방전율을 가짐으로써, 다른 종래 이차 전지보다 저온에서 높은 특성을 가지게 된다.In the graph of FIG. 11, the NMC / Graphite secondary battery, the LFP / Graphite secondary battery, the NMC / LTO secondary battery, and the lithium secondary battery (LFP / LTO) according to the embodiment of the present invention show a discharge rate close to 100% near room temperature. The lower the temperature, the lower the discharge performance. At this time, the lithium secondary battery (LFP / LTO) according to the embodiment of the present invention has a discharge rate of about 80% at -30 ° C, and thus has higher characteristics at a lower temperature than other conventional secondary batteries.
도12는 종래 이차 전지와 본 발명의 실시 예에 따른 리튬 이차 전지의 열폭주 성능을 보여주는 그래프이다. 여기서 종래 이차 전지는 LCO/Graphite 이차 전지, NMC/Graphite 이차 전지, LFP/Graphite 이차 전지를 예로 든다.12 is a graph showing the thermal runaway performance of a conventional secondary battery and a lithium secondary battery according to an embodiment of the present invention. Herein, the conventional secondary battery includes an LCO / Graphite secondary battery, an NMC / Graphite secondary battery, and an LFP / Graphite secondary battery.
도12의 그래프에서, LCO/Graphite 이차 전지는 상온부터 5°C/분 속도로 온도를 증가하며 열폭주 현상을 분석해 보면 대략 150°C 에 도달하는 경우, 열폭주 현상이 나타나게 된다.In the graph of Figure 12, the LCO / Graphite secondary battery increases the temperature at a rate of 5 ° C / min from room temperature and when the thermal runaway phenomenon is reached when the temperature reaches approximately 150 ° C, thermal runaway phenomenon will appear.
NMC/Graphite 이차 전지는 온도가 대략 190°C 에 도달하는 경우, 열폭주 현상이 나타나게 된다.When the NMC / Graphite secondary battery reaches a temperature of approximately 190 ° C thermal runaway phenomenon will appear.
LFP/Graphite 이차 전지는 온도가 대략 230°C 에 도달하는 경우, 열폭주 현상이 나타나게 된다.In the LFP / Graphite secondary battery, when the temperature reaches approximately 230 ° C., thermal runaway occurs.
반면에, 본 발명의 실시 예에 따른 리튬 이차 전지(LFP/LTO)는 충전온도가 250°C에 도달할 때까지 열폭주 현상이 나타나지 않는다.On the other hand, the lithium secondary battery (LFP / LTO) according to an embodiment of the present invention does not appear thermal runaway phenomenon until the charging temperature reaches 250 ° C.
이와 같이 본 발명의 실시 예에 따른 리튬 이차 전지는 종래 이차 전지보다 빠른 충전이 가능하고, 저온에서 종래 이차 전지보다 충전 및 방전 특성이 좋으며, 종래 이차 전지보다 열에 강한 장점이 있다.As described above, the lithium secondary battery according to the exemplary embodiment of the present invention may be charged faster than the conventional secondary battery, has better charge and discharge characteristics than the conventional secondary battery at low temperature, and has stronger heat resistance than the conventional secondary battery.
따라서, 본 발명의 실시 예에 따른 리튬 이차 전지(100)는 LTO 음극활물질의 우수한 온도 및 충방전 특성과 일반 전자기기(Consumer electronics)에 이용 가능한 정격 전압을 가질 수 있고, LTO 음극활물질의 구조적 안정성과 리튬석출을 막는 전기화학적 특성으로 인해 온도 상승으로 인한 폭발 위험이 감소될 수 있어, 전기 저장 시스템(ESS), 태양열 전지, 전기차, 전기 바이크, 산업용전지 등의 다양한 분야에 적용될 수 있다.Accordingly, the lithium secondary battery 100 according to the embodiment of the present invention may have excellent temperature and charge / discharge characteristics of the LTO anode active material and a rated voltage available for general electronics, and structural stability of the LTO anode active material. The risk of explosion due to temperature rise can be reduced due to the electrochemical properties that prevent over-liquidation and can be applied to various fields such as electric storage systems (ESS), solar cells, electric vehicles, electric bikes, industrial batteries and the like.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiments illustrated in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (14)

  1. 양극 터미널로 이용 가능한 양극탭이 형성되는 양극 극판, 직렬연결탭이 형성되는 음극 극판과, 양극 극판과 음극 극판 사이에 구비되는 분리막을 포함하여 구성되는 제1 전극 조립체; 및A first electrode assembly including a positive electrode plate having a positive electrode tab usable as a positive electrode terminal, a negative electrode plate having a series connection tab formed thereon, and a separator provided between the positive electrode plate and the negative electrode plate; And
    상기 제1 전극 조립체와 절연되도록 구비되는 제2 전극 조립체;A second electrode assembly provided to be insulated from the first electrode assembly;
    를 포함하고,Including,
    상기 제2 전극 조립체는, 직렬연결탭이 형성되는 양극 극판, 음극 터미널로 이용 가능한 음극탭이 형성되는 음극 극판과, 양극 극판과 음극 극판 사이에 구비되는 분리막을 포함하여 구성되고,The second electrode assembly includes a positive electrode plate in which a series connection tab is formed, a negative electrode plate in which a negative electrode tab usable as a negative electrode terminal is formed, and a separator provided between the positive electrode plate and the negative electrode plate,
    상기 제1 전극 조립체의 직렬연결탭은, 상기 제2 전극 조립체의 직렬 연결탭에 연결되며,The series connection tab of the first electrode assembly is connected to the series connection tab of the second electrode assembly,
    상기 제1 전극 조립체와 상기 제2 전극 조립체는 상기 직렬연결탭에 의해 직렬 구조로 연결되는 것인 리튬 이차 전지.And the first electrode assembly and the second electrode assembly are connected in series by the series connection tabs.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 전극 조립체와 상기 제2 전극 조립체 각각은 전지 용량 증대를 위해 복수개 구비되고,Each of the first electrode assembly and the second electrode assembly is provided in plurality in order to increase battery capacity.
    복수의 제1 전극 조립체는 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성되고,The plurality of first electrode assemblies are stacked on each other with a separator therebetween to form a jellyroll structure.
    복수의 제2 전극 조립체는 분리막을 사이에 두고 서로 적층되어 젤리롤 구조로 형성되는 것을 특징으로 하는 리튬 이차 전지.The plurality of second electrode assemblies are laminated to each other with a separator therebetween to form a jellyroll structure, characterized in that the lithium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 전극 조립체와 상기 제2 전극 조립체 각각은 와인딩되어 젤리롤 구조로 형성되는 것을 특징으로 하는 리튬 이차 전지.And each of the first electrode assembly and the second electrode assembly is wound to have a jellyroll structure.
  4. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 제1 전극 조립체는, 상기 제2 전극 조립체 상에 적층되도록 배치되며,The first electrode assembly is disposed to be stacked on the second electrode assembly,
    상기 제1, 제2 전극 조립체를 수용하는 사각 형상의 케이스를 더 포함하는 것을 특징으로 하는 리튬 이차 전지.Lithium secondary battery further comprises a case of a rectangular shape accommodating the first and second electrode assembly.
  5. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 제1 전극 조립체는 원기둥 형태로 변형되어 내부 원기둥을 구성하고,The first electrode assembly is deformed into a cylindrical shape to form an inner cylinder,
    상기 제2 전극 조립체는 상기 제1 전극 조립체의 외주를 둘러싸 외부 원기둥을 구성하며,The second electrode assembly surrounds the outer circumference of the first electrode assembly to form an outer cylinder,
    상기 제1, 제2 전극 조립체를 수용하는 원통 형상의 케이스를 더 포함하는 것을 특징으로 하는 리튬 이차 전지.And a cylindrical case accommodating the first and second electrode assemblies.
  6. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 제1 전극 조립체의 양극 극판은, LFP, NMC, NCA, LCO 양극활물질 중에서 어느 하나의 양극활물질이 도포되는 양극 집전체를 구비하고,The positive electrode plate of the first electrode assembly includes a positive electrode current collector to which any one positive electrode active material of LFP, NMC, NCA, LCO positive electrode active material is applied,
    상기 제1 전극 조립체의 양극탭은, 상기 양극활물질이 도포되지 않으며, 상기 제1 전극 조립체의 양극 집전체의 일측면으로부터 연장 형성되고, 양극 리드탭과 연결되어 양극 터미널로 이용되는 것을 특징으로 하는 리튬 이차 전지.The positive electrode tab of the first electrode assembly is not coated with the positive electrode active material, extends from one side of the positive electrode current collector of the first electrode assembly, and is connected to the positive electrode lead tab to be used as a positive electrode terminal. Lithium secondary battery.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 전극 조립체의 음극 극판은, LTO 음극활물질이 도포되는 음극 집전체를 구비하고,The negative electrode plate of the first electrode assembly includes a negative electrode current collector to which the LTO negative electrode active material is applied,
    상기 제1 전극 조립체의 직렬연결탭은, 상기 음극활물질이 도포되지 않으며, 상기 제1 전극 조립체의 음극 집전체의 일측면으로부터 연장 형성되는 것을 특징으로 하는 리튬 이차 전지.The series connection tab of the first electrode assembly is not coated with the negative electrode active material, and extends from one side of the negative electrode current collector of the first electrode assembly, characterized in that the lithium secondary battery.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 전극 조립체의 직렬연결탭과 상기 제1 전극 조립체의 양극탭은, 서로 겹치지 않도록 구성되는 것을 특징으로 하는 리튬 이차 전지.The series connection tab of the first electrode assembly and the positive electrode tab of the first electrode assembly are configured not to overlap each other, the lithium secondary battery.
  9. 제8항에 있어서,The method of claim 8,
    상기 제2 전극 조립체의 양극 극판은, LFP, NMC, NCA, LCO 양극활물질이 도포되는 양극 집전체를 구비하고,The positive electrode plate of the second electrode assembly includes a positive electrode current collector to which LFP, NMC, NCA, LCO positive electrode active material is coated,
    상기 제2 전극 조립체의 직렬연결탭은, 상기 양극활물질이 도포되지 않으며, 상기 제2 전극 조립체의 양극 집전체의 일측면으로부터 연장 형성되는 것을 특징으로 하는 리튬 이차 전지.The serial connection tab of the second electrode assembly is not coated with the positive electrode active material, and extends from one side of the positive electrode current collector of the second electrode assembly.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1 전극 조립체의 직렬연결탭과 상기 제2 전극 조립체의 직렬연결탭은, 서로 겹쳐져서 상기 제1 전극 조립체와 상기 제2 전극 조립체를 전기적으로 연결하는 것을 특징으로 하는 리튬 이차 전지.The series connection tab of the first electrode assembly and the series connection tab of the second electrode assembly overlap each other to electrically connect the first electrode assembly and the second electrode assembly.
  11. 제10항에 있어서,The method of claim 10,
    상기 제2 전극 조립체의 음극 극판은, LTO 음극활물질이 도포되는 음극 집전체를 구비하고,The negative electrode plate of the second electrode assembly includes a negative electrode current collector to which the LTO negative electrode active material is applied,
    상기 제2 전극 조립체의 음극탭은, 상기 LTO 음극활물질이 도포되지 않으며, 상기 제2 전극 조립체의 음극 집전체의 일측면으로부터 연장 형성되고, 음극 리드탭과 연결되어 음극 터미널로 이용되는 것을 특징으로 하는 리튬 이차 전지.The negative electrode tab of the second electrode assembly is not coated with the LTO negative electrode active material, extends from one side of the negative electrode current collector of the second electrode assembly, and is connected to the negative electrode lead tab to be used as a negative electrode terminal. Lithium secondary battery.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1 전극 조립체의 양극탭과 상기 제2 전극 조립체의 음극탭은, 서로 겹치지 않도록 구성되는 것을 특징으로 하는 리튬 이차 전지.The positive electrode tab of the first electrode assembly and the negative electrode tab of the second electrode assembly are configured so as not to overlap each other, the lithium secondary battery.
  13. 제1항에 있어서,The method of claim 1,
    상기 제1 전극 조립체의 음극 극판, 상기 제1 전극 조립체의 양극 극판, 상기 제2 전극 조립체의 음극 극판 및, 상기 제2 전극 조립체의 음극 극판 각각은, 알루미늄, 스테인레스 스틸 또는 구리를 포함하여 구성되는 것을 특징으로 하는 리튬 이차 전지.Each of the negative electrode plate of the first electrode assembly, the positive electrode plate of the first electrode assembly, the negative electrode plate of the second electrode assembly, and the negative electrode plate of the second electrode assembly may include aluminum, stainless steel, or copper. A lithium secondary battery, characterized in that.
  14. 제1항에 있어서,The method of claim 1,
    상기 제1 전극 조립체와 상기 제2 전극 조립체는, LFP 양극활물질과 LTO 음극활물질을 이용하여 셀프 밸런싱되어 서로 간의 임밸런싱을 방지하는 것을 특징으로 하는 리튬 이차 전지.And the first electrode assembly and the second electrode assembly are self-balanced using an LFP cathode active material and an LTO anode active material to prevent imbalance between each other.
PCT/KR2017/009397 2016-09-28 2017-08-29 Lithium secondary battery WO2018062698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17856584.2A EP3522285A4 (en) 2016-09-28 2017-08-29 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160125025 2016-09-28
KR10-2016-0125025 2016-09-28
KR1020170096954A KR101935229B1 (en) 2016-09-28 2017-07-31 Lithium secondary battery
KR10-2017-0096954 2017-07-31

Publications (1)

Publication Number Publication Date
WO2018062698A1 true WO2018062698A1 (en) 2018-04-05

Family

ID=61760707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009397 WO2018062698A1 (en) 2016-09-28 2017-08-29 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2018062698A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129433A (en) * 2003-10-27 2005-05-19 Matsushita Electric Ind Co Ltd Cylindrical battery and inter-battery connection structure using same
KR20090051132A (en) * 2007-11-17 2009-05-21 주식회사 엘지화학 High power secondary battery of series connection structure
JP2012043682A (en) * 2010-08-20 2012-03-01 Toshiba Corp Battery pack system
KR20120123851A (en) * 2011-05-02 2012-11-12 주식회사 엘지화학 Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
JP2016033898A (en) * 2014-07-31 2016-03-10 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129433A (en) * 2003-10-27 2005-05-19 Matsushita Electric Ind Co Ltd Cylindrical battery and inter-battery connection structure using same
KR20090051132A (en) * 2007-11-17 2009-05-21 주식회사 엘지화학 High power secondary battery of series connection structure
JP2012043682A (en) * 2010-08-20 2012-03-01 Toshiba Corp Battery pack system
KR20120123851A (en) * 2011-05-02 2012-11-12 주식회사 엘지화학 Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
JP2016033898A (en) * 2014-07-31 2016-03-10 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522285A4 *

Similar Documents

Publication Publication Date Title
WO2014017864A1 (en) Secondary battery
WO2014062016A1 (en) Electrode lead and secondary battery having same
WO2012165758A1 (en) Lithium secondary battery
EP1998401B1 (en) Electrode assembley and secondary battery using the same
WO2019074198A1 (en) Secondary battery
WO2020071717A1 (en) Secondary battery
WO2021125504A1 (en) Secondary battery
WO2019045310A1 (en) Pouch-type secondary battery
WO2014038891A1 (en) Secondary battery
WO2015005652A1 (en) Electrode assembly, and battery and device comprising same
WO2014077635A1 (en) Wirelessly rechargeable cable-type secondary battery
WO2015072753A1 (en) Jelly-roll type electrode assembly and secondary battery having same
WO2020175773A1 (en) Venting device
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
WO2020040533A1 (en) All-solid-state battery using lithium metal as negative electrode
WO2020226412A1 (en) All-solid-state battery comprising composite electrode
WO2020122459A1 (en) Anode active material for lithium secondary battery and secondary battery comprising same
KR101935229B1 (en) Lithium secondary battery
WO2021206418A1 (en) Secondary battery and device including same
WO2018026117A1 (en) Secondary battery
WO2017135790A1 (en) Cable-type secondary battery
WO2020111490A1 (en) Electrode assembly
WO2019088524A1 (en) Secondary battery and insulation plate for secondary battery
WO2019108017A1 (en) Electrode and electrode assembly
WO2018062698A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856584

Country of ref document: EP

Effective date: 20190429