WO2018062487A1 - Movable body device, displacement method, exposure device, exposure method, flat-panel display manufacturing method, and device manufacturing method - Google Patents

Movable body device, displacement method, exposure device, exposure method, flat-panel display manufacturing method, and device manufacturing method Download PDF

Info

Publication number
WO2018062487A1
WO2018062487A1 PCT/JP2017/035486 JP2017035486W WO2018062487A1 WO 2018062487 A1 WO2018062487 A1 WO 2018062487A1 JP 2017035486 W JP2017035486 W JP 2017035486W WO 2018062487 A1 WO2018062487 A1 WO 2018062487A1
Authority
WO
WIPO (PCT)
Prior art keywords
heads
measurement
substrate
head
moving body
Prior art date
Application number
PCT/JP2017/035486
Other languages
French (fr)
Japanese (ja)
Inventor
青木 保夫
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2018542928A priority Critical patent/JP6787404B2/en
Priority to CN202110746539.1A priority patent/CN113504712B/en
Priority to KR1020217034281A priority patent/KR102478705B1/en
Priority to US16/338,179 priority patent/US10649348B2/en
Priority to KR1020197011264A priority patent/KR102318643B1/en
Priority to CN201780058903.7A priority patent/CN109791366B/en
Publication of WO2018062487A1 publication Critical patent/WO2018062487A1/en
Priority to US16/852,963 priority patent/US20200249586A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Definitions

  • the present invention relates to a moving body device, a moving method, an exposure apparatus, an exposure method, a flat panel display manufacturing method, and a device manufacturing method.
  • an exposure apparatus that exposes a wafer (hereinafter collectively referred to as “substrate”) to transfer a predetermined pattern of a mask (photomask) or reticle (hereinafter collectively referred to as “mask”) onto the substrate. ing.
  • Patent Document 1 an apparatus using an encoder system is known as a substrate position measurement system (for example, Patent Document 1). reference).
  • the optical path length of the laser to the bar mirror becomes long and the influence of so-called air fluctuation cannot be ignored.
  • the apparatus includes a first moving body that holds an object and is movable in a first direction and a second direction that intersect each other, and a measurement component in the first and second directions, A plurality of first lattice regions are arranged apart from each other with respect to the first direction, and a plurality of second lattice regions arranged apart from the plurality of first lattice regions with respect to the second direction are arranged with respect to each other with respect to the first direction.
  • One of a first grid member arranged separately and a plurality of first heads each irradiating a measurement beam while moving in the first direction with respect to the first grid member is provided in the first moving body.
  • the other of the first grating member and the plurality of first heads is provided to face the moving body, and the measurement beam of the plurality of first heads includes the plurality of first and second gratings. Irradiate at least two of the areas
  • a second movable body that is movable; a second grating member that includes measurement components in the first and second directions; and a second beam that irradiates the measurement beam while moving in the second direction relative to the second grating member.
  • One of the heads is provided on the second moving body, and the other of the second grid member and the second head is provided to face the second moving body, and the second movement in the second direction.
  • a second measurement system for measuring body position information, and the position information measured by the first and second measurement systems, the direction of three degrees of freedom within a predetermined plane including the first and second directions.
  • a control system for performing movement control of the first moving body The control system is measured using at least four heads of the plurality of first heads that are irradiated with at least two of the plurality of first and second grating regions.
  • lattice correction information regarding at least two of the plurality of first and second lattice regions is acquired, and the lattice correction information is obtained when the measurement beam is the first and second lattice regions.
  • a moving body device used in movement control of the first moving body using the at least three heads irradiated on at least two of the second lattice regions.
  • a mobile device that moves an object relative to a first member, the first and second members that hold the object and intersect each other with respect to the first member.
  • a first moving body that can move in two directions and a plurality of first lattice regions that are separated from each other with respect to the first direction, and that are separated from the plurality of first lattice regions with respect to the second direction
  • a plurality of first grating members in which a plurality of second grating regions are arranged apart from each other with respect to the first direction, and a plurality of first elements that irradiate measurement beams while moving in the first direction relative to the first grating member
  • One of the heads is provided on the first moving body, and the other of the first lattice member and the plurality of first heads is provided to face the moving body, and among the plurality of first heads,
  • the measurement beam has the plurality of first and second beams.
  • a first measurement system that measures positional information of the first moving body in the first direction by a head that irradiates at least two of the second grating regions, and the other of the first grating region and the first head includes A second movable body that is provided and is movable in the second direction; a second grating member that includes measurement components in the first and second directions; and a second beam that irradiates the second grating member with a measurement beam.
  • One of the heads is provided on the second moving body, and the other of the second grid member and the second head is provided to face the second moving body, and the second movement in the second direction.
  • a second measurement system that measures body position information, and a control system that performs movement control of the first moving body based on the position information measured by the first and second measurement systems
  • the control system includes the measurement block of the plurality of first heads.
  • the lattice correction information of the plurality of first and second grating regions is obtained. Based on this, a moving body device for controlling the movement of the first moving body is provided.
  • the mobile device according to any one of the first aspect and the second aspect, an optical system that irradiates the object with an energy beam and exposes the object, An exposure apparatus is provided.
  • a flat panel display manufacturing method comprising: exposing a substrate using the exposure apparatus according to the third aspect; and developing the exposed substrate.
  • a flat panel display manufacturing method is provided.
  • a device manufacturing method comprising: exposing a substrate using the exposure apparatus according to the third aspect; and developing the exposed substrate. A method is provided.
  • the first and second direction measurement components orthogonal to each other are included, and a plurality of first lattice regions are arranged apart from each other with respect to the first direction, and the second direction A plurality of second lattice regions disposed away from the plurality of first lattice regions with respect to the first direction, and a first lattice member disposed away from each other with respect to the first direction, and the first direction relative to the first lattice member
  • One of the plurality of first heads each irradiating the measurement beam while moving to the first moving body is provided on the first moving body that holds the object, and the other of the first grating member and the plurality of first heads is the movement Provided in a second movable body that is movable in the second direction so as to face the body, and among the plurality of first heads, the measurement beam is applied to at least two of the plurality of first and second grating regions.
  • the movement control of the first moving body is performed, and at least four heads of the plurality of first heads that are irradiated with at least two of the plurality of first and second grating regions are used.
  • the first movement measured Obtaining lattice correction information relating to at least two of the plurality of first and second lattice regions based on the position information of the plurality of first and second lattice regions, the lattice correction information comprising:
  • a moving method used for movement control of the first moving body using the at least three heads irradiated to at least two of the second grating regions is provided.
  • a moving method for moving an object with respect to a first member wherein the first moving body that holds the object intersects the first object.
  • a plurality of first lattice regions are arranged apart from each other in the first direction by moving in the first and second directions and the first measurement system, and the plurality of first lattice regions in the second direction.
  • One of the plurality of first heads to be irradiated is provided on the first moving body, the other of the first lattice member and the plurality of first heads is provided to face the moving body, Of the first head, the measurement Measuring position information of the first moving body in the first direction by a head that irradiates at least two of the plurality of first and second lattice regions, and the first lattice region and the first lattice region.
  • One of the second head that irradiates the second grating member with the measurement beam is provided on the second moving body, and the other of the second grating member and the second head faces the second moving body.
  • Controlling in said controlling The plurality of first heads based on positional information of the first moving body measured by using the heads that irradiate the plurality of first and second grating regions with the measurement beam.
  • a moving method for controlling movement of the first moving body is provided based on lattice correction information of the first and second lattice regions.
  • the moving method according to any one of the sixth aspect and the seventh aspect moves the object in the first direction and moves in the first direction.
  • An exposure method is provided that includes irradiating the object with an energy beam and exposing the object.
  • a flat panel display manufacturing method comprising: exposing a substrate using the exposure method according to the eighth aspect; and developing the exposed substrate.
  • a flat panel display manufacturing method is provided.
  • a device manufacturing method comprising: exposing a substrate using the exposure method according to the eighth aspect; and developing the exposed substrate. A method is provided.
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. (1) for demonstrating operation
  • FIG. (2) for demonstrating operation
  • FIG. 8 is a diagram showing a first system of the substrate stage apparatus of FIG. 7. It is a top view which shows the substrate stage apparatus which concerns on 3rd Embodiment. It is sectional drawing of the substrate stage apparatus of FIG. It is a figure which shows the 2nd system of the substrate stage apparatus of FIG.
  • FIG. 12 is a diagram showing a first system of the substrate stage apparatus of FIG. 11. It is a top view which shows the substrate stage apparatus which concerns on 4th Embodiment. It is sectional drawing of the substrate stage apparatus of FIG. It is a figure which shows the 2nd system of the substrate stage apparatus of FIG.
  • FIG. 16 is a diagram showing a first system of the substrate stage apparatus of FIG. 15.
  • FIG. 20 is a diagram showing a second system of the substrate stage apparatus of FIG. 19.
  • FIG. 20 is a diagram showing a first system of the substrate stage apparatus of FIG. 19. It is a figure which shows the substrate stage apparatus which concerns on 6th Embodiment. It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG.
  • FIG. 24 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 23. It is a figure for demonstrating the structure of the board
  • FIG. 29 is a diagram showing a system including a substrate table which is a part of the substrate stage apparatus of FIG. 28. It is a figure for demonstrating the structure of the board
  • FIG. 33 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 32. It is a figure for demonstrating the structure of the board
  • FIG. 45 is a diagram showing a substrate holder that is a part of the substrate stage apparatus of FIG. 44.
  • FIG. 45 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 44.
  • FIG. 49 is a diagram showing a system including a weight cancellation device that is a part of the substrate stage device of FIG. 48.
  • FIG. 49 is a diagram showing a system including a Y coarse movement stage which is a part of the substrate stage apparatus of FIG. 48.
  • FIG. 49 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 48.
  • FIG. 56 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 55. It is a figure for demonstrating the structure of the board
  • FIG. 61 is a diagram for explaining an operation of the substrate stage apparatus of FIG. 60.
  • FIG. 61 is a diagram showing a substrate holder that is a part of the substrate stage apparatus of FIG. 60.
  • FIG. 61 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 60. It is a figure which shows the substrate stage apparatus based on 16th Embodiment. It is a figure which shows the substrate stage apparatus which concerns on 17th Embodiment. It is a figure which shows the substrate stage apparatus based on 18th Embodiment. It is a figure for demonstrating the structure of the board
  • 71A and 71B are diagrams for explaining the movement range of the substrate holder in the X-axis direction when position measurement of the substrate holder is performed.
  • FIG. 6 is a diagram for explaining a state to a fourth state.
  • 74 (A) to 74 (C) explain a connecting process performed by the liquid crystal exposure apparatus according to the twentieth embodiment at the time of switching the head of the substrate encoder system for measuring the position information of the substrate holder.
  • FIG. It is a top view which shows a pair of head base of the substrate holder and substrate encoder system which a liquid-crystal exposure apparatus which concerns on 21st Embodiment has with a projection optical system. It is a figure for demonstrating the characteristic structure of the liquid crystal exposure apparatus which concerns on 22nd Embodiment.
  • FIG. 1 schematically shows a configuration of an exposure apparatus (here, a liquid crystal exposure apparatus 10) according to the first embodiment.
  • the liquid crystal exposure apparatus 10 is a so-called scanner, a step-and-scan projection exposure apparatus that uses an object (here, the glass substrate P) as an exposure target.
  • a glass substrate P (hereinafter simply referred to as “substrate P”) is formed in a rectangular shape (planar shape) in plan view, and is used for a liquid crystal display device (flat panel display) or the like.
  • the liquid crystal exposure apparatus 10 has an illumination system 12, a mask stage apparatus 14 that holds a mask M on which a circuit pattern and the like are formed, a projection optical system 16, an apparatus body 18, and a resist (surface facing the + Z side in FIG. 1) on the surface. It has a substrate stage device 20 that holds a substrate P coated with (sensitive agent), a control system for these, and the like.
  • the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction
  • the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis.
  • the orthogonal direction is the Z-axis direction (the direction parallel to the optical axis direction of the projection optical system 16), and the rotation directions around the X-axis, Y-axis, and Z-axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively. Further, description will be made assuming that the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
  • the illumination system 12 is configured in the same manner as the illumination system disclosed in US Pat. No. 5,729,331 and the like.
  • a light source such as a mercury lamp or a laser diode
  • the mask M is irradiated as exposure illumination light (illumination light) IL through a reflecting mirror, a dichroic mirror, a shutter, a wavelength selection filter, various lenses, and the like (not shown).
  • the illumination light IL light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), and h-line (wavelength 405 nm) (or combined light of the i-line, g-line, and h-line) is used.
  • a transmissive photomask As the mask M held by the mask stage device 14, a transmissive photomask is used. A predetermined circuit pattern is formed on the lower surface of the mask M (the surface facing the -Z side in FIG. 1).
  • the mask M has a predetermined length in the scanning direction (X-axis direction) by a main controller 100 (not shown in FIG. 1; see FIG. 6) via a mask drive system 102 including an actuator such as a linear motor and a ball screw device. While being driven by a stroke, it is slightly driven as appropriate in the Y-axis direction and the ⁇ z direction.
  • Position information of the mask M in the XY plane is transmitted to the main controller 100 (respectively) via a mask measurement system 104 including a measurement system such as an encoder system or an interferometer system. 1 (not shown in FIG. 1, see FIG. 6).
  • the projection optical system 16 is disposed below the mask stage device 14.
  • the projection optical system 16 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in US Pat. No. 6,552,775 and the like. Are provided with a plurality of lens modules.
  • the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12
  • the illumination area IL passes through (transmits) the mask M via the projection optical system 16.
  • a projection image (partial upright image) of the circuit pattern of the mask M is formed in an irradiation area (exposure area) of illumination light conjugate to the illumination area on the substrate P.
  • the mask M moves relative to the illumination area (illumination light IL) in the scanning direction
  • the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
  • the apparatus main body 18 supports the mask stage apparatus 14 and the projection optical system 16, and is installed on the floor F of the clean room via the vibration isolator 19.
  • the apparatus main body 18 is configured in the same manner as the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, and includes an upper frame part 18a, a pair of middle frame parts 18b, and a lower frame part 18c. ing. Since the upper pedestal 18a is a member that supports the projection optical system 16, the upper pedestal 18a is hereinafter referred to as an “optical surface plate 18a” in the present specification.
  • the position of the substrate P is controlled with respect to the illumination light IL irradiated through the projection optical system 16.
  • the optical surface plate 18a that supports the substrate functions as a reference member when the position of the substrate P is controlled.
  • the substrate stage device 20 is a device for controlling the position of the substrate P with respect to the projection optical system 16 (illumination light IL) with high accuracy, and the substrate P is aligned along the horizontal plane (X-axis direction and Y-axis direction). While driving with a predetermined long stroke, it is slightly driven in the direction of 6 degrees of freedom.
  • the configuration of the substrate stage apparatus used in the liquid crystal exposure apparatus 10 is not particularly limited, but in the first embodiment, the gantry type as disclosed in, for example, US Patent Application Publication No. 2012/0057140, as an example.
  • a substrate stage apparatus 20 having a so-called coarse / fine movement configuration is used, which includes a two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage.
  • the substrate stage device 20 includes a fine movement stage 22, a Y coarse movement stage 24, an X coarse movement stage 26, a support portion (herein, a self-weight support device 28), and a pair of base frames 30 (one is not shown in FIG. 1, see FIG. 4). ), A substrate driving system 60 (not shown in FIG. 1, refer to FIG. 6) for driving each element constituting the substrate stage apparatus 20, and a substrate measuring system 70 (see FIG. 6) for measuring positional information of each element. 1 (not shown, see FIG. 6).
  • the fine movement stage 22 includes a substrate holder 32 and a stage main body 34.
  • the substrate holder 32 is formed in a plate shape (or box shape) having a rectangular shape in plan view (see FIG. 4), and the substrate P is placed on the upper surface (substrate placement surface).
  • the dimensions of the upper surface of the substrate holder 32 in the X-axis and Y-axis directions are set to be approximately the same as the substrate P (actually somewhat shorter).
  • the substrate P is vacuum-sucked and held on the substrate holder 32 in a state of being placed on the upper surface of the substrate holder 32, so that almost the entire surface (the entire surface) is flattened along the upper surface of the substrate holder 32.
  • the stage main body 34 is made of a plate-shaped (or box-shaped) member having a rectangular shape in a plan view and shorter than the substrate holder 32 in the X-axis and Y-axis directions, and is integrally connected to the lower surface of the substrate holder 32.
  • the Y coarse movement stage 24 is disposed below the fine movement stage 22 (on the ⁇ Z side) and on the pair of base frames 30.
  • the Y coarse movement stage 24 has a pair of X beams 36.
  • the X beam 36 is composed of a member having a rectangular YZ section (see FIG. 2) extending in the X-axis direction.
  • the pair of X beams 36 are arranged in parallel at a predetermined interval in the Y-axis direction.
  • the pair of X beams 36 are placed on the pair of base frames 30 via a mechanical linear guide device, and are movable in the Y-axis direction on the pair of base frames 30.
  • the X coarse movement stage 26 is disposed above (+ Z side) the Y coarse movement stage 24 and below the fine movement stage 22 (between the fine movement stage 22 and the Y coarse movement stage 24). ing.
  • the X coarse movement stage 26 is a plate-like member having a rectangular shape in plan view, and a plurality of mechanical linear guide devices 38 (see FIG. 2) on a pair of X beams 36 (see FIG. 4) of the Y coarse movement stage 24.
  • the Y coarse movement stage 24 is movable with respect to the Y coarse movement stage 24, whereas the Y coarse movement stage 24 moves integrally with the Y coarse movement stage 24.
  • the substrate drive system 60 moves the fine movement stage 22 in directions of six degrees of freedom (X axis, Y axis, Z axis, ⁇ x, ⁇ y, and so on) with respect to the optical surface plate 18a (see FIG. 1 respectively).
  • a first drive system 62 for finely driving in each direction of ⁇ z
  • a second drive system 64 for driving the Y coarse movement stage 24 with a long stroke in the Y-axis direction on the base frame 30 (see FIG. 1 respectively).
  • a third drive system 66 for driving the X coarse movement stage 26 on the Y coarse movement stage 24 (see FIG. 1 respectively) with a long stroke in the X-axis direction.
  • the type of actuator that constitutes the second drive system 64 and the third drive system 66 is not particularly limited, but as an example, a linear motor, a ball screw drive device, or the like can be used (in FIG. 1 and the like). A linear motor is shown).
  • the type of actuator constituting the first drive system 62 is not particularly limited, but in FIG. 2 and the like, as an example, a plurality of linear motors (voice coil motors) 40 that generate thrust in the X axis, Y axis, and Z axis directions.
  • the X linear motor is not shown in FIGS. 1 and 2).
  • Each linear motor 40 has a stator attached to the X coarse movement stage 26 and a mover attached to the stage main body 34 of the fine movement stage 22. Thrust is applied in the direction of 6 degrees of freedom via the linear motor 40.
  • the detailed configuration of the first to third drive systems 62, 64, 66 is disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
  • the main controller 100 uses the first drive system 62 to adjust the relative position between the fine movement stage 22 and the X coarse movement stage 26 (refer to FIG. 1 respectively) within a predetermined range with respect to the X-axis and Y-axis directions.
  • the thrust is given to 22.
  • “the position falls within a predetermined range” means that the X coarse movement stage 26 (the fine movement stage 22 is moved in the Y-axis direction when the fine movement stage 22 is moved with a long stroke in the X-axis or Y-axis direction.
  • the own weight support device 28 includes a weight cancellation device 42 that supports the weight of the fine movement stage 22 from below, and a Y step guide 44 that supports the weight cancellation device 42 from below.
  • the weight cancellation device 42 (also referred to as a core column) is inserted into an opening formed in the X coarse movement stage 26, and a plurality of couplings are made to the X coarse movement stage 26 at the height of the center of gravity. It is mechanically connected via a member 46 (also referred to as a flexure device).
  • the X coarse movement stage 26 and the weight cancellation device 42 are coupled by a plurality of coupling members 46 in a state of being separated in a vibrational (physical) manner with respect to the Z-axis direction, the ⁇ x direction, and the ⁇ y direction.
  • the weight cancellation device 42 When the weight cancellation device 42 is pulled by the X coarse movement stage 26, it moves integrally with the X coarse movement stage 26 in the X-axis and / or Y-axis direction.
  • the weight canceling device 42 supports the self-weight of the fine movement stage 22 from below without contact through a pseudo spherical bearing device called a leveling device 48.
  • a leveling device 48 a pseudo spherical bearing device.
  • the configurations and functions of the weight canceling device 42 and the leveling device 48 are disclosed in, for example, US Patent Application Publication No. 2010/0018950 as an example, and thus the description thereof is omitted.
  • the Y step guide 44 is composed of a member extending in parallel with the X axis, and is disposed between a pair of X beams 36 included in the Y coarse movement stage 24 (see FIG. 4).
  • the upper surface of the Y step guide 44 is set parallel to the XY plane (horizontal plane), and the weight cancellation device 42 is placed on the Y step guide 44 via the air bearing 50 in a non-contact manner.
  • the Y step guide 44 functions as a surface plate when the weight canceling device 42 (that is, the fine movement stage 22 and the substrate P) moves in the X-axis direction (scanning direction).
  • the Y step guide 44 is placed on the lower gantry 18c via a mechanical linear guide device 52, and is movable in the Y axis direction with respect to the lower gantry 18c, whereas in the X axis direction. Relative movement with respect to is restricted.
  • the Y step guide 44 is mechanically connected to the Y coarse movement stage 24 (the pair of X beams 36) via a plurality of connecting members 54 at the center of gravity height position (see FIG. 4).
  • the connecting member 54 is a so-called flexure device similar to the connecting member 46 described above, and vibrates the Y coarse movement stage 24 and the Y step guide 44 with respect to the 5 degrees of freedom direction excluding the Y axis direction out of the 6 degrees of freedom direction. They are linked in a state of being separated physically.
  • the Y step guide 44 moves in the Y axis direction integrally with the Y coarse movement stage 24 by being pulled by the Y coarse movement stage 24.
  • each of the pair of base frames 30 is composed of members extending in parallel with the Y axis, and is installed on the floor F (see FIG. 1) in parallel with each other.
  • the base frame 30 is physically (or vibrationally) separated from the apparatus main body 18.
  • the substrate measurement system 70 for obtaining position information in the direction of 6 degrees of freedom of the substrate P (actually, the fine movement stage 22 holding the substrate P).
  • FIG. 3 shows a conceptual diagram of the substrate measurement system 70.
  • the substrate measurement system 70 includes a first scale (here, an upward scale 72) included in the Y coarse movement stage 24 (associated with the Y coarse movement stage 24) and a first head (here, downward X head) included in the fine movement stage 22. 74x, a downward Y head 74y), and a second scale (here, a downward scale) of the optical surface plate 18a (see FIG. 2) and a first measurement system (here, fine movement stage measurement system 76 (see FIG. 6)).
  • a first scale here, an upward scale 72
  • Y coarse movement stage 24 included in the fine movement stage 22.
  • a second scale here, a downward scale
  • the fine movement stage 22 is schematically illustrated as a member that holds the substrate P.
  • the spacing (pitch) between the diffraction gratings of each of the scales 72 and 78 is shown to be much wider than actual. The same applies to the other figures.
  • the distance between each head and each scale is much shorter than the distance between the laser light source and the bar mirror of the conventional optical interferometer system, the influence of air fluctuation is less than that of the optical interferometer system, and the substrate P is highly accurate. Thus, the exposure accuracy can be improved.
  • the upward scale 72 is fixed to the upper surface of the scale base 84.
  • one scale base 84 is disposed on each of the fine movement stage 22 on the + Y side and on the ⁇ Y side.
  • the scale base 84 is fixed to the X beam 36 of the Y coarse movement stage 24 through an arm member 86 formed in an L shape when viewed from the X-axis direction. Therefore, the scale base 84 (and the upward scale 72) is movable with a predetermined long stroke in the Y-axis direction integrally with the Y coarse movement stage 24.
  • two arm members 86 are spaced apart in the X-axis direction for each X beam 36, but the number of arm members 86 is not limited to this, and may be increased or decreased as appropriate. Is possible.
  • the scale base 84 is a member extending in parallel with the X axis, and the length in the X axis direction is twice the length in the X axis direction of the substrate holder 32 (that is, the substrate P (not shown in FIG. 4)). Is set to about (same as the Y step guide 44).
  • the scale base 84 is preferably formed of a material that is unlikely to be thermally deformed, such as ceramics. The same applies to other scale bases 92 and head bases 88 and 96 described later.
  • the upward scale 72 is a plate-shaped (strip-shaped) member extending in the X-axis direction, and has an upper surface (a surface facing + Z side (upper side)) in two axial directions orthogonal to each other (in this embodiment, the X-axis).
  • a reflection type two-dimensional diffraction grating (so-called grating) having a periodic direction in the Y-axis direction) is formed.
  • the head base 88 is fixed to the central part of the side surface on the + Y side and ⁇ Y side of the substrate holder 32 via the arm member 90 corresponding to the scale base 84 described above (see FIG. 2).
  • Each downward head 74x, 74y (see FIG. 3) is fixed to the lower surface of the head base 88.
  • downward X head 74x and downward Y head 74y are each in the X-axis direction with respect to one head base 88. Two are spaced apart. Each head 74x, 74y irradiates the corresponding upward scale 72 with a measurement beam and receives light (here, diffracted light) from the upward scale 72.
  • the light from the upward scale 72 is supplied to a detector (not shown), and the output of the detector is supplied to the main controller 100 (see FIG. 6).
  • Main controller 100 determines the relative movement amount of each head 74x, 74y with respect to scale 72 based on the output of the detector.
  • the “head” means a portion that emits a measurement beam to the diffraction grating and is incident on the light from the diffraction grating, and the head itself illustrated in each drawing is a light source. And the detector may not be provided.
  • 72 constitutes four X linear encoder systems, and a total of four (two on each of the + Y side and ⁇ Y side of the substrate P) downward Y heads 74y and corresponding upward scales 72, Four Y linear encoder systems are configured.
  • Main controller 100 see FIG.
  • first information uses the outputs of the four X linear encoder systems and the four Y linear encoder systems as appropriate to appropriately adjust the X axis direction, Y axis direction of fine movement stage 22 (substrate P), and Position information in the ⁇ z direction (hereinafter referred to as “first information”) is obtained.
  • the upward scale 72 is set such that the measurable distance in the X-axis direction is longer than the measurable distance in the Y-axis direction.
  • the length of the upward scale 72 in the X-axis direction is the same as that of the scale base 84, and the fine movement stage 22 can be moved in the X-axis direction. It is set to a length that can be covered.
  • the dimension of the upward scale 72 in the width direction (Y-axis direction) (and the distance between the pair of heads 74x and 74y adjacent in the Y-axis direction) is adjusted so that the fine movement stage 22 is in the Y-axis direction with respect to the upward scale 72.
  • the length is set such that the measurement beam from each of the heads 74x and 74y does not deviate from the lattice surface (measurement surface) of the corresponding upward scale 72 even if it is slightly driven.
  • FIGS. 4 and 5 show the substrate stage device 20 before and after the fine movement stage 22 moves in a long stroke in the X-axis and Y-axis directions.
  • FIG. 4 shows a state in which fine movement stage 22 is positioned approximately in the center of the movable range in the X-axis and Y-axis directions
  • FIG. 5 shows + X of the movable range + X in the movable range in the X-axis direction.
  • a state is shown that is located at the stroke end on the side and at the stroke end on the -Y side in the Y-axis direction.
  • the measurement beam from each of the downward heads 74x and 74y attached to the fine movement stage 22 has the fine movement stage 22 in the Y-axis direction. Including the case where it is slightly driven, it does not deviate from the lattice plane of the upward scale 72.
  • the measurement beams from the downward heads 74 x and 74 y do not deviate from the lattice plane of the upward scale 72.
  • the coarse movement stage measurement system 82 (see FIG. 6) will be described.
  • the coarse movement stage measurement system 82 of the present embodiment includes two pieces spaced apart in the X-axis direction on each of the + Y side and the ⁇ Y side of the projection optical system 16 (see FIG. 1). It has a downward scale 78 (ie a total of four downward scales 78).
  • the downward scale 78 is fixed to the lower surface of the optical surface plate 18a via a scale base 92 (see FIG. 2).
  • the scale base 92 is a plate-like member extending in the Y-axis direction, and the length in the Y-axis direction is a movable distance in the Y-axis direction of the fine movement stage 22 (that is, the substrate P (not shown in FIG. 4)). Is set to the same level as (and somewhat longer in practice).
  • the downward scale 78 is a plate-shaped (strip-shaped) member extending in the Y-axis direction, and has a lower surface (a surface facing the ⁇ Z side (downside)), like the upper surface of the upward scale 72.
  • a reflection type two-dimensional diffraction grating (so-called grating) having a periodic direction in two orthogonal directions (X-axis and Y-axis directions in the present embodiment) is formed.
  • the grating pitch of the diffraction grating included in the downward scale 78 may be the same as or different from the grating pitch of the diffraction grating included in the upward scale 72.
  • a head base 96 is fixed to each of the pair of scale bases 84 included in the Y coarse movement stage 24 via arm members 94 formed in an L shape when viewed from the X-axis direction. Yes.
  • the head base 96 is disposed near the + X side end of the scale base 84 and near the ⁇ X side end.
  • the upward heads 80 x and 80 y are fixed to the upper surface of the head base 96. Accordingly, a total of four head bases 96 (and upward heads 80x and 80y) are movable in the Y-axis direction integrally with the Y coarse movement stage 24.
  • upward X head 80x and upward Y head 80y are each in the Y-axis direction with respect to one head base 96. Two are arranged apart from each other. Each of the heads 80x and 80y emits a measurement beam to the corresponding downward scale 78 and receives light (here, diffracted light) from the downward scale 78. Light from the downward scale 78 is supplied to a detector (not shown), and the output of the detector is supplied to the main controller 100 (see FIG. 6). Main controller 100 determines the relative movement amounts of heads 80x and 80y with respect to scale 78 based on the output of the detector.
  • eight X linear encoder systems are configured by the eight upward X heads 80x in total and the corresponding downward scale 78, and a total of eight X linear encoder systems.
  • Eight Y linear encoder systems are constituted by the upward Y head 80y and the corresponding downward scale 78.
  • the main controller 100 uses the outputs of the eight X linear encoder systems and the eight Y linear encoder systems as appropriate, and uses the Y coarse movement stage 24 in the X axis direction, Y axis direction, and ⁇ z direction.
  • Position information hereinafter referred to as “second information”).
  • the upward scale 72 fixed to the scale base 84 and the upward heads 80x and 80y integrally fixed to the scale base 84 via the head base 96 are arranged so that their positional relationship is unchanged. It is assumed that the positional relationship with each other is known.
  • information related to the relative positional relationship between the upward scale 72 and the upward heads 80x and 80y fixed integrally therewith is referred to as “third information”.
  • the liquid crystal exposure apparatus 10 is provided with a measurement system for measuring the positional relationship between the two. May be. The same applies to each embodiment described later.
  • Main controller 100 (see FIG. 6), based on the first to third information, position information in the XY plane of fine movement stage 22 (substrate P) with reference to optical surface plate 18a (projection optical system 16). And the position control of the substrate P with respect to the projection optical system 16 (illumination light IL) is performed using the substrate drive system 60 (see FIG. 6).
  • the coarse movement stage measurement system 82 includes the downward scale 78 in which the measurable distance in the Y-axis direction is longer than the X-axis direction (the Y-axis direction is the main measurement direction).
  • the position information of the Y coarse movement stage 24 moving with a long stroke in the Y-axis direction is obtained, and the measurable distance in the X-axis direction is longer than the Y-axis direction (the X-axis direction is the main measurement direction) upward
  • the fine movement stage measurement system 76 including the scale 72 obtains positional information of the fine movement stage 22 that moves in the X-axis direction with a long stroke.
  • the movement direction of each encoder head (74x, 74y, 80x, 80y) and the main measurement direction of the corresponding scale (72, 78) are respectively Match.
  • Z tilt direction position information of the fine movement stage 22 (substrate P) in the Z-axis, ⁇ x, and ⁇ y directions
  • the configuration of the Z tilt position measurement system 98 is not particularly limited, but as an example, a measurement system using a displacement sensor attached to the fine movement stage 22 as disclosed in, for example, US Patent Application Publication No. 2010/0018950. Can be used.
  • the substrate measurement system 70 also has a measurement system for obtaining position information of the X coarse movement stage 26.
  • the positional information in the X-axis direction of the fine movement stage 22 (substrate P) is obtained with reference to the optical surface plate 18a via the Y coarse movement stage 24, the measurement accuracy of the X coarse movement stage 26 itself is improved. It is not necessary to have the same accuracy as the fine movement stage 22.
  • the position measurement of the X coarse movement stage 26 is performed based on the output of the fine movement stage measurement system 76 and the output of a measurement system (not shown) for measuring the relative position between the X coarse movement stage 26 and the fine movement stage 22.
  • an independent measurement system may be used.
  • the mask M is placed on the mask stage apparatus 14 by a mask loader (not shown) under the control of the main controller 100 (see FIG. 6).
  • the substrate P is loaded onto the substrate holder 32 by a substrate loader (not shown).
  • the main controller 100 performs alignment measurement using an alignment detection system (not shown), and after the alignment measurement is completed, a step-and-scan method is sequentially applied to a plurality of shot areas set on the substrate P. An exposure operation is performed. Since this exposure operation is the same as a conventional step-and-scan exposure operation, a detailed description thereof will be omitted.
  • the substrate measurement system 70 measures the position information of the fine movement stage 22.
  • the position of the fine movement stage 22 (substrate P) is measured using the substrate measurement system 70 including the encoder system, a conventional optical interferometer system is used. Compared with measurement, the influence of air fluctuations is small, and the position of the substrate P can be controlled with high accuracy, thereby improving the exposure accuracy.
  • the substrate measuring system 70 measures the position of the substrate P with reference to the downward scale 78 fixed to the optical surface plate 18a (the apparatus main body 18) (via the upward scale 72), the projection optical system is substantially provided.
  • the position of the substrate P can be measured with reference to 16.
  • the position control of the substrate P can be performed based on the illumination light IL, so that the exposure accuracy can be improved.
  • the configuration of the substrate measurement system 70 described above can be changed as appropriate as long as the position information of the fine movement stage 22 can be obtained with a desired accuracy within the movable range of the fine movement stage 22 (substrate P).
  • a long scale having the same length as the scale base 84 is used as the upward scale 72, but the present invention is not limited to this, and the encoder disclosed in US Patent Publication No. 2015/147319 is used.
  • scales having a shorter length in the X-axis direction may be arranged at predetermined intervals in the X-axis direction.
  • the distance between the pair of heads 74x and 74y adjacent in the X-axis direction is made larger than the gap. Accordingly, it is preferable to always arrange one head 74x, 74y so as to face the scale. The same applies to the relationship between the downward scale 78 and the upward heads 80x and 80y.
  • the upward scale 72 is arranged on the + Y side and the ⁇ Y side of the fine movement stage 22, respectively, it is not limited to this, and it may be arranged only on one side (+ Y side or ⁇ Y side only).
  • the position measurement of the fine movement stage 22 in the ⁇ z direction is always performed.
  • the number and arrangement of the heads 74x and 74y should be set so that at least two downward X heads 74x (or downward Y heads 74y) always face the scale.
  • the downward scale 78 if the position measurement in the X axis, the Y axis, and the ⁇ z direction of the Y coarse movement stage 24 can always be performed, the number and arrangement of the downward scale 78 and the upward heads 80x and 80y are as follows. Changes can be made as appropriate.
  • the upward scale 72 and the downward scale 78 are formed with two-dimensional diffraction gratings having the X-axis and Y-axis directions as periodic directions.
  • Y diffraction gratings having a periodic direction may be individually formed on the scales 72 and 78.
  • the X-axis and Y-axis directions are periodic directions.
  • the diffraction grating The periodic direction is not limited to this and can be changed as appropriate.
  • the Z tilt position information of the substrate P may be measured with a downward displacement sensor attached to the head base 88 and using the displacement sensor as a reference with respect to the scale base 84 (or the reflective surface of the upward scale 72). .
  • at least three of the plurality of downward heads 74x and 74y are two-dimensional heads (so-called XZ heads or YZ heads) capable of measuring in the vertical direction together with position measurement in the direction parallel to the horizontal plane.
  • the Z tilt position information of the substrate P may be obtained by using the lattice surface of the upward scale 72 by the two-dimensional head.
  • the Z tilt information of the Y coarse movement stage 24 may be measured based on the scale base 92 (or the downward scale 78).
  • the XZ head or YZ head for example, an encoder head having the same configuration as the displacement measurement sensor head disclosed in US Pat. No. 7,561,280 can be used.
  • a liquid crystal exposure apparatus according to a second embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the second embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage apparatus 220 (including the measurement system) is different. Only elements that have the same configuration or function as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted as appropriate.
  • the substrate stage apparatus 220 includes a first system including a first moving body (here, the substrate holder 32) and a second system including a second moving body (here, the X coarse movement stage 222).
  • System. 9 and 10 are plan views showing only the second system and the first system, respectively.
  • the X coarse movement stage 222 has a pair of floors (see FIG. 8) installed on the floor F (see FIG. 8), similarly to the Y coarse movement stage 24 (see FIG. 1) of the first embodiment. It is placed on the base frame 224 so as to be movable in the X-axis direction via a mechanical linear guide device (see FIG. 8).
  • a Y stator 226 is attached in the vicinity of both ends of the X coarse movement stage 222 in the X-axis direction.
  • the Y stator 226 is made of a member extending in the Y-axis direction, and an X mover 228 is attached in the vicinity of both ends in the longitudinal direction.
  • Each X mover 228 constitutes an X linear motor in cooperation with an X stator 230 (not shown in FIG. 8), and the X coarse movement stage 222 is predetermined in the X-axis direction by a total of four X linear motors. It is driven with a long stroke.
  • the X stator 230 is installed on the floor F in a state of being physically separated from the apparatus main body 18 (see FIG. 1).
  • the substrate holder 32 is placed on the Y beam guide 232 via the Y table 234.
  • the Y beam guide 232 is composed of a member extending in the Y-axis direction, and an X slide member 236 is attached to the vicinity of both ends in the longitudinal direction on the lower surface thereof.
  • Each X slide member 236 is engaged with an X guide member 238 fixed to the lower base 18c (see FIG. 8) so as to be movable in the X-axis direction.
  • X movers 240 are attached in the vicinity of both ends in the longitudinal direction of the Y beam guide 232.
  • Each X mover 240 forms an X linear motor in cooperation with the X stator 230 (see FIG. 9), and the Y beam guide 232 has a predetermined long stroke in the X-axis direction by a total of two X linear motors. It is driven by.
  • the Y table 234 is made of a member having an inverted U-shaped cross section, and the Y beam guide 232 is inserted through an air bearing 242 that is swingably mounted between a pair of opposing surfaces. Yes. Further, the Y table 234 is placed on the Y beam guide 232 via a minute gap by ejecting pressurized gas from an air bearing (not shown) on the upper surface of the Y beam guide 232. As a result, the Y table 234 is movable with a long stroke in the Y-axis direction with respect to the Y beam guide 232, and is rotatable with a slight angle in the ⁇ z direction.
  • the Y table 234 moves integrally with the Y beam guide 232 in the X-axis direction due to the rigidity of the gas film formed by the air bearing 242.
  • Y movers 244 are attached to the vicinity of both ends of the Y table 234 in the X-axis direction.
  • the Y mover 244 forms a Y linear motor in cooperation with the Y stator 226, and the Y table 234 has a predetermined long stroke along the Y beam guide 232 in the Y axis direction by a total of two Y linear motors. And is slightly driven in the ⁇ z direction.
  • the X coarse movement stage 222 is driven in the X-axis direction by four X linear motors (X mover 228, X stator 230), two Y attached to the X coarse movement stage 222.
  • the stator 226 also moves in the X axis direction.
  • the main controller (not shown) moves the Y beam guide 232 in the X-axis direction by two X linear motors (X mover 240 and X stator 230) so that a predetermined positional relationship with the X coarse movement stage 222 is maintained.
  • the Y table 234 that is, the substrate holder 32
  • the X coarse movement stage 222 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range.
  • the main control device moves the substrate holder 32 by using two Y linear motors (Y mover 244 and Y stator 226) in parallel with or independently of the movement of the substrate holder 32 in the X-axis direction. Drive appropriately in the Y-axis direction and the ⁇ z direction.
  • the substrate measurement system 250 is different from the first embodiment in the extending direction of each of the upward scale 252 and the downward scale 254 (in the wide measurement range) by 90 ° around the Z axis. Is that the position information of the first moving body (here, the substrate holder 32) is obtained with reference to the optical surface plate 18a (see FIG. 1) via the second moving body (here, the X coarse movement stage 222). This is substantially the same as the first embodiment.
  • an upward scale 252 extending in the Y-axis direction is fixed to the upper surface of each of the pair of Y stators 226.
  • a pair of head bases 256 spaced in the Y-axis direction are fixed to both side surfaces of the substrate holder 32 in the X-axis direction.
  • two downward X heads 74x and two downward Y heads 74y are attached to the head base 256 so as to face the corresponding upward scales 252. ing.
  • Position information in the XY plane of the substrate holder 32 with respect to the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of eight X linear encoders and a total of eight Y linear encoders.
  • a head base 258 is fixed in the vicinity of both ends of the Y stator 226 in the Y axis direction.
  • the head base 258 includes two upward X heads 80x and two upward Y heads 80y (see FIG. 9) on the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the corresponding downward scale 254 fixed.
  • the relative positional relationship between the upward scale 252 and each of the heads 80x and 80y is known.
  • Position information in the XY plane with respect to the optical surface plate 18a of the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of eight X linear encoders and a total of eight Y linear encoders.
  • two upward scales 252 are attached to the X coarse movement stage 222, and four downward scales 254 are attached to the optical surface plate 18a (see FIG. 1).
  • the number and arrangement of the scales 252 and 254 are not limited to this, and can be appropriately increased or decreased.
  • the number and arrangement of the heads 74x, 74y, 80x, 80y facing the scales 252, 254 are not limited to this, and can be increased or decreased as appropriate. The same applies to third to seventeenth embodiments to be described later.
  • a liquid crystal exposure apparatus according to a third embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the third embodiment is substantially the same as that of the second embodiment except that the configuration of the substrate stage device 320 (including the measurement system) is different. Only elements that have the same configuration or function as those of the second embodiment will be denoted by the same reference numerals as those of the second embodiment, and description thereof will be omitted as appropriate.
  • the substrate stage apparatus 320 includes a first system including the substrate holder 32 (see FIG. 14) and a second system including the X coarse movement stage 222. (See FIG. 13). Since the configurations (including the drive system) of the substrate holder 32 and the X coarse movement stage 222 are the same as those in the second embodiment, description thereof is omitted.
  • the substrate measurement system 350 of the third embodiment is conceptually similar to the first and second embodiments, and the position information of the first moving body (here, the substrate holder 32) is transferred to the second movement. It calculates
  • the Y beam guide 232 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range.
  • the substrate measurement system 350 will be described in detail.
  • an upward scale 352 is fixed to the upper surface of the Y beam guide 232.
  • head bases 354 are fixed to both side surfaces of the Y table 234 (not shown in FIG. 14; see FIG. 12) in the Y-axis direction.
  • two downward X heads 74x and two downward Y heads 74y are attached to each head base 354 so as to face the upward scale 352.
  • Position information in the XY plane with respect to the Y beam guide 232 of the substrate holder 32 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
  • head bases 356 are fixed in the vicinity of both ends of the Y beam guide 232 in the Y-axis direction.
  • the head base 356 has two upward X heads 80x and two upward Y heads 80y fixed to the lower surface of the optical surface plate 18a (see FIG. 1). It is attached to face the downward scale 358.
  • the relative positional relationship between the upward scale 352 and the respective heads 80x and 80y attached to the head base 356 is known.
  • Position information of the Y beam guide 232 in the XY plane with respect to the optical surface plate 18a is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
  • the third embodiment has a smaller number of each of the upward scale 352 and the downward scale 358 and has a simple configuration.
  • a liquid crystal exposure apparatus according to a fourth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the fourth embodiment is substantially the same as that of the second embodiment except that the configuration of the substrate stage apparatus 420 (including the measurement system) is different. Only elements that have the same configuration or function as those of the second embodiment will be denoted by the same reference numerals as those of the second embodiment, and description thereof will be omitted as appropriate.
  • the substrate stage apparatus 420 includes a first system including the substrate holder 32 (see FIG. 18) and a second system including the X coarse movement stage 222. (See FIG. 17).
  • an X mover 422 is fixed to the lower surface of the X coarse movement stage 222.
  • the X mover 422 cooperates with the X stator 424 integrally attached to the pair of base frames 224 to drive the X coarse movement stage 222 with a predetermined long stroke in the X axis direction. Is configured.
  • An XY stator 426 is attached in the vicinity of both ends of the X coarse movement stage 222 in the X-axis direction.
  • the Y beam guide 232 is mechanically connected to the X coarse movement stage 222 by four connection members 428 (see FIG. 15).
  • the structure of the connecting member 428 is the same as the connecting members 46 and 54 (see FIG. 2) described above.
  • the Y table 430 is placed on the Y beam guide 232 in a non-contact state.
  • a substrate holder 32 is fixed on the Y table 430.
  • An XY mover 432 is attached in the vicinity of both ends of the Y table 430 in the X-axis direction.
  • the XY mover 432 forms an XY2DOF motor in cooperation with the XY stator 426, and the Y table 430 is driven with a predetermined long stroke in the Y-axis direction by a total of two XY2DOF motors. It is slightly driven in the ⁇ z direction.
  • the main controller uses a total of two XY2DOF motors to generate the Y table 430 (that is, the substrate).
  • the holder 32) applies a thrust force in the X-axis direction so that a predetermined positional relationship with the Y-beam guide 232 is maintained in the X-axis direction.
  • the X coarse movement stage 222 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range.
  • the Y table 430 does not have a swingable air bearing 242 (see FIG. 8), and the Y beam guide 232 of this embodiment is actually a Y table. It does not guide the movement of 430 in the Y-axis direction.
  • the substrate measurement system 450 of the fourth embodiment is conceptually similar to the first to third embodiments, and the position information of the first moving body (here, the substrate holder 32) is transferred to the second movement. It is determined based on the optical surface plate 18a (see FIG. 1) via a body (here, X coarse movement stage 222).
  • a body here, X coarse movement stage 222.
  • an upward scale 452 is fixed to the upper surface of one (here, ⁇ X side) XY stator 426 of the pair of XY stators 426.
  • a pair of head bases 454 are fixed to the side surface on the ⁇ X side of the substrate holder 32 so as to be separated from each other in the Y-axis direction.
  • two downward X heads 74x and two downward Y heads 74y are attached to each head base 454 so as to face the upward scale 452 (see FIG. (See FIG. 16).
  • Position information in the XY plane of the substrate holder 32 with respect to the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
  • a pair of head bases 456 are fixed to the ⁇ X side XY stator 426 so as to be separated in the Y-axis direction.
  • two upward X heads 80x and two upward Y heads 80y are fixed to the head base 456 on the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the downward scale 458 (see FIG. 15).
  • the relative positional relationship between the upward scale 452 and the heads 80x and 80y attached to the head base 456 is known.
  • Position information in the XY plane with respect to the optical surface plate 18a of the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
  • an upward scale 452 may be attached only to the other of the pair of XY stators 426 or both.
  • the head bases 454 and 456 and the downward scale 458 may be additionally arranged corresponding to the upward scale 452.
  • a liquid crystal exposure apparatus according to a fifth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the fifth embodiment is substantially the same as that of the fourth embodiment except that the configuration of the substrate measurement system 550 is different.
  • the configuration of the substrate measurement system 550 is substantially the same as that of the substrate measurement system 350 (see FIG. 11 and the like) of the third embodiment.
  • elements having the same configurations or functions as those of the third or fourth embodiment will be denoted by the same reference numerals as those of the third or fourth embodiment, and description thereof will be omitted as appropriate. To do.
  • the configuration (excluding the measurement system) of the substrate stage apparatus 520 according to the fifth embodiment is substantially the same as the substrate stage apparatus 420 (see FIG. 15) according to the fourth embodiment. That is, the substrate stage apparatus 520 has a first system (see FIG. 22) including the substrate holder 32 and a second system (see FIG. 21) including the X coarse movement stage 222, and the X coarse movement stage 222. And the Y beam guide 232 move integrally in the X-axis direction.
  • the Y table 430 to which the substrate holder 32 is fixed is driven with a long stroke in the Y-axis direction with respect to the X coarse movement stage 222 by two 2DOF motors, and is slightly driven in the X-axis direction and the ⁇ z direction.
  • the conventional coarse movement stage is driven based on the measurement result of the encoder with low measurement accuracy, but in this embodiment, the X coarse movement stage 222 can be driven and controlled based on the measurement result of the high-precision two-dimensional encoder. Is possible. Therefore, although positioning can be performed with higher accuracy than the conventional fine movement stage, the X coarse movement stage 222 is not as responsive as the fine movement stage (the substrate holder 32 in the present embodiment) with respect to position control. Therefore, it is desired to control the X position of the substrate holder 32 so as to move while performing precise positioning at a constant speed regardless of the position of the X coarse movement stage 222 during the scanning operation.
  • the X coarse movement stage 222 that moves while performing rough positioning control with low responsiveness is relatively slightly driven in the X-axis direction. At this time, if the X coarse movement stage 222 is accelerated, an encoder reading error with respect to the upward scale 452 may occur. Therefore, it is better to control the X coarse movement stage 222 so that it moves with loose positioning (low responsiveness). Of the embodiments described later, in the embodiment in which the coarse movement stage is driven for the scanning operation, the coarse movement stage may be controlled similarly.
  • the configuration of the substrate measurement system 550 according to the fifth embodiment is substantially the same as the substrate measurement system 350 (see FIG. 11) according to the third embodiment, and the first moving body (here, the substrate)
  • the position information of the holder 32) is obtained based on the optical surface plate 18a (see FIG. 1) via the second moving body (here, the Y beam guide 232).
  • the pair of head bases 354 fixed to the Y table 430 see FIG. 20
  • two downward X heads 74x and two downward Y heads 74y are fixed to the upper surface of the Y beam guide 232.
  • the position information in the XY plane with respect to the Y beam guide 232 of the substrate holder 32 is a total of four X linear encoders, and a total of four Ys. It is obtained by a main controller (not shown) using a linear encoder.
  • the pair of head bases 356 fixed to the Y beam guide 232 have two upward X heads 80x and two upward Y heads 80y fixed to the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the corresponding downward scale 358 (see FIG. 19).
  • Position information of the Y beam guide 232 in the XY plane with respect to the optical surface plate 18a is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
  • the configuration of the liquid crystal exposure apparatus according to the sixth embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage device 620 and its measurement system is different. Therefore, only the differences will be described below.
  • the elements having the same configurations or functions as those of the first embodiment will be described with the same reference numerals as those of the first embodiment, and description thereof will be omitted as appropriate.
  • the substrate stage device 620 includes a substrate measurement system 680 including a first moving body (here, a substrate holder 622), a second moving body (here, a measurement table 624), a substrate table 626, and X A coarse movement stage 628 is provided.
  • a substrate measurement system 680 including a first moving body (here, a substrate holder 622), a second moving body (here, a measurement table 624), a substrate table 626, and X
  • a coarse movement stage 628 is provided.
  • the substrate holder 622 is a frame-like (frame-like) member having a rectangular shape in plan view, which is a combination of a pair of members extending in the Y-axis direction and a pair of members extending in the X-axis direction.
  • the substrate P is disposed in the opening of the substrate holder 622.
  • Four suction pads 630 protrude from the inner wall surface of the substrate holder 622, and the substrate P is placed on these suction pads 630.
  • Each suction pad 630 sucks and holds a non-exposed area (in the present embodiment, near the four corners) set at the outer peripheral edge of the lower surface of the substrate P.
  • the exposure region including the central portion is non-contact supported from below by the substrate table 626 as shown in FIG.
  • the substrate holder 32 (see FIG. 2 and the like) in the first to fifth embodiments performs flattening by sucking and holding the substrate P, whereas the substrate table 626 according to the sixth embodiment is The flattening of the substrate P is performed in a non-contact state by performing the ejection of the pressurized gas to the lower surface of the substrate P and the suction of the gas between the substrate P and the upper surface of the substrate table 626 in parallel.
  • the substrate holder 622 and the substrate table 626 are physically separated from each other.
  • the substrate P held by the substrate holder 622 can move relative to the substrate table 626 in the XY plane integrally with the substrate holder 622.
  • a stage main body 632 is fixed to the lower surface of the substrate table 626 as in the first embodiment.
  • the X coarse movement stage 628 is a member for moving the substrate table 626 with a long stroke in the X-axis direction. It is placed on 634 in a state of being movable in the X-axis direction via a mechanical linear guide device 636.
  • the X coarse movement stage 628 is driven with a long stroke in the X-axis direction on a pair of base frames 634 by an actuator (not shown) (such as a linear motor or a ball screw device).
  • Y stators 638 are fixed (one is not shown in FIG. 23).
  • the Y stator 638 forms a Y linear motor in cooperation with the Y mover 640.
  • the Y mover 640 is mechanically constrained to move integrally in the X axis direction when the Y stator 638 moves in the X axis direction.
  • a stator 644 constituting an XY2DOF motor is attached to the Y mover 640 in cooperation with a mover 642 (see FIG. 24) attached to the substrate holder 622.
  • the substrate table 626 passes through a stage main body 632 (not shown in FIG. 25; see FIG. 23) with respect to the X coarse movement stage 628 (not shown in FIG. 25) (in FIG. 25). And mechanically connected via a plurality of connecting members 646.
  • the structure of the connecting member 646 is the same as the connecting members 46 and 54 (see FIG. 2) described above.
  • the substrate holder 32 moves with a long stroke in the X-axis and Y-axis directions with respect to the projection optical system 16 (see FIG. 5 and the like).
  • the substrate table 626 of the embodiment is configured to be movable with a long stroke only in the X-axis direction, and is not movable in the Y-axis direction.
  • the Y stator 638, the Y movable element 640, and the stator 644 are arranged in a plane (at the same height position).
  • the stage main body 632 is connected to the X coarse movement stage 628 via a pseudo spherical bearing device similar to that in the first embodiment (in FIG. 23, hidden behind the paper surface such as the Y mover 640 and the like). Is supported from below by a weight canceling device 42 disposed in an opening (not shown) formed in the central portion of the.
  • the configuration of the weight canceling device 42 is the same as that of the first embodiment, and is connected to the X coarse movement stage 628 via a connecting member (not shown), and integrally with the X coarse movement stage 628 in the X-axis direction. Move with a long stroke only.
  • the weight cancellation device 42 is placed on the X guide 648.
  • the weight cancellation device 42 of the present embodiment is configured to move only in the X-axis direction, unlike the Y step guide 44 (see FIG. 2) in the first embodiment, the X guide 648 includes the lower base 18c. It is fixed to.
  • the stage body 632 is slightly driven in the Z axis, ⁇ x, and ⁇ y directions with respect to the X coarse movement stage 628 by a plurality of linear coil motors (hidden on the back side of the Y stator 638 in FIG. 23). The point is the same as in the first embodiment.
  • a plurality of air guides 652 are attached to both side surfaces of the stage main body 632 in the Y-axis direction via support members 650.
  • the air guides 652 are rectangular members in plan view, and in this embodiment, four air guides 652 are arranged on each of the + Y side and the ⁇ Y side of the substrate table 626.
  • the length in the Y-axis direction of the guide surface formed by the four air guides 652 is set to be equivalent to that of the substrate table 626, and the height position of the guide surface is equivalent to (or somewhat to the upper surface of the substrate table 626). Low) is set.
  • the substrate stage device 620 when the X coarse movement stage 628 moves with a long stroke in the X-axis direction during scanning exposure or the like, the substrate table 626 (and a plurality of airs) is pulled by the X coarse movement stage 628.
  • the guide 652) integrally moves with a long stroke in the X-axis direction.
  • the 2DOF motor stator 644 (see FIG. 25) attached to the Y mover 640 also moves in the X axis direction. To do.
  • the main controller controls the 2DOF motor so that the positions of the substrate table 626 and the substrate holder 622 in the X-axis direction are within a predetermined range, and applies thrust in the X-axis direction to the substrate holder 622. . Further, the main control device controls the 2DOF motor to slightly drive the substrate holder 622 with respect to the substrate table 626 in the X axis, Y axis, and ⁇ z directions as appropriate. Thus, in this embodiment, the substrate holder 622 has a function as a so-called fine movement stage.
  • the main controller moves Y by a Y linear motor as shown in FIG.
  • the child 640 is moved in the Y-axis direction, and the substrate holder 622 is moved in the Y-axis direction with respect to the substrate table 626 by applying a thrust in the Y-axis direction to the substrate holder 622 using a 2DOF motor.
  • a region (exposure region) of the substrate P on which the mask pattern is projected via the projection optical system 16 is always corrected by the substrate table 626 in the Y-axis direction of the substrate table 626.
  • the dimensions are set.
  • Each air guide 652 is disposed so as not to hinder relative movement of the substrate holder 622 and the substrate table 626 in the Y-axis direction (not to contact the substrate holder 622).
  • Each air guide 652 supports a portion of the substrate P that protrudes from the substrate table 626 from below by cooperating with the substrate table 626 by jetting pressurized gas to the lower surface of the substrate P.
  • Each air guide 652 does not perform flattening of the substrate P unlike the substrate table 626.
  • the substrate table 626 and the substrate holder 622 are respectively connected to the projection optical system 16 (see FIG. 23) while the substrate P is supported by the substrate table 626 and the air guide 652.
  • the air guide 652 may be driven in the X-axis direction integrally with the stage main body 632 or may not be driven.
  • the dimension in the X-axis direction may be approximately the same as the driving range of the substrate P in the X-axis direction. Thereby, it is possible to prevent a partial region of the substrate not supported by the substrate table 626 from being supported.
  • the position information of the first moving body (fine movement stage 22 in the first embodiment) is used as the Y coarse movement stage 24 which is a member for driving the fine movement stage 22.
  • the position information of the first moving body (here, the substrate holder 622) is independent of the substrate holder 622. Is obtained with reference to the optical surface plate 18a via the second moving body (here, the measurement table 624) arranged at the position.
  • two (four in total) measurement tables 624 are arranged on the + Y side and the ⁇ Y side of the projection optical system 16 so as to be separated from each other in the X-axis direction (FIG. 23, FIG. 23).
  • the number and arrangement of the measurement tables 624 can be appropriately changed and are not limited to this.
  • the measurement table 624 is movable in the Y axis direction by a Y linear actuator 682 fixed in a suspended state on the lower surface of the optical surface plate 18a (the substrate holder 622 can be moved in the Y axis direction). Driven with stroke (equivalent to distance).
  • the type of the Y linear actuator 682 is not particularly limited, and a linear motor, a ball screw device, or the like can be used.
  • each measurement table 624 Similar to the head base 96 of the first embodiment (see FIG. 2, FIG. 3, etc.), the upper surface of each measurement table 624 has two upward X heads 80x and two heads as shown in FIG. An upward Y head 80y is attached.
  • downward scales 684 extending in the Y-axis direction corresponding to the respective measurement tables 624 (that is, four) are provided in the first embodiment. It is fixed in the same manner as the downward scale 78 (see FIG. 2, FIG. 3, etc.) (see FIG. 26).
  • the downward scale 684 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the Y-axis direction of the measurement table 624 is wider (longer) than the measurement range in the X-axis direction.
  • two X linear encoder systems are configured by the two upward X heads 80x included in each measurement table 624 and the corresponding downward scale 684 (fixed scale), and each measurement table 624 includes 2 2
  • Two upward Y heads 80y and a corresponding downward scale 684 (fixed scale) constitute two Y linear encoder systems.
  • the main control device (not shown) drives the substrate holder 622 with a long stroke in the Y-axis direction so that the position in the Y-axis direction with respect to the substrate holder 622 is within a predetermined range.
  • the position of each measurement table 624 in the Y-axis direction is controlled. Therefore, the four measurement tables 624 in total perform substantially the same operation. Note that the four measurement tables 624 do not need to move in strict synchronization with each other, and do not need to move in strict synchronization with the substrate holder 622.
  • the main controller independently uses the outputs of the two X linear encoder systems and the two Y linear encoder systems described above to independently position information of each measurement table 624 in the X axis direction, the Y axis direction, and the ⁇ z direction. Ask.
  • a downward scale 686 extending in the X-axis direction is attached to the lower surfaces of the two measurement tables 624 on the + Y side (see FIG. 23). That is, the two measurement tables 624 cooperate to support the downward scale 686 in a suspended manner.
  • downward scales 686 extending in the X-axis direction are attached to the lower surfaces of the two measurement tables 624 on the ⁇ Y side.
  • the downward scale 686 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the X-axis direction of the substrate holder 622 is wider (longer) than the measurement range in the Y-axis direction.
  • the relative positional relationship between the upward heads 80x and 80y fixed to the measurement table 624 and the downward scale 686 is known.
  • two head bases 688 are fixed on the upper surface of the substrate holder 622 corresponding to the two downward scales 684 (see FIG. 26) in total.
  • the head base 688 is disposed with the central portion of the substrate P sandwiched between the + Y side and the ⁇ Y side of the substrate P in a state where the substrate P is held by the substrate holder 622.
  • Two upward X heads 80 x and two upward Y heads 80 y are attached to the upper surface of the head base 688.
  • the position of the substrate holder 622 and each measurement table 624 are controlled so that the position in the Y-axis direction is within a predetermined range. Specifically, the position of each measurement table 624 in the Y-axis direction is controlled so that the measurement beams from the heads 80x and 80y attached to the substrate holder 622 do not deviate from the lattice plane of the downward scale 686. That is, the substrate holder 622 and each measurement table 624 move in the same direction at substantially the same speed so that the facing state of the head base 688 and the downward scale 686 is always maintained.
  • four X linear encoder systems are configured by the four upward X heads 80x of the substrate holder 622 and the corresponding downward scale 686 (movable scale), and the substrate
  • the four upward Y heads 80y included in the holder 622 and the corresponding downward scale 686 (movable scale) constitute a four Y linear encoder system.
  • the main controller (not shown) obtains positional information of the substrate holder 622 in the XY plane with respect to the four measurement tables 624 in total. .
  • the main control device includes position information (first information) with respect to each measurement table 624 of the substrate holder 622, position information (second information) with respect to the optical surface plate 18a of each measurement table 624, and an upward head 80x in each measurement table 624, Based on the position information (third information) between 80y and the downward scale 686, the position information of the substrate holder 622 (substrate P) is obtained with reference to the optical surface plate 18a.
  • a liquid crystal exposure apparatus according to the seventh embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the seventh embodiment is substantially the same as that of the sixth embodiment except that the configuration of the substrate stage device 720 and its measurement system is different.
  • the elements having the same configurations or functions as those of the sixth embodiment will be described with the same reference numerals as those of the sixth embodiment, and description thereof will be omitted as appropriate.
  • the substrate stage device 720 includes a substrate measuring system 780 including a first moving body (here, a pair of substrate holders 722), a second moving body (here, a measurement table 624), and the like. ing.
  • the substrate holder 622 is formed in a rectangular frame shape surrounding the entire outer periphery of the substrate P, whereas a pair of substrate holders according to the seventh embodiment. 722 are physically separated from each other, and one substrate holder 722 sucks and holds the vicinity of the + X side end of the substrate P, and the other substrate holder 722 closes the ⁇ X side end of the substrate P. It differs in the point of adsorption holding.
  • the configuration and function of the substrate table 626 and the drive system (including the X coarse movement stage 628) for driving the substrate table 626 are the same as those in the sixth embodiment, and a description thereof will be omitted.
  • each substrate holder 722 has a suction pad 726 that sucks and holds the central portion of the substrate P in the Y-axis direction from the lower surface.
  • the -X side substrate holder 722 has a measurement plate 728 attached to the upper surface, and therefore the length in the Y-axis direction is set longer than the + X side substrate holder 722. Since the holding function, the position control operation of the substrate P, and the like are common to the pair of substrate holders 722, in this embodiment, the pair of substrate holders 722 will be described with the same reference numerals for convenience.
  • an index used for calibration or the like related to optical characteristics (scaling, shift, rotation, etc.) of the projection optical system 16 is formed on the measurement plate 728.
  • Each substrate holder 722 is made up of a corresponding Y by a 3DOF motor composed of a stator 730 (refer to FIG. 30) included in the Y mover 640 and a mover 732 (refer to FIG. 29) included in each substrate holder 722, respectively.
  • the mover 640 is slightly driven in the X, Y, and ⁇ z directions.
  • a combination of two X linear motors and one Y linear motor is used as the 3DOF motor, but the configuration of the 3DOF motor is not particularly limited and can be changed as appropriate.
  • each substrate holder 722 is independently driven by a 3DOF motor, but the operation of the substrate P itself is the same as in the sixth embodiment.
  • each substrate holder 722 is supported in a non-contact manner from below by an air guide 734 extending in the Y-axis direction (refer to FIG. 31 for the substrate holder 722 on the ⁇ X side).
  • the height position of the upper surface of the air guide 734 is set lower than the height position of the upper surface of the substrate table 626 and the air guide 652.
  • the length of the air guide 734 is set to be equal to (or somewhat longer than) the movable distance of the substrate holder 722 in the Y-axis direction.
  • the air guide 734 is also fixed to the stage main body 632 similarly to the air guide 652, and moves with a long stroke in the X-axis direction integrally with the stage main body 632. Note that the air guide 734 may be applied to the substrate stage device 620 of the sixth embodiment.
  • the substrate measurement system 780 according to the seventh embodiment is conceptually the substrate according to the sixth embodiment except that the arrangement of the heads on the substrate P side, the number and arrangement of the measurement tables 624 are different. This is almost the same as the measurement system 680 (see FIG. 26). That is, the substrate measurement system 780 obtains the position information of the first moving body (here, each substrate holder 722) with reference to the optical surface plate 18a via the measurement table 624. This will be specifically described below.
  • the configuration of the measurement table 624 included in the substrate measurement system 780 is the same as that of the sixth embodiment except for the arrangement.
  • the measurement table 624 is arranged on the + Y side and the ⁇ Y side of the projection optical system 16, whereas the measurement table according to the seventh embodiment is used.
  • the position of the table 624 in the Y-axis direction overlaps with the projection optical system 16, and one measurement table 624 (see FIG. 28) is the + X side of the projection optical system 16 and the other measurement.
  • a table 624 (not shown in FIG. 28) is arranged on the ⁇ X side of the projection optical system 16 (see FIG. 31).
  • the measurement table 624 is driven by the Y linear actuator 682 with a predetermined stroke in the Y-axis direction.
  • the position information of each measurement table 624 in the XY plane includes upward heads 80x and 80y (see FIG. 31) attached to the measurement table 624, and a corresponding downward scale 684 fixed to the lower surface of the optical surface plate 18a. are independently obtained by a main controller (not shown) using the encoder system configured by the above.
  • a downward scale 782 is fixed to the lower surfaces of the two measurement tables 624 (see FIG. 31). That is, in the sixth embodiment (see FIG. 27), one downward scale 686 is suspended and supported by two measurement tables 624, whereas in the seventh embodiment, one measurement table 624 is supported. One downward scale 782 is suspended and supported.
  • the downward scale 782 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the X-axis direction of each substrate holder 722 is wider (longer) than the measurement range in the Y-axis direction.
  • the relative positional relationship between the upward heads 80x and 80y fixed to the measurement table 624 and the downward scale 782 is known.
  • a head base 784 is fixed to each substrate holder 722.
  • two upward X heads 80x and two upward Y heads 80y are attached so as to face the corresponding downward scale 782 (see FIG. 31). ). Since the position measurement operation of the substrate P during the position control of the substrate P in the seventh embodiment is substantially the same as in the sixth embodiment, the description thereof is omitted.
  • a liquid crystal exposure apparatus according to the eighth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the eighth embodiment is substantially the same as that of the sixth embodiment except that the configuration of the substrate stage device 820 and its measurement system is different.
  • the elements having the same configurations or functions as those of the sixth embodiment will be described with the same reference numerals as those of the sixth embodiment, and description thereof will be omitted as appropriate.
  • the substrate stage apparatus 820 of the eighth embodiment includes a first moving body (here, the substrate holder 822), a second moving body (here, the X coarse movement stage 628), a substrate measurement system 880, and the like.
  • the substrate holder 822 for holding the substrate P is formed in a rectangular frame shape surrounding the entire outer periphery of the substrate P, as in the sixth embodiment (see FIG. 26 and the like). . Since the drive system for driving the substrate holder 822 and the substrate table 626 is the same as that of the sixth embodiment, description thereof is omitted. Note that the substrate stage apparatus 820 of the eighth embodiment includes an air guide 734 that supports the substrate holder 822 from the lower side in a non-contact manner, as in the seventh embodiment (see FIG. 30).
  • the substrate measurement system 880 will be described.
  • the position information of the substrate holder 622 is obtained based on the optical surface plate 18a via the measurement table 624
  • the position information of the substrate holder 822 is obtained with reference to the optical surface plate 18a via the X coarse movement stage 628 for driving the substrate table 626 in the X-axis direction.
  • the substrate measurement system 880 is conceptually common with the substrate measurement system 250 (see FIG. 8 and the like) according to the second embodiment.
  • the X coarse movement stage 628 in the eighth embodiment is composed of a pair of flat plate (strip-shaped) members extending in the X-axis direction and disposed corresponding to the pair of base frames 634 (see FIG. 34). Since they are functionally the same, the same reference numerals as those of the X coarse movement stage 628 of the sixth embodiment are given for convenience.
  • an upward scale 882 is fixed to the upper surface of each of the pair of Y stators 638 fixed to the X coarse movement stage 628, as in the second embodiment (see FIG. 9). ing. Since the configuration and function of the upward scale 882 are the same as those of the upward scale 252 (see FIG. 9) of the second embodiment, description thereof is omitted here.
  • a pair of head bases 884 spaced in the Y-axis direction are fixed near the + X side and ⁇ X side ends of the substrate holder 822, respectively.
  • a total of four head bases 884 are each provided with one downward X head 74x, one downward Y head 74y, and one downward Z head 74z so as to face the upward scale 882 (see FIG. 34). (See FIG. 33). Since the configurations and functions of the X head 74x and the Y head 74y are the same as those of the X head 74x and the Y head 74y (see FIG. 3 respectively) of the first embodiment, the description thereof is omitted here.
  • a total of four downward X heads 74x and a corresponding upward scale 882 constitute four X linear encoder systems (see FIG. 35), and a total of four downward Y heads.
  • 74 Y and the corresponding upward scale 882 constitute four Y linear encoder systems (see FIG. 35).
  • the main control device uses the outputs of the four X linear encoder systems and the four Y linear encoder systems as appropriate to position information of the substrate holder 822 in the X axis direction, the Y axis direction, and the ⁇ z direction ( First information) is obtained with reference to the X coarse movement stage 628.
  • the configuration of the downward Z head 74z is not particularly limited, but a known laser displacement sensor or the like can be used.
  • the Z head 74z measures the amount of displacement of the head base 884 in the Z-axis direction using the lattice plane (reflecting surface) of the corresponding upward scale 882 (see FIG. 35).
  • the main controller (not shown) obtains displacement information in the Z tilt direction of the substrate holder 822 (that is, the substrate P) with respect to the X coarse movement stage 628 based on the outputs of the four Z heads 74z in total.
  • a pair of head bases 886 separated in the X-axis direction are fixed near the + Y side and ⁇ Y side ends of the Y stator 638, respectively.
  • Each of the eight head bases 886 is attached with one upward X head 80x, upward Y head 80y, and upward Z head 80z.
  • the configurations and functions of the X head 80x and the Y head 80y are the same as those of the X head 80x and the Y head 80y of the first embodiment (see FIG. 3 and the like, respectively), and thus description thereof is omitted here.
  • Information (third information) relating to the relative positional relationship between the heads 80x, 80y, and 80z and the upward scale 882 described above is known.
  • One downward scale 888 is fixed to the lower surface of the optical surface plate 18a (see FIG. 32) corresponding to the pair of head bases 884 described above. That is, as shown in FIG. 35, a total of four downward scales 888 are fixed to the lower surface of the optical surface plate 18a. Since the configuration and function of the downward scale 888 are the same as the downward scale 254 (see FIG. 8) of the second embodiment, the description thereof is omitted here.
  • a total of eight upward X heads 80x and a corresponding downward scale 888 constitute eight X linear encoder systems (see FIG. 35), and a total of eight upward Y heads. Eight Y linear encoder systems (see FIG. 35) are configured by 80y and the corresponding downward scale 888.
  • the main control device (not shown) appropriately uses the outputs of the eight X linear encoder systems and the eight Y linear encoder systems to position the X coarse movement stage 628 in the X axis direction, the Y axis direction, and the ⁇ z direction.
  • Information (second information) is obtained based on the optical surface plate 18a.
  • the main controller (not shown) obtains displacement information in the Z tilt direction with respect to the optical surface plate 18a of the X coarse movement stage 628 based on the outputs of the eight Z heads 74z in total.
  • the position information of the substrate P is obtained based on the optical surface plate 18a via the X coarse movement stage 628 (based on the first to third information).
  • positional information in the Z tilt direction of the substrate P is also obtained with reference to the optical surface plate 18a via the X coarse movement stage 628.
  • the substrate stage apparatus 920 is a pair of substrate holders that are physically separated from each other as in the seventh embodiment (see FIG. 29). 922.
  • One substrate holder 922 holds the vicinity of the + X side end of the substrate P
  • the other substrate holder 922 holds the vicinity of the ⁇ X side end of the substrate P
  • the pair of substrate holders 922 includes a 3DOF motor. Is the same as that in the seventh embodiment in that it is independently driven with respect to the X coarse movement stage 628.
  • the configuration and operation of the substrate measurement system 980 (see FIG. 38) according to the ninth embodiment are the same as those of the eighth embodiment except that the position information of each of the pair of substrate holders 922 is obtained independently. It is. That is, as shown in FIG. 36, a pair of head bases 884 that are spaced apart in the Y-axis direction are fixed to each substrate holder 922. Downward heads 74x, 74y, and 74z are attached to the head base 884 so as to face an upward scale 882 (see FIG. 37) fixed to the upper surface of the Y stator 638 (see FIG. 37). Since the configuration and operation of the position measurement system based on the optical surface plate 18a (see FIG. 28, etc.) of the X coarse movement stage 628 are the same as those in the seventh embodiment, description thereof will be omitted.
  • the substrate P is held by the substrate holder 922 in the vicinity of both ends in the X-axis direction, whereas as shown in FIG. In the embodiment, the substrate P is different in that only the vicinity of an end portion on one side (in this embodiment, ⁇ X side) in the X-axis direction is sucked and held by the substrate holder 922. Since the substrate holder 922 is the same as that of the ninth embodiment, description thereof is omitted here. Further, the configuration and operation of the substrate measurement system 1080 (see FIG. 41) according to the tenth embodiment are the same as those in the ninth embodiment, and thus the description thereof is omitted here.
  • the Y stator 638 is disposed only on the ⁇ X side of the substrate table 626.
  • the base frame 1024 is shorter than the substrate stage apparatus 920 (see FIG. 38) according to the ninth embodiment, and the overall structure is compact.
  • the connecting member 1022 that connects the Y stator 638 and the air guide 734 is also rigid in the X-axis direction. (Push and pull) is possible.
  • the X guide 648 that supports the weight cancellation device 42 is fixed on the lower base 18c, but is not limited thereto, and is physically separated from the device body 18. You may install on the floor F in the state which carried out.
  • the substrate P is placed on one side ( ⁇ X side in the present embodiment) in the X-axis direction, as in the tenth embodiment (see FIG. 41 and the like). Only the vicinity of the end is held by the substrate holder 1122 (see FIG. 47).
  • the width of the substrate holder 1122 (X-axis direction) is set to be somewhat longer than that of the substrate holder 922 (see FIG. 39) according to the tenth embodiment. .
  • the substrate holder 1122 is supported by the air guide 1124 in a non-contact manner from below.
  • the configuration and function of the air guide 1124 are substantially the same as those of the air guide 734 (see FIG. 30 and the like) according to the seventh to tenth embodiments, but in the X-axis direction corresponding to the substrate holder 1122. The difference is that the dimensions are set somewhat longer.
  • the substrate measurement system 1180 obtains positional information of the substrate holder 1122 with reference to the optical surface plate 18a via the X coarse movement stage 628, as described in the tenth embodiment (FIG. 41). (See FIG. 45), but the arrangement of the upward scale 882 and the downward heads 74x and 74y (see FIG. 45) is different.
  • the upward scale 882 is fixed to an air guide 1124 that supports the substrate holder 1122 in a floating manner.
  • the height position of the upper surface (guide surface) of the air guide 1124 and the height position of the lattice surface (measurement surface) of the upward scale 882 are set to be substantially the same. Since the air guide 1124 is fixed to the stage main body 632, the upward scale 882 moves with respect to the substrate P so that the position in the XY plane is within a predetermined range.
  • the substrate holder 1122 is formed with a recessed portion that opens downward, and a pair of downward heads 74x, 74y, and 74z (see FIG. 45) are attached to the recessed portion so as to face the upward scale 882, respectively. Yes. Since the position measuring operation of the substrate holder 1122 is the same as that of the tenth embodiment, the description thereof is omitted.
  • the head base 886 (see FIG. 41, etc.) is fixed to the Y stator 638, whereas in the eleventh embodiment, as shown in FIG. A head base 886 is fixed to the air guide 1124. A pair of head bases 886 are arranged in the vicinity of both ends of the air guide 1124 in the longitudinal direction. Since the position measuring operation of the X coarse movement stage 628 using the downward scale 888 fixed to the optical surface plate 18a (see FIG. 44) is the same as that of the tenth embodiment, the description thereof is omitted.
  • the position information of the substrate holder 1122 is obtained based on the optical surface plate 18a via the air guide 1124. Since the air guide 1124 is fixed to the stage main body 632, the air guide 1124 is hardly affected by disturbance and can improve the exposure accuracy. Further, as compared with the tenth embodiment and the like, the positions of the upward scale 882 and the downward scale 888 approach the center position of the projection optical system 16, so the error is reduced and the exposure accuracy can be improved.
  • a liquid crystal exposure apparatus according to the twelfth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the twelfth embodiment is substantially the same as that of the seventh embodiment except that the configuration of the substrate stage apparatus 1220 and its measurement system is different.
  • the elements having the same configurations or functions as those of the seventh embodiment are denoted by the same reference numerals as those of the seventh embodiment, and description thereof is omitted as appropriate.
  • the substrate P is held in the vicinity of both ends in the X-axis direction by a pair of substrate holders 722 that move with a long stroke in the Y-axis direction.
  • the substrate P has a point that the vicinity of both ends in the Y-axis direction is held by a pair of substrate holders 1222 that move in the X-axis direction with a long stroke.
  • the substrate stage apparatus 1220 during the scan exposure operation, only the pair of substrate holders 1222 are driven in the X-axis direction with respect to the projection optical system 16 (see FIG. 48), thereby performing the scan exposure operation on the substrate P. .
  • the substrate stage apparatus 1220 has a structure in which the substrate stage apparatus 720 (see FIG. 31 and the like) according to the seventh embodiment is rotated 90 ° around the Z axis with respect to the projection optical system 16. .
  • the configuration of the substrate stage apparatus 1220 will be described.
  • three surface plates 1224 extending in the Y-axis direction are fixed on the undercarriage portion 18c at predetermined intervals in the X-axis direction.
  • a weight canceling device 42 is placed via a linear guide device 1226.
  • a Z actuator 1228 is placed on the + X side and ⁇ X side surface plates 1224 via a linear guide device 1226.
  • the point that the weight cancellation device 42 supports the substrate table 626 (see FIG. 48 respectively) from below via the stage main body 632 is the same as in the sixth embodiment (see FIG. 23 and the like).
  • the Y coarse movement stage 1230 is mounted on a pair of base frames 1232 extending in the Y-axis direction, and is driven with a long stroke in the Y-axis direction by a Y linear actuator (not shown). .
  • the weight canceling device 42 and the two Z actuators 1228 are connected to the Y coarse moving stage 1230 by a connecting member 46 (see FIG. 48). Moves integrally in the Y-axis direction.
  • the stage main body 632 is also connected to the Y coarse movement stage 1230 by the connecting member 46 (see FIG. 48), and moves integrally with the Y coarse movement stage 1230 in the Y-axis direction. Near both ends of the Y coarse movement stage 1230 in the Y-axis direction, a stator 1234 extending in the X-axis direction is attached.
  • air guides 1236 are arranged corresponding to the pair of substrate holders 1222 (see FIG. 53), respectively.
  • the air guide 1236 is fixed to the stage main body 632 via a support member 1238 (see FIG. 48).
  • the Z position on the upper surface of the air guide 1236 is set to a position lower than the Z position on the upper surface of the substrate table 626.
  • a plurality (four in this embodiment) of air guides 1240 for supporting the substrate P from below are arranged on the + X side and the ⁇ X side of the substrate table 626.
  • the Z position of the upper surface of the air guide 1240 is set to be substantially the same as the Z position of the upper surface of the substrate table 626.
  • the air guide 1240 supports the substrate P from below in cooperation with the substrate table 626 when the substrate P moves relative to the substrate table 626 in the X-axis direction, such as during a scan exposure operation (see FIG. 54).
  • air guides 1242 are arranged corresponding to the pair of substrate holders 1222, respectively.
  • the air guide 1242 is a member similar to the air guide 1236 described above, and the Z position of the upper surface thereof is set to be substantially the same as the air guide 1236.
  • the air guide 1242 supports the substrate holder 1222 from below when the substrate holder 1222 moves relative to the substrate table 626 in the X-axis direction in cooperation with the air guide 1236 (see FIG. 54).
  • the air guides 1240 and 1242 are placed on the Z actuator 1228 (see FIG. 50) described above via a common base member. Since the Z actuator 1228 and the weight canceling device 42 (see FIG. 50) integrally move in the Y-axis direction, the air guides 1240, 1242, 1236, and the substrate table 626 move integrally in the Y-axis direction. .
  • the pair of substrate holders 1222 are arranged with the central portion (center of gravity position) of the substrate P interposed therebetween, and the lower surface of the substrate P is sucked and held using the suction pad 1244.
  • a movable element 1246 constituting a 2DOF motor is attached to each substrate holder 1222 in cooperation with the above-described stator 1234 (see FIG. 51).
  • the main controller (not shown) drives each substrate holder 1222 with a long stroke in the X-axis direction with respect to the substrate table 626 (see FIG. 52) via the corresponding 2DOF motor.
  • a thrust in the Y-axis direction is applied to the substrate holder 1222 so that the positional relationship in the Y-axis direction with the moving stage 1230 (see FIG. 51) falls within a predetermined range.
  • the pair of substrate holders 1222 are driven on the air guides 1236 and 1242 by the 2DOF motor in the X-axis direction during a scanning exposure operation or the like.
  • the scanning exposure operation for the substrate P is performed.
  • a system including a pair of substrate holders 1222 and a substrate table 626 (substrate table 626, Y coarse movement stage 1230, stator 1234, air guides 1236, 1240, 1242, etc.) is integrated with Y. Move in the axial direction.
  • the board measurement system 1280 is conceptually similar to the board measurement system 70 (see FIG. 4) according to the first embodiment. That is, a pair of downward heads 74x and 74y (see FIG. 49 respectively) are attached to members (each of the pair of substrate holders 1222 in this embodiment) holding the substrate P via a head base 1282, and the downward heads 74x and 74y are , Opposite a corresponding upward scale 1284 attached to the upper surface of the stator 1234.
  • the main controller (not shown) appropriately uses the outputs of the two X linear encoder systems and the two Y linear encoder systems, and uses the X axis direction, the Y axis direction, and the ⁇ z direction with respect to the Y coarse movement stage 1230 of each substrate holder 1222.
  • Direction position information (first information) is obtained independently.
  • a head base 1286 is fixed to the central portion of the stator 1234 in the longitudinal direction.
  • a pair of upward heads 80x and 80y are attached to the head base 1286, and the upward heads 80x and 80y are respectively provided with a corresponding downward scale 1288 fixed to the lower surface of the optical surface plate 18a (see FIG. 48) and an X linear encoder system.
  • the Y linear encoder system is configured.
  • the positional relationship (third information) between the upward scale 1284 and the upward heads 80x and 80y is known.
  • a main controller (not shown) obtains positional information (second information) of the Y coarse movement stage 1230 in the horizontal plane by appropriately using outputs of the four X linear encoder systems and the four Y linear encoder systems.
  • a liquid crystal exposure apparatus according to a thirteenth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the thirteenth embodiment is substantially the same as that of the twelfth embodiment except that the configuration of the substrate stage apparatus 1320 and its measurement system is different.
  • the elements having the same configuration or function as those of the twelfth embodiment will be denoted by the same reference numerals as those of the twelfth embodiment, and description thereof will be omitted as appropriate.
  • the substrate P has a pair of portions near both ends in the Y-axis direction as shown in FIG. It is held by the substrate holder 1322.
  • the pair of substrate holders 1322 is driven by the 2DOF motor with a long stroke in the X-axis direction, and is slightly driven in the Y-axis and ⁇ z directions as in the twelfth embodiment.
  • the substrate holder 1222 includes an air guide 1236 and a pair of air guides 1242 (each of which is separated from each other) according to the position in the X-axis direction.
  • the substrate holder 1322 according to the thirteenth embodiment is set to a length that can cover the entire movable region in the X-axis direction. It is supported from below by a single air guide 1324. As shown in FIG. 55, the air guide 1324 is connected to the stage main body 632 and can move in the Y-axis direction integrally with the substrate table 626.
  • the substrate measurement system 1380 has a structure in which the substrate measurement system 1180 (see FIG. 44 and the like) according to the eleventh embodiment is rotated by 90 ° around the Z axis. That is, in the thirteenth embodiment, an upward scale 1382 is fixed to the upper surface of the air guide 1324 as shown in FIG. In the eleventh embodiment, the upward scale 882 (see FIG. 46 and the like) has a wider measurement range of position information regarding the Y-axis direction than the X-axis direction (so that the Y-axis direction becomes the longitudinal direction). In contrast to the arrangement, the upward scale 1382 of this embodiment is arranged so that the measurement range of the position information in the X-axis direction is wider than the Y-axis direction (the X-axis direction is the longitudinal direction). Yes.
  • the substrate holder 1322 is formed with a recessed portion opened downward like the substrate holder 1122 (see FIG. 44, etc.) according to the eleventh embodiment, and the substrate holder 1322 faces downward in the recessed portion.
  • a pair of heads 74x, 74y, 74z are attached so as to face the upward scale 1382 (see FIG. 58).
  • a head base 1384 is fixed in the vicinity of both ends of the air guide 1324 in the longitudinal direction, and each head base 1384 has two upward heads 80x, 80y, and 80z, respectively. It is attached so as to face the corresponding downward scale 1386 fixed to the lower surface of the surface plate 18a (see FIG. 55).
  • the position information of the substrate P (a pair of substrate holders 1322) is also displayed on the substrate measurement system 1380 according to the thirteenth embodiment. It is obtained with reference to the optical surface plate 18a via the coarse movement stage 1230.
  • a liquid crystal exposure apparatus according to the fourteenth embodiment will be described with reference to FIG.
  • the configuration of the liquid crystal exposure apparatus according to the fourteenth embodiment is substantially the same as that of the thirteenth embodiment except that the configuration of the substrate stage apparatus 1420 and its measurement system is different.
  • the elements having the same configurations or functions as those of the thirteenth embodiment will be described with the same reference numerals as those of the thirteenth embodiment, and description thereof will be omitted as appropriate.
  • the substrate P is held by the substrate holder 1322 in the vicinity of both ends in the Y-axis direction, whereas as shown in FIG. In the embodiment, the substrate P is different in that only the vicinity of the end on one side (in the present embodiment, + Y side) in the Y-axis direction is sucked and held by the substrate holder 1422.
  • the substrate holder 1422 is the same as that of the twelfth embodiment except that it is driven by a 3DOF motor with respect to the stator 1424. Therefore, the description thereof is omitted here.
  • the connecting member 1426 that connects the stator 1424 and the air guide 1324 has rigidity in the Y-axis direction, and the stator 1424 can press or pull (push and pull) the substrate table 626. Yes. Since the configuration and operation of the substrate measurement system 1480 according to the fourteenth embodiment are the same as those of the thirteenth embodiment, description thereof is omitted here.
  • ⁇ 15th Embodiment a liquid crystal exposure apparatus according to the fifteenth embodiment will be described with reference to FIGS. Since the configuration of the liquid crystal exposure apparatus according to the fifteenth embodiment is substantially the same as that of the first or sixth embodiment except that the configuration of the substrate stage apparatus 1520 is different, only the differences will be described below. Elements having the same configuration or function as those of the first or sixth embodiment are denoted by the same reference numerals as those of the first or sixth embodiment, and description thereof is omitted as appropriate.
  • the substrate stage device 1520 includes a first moving body (here, the substrate holder 1522) and a second moving body (here, the Y coarse movement stage 24).
  • the substrate holder 1522 is formed in a rectangular frame shape (frame shape) in plan view, like the substrate holder 622 of the sixth embodiment (see FIG. 26, etc.).
  • the substrate holder 1522 is disposed in the opening.
  • the substrate holder 1522 has four suction pads 1524 and sucks and holds the vicinity of the center of each of the four sides of the substrate P from below.
  • the exposure area including the central portion is non-contact supported by the substrate table 626 from below as shown in FIG.
  • the substrate table 626 performs flattening of the substrate P in a non-contact state as in the sixth embodiment (see FIG. 26 and the like).
  • a stage main body 632 (see FIG. 23) is fixed to the lower surface of the substrate table 626 as in the sixth embodiment.
  • the stage body 632 (not shown) is connected to the X coarse movement stage 26 via a plurality of connecting members 1526 in a state in which relative movement in the Z tilt direction is allowed.
  • the substrate table 626 moves with a long stroke integrally with the X coarse movement stage 26 in the X-axis and Y-axis directions. Since the configurations and operations of the X coarse movement stage 26, the Y coarse movement stage 24, and the like are substantially the same as those in the first embodiment (see FIG. 4 and the like), description thereof will be omitted.
  • the table member 1528 protrudes from the stage main body 632 (not shown in FIG. 63; see FIG. 23) in a total of four directions including the ⁇ Y direction and the ⁇ X direction.
  • the substrate holder 1522 is placed on the four table members 1528 in a non-contact state via air bearings (not shown).
  • the substrate holder 1522 includes a plurality of linear elements configured by a plurality of movers 1530 (see FIG. 62) attached to the substrate holder 1522 and a plurality of stators 1532 (see FIG. 63) attached to the stage main body 632.
  • the motor is driven with respect to the substrate table 626 with a slight stroke in the X-axis, Y-axis, and ⁇ z directions.
  • the substrate holder 622 of the sixth embodiment is separated from the substrate table 626 and can be relatively moved with a long stroke in the Y-axis direction (see FIG. 27).
  • the illustrated main controller uses the plurality of linear motors so that the positions of the substrate holder 1522 and the substrate table 626 are within a predetermined range in the X-axis and Y-axis directions. Then, a thrust is applied to the substrate holder 1522. Accordingly, the entire exposure area of the substrate P is always supported from below by the substrate table 626.
  • the substrate measurement system 1580 is conceptually substantially the same as the substrate measurement system 70 according to the first embodiment, and position information in the horizontal plane of the substrate holder 1522 is optically determined via the Y coarse movement stage 24. It is determined based on the board 18a (see FIG. 1 etc.).
  • a pair of head bases 88 is fixed to the substrate holder 1522, and two downward X heads 74 x and two downward Y heads 74 y are attached to each head base 88. (See FIG. 62).
  • a pair of scale bases 84 are attached to the Y coarse movement stage 24 via arm members 86, and the upper surfaces of the scale bases 84 extend in the X-axis direction ( The upward scale 72 is fixed (the measurable range in the X-axis direction is longer than the measurable range in the Y-axis direction).
  • Position information of the substrate holder 1522 with respect to the Y coarse movement stage 24 is obtained by an encoder system including the heads 74x and 74y and the scale 72 corresponding thereto.
  • a head base 96 is fixed to each of the pair of scale bases 84 attached to the Y coarse movement stage 24.
  • Each head base 96 has two upward X heads 80x and two upward Y heads 80y. It is attached (see FIG. 63).
  • the lower surface of the optical surface plate 18a extends in the Y-axis direction corresponding to each head base 96 (the measurable range in the Y-axis direction is longer than the measurable range in the X-axis direction).
  • a scale 78 (see FIG. 60) is fixed. Position information of the Y coarse movement stage 24 with respect to the optical surface plate 18a is obtained by an encoder system constituted by the heads 80x and 80y and the scale 78 corresponding thereto.
  • a liquid crystal exposure apparatus according to the sixteenth embodiment will be described with reference to FIG.
  • the configuration of the liquid crystal exposure apparatus according to the sixteenth embodiment is substantially the same as that of the sixth or fifteenth embodiment except that the configuration of the substrate stage device 1620 and its measurement system is different. Only the points will be described, and elements having the same configuration or function as those of the sixth or fifteenth embodiment will be denoted by the same reference numerals as those of the sixth or fifteenth embodiment, and description thereof will be omitted as appropriate.
  • the configurations (including the drive system) of the substrate holder 1522 and the substrate table 626 included in the substrate stage device 1620 according to the sixteenth embodiment are substantially the same as those of the fifteenth embodiment (see FIG. 60 and the like).
  • the substrate measurement system 1580 (see FIG. 60, etc.) of the fifteenth embodiment determines the position information of the substrate holder 1522 with reference to the optical surface plate 18a via the Y coarse movement stage 24 (that is, the first embodiment).
  • the substrate measurement system 1680 according to the sixteenth embodiment uses the position information of the substrate holder 1522 as in the sixth embodiment. The difference is that the optical table 18a is obtained as a reference via the measurement table 624.
  • a pair of head bases 688 are fixed to the substrate holder 1522 according to the sixteenth embodiment, as in the sixth embodiment (see FIG. 24), and each head base 688 has an upward X
  • Two heads 80x and two upward Y heads 80y are attached.
  • a measurement table 624 is attached to the lower surface of the optical surface plate 18a so as to correspond to the pair of head bases 688 so that the position in the Y-axis direction with respect to the substrate holder 1522 is within a predetermined range.
  • the position information of the substrate holder 1522 is obtained by a linear encoder system including the heads 80x and 80y and a downward scale 686 fixed to the lower surface of the corresponding measurement table 624 and extending in the X-axis direction.
  • the position information of the measurement table 624 includes an upward X head 80x and an upward Y head 80y attached to the measurement table 624, and a downward scale 684 that is fixed to the lower surface of the optical surface plate 18a and extends in the Y-axis direction. Required by a linear encoder system.
  • a liquid crystal exposure apparatus according to the seventeenth embodiment will be described with reference to FIG.
  • the configuration of the liquid crystal exposure apparatus according to the seventeenth embodiment is substantially the same as that of the fifteenth or sixteenth embodiment except that the configuration of the substrate stage apparatus 1720 and its measurement system is different. Only the points will be described, and elements having the same configuration or function as those of the fifteenth or sixteenth embodiment are denoted by the same reference numerals as those of the fifteenth or sixteenth embodiment, and description thereof will be omitted as appropriate.
  • the configurations (including the drive system) of the substrate holder 1522, the substrate table 626, and the like included in the substrate stage apparatus 1720 according to the seventeenth embodiment are substantially the same as those in the fifteenth embodiment (see FIG. 60 and the like).
  • the substrate measurement system 1580 (see FIG. 60, etc.) of the fifteenth embodiment determines the position information of the substrate holder 1522 with reference to the optical surface plate 18a via the Y coarse movement stage 24 (that is, the first embodiment).
  • the substrate measurement system 1780 according to the seventeenth embodiment includes the positional information of the substrate holder 1522, the Y coarse movement stage 24, and the measurement table 1782. The point which is calculated
  • the scale base 1784 is fixed to the Y coarse movement stage 24 via the arm member 86 as in the fifteenth embodiment (see FIG. 63 and the like). Yes.
  • one scale base 1784 is disposed on each of the + Y side and the ⁇ Y side of the substrate holder 1522 as in the fifteenth embodiment.
  • a measurement table 1782 is also shown, but one is arranged on each of the + Y side and the ⁇ Y side of the projection optical system 16 corresponding to the scale base 1784.
  • an upward scale 1786 used for position measurement of the substrate holder 1522 and an upward scale 1788 used for position measurement of the measurement table 1782 are attached at predetermined intervals in the Y-axis direction.
  • the upward scales 1786 and 1788 have a two-dimensional diffraction grating on the upper surface so that the measurement range of the position information in the X-axis direction is wider than the Y-axis direction (so that the X-axis direction is the longitudinal direction). Yes.
  • the positional relationship between the upward scale 1786 and the upward scale 1788 is assumed to be known. Note that the pitch of the two-dimensional diffraction gratings formed on the upward scales 1786 and 1788 may be the same or different.
  • the scale base 1784 may have a single wide upward scale that serves both for the position measurement of the substrate holder 1522 and for the position measurement of the measurement table 1782, instead of the two upward scales 1786 and 1788. .
  • two downward heads 74x and 74y are attached to the substrate holder 1522 via the head base 88, respectively.
  • the position information of the substrate holder 1522 in the XY plane with respect to the Y coarse movement stage 24 is obtained by the encoder system constituted by the downward heads 74x and 74y and the corresponding upward scale 1786, in the fifteenth embodiment ( That is, since it is the same as that of the first embodiment, the description is omitted.
  • the measurement table 1782 is driven with a predetermined stroke in the Y-axis direction by the Y linear actuator 682, similarly to the measurement table 624 of the sixteenth embodiment (see FIG. 64). As in the sixteenth embodiment, two upward heads 80x and 80y are attached to the measurement table 1782, respectively.
  • the point that the position information of the measurement table 1782 in the XY plane with respect to the optical surface plate 18a is obtained by the encoder system constituted by the upward heads 80x and 80y and the corresponding downward scale 984 is that in the sixteenth embodiment (ie, Since this is the same as in the sixth embodiment, the description thereof is omitted.
  • the position information of the Y coarse movement stage 24 in the XY plane is obtained with reference to the optical surface plate 18a via the measurement table 1782.
  • the measurement system for obtaining the position information of the Y coarse movement stage 24 is conceptually the same as the measurement system (encoder system) for obtaining the position information of the substrate holder 1522 with respect to the Y coarse movement stage 24.
  • two downward X heads 74 x and two downward Y heads 74 y are attached to the measurement table 1782, and the measurement table is measured by an encoder system including the downward heads 74 x and 74 and the upward scale 1788.
  • Position information in the XY plane of the Y coarse movement stage 24 with respect to 1782 is obtained.
  • the main controller (not shown) is based on the position information of the measurement table 1782 with respect to the optical surface plate 18a, the position information of the Y coarse movement stage 24 with respect to the measurement table 1782, and the position information of the substrate holder 1522 with respect to the Y coarse movement stage 24.
  • the position information of the substrate holder 1522 is obtained with reference to the optical surface plate 18a.
  • the configuration of the liquid crystal exposure apparatus according to the eighteenth embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage apparatus 1820 and its measurement system is different.
  • the elements having the same configurations or functions as those of the first embodiment will be described with the same reference numerals as those of the first embodiment, and description thereof will be omitted as appropriate.
  • the upward scale 72 for obtaining the position information of the fine movement stage 22 and the upward heads 80x and 80y for obtaining the position information of the upward scale 72 are respectively Y coarse movements.
  • the upward scale 72 and the upward heads 80x and 80y are attached to the Y step guide 44 provided in the self-weight support device 28. It is different in that it is fixed.
  • the upward scale 72 is fixed to the upper surface of the scale base 84.
  • one scale base 84 is disposed on each of the fine movement stage 22 on the + Y side and the ⁇ Y side.
  • the scale base 84 is fixed to the Y step guide 44 via an arm member 1886 formed in an L shape when viewed from the X-axis direction. Therefore, the scale base 84 (and the upward scale 72) is movable with a predetermined long stroke in the Y-axis direction integrally with the Y step guide 44 and the Y coarse movement stage 24.
  • the Y step guide 44 is disposed between the pair of X beams 36 included in the Y coarse movement stage 24 (the Z position of the X beam 36 and the Z position of the Y step guide 44 partially overlap each other). For this reason, the X beam 36 is formed with a through hole 45 for allowing the arm member 1886 to pass therethrough (to prevent contact between the arm member 86 and the X beam 36).
  • the coarse movement stage measurement system 82 actually measures the position information of the Y step guide 44, which is different from the first embodiment.
  • the substrate measurement system 1870 of the present embodiment obtains the positional information of the fine movement stage 22 (substrate P) with reference to the optical surface plate 18 a via the Y step guide 44.
  • the upward scale 72 is fixed to the Y step guide 44 that supports the fine movement stage 22 (included in the same system as the fine movement stage 22), compared to the first embodiment.
  • the influence of the operations of the coarse movement stages 24 and 26 can be suppressed, and the position measurement accuracy of the fine movement stage 22 can be further improved.
  • FIGS. 1-10 a liquid crystal exposure apparatus according to a nineteenth embodiment will be described with reference to FIGS.
  • the configuration of the liquid crystal exposure apparatus according to the nineteenth embodiment is substantially the same as that of the eighteenth embodiment except that the configuration of the apparatus main body 1918 and the substrate measurement system 1970 (see FIG. 70) is different. Only the differences will be described, and elements having the same configuration or function as those in the eighteenth embodiment are denoted by the same reference numerals as those in the eighteenth embodiment, and description thereof will be omitted as appropriate.
  • the apparatus main body 18 is configured such that the optical surface plate 18a, the middle gantry 18b, and the lower gantry 18c are assembled together via the vibration isolator 19 in an assembled state.
  • the apparatus main body 1918 has a portion that supports the projection optical system 16 (hereinafter referred to as a “first portion”) as shown in FIG. ) And a portion that supports the Y step guide 44 (hereinafter referred to as a “second portion”) are installed on the floor F in a state of being physically separated from each other.
  • the first portion of the apparatus main body 1918 that supports the projection optical system 16 includes an optical surface plate 18a, a pair of middle frame portions 18b, and a pair of first lower frame portions 18d. It is formed in a gate shape (inverted U shape).
  • the first part is installed on the floor F via a plurality of vibration isolation devices 19.
  • the second part of the apparatus main body 1918 that supports the Y step guide 44 includes a second lower mount part 18e.
  • the second lower frame 18e is made of a flat plate-like member and is inserted between the pair of first lower frames 18d.
  • the second undercarriage 18e is installed on the floor F via a plurality of vibration isolation devices 19 different from the plurality of vibration isolation devices 19 that support the first part.
  • a gap is formed between the pair of first lower frame 18d and second lower frame 18e, and the first part and the second part are vibrationally separated (insulated). .
  • the point that the Y step guide 44 is placed on the second undercarriage 18e via the mechanical linear guide device 52 is the same as in the eighteenth embodiment.
  • the pair of base frames 30 includes a second lower base 18e, and is installed on the floor F in a state of being vibrationally separated from the apparatus main body 218.
  • the Y coarse movement stage 24 and the X coarse movement stage 26 are placed on the pair of base frames 30, and the fine movement stage 22 is placed on the Y step guide 44 via the self-weight support device 28. The point is the same as in the eighteenth embodiment.
  • the configuration and operation of the substrate measurement system 1970 according to the nineteenth embodiment will be described. Since the configuration and operation of the substrate stage apparatus 1920 excluding the measurement system are the same as those in the eighteenth embodiment, the description thereof is omitted.
  • FIG. 70 shows a conceptual diagram of a substrate measurement system 1970 according to the nineteenth embodiment.
  • the configuration of the fine movement stage measurement system 76 (see FIG. 6) for obtaining positional information in the XY plane of the fine movement stage 22 (actually the substrate holder 32) is the 18th (first). Since this is the same as the embodiment, the description is omitted.
  • the configuration of the Z tilt position measurement system 1998 for obtaining position information in a direction intersecting the horizontal plane of the substrate holder 32 is the above-described eighteenth (first) implementation. Different from form.
  • the Z tilt position measurement system 1998 obtains position information of the substrate holder 32 in the Z tilt direction via the Y coarse movement stage 24 as in the fine movement stage measurement system 76. (See FIG. 69).
  • each of the head bases 1988 fixed to the side surfaces of the substrate holder 32 on the + Y side and the ⁇ Y side includes two downward X heads 74x and two downward Y heads 74y.
  • Two downward Z heads 74z are mounted apart from each other in the X-axis direction (see FIG. 70).
  • a known laser displacement meter that irradiates a measurement beam to the upward scale 72 is used as the downward Z head 74z.
  • the main controller (not shown) obtains displacement amount information in the Z tilt direction of the fine movement stage 22 with respect to the Y coarse movement stage 24 based on the outputs of the four downward Z heads 74z (see FIG. 9) in total.
  • each of the pair of scale bases 84 fixed to the side surfaces of the Y step guide 44 on the + Y side and the ⁇ Y side is similar to the head base 96 of the first embodiment (see FIG. 4).
  • Two 1996 are fixed.
  • one upward Z head 80 z is attached to the head base 1996 together with two upward X heads 84 x and two upward Y heads 80 y.
  • the upward Z head 80z uses the same laser displacement meter as the downward Z head 74z, but the types of the Z heads 74z and 80z may be different.
  • the main control device (not shown) has displacement information in the Z tilt direction with respect to the optical surface plate 18a (see FIG. 69) of the Y coarse movement stage 24 based on the outputs of the four upward Z heads 80z (see FIG. 70) in total. Ask for.
  • the position information of the substrate P in the Z tilt direction can be obtained with reference to the optical surface plate 18a (that is, the projection optical system 16). Together with the position information, the position information of the substrate P in the Z tilt direction can be obtained with high accuracy. That is, as disclosed in International Publication No. 2015/147319 as an example, when the position information of the substrate P in the Z tilt direction is obtained based on the weight cancellation device 42, the weight cancellation device 42 is placed on the Y step guide 44. Therefore, there is a possibility that an error occurs in the position measurement of the substrate P due to vibration or the like when the Y step guide 44 moves.
  • the position information of the Y step guide 44 is always measured with reference to the optical surface plate 18a. Even if the position information of the substrate P is measured via the position 44, the position shift of the Y step guide 44 is not reflected in the measurement result of the substrate P. Therefore, the position information of the substrate P can be measured with high accuracy.
  • the second part (second lower mount part 18e) of the apparatus main body 1980 that supports the Y step guide 44 is vibrationally separated from the first part that supports the projection optical system 16,
  • the influence on the projection optical system 16 such as vibration and deformation caused by the movement can be suppressed.
  • the exposure accuracy can be improved.
  • each of the pair of head bases 88 includes four heads for measuring the position of the fine movement stage 22 (substrate holder 32) (each pair of the downward X head 74x and the downward Y head 74y).
  • the number of heads for measuring the substrate holder position may be less than eight.
  • FIG. 71 shows a pair of head bases 88 of the substrate holder 32 and the substrate measurement system 2070 according to the twentieth embodiment together with the projection optical system 16 in a plan view.
  • the Y coarse movement stage 24 and the like are not shown for easy understanding.
  • the head base 88 is indicated by a dotted line.
  • scale bases 84 are arranged in the + Y side and ⁇ Y side regions sandwiching the substrate placement region of the substrate holder 32, respectively. Yes.
  • scales 2072 On the upper surface of each scale base 84, for example, five encoder scales 2072 (hereinafter simply referred to as scales 2072) are arranged at predetermined intervals in the X-axis direction so that the lattice regions are arranged apart from each other in the X-axis direction. ing.
  • Each of the plurality of scales 2072 has a lattice region (lattice portion) where a reflective two-dimensional lattice is formed.
  • a lattice region lattice portion
  • a grid may be formed over the entire area of the scale 2072, it is difficult to accurately form a grid at the end of the scale 2072. Therefore, in this embodiment, the periphery of the grid area in the scale 2072 is blank.
  • a lattice is formed so as to be a part. For this reason, the interval between the lattice regions is wider than the interval between the pair of adjacent scales 2072 in the X-axis direction, and the position measurement is not possible while the measurement beam is irradiated outside the lattice region. (Although also referred to as a non-measurement section, hereinafter, it is collectively referred to as a non-measurement period).
  • the intervals between the adjacent scales 2072 (lattice regions) are the same, but the arrangement positions thereof are the same.
  • the five scales 2072 on the + Y side generally shift to the predetermined distance D (a distance slightly larger than the interval between the adjacent scales 2072 (lattice regions)) + X side.
  • Each scale 2072 is made of a plate-shaped (strip-shaped) member having a rectangular shape in plan view and extending in the X-axis direction, for example, formed of quartz glass.
  • a reflective two-dimensional diffraction grating (two-dimensional grating) RG having a predetermined pitch (for example, 1 ⁇ m) with the X-axis direction and the Y-axis direction as periodic directions is formed.
  • the above-described lattice region is also simply referred to as a two-dimensional grating RG.
  • the interval (pitch) between the lattice lines of the two-dimensional grating RG is shown much wider than actual.
  • the five scales 2072 disposed in the + Y side region of the substrate holder 32 are referred to as a first lattice group, and the five scales 2072 disposed in the ⁇ Y side region of the substrate holder 32 are referred to as the second lattice. It shall be called a group.
  • the X head 74x and the Y head 74y are in a predetermined interval in the X axis direction (adjacent scale 2072) in a state of facing the scale 2072, respectively. A distance greater than the distance between) is fixed.
  • the Y head 74y and the X head 74x are separated from each other by a predetermined distance in the X-axis direction on the lower surface (the surface on the ⁇ Z side) of the other head base 88 positioned on the ⁇ Y side in a state of facing the scale 2072. Is fixed.
  • the X head 74x and Y head 74y that face the first lattice group and the X head 74x and Y head 74y that face the second lattice group are measured at intervals wider than the interval between the lattice regions of the adjacent scale 2072.
  • the beam is irradiated on the scale 2072.
  • the X head 74x and Y head 74y of one head base 88 are referred to as head 74a and head 74b, respectively, and the Y head 74y and X head 74x of the other head base 88 are respectively heads.
  • 74c and head 74d are also called.
  • the head 74a and the head 74c are arranged at the same X position (on the same straight line parallel to the Y-axis direction), and the head 74b and the head 74d are different from the X position of the head 74a and the head 74c. It is arranged at a position (on the same straight line parallel to the Y-axis direction).
  • a pair of X linear encoders are configured by the two-dimensional gratings RG facing the heads 74a and 74d
  • a pair of Y linear encoders are configured by the two-dimensional gratings RG facing the heads 74b and 74c.
  • the remaining part of the head base 88 is included, and the configuration of the other parts is the drive control (position) of the substrate holder 32 using the substrate measurement system 2070 of the main controller 100. Except for control, the liquid crystal exposure apparatus 10 according to the first embodiment is the same as that described above.
  • the heads of the pair of head bases 88 within a range in which the substrate holder 32 moves in the X-axis direction between the second position where the pair of head bases 88 oppose each other in the vicinity of the ⁇ X end portion of the scale base 84 shown in FIG. 74a to 74d, that is, the position of the substrate holder 32 can be measured by a pair of X linear encoders and a pair of Y linear encoders.
  • 72A shows a state in which only the head 74b does not face any scale 2072
  • FIG. 72B shows a state in which only the head 74c does not face any scale 2072. Yes.
  • the pair of head bases 88 and the scale 2072 The positional relationship is such that the first state to the fourth state shown in FIGS. 73A to 73D and the four heads 74a to 74d are all two-dimensional gratings RG of any scale 2072. (I.e., all four heads 74a to 74d are irradiated with the measurement beam on the two-dimensional grating RG) and transition to a fifth state.
  • the head faces the two-dimensional grating RG of the scale 2072 or that the measurement beam is irradiated on the two-dimensional grating RG of the scale 2072, it is expressed that the head just faces the scale.
  • 73A shows a state in which the head 74a faces the scale 2072b, the heads 74c and 74d face the scale 2072e, and only the head 74b does not face any scale.
  • the substrate holder 32 is moved a predetermined distance in the ⁇ X direction from the state of FIG. 73 (A), the heads 74a and 74b are opposed to the scale 2072b, and the head 74d is directed to the scale 2072e. It shows a state in which only the head 74c is opposed to any scale.
  • the heads 74a and 74b face the scale 2072b, and the heads 74c and 74d go through the fifth state facing the scale 2072e. To do.
  • 73 (C) shows a state in which the substrate holder 32 has moved a predetermined distance in the ⁇ X direction from the state of FIG. 73 (B) and only the head 74a is no longer opposed to any scale.
  • the heads 74a and 74b face the scale 2072b
  • the head 74c faces the scale 2072d
  • the head 74d faces the scale 2072e. Go through the fifth state.
  • 73 (D) shows a state where the substrate holder 32 has moved a predetermined distance in the ⁇ X direction from the state shown in FIG. 73 (C), and only the head 74d is no longer opposed to any scale.
  • the head 74a faces the scale 2072a
  • the head 74b faces the scale 2072b
  • the head 74c faces the scale 2072d.
  • the head 74d goes through the fifth state in which it faces the scale 2072e.
  • the head 74a faces the scale 2072a
  • the head 74b faces the scale 2072b
  • the heads 74c and 74d move to the scale 2072d.
  • the head 74a faces the scale 2072a
  • the heads 74c and 74d face the scale 2072d
  • only the head 74b enters the first state that does not face any scale. .
  • the two X heads 74x that is, the heads 74a and 74d
  • the two Y heads 74y that is, the heads 74b and 74c
  • At least three out of the total of four always face one of the scales 2072 (two-dimensional grating RG).
  • the width of the lattice region of the scale 2072 is set so that the measurement beams do not deviate from the scale 2072 (two-dimensional grating RG) in the Y-axis direction for all four heads.
  • main controller 100 can always manage position information of substrate holder 32 in the X-axis direction, Y-axis direction, and ⁇ z direction using three of heads 74a to 74d. Hereinafter, this point will be further described.
  • C X (p i ⁇ X) cos ⁇ z + (q i ⁇ Y) sin ⁇ z (1a)
  • C Y ⁇ (p i ⁇ X) sin ⁇ z + (q i ⁇ Y) cos ⁇ z (1b)
  • X, Y, and ⁇ z indicate the positions of the substrate holder 32 in the X-axis direction, the Y-axis direction, and the ⁇ z direction, respectively.
  • P i and q i are the X position (X coordinate value) and Y position (Y coordinate value) of each of the heads 74a to 74d.
  • the substrate holder 32 and the pair of head bases 88 are in a positional relationship as shown in FIG. 72A.
  • the positions of the substrate holder 32 in the three-degree-of-freedom direction in the XY plane are (X, Y, ⁇ z)
  • the measured values of the three heads 74a, 74c, and 74d can theoretically be expressed by the following equations (2a) to (2c) (also referred to as affine transformation relationships).
  • C 1 (p 1 ⁇ X) cos ⁇ z + (q 1 ⁇ Y) sin ⁇ z (2a)
  • C 3 ⁇ (p 3 ⁇ X) sin ⁇ z + (q 3 ⁇ Y) cos ⁇ z (2b)
  • C 4 (p 4 ⁇ X) cos ⁇ z + (q 4 ⁇ Y) sin ⁇ z (2c)
  • C 4 p 4
  • the reference state is a state where, for example, the center of the substrate holder 32 (substantially coincides with the center of the substrate P) coincides with the center of the projection area by the projection optical system 16 and the ⁇ z rotation is zero. Therefore, in the reference state, measurement of the Y position of the substrate holder 32 by the head 74b has also become possible, the measurement value C 2 by the head 74
  • the measurement values of the three heads 74a, 74c, and 74d are initially set as p 1 , q 3 , and p 4 , respectively, the displacement (X, Y, ⁇ z) of the substrate holder 32 is thereafter performed.
  • the three heads 74a, 74c, and 74d present the theoretical values given by the equations (2a) to (2c).
  • the three heads 74a, 74b, and 74d have the theoretical values given by the equations (2a), (2c), and (2d) with respect to the displacement (X, Y, ⁇ z) of the substrate holder 32 thereafter. Will be presented.
  • the dependent variables C 1 , C 3 , C 4 in the simultaneous equations (2a) to (2c) or the dependent variables C 1 , C 4 , C in the simultaneous equations (2a), (2c), (2d) If 2 is given, the variables X, Y, and ⁇ z can be obtained.
  • the equation can be easily solved by applying the approximation sin ⁇ z ⁇ z or applying higher-order approximation. Accordingly, the positions (X, Y, and C) of the substrate holder 32 from the measured values C 1 , C 3 , and C 4 (or C 1 , C 2 , and C 4 ) of the heads 74a, 74c, and 74d (or the heads 74a, 74b, and 74d). ⁇ z) can be calculated.
  • connection process at the time of switching the head of the substrate measurement system 2070 that is, the initial setting of the measurement value, which is performed by the liquid crystal exposure apparatus according to the twentieth embodiment, is performed.
  • the operation of the control device 100 will be mainly described.
  • each of the four heads 74a to 74d faces one of the scales 2072, and the position of the substrate holder 32 can be measured.
  • State the above-mentioned fifth state.
  • the substrate holder 32 moves in the ⁇ X direction from the state where the position of the substrate holder 32 is measured by the heads 74a, 74b and 74d.
  • FIG. 74C shows a state in which the three heads used for measuring the position information of the substrate holder 32 are being switched from the heads 74a, 74b, and 74d to the heads 74b, 74c, and 74d.
  • FIG. 74B As shown in FIG. 74B, at the moment when the switching process (connection) of the head (encoder) used for position control (measurement of position information) in the XY plane of the substrate holder 32 is performed, as shown in FIG. 74b, 74c, and 74d are opposed to the scales 2072b, 2072b, 2072d, and 2072e, respectively.
  • FIG. 74 (A) to FIG. 74 (C) it seems that the head 74a is going to be switched to the head 74c in FIG. 74 (B), but the measurement direction is different between the head 74a and the head 74c. As is apparent, it is meaningless to give the measured value (count value) of the head 74a as it is as the initial value of the measured value of the head 74c at the timing of connection.
  • the main controller 100 uses the three heads 74b, 74c, and 74d to measure the position information of the substrate holder 32 that uses the three heads 74a, 74b, and 74d (and the position control). Switching to 32 position information measurement (and position control). In other words, this method is different from the concept of normal encoder connection, not from one head to another, but from a combination of three heads (encoders) to another three heads (encoders). It is.
  • main controller 100 solves simultaneous equations (2a), (2c), and (2d) based on measured values C 1 , C 4 , and C 2 of heads 74a, 74d, and 74b, and obtains an XY plane of the substrate holder.
  • the position information (X, Y, ⁇ z) is calculated.
  • main controller 100 substitutes X and ⁇ z calculated above for the affine transformation formula of the following formula (3), and the initial value of the measured value of head 74c (the value to be measured by head 74c). Ask for.
  • the above explanation is an example of the switching of the heads 74a to 74d.
  • the above-described switching is possible even when switching from any three heads to another three heads or switching from any head to another head.
  • the head is switched in the same procedure as described.
  • the grating portion when configured with a plurality of scales (two-dimensional grating RG), the scales irradiated with the measurement beams are formed on each scale more strictly.
  • the grating two-dimensional grating RG
  • a measurement error of the encoder system occurs.
  • At least two scales 2072 irradiated with measurement beams of at least three heads used for position information measurement and position control of the substrate holder 32 are used. It can be considered that there is a coordinate system for each combination of at least two scales. For example, a relative position variation of at least two scales causes a shift (grid error) between these coordinate systems. Measurement error of the encoder system occurs. In addition, since the relative positional relationship between at least two scales changes over a long period, the grid error, that is, the measurement error also varies.
  • the position information of the substrate holder 32 can be measured with all four heads, but only three heads are required for measuring the position coordinates (X, Y, ⁇ z) of the substrate holder.
  • main controller 100 uses the measurement value of the redundant head to correct correction information (grid correction information or grid correction information) of the measurement error of the encoder system due to a shift between the coordinate systems (grid error). Acquisition and driving (position control) of the substrate holder 32 are performed so that the measurement error of the encoder system due to the grid error is compensated.
  • the position coordinates (X, Y, ⁇ z) of the substrate holder are measured by two sets of three heads. Specifically, the difference between the positions (X, Y, ⁇ z) obtained by solving the simultaneous equations using the above-described affine transformation formula, that is, the offsets ⁇ x, ⁇ y, ⁇ z, obtained by the measurement, is calculated.
  • This offset is determined as a coordinate system offset consisting of a combination of at least two scales at which the four heads 74a to 74d face each other.
  • This offset is used in measurement of position information of the substrate holder 32 and control of the position of the substrate holder 32 by three of the four heads facing the at least two scales.
  • a combination of at least two scales facing the three heads used for measuring the position information of the substrate holder 32 and controlling the position before switching Since the combination of at least two scales facing the three heads used for measuring the position information and controlling the position of the substrate holder 32 after the switching is naturally different, it is different before and after the head switching.
  • the offset is used as grid or lattice correction information in measurement of position information of the substrate holder 32 and control of the position.
  • the following fifth state (referred to as the state of case 1) that appears immediately before the state of FIG. 74 (A) in the process of moving the substrate holder 32 in the ⁇ X direction is as follows.
  • the heads 74a and 74b are opposed to the scale 2072b, and the heads 74c and 74d are opposed to the scale 2072e.
  • the offset can be obtained by using two sets of heads 74a to 74d, which are combinations of any three heads.
  • the head 74c cannot be measured, and in order to restore the measurement of the head 74c, in the fifth state shown in FIG.
  • the three heads 74a, 74b, The position coordinates (X, Y, ⁇ z) of the substrate holder calculated from the measured value of 74d are used. Further, in the process in which the substrate holder 32 is moving in the ⁇ X direction, the head 74b that has been in a measurement impossible state is returned prior to the case 1 state. For returning the head 74b, the position coordinates (X, Y, ⁇ z) of the substrate holder calculated from the measured values of the three heads 74a, 74c, 74d are used.
  • a set of three heads excluding a set of three heads 74a, 74b, and 74d and a set of three heads 74a, 74c, and 74d, that is, a set of three heads 74a, 74b, and 74c. Further, it is assumed that lattice correction information of a coordinate system composed of a combination of scales 2072b and 2072e is acquired using the three heads 74b, 74c, and 74d.
  • the head used for position control of the substrate holder 32 is switched from the head 74a to the head 74c, and at that time, the three heads 74a, 74b, The position coordinate of the substrate holder 32 is calculated by the above-described affine transformation formula using the measurement value of 74d.
  • the main control device 100 calculates the position coordinates, sets the three heads 74a, 74b, 74d used for calculating the position coordinates of the substrate holder 32 for switching the head, and the next head.
  • a set of three heads 74a, 74b and 74c and a set of three heads 74a and 74b are excluded from the set of three heads 74b, 74c and 74d used for setting the measurement value of the head after switching.
  • 74d, and the three scales facing the heads 74b, 74c, 74d used for position measurement and position control of the substrate holder 32 after the head switching, as in the combination of the scales 2072b, 2072e.
  • the lattice correction information (offset) of the coordinate system consisting of a combination of 2072b, 2072d and 2072e Give to.
  • the main controller 100 moves the substrate holder 32 in the ⁇ X direction or the + X direction from the first position shown in FIG. 72A to the second position shown in FIG. 72B.
  • the offsets ⁇ X, ⁇ Y, ⁇ z are set in the above-described procedure with respect to a plurality of coordinate systems corresponding to all combinations of at least two scales 2072 that are sequentially switched and used to control the position of the substrate holder 32. It is obtained and stored in the storage device as lattice correction information.
  • main controller 100 causes heads 74a and 74b to face scale 2072b.
  • the measured values of the three heads 74a, 74b, and 74d including the head 74b that has returned after performing the above-described head switching and joining process In the position control, while the substrate holder 32 is moved until the head 74c cannot be measured, the lattice correction information of the coordinate system composed of the scale 2072b and the scale 2072e is obtained at each of the plurality of positions by the above-described procedure.
  • Offset may be acquired. That is, a plurality of pieces of lattice correction information may be acquired instead of one piece of lattice correction information for each combination of at least two scales 2072 facing three heads used for position measurement and position control of the substrate holder 32. Further, the above method is used while four heads including three heads used for position measurement and position control of the substrate holder 32 and one redundant head are opposed to at least two scales 2072 of the same combination.
  • the lattice correction information may be acquired substantially continuously. In this case, lattice correction information can be acquired over the entire period (section) in which the four heads face each other on at least two scales 2072 having the same combination.
  • the lattice correction information acquired for each combination of at least two scales 2072 facing the three heads used for position measurement and position control of the substrate holder 32 need not be the same.
  • the lattice correction acquired by a combination of scales The number of information may be different.
  • lattice correction is performed using a combination of at least two scales 2072 facing three heads in an exposure operation and a combination of at least two scales 2072 facing three heads other than the exposure operation (alignment operation, substrate replacement operation, etc.).
  • the number of information may be different.
  • the position measurement and position control of the substrate holder 32 are performed before or after loading the substrate onto the substrate holder 32 and before the substrate processing operation (including exposure operation and alignment operation).
  • Lattice correction information is acquired and stored in a storage device for all combinations of at least two scales 2072 facing three heads to be used, and the lattice correction information is updated periodically or as needed.
  • the lattice correction information may be updated at an arbitrary timing including during the substrate processing operation as long as the substrate processing operation can be performed.
  • the offsets ⁇ X, ⁇ Y, ⁇ z may be updated each time the head is switched. However, it is not always necessary to do this, and the offsets ⁇ X, ⁇ Y, and ⁇ z may be updated at predetermined intervals, such as every time the head is switched a predetermined number of times, or every time a predetermined number of substrates are exposed. good.
  • the offset may be acquired and updated during a period when the head is not switched. Further, the offset update described above may be performed before the exposure operation, or may be performed during the exposure operation if necessary.
  • the liquid crystal exposure apparatus exhibits the same operational effects as those of the first embodiment described above.
  • the X head 74x (X linear encoder) and the Y head 74y (Y linear encoder) of the substrate measurement system 2070 are driven while the substrate holder 32 is being driven.
  • Position information (including ⁇ z rotation) of the substrate holder 32 in the XY plane is measured by three heads (encoders) including at least one each.
  • the head (encoder) used for measuring the position information of the substrate holder 32 in the XY plane is switched by the main controller 100 so that the position of the substrate holder 32 in the XY plane is maintained before and after switching.
  • one of the three heads (encoders) used for position measurement and position control of the substrate holder 32 is switched to another head (encoder). For this reason, although the encoder used for controlling the position of the substrate holder 32 is switched, the position of the substrate holder 32 in the XY plane is maintained before and after the switching, and accurate connection becomes possible. Therefore, the substrate holder 32 (substrate P) is accurately moved along the XY plane along a predetermined path while performing head switching and connection (measurement value connection processing) among a plurality of heads (encoders). Is possible.
  • the main controller 100 uses the three heads used for measuring the position information of the substrate holder 32 and measuring the position information.
  • the substrate holder 32 is driven in the XY plane based on the position information ((X, Y) coordinate value) in the XY plane.
  • main controller 100 drives substrate holder 32 in the XY plane while calculating position information of substrate holder 32 in the XY plane using the relationship of affine transformation.
  • the substrate holder 32 (substrate P) is moved while switching the head (encoder) used for control during the movement of the substrate holder 32 using the encoder system having each of the plurality of Y heads 74y or the plurality of X heads 74x. It becomes possible to control with high accuracy.
  • the liquid crystal exposure apparatus for each combination of scales facing the head used for position information measurement and position control of the substrate holder 32, which differs depending on the X position of the substrate holder 32, The aforementioned offsets ⁇ X, ⁇ Y, ⁇ z (lattice correction information) are acquired and updated as necessary. Therefore, the grid error (X, Y position error and rotation error) between coordinate systems for each combination of scales facing the heads used for position information measurement and position control of the substrate holder 32, which differs depending on the X position of the substrate holder 32.
  • the substrate holder 32 can be driven (position control) so that the encoder measurement error or the position error of the substrate holder 32 due to the above can be compensated. Accordingly, also in this respect, the position of the substrate holder (substrate P) can be accurately controlled.
  • the correction for controlling the movement of the substrate holder using a head (corresponding to the other head) in which the measurement beam is switched from one of a pair of adjacent scales to the other scale is obtained.
  • Information (initial value of another head described above) is obtained based on position information measured by at least three heads facing one scale 2072.
  • This correction information is obtained by measuring another head. It may be acquired after the beam is switched to the other scale and before one of the three heads facing at least one scale 2072 is out of the two-dimensional grating RG. Further, when the position measurement or the position control of the substrate holder is performed by switching three heads facing at least one scale 2072 to three different heads including the other head, the correction information is acquired for the switching. Thereafter, it may be performed before at least one of the three heads facing the scale 2072 is removed from the two-dimensional grating RG. Note that acquisition and switching of correction information may be performed substantially simultaneously.
  • the region without the two-dimensional grating RG of the first lattice group is the region without the two-dimensional grating RG of the second lattice group.
  • the five scales of the first grating group and the second grating group are arranged so that the non-measurement period in which the measurement beam deviates from the two-dimensional grating RG does not overlap with the four heads. 2072 is disposed on the substrate holder 32.
  • the heads 74a and 74b included in the head base 88 on the + Y side are arranged at a distance wider than the width of the region without the two-dimensional grating RG of the first lattice group in the X-axis direction, and the head base 88 on the ⁇ Y side.
  • the heads 74c, 74d included in the are disposed at a distance wider than the width of the region without the two-dimensional grating RG of the second grating group in the X-axis direction.
  • the combination of a grating portion including a plurality of two-dimensional gratings and a plurality of heads that can face the grating portion is not limited to this.
  • the head 74a is arranged so that the non-measurement period in which the measurement beam is deviated (unmeasurable) from the two-dimensional grating RG does not overlap with the four heads 74a, 74b, 74c, 74d. 74b and heads 74c and 74d, positions, positions, lengths and lengths of the lattice portions of the first and second lattice groups, lattice intervals and positions thereof may be set.
  • the first lattice group faces the at least one scale 2072 (two-dimensional grating RG) of the first lattice group.
  • two heads facing at least one scale 2072 (two-dimensional grating RG) of the second grating group may be shifted by a distance wider than the width of the non-grating area in the X-axis direction.
  • the distance between the head disposed on the + X side of the two heads facing the first lattice group and the head disposed on the ⁇ X side of the two heads facing the second lattice group is set to a non-interval.
  • the interval may be wider than the width of the lattice region, or two heads facing the first lattice group and two heads facing the second lattice group are alternately arranged in the X-axis direction and adjacent pairs.
  • the head interval may be set wider than the width of the non-lattice region.
  • the case where the first lattice group is disposed in the + Y side region of the substrate holder 32 and the second lattice group is disposed in the ⁇ Y side region of the substrate holder 32 has been described.
  • a single scale member in which a two-dimensional lattice extending in the X-axis direction may be used instead of one of the first lattice group and the second lattice group, for example, the first lattice group.
  • one head may always face the single scale member.
  • three heads are provided so as to face the second grating group, and the distance between the three heads in the X-axis direction (the distance between the irradiation positions of the measurement beams) is set as a two-dimensional grating on the adjacent scale 2072.
  • the distance between the three heads in the X-axis direction is set as a two-dimensional grating on the adjacent scale 2072.
  • a configuration in which at least two heads can always face the single scale member regardless of the position of the substrate holder 32 in the X-axis direction is adopted, and at least one two-dimensional grating of the second grating group is also used.
  • a configuration may be adopted in which at least two heads can face the RG. In this case, each of the at least two heads moves away from one of the plurality of scales 2072 (two-dimensional grating RG) during movement of the substrate holder 32 in the X-axis direction, and one scale 2072. Transfer to another scale 2072 (two-dimensional grating RG) adjacent to (two-dimensional grating RG).
  • the non-measurement periods do not overlap with each other, that is, always with at least one head.
  • a measurement beam is irradiated on the scale 2072.
  • at least three heads always face at least one scale 2072 and can measure position information in three degrees of freedom.
  • the number of scales and the interval between adjacent scales may be different between the first lattice group and the second lattice group.
  • at least two heads facing the first grating group and at least two heads facing the second grating group may have different head (measurement beam) intervals, positions, and the like.
  • a plurality of scales 2072 each having a single two-dimensional grating RG are used.
  • a scale 2072 formed apart in the X-axis direction may be included in at least one of the first lattice group or the second lattice group.
  • the first lattice group including the five scales 2072 of the same configuration and the first lattice group
  • the present invention is not limited to this, and the first lattice group and the second lattice group are not shifted in the X-axis direction (almost completely mutually).
  • a row of scales 2072 is arranged opposite the head base 88), and the position measurement heads (heads 74x, 74y) of the substrate holder 32 are different in the X-axis direction between one head base 88 and the other head base 88. May be allowed. Also in this case, the position (X, Y, ⁇ z) of the substrate holder 32 can always be measured and controlled by the three heads.
  • the present invention is not limited to this, and five or more heads may be used. That is, at least one redundant head may be added to at least one of the two heads facing the first lattice group and the second lattice group. This configuration will be described in the following twenty-first embodiment.
  • ⁇ 21st embodiment a twenty-first embodiment will be described with reference to FIG.
  • the configuration of the liquid crystal exposure apparatus according to the twenty-first embodiment is the same as the first and twentieth embodiments described above except for a part of the configuration of the substrate measurement system 2170. Therefore, only the differences will be described below. Elements having the same configurations and functions as those of the first and twentieth embodiments are denoted by the same reference numerals as those of the first and twentieth embodiments, and description thereof is omitted.
  • a pair of head bases 88 of the substrate holder 32 and the substrate measurement system 2170 according to the twenty-first embodiment are shown in a plan view together with the projection optical system 16.
  • the Y coarse movement stage 24 and the like are not shown for easy understanding.
  • the head base 88 is shown by dotted lines, and the illustration of the X head 80x and the Y head 80y provided on the upper surface of the head base 88 is also omitted.
  • scales 2072 are respectively disposed in the + Y side and ⁇ Y side regions across the substrate placement region of the substrate holder 32 in the X-axis direction. For example, five are arranged at predetermined intervals. In the five scales 2072 arranged on the + Y side of the substrate placement area and the five scales 2072 arranged on the ⁇ Y side area, the interval between the adjacent scales 2072 is the same, and the substrate placement area The five scales 2072 on the + Y side and the ⁇ Y side of each of the two are opposed to each other and arranged at the same X position. Accordingly, the position of the gap between the adjacent scales 2072 is located on a straight line having a predetermined line width in the substantially same Y-axis direction.
  • a total of three heads, the Y head 74y, the X head 74x, and the Y head 74y, are in a state of facing the scale 2072, respectively. In order from the side, they are fixed at a predetermined interval (a distance larger than the interval between adjacent scales 2072) in the X-axis direction.
  • the Y head 74y and the X head 74x are fixed to the lower surface (the surface on the ⁇ Z side) of the other head base 88 positioned on the ⁇ Y side with a predetermined distance therebetween in the X axis direction, facing the scale 2072. ing.
  • the three heads included in one head base 88 are referred to as the head 74e, the head 74a, and the head 74b in this order from the ⁇ X side, and the Y head 74y and the X head 74x included in the other head base 88.
  • the head 74c and a head 74d are also referred to as a head 74c and a head 74d, respectively.
  • the head 74a and the head 74c are arranged at the same X position (on the same straight line in the Y-axis direction), and the head 74b and the head 74d are arranged at the same X position (on the same straight line in the Y-axis direction).
  • a pair of X linear encoders are configured by the two-dimensional gratings RG facing the heads 74a and 74d, and three Y linear encoders are configured by the two-dimensional gratings RG facing the heads 74b, 74c, and 74e. Yes.
  • the configuration of other parts is the same as that of the liquid crystal exposure apparatus according to the twentieth embodiment.
  • the pair of head bases 88 are synchronized with the substrate holder 32 in the Y axis, although the arrangement of the scales 2072 on the + Y side and the ⁇ Y side is not shifted in the X axis direction.
  • the head holder 88 is moved in the direction (or the Y position of the substrate holder 32 is maintained at a position where the pair of head bases 88 and the row of scales 2072 face each other), three of the heads 74a to 74e are Regardless of the X position of 32, it always faces the scale 2072 (two-dimensional grating RG).
  • the liquid crystal exposure apparatus according to the twenty-first embodiment described above exhibits the same operational effects as the liquid crystal exposure apparatus according to the twentieth embodiment described above.
  • the plurality of heads for measuring positional information of the substrate holder 32 are four heads necessary for switching the heads, for example, the heads 74e, 74b, 74c, and 74d, and the four heads. It can also be understood that one of the heads 74c and one head 74a whose non-measurement period partially overlaps is included.
  • the twenty-first embodiment in measuring the positional information (X, Y, ⁇ z) of the substrate holder 32, five heads including four heads 74e, 74b, 74c, 74d and one head 74c. Among them, measurement information of at least three heads that is irradiated with at least one of a plurality of grating regions (two-dimensional grating RG) is used.
  • the two heads are simultaneously removed from the scale 2072 (lattice region, for example, the two-dimensional grating RG) and simultaneously
  • This is an example in the case of switching to an adjacent scale 2072 (lattice region, for example, a two-dimensional grating RG).
  • at least three heads need to face the grating region (two-dimensional grating) of the grating part in order to continue the measurement.
  • the at least three heads cannot be measured until one or more of the at least two heads that have been measured are switched to the adjacent lattice region. That is, even if there are at least two heads that overlap in the non-measurement period and there are at least three heads in addition to that, the measurement can be continued even if the lattice regions are arranged at intervals.
  • an X head 74x (hereinafter referred to as a head 74e as appropriate) is provided adjacent to the ⁇ Y side of the Y head 74y (head 74c).
  • a Y head 74y (hereinafter referred to as a head 74f as appropriate) is provided adjacent to the ⁇ Y side of the X head 74x (head 74d).
  • the Y position of the substrate holder 32 is in a state where the pair of head bases 88 are moving in the Y-axis direction (or the position where the pair of head bases 88 and the row of scales 2072 face each other.
  • the three heads 74a, 74c, 74e (referred to as the first group head) and the three heads 74b, 74d, 74f (second group).
  • One of the heads of the first group and the second group of heads is always connected to the scale 2072 (two-dimensional grating RG). Opposite to.
  • the arrangement of the + Y-side and ⁇ Y-side scales 2072 in the X-axis direction is not shifted in relation to the X-axis direction.
  • the three heads included in at least one of the first group head and the second group head can measure the position (X, Y, ⁇ z) of the substrate holder 32 regardless of the X position of the substrate holder 32. ing.
  • heads of the first group heads 74a, 74c, 74e
  • those heads 74a, 74c. , 74e are restored (measurement is resumed).
  • the position of the substrate holder 32 by the second group heads heads 74b, 74d, 74f) (X, Measurement and control of Y, ⁇ z) are continued. Therefore, as shown in FIG.
  • main controller 100 has a pair of head bases 88 straddling two adjacent scales 2072 arranged on the + Y side and the ⁇ Y side, respectively,
  • the second group of heads heads 74b, 74d, 74f
  • the position (X, Y, ⁇ z) of the substrate holder is calculated on the basis of the measured value, and the calculated position (X, Y, ⁇ z) of the substrate holder is substituted into the above-described affine transformation formula
  • the initial values of the heads of one group (heads 74a, 74c, 74e) are calculated and set simultaneously. Thereby, the heads of the first group can be easily returned, and the measurement and control of the position of the substrate holder 32 by these heads can be resumed.
  • the liquid crystal exposure apparatus according to the twenty-second embodiment described above has the same effects as the liquid crystal exposure apparatus according to the twenty-first embodiment described above.
  • This modification is a liquid crystal exposure apparatus according to the twenty-second embodiment, wherein the other head base 88 located on the + Y side has the same configuration as the one head base 88 (or a configuration that is symmetrical with respect to the vertical direction on the paper surface). Is used.
  • the eight heads are grouped into the first group head and the second group head to which each of the four heads arranged in a straight line in the same Y-axis direction belongs.
  • main controller 100 has a pair of head bases 88 straddling two adjacent scales 2072 arranged on the + Y side and the ⁇ Y side, respectively, and the first group head and the second group head. At the time when one of the two adjacent scales 2072 faces the other, the initial value of the measured value of each head of the first group is calculated. In this case, all the four heads of the first group The initial value cannot be calculated simultaneously.
  • the reason is that if there are three heads to be returned to the measurement (the total number of X heads and Y heads), when the initial values of the measurement values of these three heads are set in the same procedure as described above, By solving the simultaneous equations using the initial values as the measured values C 1 , C 2 , C 3, etc., the position (X, Y, ⁇ ) of the substrate holder is uniquely determined, so there is no particular problem. . However, it is because the simultaneous equations using the relationship of affine transformation using the measurement values of the four heads that can uniquely determine the position (X, Y, ⁇ ) of the substrate holder cannot be considered.
  • the first group to be returned is grouped into two groups to which three heads each including another head belong, and each group is initialized for the three heads by the same method as described above. Calculate and set the value at the same time. After the initial values are set, the measurement values of the three heads in any group may be used for position control of the substrate holder 32. The position measurement of the substrate holder 32 by the head of the group not used for position control may be executed in parallel with the position control of the substrate holder 32. It should be noted that the initial value of each head of the first group to be restored can be calculated individually by the above-described method.
  • the encoder switching (encoder output linking) processing according to the twentieth to twenty-second embodiments described above is based on the coarse movement stage or the measurement table in the second to nineteenth embodiments.
  • the present invention can also be applied to an encoder system to be performed.
  • the switching of the encoders according to the twentieth to twenty-second embodiments described above is performed in the first to fifth, eighth to fifteenth, eighteenth, and nineteenth embodiments.
  • the substrate measurement system (substrate measurement systems 70, 270, etc.) in each of the above embodiments is used to measure the position of a moving body that holds an object (substrate P in each of the above embodiments) regardless of the configuration of the substrate stage apparatus.
  • the substrate according to the sixth embodiment is different from the substrate stage apparatus including the substrate holder of the type that holds and holds almost the entire surface of the substrate P, such as the substrate holder 32 according to the first to fifth embodiments.
  • a measurement system such as the measurement system 670 that obtains the position information of the substrate holder with reference to the optical surface plate 18a via the measurement table 624.
  • a measurement system having the same configuration as the measurement system according to each of the above embodiments may be applied to a measurement object other than the substrate P.
  • the substrate A measurement system having the same configuration as the measurement system 70 or the like may be used.
  • the measurement system according to each of the embodiments described above is suitable for a measurement system of a mask stage apparatus that is disclosed in International Publication No. 2010/131485, in which a mask is stepped with a long stroke in a direction orthogonal to the scan direction. Can be used.
  • the arrangement of the encoder head and the scale may be reversed. That is, in the X linear encoder and the Y linear encoder for obtaining the position information of the substrate holder, a scale may be attached to the substrate holder, and an encoder head may be attached to the coarse movement stage or the measurement table. In that case, it is preferable that a plurality of scales attached to the coarse movement stage or the measurement table are arranged, for example, along the X-axis direction and can be switched to each other.
  • a scale may be attached to the measurement table, and an encoder head may be attached to the optical surface plate 18a.
  • an encoder head may be attached to the optical surface plate 18a.
  • a plurality of encoder heads attached to the optical surface plate 18a are arranged, for example, along the Y-axis direction and can be switched to each other.
  • one or more scales extending in the X-axis direction are fixed on the substrate stage apparatus side, and one or more scales extending in the Y-axis direction are fixed on the apparatus main body 18 side.
  • the present invention is not limited to this, and one or more scales extending in the Y-axis direction may be fixed to the substrate stage apparatus side, and one or more scales extending in the X-axis direction may be fixed to the apparatus main body 18 side.
  • the coarse movement stage or the measurement table is driven in the X-axis direction during the movement of the substrate holder in the exposure operation of the substrate P or the like.
  • the number of scales is not particularly limited, and can be appropriately changed according to the size of the substrate P or the movement stroke of the substrate P, for example.
  • a plurality of scales having different lengths may be used, and if each of the lattice parts includes a plurality of lattice regions arranged side by side in the X-axis direction or the Y-axis direction, the scales constituting the lattice part
  • the number of is not particularly limited.
  • the measurement table and its drive system are configured to be provided on the lower surface of the upper base 18a of the apparatus body 18, but may be provided on the lower base 18c and the middle base 18b.
  • the present invention is not limited to this, and an X scale and a Y scale may be independently formed on the surface of each scale. In this case, the lengths of the X scale and the Y scale may be different from each other in the scale. Moreover, you may make it arrange
  • the diffraction interference type encoder system is used has been described. However, the present invention is not limited to this, and other encoders such as a so-called pickup type and magnetic type can also be used, for example, US Pat. No. 6,639,686. A so-called scan encoder disclosed in the above can also be used.
  • the heads are arranged in the first direction.
  • the number of scales 2072 constituting the lattice portion is not particularly limited as long as the lattice portion includes a plurality of arranged lattice regions.
  • the plurality of lattice regions need not be disposed on both one side and the other side in the Y-axis direction across the substrate P of the substrate holder 32, and may be disposed on only one side.
  • the position (X, Y, ⁇ z) of the substrate holder 32 at least during the exposure operation of the substrate P the following conditions must be satisfied.
  • At least one of the four heads has a measurement beam deviating from a plurality of grating regions (for example, the above-described two-dimensional grating RG), the remaining at least three heads have a measurement beam having a plurality of grating regions.
  • At least one of the above-described at least four heads is separated from the plurality of grating regions by the movement of the substrate holder 32 in the X-axis direction (first direction). Change.
  • at least four heads include at least two heads having different measurement beam positions (irradiation positions) in the X-axis direction (first direction) and at least two heads in the Y-axis direction (second direction).
  • the two heads having different measurement beam positions (irradiation positions) with respect to the X-axis direction, the two heads having a plurality of grating regions in the X-axis direction.
  • the measurement beam is irradiated at an interval wider than the interval between a pair of adjacent lattice regions.
  • three or more rows of lattice regions (for example, a two-dimensional grating RG) arranged in the X-axis direction may be arranged in the Y-axis direction.
  • ten lattice regions each having an area that is obtained by dividing each of the five scales 2072 into two equal parts in the Y-axis direction (
  • two rows of lattice regions (for example, a two-dimensional grating RG) adjacent to each other in the Y-axis direction are provided, and the heads 74e and 74f can be opposed to the two-dimensional grating RG in one row, and the other A configuration may be adopted in which the heads 74c and 74d can face the two-dimensional grating RG in this row.
  • the five scales 2072 on the + Y side also have two lattice regions adjacent to each other in the Y-axis direction (for example, a two-dimensional grating).
  • RG is provided, and a pair of heads can be opposed to the two-dimensional grating RG in one row, and the remaining pair of heads can be opposed to the two-dimensional grating RG in the other row. Also good.
  • the measurement beam in the movement of the substrate holder 32 in the X-axis direction (first direction), the measurement beam is not observed in any two heads between at least four heads.
  • the position or interval or position of at least one of the scale and the head does not overlap so that none of the two-dimensional gratings RG is irradiated (out of the lattice area), that is, the measurement with the head becomes impossible (non-measurement section). It is important to set the interval and the like.
  • the initial value of another head that changes the measurement beam from one scale and switches to another scale is set.
  • Correction information for controlling the movement of the substrate holder such as measurement value correction information, may be acquired using another head.
  • the correction information for controlling the movement of the substrate holder using another head includes, of course, the initial value, but is not limited to this, and any information that allows the other head to resume measurement may be used. An offset value from a value to be measured after the measurement is resumed may be used.
  • encoder heads whose measurement directions are the X-axis direction and the Z-axis direction are used instead of the X heads 74x that measure the position information of the substrate holder 32.
  • an encoder head whose measurement directions are the Y-axis direction and the Z-axis direction may be used instead of each Y head 74y.
  • sensor heads having the same configuration as the displacement measurement sensor head disclosed in US Pat. No. 7,561,280 can be used. In such a case, the main controller 100 performs a predetermined calculation using the measurement values of the three heads used for position control of the substrate holder 32 before switching at the time of the above-described head switching and joining processing.
  • the main controller 100 will be specifically described by taking the twentieth embodiment as a representative example.
  • the main controller 100 includes a four-dimensional head RG (grating region) from which the measurement beam is one of the four heads 74a, 74b, 74c, and 74d.
  • the measurement error of the encoder system due to the height and inclination deviation between the plurality of scale plates 2072 may be corrected.
  • main controller 100 uses the measurement value of the redundant head in the fifth state to calibrate the deviation between the coordinate systems due to the deviation between the height and the inclination between the plurality of scale plates 2072 (calibration). ) It is also good to do.
  • the position (Z, ⁇ x, ⁇ y) of the substrate holder 32 is measured by two sets of three heads.
  • the difference between the measurement values obtained by the measurement, that is, the offsets ⁇ Z, ⁇ x, ⁇ y are obtained, and the offsets are used to measure the position information of the substrate holder 32 before and after the head switching and to control the position. It can be used for calibration of deviations in the Z-axis direction, ⁇ x, and ⁇ y directions between coordinate systems respectively determined by a combination of at least two scales facing the head.
  • the Z / tilt position measurement system and the encoder system constitute the substrate measurement system.
  • the substrate measurement system may be configured only by the encoder system.
  • At least one head arranged away from the measurement table 1782 in the X-axis direction may be provided apart from the pair of measurement tables 1782.
  • the same movable head unit as the measurement table 1782 is provided on the ⁇ Y side with respect to a mark detection system (alignment system) that is arranged away from the projection optical system 16 in the X-axis direction and detects an alignment mark on the substrate P.
  • the positional information of the Y coarse movement stage 24 may be measured using a pair of head units arranged on the ⁇ Y side of the mark detection system in the detection operation of the substrate mark.
  • the positional information of the Y coarse movement stage 24 by the substrate measurement system can be continued, and the degree of freedom in designing the exposure apparatus, such as the position of the mark detection system, can be increased.
  • the position information of the Y coarse movement stage 24 by the substrate measurement system is also used in the detection operation of the Z position of the substrate. Can be measured.
  • the substrate measurement system may be arranged in the vicinity of the projection optical system 16 and the position information of the Y coarse movement stage 24 may be measured by the pair of measurement tables 1782 in the detection operation of the Z position of the substrate. Further, in this embodiment, when the Y coarse movement stage 24 is arranged at the substrate exchange position set apart from the projection optical system 16, the measurement beams are scaled by the scales 1788 (or 684) at all the heads of the pair of measurement tables 1782. ).
  • At least one head facing at least one of the plurality of scales 1788 (or 684) of the Y coarse movement stage 24 arranged at the substrate exchange position is provided, and the substrate Even in the exchange operation, the position information of the Y coarse movement stage 24 may be measured by the substrate measurement system.
  • the pair of measurement tables 1782 When the measurement beams are deviated from the scale 1788 (or 684) in all the heads, at least one head is additionally arranged in the middle of the movement path of the Y coarse movement stage 24, and the position information of the substrate holder 32 by the substrate measurement system is displayed. Measurement may be continued. Note that when at least one head provided separately from the pair of measurement tables 1782 is used, the above-described connection processing may be performed using the measurement information of the pair of measurement tables 1782.
  • the XZ head described above may be used instead of each X head 74x
  • the YZ head described above may be used instead of each Y head 74y.
  • rotation ( ⁇ z) and inclination (at least one of ⁇ x and ⁇ y) of the plurality of heads 74x and 74y It is good also as measuring the positional information regarding at least one of these.
  • a lattice is formed on the surface (the surface is a lattice surface).
  • a cover member glass or thin film covering the lattice is provided, and the lattice surface is the scale surface. It may be inside.
  • each pair of the X head 80x and the Y head 80y is provided on the measurement table 1782 together with the head for measuring the position of the Y coarse movement stage 24 has been described.
  • the pair of X head 80x and Y head 80y may be provided in a head for measuring the position of the Y coarse movement stage 24 without using the measurement table 1782.
  • the measurement direction in the XY plane of each head included in the substrate encoder system is the X-axis direction or the Y-axis direction
  • a two-dimensional lattice having a periodic direction in two directions (referred to as ⁇ direction and ⁇ direction for convenience) intersecting the X axis direction and the Y axis direction and orthogonal to each other may be used.
  • a head having the ⁇ direction (and the Z axis direction) or the ⁇ direction (and the Z axis direction) as the respective measurement directions may be used as each of the heads described above.
  • each X scale and Y scale for example, a one-dimensional grating having a periodic direction in the ⁇ direction and the ⁇ direction is used, and correspondingly, as each head described above, It is also possible to use a head whose respective measurement directions are the ⁇ direction (and the Z axis direction) or the ⁇ direction (and the Z axis direction).
  • the first lattice group is composed of the aforementioned X-scale column
  • the second lattice group is composed of the aforementioned Y-scale column.
  • a plurality of X heads (or XZ heads) are arranged at a predetermined interval (an interval larger than the interval between adjacent X scales) so as to be able to face the scale row, and a plurality of Y heads (being able to face the Y scale row)
  • YZ heads may be arranged at a predetermined interval (interval larger than the interval between adjacent Y scales).
  • a plurality of scales having different lengths may be used as the scales arranged side by side in the X-axis direction or the Y-axis direction.
  • the center of the scales arranged near the both ends in the X-axis direction (the scales arranged at the respective ends in the scale row) is longer than the length in the X-axis direction.
  • the scale arranged in the part may be physically longer.
  • the measurement table encoder may measure at least position information in the movement direction of the measurement table (in the above embodiment, the Y-axis direction). Position information in at least one direction (at least one of X, Z, ⁇ x, ⁇ y, and ⁇ z) different from the moving direction may also be measured. For example, position information in the X-axis direction of a head (X head) whose measurement direction is the X-axis direction may also be measured, and position information in the X-axis direction may be obtained from this X information and measurement information of the X head.
  • position information in the X-axis direction orthogonal to the measurement direction may not be used.
  • position information in the Y-axis direction orthogonal to the measurement direction may not be used.
  • position information in at least one direction different from the measurement direction of the head may be measured, and position information of the substrate holder 622 and the like related to the measurement direction may be obtained from this measurement information and the measurement information of the head.
  • position information (rotation information) in the ⁇ z direction of the movable head is measured using two measurement beams having different positions in the X-axis direction, and the rotation information and measurement information of the X head and the Y head are used.
  • the position information of the substrate holder 622 and the like in the X-axis and Y-axis directions may be obtained.
  • two X heads and one Y head, one other, and two heads having the same measurement direction are arranged so as not to be in the same position with respect to the direction orthogonal to the measurement direction.
  • Position information in the ⁇ z direction can be measured.
  • the other head is preferably irradiated with a measurement beam at a position different from the two heads.
  • the head of the movable head encoder is an XZ head or a YZ head, for example, by arranging one of the XZ head and the YZ head and one of the other so as not to be on the same straight line, only Z information can be obtained.
  • position information (tilt information) in the ⁇ x and ⁇ y directions can also be measured.
  • Position information in the X-axis and Y-axis directions may be obtained from at least one of position information in the ⁇ x and ⁇ y directions and measurement information of the X head and the Y head.
  • position information of the movable head in a direction different from the Z-axis direction may be measured, and the position information in the Z-axis direction may be obtained from the measurement information and the head measurement information.
  • the scale of the encoder that measures the position information of the movable head is a single scale (lattice area)
  • XY ⁇ z and Z ⁇ x ⁇ y can be measured with three heads, but a plurality of scales (lattice areas) are arranged separately.
  • two X heads and two Y heads or two XZ heads and two YZ heads are arranged, and the interval in the X-axis direction is set so that the non-measurement periods do not overlap with the four heads. good.
  • This description is based on a scale in which the lattice area is arranged in parallel with the XY plane, but can be similarly applied to a scale in which the lattice area is arranged in parallel with the YZ plane.
  • an encoder is used as a measurement device that measures position information of a measurement table.
  • an interferometer may be used. good.
  • a reflecting surface may be provided on the movable head (or its holding portion), and the reflecting surface may be irradiated with the measurement beam in parallel with the Y-axis direction.
  • the movable head is moved only in the Y-axis direction, it is not necessary to increase the reflecting surface, and local air conditioning of the optical path of the interferometer beam for reducing air fluctuation is facilitated.
  • one movable head that irradiates the measurement beam onto the scale of the Y coarse movement stage 24 is provided on each side of the projection system in the Y-axis direction. It may be provided. For example, if adjacent movable heads (measurement beams) are arranged so that the measurement periods partially overlap with each other in the Y-axis direction, even if the Y coarse movement stage 24 moves in the Y-axis direction, the plurality of movable heads are movable. Position measurement can be continued with the head. In this case, a connecting process is required with a plurality of movable heads.
  • the correction information about another head where the measurement beam enters the scale is obtained by using measurement information of a plurality of heads that are arranged only on one side of the projection system on the ⁇ Y side and are irradiated with the measurement beam on at least one scale.
  • measurement information of at least one head arranged on the other side as well as one of the ⁇ Y sides may be used.
  • a plurality of scales are arranged apart from each other in the scanning direction (X-axis direction) in which the substrate P is moved in scanning exposure, and a plurality of scales are arranged.
  • the head can be moved in the step direction (Y-axis direction) of the substrate P.
  • a plurality of scales are arranged apart from each other in the step direction (Y-axis direction), and the plurality of heads are moved in the scanning direction. It may be movable in the (X-axis direction).
  • the head of the encoder system does not need to have all of the optical system that irradiates the scale with the beam from the light source, but only a part of the optical system, for example, the emission unit. It is good also as what has.
  • the heads of the pair of head bases 88 are arranged as shown in FIG. 71 (the X head and the Y head are arranged on the ⁇ Y side, respectively,
  • the arrangement of the X and Y heads is not limited to the opposite direction), for example, the X head and the Y head are arranged on the ⁇ Y side, respectively, and the X and Y directions on one side and the other on the ⁇ Y side
  • the head arrangement may be the same. However, if the X positions of the two Y heads are the same, it is preferable to make the X positions of the two Y heads different because the ⁇ z information cannot be measured if the measurement of one of the two X heads is interrupted.
  • the projection optical system 16 when the scale (scale member, grating portion) irradiated with the measurement beam from the head of the encoder system is provided on the projection optical system 16 side, the projection optical system 16 is supported. You may provide in the lens-barrel part of the projection optical system 16 not only in a part of apparatus main body 18 (frame member).
  • the case in which the movement direction (scanning direction) of the mask M and the substrate P during scanning exposure is the X-axis direction, but the scanning direction may be the Y-axis direction.
  • the long stroke direction of the mask stage it is necessary to set the long stroke direction of the mask stage to a direction rotated 90 degrees around the Z axis, and the direction of the projection optical system 16 also needs to be rotated 90 degrees around the Z axis.
  • a scale group in which a plurality of scales are arranged in series in the X-axis direction with a gap of a predetermined interval on the Y coarse movement stage 24.
  • a plurality of rows are arranged at different positions separated from each other in the Y-axis direction (for example, a position on one side (+ Y side) and a position on the other side ( ⁇ Y side) with respect to the projection optical system 16)
  • You may comprise so that a scale group (a several scale row
  • the lengths of the plurality of scale rows as a whole are different from each other between the scale rows, different shot maps can be handled, and shot areas formed on the substrate in the case of four-sided and six-sided chamfers, etc. It can respond to changes in the number of
  • the positions of the gaps of the scale rows are made different from each other in the X-axis direction, the heads corresponding to the plurality of scale rows will not be out of the measurement range at the same time. It is possible to reduce the number of sensors having an indeterminate value in FIG.
  • one scale in a scale group (scale array) in which a plurality of scales are arranged in series in the X-axis direction via a gap of a predetermined interval on the Y coarse movement stage 24.
  • the length in the X-axis direction is the length of one shot region (the length formed on the substrate by irradiation of the device pattern when performing scanning exposure while moving the substrate on the substrate holder in the X-axis direction) ), The length may be measured continuously. In this way, it is not necessary to perform head transfer control for a plurality of scales during scan exposure of a one-shot area, so that position measurement (position control) of the substrate P (substrate holder) during scan exposure can be easily performed. it can.
  • the substrate measuring system obtains positional information while the substrate stage device moves to the substrate exchange position with the substrate loader, or the substrate stage device or another stage device. It is also possible to provide a scale for exchanging the substrate and obtain the position information of the substrate stage apparatus using a downward head. Alternatively, the substrate stage apparatus or another stage apparatus may be provided with a substrate replacement head, and the position information of the substrate stage apparatus may be acquired by measuring the scale or the substrate replacement scale.
  • a position measurement system for example, a mark on the stage and an observation system for observing it
  • a position measurement system may be provided separately from the encoder system to perform stage exchange position control (management).
  • the substrate stage apparatus only needs to be able to drive at least the substrate P along a horizontal plane with a long stroke, and in some cases, the substrate stage device may not be able to perform fine positioning in the direction of six degrees of freedom.
  • the substrate encoder system according to the first to twenty-second embodiments can also be suitably applied to such a two-dimensional stage apparatus.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • the single wavelength laser beam of the infrared region or visible region oscillated from the DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium), You may use the harmonic which wavelength-converted into ultraviolet light using the nonlinear optical crystal.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system 16 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used.
  • the projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 16 may be an enlargement system or a reduction system.
  • the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern to the square glass plate, but is used for the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, for semiconductor manufacturing.
  • the present invention can be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the mobile device and the moving method of the present invention are suitable for moving an object.
  • the exposure apparatus and exposure method of the present invention are suitable for exposing an object.
  • the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display.
  • the device manufacturing method of the present invention is suitable for manufacturing micro devices.
  • DESCRIPTION OF SYMBOLS 10 Liquid crystal exposure apparatus, 20 ... Substrate stage apparatus, 24 ... Y coarse movement stage, 32 ... Substrate holder, 70 ... Substrate measurement system, 72 ... Upward scale, 74x ... Downward X head, 74y ... Downward Y head, 78 ... Downward Scale, 80x ... Upward X head, 80y ... Upward Y head, 100 ... Main controller, P ... Substrate.

Abstract

This movable body device is provided with: a substrate holder (32) which holds a substrate (P) and which can move in the X axis and the Y axis directions; a Y coarse movement stage (24) which can move in the Y axis direction; a first measurement system which acquires position information of the substrate holder (32) by means of heads (74x, 74y) provided on the substrate holder (32) and a scale (72) provided on the Y coarse movement stage (24); a second measurement system which acquires position information of the Y coarse movement stage (24) by means of heads (80x, 80y) provided on the Y coarse movement stage (24) and a scale (78); and a control system which controls the position of the substrate holder (32) on the basis of position information acquired by the first and second measurement systems. The first measurement system irradiates a measurement beam while moving the heads (74x, 74y) in the X axis direction with respect to the scale (72), and the second measurement system irradiates a measurement beam while moving the heads (80x, 80y) in the Y axis direction with respect to the scale (78).

Description

移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法Mobile device, moving method, exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
 本発明は、移動体装置、移動方法、露光装置、露光方法、フラットパネルディスプレイの製造方法、並びにデバイス製造方法に関する。 The present invention relates to a moving body device, a moving method, an exposure apparatus, an exposure method, a flat panel display manufacturing method, and a device manufacturing method.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、投影光学系(レンズ)を介して照明光(エネルギビーム)で感光性のガラスプレート又はウエハ(以下、「基板」と総称する)を露光することによって、該基板にマスク(フォトマスク)又はレチクル(以下、「マスク」と総称する)が有する所定のパターンを転写する露光装置が用いられている。 Conventionally, in a lithography process for manufacturing an electronic device (microdevice) such as a liquid crystal display element, a semiconductor element (such as an integrated circuit), a photosensitive glass plate with illumination light (energy beam) through a projection optical system (lens) or An exposure apparatus is used that exposes a wafer (hereinafter collectively referred to as “substrate”) to transfer a predetermined pattern of a mask (photomask) or reticle (hereinafter collectively referred to as “mask”) onto the substrate. ing.
 この種の露光装置としては、投影光学系に対する基板の位置制御を高精度で行う必要があることから、基板の位置計測系として、エンコーダシステムを用いるものが知られている(例えば、特許文献1参照)。 As this type of exposure apparatus, since it is necessary to control the position of the substrate with respect to the projection optical system with high accuracy, an apparatus using an encoder system is known as a substrate position measurement system (for example, Patent Document 1). reference).
 ここで、光干渉計システムを用いて基板の位置情報を求める場合、バーミラーへのレーザの光路長が長くなりいわゆる空気揺らぎの影響を無視することができない。 Here, when the position information of the substrate is obtained by using the optical interferometer system, the optical path length of the laser to the bar mirror becomes long and the influence of so-called air fluctuation cannot be ignored.
米国特許出願公開第2010/0266961号明細書US Patent Application Publication No. 2010/0266961
 本発明の第1の態様によれば、物体を保持し、互いに交差する第1方向と第2方向へ移動可能な第1移動体と、前記第1および第2方向の計測成分を含み、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも3つのヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測する第1計測系と、前記第1格子領域と前記第1ヘッドとの他方に設けられ、前記第2方向へ移動可能な第2移動体と、前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して前記第2方向へ移動しながら計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測する第2計測系と、前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1および第2方向を含む所定平面内の3自由度方向に関する前記第1移動体の移動制御を行う制御系と、を備え、前記制御系は、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも4つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の少なくとも2つに関する格子補正情報を取得し、前記格子補正情報は、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも3つのヘッドを用いる前記第1移動体の移動制御で用いられる移動体装置が、提供される。 According to a first aspect of the present invention, the apparatus includes a first moving body that holds an object and is movable in a first direction and a second direction that intersect each other, and a measurement component in the first and second directions, A plurality of first lattice regions are arranged apart from each other with respect to the first direction, and a plurality of second lattice regions arranged apart from the plurality of first lattice regions with respect to the second direction are arranged with respect to each other with respect to the first direction. One of a first grid member arranged separately and a plurality of first heads each irradiating a measurement beam while moving in the first direction with respect to the first grid member is provided in the first moving body. The other of the first grating member and the plurality of first heads is provided to face the moving body, and the measurement beam of the plurality of first heads includes the plurality of first and second gratings. Irradiate at least two of the areas A first measurement system for measuring position information of the first moving body in the first direction by at least three heads, and the other one of the first grating region and the first head, and moving in the second direction. A second movable body that is movable; a second grating member that includes measurement components in the first and second directions; and a second beam that irradiates the measurement beam while moving in the second direction relative to the second grating member. One of the heads is provided on the second moving body, and the other of the second grid member and the second head is provided to face the second moving body, and the second movement in the second direction. Based on a second measurement system for measuring body position information, and the position information measured by the first and second measurement systems, the direction of three degrees of freedom within a predetermined plane including the first and second directions. A control system for performing movement control of the first moving body The control system is measured using at least four heads of the plurality of first heads that are irradiated with at least two of the plurality of first and second grating regions. Based on the position information of the first moving body, lattice correction information regarding at least two of the plurality of first and second lattice regions is acquired, and the lattice correction information is obtained when the measurement beam is the first and second lattice regions. There is provided a moving body device used in movement control of the first moving body using the at least three heads irradiated on at least two of the second lattice regions.
 本発明の第2の態様によれば、第1部材に対して、物体を移動させる移動体装置であって、前記物体を保持し、前記第1部材に対して、互いに交差する第1及び第2方向へ移動可能な第1移動体と、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射されるヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測する第1計測系と、前記第1格子領域と前記第1ヘッドとの他方が設けられ、前記第2方向へ移動可能な第2移動体と、前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測する第2計測系と、前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1移動体の移動制御を行う制御系と、を備え、前記制御系は、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域に照射されるヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の格子補正情報に基づいて、前記第1移動体の移動制御する移動体装置が、提供される。 According to a second aspect of the present invention, there is provided a mobile device that moves an object relative to a first member, the first and second members that hold the object and intersect each other with respect to the first member. A first moving body that can move in two directions and a plurality of first lattice regions that are separated from each other with respect to the first direction, and that are separated from the plurality of first lattice regions with respect to the second direction A plurality of first grating members in which a plurality of second grating regions are arranged apart from each other with respect to the first direction, and a plurality of first elements that irradiate measurement beams while moving in the first direction relative to the first grating member One of the heads is provided on the first moving body, and the other of the first lattice member and the plurality of first heads is provided to face the moving body, and among the plurality of first heads, The measurement beam has the plurality of first and second beams. A first measurement system that measures positional information of the first moving body in the first direction by a head that irradiates at least two of the second grating regions, and the other of the first grating region and the first head includes A second movable body that is provided and is movable in the second direction; a second grating member that includes measurement components in the first and second directions; and a second beam that irradiates the second grating member with a measurement beam. One of the heads is provided on the second moving body, and the other of the second grid member and the second head is provided to face the second moving body, and the second movement in the second direction. A second measurement system that measures body position information, and a control system that performs movement control of the first moving body based on the position information measured by the first and second measurement systems, The control system includes the measurement block of the plurality of first heads. On the basis of the positional information of the first moving body measured using a head that irradiates the plurality of first and second grating regions, the lattice correction information of the plurality of first and second grating regions is obtained. Based on this, a moving body device for controlling the movement of the first moving body is provided.
 本発明の第3の態様によれば、第1の態様及び第2の態様のいずれかに係る移動体装置と、前記物体に対してエネルギビームを照射し、前記物体を露光する光学系と、を備える露光装置が、提供される。 According to a third aspect of the present invention, the mobile device according to any one of the first aspect and the second aspect, an optical system that irradiates the object with an energy beam and exposes the object, An exposure apparatus is provided.
 本発明の第4の態様によれば、フラットパネルディスプレイ製造方法であって、第3の態様に係る露光装置を用いて基板を露光することと、露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法が、提供される。 According to a fourth aspect of the present invention, there is provided a flat panel display manufacturing method, comprising: exposing a substrate using the exposure apparatus according to the third aspect; and developing the exposed substrate. A flat panel display manufacturing method is provided.
 本発明の第5の態様によれば、デバイス製造方法であって、第3の態様に係る露光装置を用いて基板を露光することと、露光された基板を現像することと、を含むデバイス製造方法が、提供される。 According to a fifth aspect of the present invention, there is provided a device manufacturing method, comprising: exposing a substrate using the exposure apparatus according to the third aspect; and developing the exposed substrate. A method is provided.
 本発明の第6の態様によれば、互いに直交する第1および第2方向の計測成分を含み、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記物体を保持する第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように前記第2方向へ移動可能な第2移動体に設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも3つのヘッドによる前記第1方向に関する前記第1移動体の第1位置情報を計測することと、前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して前記第2方向へ移動しながら計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、第2格子部材と前記第2格子部材との他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の第2位置情報を計測することと、前記第1及び第2位置情報に基づいて、前記所定平面内の3自由度方向に関する前記第1移動体の移動制御を行うことと、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも4つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の少なくとも2つに関する格子補正情報を取得することと、を含み、前記格子補正情報は、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも3つのヘッドを用いる前記第1移動体の移動制御で用いられる移動方法が、提供される。 According to the sixth aspect of the present invention, the first and second direction measurement components orthogonal to each other are included, and a plurality of first lattice regions are arranged apart from each other with respect to the first direction, and the second direction A plurality of second lattice regions disposed away from the plurality of first lattice regions with respect to the first direction, and a first lattice member disposed away from each other with respect to the first direction, and the first direction relative to the first lattice member One of the plurality of first heads each irradiating the measurement beam while moving to the first moving body is provided on the first moving body that holds the object, and the other of the first grating member and the plurality of first heads is the movement Provided in a second movable body that is movable in the second direction so as to face the body, and among the plurality of first heads, the measurement beam is applied to at least two of the plurality of first and second grating regions. At least irradiated Measuring first position information of the first moving body with respect to the first direction by three heads; a second lattice member including measurement components in the first and second directions; and the second lattice member One of the second head that irradiates the measurement beam while moving in the second direction is provided on the second moving body, and the other of the second grating member and the second grating member is provided on the second moving body. Measuring the second position information of the second moving body with respect to the second direction, and regarding the direction of three degrees of freedom within the predetermined plane based on the first and second position information. The movement control of the first moving body is performed, and at least four heads of the plurality of first heads that are irradiated with at least two of the plurality of first and second grating regions are used. The first movement measured Obtaining lattice correction information relating to at least two of the plurality of first and second lattice regions based on the position information of the plurality of first and second lattice regions, the lattice correction information comprising: A moving method used for movement control of the first moving body using the at least three heads irradiated to at least two of the second grating regions is provided.
 本発明の第7の態様によれば、第1部材に対して、物体を移動させる移動方法であって、前記物体を保持する第1移動体を、前記第1物体に対して、互いに交差する第1及び第2方向へ移動させることと、第1計測系により、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射されるヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測することと、前記第1格子領域と前記第1ヘッドとの他方が設けられた第2移動体により、前記第1移動体を前記第2方向へ移動させることと、前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測することと、前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1移動体の移動制御ことと、を含み、前記制御することでは、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域に照射されるヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の格子補正情報に基づいて、前記第1移動体の移動制御する移動方法が、提供される。 According to a seventh aspect of the present invention, there is provided a moving method for moving an object with respect to a first member, wherein the first moving body that holds the object intersects the first object. A plurality of first lattice regions are arranged apart from each other in the first direction by moving in the first and second directions and the first measurement system, and the plurality of first lattice regions in the second direction. A plurality of second grating regions arranged away from the first grating member arranged away from each other with respect to the first direction, and a measurement beam while moving in the first direction with respect to the first grating member, respectively. One of the plurality of first heads to be irradiated is provided on the first moving body, the other of the first lattice member and the plurality of first heads is provided to face the moving body, Of the first head, the measurement Measuring position information of the first moving body in the first direction by a head that irradiates at least two of the plurality of first and second lattice regions, and the first lattice region and the first lattice region. Moving the first moving body in the second direction by a second moving body provided with the other of the one head; a second lattice member including measurement components in the first and second directions; One of the second head that irradiates the second grating member with the measurement beam is provided on the second moving body, and the other of the second grating member and the second head faces the second moving body. And measuring the position information of the second moving body in the second direction and moving the first moving body based on the position information measured by the first and second measuring systems. Controlling, in said controlling The plurality of first heads based on positional information of the first moving body measured by using the heads that irradiate the plurality of first and second grating regions with the measurement beam. A moving method for controlling movement of the first moving body is provided based on lattice correction information of the first and second lattice regions.
 本発明の第8の態様によれば、第6の態様及び第7の態様のいずれかに係る記載の移動方法により、前記物体を前記第1方向へ移動させることと、前記第1方向へ移動された前記物体に対してエネルギビームを照射し、前記物体を露光することと、を含む露光方法が、提供される。 According to an eighth aspect of the present invention, the moving method according to any one of the sixth aspect and the seventh aspect moves the object in the first direction and moves in the first direction. An exposure method is provided that includes irradiating the object with an energy beam and exposing the object.
 本発明の第9の態様によれば、フラットパネルディスプレイ製造方法であって、第8の態様に係る露光方法を用いて基板を露光することと、前記露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法が、提供される。 According to a ninth aspect of the present invention, there is provided a flat panel display manufacturing method, comprising: exposing a substrate using the exposure method according to the eighth aspect; and developing the exposed substrate. A flat panel display manufacturing method is provided.
 本発明の第10の態様によれば、デバイス製造方法であって、第8の態様に係る露光方法を用いて基板を露光することと、露光された基板を現像することと、を含むデバイス製造方法が、提供される。 According to a tenth aspect of the present invention, there is provided a device manufacturing method comprising: exposing a substrate using the exposure method according to the eighth aspect; and developing the exposed substrate. A method is provided.
第1の実施形態に係る液晶露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the liquid-crystal exposure apparatus which concerns on 1st Embodiment. 図1の液晶露光装置が有する基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which the liquid-crystal exposure apparatus of FIG. 1 has. 図1の液晶露光装置が有する基板計測系の概念図である。It is a conceptual diagram of the board | substrate measurement system which the liquid-crystal exposure apparatus of FIG. 1 has. 基板ステージ装置の動作を説明するための図(その1)である。It is FIG. (1) for demonstrating operation | movement of a substrate stage apparatus. 基板ステージ装置の動作を説明するための図(その2)である。It is FIG. (2) for demonstrating operation | movement of a substrate stage apparatus. 液晶露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of a liquid-crystal exposure apparatus. 第2の実施形態に係る基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus which concerns on 2nd Embodiment. 図7の基板ステージ装置の断面図である。It is sectional drawing of the substrate stage apparatus of FIG. 図7の基板ステージ装置の第2の系を示す図である。It is a figure which shows the 2nd system of the substrate stage apparatus of FIG. 図7の基板ステージ装置の第1の系を示す図である。FIG. 8 is a diagram showing a first system of the substrate stage apparatus of FIG. 7. 第3の実施形態に係る基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus which concerns on 3rd Embodiment. 図11の基板ステージ装置の断面図である。It is sectional drawing of the substrate stage apparatus of FIG. 図11の基板ステージ装置の第2の系を示す図である。It is a figure which shows the 2nd system of the substrate stage apparatus of FIG. 図11の基板ステージ装置の第1の系を示す図である。FIG. 12 is a diagram showing a first system of the substrate stage apparatus of FIG. 11. 第4の実施形態に係る基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus which concerns on 4th Embodiment. 図15の基板ステージ装置の断面図である。It is sectional drawing of the substrate stage apparatus of FIG. 図15の基板ステージ装置の第2の系を示す図である。It is a figure which shows the 2nd system of the substrate stage apparatus of FIG. 図15の基板ステージ装置の第1の系を示す図である。FIG. 16 is a diagram showing a first system of the substrate stage apparatus of FIG. 15. 第5の実施形態に係る基板ステージ装置を示す平面図である。It is a top view which shows the substrate stage apparatus which concerns on 5th Embodiment. 図19の基板ステージ装置の断面図である。It is sectional drawing of the substrate stage apparatus of FIG. 図19の基板ステージ装置の第2の系を示す図である。FIG. 20 is a diagram showing a second system of the substrate stage apparatus of FIG. 19. 図19の基板ステージ装置の第1の系を示す図である。FIG. 20 is a diagram showing a first system of the substrate stage apparatus of FIG. 19. 第6の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 6th Embodiment. 図23の基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG. 図23の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 24 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 23. 第6の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 6th Embodiment. 図26の基板計測系の動作を説明するための図である。It is a figure for demonstrating operation | movement of the board | substrate measurement system of FIG. 第7の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 7th Embodiment. 図28の基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG. 図28の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 29 is a diagram showing a system including a substrate table which is a part of the substrate stage apparatus of FIG. 28. 第7の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 7th Embodiment. 第8の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 8th Embodiment. 図32の基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG. 図32の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 33 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 32. 第8の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 8th Embodiment. 第9の実施形態に基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus in 9th Embodiment. 第9の実施形態に基板ステージ装置の一部である基板テーブルを含む系を示す図である。It is a figure which shows the type | system | group containing the substrate table which is a part of substrate stage apparatus in 9th Embodiment. 第9の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 9th Embodiment. 第10の実施形態に係る基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus concerning 10th Embodiment. 第10の実施形態に係る基板ステージ装置の一部である基板テーブルを含む系を示す図である。It is a figure which shows the type | system | group containing the substrate table which is a part of substrate stage apparatus concerning 10th Embodiment. 第10の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 10th Embodiment. 第10の実施形態に係る基板ステージ装置の断面図(その1)である。It is sectional drawing (the 1) of the substrate stage apparatus which concerns on 10th Embodiment. 第10の実施形態に係る基板ステージ装置の断面図(その2)である。It is sectional drawing (the 2) of the substrate stage apparatus which concerns on 10th Embodiment. 第11の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 11th Embodiment. 図44の基板ステージ装置の一部である基板ホルダを示す図である。FIG. 45 is a diagram showing a substrate holder that is a part of the substrate stage apparatus of FIG. 44. 図44の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 45 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 44. 第11の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 11th Embodiment. 第12の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 12th Embodiment. 図48の基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG. 図48の基板ステージ装置の一部である重量キャンセル装置を含む系を示す図である。FIG. 49 is a diagram showing a system including a weight cancellation device that is a part of the substrate stage device of FIG. 48. 図48の基板ステージ装置の一部であるY粗動ステージを含む系を示す図である。FIG. 49 is a diagram showing a system including a Y coarse movement stage which is a part of the substrate stage apparatus of FIG. 48. 図48の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 49 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 48. 第12の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 12th Embodiment. 図53の基板計測系の動作を説明するための図である。It is a figure for demonstrating operation | movement of the board | substrate measurement system of FIG. 第13の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 13th Embodiment. 図55の基板ステージ装置の一部である基板ホルダを示す図である。It is a figure which shows the substrate holder which is a part of substrate stage apparatus of FIG. 図55の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 56 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 55. 第13の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 13th Embodiment. 第14の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 14th Embodiment. 第15の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 15th Embodiment. 図60の基板ステージ装置の動作を説明するための図である。FIG. 61 is a diagram for explaining an operation of the substrate stage apparatus of FIG. 60. 図60の基板ステージ装置の一部である基板ホルダを示す図である。FIG. 61 is a diagram showing a substrate holder that is a part of the substrate stage apparatus of FIG. 60. 図60の基板ステージ装置の一部である基板テーブルを含む系を示す図である。FIG. 61 is a diagram showing a system including a substrate table that is a part of the substrate stage apparatus of FIG. 60. 第16の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus based on 16th Embodiment. 第17の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus which concerns on 17th Embodiment. 第18の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus based on 18th Embodiment. 第18の実施形態に係る基板計測系の構成を説明するための図である。It is a figure for demonstrating the structure of the board | substrate measurement system which concerns on 18th Embodiment. 第18の実施形態に係る基板計測系の概念図である。It is a conceptual diagram of the board | substrate measurement system which concerns on 18th Embodiment. 第19の実施形態に係る基板ステージ装置を示す図である。It is a figure which shows the substrate stage apparatus based on 19th Embodiment. 第19の実施形態に係る基板計測系の概念図である。It is a conceptual diagram of the board | substrate measurement system which concerns on 19th Embodiment. 第20の実施形態に係る液晶露光装置が有する基板ホルダ及び基板計測系の一対のヘッドベースを、投影光学系とともに示す平面図である。It is a top view which shows a pair of head base of the substrate holder which the liquid crystal exposure apparatus which concerns on 20th Embodiment has, and a substrate measurement system with a projection optical system. 図71(A)及び図71(B)は、基板ホルダの位置計測が行われる際の基板ホルダのX軸方向の移動範囲を説明するための図である。71A and 71B are diagrams for explaining the movement range of the substrate holder in the X-axis direction when position measurement of the substrate holder is performed. 図73(A)~図73(D)は、第20の実施形態において、基板ホルダがX軸方向に移動する過程における一対のヘッドベースとスケールとの位置関係の状態遷移のうちの第1の状態~第4の状態を説明するための図である。73 (A) to 73 (D) show the first of the state transitions of the positional relationship between the pair of head bases and the scale in the process of moving the substrate holder in the X-axis direction in the twentieth embodiment. FIG. 6 is a diagram for explaining a state to a fourth state. 図74(A)~図74(C)は、第20の実施形態に係る液晶露光装置で行われる、基板ホルダの位置情報を計測する、基板エンコーダシステムのヘッドの切り換え時におけるつなぎ処理について説明するための図である。74 (A) to 74 (C) explain a connecting process performed by the liquid crystal exposure apparatus according to the twentieth embodiment at the time of switching the head of the substrate encoder system for measuring the position information of the substrate holder. FIG. 第21の実施形態に係る液晶露光装置が有する基板ホルダ及び基板エンコーダシステムの一対のヘッドベースを、投影光学系とともに示す平面図である。It is a top view which shows a pair of head base of the substrate holder and substrate encoder system which a liquid-crystal exposure apparatus which concerns on 21st Embodiment has with a projection optical system. 第22の実施形態に係る液晶露光装置の特徴的構成について説明するための図である。It is a figure for demonstrating the characteristic structure of the liquid crystal exposure apparatus which concerns on 22nd Embodiment.
《第1の実施形態》
 以下、第1の実施形態について、図1~図6を用いて説明する。
<< First Embodiment >>
Hereinafter, the first embodiment will be described with reference to FIGS.
 図1には、第1の実施形態に係る露光装置(ここでは液晶露光装置10)の構成が概略的に示されている。液晶露光装置10は、物体(ここではガラス基板P)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。ガラス基板P(以下、単に「基板P」と称する)は、平面視矩形(角型)に形成され、液晶表示装置(フラットパネルディスプレイ)などに用いられる。 FIG. 1 schematically shows a configuration of an exposure apparatus (here, a liquid crystal exposure apparatus 10) according to the first embodiment. The liquid crystal exposure apparatus 10 is a so-called scanner, a step-and-scan projection exposure apparatus that uses an object (here, the glass substrate P) as an exposure target. A glass substrate P (hereinafter simply referred to as “substrate P”) is formed in a rectangular shape (planar shape) in plan view, and is used for a liquid crystal display device (flat panel display) or the like.
 液晶露光装置10は、照明系12、回路パターンなどが形成されたマスクMを保持するマスクステージ装置14、投影光学系16、装置本体18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を有している。以下、露光時にマスクMと基板Pとが投影光学系16に対してそれぞれ相対走査される方向をX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向(投影光学系16の光軸方向と平行な方向)とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。 The liquid crystal exposure apparatus 10 has an illumination system 12, a mask stage apparatus 14 that holds a mask M on which a circuit pattern and the like are formed, a projection optical system 16, an apparatus body 18, and a resist (surface facing the + Z side in FIG. 1) on the surface. It has a substrate stage device 20 that holds a substrate P coated with (sensitive agent), a control system for these, and the like. Hereinafter, the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction, and the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis. In the following description, the orthogonal direction is the Z-axis direction (the direction parallel to the optical axis direction of the projection optical system 16), and the rotation directions around the X-axis, Y-axis, and Z-axis are the θx, θy, and θz directions, respectively. Further, description will be made assuming that the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
 照明系12は、米国特許第5,729,331号明細書などに開示される照明系と同様に構成されており、図示しない光源(水銀ランプ、あるいはレーザダイオードなど)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッター、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、i線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。 The illumination system 12 is configured in the same manner as the illumination system disclosed in US Pat. No. 5,729,331 and the like. Light emitted from a light source (not shown) (such as a mercury lamp or a laser diode) The mask M is irradiated as exposure illumination light (illumination light) IL through a reflecting mirror, a dichroic mirror, a shutter, a wavelength selection filter, various lenses, and the like (not shown). As the illumination light IL, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), and h-line (wavelength 405 nm) (or combined light of the i-line, g-line, and h-line) is used.
 マスクステージ装置14が保持するマスクMとしては、透過型のフォトマスクが用いられている。マスクMの下面(図1では-Z側を向いた面)には、所定の回路パターンが形成されている。マスクMは、リニアモータ、ボールねじ装置などのアクチュエータを含むマスク駆動系102を介して主制御装置100(それぞれ図1では不図示。図6参照)によって走査方向(X軸方向)に所定の長ストロークで駆動されるとともに、Y軸方向、及びθz方向に適宜微少駆動される。マスクMのXY平面内の位置情報(θz方向の回転量情報も含む。以下同じ)は、エンコーダシステム、あるいは干渉計システムなどの計測システムを含むマスク計測系104を介して主制御装置100(それぞれ図1では不図示。図6参照)によって求められる。 As the mask M held by the mask stage device 14, a transmissive photomask is used. A predetermined circuit pattern is formed on the lower surface of the mask M (the surface facing the -Z side in FIG. 1). The mask M has a predetermined length in the scanning direction (X-axis direction) by a main controller 100 (not shown in FIG. 1; see FIG. 6) via a mask drive system 102 including an actuator such as a linear motor and a ball screw device. While being driven by a stroke, it is slightly driven as appropriate in the Y-axis direction and the θz direction. Position information of the mask M in the XY plane (including rotation amount information in the θz direction; the same applies hereinafter) is transmitted to the main controller 100 (respectively) via a mask measurement system 104 including a measurement system such as an encoder system or an interferometer system. 1 (not shown in FIG. 1, see FIG. 6).
 投影光学系16は、マスクステージ装置14の下方に配置されている。投影光学系16は、米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、両側テレセントリックな等倍系で正立正像を形成する複数のレンズモジュールを備えている。 The projection optical system 16 is disposed below the mask stage device 14. The projection optical system 16 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in US Pat. No. 6,552,775 and the like. Are provided with a plurality of lens modules.
 液晶露光装置10では、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過(透過)した照明光ILにより、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。 In the liquid crystal exposure apparatus 10, when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12, the illumination area IL passes through (transmits) the mask M via the projection optical system 16. A projection image (partial upright image) of the circuit pattern of the mask M is formed in an irradiation area (exposure area) of illumination light conjugate to the illumination area on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
 装置本体18は、マスクステージ装置14、及び投影光学系16を支持しており、防振装置19を介してクリーンルームの床F上に設置されている。装置本体18は、米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されており、上架台部18a、一対の中架台部18b、及び下架台部18cを有している。上架台部18aは、投影光学系16を支持する部材であることから、以下、本明細書では、上架台部18aを「光学定盤18a」と称して説明する。ここで、本実施形態の液晶露光装置10を用いた走査露光動作において、基板Pは、投影光学系16を介して照射される照明光ILに対して位置制御されることから、投影光学系16を支持する光学定盤18aは、基板Pの位置制御を行う際の基準部材として機能する。 The apparatus main body 18 supports the mask stage apparatus 14 and the projection optical system 16, and is installed on the floor F of the clean room via the vibration isolator 19. The apparatus main body 18 is configured in the same manner as the apparatus main body disclosed in US Patent Application Publication No. 2008/0030702, and includes an upper frame part 18a, a pair of middle frame parts 18b, and a lower frame part 18c. ing. Since the upper pedestal 18a is a member that supports the projection optical system 16, the upper pedestal 18a is hereinafter referred to as an “optical surface plate 18a” in the present specification. Here, in the scanning exposure operation using the liquid crystal exposure apparatus 10 of the present embodiment, the position of the substrate P is controlled with respect to the illumination light IL irradiated through the projection optical system 16. The optical surface plate 18a that supports the substrate functions as a reference member when the position of the substrate P is controlled.
 基板ステージ装置20は、基板Pを投影光学系16(照明光IL)に対して高精度で位置制御するための装置であり、基板Pを水平面(X軸方向、及びY軸方向)に沿って所定の長ストロークで駆動するとともに、6自由度方向に微少駆動する。液晶露光装置10で用いられる基板ステージ装置の構成は、特に限定されないが、本第1の実施形態では、一例として米国特許出願公開第2012/0057140号明細書などに開示されるような、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成の基板ステージ装置20が用いられている。 The substrate stage device 20 is a device for controlling the position of the substrate P with respect to the projection optical system 16 (illumination light IL) with high accuracy, and the substrate P is aligned along the horizontal plane (X-axis direction and Y-axis direction). While driving with a predetermined long stroke, it is slightly driven in the direction of 6 degrees of freedom. The configuration of the substrate stage apparatus used in the liquid crystal exposure apparatus 10 is not particularly limited, but in the first embodiment, the gantry type as disclosed in, for example, US Patent Application Publication No. 2012/0057140, as an example. A substrate stage apparatus 20 having a so-called coarse / fine movement configuration is used, which includes a two-dimensional coarse movement stage and a fine movement stage that is finely driven with respect to the two-dimensional coarse movement stage.
 基板ステージ装置20は、微動ステージ22、Y粗動ステージ24、X粗動ステージ26、支持部(ここでは自重支持装置28)、一対のベースフレーム30(図1では一方は不図示。図4参照)、及び基板ステージ装置20を構成する各要素を駆動するための基板駆動系60(図1では不図示、図6参照)、上記各要素の位置情報を計測するための基板計測系70(図1では不図示、図6参照)などを備えている。 The substrate stage device 20 includes a fine movement stage 22, a Y coarse movement stage 24, an X coarse movement stage 26, a support portion (herein, a self-weight support device 28), and a pair of base frames 30 (one is not shown in FIG. 1, see FIG. 4). ), A substrate driving system 60 (not shown in FIG. 1, refer to FIG. 6) for driving each element constituting the substrate stage apparatus 20, and a substrate measuring system 70 (see FIG. 6) for measuring positional information of each element. 1 (not shown, see FIG. 6).
 図2に示されるように、微動ステージ22は、基板ホルダ32とステージ本体34とを備えている。基板ホルダ32は、平面視矩形(図4参照)の板状(あるいは箱形)に形成され、その上面(基板載置面)に基板Pが載置される。基板ホルダ32の上面のX軸及びY軸方向の寸法は、基板Pと同程度に(実際には幾分短く)設定されている。基板Pは、基板ホルダ32の上面に載置された状態で基板ホルダ32に真空吸着保持されることによって、ほぼ全体(全面)が基板ホルダ32の上面に沿って平面矯正される。ステージ本体34は、基板ホルダ32よりもX軸及びY軸方向の寸法が短い平面視矩形の板状(あるいは箱形)の部材から成り、基板ホルダ32の下面に一体的に接続されている。 As shown in FIG. 2, the fine movement stage 22 includes a substrate holder 32 and a stage main body 34. The substrate holder 32 is formed in a plate shape (or box shape) having a rectangular shape in plan view (see FIG. 4), and the substrate P is placed on the upper surface (substrate placement surface). The dimensions of the upper surface of the substrate holder 32 in the X-axis and Y-axis directions are set to be approximately the same as the substrate P (actually somewhat shorter). The substrate P is vacuum-sucked and held on the substrate holder 32 in a state of being placed on the upper surface of the substrate holder 32, so that almost the entire surface (the entire surface) is flattened along the upper surface of the substrate holder 32. The stage main body 34 is made of a plate-shaped (or box-shaped) member having a rectangular shape in a plan view and shorter than the substrate holder 32 in the X-axis and Y-axis directions, and is integrally connected to the lower surface of the substrate holder 32.
 図1に戻り、Y粗動ステージ24は、微動ステージ22の下方(-Z側)であって、一対のベースフレーム30上に配置されている。Y粗動ステージ24は、図4に示されるように、一対のXビーム36を有している。Xビーム36は、X軸方向に延びるYZ断面矩形(図2参照)の部材から成る。一対のXビーム36は、Y軸方向に所定間隔で平行に配置されている。一対のXビーム36は、機械的なリニアガイド装置を介して一対のベースフレーム30上に載置されており、該一対のベースフレーム30上でY軸方向に移動自在となっている。 1, the Y coarse movement stage 24 is disposed below the fine movement stage 22 (on the −Z side) and on the pair of base frames 30. As shown in FIG. 4, the Y coarse movement stage 24 has a pair of X beams 36. The X beam 36 is composed of a member having a rectangular YZ section (see FIG. 2) extending in the X-axis direction. The pair of X beams 36 are arranged in parallel at a predetermined interval in the Y-axis direction. The pair of X beams 36 are placed on the pair of base frames 30 via a mechanical linear guide device, and are movable in the Y-axis direction on the pair of base frames 30.
 図1に戻り、X粗動ステージ26は、Y粗動ステージ24の上方(+Z側)であって、微動ステージ22の下方に(微動ステージ22とY粗動ステージ24との間に)配置されている。X粗動ステージ26は、平面視矩形の板状の部材であって、Y粗動ステージ24が有する一対のXビーム36(図4参照)上に複数の機械的なリニアガイド装置38(図2参照)を介して載置されており、Y粗動ステージ24に対してX軸方向に関して移動自在であるのに対し、Y軸方向に関しては、Y粗動ステージ24と一体的に移動する。 Returning to FIG. 1, the X coarse movement stage 26 is disposed above (+ Z side) the Y coarse movement stage 24 and below the fine movement stage 22 (between the fine movement stage 22 and the Y coarse movement stage 24). ing. The X coarse movement stage 26 is a plate-like member having a rectangular shape in plan view, and a plurality of mechanical linear guide devices 38 (see FIG. 2) on a pair of X beams 36 (see FIG. 4) of the Y coarse movement stage 24. And the Y coarse movement stage 24 is movable with respect to the Y coarse movement stage 24, whereas the Y coarse movement stage 24 moves integrally with the Y coarse movement stage 24.
 図6に示されるように、基板駆動系60は、微動ステージ22を光学定盤18a(それぞれ図1参照)に対して6自由度方向(X軸、Y軸、Z軸、θx、θy、及びθzの各方向)に微少駆動するための第1駆動系62、Y粗動ステージ24をベースフレーム30(それぞれ図1参照)上でY軸方向に長ストロークで駆動するための第2駆動系64、及びX粗動ステージ26をY粗動ステージ24(それぞれ図1参照)上でX軸方向に長ストロークで駆動するための第3駆動系66を備えている。第2駆動系64、及び第3駆動系66を構成するアクチュエータの種類は、特に限定されないが、一例として、リニアモータ、あるいはボールねじ駆動装置などを使用することが可能である(図1などではリニアモータが図示されている)。 As shown in FIG. 6, the substrate drive system 60 moves the fine movement stage 22 in directions of six degrees of freedom (X axis, Y axis, Z axis, θx, θy, and so on) with respect to the optical surface plate 18a (see FIG. 1 respectively). a first drive system 62 for finely driving in each direction of θz, and a second drive system 64 for driving the Y coarse movement stage 24 with a long stroke in the Y-axis direction on the base frame 30 (see FIG. 1 respectively). And a third drive system 66 for driving the X coarse movement stage 26 on the Y coarse movement stage 24 (see FIG. 1 respectively) with a long stroke in the X-axis direction. The type of actuator that constitutes the second drive system 64 and the third drive system 66 is not particularly limited, but as an example, a linear motor, a ball screw drive device, or the like can be used (in FIG. 1 and the like). A linear motor is shown).
 第1駆動系62を構成するアクチュエータの種類も特に限定されないが、図2などでは、一例としてX軸、Y軸、Z軸の各方向へ推力を発生する複数のリニアモータ(ボイスコイルモータ)40が図示されている(図1及び図2ではXリニアモータは不図示)。各リニアモータ40は、固定子がX粗動ステージ26に取り付けられるとともに、可動子が微動ステージ22のステージ本体34に取り付けられており、微動ステージ22は、X粗動ステージ26に対して、各リニアモータ40を介して6自由度方向に推力が付与される。上記第1~第3駆動系62、64、66の詳細な構成に関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。 The type of actuator constituting the first drive system 62 is not particularly limited, but in FIG. 2 and the like, as an example, a plurality of linear motors (voice coil motors) 40 that generate thrust in the X axis, Y axis, and Z axis directions. (The X linear motor is not shown in FIGS. 1 and 2). Each linear motor 40 has a stator attached to the X coarse movement stage 26 and a mover attached to the stage main body 34 of the fine movement stage 22. Thrust is applied in the direction of 6 degrees of freedom via the linear motor 40. The detailed configuration of the first to third drive systems 62, 64, 66 is disclosed in, for example, US Patent Application Publication No. 2010/0018950 and the like, and will not be described.
 主制御装置100は、第1駆動系62を用いて微動ステージ22とX粗動ステージ26(それぞれ図1参照)との相対位置がX軸及びY軸方向に関して所定範囲内に収まるように微動ステージ22に推力を付与する。ここで、「位置が所定範囲内に収まる」とは、微動ステージ22をX軸又はY軸方向に長ストロークで移動させる際に、X粗動ステージ26(微動ステージ22をY軸方向に移動させる場合にはX粗動ステージ26及びY粗動ステージ24)と微動ステージ22とをほぼ同速度で且つ同方向に移動させるという程度の意味であり、微動ステージ22とX粗動ステージ26とが厳密に同期して移動する必要はなく、所定の相対移動(相対位置ずれ)が許容される。 The main controller 100 uses the first drive system 62 to adjust the relative position between the fine movement stage 22 and the X coarse movement stage 26 (refer to FIG. 1 respectively) within a predetermined range with respect to the X-axis and Y-axis directions. The thrust is given to 22. Here, “the position falls within a predetermined range” means that the X coarse movement stage 26 (the fine movement stage 22 is moved in the Y-axis direction when the fine movement stage 22 is moved with a long stroke in the X-axis or Y-axis direction. In this case, it means that the X coarse movement stage 26 and the Y coarse movement stage 24) and the fine movement stage 22 are moved in substantially the same speed and in the same direction, and the fine movement stage 22 and the X coarse movement stage 26 are strictly It is not necessary to move in synchronism with each other, and a predetermined relative movement (relative positional deviation) is allowed.
 図2に戻り、自重支持装置28は、微動ステージ22の自重を下方から支持する重量キャンセル装置42と、該重量キャンセル装置42を下方から支持するYステップガイド44とを備えている。 2, the own weight support device 28 includes a weight cancellation device 42 that supports the weight of the fine movement stage 22 from below, and a Y step guide 44 that supports the weight cancellation device 42 from below.
 重量キャンセル装置42(心柱などとも称される)は、X粗動ステージ26に形成された開口部に挿入されており、その重心高さ位置において、X粗動ステージ26に対して複数の連結部材46(フレクシャ装置とも称される)を介して機械的に接続されている。X粗動ステージ26と重量キャンセル装置42とは、複数の連結部材46により、Z軸方向、θx方向、θy方向に関して振動的(物理的)に分離した状態で連結されている。重量キャンセル装置42は、X粗動ステージ26に牽引されることによって、該X粗動ステージ26と一体的にX軸、及び/又はY軸方向に移動する。 The weight cancellation device 42 (also referred to as a core column) is inserted into an opening formed in the X coarse movement stage 26, and a plurality of couplings are made to the X coarse movement stage 26 at the height of the center of gravity. It is mechanically connected via a member 46 (also referred to as a flexure device). The X coarse movement stage 26 and the weight cancellation device 42 are coupled by a plurality of coupling members 46 in a state of being separated in a vibrational (physical) manner with respect to the Z-axis direction, the θx direction, and the θy direction. When the weight cancellation device 42 is pulled by the X coarse movement stage 26, it moves integrally with the X coarse movement stage 26 in the X-axis and / or Y-axis direction.
 重量キャンセル装置42は、レベリング装置48と称される疑似球面軸受装置を介して微動ステージ22の自重を下方から非接触で支持してしている。これにより、微動ステージ22の重量キャンセル装置42に対するX軸、Y軸、及びθz方向への相対移動、及び水平面に対する揺動(θx、θy方向への相対移動)が許容される。重量キャンセル装置42、レベリング装置48の構成及び機能に関しては、一例として米国特許出願公開第2010/0018950号明細書などに開示されているので、説明を省略する。 The weight canceling device 42 supports the self-weight of the fine movement stage 22 from below without contact through a pseudo spherical bearing device called a leveling device 48. As a result, the relative movement of the fine movement stage 22 in the X-axis, Y-axis, and θz directions with respect to the weight cancellation device 42 and the swinging relative to the horizontal plane (relative movement in the θx and θy directions) are allowed. The configurations and functions of the weight canceling device 42 and the leveling device 48 are disclosed in, for example, US Patent Application Publication No. 2010/0018950 as an example, and thus the description thereof is omitted.
 Yステップガイド44は、X軸に平行に延びる部材から成り、Y粗動ステージ24が有する一対のXビーム36間に配置されている(図4参照)。Yステップガイド44の上面は、XY平面(水平面)と平行に設定されており、重量キャンセル装置42は、Yステップガイド44上にエアベアリング50を介して非接触で載置されている。Yステップガイド44は、重量キャンセル装置42(すなわち微動ステージ22及び基板P)がX軸方向(走査方向)へ移動する際の定盤として機能する。Yステップガイド44は、下架台部18c上に機械的なリニアガイド装置52を介して載置されており、下架台部18cに対してY軸方向に移動自在であるのに対し、X軸方向に関する相対移動が制限されている。 The Y step guide 44 is composed of a member extending in parallel with the X axis, and is disposed between a pair of X beams 36 included in the Y coarse movement stage 24 (see FIG. 4). The upper surface of the Y step guide 44 is set parallel to the XY plane (horizontal plane), and the weight cancellation device 42 is placed on the Y step guide 44 via the air bearing 50 in a non-contact manner. The Y step guide 44 functions as a surface plate when the weight canceling device 42 (that is, the fine movement stage 22 and the substrate P) moves in the X-axis direction (scanning direction). The Y step guide 44 is placed on the lower gantry 18c via a mechanical linear guide device 52, and is movable in the Y axis direction with respect to the lower gantry 18c, whereas in the X axis direction. Relative movement with respect to is restricted.
 Yステップガイド44は、その重心高さ位置において、Y粗動ステージ24(一対のXビーム36)に対して複数の連結部材54を介して機械的に接続されている(図4参照)。連結部材54は、上述した連結部材46と同様の、いわゆるフレクシャ装置であり、Y粗動ステージ24とYステップガイド44とを、6自由度方向のうちY軸方向を除く5自由度方向に関して振動的(物理的)に分離した状態で連結している。Yステップガイド44は、Y粗動ステージ24に牽引されることによって、Y粗動ステージ24と一体的にY軸方向に移動する。 The Y step guide 44 is mechanically connected to the Y coarse movement stage 24 (the pair of X beams 36) via a plurality of connecting members 54 at the center of gravity height position (see FIG. 4). The connecting member 54 is a so-called flexure device similar to the connecting member 46 described above, and vibrates the Y coarse movement stage 24 and the Y step guide 44 with respect to the 5 degrees of freedom direction excluding the Y axis direction out of the 6 degrees of freedom direction. They are linked in a state of being separated physically. The Y step guide 44 moves in the Y axis direction integrally with the Y coarse movement stage 24 by being pulled by the Y coarse movement stage 24.
 一対のベースフレーム30は、図4に示されるように、それぞれY軸に平行に延びる部材から成り、互いに平行に床F(図1参照)上に設置されている。ベースフレーム30は、装置本体18とは、物理的(あるいは振動的)に分離されている。 As shown in FIG. 4, each of the pair of base frames 30 is composed of members extending in parallel with the Y axis, and is installed on the floor F (see FIG. 1) in parallel with each other. The base frame 30 is physically (or vibrationally) separated from the apparatus main body 18.
 次に、基板P(実際には、基板Pを保持した微動ステージ22)の6自由度方向の位置情報を求めるための基板計測系70について説明する。 Next, a description will be given of the substrate measurement system 70 for obtaining position information in the direction of 6 degrees of freedom of the substrate P (actually, the fine movement stage 22 holding the substrate P).
 図3には、基板計測系70の概念図が示されている。基板計測系70は、Y粗動ステージ24が有する(Y粗動ステージ24に関連付けられた)第1スケール(ここでは上向きスケール72)と、微動ステージ22が有する第1ヘッド(ここでは下向きXヘッド74x、下向きYヘッド74y)とを含む第1計測系(ここでは微動ステージ計測系76(図6参照))、及び、光学定盤18a(図2参照)が有する第2スケール(ここでは下向きスケール78)と、Y粗動ステージ24が有する第2ヘッド(ここでは上向きXヘッド80x、上向きYヘッド80y)とを含む第2計測系(ここでは粗動ステージ計測系82(図6参照))を備えている。なお、図3では、微動ステージ22は、基板Pを保持する部材として、模式化して図示されている。また、各スケール72、78が有する回折格子の格子間の間隔(ピッチ)も、実際よりも格段に広く図示されている。その他の図も同様である。また、各ヘッドと各スケールとの距離が従来の光干渉計システムのレーザ光源とバーミラーとの距離よりも格段に短いため、光干渉計システムよりも空気ゆらぎの影響が少なく、高精度で基板Pの位置制御が可能であり、これによって、露光精度を向上することができる。 FIG. 3 shows a conceptual diagram of the substrate measurement system 70. The substrate measurement system 70 includes a first scale (here, an upward scale 72) included in the Y coarse movement stage 24 (associated with the Y coarse movement stage 24) and a first head (here, downward X head) included in the fine movement stage 22. 74x, a downward Y head 74y), and a second scale (here, a downward scale) of the optical surface plate 18a (see FIG. 2) and a first measurement system (here, fine movement stage measurement system 76 (see FIG. 6)). 78) and the second head (here, the upward X head 80x, the upward Y head 80y) of the Y coarse movement stage 24, a second measurement system (here, coarse movement stage measurement system 82 (see FIG. 6)). I have. In FIG. 3, the fine movement stage 22 is schematically illustrated as a member that holds the substrate P. Also, the spacing (pitch) between the diffraction gratings of each of the scales 72 and 78 is shown to be much wider than actual. The same applies to the other figures. In addition, since the distance between each head and each scale is much shorter than the distance between the laser light source and the bar mirror of the conventional optical interferometer system, the influence of air fluctuation is less than that of the optical interferometer system, and the substrate P is highly accurate. Thus, the exposure accuracy can be improved.
 上向きスケール72は、スケールベース84の上面に固定されている。スケールベース84は、図4に示されるように、微動ステージ22の+Y側、及び-Y側にそれぞれ1つ配置されている。スケールベース84は、図2に示されるように、X軸方向から見てL字状に形成されたアーム部材86を介してY粗動ステージ24のXビーム36に固定されている。従って、スケールベース84(及び上向きスケール72)は、Y粗動ステージ24と一体的にY軸方向に所定の長ストロークで移動可能となっている。アーム部材86は、図4に示されるように、1つのXビーム36につき、X軸方向に離間して2つ配置されているが、アーム部材86の数は、これに限定されず、適宜増減が可能である。 The upward scale 72 is fixed to the upper surface of the scale base 84. As shown in FIG. 4, one scale base 84 is disposed on each of the fine movement stage 22 on the + Y side and on the −Y side. As shown in FIG. 2, the scale base 84 is fixed to the X beam 36 of the Y coarse movement stage 24 through an arm member 86 formed in an L shape when viewed from the X-axis direction. Therefore, the scale base 84 (and the upward scale 72) is movable with a predetermined long stroke in the Y-axis direction integrally with the Y coarse movement stage 24. As shown in FIG. 4, two arm members 86 are spaced apart in the X-axis direction for each X beam 36, but the number of arm members 86 is not limited to this, and may be increased or decreased as appropriate. Is possible.
 スケールベース84は、X軸に平行に延びる部材であって、そのX軸方向の長さは、基板ホルダ32(すなわち基板P(図4では不図示))のX軸方向の長さの2倍程度(Yステップガイド44と同程度)に設定されている。スケールベース84は、セラミックスなどの熱変形が生じにくい素材で形成することが好ましい。後述する他のスケールベース92、ヘッドベース88、96も同様である。 The scale base 84 is a member extending in parallel with the X axis, and the length in the X axis direction is twice the length in the X axis direction of the substrate holder 32 (that is, the substrate P (not shown in FIG. 4)). Is set to about (same as the Y step guide 44). The scale base 84 is preferably formed of a material that is unlikely to be thermally deformed, such as ceramics. The same applies to other scale bases 92 and head bases 88 and 96 described later.
 上向きスケール72は、X軸方向に延びる板状(帯状)の部材であって、その上面(+Z側(上側)を向いた面)には、互いに直交する2軸方向(本実施形態ではX軸及びY軸方向)を周期方向とする反射型の2次元回折格子(いわゆるグレーティング)が形成されている。 The upward scale 72 is a plate-shaped (strip-shaped) member extending in the X-axis direction, and has an upper surface (a surface facing + Z side (upper side)) in two axial directions orthogonal to each other (in this embodiment, the X-axis). A reflection type two-dimensional diffraction grating (so-called grating) having a periodic direction in the Y-axis direction) is formed.
 基板ホルダ32の+Y側、及び-Y側の側面中央部には、上述したスケールベース84に対応して、それぞれヘッドベース88がアーム部材90を介して固定されている(図2参照)。各下向きヘッド74x、74y(図3参照)は、ヘッドベース88の下面に固定されている。 The head base 88 is fixed to the central part of the side surface on the + Y side and −Y side of the substrate holder 32 via the arm member 90 corresponding to the scale base 84 described above (see FIG. 2). Each downward head 74x, 74y (see FIG. 3) is fixed to the lower surface of the head base 88.
 本実施形態の微動ステージ計測系76(図6参照)では、図3に示されるように、1つのヘッドベース88に対して、下向きXヘッド74x、及び下向きYヘッド74yが、それぞれX軸方向に離間して2つ配置されている。各ヘッド74x、74yは、対応する上向きスケール72に対して計測ビームを照射するとともに、該上向きスケール72からの光(ここでは回折光)を受光する。上向きスケール72からの光は、不図示のディテクタへ供給され、ディテクタの出力は、主制御装置100(図6参照)に供給される。主制御装置100は、ディテクタの出力の基づいて、各ヘッド74x、74yのスケール72に対する相対移動量を求める。なお、本明細書において、「ヘッド」とは、回折格子へ計測ビームを出射するとともに、回折格子からの光が入射する部分という程度の意味であり、各図に図示されたヘッド自体は、光源、及びディテクタを有していなくても良い。 In fine movement stage measurement system 76 (see FIG. 6) of the present embodiment, as shown in FIG. 3, downward X head 74x and downward Y head 74y are each in the X-axis direction with respect to one head base 88. Two are spaced apart. Each head 74x, 74y irradiates the corresponding upward scale 72 with a measurement beam and receives light (here, diffracted light) from the upward scale 72. The light from the upward scale 72 is supplied to a detector (not shown), and the output of the detector is supplied to the main controller 100 (see FIG. 6). Main controller 100 determines the relative movement amount of each head 74x, 74y with respect to scale 72 based on the output of the detector. In this specification, the “head” means a portion that emits a measurement beam to the diffraction grating and is incident on the light from the diffraction grating, and the head itself illustrated in each drawing is a light source. And the detector may not be provided.
 このように、本実施形態の微動ステージ計測系76(図6参照)では、合計で4つ(基板Pの+Y側及び-Y側それぞれに2つ)の下向きXヘッド74xと、対応する上向きスケール72とによって、4つのXリニアエンコーダシステムが構成されるとともに、合計で4つ(基板Pの+Y側及び-Y側それぞれに2つ)の下向きYヘッド74yと、対応する上向きスケール72とによって、4つのYリニアエンコーダシステムが構成されている。主制御装置100(図6参照)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、微動ステージ22(基板P)のX軸方向、Y軸方向、及びθz方向の位置情報(以下、「第1情報」と称する)を求める。 Thus, in the fine movement stage measurement system 76 (see FIG. 6) of this embodiment, a total of four (two on the + Y side and −Y side of the substrate P) downward X heads 74x and corresponding upward scales. 72 constitutes four X linear encoder systems, and a total of four (two on each of the + Y side and −Y side of the substrate P) downward Y heads 74y and corresponding upward scales 72, Four Y linear encoder systems are configured. Main controller 100 (see FIG. 6) uses the outputs of the four X linear encoder systems and the four Y linear encoder systems as appropriate to appropriately adjust the X axis direction, Y axis direction of fine movement stage 22 (substrate P), and Position information in the θz direction (hereinafter referred to as “first information”) is obtained.
 ここで、上向きスケール72は、X軸方向に関する計測可能距離が、Y軸方向に関する計測可能距離よりも長く設定されている。具体的には、図4に示されるように、上向きスケール72のX軸方向の長さは、スケールベース84と同程度の長さであって、微動ステージ22のX軸方向の移動可能範囲をカバーできる程度の長さに設定されている。これに対し、上向きスケール72の幅方向(Y軸方向)寸法(及びY軸方向に隣接する一対のヘッド74x、74y間の間隔)は、微動ステージ22を上向きスケール72に対してY軸方向へ微少駆動しても、各ヘッド74x、74yからの計測ビームが対応する上向きスケール72の格子面(被計測面)から外れない程度の長さに設定されている。 Here, the upward scale 72 is set such that the measurable distance in the X-axis direction is longer than the measurable distance in the Y-axis direction. Specifically, as shown in FIG. 4, the length of the upward scale 72 in the X-axis direction is the same as that of the scale base 84, and the fine movement stage 22 can be moved in the X-axis direction. It is set to a length that can be covered. On the other hand, the dimension of the upward scale 72 in the width direction (Y-axis direction) (and the distance between the pair of heads 74x and 74y adjacent in the Y-axis direction) is adjusted so that the fine movement stage 22 is in the Y-axis direction with respect to the upward scale 72. The length is set such that the measurement beam from each of the heads 74x and 74y does not deviate from the lattice surface (measurement surface) of the corresponding upward scale 72 even if it is slightly driven.
 次に、微動ステージ計測系76(図6参照)の動作を図4及び図5を用いて説明する。図4及び図5は、微動ステージ22がX軸及びY軸方向に長ストロークで移動する前後の基板ステージ装置20を示している。図4には、微動ステージ22が、X軸及びY軸方向に関する移動可能範囲のほぼ中央に位置した状態が示され、図5には、微動ステージ22が、X軸方向に関する移動可能範囲の+X側のストロークエンド、且つY軸方向に関する-Y側のストロークエンドに位置した状態が示されている。 Next, the operation of fine movement stage measurement system 76 (see FIG. 6) will be described with reference to FIGS. 4 and 5 show the substrate stage device 20 before and after the fine movement stage 22 moves in a long stroke in the X-axis and Y-axis directions. FIG. 4 shows a state in which fine movement stage 22 is positioned approximately in the center of the movable range in the X-axis and Y-axis directions, and FIG. 5 shows + X of the movable range + X in the movable range in the X-axis direction. A state is shown that is located at the stroke end on the side and at the stroke end on the -Y side in the Y-axis direction.
 図4及び図5から分かるように、微動ステージ22のY軸方向の位置に関わらず、微動ステージ22に取り付けられた各下向きヘッド74x、74yからの計測ビームは、微動ステージ22がY軸方向に微少駆動される場合も含み、上向きスケール72の格子面から外れることがない。また、微動ステージ22がX軸方向に長ストロークで移動する際にも同様に、各下向きヘッド74x、74yからの計測ビームが上向きスケール72の格子面から外れることがない。 As can be seen from FIGS. 4 and 5, regardless of the position of the fine movement stage 22 in the Y-axis direction, the measurement beam from each of the downward heads 74x and 74y attached to the fine movement stage 22 has the fine movement stage 22 in the Y-axis direction. Including the case where it is slightly driven, it does not deviate from the lattice plane of the upward scale 72. Similarly, when the fine movement stage 22 moves with a long stroke in the X-axis direction, the measurement beams from the downward heads 74 x and 74 y do not deviate from the lattice plane of the upward scale 72.
 次に、粗動ステージ計測系82(図6参照)について説明する。本実施形態の粗動ステージ計測系82は、図1及び図4から分かるように、投影光学系16(図1参照)の+Y側、及び-Y側それぞれに、X軸方向に離間した2つの下向きスケール78を(すなわち合計で4つの下向きスケール78を)有している。下向きスケール78は、光学定盤18aの下面にスケールベース92(図2参照)を介して固定されている。スケールベース92は、Y軸方向に延びる板状の部材であって、そのY軸方向の長さは、微動ステージ22(すなわち基板P(図4では不図示))のY軸方向に関する移動可能距離と同程度に(実際には幾分長く)設定されている。 Next, the coarse movement stage measurement system 82 (see FIG. 6) will be described. As can be seen from FIGS. 1 and 4, the coarse movement stage measurement system 82 of the present embodiment includes two pieces spaced apart in the X-axis direction on each of the + Y side and the −Y side of the projection optical system 16 (see FIG. 1). It has a downward scale 78 (ie a total of four downward scales 78). The downward scale 78 is fixed to the lower surface of the optical surface plate 18a via a scale base 92 (see FIG. 2). The scale base 92 is a plate-like member extending in the Y-axis direction, and the length in the Y-axis direction is a movable distance in the Y-axis direction of the fine movement stage 22 (that is, the substrate P (not shown in FIG. 4)). Is set to the same level as (and somewhat longer in practice).
 下向きスケール78は、Y軸方向に延びる板状(帯状)の部材であって、その下面(-Z側(下側)を向いた面)には、上記上向きスケール72の上面と同様に、互いに直交する2軸方向(本実施形態ではX軸及びY軸方向)を周期方向とする反射型の2次元回折格子(いわゆるグレーティング)が形成されている。なお、下向きスケール78が有する回折格子の格子ピッチは、上向きスケール72が有する回折格子の格子ピッチと同じであっても良いし、異なっていても良い。 The downward scale 78 is a plate-shaped (strip-shaped) member extending in the Y-axis direction, and has a lower surface (a surface facing the −Z side (downside)), like the upper surface of the upward scale 72. A reflection type two-dimensional diffraction grating (so-called grating) having a periodic direction in two orthogonal directions (X-axis and Y-axis directions in the present embodiment) is formed. The grating pitch of the diffraction grating included in the downward scale 78 may be the same as or different from the grating pitch of the diffraction grating included in the upward scale 72.
 Y粗動ステージ24が有する一対のスケールベース84それぞれには、図2に示されるように、X軸方向から見てL字状に形成されたアーム部材94を介してヘッドベース96が固定されている。ヘッドベース96は、図4に示されるように、スケールベース84の+X側の端部近傍、及び-X側の端部近傍に配置されている。各上向きヘッド80x、80yは、図3に示されるように、ヘッドベース96の上面に固定されている。従って、合計で4つのヘッドベース96(及び上向きヘッド80x、80y)は、Y粗動ステージ24と一体的にY軸方向に移動可能となっている。 As shown in FIG. 2, a head base 96 is fixed to each of the pair of scale bases 84 included in the Y coarse movement stage 24 via arm members 94 formed in an L shape when viewed from the X-axis direction. Yes. As shown in FIG. 4, the head base 96 is disposed near the + X side end of the scale base 84 and near the −X side end. As shown in FIG. 3, the upward heads 80 x and 80 y are fixed to the upper surface of the head base 96. Accordingly, a total of four head bases 96 (and upward heads 80x and 80y) are movable in the Y-axis direction integrally with the Y coarse movement stage 24.
 本実施形態の粗動ステージ計測系82(図6参照)では、図3に示されるように、1つのヘッドベース96に対して、上向きXヘッド80x、及び上向きYヘッド80yが、それぞれY軸方向に離間して2つ配置されている。各ヘッド80x、80yは、対応する下向きスケール78に対して計測ビームを照射するとともに、該下向きスケール78からの光(ここでは回折光)を受光する。下向きスケール78からの光は、不図示のディテクタへ供給され、ディテクタの出力は、主制御装置100(図6参照)に供給される。主制御装置100は、ディテクタの出力の基づいて、各ヘッド80x、80yのスケール78に対する相対移動量を求める。このように、本実施形態の粗動ステージ計測系82では、合計で8つの上向きXヘッド80xと、対応する下向きスケール78とによって、8つのXリニアエンコーダシステムが構成されるとともに、合計で8つの上向きYヘッド80yと、対応する下向きスケール78とによって、8つのYリニアエンコーダシステムが構成されている。主制御装置100(図6参照)は、上記8つのXリニアエンコーダシステム、及び8つのYリニアエンコーダシステムの出力を適宜用いて、Y粗動ステージ24のX軸方向、Y軸方向、及びθz方向の位置情報(以下、「第2情報」と称する)を求める。 In coarse movement stage measurement system 82 (see FIG. 6) of the present embodiment, as shown in FIG. 3, upward X head 80x and upward Y head 80y are each in the Y-axis direction with respect to one head base 96. Two are arranged apart from each other. Each of the heads 80x and 80y emits a measurement beam to the corresponding downward scale 78 and receives light (here, diffracted light) from the downward scale 78. Light from the downward scale 78 is supplied to a detector (not shown), and the output of the detector is supplied to the main controller 100 (see FIG. 6). Main controller 100 determines the relative movement amounts of heads 80x and 80y with respect to scale 78 based on the output of the detector. As described above, in the coarse movement stage measurement system 82 of the present embodiment, eight X linear encoder systems are configured by the eight upward X heads 80x in total and the corresponding downward scale 78, and a total of eight X linear encoder systems. Eight Y linear encoder systems are constituted by the upward Y head 80y and the corresponding downward scale 78. The main controller 100 (see FIG. 6) uses the outputs of the eight X linear encoder systems and the eight Y linear encoder systems as appropriate, and uses the Y coarse movement stage 24 in the X axis direction, Y axis direction, and θz direction. Position information (hereinafter referred to as “second information”).
 また、スケールベース84に固定された上向きスケール72と、スケールベース84にヘッドベース96を介して一体的に固定された各上向きヘッド80x、80yとは、互いの位置関係が不変となるように配置され、且つ互いの位置関係は、既知であるものとする。以下、上向きスケール72と、これに一体的に固定された各上向きヘッド80x、80yとの相対位置関係に関する情報を「第3情報」と称する。なお、上向きスケール72と上向きヘッド80x、80yとの位置関係は不変となるように配置されていると説明したが、両者の位置関係を計測する計測系を液晶露光装置10が備えているようにしても良い。後述する各実施例においても同様である。 Further, the upward scale 72 fixed to the scale base 84 and the upward heads 80x and 80y integrally fixed to the scale base 84 via the head base 96 are arranged so that their positional relationship is unchanged. It is assumed that the positional relationship with each other is known. Hereinafter, information related to the relative positional relationship between the upward scale 72 and the upward heads 80x and 80y fixed integrally therewith is referred to as “third information”. Although it has been described that the positional relationship between the upward scale 72 and the upward heads 80x and 80y is unchanged, the liquid crystal exposure apparatus 10 is provided with a measurement system for measuring the positional relationship between the two. May be. The same applies to each embodiment described later.
 主制御装置100(図6参照)は、上記第1~第3情報に基づいて、光学定盤18a(投影光学系16)を基準とする微動ステージ22(基板P)のXY平面内の位置情報を求め、上記基板駆動系60(図6参照)を用いて、投影光学系16(照明光IL)に対する基板Pの位置制御を行う。 Main controller 100 (see FIG. 6), based on the first to third information, position information in the XY plane of fine movement stage 22 (substrate P) with reference to optical surface plate 18a (projection optical system 16). And the position control of the substrate P with respect to the projection optical system 16 (illumination light IL) is performed using the substrate drive system 60 (see FIG. 6).
 このように、本実施形態の基板計測系70では、X軸方向よりもY軸方向の計測可能距離が長い(Y軸方向を主計測方向とする)下向きスケール78を含む粗動ステージ計測系82によって、Y軸方向に長ストロークで移動するY粗動ステージ24の位置情報が求められるとともに、Y軸方向よりもX軸方向の計測可能距離が長い(X軸方向を主計測方向とする)上向きスケール72を含む微動ステージ計測系76によって、X軸方向に長ストロークで移動する微動ステージ22の位置情報が求められる。すなわち、粗動ステージ計測系82、及び微動ステージ計測系76では、各エンコーダヘッド(74x、74y、80x、80y)の移動方向と、対応するスケール(72、78)の主計測方向とが、それぞれ一致している。 As described above, in the substrate measurement system 70 of the present embodiment, the coarse movement stage measurement system 82 includes the downward scale 78 in which the measurable distance in the Y-axis direction is longer than the X-axis direction (the Y-axis direction is the main measurement direction). Thus, the position information of the Y coarse movement stage 24 moving with a long stroke in the Y-axis direction is obtained, and the measurable distance in the X-axis direction is longer than the Y-axis direction (the X-axis direction is the main measurement direction) upward The fine movement stage measurement system 76 including the scale 72 obtains positional information of the fine movement stage 22 that moves in the X-axis direction with a long stroke. That is, in the coarse movement stage measurement system 82 and the fine movement stage measurement system 76, the movement direction of each encoder head (74x, 74y, 80x, 80y) and the main measurement direction of the corresponding scale (72, 78) are respectively Match.
 また、微動ステージ22(基板P)のZ軸、θx、及びθyの各方向(以下、「Zチルト方向」と称する)の位置情報は、Zチルト位置計測系98を用いて主制御装置100(それぞれ図6参照)により求められる。Zチルト位置計測系98の構成は、特に限定されないが、一例として米国特許出願公開第2010/0018950号明細書などに開示されるような、微動ステージ22に取り付けられた変位センサを用いた計測系を用いることが可能である。 Further, position information of the fine movement stage 22 (substrate P) in the Z-axis, θx, and θy directions (hereinafter referred to as “Z tilt direction”) is stored in the main controller 100 (using the Z tilt position measurement system 98). (See FIG. 6). The configuration of the Z tilt position measurement system 98 is not particularly limited, but as an example, a measurement system using a displacement sensor attached to the fine movement stage 22 as disclosed in, for example, US Patent Application Publication No. 2010/0018950. Can be used.
 なお、不図示であるが、基板計測系70は、X粗動ステージ26の位置情報を求めるための計測系も有している。本実施形態では、微動ステージ22(基板P)のX軸方向の位置情報がY粗動ステージ24を介して光学定盤18aを基準に求められることから、X粗動ステージ26自体の計測精度を、微動ステージ22と同等の精度とする必要がない。X粗動ステージ26の位置計測は、上記微動ステージ計測系76の出力と、X粗動ステージ26と微動ステージ22との相対位置を計測する計測系(不図示)の出力とに基づいて行っても良いし、独立した計測系を用いて行っても良い。 Although not shown, the substrate measurement system 70 also has a measurement system for obtaining position information of the X coarse movement stage 26. In this embodiment, since the positional information in the X-axis direction of the fine movement stage 22 (substrate P) is obtained with reference to the optical surface plate 18a via the Y coarse movement stage 24, the measurement accuracy of the X coarse movement stage 26 itself is improved. It is not necessary to have the same accuracy as the fine movement stage 22. The position measurement of the X coarse movement stage 26 is performed based on the output of the fine movement stage measurement system 76 and the output of a measurement system (not shown) for measuring the relative position between the X coarse movement stage 26 and the fine movement stage 22. Alternatively, an independent measurement system may be used.
 上述のようにして構成された液晶露光装置10(図1参照)では、主制御装置100(図6参照)の管理の下、不図示のマスクローダによって、マスクステージ装置14上へのマスクMのロードが行われるとともに、不図示の基板ローダによって、基板ホルダ32上への基板Pのロードが行なわれる。その後、主制御装置100により、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。この露光動作は従来から行われているステップ・アンド・スキャン方式の露光動作と同様であるので、その詳細な説明は省略するものとする。上記アライメント計測動作、及びステップ・アンド・スキャン方式の露光動作において、基板計測系70によって微動ステージ22の位置情報が計測される。 In the liquid crystal exposure apparatus 10 (see FIG. 1) configured as described above, the mask M is placed on the mask stage apparatus 14 by a mask loader (not shown) under the control of the main controller 100 (see FIG. 6). In addition to loading, the substrate P is loaded onto the substrate holder 32 by a substrate loader (not shown). After that, the main controller 100 performs alignment measurement using an alignment detection system (not shown), and after the alignment measurement is completed, a step-and-scan method is sequentially applied to a plurality of shot areas set on the substrate P. An exposure operation is performed. Since this exposure operation is the same as a conventional step-and-scan exposure operation, a detailed description thereof will be omitted. In the alignment measurement operation and the step-and-scan exposure operation, the substrate measurement system 70 measures the position information of the fine movement stage 22.
 以上説明した本実施形態の液晶露光装置10によれば、微動ステージ22(基板P)の位置を、エンコーダシステムを含む基板計測系70を用いて計測するので、従来の光干渉計システムを用いた計測に比べ、空気ゆらぎの影響が少なく、高精度で基板Pの位置制御が可能であり、これによって、露光精度を向上することができる。 According to the liquid crystal exposure apparatus 10 of the present embodiment described above, since the position of the fine movement stage 22 (substrate P) is measured using the substrate measurement system 70 including the encoder system, a conventional optical interferometer system is used. Compared with measurement, the influence of air fluctuations is small, and the position of the substrate P can be controlled with high accuracy, thereby improving the exposure accuracy.
 また、基板計測系70は、光学定盤18a(装置本体18)に固定された下向きスケール78を基準に(上向きスケール72を介して)基板Pの位置計測を行うので、実質的に投影光学系16を基準とした基板Pの位置計測を行うことができる。これによって、基板Pの位置制御を、照明光ILを基準に行うことができるので、露光精度を向上することができる。 Further, since the substrate measuring system 70 measures the position of the substrate P with reference to the downward scale 78 fixed to the optical surface plate 18a (the apparatus main body 18) (via the upward scale 72), the projection optical system is substantially provided. The position of the substrate P can be measured with reference to 16. As a result, the position control of the substrate P can be performed based on the illumination light IL, so that the exposure accuracy can be improved.
 なお、以上説明した基板計測系70の構成は、微動ステージ22(基板P)の移動可能範囲において、微動ステージ22の位置情報を所望の精度で求めることができれば、適宜変更が可能である。 The configuration of the substrate measurement system 70 described above can be changed as appropriate as long as the position information of the fine movement stage 22 can be obtained with a desired accuracy within the movable range of the fine movement stage 22 (substrate P).
 すなわち、上記実施形態では、上向きスケール72として、スケールベース84と同程度の長さの長尺スケールが用いられたが、これに限られず、米国特許国際公開第2015/147319号に開示されるエンコーダシステムと同様に、よりX軸方向の長さが短いスケールをX軸方向に所定間隔で配置しても良い。この場合には、X軸方向に隣り合う一対のスケール間に隙間が形成されるため、X軸方向に隣り合う一対のヘッド74x、74yそれぞれのX軸方向の間隔を、上記隙間よりも広くすることによって、常に一方のヘッド74x、74yがスケールに対向するように配置すると良い。下向きスケール78と上向きヘッド80x、80yとの関係においても同様である。 That is, in the above embodiment, a long scale having the same length as the scale base 84 is used as the upward scale 72, but the present invention is not limited to this, and the encoder disclosed in US Patent Publication No. 2015/147319 is used. Similar to the system, scales having a shorter length in the X-axis direction may be arranged at predetermined intervals in the X-axis direction. In this case, since a gap is formed between a pair of scales adjacent in the X-axis direction, the distance between the pair of heads 74x and 74y adjacent in the X-axis direction is made larger than the gap. Accordingly, it is preferable to always arrange one head 74x, 74y so as to face the scale. The same applies to the relationship between the downward scale 78 and the upward heads 80x and 80y.
 また、上向きスケール72が微動ステージ22の+Y側、及び-Y側にそれぞれ配置されたが、これに限られず、一方のみ(+Y側、又は-Y側のみ)に配置されても良い。上向きスケール72が1つのみで、且つ上述したように複数のスケールをX軸方向に所定間隔で配置する(スケール間に隙間がある)場合には、微動ステージ22のθz方向の位置計測を常時行うことができるように、常に少なくとも2つの下向きXヘッド74x(あるいは下向きYヘッド74y)がスケールに対向するように、各ヘッド74x、74yの数、及び配置を設定すると良い。下向きスケール78に関しても同様に、Y粗動ステージ24のX軸、Y軸、及びθz方向の位置計測を常時行うことでできれば、下向きスケール78、及び上向きヘッド80x、80yの数、及び配置は、適宜変更が可能である。 Further, although the upward scale 72 is arranged on the + Y side and the −Y side of the fine movement stage 22, respectively, it is not limited to this, and it may be arranged only on one side (+ Y side or −Y side only). When there is only one upward scale 72 and a plurality of scales are arranged at predetermined intervals in the X-axis direction as described above (there is a gap between the scales), the position measurement of the fine movement stage 22 in the θz direction is always performed. As can be done, the number and arrangement of the heads 74x and 74y should be set so that at least two downward X heads 74x (or downward Y heads 74y) always face the scale. Similarly, regarding the downward scale 78, if the position measurement in the X axis, the Y axis, and the θz direction of the Y coarse movement stage 24 can always be performed, the number and arrangement of the downward scale 78 and the upward heads 80x and 80y are as follows. Changes can be made as appropriate.
 また、上向きスケール72、及び下向きスケール78には、X軸、及びY軸方向を周期方向とする2次元回折格子が形成されたが、X軸方向を周期方向とするX回折格子とY軸方向を周期方向とするY回折格子とがそれぞれ個別にスケール72、78上に形成されても良い。また、本実施形態の2次元回折格子は、X軸、及びY軸方向を周期方向としたが、基板PのXY平面内の位置計測を所望の精度で行うことが可能であれば、回折格子の周期方向は、これに限定されず、適宜変更が可能である。 In addition, the upward scale 72 and the downward scale 78 are formed with two-dimensional diffraction gratings having the X-axis and Y-axis directions as periodic directions. And Y diffraction gratings having a periodic direction may be individually formed on the scales 72 and 78. In the two-dimensional diffraction grating of this embodiment, the X-axis and Y-axis directions are periodic directions. However, if the position measurement of the substrate P in the XY plane can be performed with desired accuracy, the diffraction grating The periodic direction is not limited to this and can be changed as appropriate.
 また、基板PのZチルト位置情報は、ヘッドベース88に下向きの変位センサを取り付けるとともに、該変位センサを用いてスケールベース84(あるいは上向きスケール72の反射面)を基準にして計測しても良い。また、複数の下向きヘッド74x、74yのうちの少なくとも3つのヘッドを、水平面に平行な方向の位置計測と併せて、鉛直方向の計測が可能な2次元ヘッド(いわゆるXZヘッド、あるいはYZヘッド)とし、該2次元ヘッドにより、上向きスケール72の格子面を用いることにより、基板PのZチルト位置情報を求めても良い。同様に、Y粗動ステージ24のZチルト情報をスケールベース92(あるいは下向きスケール78)を基準にして計測しても良い。XZヘッド、あるいはYZヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のエンコーダヘッドを用いることができる。 Further, the Z tilt position information of the substrate P may be measured with a downward displacement sensor attached to the head base 88 and using the displacement sensor as a reference with respect to the scale base 84 (or the reflective surface of the upward scale 72). . Further, at least three of the plurality of downward heads 74x and 74y are two-dimensional heads (so-called XZ heads or YZ heads) capable of measuring in the vertical direction together with position measurement in the direction parallel to the horizontal plane. The Z tilt position information of the substrate P may be obtained by using the lattice surface of the upward scale 72 by the two-dimensional head. Similarly, the Z tilt information of the Y coarse movement stage 24 may be measured based on the scale base 92 (or the downward scale 78). As the XZ head or YZ head, for example, an encoder head having the same configuration as the displacement measurement sensor head disclosed in US Pat. No. 7,561,280 can be used.
《第2の実施形態》
 次に第2の実施形態に係る液晶露光装置について、図7~図10を用いて説明する。第2の実施形態に係る液晶露光装置の構成は、基板ステージ装置220(計測系を含む)の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
<< Second Embodiment >>
Next, a liquid crystal exposure apparatus according to a second embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the second embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage apparatus 220 (including the measurement system) is different. Only elements that have the same configuration or function as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted as appropriate.
 本第2の実施形態に係る基板ステージ装置220は、第1移動体(ここでは基板ホルダ32)を含む第1の系と、第2移動体(ここではX粗動ステージ222)を含む第2の系とを有している。図9、図10は、それぞれ第2の系、第1の系のみを示す平面図である。 The substrate stage apparatus 220 according to the second embodiment includes a first system including a first moving body (here, the substrate holder 32) and a second system including a second moving body (here, the X coarse movement stage 222). System. 9 and 10 are plan views showing only the second system and the first system, respectively.
 図9に示されるように、X粗動ステージ222は、上記第1の実施形態のY粗動ステージ24(図1参照)と同様に、床F(図8参照)上に設置された一対のベースフレーム224上に機械式のリニアガイド装置(図8参照)を介して、X軸方向に移動自在な状態で載置されている。X粗動ステージ222のX軸方向に関する両端部近傍それぞれには、Y固定子226が取り付けられている。Y固定子226は、Y軸方向に延びる部材から成り、その長手方向両端部近傍には、X可動子228が取り付けられている。各X可動子228は、X固定子230(図8では不図示)と協働してXリニアモータを構成し、X粗動ステージ222は、合計で4つのXリニアモータによってX軸方向に所定の長ストロークで駆動される。X固定子230は、装置本体18(図1参照)とは物理的に分離した状態で床F上に設置されている。 As shown in FIG. 9, the X coarse movement stage 222 has a pair of floors (see FIG. 8) installed on the floor F (see FIG. 8), similarly to the Y coarse movement stage 24 (see FIG. 1) of the first embodiment. It is placed on the base frame 224 so as to be movable in the X-axis direction via a mechanical linear guide device (see FIG. 8). A Y stator 226 is attached in the vicinity of both ends of the X coarse movement stage 222 in the X-axis direction. The Y stator 226 is made of a member extending in the Y-axis direction, and an X mover 228 is attached in the vicinity of both ends in the longitudinal direction. Each X mover 228 constitutes an X linear motor in cooperation with an X stator 230 (not shown in FIG. 8), and the X coarse movement stage 222 is predetermined in the X-axis direction by a total of four X linear motors. It is driven with a long stroke. The X stator 230 is installed on the floor F in a state of being physically separated from the apparatus main body 18 (see FIG. 1).
 図8に示されるように、基板ホルダ32は、Yビームガイド232上にYテーブル234を介して載置されている。Yビームガイド232は、図10に示されるように、Y軸方向に延びる部材から成り、その下面における長手方向両端部近傍には、Xスライド部材236が取り付けられている。各Xスライド部材236は、下架台部18c(図8参照)に固定されたXガイド部材238に対してX軸方向に移動自在な状態で係合している。また、Yビームガイド232の長手方向両端部近傍には、X可動子240が取り付けられている。各X可動子240は、X固定子230(図9参照)と協働してXリニアモータを構成し、Yビームガイド232は、合計で2つのXリニアモータによってX軸方向に所定の長ストロークで駆動される。 As shown in FIG. 8, the substrate holder 32 is placed on the Y beam guide 232 via the Y table 234. As shown in FIG. 10, the Y beam guide 232 is composed of a member extending in the Y-axis direction, and an X slide member 236 is attached to the vicinity of both ends in the longitudinal direction on the lower surface thereof. Each X slide member 236 is engaged with an X guide member 238 fixed to the lower base 18c (see FIG. 8) so as to be movable in the X-axis direction. Further, X movers 240 are attached in the vicinity of both ends in the longitudinal direction of the Y beam guide 232. Each X mover 240 forms an X linear motor in cooperation with the X stator 230 (see FIG. 9), and the Y beam guide 232 has a predetermined long stroke in the X-axis direction by a total of two X linear motors. It is driven by.
 図8に示されるように、Yテーブル234は、断面逆U字状の部材から成り、一対の対向面間に揺動自在に取り付けられたエアベアリング242を介してYビームガイド232が挿入されている。また、Yテーブル234は、Yビームガイド232の上面に不図示のエアベアリングから加圧気体を噴出することにより、Yビームガイド232上に微少な隙間を介して載置されている。これにより、Yテーブル234は、Yビームガイド232に対し、Y軸方向に関しては長ストロークで移動自在、且つθz方向には微少角度で回転自在となっている。また、Yテーブル234は、X軸方向に関しては、上記エアベアリング242によって形成される気体膜の剛性によってYビームガイド232と一体的に移動する。Yテーブル234のX軸方向の両端部近傍それぞれには、Y可動子244が取り付けられている。Y可動子244は、Y固定子226と協働してYリニアモータを構成し、Yテーブル234は、合計で2つのYリニアモータによってY軸方向にYビームガイド232に沿って所定の長ストロークで駆動されるとともに、θz方向に微少駆動される。 As shown in FIG. 8, the Y table 234 is made of a member having an inverted U-shaped cross section, and the Y beam guide 232 is inserted through an air bearing 242 that is swingably mounted between a pair of opposing surfaces. Yes. Further, the Y table 234 is placed on the Y beam guide 232 via a minute gap by ejecting pressurized gas from an air bearing (not shown) on the upper surface of the Y beam guide 232. As a result, the Y table 234 is movable with a long stroke in the Y-axis direction with respect to the Y beam guide 232, and is rotatable with a slight angle in the θz direction. The Y table 234 moves integrally with the Y beam guide 232 in the X-axis direction due to the rigidity of the gas film formed by the air bearing 242. Y movers 244 are attached to the vicinity of both ends of the Y table 234 in the X-axis direction. The Y mover 244 forms a Y linear motor in cooperation with the Y stator 226, and the Y table 234 has a predetermined long stroke along the Y beam guide 232 in the Y axis direction by a total of two Y linear motors. And is slightly driven in the θz direction.
 基板ステージ装置220では、X粗動ステージ222が4つのXリニアモータ(X可動子228、X固定子230)によってX軸方向に駆動されると、X粗動ステージ222に取り付けられた2つのY固定子226もX軸方向に移動する。不図示の主制御装置は、X粗動ステージ222と所定の位置関係が維持されるように、2つのXリニアモータ(X可動子240、X固定子230)によってYビームガイド232をX軸方向に駆動する。これによって、Yビームガイド232と一体的にYテーブル234(すなわち基板ホルダ32)がX軸方向へ移動する。すなわち、X粗動ステージ222は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。また、主制御装置は、上記基板ホルダ32のX軸方向への移動と並行して、あるいは独立に、2つのYリニアモータ(Y可動子244、Y固定子226)を用いて基板ホルダ32をY軸方向、及びθz方向に適宜駆動する。 In the substrate stage device 220, when the X coarse movement stage 222 is driven in the X-axis direction by four X linear motors (X mover 228, X stator 230), two Y attached to the X coarse movement stage 222. The stator 226 also moves in the X axis direction. The main controller (not shown) moves the Y beam guide 232 in the X-axis direction by two X linear motors (X mover 240 and X stator 230) so that a predetermined positional relationship with the X coarse movement stage 222 is maintained. To drive. As a result, the Y table 234 (that is, the substrate holder 32) moves integrally with the Y beam guide 232 in the X-axis direction. That is, the X coarse movement stage 222 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range. The main control device moves the substrate holder 32 by using two Y linear motors (Y mover 244 and Y stator 226) in parallel with or independently of the movement of the substrate holder 32 in the X-axis direction. Drive appropriately in the Y-axis direction and the θz direction.
 次に第2の実施形態に係る基板計測系250について説明する。基板計測系250は、上向きスケール252、及び下向きスケール254それぞれの延びる方向(計測範囲の広い方向)が上記第1の実施形態とはZ軸回りに90°異なっているが、計測系の概念としては、第1移動体(ここでは基板ホルダ32)の位置情報を第2移動体(ここではX粗動ステージ222)を介して、光学定盤18a(図1参照)を基準に求める点において、上記第1の実施形態と概ね同じである。 Next, a substrate measurement system 250 according to the second embodiment will be described. The substrate measurement system 250 is different from the first embodiment in the extending direction of each of the upward scale 252 and the downward scale 254 (in the wide measurement range) by 90 ° around the Z axis. Is that the position information of the first moving body (here, the substrate holder 32) is obtained with reference to the optical surface plate 18a (see FIG. 1) via the second moving body (here, the X coarse movement stage 222). This is substantially the same as the first embodiment.
 すなわち、図7に示されるように、一対のY固定子226それぞれの上面には、Y軸方向に延びる上向きスケール252が固定されている。また、基板ホルダ32のX軸方向に関する両側面それぞれには、Y軸方向に離間した一対のヘッドベース256が固定されている。ヘッドベース256には、上記第1の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yと(図10参照)が、対応する上向きスケール252に対向するように取り付けられている。基板ホルダ32のX粗動ステージ222に対するXY平面内の位置情報は、合計で8つのXリニアエンコーダと、合計で8つのYリニアエンコーダとを用いて主制御装置(不図示)により求められる。 That is, as shown in FIG. 7, an upward scale 252 extending in the Y-axis direction is fixed to the upper surface of each of the pair of Y stators 226. A pair of head bases 256 spaced in the Y-axis direction are fixed to both side surfaces of the substrate holder 32 in the X-axis direction. Similar to the first embodiment, two downward X heads 74x and two downward Y heads 74y (see FIG. 10) are attached to the head base 256 so as to face the corresponding upward scales 252. ing. Position information in the XY plane of the substrate holder 32 with respect to the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of eight X linear encoders and a total of eight Y linear encoders.
 また、Y固定子226のY軸方向の両端部近傍それぞれには、ヘッドベース258が固定されている。ヘッドベース258には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yと(図9参照)が、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール254に対向するように取り付けられている。上向きスケール252と各ヘッド80x、80yとの相対位置関係は、既知である。X粗動ステージ222の光学定盤18aに対するXY平面内の位置情報は、合計で8つのXリニアエンコーダと、合計で8つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。 Further, a head base 258 is fixed in the vicinity of both ends of the Y stator 226 in the Y axis direction. As in the first embodiment, the head base 258 includes two upward X heads 80x and two upward Y heads 80y (see FIG. 9) on the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the corresponding downward scale 254 fixed. The relative positional relationship between the upward scale 252 and each of the heads 80x and 80y is known. Position information in the XY plane with respect to the optical surface plate 18a of the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of eight X linear encoders and a total of eight Y linear encoders.
 なお、本第2の実施形態の基板計測系250では、上向きスケール252がX粗動ステージ222に2つ、下向きスケール254が光学定盤18a(図1参照)に4つ、それぞれ取り付けられているが、各スケール252、254の数及び配置は、これに限られず、適宜増減が可能である。同様に、各スケール252、254に対向する各ヘッド74x、74y、80x、80yの数及び配置も、これに限られず、適宜増減が可能である。後述する第3~第17の実施形態に関しても同様である。 In the substrate measurement system 250 of the second embodiment, two upward scales 252 are attached to the X coarse movement stage 222, and four downward scales 254 are attached to the optical surface plate 18a (see FIG. 1). However, the number and arrangement of the scales 252 and 254 are not limited to this, and can be appropriately increased or decreased. Similarly, the number and arrangement of the heads 74x, 74y, 80x, 80y facing the scales 252, 254 are not limited to this, and can be increased or decreased as appropriate. The same applies to third to seventeenth embodiments to be described later.
《第3の実施形態》
 次に第3の実施形態に係る液晶露光装置について、図11~図14を用いて説明する。第3の実施形態に係る液晶露光装置の構成は、基板ステージ装置320(計測系を含む)の構成が異なる点を除き、上記第2の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第2の実施形態と同じ構成又は機能を有する要素については、上記第2の実施形態と同じ符号を付して適宜その説明を省略する。
<< Third Embodiment >>
Next, a liquid crystal exposure apparatus according to a third embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the third embodiment is substantially the same as that of the second embodiment except that the configuration of the substrate stage device 320 (including the measurement system) is different. Only elements that have the same configuration or function as those of the second embodiment will be denoted by the same reference numerals as those of the second embodiment, and description thereof will be omitted as appropriate.
 第3の実施形態に係る基板ステージ装置320は、上記第2の実施形態と同様に、基板ホルダ32を含む第1の系(図14参照)と、X粗動ステージ222を含む第2の系(図13参照)とを有している。基板ホルダ32、X粗動ステージ222の構成(駆動系を含む)は、上記第2の実施形態と同じであるので、説明を省略する。 Similar to the second embodiment, the substrate stage apparatus 320 according to the third embodiment includes a first system including the substrate holder 32 (see FIG. 14) and a second system including the X coarse movement stage 222. (See FIG. 13). Since the configurations (including the drive system) of the substrate holder 32 and the X coarse movement stage 222 are the same as those in the second embodiment, description thereof is omitted.
 第3の実施形態の基板計測系350も、概念的には、上記第1及び第2の実施形態と同様であり、第1移動体(ここでは基板ホルダ32)の位置情報を、第2移動体(ここではYビームガイド232)を介して光学定盤18a(図1参照)を基準に求める。Yビームガイド232は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。以下、基板計測系350について具体的に説明する。 The substrate measurement system 350 of the third embodiment is conceptually similar to the first and second embodiments, and the position information of the first moving body (here, the substrate holder 32) is transferred to the second movement. It calculates | requires on the basis of the optical surface plate 18a (refer FIG. 1) via a body (here Y-beam guide 232). The Y beam guide 232 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range. Hereinafter, the substrate measurement system 350 will be described in detail.
 図14に示されるように、Yビームガイド232の上面には、上向きスケール352が固定されている。また、Yテーブル234(図14では不図示。図12参照)のY軸方向に関する両側面には、それぞれヘッドベース354が固定されている。各ヘッドベース354には、上記第1及び第2の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、上向きスケール352に対向するように取り付けられている。基板ホルダ32のYビームガイド232に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。 As shown in FIG. 14, an upward scale 352 is fixed to the upper surface of the Y beam guide 232. In addition, head bases 354 are fixed to both side surfaces of the Y table 234 (not shown in FIG. 14; see FIG. 12) in the Y-axis direction. Similarly to the first and second embodiments, two downward X heads 74x and two downward Y heads 74y are attached to each head base 354 so as to face the upward scale 352. Position information in the XY plane with respect to the Y beam guide 232 of the substrate holder 32 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
 また、Yビームガイド232のY軸方向に関する両端部近傍には、それぞれヘッドベース356が固定されている。ヘッドベース356には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール358に対向するように取り付けられている。上向きスケール352とヘッドベース356に取り付けられた各ヘッド80x、80yとの相対位置関係は、既知である。Yビームガイド232の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。本第3の実施形態は、上記第2の実施形態に比べて上向きスケール352、下向きスケール358それぞれの数が少なく、構成が簡単である。 Further, head bases 356 are fixed in the vicinity of both ends of the Y beam guide 232 in the Y-axis direction. Similarly to the first embodiment, the head base 356 has two upward X heads 80x and two upward Y heads 80y fixed to the lower surface of the optical surface plate 18a (see FIG. 1). It is attached to face the downward scale 358. The relative positional relationship between the upward scale 352 and the respective heads 80x and 80y attached to the head base 356 is known. Position information of the Y beam guide 232 in the XY plane with respect to the optical surface plate 18a is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders. Compared to the second embodiment, the third embodiment has a smaller number of each of the upward scale 352 and the downward scale 358 and has a simple configuration.
《第4の実施形態》
 次に第4の実施形態に係る液晶露光装置について、図15~図18を用いて説明する。第4の実施形態に係る液晶露光装置の構成は、基板ステージ装置420(計測系を含む)の構成が異なる点を除き、上記第2の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第2の実施形態と同じ構成又は機能を有する要素については、上記第2の実施形態と同じ符号を付して適宜その説明を省略する。
<< Fourth Embodiment >>
Next, a liquid crystal exposure apparatus according to a fourth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the fourth embodiment is substantially the same as that of the second embodiment except that the configuration of the substrate stage apparatus 420 (including the measurement system) is different. Only elements that have the same configuration or function as those of the second embodiment will be denoted by the same reference numerals as those of the second embodiment, and description thereof will be omitted as appropriate.
 第4の実施形態に係る基板ステージ装置420は、上記第2の実施形態と同様に、基板ホルダ32を含む第1の系(図18参照)と、X粗動ステージ222を含む第2の系(図17参照)とを有している。 As in the second embodiment, the substrate stage apparatus 420 according to the fourth embodiment includes a first system including the substrate holder 32 (see FIG. 18) and a second system including the X coarse movement stage 222. (See FIG. 17).
 図16に示されるように、X粗動ステージ222の下面には、X可動子422が固定されている。X可動子422は、一対のベースフレーム224に一体的に取り付けられたX固定子424と協働して、X粗動ステージ222をX軸方向へ所定の長ストロークで駆動するためのXリニアモータを構成している。X粗動ステージ222のX軸方向に関する両端部近傍それぞれには、XY固定子426が取り付けられている。 16, an X mover 422 is fixed to the lower surface of the X coarse movement stage 222. The X mover 422 cooperates with the X stator 424 integrally attached to the pair of base frames 224 to drive the X coarse movement stage 222 with a predetermined long stroke in the X axis direction. Is configured. An XY stator 426 is attached in the vicinity of both ends of the X coarse movement stage 222 in the X-axis direction.
 Yビームガイド232は、4つの連結部材428(図15参照)によってX粗動ステージ222に対して機械的に連結されている。連結部材428の構成は、上述した連結部材46、54(図2参照)と同様である。これにより、X粗動ステージ222がXリニアモータによってX軸方向に駆動されると、Yビームガイド232がX粗動ステージ222に牽引されることにより、該X粗動ステージ222と一体的にX軸方向へ移動する。 The Y beam guide 232 is mechanically connected to the X coarse movement stage 222 by four connection members 428 (see FIG. 15). The structure of the connecting member 428 is the same as the connecting members 46 and 54 (see FIG. 2) described above. Thus, when the X coarse movement stage 222 is driven in the X-axis direction by the X linear motor, the Y beam guide 232 is pulled by the X coarse movement stage 222, so that the X coarse movement stage 222 is integrated with the X coarse movement stage 222. Move in the axial direction.
 Yビームガイド232上には、Yテーブル430が非接触状態で載置されている。Yテーブル430上には、基板ホルダ32が固定されている。Yテーブル430のX軸方向の両端部近傍それぞれには、XY可動子432が取り付けられている。XY可動子432は、XY固定子426と協働してXY2DOFモータを構成し、Yテーブル430は、合計で2つのXY2DOFモータによってY軸方向に所定の長ストロークで駆動されるとともに、X方向およびθz方向に微少駆動される。また、X粗動ステージ222(及びYビームガイド232)がX軸方向に長ストロークで移動する際、不図示の主制御装置は、合計で2つのXY2DOFモータを用いて、Yテーブル430(すなわち基板ホルダ32)がYビームガイド232とX軸方向に関して所定の位置関係が維持されるように、X軸方向に推力を作用させる。すなわち、X粗動ステージ222は、基板ホルダ32とX軸方向に関する位置が所定範囲内に収まるように移動可能な部材である。なお、上記第2の実施形態と異なり、Yテーブル430は、揺動可能なエアベアリング242(図8参照)を有しておらず、本実施形態のYビームガイド232は、実際にはYテーブル430のY軸方向への移動をガイドしない。 The Y table 430 is placed on the Y beam guide 232 in a non-contact state. A substrate holder 32 is fixed on the Y table 430. An XY mover 432 is attached in the vicinity of both ends of the Y table 430 in the X-axis direction. The XY mover 432 forms an XY2DOF motor in cooperation with the XY stator 426, and the Y table 430 is driven with a predetermined long stroke in the Y-axis direction by a total of two XY2DOF motors. It is slightly driven in the θz direction. Further, when the X coarse movement stage 222 (and the Y beam guide 232) moves with a long stroke in the X-axis direction, the main controller (not shown) uses a total of two XY2DOF motors to generate the Y table 430 (that is, the substrate). The holder 32) applies a thrust force in the X-axis direction so that a predetermined positional relationship with the Y-beam guide 232 is maintained in the X-axis direction. That is, the X coarse movement stage 222 is a member that can move so that the position of the substrate holder 32 and the X-axis direction is within a predetermined range. Unlike the second embodiment, the Y table 430 does not have a swingable air bearing 242 (see FIG. 8), and the Y beam guide 232 of this embodiment is actually a Y table. It does not guide the movement of 430 in the Y-axis direction.
 第4の実施形態の基板計測系450も、概念的には、上記第1~第3の実施形態と同様であり、第1移動体(ここでは基板ホルダ32)の位置情報を、第2移動体(ここではX粗動ステージ222)を介して光学定盤18a(図1参照)を基準に求める。以下、基板計測系450について具体的に説明する。 The substrate measurement system 450 of the fourth embodiment is conceptually similar to the first to third embodiments, and the position information of the first moving body (here, the substrate holder 32) is transferred to the second movement. It is determined based on the optical surface plate 18a (see FIG. 1) via a body (here, X coarse movement stage 222). Hereinafter, the substrate measurement system 450 will be specifically described.
 図17に示されるように、一対のXY固定子426のうち、一方(ここでは-X側)のXY固定子426の上面には、上向きスケール452が固定されている。また、図18に示されるように、基板ホルダ32の-X側の側面には、一対のヘッドベース454がY軸方向に離間した状態で固定されている。各ヘッドベース454には、上記第1~第3の実施形態と同様に、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、上向きスケール452に対向するように取り付けられている(図16参照)。基板ホルダ32のX粗動ステージ222に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。 As shown in FIG. 17, an upward scale 452 is fixed to the upper surface of one (here, −X side) XY stator 426 of the pair of XY stators 426. As shown in FIG. 18, a pair of head bases 454 are fixed to the side surface on the −X side of the substrate holder 32 so as to be separated from each other in the Y-axis direction. Similarly to the first to third embodiments, two downward X heads 74x and two downward Y heads 74y are attached to each head base 454 so as to face the upward scale 452 (see FIG. (See FIG. 16). Position information in the XY plane of the substrate holder 32 with respect to the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
 また、図17に示されるように、-X側のXY固定子426には、Y軸方向に離間して一対のヘッドベース456が固定されている。ヘッドベース456には、上記第1の実施形態と同様に、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール458に対向するように取り付けられている(図15参照)。上向きスケール452とヘッドベース456に取り付けられた各ヘッド80x、80yとの相対位置関係は、既知である。X粗動ステージ222の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。なお、一対のXY固定子426の他方のみに、あるいは両方に上向きスケール452を取り付けても良い。+X側のXY固定子426に上向きスケール452を取り付ける場合には、該上向きスケール452に対応して、ヘッドベース454、456、下向きスケール458を追加的に配置すると良い。 Further, as shown in FIG. 17, a pair of head bases 456 are fixed to the −X side XY stator 426 so as to be separated in the Y-axis direction. Similarly to the first embodiment, two upward X heads 80x and two upward Y heads 80y are fixed to the head base 456 on the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the downward scale 458 (see FIG. 15). The relative positional relationship between the upward scale 452 and the heads 80x and 80y attached to the head base 456 is known. Position information in the XY plane with respect to the optical surface plate 18a of the X coarse movement stage 222 is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders. Note that an upward scale 452 may be attached only to the other of the pair of XY stators 426 or both. When the upward scale 452 is attached to the XY stator 426 on the + X side, the head bases 454 and 456 and the downward scale 458 may be additionally arranged corresponding to the upward scale 452.
《第5の実施形態》
 次に第5の実施形態に係る液晶露光装置について、図19~図22を用いて説明する。第5の実施形態に係る液晶露光装置の構成は、基板計測系550の構成が異なる点を除き、上記第4の実施形態と概ね同じである。また、基板計測系550の構成は、上記第3の実施形態の基板計測系350(図11など参照)と概ね同じである。以下、相違点についてのみ説明し、上記第3又は第4の実施形態と同じ構成又は機能を有する要素については、上記第3又は第4の実施形態と同じ符号を付して適宜その説明を省略する。
<< Fifth Embodiment >>
Next, a liquid crystal exposure apparatus according to a fifth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the fifth embodiment is substantially the same as that of the fourth embodiment except that the configuration of the substrate measurement system 550 is different. The configuration of the substrate measurement system 550 is substantially the same as that of the substrate measurement system 350 (see FIG. 11 and the like) of the third embodiment. Hereinafter, only differences will be described, and elements having the same configurations or functions as those of the third or fourth embodiment will be denoted by the same reference numerals as those of the third or fourth embodiment, and description thereof will be omitted as appropriate. To do.
 第5の実施形態に係る基板ステージ装置520の構成(計測系を除く)は、上記第4の実施形態に係る基板ステージ装置420(図15参照)と実質的に同じである。すなわち、基板ステージ装置520は、基板ホルダ32を含む第1の系(図22参照)と、X粗動ステージ222を含む第2の系(図21参照)とを有し、X粗動ステージ222とYビームガイド232とがX軸方向に一体的に移動する。基板ホルダ32が固定されたYテーブル430は、2つの2DOFモータによってX粗動ステージ222に対してY軸方向に長ストロークで駆動されるとともに、X軸方向及びθz方向に微少駆動される。従来の粗動ステージは計測精度が低いエンコーダの計測結果に基づいて駆動していたが、本実施形態では高精度な2次元エンコーダの計測結果に基づいてX粗動ステージ222を駆動制御することが可能である。よって、従来の微動ステージよりも高精度な位置決めが可能となるが、X粗動ステージ222は位置制御に関して微動ステージ(本実施形態では基板ホルダ32)ほどの応答性があるわけではない。よって、基板ホルダ32のX位置は、スキャン動作中はX粗動ステージ222の位置に関係なく、一定速度で精密な位置決めをしながら移動するように制御したい。よって、応答性の低いラフな位置決め制御しながら移動するX粗動ステージ222に対してX軸方向に相対的に微少駆動されることになる。このとき、X粗動ステージ222が加速してしまうと、上向きスケール452に対するエンコーダ読み取り誤差が生じかねない。よって、X粗動ステージ222は、むしろ緩い位置決め(低い応答性)で動くように制御した方がよい。後述する各実施形態うち、スキャン動作に粗動ステージが駆動する実施形態では、同様に粗動ステージを制御すると良い。 The configuration (excluding the measurement system) of the substrate stage apparatus 520 according to the fifth embodiment is substantially the same as the substrate stage apparatus 420 (see FIG. 15) according to the fourth embodiment. That is, the substrate stage apparatus 520 has a first system (see FIG. 22) including the substrate holder 32 and a second system (see FIG. 21) including the X coarse movement stage 222, and the X coarse movement stage 222. And the Y beam guide 232 move integrally in the X-axis direction. The Y table 430 to which the substrate holder 32 is fixed is driven with a long stroke in the Y-axis direction with respect to the X coarse movement stage 222 by two 2DOF motors, and is slightly driven in the X-axis direction and the θz direction. The conventional coarse movement stage is driven based on the measurement result of the encoder with low measurement accuracy, but in this embodiment, the X coarse movement stage 222 can be driven and controlled based on the measurement result of the high-precision two-dimensional encoder. Is possible. Therefore, although positioning can be performed with higher accuracy than the conventional fine movement stage, the X coarse movement stage 222 is not as responsive as the fine movement stage (the substrate holder 32 in the present embodiment) with respect to position control. Therefore, it is desired to control the X position of the substrate holder 32 so as to move while performing precise positioning at a constant speed regardless of the position of the X coarse movement stage 222 during the scanning operation. Therefore, the X coarse movement stage 222 that moves while performing rough positioning control with low responsiveness is relatively slightly driven in the X-axis direction. At this time, if the X coarse movement stage 222 is accelerated, an encoder reading error with respect to the upward scale 452 may occur. Therefore, it is better to control the X coarse movement stage 222 so that it moves with loose positioning (low responsiveness). Of the embodiments described later, in the embodiment in which the coarse movement stage is driven for the scanning operation, the coarse movement stage may be controlled similarly.
 また、第5の実施形態に係る基板計測系550の構成は、上記第3の実施形態に係る基板計測系350(図11参照)と実質的に同じであり、第1移動体(ここでは基板ホルダ32)の位置情報は、第2移動体(ここではYビームガイド232)を介して光学定盤18a(図1参照)を基準に求められる。具体的には、Yテーブル430(図20参照)に固定された一対のヘッドベース354には、2つの下向きXヘッド74xと、2つの下向きYヘッド74yとが、Yビームガイド232の上面に固定された上向きスケール352に対向するように取り付けられ(それぞれ図22参照)、基板ホルダ32のYビームガイド232に対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。また、Yビームガイド232に固定された一対のヘッドベース356には、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが、光学定盤18a(図1参照)の下面に固定された対応する下向きスケール358に対向するように取り付けられている(図19参照)。Yビームガイド232の光学定盤18aに対するXY平面内の位置情報は、合計で4つのXリニアエンコーダと、合計で4つのYリニアエンコーダを用いて主制御装置(不図示)により求められる。 The configuration of the substrate measurement system 550 according to the fifth embodiment is substantially the same as the substrate measurement system 350 (see FIG. 11) according to the third embodiment, and the first moving body (here, the substrate) The position information of the holder 32) is obtained based on the optical surface plate 18a (see FIG. 1) via the second moving body (here, the Y beam guide 232). Specifically, in the pair of head bases 354 fixed to the Y table 430 (see FIG. 20), two downward X heads 74x and two downward Y heads 74y are fixed to the upper surface of the Y beam guide 232. The position information in the XY plane with respect to the Y beam guide 232 of the substrate holder 32 is a total of four X linear encoders, and a total of four Ys. It is obtained by a main controller (not shown) using a linear encoder. The pair of head bases 356 fixed to the Y beam guide 232 have two upward X heads 80x and two upward Y heads 80y fixed to the lower surface of the optical surface plate 18a (see FIG. 1). It is attached so as to face the corresponding downward scale 358 (see FIG. 19). Position information of the Y beam guide 232 in the XY plane with respect to the optical surface plate 18a is obtained by a main controller (not shown) using a total of four X linear encoders and a total of four Y linear encoders.
《第6の実施形態》
 次に第6の実施形態に係る液晶露光装置について、図23~図27を用いて説明する。第6の実施形態に係る液晶露光装置の構成は、基板ステージ装置620、及びその計測系の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
<< Sixth Embodiment >>
Next, a liquid crystal exposure apparatus according to the sixth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the sixth embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage device 620 and its measurement system is different. Therefore, only the differences will be described below. The elements having the same configurations or functions as those of the first embodiment will be described with the same reference numerals as those of the first embodiment, and description thereof will be omitted as appropriate.
 図23に示されるように、基板ステージ装置620は、第1移動体(ここでは基板ホルダ622)、第2移動体(ここでは計測テーブル624)を含む基板計測系680、基板テーブル626、及びX粗動ステージ628などを備えている。 As shown in FIG. 23, the substrate stage device 620 includes a substrate measurement system 680 including a first moving body (here, a substrate holder 622), a second moving body (here, a measurement table 624), a substrate table 626, and X A coarse movement stage 628 is provided.
 図24に示されるように、基板ホルダ622は、Y軸方向に延びる一対の部材とX軸方向に延びる一対の部材とを組み合わせた平面視矩形の枠状(額縁状)の部材であって、基板Pは、基板ホルダ622の開口内に配置される。基板ホルダ622の内壁面からは、4つの吸着パッド630が突き出しており、基板Pは、これらの吸着パッド630上に載置される。各吸着パッド630は、基板Pの下面における外周縁部に設定された非露光領域(本実施形態では、4隅部近傍)を吸着保持する。 As shown in FIG. 24, the substrate holder 622 is a frame-like (frame-like) member having a rectangular shape in plan view, which is a combination of a pair of members extending in the Y-axis direction and a pair of members extending in the X-axis direction. The substrate P is disposed in the opening of the substrate holder 622. Four suction pads 630 protrude from the inner wall surface of the substrate holder 622, and the substrate P is placed on these suction pads 630. Each suction pad 630 sucks and holds a non-exposed area (in the present embodiment, near the four corners) set at the outer peripheral edge of the lower surface of the substrate P.
 基板Pのうち、中央部を含む露光領域(外周縁部以外の領域)は、図26に示されるように、基板テーブル626によって下方から非接触支持される。上記第1~第5の実施形態における基板ホルダ32(図2など参照)は、基板Pを吸着保持することによって平面矯正を行ったのに対し、本第6の実施形態に係る基板テーブル626は、基板Pの下面に対する加圧気体の噴出と、基板Pと基板テーブル626上面との間の気体の吸引を並行して行うことによって、基板Pの平面矯正を非接触状態で行う。また、基板ホルダ622と基板テーブル626とは、物理的に分離して配置されている。従って、基板ホルダ622に保持された基板Pは、該基板ホルダ622と一体的に基板テーブル626に対してXY平面内で相対移動可能な状態となっている。基板テーブル626の下面には、図23に示されるように、上記第1の実施形態と同様にステージ本体632が固定されている。 In the substrate P, the exposure region including the central portion (region other than the outer peripheral edge) is non-contact supported from below by the substrate table 626 as shown in FIG. The substrate holder 32 (see FIG. 2 and the like) in the first to fifth embodiments performs flattening by sucking and holding the substrate P, whereas the substrate table 626 according to the sixth embodiment is The flattening of the substrate P is performed in a non-contact state by performing the ejection of the pressurized gas to the lower surface of the substrate P and the suction of the gas between the substrate P and the upper surface of the substrate table 626 in parallel. The substrate holder 622 and the substrate table 626 are physically separated from each other. Therefore, the substrate P held by the substrate holder 622 can move relative to the substrate table 626 in the XY plane integrally with the substrate holder 622. As shown in FIG. 23, a stage main body 632 is fixed to the lower surface of the substrate table 626 as in the first embodiment.
 X粗動ステージ628は、基板テーブル626をX軸方向に長ストロークで移動させるための部材であり、床F上に下架台部18cと物理的に分離された状態で設置された一対のベースフレーム634上に、機械的なリニアガイド装置636を介してX軸方向に移動自在な状態で載置されている。X粗動ステージ628は、不図示のアクチュエータ(リニアモータ、あるいはボールねじ装置など)によって、一対のベースフレーム634上でX軸方向に長ストロークで駆動される。 The X coarse movement stage 628 is a member for moving the substrate table 626 with a long stroke in the X-axis direction. It is placed on 634 in a state of being movable in the X-axis direction via a mechanical linear guide device 636. The X coarse movement stage 628 is driven with a long stroke in the X-axis direction on a pair of base frames 634 by an actuator (not shown) (such as a linear motor or a ball screw device).
 X粗動ステージ628のX軸方向に関する両端部近傍には、Y固定子638が固定されている(図23では一方は不図示)。Y固定子638は、Y可動子640と協働してYリニアモータを構成している。Y可動子640は、Y固定子638がX軸方向に移動すると、一体的にX軸方向に移動するように機械的に拘束されている。Y可動子640には、基板ホルダ622に取り付けられた可動子642(図24参照)と協働してXY2DOFモータを構成する固定子644が取り付けられている。 In the vicinity of both ends of the X coarse movement stage 628 in the X-axis direction, Y stators 638 are fixed (one is not shown in FIG. 23). The Y stator 638 forms a Y linear motor in cooperation with the Y mover 640. The Y mover 640 is mechanically constrained to move integrally in the X axis direction when the Y stator 638 moves in the X axis direction. A stator 644 constituting an XY2DOF motor is attached to the Y mover 640 in cooperation with a mover 642 (see FIG. 24) attached to the substrate holder 622.
 図25に示されるように、基板テーブル626は、ステージ本体632(図25では不図示。図23参照)を介して、X粗動ステージ628(図25では不図示)に対して(図25ではY固定子638に対して)、複数の連結部材646を介して機械的に連結されている。連結部材646の構成は、上述した連結部材46、54(図2参照)と同様である。これにより、X粗動ステージ628がX軸方向に長ストロークで移動すると、基板テーブル626がX粗動ステージ628に牽引されることにより、該X粗動ステージ628と一体的にX軸方向へ移動する。上記第1~第5の実施形態では、基板ホルダ32が、投影光学系16に対してX軸、及びY軸方向に長ストロークで移動する(図5など参照)のに対し、本第6の実施形態の基板テーブル626は、X軸方向にのみ長ストロークで移動可能に構成され、Y軸方向には移動不可となっている。なお、図25は、理解を容易にするため、図23と異なり、Y固定子638、Y可動子640、固定子644が平面的(同一高さ位置)に配置されているが、Y固定子638の高さ位置を基板ホルダ622と同等にすることによって、実際に図25に示されるような配置とすることが可能である。 As shown in FIG. 25, the substrate table 626 passes through a stage main body 632 (not shown in FIG. 25; see FIG. 23) with respect to the X coarse movement stage 628 (not shown in FIG. 25) (in FIG. 25). And mechanically connected via a plurality of connecting members 646. The structure of the connecting member 646 is the same as the connecting members 46 and 54 (see FIG. 2) described above. As a result, when the X coarse movement stage 628 moves in the X axis direction with a long stroke, the substrate table 626 is pulled by the X coarse movement stage 628, so that it moves integrally with the X coarse movement stage 628 in the X axis direction. To do. In the first to fifth embodiments, the substrate holder 32 moves with a long stroke in the X-axis and Y-axis directions with respect to the projection optical system 16 (see FIG. 5 and the like). The substrate table 626 of the embodiment is configured to be movable with a long stroke only in the X-axis direction, and is not movable in the Y-axis direction. 25, in order to facilitate understanding, unlike FIG. 23, the Y stator 638, the Y movable element 640, and the stator 644 are arranged in a plane (at the same height position). By making the height position of 638 equivalent to that of the substrate holder 622, an arrangement as shown in FIG.
 図23に戻り、ステージ本体632は、上記第1実施形態と同様の疑似球面軸受装置(図23ではY可動子640などの紙面奥側に隠れて不図示)を介して、X粗動ステージ628の中央部に形成された開口部(不図示)内に配置された重量キャンセル装置42によって下方から支持されている。重量キャンセル装置42の構成は、上記第1の実施形態と同様であり、X粗動ステージ628に不図示の連結部材を介して連結されており、X粗動ステージ628と一体的にX軸方向にのみ長ストロークで移動する。重量キャンセル装置42は、Xガイド648上に載置されている。本実施形態の重量キャンセル装置42は、X軸方向にのみ移動する構成であるため、上記第1の実施形態におけるYステップガイド44(図2参照)と異なり、Xガイド648は、下架台部18cに固定されている。ステージ本体632が複数のリニアコイルモータ(図23ではY固定子638の紙面奥側に隠れている)により、X粗動ステージ628に対してZ軸、θx、θyの各方向に微少駆動される点は、上記第1の実施形態と同様である。 Returning to FIG. 23, the stage main body 632 is connected to the X coarse movement stage 628 via a pseudo spherical bearing device similar to that in the first embodiment (in FIG. 23, hidden behind the paper surface such as the Y mover 640 and the like). Is supported from below by a weight canceling device 42 disposed in an opening (not shown) formed in the central portion of the. The configuration of the weight canceling device 42 is the same as that of the first embodiment, and is connected to the X coarse movement stage 628 via a connecting member (not shown), and integrally with the X coarse movement stage 628 in the X-axis direction. Move with a long stroke only. The weight cancellation device 42 is placed on the X guide 648. Since the weight cancellation device 42 of the present embodiment is configured to move only in the X-axis direction, unlike the Y step guide 44 (see FIG. 2) in the first embodiment, the X guide 648 includes the lower base 18c. It is fixed to. The stage body 632 is slightly driven in the Z axis, θx, and θy directions with respect to the X coarse movement stage 628 by a plurality of linear coil motors (hidden on the back side of the Y stator 638 in FIG. 23). The point is the same as in the first embodiment.
 また、ステージ本体632のY軸方向の両側面には、支持部材650を介して複数のエアガイド652が取り付けられている。エアガイド652は、図25に示されるように、平面視矩形の部材であって、本実施形態では、基板テーブル626の+Y側、及び-Y側のそれぞれに4つ配置されている。4つのエアガイド652によって形成されるガイド面のY軸方向の長さは、基板テーブル626と同等に設定され、該ガイド面の高さ位置は、基板テーブル626の上面と同等に(あるいは幾分低く)設定されている。 Also, a plurality of air guides 652 are attached to both side surfaces of the stage main body 632 in the Y-axis direction via support members 650. As shown in FIG. 25, the air guides 652 are rectangular members in plan view, and in this embodiment, four air guides 652 are arranged on each of the + Y side and the −Y side of the substrate table 626. The length in the Y-axis direction of the guide surface formed by the four air guides 652 is set to be equivalent to that of the substrate table 626, and the height position of the guide surface is equivalent to (or somewhat to the upper surface of the substrate table 626). Low) is set.
 基板ステージ装置620(図23参照)では、スキャン露光時などにX粗動ステージ628がX軸方向に長ストロークで移動すると、該X粗動ステージ628に牽引されて基板テーブル626(及び複数のエアガイド652)が一体的にX軸方向に長ストロークで移動する。また、X粗動ステージ628に固定されたY固定子638がX軸方向に移動することにより、Y可動子640に取り付けられた2DOFモータの固定子644(図25参照)もX軸方向に移動する。不図示の主制御装置は、基板テーブル626と基板ホルダ622とのX軸方向に関する位置が所定範囲内となるように、2DOFモータを制御して、基板ホルダ622にX軸方向の推力を付与する。また、主制御装置は、2DOFモータを制御して、基板ホルダ622を基板テーブル626に対してX軸、Y軸、及びθz方向に適宜微少駆動する。このように、本実施形態において、基板ホルダ622は、いわゆる微動ステージとしての機能を有する。 In the substrate stage device 620 (see FIG. 23), when the X coarse movement stage 628 moves with a long stroke in the X-axis direction during scanning exposure or the like, the substrate table 626 (and a plurality of airs) is pulled by the X coarse movement stage 628. The guide 652) integrally moves with a long stroke in the X-axis direction. Further, when the Y stator 638 fixed to the X coarse movement stage 628 moves in the X axis direction, the 2DOF motor stator 644 (see FIG. 25) attached to the Y mover 640 also moves in the X axis direction. To do. The main controller (not shown) controls the 2DOF motor so that the positions of the substrate table 626 and the substrate holder 622 in the X-axis direction are within a predetermined range, and applies thrust in the X-axis direction to the substrate holder 622. . Further, the main control device controls the 2DOF motor to slightly drive the substrate holder 622 with respect to the substrate table 626 in the X axis, Y axis, and θz directions as appropriate. Thus, in this embodiment, the substrate holder 622 has a function as a so-called fine movement stage.
 これに対し、ショット領域(露光領域)間移動時などに基板PをY軸方向に移動させる必要がある場合には、図27に示されるように、主制御装置は、YリニアモータによってY可動子640をY軸方向に移動させるとともに、2DOFモータを用いて基板ホルダ622にY軸方向の推力を作用させることによって、基板ホルダ622を基板テーブル626に対してY軸方向に移動させる。基板Pのうち、投影光学系16(図23参照)を介してマスクパターンが投影される領域(露光領域)は、常に基板テーブル626によって平面矯正が行われるように、基板テーブル626のY軸方向の寸法が設定されている。各エアガイド652は、基板ホルダ622と基板テーブル626とのY軸方向への相対移動を阻害しない(基板ホルダ622と接触しない)ように配置されている。各エアガイド652は、基板Pの下面に加圧気体を噴出することによって、基板テーブル626と協働して基板Pのうち、基板テーブル626からはみ出した部分を下方から支持する。なお、各エアガイド652は、基板テーブル626と異なり基板Pの平面矯正は行わない。基板ステージ装置620では、図27に示されるように、基板Pが基板テーブル626とエアガイド652とによって支持された状態で、基板テーブル626、及び基板ホルダ622がそれぞれ投影光学系16(図23参照)に対してX軸方向に駆動されることによって、スキャン露光が行われる。なお、エアガイド652は、ステージ本体632と一体的にX軸方向へ駆動しても良いし、駆動しなくても良い。エアガイド652がX軸方向に駆動しない場合は、X軸方向の寸法を基板PのX軸方向の駆動範囲と同程度とすると良い。それにより、基板テーブル626に支持されていない基板の一部領域が支持されないことを防ぐことができる。 On the other hand, when it is necessary to move the substrate P in the Y-axis direction when moving between shot areas (exposure areas), the main controller moves Y by a Y linear motor as shown in FIG. The child 640 is moved in the Y-axis direction, and the substrate holder 622 is moved in the Y-axis direction with respect to the substrate table 626 by applying a thrust in the Y-axis direction to the substrate holder 622 using a 2DOF motor. A region (exposure region) of the substrate P on which the mask pattern is projected via the projection optical system 16 (see FIG. 23) is always corrected by the substrate table 626 in the Y-axis direction of the substrate table 626. The dimensions are set. Each air guide 652 is disposed so as not to hinder relative movement of the substrate holder 622 and the substrate table 626 in the Y-axis direction (not to contact the substrate holder 622). Each air guide 652 supports a portion of the substrate P that protrudes from the substrate table 626 from below by cooperating with the substrate table 626 by jetting pressurized gas to the lower surface of the substrate P. Each air guide 652 does not perform flattening of the substrate P unlike the substrate table 626. In the substrate stage device 620, as shown in FIG. 27, the substrate table 626 and the substrate holder 622 are respectively connected to the projection optical system 16 (see FIG. 23) while the substrate P is supported by the substrate table 626 and the air guide 652. ) In the X-axis direction, scan exposure is performed. The air guide 652 may be driven in the X-axis direction integrally with the stage main body 632 or may not be driven. In the case where the air guide 652 is not driven in the X-axis direction, the dimension in the X-axis direction may be approximately the same as the driving range of the substrate P in the X-axis direction. Thereby, it is possible to prevent a partial region of the substrate not supported by the substrate table 626 from being supported.
 次に第6の実施形態に係る基板計測系680の構成及び動作について説明する。上記第1の実施形態(図2など参照)では、第1移動体(第1実施形態では微動ステージ22)の位置情報を、微動ステージ22を駆動するための部材であるY粗動ステージ24を介して光学定盤18aを基準に求めたのに対し、本第6の実施形態(図23参照)では、第1移動体(ここでは基板ホルダ622)の位置情報を、基板ホルダ622とは独立に配置された第2移動体(ここでは計測テーブル624)を介して光学定盤18aを基準に求める。本第6の実施形態において、計測テーブル624は、投影光学系16の+Y側、及び-Y側にそれぞれX軸方向に離間して2つ(合計で4つ)配置されている(図23、図26など参照)が、計測テーブル624の数、及び配置は、適宜変更が可能であり、これに限定されない。 Next, the configuration and operation of the substrate measurement system 680 according to the sixth embodiment will be described. In the first embodiment (see FIG. 2 and the like), the position information of the first moving body (fine movement stage 22 in the first embodiment) is used as the Y coarse movement stage 24 which is a member for driving the fine movement stage 22. In the sixth embodiment (see FIG. 23), the position information of the first moving body (here, the substrate holder 622) is independent of the substrate holder 622. Is obtained with reference to the optical surface plate 18a via the second moving body (here, the measurement table 624) arranged at the position. In the sixth embodiment, two (four in total) measurement tables 624 are arranged on the + Y side and the −Y side of the projection optical system 16 so as to be separated from each other in the X-axis direction (FIG. 23, FIG. 23). However, the number and arrangement of the measurement tables 624 can be appropriately changed and are not limited to this.
 計測テーブル624は、図23に示されるように、光学定盤18aの下面に吊り下げ状態で固定されたYリニアアクチュエータ682によってY軸方向に所定の(基板ホルダ622のY軸方向への移動可能距離と同等の)ストロークで駆動される。Yリニアアクチュエータ682の種類は特に限定されず、リニアモータ、あるいはボールねじ装置などを用いることができる。 As shown in FIG. 23, the measurement table 624 is movable in the Y axis direction by a Y linear actuator 682 fixed in a suspended state on the lower surface of the optical surface plate 18a (the substrate holder 622 can be moved in the Y axis direction). Driven with stroke (equivalent to distance). The type of the Y linear actuator 682 is not particularly limited, and a linear motor, a ball screw device, or the like can be used.
 上記第1の実施形態のヘッドベース96(図2、図3など参照)と同様に、各計測テーブル624の上面には、図26に示されるように、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが取り付けられている。 Similar to the head base 96 of the first embodiment (see FIG. 2, FIG. 3, etc.), the upper surface of each measurement table 624 has two upward X heads 80x and two heads as shown in FIG. An upward Y head 80y is attached.
 また、図23に示されるように、光学定盤18aの下面には、各計測テーブル624に対応して(すなわち4つの)、Y軸方向に延びる下向きスケール684が、上記第1の実施形態の下向きスケール78(図2、図3など参照)と同様に固定されている(図26参照)。下向きスケール684は、計測テーブル624のY軸方向に関する計測範囲がX軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。本実施形態では、各計測テーブル624が有する2つの上向きXヘッド80xと、対応する下向きスケール684(固定スケール)とによって、2つのXリニアエンコーダシステムが構成されるとともに、各計測テーブル624が有する2つの上向きYヘッド80yと、対応する下向きスケール684(固定スケール)とによって、2つのYリニアエンコーダシステムが構成される。 Further, as shown in FIG. 23, on the lower surface of the optical surface plate 18a, downward scales 684 extending in the Y-axis direction corresponding to the respective measurement tables 624 (that is, four) are provided in the first embodiment. It is fixed in the same manner as the downward scale 78 (see FIG. 2, FIG. 3, etc.) (see FIG. 26). The downward scale 684 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the Y-axis direction of the measurement table 624 is wider (longer) than the measurement range in the X-axis direction. In the present embodiment, two X linear encoder systems are configured by the two upward X heads 80x included in each measurement table 624 and the corresponding downward scale 684 (fixed scale), and each measurement table 624 includes 2 2 Two upward Y heads 80y and a corresponding downward scale 684 (fixed scale) constitute two Y linear encoder systems.
 主制御装置(不図示)は、図27に示されるように、基板ホルダ622をY軸方向に長ストロークで駆動する際、該基板ホルダ622に対するY軸方向の位置が所定範囲内に収まるように、各計測テーブル624のY軸方向の位置を制御する。従って、合計で4つの計測テーブル624は、実質的に同じ動作を行う。なお、4つの計測テーブル624は、それぞれが厳密に同期して移動する必要はなく、基板ホルダ622と厳密に同期して移動する必要もない。主制御装置は、上述した2つのXリニアエンコーダシステム、及び2つのYリニアエンコーダシステムの出力を適宜用いて、各計測テーブル624のX軸方向、Y軸方向、及びθz方向の位置情報を独立して求める。 As shown in FIG. 27, the main control device (not shown) drives the substrate holder 622 with a long stroke in the Y-axis direction so that the position in the Y-axis direction with respect to the substrate holder 622 is within a predetermined range. The position of each measurement table 624 in the Y-axis direction is controlled. Therefore, the four measurement tables 624 in total perform substantially the same operation. Note that the four measurement tables 624 do not need to move in strict synchronization with each other, and do not need to move in strict synchronization with the substrate holder 622. The main controller independently uses the outputs of the two X linear encoder systems and the two Y linear encoder systems described above to independently position information of each measurement table 624 in the X axis direction, the Y axis direction, and the θz direction. Ask.
 図26に戻り、+Y側の2つの計測テーブル624の下面には、X軸方向に延びる下向きスケール686が取り付けられている(図23参照)。すなわち、2つの計測テーブル624が、協働して下向きスケール686を吊り下げ支持している。-Y側の2つの計測テーブル624の下面にも、同様にX軸方向に延びる下向きスケール686が取り付けられている。下向きスケール686は、基板ホルダ622のX軸方向に関する計測範囲がY軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。計測テーブル624に固定された各上向きヘッド80x、80yと、下向きスケール686との相対位置関係は、既知である。 26, a downward scale 686 extending in the X-axis direction is attached to the lower surfaces of the two measurement tables 624 on the + Y side (see FIG. 23). That is, the two measurement tables 624 cooperate to support the downward scale 686 in a suspended manner. Similarly, downward scales 686 extending in the X-axis direction are attached to the lower surfaces of the two measurement tables 624 on the −Y side. The downward scale 686 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the X-axis direction of the substrate holder 622 is wider (longer) than the measurement range in the Y-axis direction. The relative positional relationship between the upward heads 80x and 80y fixed to the measurement table 624 and the downward scale 686 is known.
 図24に示されるように、基板ホルダ622の上面には、合計で2つの下向きスケール684(図26参照)に対応して、2つのヘッドベース688が固定されている。ヘッドベース688は、基板ホルダ622に基板Pが保持された状態で、基板Pの+Y側、-Y側それぞれに基板Pの中央部を挟んで配置されている。ヘッドベース688の上面には、2つの上向きXヘッド80xと、2つの上向きYヘッド80yとが取り付けられている。 24, two head bases 688 are fixed on the upper surface of the substrate holder 622 corresponding to the two downward scales 684 (see FIG. 26) in total. The head base 688 is disposed with the central portion of the substrate P sandwiched between the + Y side and the −Y side of the substrate P in a state where the substrate P is held by the substrate holder 622. Two upward X heads 80 x and two upward Y heads 80 y are attached to the upper surface of the head base 688.
 上述したように、基板ホルダ622と各計測テーブル624(すなわち2つの下向きスケール686)とは、Y軸方向の位置が所定範囲内に収まるように位置制御される。具体的には、各計測テーブル624は、基板ホルダ622に取り付けられた各ヘッド80x、80yからの計測ビームが、下向きスケール686の格子面から外れないようにY軸方向の位置が制御される。すなわち、基板ホルダ622と各計測テーブル624とは、ヘッドベース688と下向きスケール686との対向状態が常に保たれるように、同方向に概ね同速度で移動する。 As described above, the position of the substrate holder 622 and each measurement table 624 (that is, the two downward scales 686) are controlled so that the position in the Y-axis direction is within a predetermined range. Specifically, the position of each measurement table 624 in the Y-axis direction is controlled so that the measurement beams from the heads 80x and 80y attached to the substrate holder 622 do not deviate from the lattice plane of the downward scale 686. That is, the substrate holder 622 and each measurement table 624 move in the same direction at substantially the same speed so that the facing state of the head base 688 and the downward scale 686 is always maintained.
 このように、本第6の実施形態では、基板ホルダ622が有する4つの上向きXヘッド80xと、対応する下向きスケール686(可動スケール)とによって、4つのXリニアエンコーダシステムが構成されるとともに、基板ホルダ622が有する4つの上向きYヘッド80yと、対応する下向きスケール686(可動スケール)とによって、4つのYリニアエンコーダシステムが構成される。主制御装置(不図示)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダの出力に基づいて、合計で4つの計測テーブル624に対する、基板ホルダ622のXY平面内の位置情報を求める。主制御装置は、基板ホルダ622の各計測テーブル624に対する位置情報(第1情報)、各計測テーブル624の光学定盤18aに対する位置情報(第2情報)、及び各計測テーブル624における上向きヘッド80x、80yと下向きスケール686との位置情報(第3情報)に基づいて、基板ホルダ622(基板P)の位置情報を光学定盤18aを基準に求める。 Thus, in the sixth embodiment, four X linear encoder systems are configured by the four upward X heads 80x of the substrate holder 622 and the corresponding downward scale 686 (movable scale), and the substrate The four upward Y heads 80y included in the holder 622 and the corresponding downward scale 686 (movable scale) constitute a four Y linear encoder system. Based on the outputs of the four X linear encoder systems and the four Y linear encoders, the main controller (not shown) obtains positional information of the substrate holder 622 in the XY plane with respect to the four measurement tables 624 in total. . The main control device includes position information (first information) with respect to each measurement table 624 of the substrate holder 622, position information (second information) with respect to the optical surface plate 18a of each measurement table 624, and an upward head 80x in each measurement table 624, Based on the position information (third information) between 80y and the downward scale 686, the position information of the substrate holder 622 (substrate P) is obtained with reference to the optical surface plate 18a.
《第7の実施形態》
 次に第7の実施形態に係る液晶露光装置について、図28~図31を用いて説明する。第7の実施形態に係る液晶露光装置の構成は、基板ステージ装置720、及びその計測系の構成が異なる点を除き、上記第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6の実施形態と同じ構成又は機能を有する要素については、上記第6の実施形態と同じ符号を付して適宜その説明を省略する。
<< Seventh Embodiment >>
Next, a liquid crystal exposure apparatus according to the seventh embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the seventh embodiment is substantially the same as that of the sixth embodiment except that the configuration of the substrate stage device 720 and its measurement system is different. The elements having the same configurations or functions as those of the sixth embodiment will be described with the same reference numerals as those of the sixth embodiment, and description thereof will be omitted as appropriate.
 本第7の実施形態においても、基板ステージ装置720は、第1移動体(ここでは一対の基板ホルダ722)、及び第2移動体(ここでは計測テーブル624)を含む基板計測系780などを備えている。 Also in the seventh embodiment, the substrate stage device 720 includes a substrate measuring system 780 including a first moving body (here, a pair of substrate holders 722), a second moving body (here, a measurement table 624), and the like. ing.
 上記第6の実施形態(図26など参照)において、基板ホルダ622は、基板Pの外周全体を囲む矩形の枠状に形成されたのに対し、本第7の実施形態に係る一対の基板ホルダ722は、互いに物理的に分離されており、一方の基板ホルダ722が基板Pの+X側の端部近傍を吸着保持するとともに、他方の基板ホルダ722が基板Pの-X側の端部近傍を吸着保持する点が異なる。基板テーブル626の構成、及び機能、並びに基板テーブル626を駆動するための駆動系(X粗動ステージ628などを含む)に関しては、上記第6の実施形態と同じであるので、説明を省略する。 In the sixth embodiment (see FIG. 26 and the like), the substrate holder 622 is formed in a rectangular frame shape surrounding the entire outer periphery of the substrate P, whereas a pair of substrate holders according to the seventh embodiment. 722 are physically separated from each other, and one substrate holder 722 sucks and holds the vicinity of the + X side end of the substrate P, and the other substrate holder 722 closes the −X side end of the substrate P. It differs in the point of adsorption holding. The configuration and function of the substrate table 626 and the drive system (including the X coarse movement stage 628) for driving the substrate table 626 are the same as those in the sixth embodiment, and a description thereof will be omitted.
 図29に示されるように、各基板ホルダ722は、基板PのY軸方向に関する中央部を下面から吸着保持する吸着パッド726を有している。なお、-X側の基板ホルダ722は、上面に計測プレート728が取り付けられていることから、+X側の基板ホルダ722に比べてY軸方向に関する長さが長く設定されているが、基板Pを保持する機能、及び基板Pの位置制御動作等に関しては、一対の基板ホルダ722で共通しているため、本実施形態では、便宜上一対の基板ホルダ722に共通の符号を付して説明する。計測プレート728には、投影光学系16(図1参照)の光学特性(スケーリング、シフト、ローテーション等)に関するキャリブレーションなどに用いられる指標が形成されている。 As shown in FIG. 29, each substrate holder 722 has a suction pad 726 that sucks and holds the central portion of the substrate P in the Y-axis direction from the lower surface. Note that the -X side substrate holder 722 has a measurement plate 728 attached to the upper surface, and therefore the length in the Y-axis direction is set longer than the + X side substrate holder 722. Since the holding function, the position control operation of the substrate P, and the like are common to the pair of substrate holders 722, in this embodiment, the pair of substrate holders 722 will be described with the same reference numerals for convenience. On the measurement plate 728, an index used for calibration or the like related to optical characteristics (scaling, shift, rotation, etc.) of the projection optical system 16 (see FIG. 1) is formed.
 各基板ホルダ722は、Y可動子640が有する固定子730(それぞれ図30参照)と、各基板ホルダ722が有する可動子732(それぞれ図29参照)とにより構成される3DOFモータによって、対応するY可動子640に対してX、Y、及びθz方向に微少駆動される。本実施形態では、3DOFモータとして、2つのXリニアモータと1つのYリニアモータとが組み合わされたものが用いられているが、3DOFモータの構成は、特に限定されず、適宜変更が可能である。本第7の実施形態において、各基板ホルダ722は、互いに3DOFモータによって独立に駆動されるが、基板Pの動作自体は、上記第6の実施形態と同様である。 Each substrate holder 722 is made up of a corresponding Y by a 3DOF motor composed of a stator 730 (refer to FIG. 30) included in the Y mover 640 and a mover 732 (refer to FIG. 29) included in each substrate holder 722, respectively. The mover 640 is slightly driven in the X, Y, and θz directions. In the present embodiment, a combination of two X linear motors and one Y linear motor is used as the 3DOF motor, but the configuration of the 3DOF motor is not particularly limited and can be changed as appropriate. . In the seventh embodiment, each substrate holder 722 is independently driven by a 3DOF motor, but the operation of the substrate P itself is the same as in the sixth embodiment.
 図28に戻り、各基板ホルダ722は、Y軸方向に延びるエアガイド734によって下方から非接触支持されている(-X側の基板ホルダ722に関しては図31参照)。エアガイド734の上面の高さ位置は、基板テーブル626、及びエアガイド652の上面の高さ位置よりも低く設定されている。エアガイド734の長さは、基板ホルダ722のY軸方向の移動可能距離と同等に(あるいは幾分長く)設定されている。エアガイド734も、エアガイド652と同様にステージ本体632に固定されており、該ステージ本体632と一体的にX軸方向に長ストロークで移動する。なお、エアガイド734は、上記第6の実施形態の基板ステージ装置620に適用しても良い。 28, each substrate holder 722 is supported in a non-contact manner from below by an air guide 734 extending in the Y-axis direction (refer to FIG. 31 for the substrate holder 722 on the −X side). The height position of the upper surface of the air guide 734 is set lower than the height position of the upper surface of the substrate table 626 and the air guide 652. The length of the air guide 734 is set to be equal to (or somewhat longer than) the movable distance of the substrate holder 722 in the Y-axis direction. The air guide 734 is also fixed to the stage main body 632 similarly to the air guide 652, and moves with a long stroke in the X-axis direction integrally with the stage main body 632. Note that the air guide 734 may be applied to the substrate stage device 620 of the sixth embodiment.
 次に第7の実施形態に係る基板計測系780について説明する。本第7の実施形態に係る基板計測系780は、基板P側のヘッドの配置、計測テーブル624の数及び配置などが異なる点を除き、概念的には、上記第6の実施形態に係る基板計測系680(図26参照)と概ね同じである。すなわち、基板計測系780では、第1移動体(ここでは各基板ホルダ722)の位置情報を、計測テーブル624を介して光学定盤18aを基準に求める。以下、具体的に説明する。 Next, a substrate measurement system 780 according to the seventh embodiment will be described. The substrate measurement system 780 according to the seventh embodiment is conceptually the substrate according to the sixth embodiment except that the arrangement of the heads on the substrate P side, the number and arrangement of the measurement tables 624 are different. This is almost the same as the measurement system 680 (see FIG. 26). That is, the substrate measurement system 780 obtains the position information of the first moving body (here, each substrate holder 722) with reference to the optical surface plate 18a via the measurement table 624. This will be specifically described below.
 基板計測系780が有する計測テーブル624の構成は、配置を除き上記第6の実施形態と同じである。上記第6の実施形態では、図23に示されるように、計測テーブル624は、投影光学系16の+Y側、及び-Y側に配置されたのに対し、本第7の実施形態に係る計測テーブル624は、図28に示されるように、Y軸方向に関する位置が投影光学系16と重複しており、一方の計測テーブル624(図28参照)が投影光学系16の+X側、他方の計測テーブル624(図28では不図示)が投影光学系16の-X側に配置されている(図31参照)。本第7の実施形態においても、上記第6の実施形態と同様に、計測テーブル624は、Yリニアアクチュエータ682によってY軸方向に所定のストロークで駆動される。また、各計測テーブル624のXY平面内の位置情報は、計測テーブル624に取り付けられた上向きヘッド80x、80y(図31参照)と、光学定盤18aの下面に固定された対応する下向きスケール684とによって構成されるエンコーダシステムを用いて不図示の主制御装置によりそれぞれ独立に求められる。 The configuration of the measurement table 624 included in the substrate measurement system 780 is the same as that of the sixth embodiment except for the arrangement. In the sixth embodiment, as shown in FIG. 23, the measurement table 624 is arranged on the + Y side and the −Y side of the projection optical system 16, whereas the measurement table according to the seventh embodiment is used. As shown in FIG. 28, the position of the table 624 in the Y-axis direction overlaps with the projection optical system 16, and one measurement table 624 (see FIG. 28) is the + X side of the projection optical system 16 and the other measurement. A table 624 (not shown in FIG. 28) is arranged on the −X side of the projection optical system 16 (see FIG. 31). Also in the seventh embodiment, as in the sixth embodiment, the measurement table 624 is driven by the Y linear actuator 682 with a predetermined stroke in the Y-axis direction. The position information of each measurement table 624 in the XY plane includes upward heads 80x and 80y (see FIG. 31) attached to the measurement table 624, and a corresponding downward scale 684 fixed to the lower surface of the optical surface plate 18a. Are independently obtained by a main controller (not shown) using the encoder system configured by the above.
 2つの計測テーブル624の下面には、それぞれ下向きスケール782が固定されている(図31参照)。すなわち、上記第6の実施形態(図27参照)では、2つの計測テーブル624によって1つの下向きスケール686が吊り下げ支持されていたのに対し、本第7の実施形態では、1つの計測テーブル624に1つの下向きスケール782が吊り下げ支持されている。下向きスケール782は、各基板ホルダ722のX軸方向に関する計測範囲がY軸方向に関する計測範囲よりも広く(長く)なるように、その下面に2次元回折格子を有している。計測テーブル624に固定された各上向きヘッド80x、80yと、下向きスケール782との相対位置関係は、既知である。 A downward scale 782 is fixed to the lower surfaces of the two measurement tables 624 (see FIG. 31). That is, in the sixth embodiment (see FIG. 27), one downward scale 686 is suspended and supported by two measurement tables 624, whereas in the seventh embodiment, one measurement table 624 is supported. One downward scale 782 is suspended and supported. The downward scale 782 has a two-dimensional diffraction grating on its lower surface so that the measurement range in the X-axis direction of each substrate holder 722 is wider (longer) than the measurement range in the Y-axis direction. The relative positional relationship between the upward heads 80x and 80y fixed to the measurement table 624 and the downward scale 782 is known.
 また、各基板ホルダ722には、ヘッドベース784が固定されている。各ヘッドベース784の上面には、2つの上向きXヘッド80xと、2つの上向きYヘッド80y(それぞれ図29参照)とが、対応する下向きスケール782に対向するように取り付けられている(図31参照)。本第7の実施形態における基板Pの位置制御時における基板Pの位置計測動作に関しては、上記第6の実施形態と概ね同じであるので、説明を省略する。 Further, a head base 784 is fixed to each substrate holder 722. On the upper surface of each head base 784, two upward X heads 80x and two upward Y heads 80y (see FIG. 29, respectively) are attached so as to face the corresponding downward scale 782 (see FIG. 31). ). Since the position measurement operation of the substrate P during the position control of the substrate P in the seventh embodiment is substantially the same as in the sixth embodiment, the description thereof is omitted.
《第8の実施形態》
 次に第8の実施形態に係る液晶露光装置について、図32~図35を用いて説明する。第8の実施形態に係る液晶露光装置の構成は、基板ステージ装置820、及びその計測系の構成が異なる点を除き、上記第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6の実施形態と同じ構成又は機能を有する要素については、上記第6の実施形態と同じ符号を付して適宜その説明を省略する。
<< Eighth Embodiment >>
Next, a liquid crystal exposure apparatus according to the eighth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the eighth embodiment is substantially the same as that of the sixth embodiment except that the configuration of the substrate stage device 820 and its measurement system is different. The elements having the same configurations or functions as those of the sixth embodiment will be described with the same reference numerals as those of the sixth embodiment, and description thereof will be omitted as appropriate.
 本第8の実施形態の基板ステージ装置820は、第1移動体(ここでは基板ホルダ822)、第2移動体(ここではX粗動ステージ628)、及び基板計測系880などを備えている。 The substrate stage apparatus 820 of the eighth embodiment includes a first moving body (here, the substrate holder 822), a second moving body (here, the X coarse movement stage 628), a substrate measurement system 880, and the like.
 本第8の実施形態において、基板Pを保持する基板ホルダ822は、上記第6の実施形態(図26など参照)と同様に、基板Pの外周全体を囲む矩形の枠状に形成されている。基板ホルダ822、基板テーブル626を駆動するための駆動系に関しては、上記第6の実施形態と同じであるので、説明を省略する。なお、本第8の実施形態の基板ステージ装置820は、上記第7の実施形態(図30参照)と同様に、基板ホルダ822を下方から非接触支持するエアガイド734を有している。 In the eighth embodiment, the substrate holder 822 for holding the substrate P is formed in a rectangular frame shape surrounding the entire outer periphery of the substrate P, as in the sixth embodiment (see FIG. 26 and the like). . Since the drive system for driving the substrate holder 822 and the substrate table 626 is the same as that of the sixth embodiment, description thereof is omitted. Note that the substrate stage apparatus 820 of the eighth embodiment includes an air guide 734 that supports the substrate holder 822 from the lower side in a non-contact manner, as in the seventh embodiment (see FIG. 30).
 次に基板計測系880について説明する。上記第6の実施形態(図23、図26など参照)において、基板ホルダ622の位置情報は、計測テーブル624を介して光学定盤18aを基準に求められたのに対し、本第8の実施形態において、基板ホルダ822の位置情報は、基板テーブル626をX軸方向へ駆動するためのX粗動ステージ628を介して光学定盤18aを基準に求められる。この点に関しては、基板計測系880は、上記第2の実施形態に係る基板計測系250(図8など参照)と、概念的には共通している。なお、本第8の実施形態におけるX粗動ステージ628は、一対のベースフレーム634に対応して配置されたX軸方向に延びる一対の平板状(帯状)の部材から成る(図34参照)が、機能的に同じであることから、便宜上第6の実施形態のX粗動ステージ628と同じ符号を付して説明する。 Next, the substrate measurement system 880 will be described. In the sixth embodiment (see FIG. 23, FIG. 26, etc.), the position information of the substrate holder 622 is obtained based on the optical surface plate 18a via the measurement table 624, whereas the eighth embodiment. In the embodiment, the position information of the substrate holder 822 is obtained with reference to the optical surface plate 18a via the X coarse movement stage 628 for driving the substrate table 626 in the X-axis direction. In this regard, the substrate measurement system 880 is conceptually common with the substrate measurement system 250 (see FIG. 8 and the like) according to the second embodiment. Note that the X coarse movement stage 628 in the eighth embodiment is composed of a pair of flat plate (strip-shaped) members extending in the X-axis direction and disposed corresponding to the pair of base frames 634 (see FIG. 34). Since they are functionally the same, the same reference numerals as those of the X coarse movement stage 628 of the sixth embodiment are given for convenience.
 図34に示されるように、X粗動ステージ628に固定された一対のY固定子638それぞれの上面には、上記第2の実施形態(図9参照)と同様に、上向きスケール882が固定されている。上向きスケール882の構成及び機能は、上記第2の実施形態の上向きスケール252(図9参照)と同じであるので、ここでは説明を省略する。 As shown in FIG. 34, an upward scale 882 is fixed to the upper surface of each of the pair of Y stators 638 fixed to the X coarse movement stage 628, as in the second embodiment (see FIG. 9). ing. Since the configuration and function of the upward scale 882 are the same as those of the upward scale 252 (see FIG. 9) of the second embodiment, description thereof is omitted here.
 図33に示されるように、基板ホルダ822の+X側、及び-X側の端部近傍には、それぞれY軸方向に離間した一対のヘッドベース884が固定されている。合計で4つのヘッドベース884のそれぞれには、上向きスケール882(図34参照)に対向するように、下向きXヘッド74x、下向きYヘッド74y、及び下向きZヘッド74zが、それぞれ1つ取り付けられている(図33参照)。Xヘッド74x、Yヘッド74yの構成、及び機能は、上記第1の実施形態のXヘッド74x、Yヘッド74y(それぞれ図3など参照)と同じであるので、ここでは説明を省略する。本第8の実施形態では、合計で4つの下向きXヘッド74xと、対応する上向きスケール882とによって、4つのXリニアエンコーダシステム(図35参照)が構成されるとともに、合計で4つの下向きYヘッド74yと、対応する上向きスケール882とによって、4つのYリニアエンコーダシステム(図35参照)が構成されている。主制御装置(不図示)は、上記4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、基板ホルダ822のX軸方向、Y軸方向、及びθz方向の位置情報(第1情報)をX粗動ステージ628を基準に求める。 33, a pair of head bases 884 spaced in the Y-axis direction are fixed near the + X side and −X side ends of the substrate holder 822, respectively. A total of four head bases 884 are each provided with one downward X head 74x, one downward Y head 74y, and one downward Z head 74z so as to face the upward scale 882 (see FIG. 34). (See FIG. 33). Since the configurations and functions of the X head 74x and the Y head 74y are the same as those of the X head 74x and the Y head 74y (see FIG. 3 respectively) of the first embodiment, the description thereof is omitted here. In the eighth embodiment, a total of four downward X heads 74x and a corresponding upward scale 882 constitute four X linear encoder systems (see FIG. 35), and a total of four downward Y heads. 74 Y and the corresponding upward scale 882 constitute four Y linear encoder systems (see FIG. 35). The main control device (not shown) uses the outputs of the four X linear encoder systems and the four Y linear encoder systems as appropriate to position information of the substrate holder 822 in the X axis direction, the Y axis direction, and the θz direction ( First information) is obtained with reference to the X coarse movement stage 628.
 下向きZヘッド74zの構成は、特に限定されないが、公知のレーザ変位センサなどを用いることが可能である。Zヘッド74zは、対応する上向きスケール882の格子面(反射面)を用いて(図35参照)、ヘッドベース884のZ軸方向の変位量を計測する。主制御装置(不図示)は、合計で4つのZヘッド74zの出力に基づいて、基板ホルダ822(すなわち基板P)のX粗動ステージ628に対するZチルト方向の変位量情報を求める。 The configuration of the downward Z head 74z is not particularly limited, but a known laser displacement sensor or the like can be used. The Z head 74z measures the amount of displacement of the head base 884 in the Z-axis direction using the lattice plane (reflecting surface) of the corresponding upward scale 882 (see FIG. 35). The main controller (not shown) obtains displacement information in the Z tilt direction of the substrate holder 822 (that is, the substrate P) with respect to the X coarse movement stage 628 based on the outputs of the four Z heads 74z in total.
 図34に戻り、Y固定子638の+Y側、及び-Y側の端部近傍には、それぞれX軸方向に離間した一対のヘッドベース886が固定されている。合計で8つのヘッドベース886のそれぞれには、上向きXヘッド80x、上向きYヘッド80y、及び上向きZヘッド80zが、それぞれ1つ取り付けられている。Xヘッド80x、Yヘッド80yの構成、及び機能は、上記第1の実施形態のXヘッド80x、Yヘッド80y(それぞれ図3など参照)と同じであるので、ここでは説明を省略する。各ヘッド80x、80y、80zと上述した上向きスケール882との相対位置関係に関する情報(第3情報)は、既知である。 34, a pair of head bases 886 separated in the X-axis direction are fixed near the + Y side and −Y side ends of the Y stator 638, respectively. Each of the eight head bases 886 is attached with one upward X head 80x, upward Y head 80y, and upward Z head 80z. The configurations and functions of the X head 80x and the Y head 80y are the same as those of the X head 80x and the Y head 80y of the first embodiment (see FIG. 3 and the like, respectively), and thus description thereof is omitted here. Information (third information) relating to the relative positional relationship between the heads 80x, 80y, and 80z and the upward scale 882 described above is known.
 光学定盤18a(図32参照)の下面には、上述した一対のヘッドベース884に対応して、1つの下向きスケール888が固定されている。すなわち、図35に示されるように、光学定盤18aの下面には、合計で4つの下向きスケール888が固定されている。下向きスケール888の構成及び機能は、上記第2の実施形態の下向きスケール254(図8参照)と同じであるので、ここでは説明を省略する。本第8の実施形態では、合計で8つの上向きXヘッド80xと、対応する下向きスケール888とによって、8つのXリニアエンコーダシステム(図35参照)が構成されるとともに、合計で8つの上向きYヘッド80yと、対応する下向きスケール888とによって、8つのYリニアエンコーダシステム(図35参照)が構成されている。主制御装置(不図示)は、上記8つのXリニアエンコーダシステム、及び8つのYリニアエンコーダシステムの出力を適宜用いて、X粗動ステージ628のX軸方向、Y軸方向、及びθz方向の位置情報(第2情報)を光学定盤18aを基準に求める。 One downward scale 888 is fixed to the lower surface of the optical surface plate 18a (see FIG. 32) corresponding to the pair of head bases 884 described above. That is, as shown in FIG. 35, a total of four downward scales 888 are fixed to the lower surface of the optical surface plate 18a. Since the configuration and function of the downward scale 888 are the same as the downward scale 254 (see FIG. 8) of the second embodiment, the description thereof is omitted here. In the eighth embodiment, a total of eight upward X heads 80x and a corresponding downward scale 888 constitute eight X linear encoder systems (see FIG. 35), and a total of eight upward Y heads. Eight Y linear encoder systems (see FIG. 35) are configured by 80y and the corresponding downward scale 888. The main control device (not shown) appropriately uses the outputs of the eight X linear encoder systems and the eight Y linear encoder systems to position the X coarse movement stage 628 in the X axis direction, the Y axis direction, and the θz direction. Information (second information) is obtained based on the optical surface plate 18a.
 上向きZヘッド80zとしては、上述した下向きZヘッド74zと同様の変位センサが用いられる。主制御装置(不図示)は、合計で8つのZヘッド74zの出力に基づいて、X粗動ステージ628の光学定盤18aに対するZチルト方向の変位量情報を求める。 As the upward Z head 80z, a displacement sensor similar to the downward Z head 74z described above is used. The main controller (not shown) obtains displacement information in the Z tilt direction with respect to the optical surface plate 18a of the X coarse movement stage 628 based on the outputs of the eight Z heads 74z in total.
 本第8の実施形態では、基板P(基板ホルダ822)の位置情報が、X粗動ステージ628を介して光学定盤18aを基準に(上記第1~第3情報に基づいて)求められるのに加え、基板P(基板ホルダ822)のZチルト方向の位置情報も、X粗動ステージ628を介して光学定盤18aを基準に求められる。 In the eighth embodiment, the position information of the substrate P (substrate holder 822) is obtained based on the optical surface plate 18a via the X coarse movement stage 628 (based on the first to third information). In addition to this, positional information in the Z tilt direction of the substrate P (substrate holder 822) is also obtained with reference to the optical surface plate 18a via the X coarse movement stage 628.
《第9の実施形態》
 次に第9の実施形態に係る液晶露光装置について、図36~図38を用いて説明する。第9の実施形態に係る液晶露光装置の構成は、基板ステージ装置920(図38参照)、及びその計測系の構成が異なる点を除き、上記第8の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第8の実施形態と同じ構成又は機能を有する要素については、上記第8の実施形態と同じ符号を付して適宜その説明を省略する。
<< Ninth embodiment >>
Next, a liquid crystal exposure apparatus according to the ninth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the ninth embodiment is substantially the same as that of the eighth embodiment except that the configuration of the substrate stage device 920 (see FIG. 38) and its measurement system are different. Only the differences will be described, and elements having the same configuration or function as those of the eighth embodiment are denoted by the same reference numerals as those of the eighth embodiment, and description thereof will be omitted as appropriate.
 図38に示されるように、本第9の実施形態に係る基板ステージ装置920は、上記第7の実施形態(図29参照)と同様に、物理的に分離して配置された一対の基板ホルダ922を備えている。一方の基板ホルダ922が基板Pの+X側の端部近傍を保持するとともに、他方の基板ホルダ922が基板Pの-X側の端部近傍を保持する点、及び一対の基板ホルダ922が3DOFモータによってX粗動ステージ628に対して独立に駆動される点も上記第7の実施形態と同様である。 As shown in FIG. 38, the substrate stage apparatus 920 according to the ninth embodiment is a pair of substrate holders that are physically separated from each other as in the seventh embodiment (see FIG. 29). 922. One substrate holder 922 holds the vicinity of the + X side end of the substrate P, the other substrate holder 922 holds the vicinity of the −X side end of the substrate P, and the pair of substrate holders 922 includes a 3DOF motor. Is the same as that in the seventh embodiment in that it is independently driven with respect to the X coarse movement stage 628.
 本第9の実施形態に係る基板計測系980(図38参照)の構成、及び動作は、一対の基板ホルダ922それぞれの位置情報が独立に求められる点を除き、上記第8の実施形態と同じである。すなわち、図36に示されるように、各基板ホルダ922には、Y軸方向に離間した一対のヘッドベース884が固定されている。ヘッドベース884には、Y固定子638の上面に固定された上向きスケール882(それぞれ図37参照)に対向するように(図38参照)、下向きヘッド74x、74y、74zが取り付けられている。X粗動ステージ628の光学定盤18a(図28など参照)を基準とする位置計測系の構成、及び動作は、上記第7の実施形態と同じであるので説明を省略する。 The configuration and operation of the substrate measurement system 980 (see FIG. 38) according to the ninth embodiment are the same as those of the eighth embodiment except that the position information of each of the pair of substrate holders 922 is obtained independently. It is. That is, as shown in FIG. 36, a pair of head bases 884 that are spaced apart in the Y-axis direction are fixed to each substrate holder 922. Downward heads 74x, 74y, and 74z are attached to the head base 884 so as to face an upward scale 882 (see FIG. 37) fixed to the upper surface of the Y stator 638 (see FIG. 37). Since the configuration and operation of the position measurement system based on the optical surface plate 18a (see FIG. 28, etc.) of the X coarse movement stage 628 are the same as those in the seventh embodiment, description thereof will be omitted.
《第10の実施形態》
 次に第10の実施形態に係る液晶露光装置について、図39~図43を用いて説明する。第10の実施形態に係る液晶露光装置の構成は、基板ステージ装置1020(図41など参照)、及びその計測系の構成が異なる点を除き、上記第9の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第9の実施形態と同じ構成又は機能を有する要素については、上記第9の実施形態と同じ符号を付して適宜その説明を省略する。
<< Tenth Embodiment >>
Next, a liquid crystal exposure apparatus according to the tenth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the tenth embodiment is substantially the same as that of the ninth embodiment except that the configuration of the substrate stage apparatus 1020 (see FIG. 41 and the like) and the measurement system thereof are different. Hereinafter, only differences will be described, and elements having the same configuration or function as those of the ninth embodiment are denoted by the same reference numerals as those of the ninth embodiment, and description thereof will be omitted as appropriate.
 上記第9の実施形態(図38参照)において、基板Pは、X軸方向に関する両端部近傍が、それぞれ基板ホルダ922に保持されたのに対し、図39に示されるように、本第10の実施形態において、基板Pは、X軸方向に関する一方側(本実施形態では-X側)の端部近傍のみが基板ホルダ922に吸着保持される点が異なる。基板ホルダ922に関しては、上記第9の実施形態と同じであるので、ここでは説明を省略する。また、本第10の実施形態に係る基板計測系1080(図41参照)の構成、及び動作に関しても、上記第9の実施形態と同じであるので、ここでは説明を省略する。 In the ninth embodiment (see FIG. 38), the substrate P is held by the substrate holder 922 in the vicinity of both ends in the X-axis direction, whereas as shown in FIG. In the embodiment, the substrate P is different in that only the vicinity of an end portion on one side (in this embodiment, −X side) in the X-axis direction is sucked and held by the substrate holder 922. Since the substrate holder 922 is the same as that of the ninth embodiment, description thereof is omitted here. Further, the configuration and operation of the substrate measurement system 1080 (see FIG. 41) according to the tenth embodiment are the same as those in the ninth embodiment, and thus the description thereof is omitted here.
 本第10の実施形態では、基板Pの+X側の端部近傍を保持する部材(上記第9の実施形態における+X側の基板ホルダ922に相当する部材)がないため、図40に示されるように、Y固定子638は、基板テーブル626の-X側にのみ配置されている。このため基板ステージ装置1020では、上記第9の実施形態に係る基板ステージ装置920(図38参照)の比べてベースフレーム1024が短く、全体的にコンパクトである。なお、Y固定子638とエアガイド734とを連結する連結部材1022は、本実施形態では、X軸方向にも剛性を有しており、Y固定子638は、基板テーブル626の押圧、又は牽引(押し引き)が可能となっている。また、基板Pの+X側の端部近傍を保持する部材がないため、基板Pの交換動作を容易に行うことが可能である。なお、図42及び図43に示されるように、重量キャンセル装置42を支持するXガイド648は、下架台部18c上に固定されているが、これに限られず、装置本体18と物理的に分離した状態で床F上に設置しても良い。 In the tenth embodiment, since there is no member that holds the vicinity of the + X side end of the substrate P (a member corresponding to the + X side substrate holder 922 in the ninth embodiment), as shown in FIG. In addition, the Y stator 638 is disposed only on the −X side of the substrate table 626. For this reason, in the substrate stage apparatus 1020, the base frame 1024 is shorter than the substrate stage apparatus 920 (see FIG. 38) according to the ninth embodiment, and the overall structure is compact. In this embodiment, the connecting member 1022 that connects the Y stator 638 and the air guide 734 is also rigid in the X-axis direction. (Push and pull) is possible. Further, since there is no member that holds the vicinity of the + X side end of the substrate P, the replacement operation of the substrate P can be easily performed. As shown in FIGS. 42 and 43, the X guide 648 that supports the weight cancellation device 42 is fixed on the lower base 18c, but is not limited thereto, and is physically separated from the device body 18. You may install on the floor F in the state which carried out.
《第11の実施形態》
 次に第11の実施形態に係る液晶露光装置について、図44~図47を用いて説明する。第11の実施形態に係る液晶露光装置の構成は、基板ステージ装置1120、及びその計測系の構成が異なる点を除き、上記第10の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第10の実施形態と同じ構成又は機能を有する要素については、上記第10の実施形態と同じ符号を付して適宜その説明を省略する。
<< Eleventh Embodiment >>
Next, a liquid crystal exposure apparatus according to the eleventh embodiment will be described with reference to FIGS. Since the configuration of the liquid crystal exposure apparatus according to the eleventh embodiment is substantially the same as that of the tenth embodiment except that the configuration of the substrate stage apparatus 1120 and its measurement system is different, only the differences will be described below. The elements having the same configurations or functions as those in the tenth embodiment will be described with the same reference numerals as those in the tenth embodiment, and description thereof will be omitted as appropriate.
 本第11の実施形態に係る基板ステージ装置1120において、基板Pは、上記第10の実施形態(図41など参照)と同様に、X軸方向に関する一方側(本実施形態では-X側)の端部近傍のみが基板ホルダ1122に保持される(図47参照)。 In the substrate stage apparatus 1120 according to the eleventh embodiment, the substrate P is placed on one side (−X side in the present embodiment) in the X-axis direction, as in the tenth embodiment (see FIG. 41 and the like). Only the vicinity of the end is held by the substrate holder 1122 (see FIG. 47).
 基板ホルダ1122は、図45に示されるように、幅方向(X軸方向)の寸法が、上記第10の実施形態に係る基板ホルダ922(図39参照)に比べて幾分長く設定されている。基板ホルダ1122は、図44に示されるように、エアガイド1124に下方から非接触支持されている。エアガイド1124の構成、及び機能は、上記第7~第10の各実施形態に係るエアガイド734(図30など参照)と概ね同じであるが、基板ホルダ1122に対応して、X軸方向の寸法が幾分長く設定されている点が異なる。 As shown in FIG. 45, the width of the substrate holder 1122 (X-axis direction) is set to be somewhat longer than that of the substrate holder 922 (see FIG. 39) according to the tenth embodiment. . As shown in FIG. 44, the substrate holder 1122 is supported by the air guide 1124 in a non-contact manner from below. The configuration and function of the air guide 1124 are substantially the same as those of the air guide 734 (see FIG. 30 and the like) according to the seventh to tenth embodiments, but in the X-axis direction corresponding to the substrate holder 1122. The difference is that the dimensions are set somewhat longer.
 次に基板計測系1180について説明する。基板計測系1180は、図44に示されるように、基板ホルダ1122の位置情報をX粗動ステージ628を介して光学定盤18aを基準に求めるという点では、上記第10の実施形態(図41参照)と同様であるが、上向きスケール882、及び下向きヘッド74x、74y(図45参照)の配置が異なる。 Next, the substrate measurement system 1180 will be described. As shown in FIG. 44, the substrate measurement system 1180 obtains positional information of the substrate holder 1122 with reference to the optical surface plate 18a via the X coarse movement stage 628, as described in the tenth embodiment (FIG. 41). (See FIG. 45), but the arrangement of the upward scale 882 and the downward heads 74x and 74y (see FIG. 45) is different.
 上向きスケール882は、図44に示されるように、基板ホルダ1122を浮上支持するエアガイド1124に固定されている。エアガイド1124の上面(ガイド面)の高さ位置と上向きスケール882の格子面(被計測面)の高さ位置とは、ほぼ同じに設定されている。エアガイド1124は、ステージ本体632に固定されていることから、上向きスケール882は、基板Pに対してXY平面内の位置が所定範囲内に収まるように移動する。基板ホルダ1122には、下方に開口した凹部が形成されており、該凹部内に各下向きヘッド74x、74y、74z(それぞれ図45参照)がそれぞれ一対、上向きスケール882に対向するように取り付けられている。基板ホルダ1122の位置計測動作に関しては、上記第10の実施形態と同じであるので、説明を省略する。 44, the upward scale 882 is fixed to an air guide 1124 that supports the substrate holder 1122 in a floating manner. The height position of the upper surface (guide surface) of the air guide 1124 and the height position of the lattice surface (measurement surface) of the upward scale 882 are set to be substantially the same. Since the air guide 1124 is fixed to the stage main body 632, the upward scale 882 moves with respect to the substrate P so that the position in the XY plane is within a predetermined range. The substrate holder 1122 is formed with a recessed portion that opens downward, and a pair of downward heads 74x, 74y, and 74z (see FIG. 45) are attached to the recessed portion so as to face the upward scale 882, respectively. Yes. Since the position measuring operation of the substrate holder 1122 is the same as that of the tenth embodiment, the description thereof is omitted.
 また、上記第10の実施形態では、Y固定子638にヘッドベース886(それぞれ図41など参照)が固定されていたのに対し、本第11の実施形態では、図46に示されるように、エアガイド1124にヘッドベース886が固定されている。ヘッドベース886は、エアガイド1124の長手方向の両端部近傍にそれぞれ一対配置されている。光学定盤18a(図44参照)に固定された下向きスケール888を用いたX粗動ステージ628の位置計測動作に関しては、上記第10の実施形態と同じであるので、説明を省略する。 In the tenth embodiment, the head base 886 (see FIG. 41, etc.) is fixed to the Y stator 638, whereas in the eleventh embodiment, as shown in FIG. A head base 886 is fixed to the air guide 1124. A pair of head bases 886 are arranged in the vicinity of both ends of the air guide 1124 in the longitudinal direction. Since the position measuring operation of the X coarse movement stage 628 using the downward scale 888 fixed to the optical surface plate 18a (see FIG. 44) is the same as that of the tenth embodiment, the description thereof is omitted.
 本第11の実施形態では、基板ホルダ1122の位置情報は、エアガイド1124を介して光学定盤18aを基準に求められる。エアガイド1124は、ステージ本体632に固定されているので、外乱の影響を受け難く、露光精度を向上することができる。また、上記第10の実施形態などと比較し、上向きスケール882、及び下向きスケール888の位置が投影光学系16の中心位置に接近するので、誤差が小さくなり、露光精度を向上することができる。 In the eleventh embodiment, the position information of the substrate holder 1122 is obtained based on the optical surface plate 18a via the air guide 1124. Since the air guide 1124 is fixed to the stage main body 632, the air guide 1124 is hardly affected by disturbance and can improve the exposure accuracy. Further, as compared with the tenth embodiment and the like, the positions of the upward scale 882 and the downward scale 888 approach the center position of the projection optical system 16, so the error is reduced and the exposure accuracy can be improved.
《第12の実施形態》
 次に第12の実施形態に係る液晶露光装置について、図48~図54を用いて説明する。第12の実施形態に係る液晶露光装置の構成は、基板ステージ装置1220、及びその計測系の構成が異なる点を除き、上記第7の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第7の実施形態と同じ構成又は機能を有する要素については、上記第7の実施形態と同じ符号を付して適宜その説明を省略する。
<< Twelfth Embodiment >>
Next, a liquid crystal exposure apparatus according to the twelfth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the twelfth embodiment is substantially the same as that of the seventh embodiment except that the configuration of the substrate stage apparatus 1220 and its measurement system is different. The elements having the same configurations or functions as those of the seventh embodiment are denoted by the same reference numerals as those of the seventh embodiment, and description thereof is omitted as appropriate.
 図31などに示されるように、上記第7の実施形態において、基板Pは、Y軸方向に長ストロークで移動する一対の基板ホルダ722によってX軸方向に関する両端部近傍が保持されたのに対し、本第12の実施形態において、基板Pは、図53に示されるように、X軸方向に長ストロークで移動する一対の基板ホルダ1222によって、Y軸方向に関する両端部近傍が保持される点が異なる。基板ステージ装置1220では、スキャン露光動作時において、一対の基板ホルダ1222のみが投影光学系16(図48参照)に対してX軸方向に駆動されることによって、基板Pに対する走査露光動作が行われる。また、露光領域間移動時には、一対の基板ホルダ1222と基板テーブル626を含む系とが一体的にY軸方向に移動する。すなわち、基板ステージ装置1220は、上記第7の実施形態に係る基板ステージ装置720(図31など参照)を投影光学系16に対してZ軸回りに90°回転させたような構造になっている。以下、基板ステージ装置1220の構成について説明する。 As shown in FIG. 31 and the like, in the seventh embodiment, the substrate P is held in the vicinity of both ends in the X-axis direction by a pair of substrate holders 722 that move with a long stroke in the Y-axis direction. In the twelfth embodiment, as shown in FIG. 53, the substrate P has a point that the vicinity of both ends in the Y-axis direction is held by a pair of substrate holders 1222 that move in the X-axis direction with a long stroke. Different. In the substrate stage apparatus 1220, during the scan exposure operation, only the pair of substrate holders 1222 are driven in the X-axis direction with respect to the projection optical system 16 (see FIG. 48), thereby performing the scan exposure operation on the substrate P. . In addition, when moving between exposure areas, the pair of substrate holders 1222 and the system including the substrate table 626 are integrally moved in the Y-axis direction. That is, the substrate stage apparatus 1220 has a structure in which the substrate stage apparatus 720 (see FIG. 31 and the like) according to the seventh embodiment is rotated 90 ° around the Z axis with respect to the projection optical system 16. . Hereinafter, the configuration of the substrate stage apparatus 1220 will be described.
 図50に示されるように、下架台部18c上には、Y軸方向に伸びる定盤1224がX軸方向に所定間隔で3つ固定されている。中央の定盤1224上には、リニアガイド装置1226を介して重量キャンセル装置42が載置されている。また、+X側、及び-X側の定盤1224上には、リニアガイド装置1226を介してZアクチュエータ1228が載置されている。重量キャンセル装置42がステージ本体632を介して基板テーブル626(それぞれ図48参照)を下方から支持する点は、上記第6の実施形態(図23など参照)などと同様である。 As shown in FIG. 50, three surface plates 1224 extending in the Y-axis direction are fixed on the undercarriage portion 18c at predetermined intervals in the X-axis direction. On the center surface plate 1224, a weight canceling device 42 is placed via a linear guide device 1226. A Z actuator 1228 is placed on the + X side and −X side surface plates 1224 via a linear guide device 1226. The point that the weight cancellation device 42 supports the substrate table 626 (see FIG. 48 respectively) from below via the stage main body 632 is the same as in the sixth embodiment (see FIG. 23 and the like).
 図51に示されるように、Y粗動ステージ1230は、Y軸方向に延びる一対のベースフレーム1232上に載置されており、不図示のYリニアアクチュエータによってY軸方向に長ストロークで駆動される。上述した重量キャンセル装置42、及び2つのZアクチュエータ1228(それぞれ図50参照)は、それぞれY粗動ステージ1230に対して連結部材46により連結されており(図48参照)、Y粗動ステージ1230と一体的にY軸方向に移動する。ステージ本体632も、Y粗動ステージ1230に対して連結部材46により連結されており(図48参照)、Y粗動ステージ1230と一体的にY軸方向に移動する。Y粗動ステージ1230のY軸方向の両端部近傍には、X軸方向に延びる固定子1234が取り付けられている。 As shown in FIG. 51, the Y coarse movement stage 1230 is mounted on a pair of base frames 1232 extending in the Y-axis direction, and is driven with a long stroke in the Y-axis direction by a Y linear actuator (not shown). . The weight canceling device 42 and the two Z actuators 1228 (see FIG. 50, respectively) are connected to the Y coarse moving stage 1230 by a connecting member 46 (see FIG. 48). Moves integrally in the Y-axis direction. The stage main body 632 is also connected to the Y coarse movement stage 1230 by the connecting member 46 (see FIG. 48), and moves integrally with the Y coarse movement stage 1230 in the Y-axis direction. Near both ends of the Y coarse movement stage 1230 in the Y-axis direction, a stator 1234 extending in the X-axis direction is attached.
 図52に示されるように、基板テーブル626の+Y側、及び-Y側には、それぞれ一対の基板ホルダ1222(図53参照)に対応してエアガイド1236が配置されている。エアガイド1236は、支持部材1238(図48参照)を介してステージ本体632に固定されている。エアガイド1236の上面のZ位置は、基板テーブル626の上面のZ位置よりも低い位置に設定されている。 As shown in FIG. 52, on the + Y side and the −Y side of the substrate table 626, air guides 1236 are arranged corresponding to the pair of substrate holders 1222 (see FIG. 53), respectively. The air guide 1236 is fixed to the stage main body 632 via a support member 1238 (see FIG. 48). The Z position on the upper surface of the air guide 1236 is set to a position lower than the Z position on the upper surface of the substrate table 626.
 基板テーブル626の+X側、及び-X側には、基板Pを下方から支持するための複数(本実施形態では、それぞれ4つ)のエアガイド1240が配置されている。エアガイド1240の上面のZ位置は、基板テーブル626の上面のZ位置と概ね同じに設定されている。エアガイド1240は、スキャン露光動作時など、基板Pが基板テーブル626に対してX軸方向に相対移動する際、基板テーブル626と協働して基板Pを下方から支持する(図54参照)。 A plurality (four in this embodiment) of air guides 1240 for supporting the substrate P from below are arranged on the + X side and the −X side of the substrate table 626. The Z position of the upper surface of the air guide 1240 is set to be substantially the same as the Z position of the upper surface of the substrate table 626. The air guide 1240 supports the substrate P from below in cooperation with the substrate table 626 when the substrate P moves relative to the substrate table 626 in the X-axis direction, such as during a scan exposure operation (see FIG. 54).
 4つのエアガイド1240の+Y側、及び-Y側には、それぞれ一対の基板ホルダ1222に対応してエアガイド1242が配置されている。エアガイド1242は、上述したエアガイド1236と同様の部材であり、その上面のZ位置は、エアガイド1236と概ね同じに設定されている。エアガイド1242は、エアガイド1236と協働して基板ホルダ1222が基板テーブル626に対してX軸方向に相対移動する際、基板ホルダ1222を下方から支持する(図54参照)。エアガイド1240、1242は、共通のベース部材を介して上述したZアクチュエータ1228(図50参照)上に載置されている。Zアクチュエータ1228と重量キャンセル装置42(図50参照)とが一体的にY軸方向に移動することから、エアガイド1240、1242、1236、及び基板テーブル626は、一体的にY軸方向へ移動する。 On the + Y side and the −Y side of the four air guides 1240, air guides 1242 are arranged corresponding to the pair of substrate holders 1222, respectively. The air guide 1242 is a member similar to the air guide 1236 described above, and the Z position of the upper surface thereof is set to be substantially the same as the air guide 1236. The air guide 1242 supports the substrate holder 1222 from below when the substrate holder 1222 moves relative to the substrate table 626 in the X-axis direction in cooperation with the air guide 1236 (see FIG. 54). The air guides 1240 and 1242 are placed on the Z actuator 1228 (see FIG. 50) described above via a common base member. Since the Z actuator 1228 and the weight canceling device 42 (see FIG. 50) integrally move in the Y-axis direction, the air guides 1240, 1242, 1236, and the substrate table 626 move integrally in the Y-axis direction. .
 図49に示されるように、一対の基板ホルダ1222は、基板Pの中央部(重心位置)を挟んで配置されており、吸着パッド1244を用いて基板Pの下面を吸着保持している。また、各基板ホルダ1222には、上述した固定子1234(図51参照)と協働して2DOFモータを構成する可動子1246が取り付けられている。不図示の主制御装置は、各基板ホルダ1222を、対応する2DOFモータを介して、基板テーブル626(図52参照)に対してX軸方向に長ストロークで駆動するとともに、基板テーブル626、Y粗動ステージ1230(図51参照)などとY軸方向の位置関係が所定範囲内に収まるように基板ホルダ1222にY軸方向の推力を付与する。 As shown in FIG. 49, the pair of substrate holders 1222 are arranged with the central portion (center of gravity position) of the substrate P interposed therebetween, and the lower surface of the substrate P is sucked and held using the suction pad 1244. In addition, a movable element 1246 constituting a 2DOF motor is attached to each substrate holder 1222 in cooperation with the above-described stator 1234 (see FIG. 51). The main controller (not shown) drives each substrate holder 1222 with a long stroke in the X-axis direction with respect to the substrate table 626 (see FIG. 52) via the corresponding 2DOF motor. A thrust in the Y-axis direction is applied to the substrate holder 1222 so that the positional relationship in the Y-axis direction with the moving stage 1230 (see FIG. 51) falls within a predetermined range.
 上述したように、基板ステージ装置1220では、図54に示されるように、スキャン露光動作時などには、一対の基板ホルダ1222がエアガイド1236、1242上で2DOFモータによってX軸方向に駆動されることによって、基板Pに対する走査露光動作が行われる。また、露光領域間移動時には、一対の基板ホルダ1222と基板テーブル626を含む系(基板テーブル626、Y粗動ステージ1230、固定子1234、エアガイド1236、1240、1242など)とが一体的にY軸方向に移動する。 As described above, in the substrate stage apparatus 1220, as shown in FIG. 54, the pair of substrate holders 1222 are driven on the air guides 1236 and 1242 by the 2DOF motor in the X-axis direction during a scanning exposure operation or the like. Thus, the scanning exposure operation for the substrate P is performed. In addition, when moving between exposure regions, a system including a pair of substrate holders 1222 and a substrate table 626 (substrate table 626, Y coarse movement stage 1230, stator 1234, air guides 1236, 1240, 1242, etc.) is integrated with Y. Move in the axial direction.
 次に本第12の実施形態に係る基板計測系1280(図53参照)について説明する。基板計測系1280は、概念的には第1の実施形態に係る基板計測系70(図4参照)に類似している。すなわち、基板Pを保持する部材(本実施形態では一対の基板ホルダ1222それぞれ)にヘッドベース1282を介して下向きヘッド74x、74y(それぞれ図49参照)が一対取り付けられ、該下向きヘッド74x、74yは、固定子1234の上面に取り付けられた対応する上向きスケール1284に対向している。不図示の主制御装置は、2つのXリニアエンコーダシステム、及び2つのYリニアエンコーダシステムの出力を適宜用いて、各基板ホルダ1222のY粗動ステージ1230に対するX軸方向、Y軸方向、及びθz方向の位置情報(第1情報)を独立に求める。 Next, a substrate measurement system 1280 (see FIG. 53) according to the twelfth embodiment will be described. The board measurement system 1280 is conceptually similar to the board measurement system 70 (see FIG. 4) according to the first embodiment. That is, a pair of downward heads 74x and 74y (see FIG. 49 respectively) are attached to members (each of the pair of substrate holders 1222 in this embodiment) holding the substrate P via a head base 1282, and the downward heads 74x and 74y are , Opposite a corresponding upward scale 1284 attached to the upper surface of the stator 1234. The main controller (not shown) appropriately uses the outputs of the two X linear encoder systems and the two Y linear encoder systems, and uses the X axis direction, the Y axis direction, and the θz direction with respect to the Y coarse movement stage 1230 of each substrate holder 1222. Direction position information (first information) is obtained independently.
 また、図51に示されるように、固定子1234の長手方向中央部には、ヘッドベース1286が固定されている。ヘッドベース1286には、上向きヘッド80x、80yが一対取り付けられ、該上向きヘッド80x、80yは、光学定盤18a(図48参照)の下面に固定された対応する下向きスケール1288とXリニアエンコーダシステム、Yリニアエンコーダシステムを構成している。上向きスケール1284と各上向きヘッド80x、80yの位置関係(第3情報)は既知である。不図示の主制御装置は、4つのXリニアエンコーダシステム、及び4つのYリニアエンコーダシステムの出力を適宜用いて、Y粗動ステージ1230の水平面内の位置情報(第2情報)を求める。 Further, as shown in FIG. 51, a head base 1286 is fixed to the central portion of the stator 1234 in the longitudinal direction. A pair of upward heads 80x and 80y are attached to the head base 1286, and the upward heads 80x and 80y are respectively provided with a corresponding downward scale 1288 fixed to the lower surface of the optical surface plate 18a (see FIG. 48) and an X linear encoder system. The Y linear encoder system is configured. The positional relationship (third information) between the upward scale 1284 and the upward heads 80x and 80y is known. A main controller (not shown) obtains positional information (second information) of the Y coarse movement stage 1230 in the horizontal plane by appropriately using outputs of the four X linear encoder systems and the four Y linear encoder systems.
《第13の実施形態》
 次に第13の実施形態に係る液晶露光装置について、図55~図58を用いて説明する。第13の実施形態に係る液晶露光装置の構成は、基板ステージ装置1320、及びその計測系の構成が異なる点を除き、上記第12の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第12の実施形態と同じ構成又は機能を有する要素については、上記第12の実施形態と同じ符号を付して適宜その説明を省略する。
<< Thirteenth embodiment >>
Next, a liquid crystal exposure apparatus according to a thirteenth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the thirteenth embodiment is substantially the same as that of the twelfth embodiment except that the configuration of the substrate stage apparatus 1320 and its measurement system is different. The elements having the same configuration or function as those of the twelfth embodiment will be denoted by the same reference numerals as those of the twelfth embodiment, and description thereof will be omitted as appropriate.
 上記第12の実施形態に係る基板ステージ装置1220(図53など参照)と同様に、基板ステージ装置1320において、基板Pは、図58に示されるように、Y軸方向の両端部近傍が一対の基板ホルダ1322に保持される。一対の基板ホルダ1322が2DOFモータによってX軸方向に長ストロークで駆動されるとともに、Y軸及びθz方向に微少駆動される点は上記第12の実施形態と同様である。ここで、上記第12の実施形態において、基板ホルダ1222(図53など参照)は、X軸方向の位置に応じて、互いに分離して配置されたエアガイド1236、及び一対のエアガイド1242(それぞれ図53など参照)の何れかによって下方から支持されたのに対し、本第13の実施形態における基板ホルダ1322は、X軸方向に関する移動可能領域の全範囲をカバー可能な長さに設定された単一のエアガイド1324によって下方から支持されている。エアガイド1324は、図55に示されるように、ステージ本体632に接続されており、基板テーブル626と一体的にY軸方向に移動可能となっている。 Similarly to the substrate stage apparatus 1220 (see FIG. 53 and the like) according to the twelfth embodiment, in the substrate stage apparatus 1320, the substrate P has a pair of portions near both ends in the Y-axis direction as shown in FIG. It is held by the substrate holder 1322. The pair of substrate holders 1322 is driven by the 2DOF motor with a long stroke in the X-axis direction, and is slightly driven in the Y-axis and θz directions as in the twelfth embodiment. Here, in the twelfth embodiment, the substrate holder 1222 (see FIG. 53 and the like) includes an air guide 1236 and a pair of air guides 1242 (each of which is separated from each other) according to the position in the X-axis direction. The substrate holder 1322 according to the thirteenth embodiment is set to a length that can cover the entire movable region in the X-axis direction. It is supported from below by a single air guide 1324. As shown in FIG. 55, the air guide 1324 is connected to the stage main body 632 and can move in the Y-axis direction integrally with the substrate table 626.
 次に第13の実施形態に係る基板計測系1380の構成、及び動作について説明する。基板計測系1380は、概念的には、上記第11の実施形態に係る基板計測系1180(図44など参照)をZ軸回りに90°回転させたような構造になっている。すなわち、本第13の実施形態おいて、エアガイド1324の上面には、図57に示されるように、上向きスケール1382が固定されている。上記第11の実施形態では、上向きスケール882(図46など参照)は、X軸方向よりもY軸方向に関する位置情報の計測範囲が広くなるように(Y軸方向が長手方向となるように)配置されたのに対し、本実施形態の上向きスケール1382は、Y軸方向よりもX軸方向に関する位置情報の計測範囲が広くなるように(X軸方向が長手方向となるように)配置されている。 Next, the configuration and operation of the substrate measurement system 1380 according to the thirteenth embodiment will be described. Conceptually, the substrate measurement system 1380 has a structure in which the substrate measurement system 1180 (see FIG. 44 and the like) according to the eleventh embodiment is rotated by 90 ° around the Z axis. That is, in the thirteenth embodiment, an upward scale 1382 is fixed to the upper surface of the air guide 1324 as shown in FIG. In the eleventh embodiment, the upward scale 882 (see FIG. 46 and the like) has a wider measurement range of position information regarding the Y-axis direction than the X-axis direction (so that the Y-axis direction becomes the longitudinal direction). In contrast to the arrangement, the upward scale 1382 of this embodiment is arranged so that the measurement range of the position information in the X-axis direction is wider than the Y-axis direction (the X-axis direction is the longitudinal direction). Yes.
 基板ホルダ1322は、図55に示されるように、上記第11の実施形態に係る基板ホルダ1122(図44など参照)と同様に、下方に開口した凹部が形成されており、該凹部内に下向きヘッド74x、74y、74z(それぞれ図56参照)がそれぞれ一対、上向きスケール1382に対向するように取り付けられている(図58参照)。 As shown in FIG. 55, the substrate holder 1322 is formed with a recessed portion opened downward like the substrate holder 1122 (see FIG. 44, etc.) according to the eleventh embodiment, and the substrate holder 1322 faces downward in the recessed portion. A pair of heads 74x, 74y, 74z (see FIG. 56, respectively) are attached so as to face the upward scale 1382 (see FIG. 58).
 図57に示されるように、エアガイド1324の長手方向両端部近傍には、それぞれヘッドベース1384が固定されており、各ヘッドベース1384には、上向きヘッド80x、80y、80zがそれぞれ2つ、光学定盤18a(図55参照)の下面に固定された対応する下向きスケール1386に対向するように取り付けられている。本第13の実施形態に係る基板計測系1380も、上記第12の実施形態の基板計測系1280(図53など参照)と同様に、基板P(一対の基板ホルダ1322)の位置情報が、Y粗動ステージ1230を介して光学定盤18aを基準に求められる。 As shown in FIG. 57, a head base 1384 is fixed in the vicinity of both ends of the air guide 1324 in the longitudinal direction, and each head base 1384 has two upward heads 80x, 80y, and 80z, respectively. It is attached so as to face the corresponding downward scale 1386 fixed to the lower surface of the surface plate 18a (see FIG. 55). Similarly to the substrate measurement system 1280 (see FIG. 53, etc.) of the twelfth embodiment, the position information of the substrate P (a pair of substrate holders 1322) is also displayed on the substrate measurement system 1380 according to the thirteenth embodiment. It is obtained with reference to the optical surface plate 18a via the coarse movement stage 1230.
《第14の実施形態》
 次に第14の実施形態に係る液晶露光装置について、図59を用いて説明する。第14の実施形態に係る液晶露光装置の構成は、基板ステージ装置1420、及びその計測系の構成が異なる点を除き、上記第13の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第13の実施形態と同じ構成又は機能を有する要素については、上記第13の実施形態と同じ符号を付して適宜その説明を省略する。
<< Fourteenth embodiment >>
Next, a liquid crystal exposure apparatus according to the fourteenth embodiment will be described with reference to FIG. The configuration of the liquid crystal exposure apparatus according to the fourteenth embodiment is substantially the same as that of the thirteenth embodiment except that the configuration of the substrate stage apparatus 1420 and its measurement system is different. The elements having the same configurations or functions as those of the thirteenth embodiment will be described with the same reference numerals as those of the thirteenth embodiment, and description thereof will be omitted as appropriate.
 上記第13の実施形態(図58参照)において、基板Pは、Y軸方向に関する両端部近傍が、それぞれ基板ホルダ1322に保持されたのに対し、図59に示されるように、本第14の実施形態において、基板Pは、Y軸方向に関する一方側(本実施形態では+Y側)の端部近傍のみが基板ホルダ1422に吸着保持される点が異なる。基板ホルダ1422に関しては、固定子1424に対して3DOFモータにより駆動される点を除き、上記第12の実施形態と同じであるので、ここでは説明を省略する。固定子1424とエアガイド1324とを連結する連結部材1426は、Y軸方向にも剛性を有しており、固定子1424は、基板テーブル626の押圧、又は牽引(押し引き)が可能となっている。本第14の実施形態に係る基板計測系1480の構成、及び動作に関しては、上記第13の実施形態と同じであるので、ここでは説明を省略する。 In the thirteenth embodiment (see FIG. 58), the substrate P is held by the substrate holder 1322 in the vicinity of both ends in the Y-axis direction, whereas as shown in FIG. In the embodiment, the substrate P is different in that only the vicinity of the end on one side (in the present embodiment, + Y side) in the Y-axis direction is sucked and held by the substrate holder 1422. The substrate holder 1422 is the same as that of the twelfth embodiment except that it is driven by a 3DOF motor with respect to the stator 1424. Therefore, the description thereof is omitted here. The connecting member 1426 that connects the stator 1424 and the air guide 1324 has rigidity in the Y-axis direction, and the stator 1424 can press or pull (push and pull) the substrate table 626. Yes. Since the configuration and operation of the substrate measurement system 1480 according to the fourteenth embodiment are the same as those of the thirteenth embodiment, description thereof is omitted here.
《第15の実施形態》
 次に第15の実施形態に係る液晶露光装置について、図60~図63を用いて説明する。第15の実施形態に係る液晶露光装置の構成は、基板ステージ装置1520の構成が異なる点を除き、上記第1又は第6の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1又は第6の実施形態と同じ構成又は機能を有する要素については、上記第1又は第6の実施形態と同じ符号を付して適宜その説明を省略する。
<< 15th Embodiment >>
Next, a liquid crystal exposure apparatus according to the fifteenth embodiment will be described with reference to FIGS. Since the configuration of the liquid crystal exposure apparatus according to the fifteenth embodiment is substantially the same as that of the first or sixth embodiment except that the configuration of the substrate stage apparatus 1520 is different, only the differences will be described below. Elements having the same configuration or function as those of the first or sixth embodiment are denoted by the same reference numerals as those of the first or sixth embodiment, and description thereof is omitted as appropriate.
 図60に示されるように、基板ステージ装置1520は、第1移動体(ここでは基板ホルダ1522)と第2移動体(ここではY粗動ステージ24)とを備えている。 As shown in FIG. 60, the substrate stage device 1520 includes a first moving body (here, the substrate holder 1522) and a second moving body (here, the Y coarse movement stage 24).
 図62に示されるように、基板ホルダ1522は、上記第6の実施形態(図26など参照)の基板ホルダ622と同様に、平面視矩形の枠状(額縁状)に形成され、基板Pは、基板ホルダ1522の開口内に配置される。基板ホルダ1522は、4つの吸着パッド1524を有しており、基板Pの4辺それぞれの中央部近傍を下方から吸着保持する。 As shown in FIG. 62, the substrate holder 1522 is formed in a rectangular frame shape (frame shape) in plan view, like the substrate holder 622 of the sixth embodiment (see FIG. 26, etc.). The substrate holder 1522 is disposed in the opening. The substrate holder 1522 has four suction pads 1524 and sucks and holds the vicinity of the center of each of the four sides of the substrate P from below.
 基板Pのうち、中央部を含む露光領域は、図60に示されるように、基板テーブル626によって下方から非接触支持される。基板テーブル626は、上記第6の実施形態(図26など参照)と同様に、基板Pの平面矯正を非接触状態で行う。また、図60などでは不図示であるが、基板テーブル626の下面には、上記第6の実施形態と同様に、ステージ本体632(図23参照)が固定されている。不図示のステージ本体632は、図63に示されるように、複数の連結部材1526を介して、Zチルト方向の相対移動が許容された状態でX粗動ステージ26に連結されている、従って、基板テーブル626は、X粗動ステージ26と一体的にX軸、及びY軸方向に長ストロークで移動する。X粗動ステージ26、Y粗動ステージ24などの構成及び動作は、上記第1の実施形態(図4など参照)と概ね同じであるので、説明を省略する。 In the substrate P, the exposure area including the central portion is non-contact supported by the substrate table 626 from below as shown in FIG. The substrate table 626 performs flattening of the substrate P in a non-contact state as in the sixth embodiment (see FIG. 26 and the like). Although not shown in FIG. 60 and the like, a stage main body 632 (see FIG. 23) is fixed to the lower surface of the substrate table 626 as in the sixth embodiment. As shown in FIG. 63, the stage body 632 (not shown) is connected to the X coarse movement stage 26 via a plurality of connecting members 1526 in a state in which relative movement in the Z tilt direction is allowed. The substrate table 626 moves with a long stroke integrally with the X coarse movement stage 26 in the X-axis and Y-axis directions. Since the configurations and operations of the X coarse movement stage 26, the Y coarse movement stage 24, and the like are substantially the same as those in the first embodiment (see FIG. 4 and the like), description thereof will be omitted.
 また、図63に示されるように、ステージ本体632(図63では不図示。図23参照)からは、±Y方向、及び±X方向の合計4方向にテーブル部材1528が突き出している。図60に示されるように、基板ホルダ1522は、4つのテーブル部材1528上に不図示のエアベアリングを介して非接触状態で載置されている。また、基板ホルダ1522は、基板ホルダ1522に取り付けられた複数の可動子1530(図62参照)とステージ本体632に取り付けられた複数の固定子1532(図63参照)とによって構成される複数のリニアモータによって基板テーブル626に対してX軸、Y軸、及びθz方向に微少ストロークで駆動される。 63, the table member 1528 protrudes from the stage main body 632 (not shown in FIG. 63; see FIG. 23) in a total of four directions including the ± Y direction and the ± X direction. As shown in FIG. 60, the substrate holder 1522 is placed on the four table members 1528 in a non-contact state via air bearings (not shown). The substrate holder 1522 includes a plurality of linear elements configured by a plurality of movers 1530 (see FIG. 62) attached to the substrate holder 1522 and a plurality of stators 1532 (see FIG. 63) attached to the stage main body 632. The motor is driven with respect to the substrate table 626 with a slight stroke in the X-axis, Y-axis, and θz directions.
 上記第6の実施形態の基板ホルダ622は、基板テーブル626から分離してY軸方向に長ストロークで相対移動可能であった(図27参照)のに対し、本第15の実施形態において、不図示の主制御装置は、図61に示されるように、X軸、及びY軸方向に関して、基板ホルダ1522と基板テーブル626との位置が所定範囲内に収まるように、上記複数のリニアモータを用いて基板ホルダ1522に推力を付与する。従って、基板Pは、露光領域の全体が常に基板テーブル626により下方から支持される。 The substrate holder 622 of the sixth embodiment is separated from the substrate table 626 and can be relatively moved with a long stroke in the Y-axis direction (see FIG. 27). As shown in FIG. 61, the illustrated main controller uses the plurality of linear motors so that the positions of the substrate holder 1522 and the substrate table 626 are within a predetermined range in the X-axis and Y-axis directions. Then, a thrust is applied to the substrate holder 1522. Accordingly, the entire exposure area of the substrate P is always supported from below by the substrate table 626.
 次に第15の実施形態に係る基板計測系1580について説明する。基板計測系1580は、概念的には、上記第1の実施形態に係る基板計測系70と概ね同じであり、基板ホルダ1522の水平面内の位置情報を、Y粗動ステージ24を介して光学定盤18a(図1など参照)を基準に求める。 Next, a substrate measurement system 1580 according to the fifteenth embodiment will be described. The substrate measurement system 1580 is conceptually substantially the same as the substrate measurement system 70 according to the first embodiment, and position information in the horizontal plane of the substrate holder 1522 is optically determined via the Y coarse movement stage 24. It is determined based on the board 18a (see FIG. 1 etc.).
 すなわち、基板ホルダ1522には、図62に示されるように、一対のヘッドベース88が固定されており、各ヘッドベース88には、下向きXヘッド74xと下向きYヘッド74yとが各2つ取り付けられている(図62参照)。また、図63に示されるように、Y粗動ステージ24には、アーム部材86を介して一対のスケールベース84が取り付けられており、各スケールベース84の上面には、X軸方向に延びる(X軸方向の計測可能範囲がY軸方向の計測可能範囲よりも長い)上向きスケール72が固定されている。基板ホルダ1522のY粗動ステージ24に対する位置情報は、上記各ヘッド74x、74yと、これに対応するスケール72とによって構成されるエンコーダシステムによって求められる。 That is, as shown in FIG. 62, a pair of head bases 88 is fixed to the substrate holder 1522, and two downward X heads 74 x and two downward Y heads 74 y are attached to each head base 88. (See FIG. 62). As shown in FIG. 63, a pair of scale bases 84 are attached to the Y coarse movement stage 24 via arm members 86, and the upper surfaces of the scale bases 84 extend in the X-axis direction ( The upward scale 72 is fixed (the measurable range in the X-axis direction is longer than the measurable range in the Y-axis direction). Position information of the substrate holder 1522 with respect to the Y coarse movement stage 24 is obtained by an encoder system including the heads 74x and 74y and the scale 72 corresponding thereto.
 また、Y粗動ステージ24に取り付けられた一対のスケールベース84それぞれには、ヘッドベース96が固定されており、各ヘッドベース96には、上向きXヘッド80xと上向きYヘッド80yとが各2つ取り付けられている(図63参照)。光学定盤18a(図1など参照)の下面には、各ヘッドベース96に対応して、Y軸方向に延びる(Y軸方向の計測可能範囲がX軸方向の計測可能範囲よりも長い)下向きスケール78(図60参照)が固定されている。光学定盤18aに対するY粗動ステージ24の位置情報は、上記各ヘッド80x、80yと、これに対応するスケール78とによって構成されるエンコーダシステムによって求められる。 A head base 96 is fixed to each of the pair of scale bases 84 attached to the Y coarse movement stage 24. Each head base 96 has two upward X heads 80x and two upward Y heads 80y. It is attached (see FIG. 63). The lower surface of the optical surface plate 18a (see FIG. 1 and the like) extends in the Y-axis direction corresponding to each head base 96 (the measurable range in the Y-axis direction is longer than the measurable range in the X-axis direction). A scale 78 (see FIG. 60) is fixed. Position information of the Y coarse movement stage 24 with respect to the optical surface plate 18a is obtained by an encoder system constituted by the heads 80x and 80y and the scale 78 corresponding thereto.
《第16の実施形態》
 次に第16の実施形態に係る液晶露光装置について、図64を用いて説明する。第16の実施形態に係る液晶露光装置の構成は、基板ステージ装置1620、及びその計測系の構成が異なる点を除き、上記第6又は第15の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第6又は第15の実施形態と同じ構成又は機能を有する要素については、上記第6又は第15の実施形態と同じ符号を付して適宜その説明を省略する。
<< Sixteenth Embodiment >>
Next, a liquid crystal exposure apparatus according to the sixteenth embodiment will be described with reference to FIG. The configuration of the liquid crystal exposure apparatus according to the sixteenth embodiment is substantially the same as that of the sixth or fifteenth embodiment except that the configuration of the substrate stage device 1620 and its measurement system is different. Only the points will be described, and elements having the same configuration or function as those of the sixth or fifteenth embodiment will be denoted by the same reference numerals as those of the sixth or fifteenth embodiment, and description thereof will be omitted as appropriate.
 第16の実施形態に係る基板ステージ装置1620が有する基板ホルダ1522、基板テーブル626などの構成(駆動系を含む)は、上記第15の実施形態(図60など参照)と概ね同じである。上記第15の実施形態の基板計測系1580(図60など参照)は、基板ホルダ1522の位置情報をY粗動ステージ24を介して光学定盤18aを基準に求めた(すなわち第1の実施形態に係る基板計測系70と同様の構成であった)のに対し、本第16の実施形態に係る基板計測系1680は、基板ホルダ1522の位置情報を、上記第6の実施形態と同様に、計測テーブル624を介して光学定盤18aを基準に求める点が異なる。 The configurations (including the drive system) of the substrate holder 1522 and the substrate table 626 included in the substrate stage device 1620 according to the sixteenth embodiment are substantially the same as those of the fifteenth embodiment (see FIG. 60 and the like). The substrate measurement system 1580 (see FIG. 60, etc.) of the fifteenth embodiment determines the position information of the substrate holder 1522 with reference to the optical surface plate 18a via the Y coarse movement stage 24 (that is, the first embodiment). On the other hand, the substrate measurement system 1680 according to the sixteenth embodiment uses the position information of the substrate holder 1522 as in the sixth embodiment. The difference is that the optical table 18a is obtained as a reference via the measurement table 624.
 すなわち、第16の実施形態に係る基板ホルダ1522には、上記第6の実施形態(図24参照)と同様に、一対のヘッドベース688が固定されるとともに、各ヘッドベース688には、上向きXヘッド80xと上向きYヘッド80yとが各2つ取り付けられている。また、光学定盤18aの下面には、基板ホルダ1522に対するY軸方向の位置が所定範囲に収まるように移動可能な計測テーブル624が、一対のヘッドベース688に対応して取り付けられている。基板ホルダ1522の位置情報は、上記各ヘッド80x、80yと、対応する計測テーブル624の下面に固定された、X軸方向に延びる下向きスケール686とにより構成されるリニアエンコーダシステムによって求められる。また、計測テーブル624の位置情報は、計測テーブル624に取り付けられた上向きXヘッド80x、上向きYヘッド80yと、光学定盤18aの下面に固定された、Y軸方向に延びる下向きスケール684とにより構成されるリニアエンコーダシステムによって求められる。 That is, a pair of head bases 688 are fixed to the substrate holder 1522 according to the sixteenth embodiment, as in the sixth embodiment (see FIG. 24), and each head base 688 has an upward X Two heads 80x and two upward Y heads 80y are attached. A measurement table 624 is attached to the lower surface of the optical surface plate 18a so as to correspond to the pair of head bases 688 so that the position in the Y-axis direction with respect to the substrate holder 1522 is within a predetermined range. The position information of the substrate holder 1522 is obtained by a linear encoder system including the heads 80x and 80y and a downward scale 686 fixed to the lower surface of the corresponding measurement table 624 and extending in the X-axis direction. The position information of the measurement table 624 includes an upward X head 80x and an upward Y head 80y attached to the measurement table 624, and a downward scale 684 that is fixed to the lower surface of the optical surface plate 18a and extends in the Y-axis direction. Required by a linear encoder system.
《第17の実施形態》
 次に第17の実施形態に係る液晶露光装置について、図65を用いて説明する。第17の実施形態に係る液晶露光装置の構成は、基板ステージ装置1720、及びその計測系の構成が異なる点を除き、上記第15又は第16の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第15又は第16の実施形態と同じ構成又は機能を有する要素については、上記第15又は第16の実施形態と同じ符号を付して適宜その説明を省略する。
<< Seventeenth Embodiment >>
Next, a liquid crystal exposure apparatus according to the seventeenth embodiment will be described with reference to FIG. The configuration of the liquid crystal exposure apparatus according to the seventeenth embodiment is substantially the same as that of the fifteenth or sixteenth embodiment except that the configuration of the substrate stage apparatus 1720 and its measurement system is different. Only the points will be described, and elements having the same configuration or function as those of the fifteenth or sixteenth embodiment are denoted by the same reference numerals as those of the fifteenth or sixteenth embodiment, and description thereof will be omitted as appropriate.
 第17の実施形態に係る基板ステージ装置1720が有する基板ホルダ1522、基板テーブル626などの構成(駆動系を含む)は、上記第15の実施形態(図60など参照)と概ね同じである。上記第15の実施形態の基板計測系1580(図60など参照)は、基板ホルダ1522の位置情報をY粗動ステージ24を介して光学定盤18aを基準に求めた(すなわち第1の実施形態に係る基板計測系70と同様の構成であった)のに対し、本第17の実施形態に係る基板計測系1780は、基板ホルダ1522の位置情報を、Y粗動ステージ24、及び計測テーブル1782を介して光学定盤18aを基準に求める点が異なる。 The configurations (including the drive system) of the substrate holder 1522, the substrate table 626, and the like included in the substrate stage apparatus 1720 according to the seventeenth embodiment are substantially the same as those in the fifteenth embodiment (see FIG. 60 and the like). The substrate measurement system 1580 (see FIG. 60, etc.) of the fifteenth embodiment determines the position information of the substrate holder 1522 with reference to the optical surface plate 18a via the Y coarse movement stage 24 (that is, the first embodiment). On the other hand, the substrate measurement system 1780 according to the seventeenth embodiment includes the positional information of the substrate holder 1522, the Y coarse movement stage 24, and the measurement table 1782. The point which is calculated | required on the basis of the optical surface plate 18a via is different.
 第17の実施形態に係る基板ステージ装置1720において、Y粗動ステージ24には、上記第15の実施形態(図63など参照)と同様に、アーム部材86を介してスケールベース1784が固定されている。なお、図65では不図示であるが、スケールベース1784は、上記第15の実施形態と同様に、基板ホルダ1522の+Y側、及び-Y側にそれぞれ1つ配置されている。計測テーブル1782も不図示であるが同様に、スケールベース1784に対応して、投影光学系16の+Y側、及び-Y側にそれぞれ1つ配置されている。 In the substrate stage apparatus 1720 according to the seventeenth embodiment, the scale base 1784 is fixed to the Y coarse movement stage 24 via the arm member 86 as in the fifteenth embodiment (see FIG. 63 and the like). Yes. Although not shown in FIG. 65, one scale base 1784 is disposed on each of the + Y side and the −Y side of the substrate holder 1522 as in the fifteenth embodiment. Similarly, a measurement table 1782 is also shown, but one is arranged on each of the + Y side and the −Y side of the projection optical system 16 corresponding to the scale base 1784.
 スケールベース1784の上面には、基板ホルダ1522の位置計測用に用いられる上向きスケール1786と、計測テーブル1782の位置計測用に用いられる上向きスケール1788とがY軸方向に所定間隔で取り付けられている。上向きスケール1786、1788は、Y軸方向よりもX軸方向に関する位置情報の計測範囲が広くなるように(X軸方向が長手方向となるように)、その上面に2次元回折格子を有している。上向きスケール1786と、上向きスケール1788との位置関係は、既知であるものとする。なお、上向きスケール1786、1788に形成される2次元回折格子のピッチは同じであっても良いし、異なっていても良い。また、スケールベース1784は、2つの上向きスケール1786,1788に換えて、基板ホルダ1522の位置計測用と計測テーブル1782の位置計測用とを兼用する広幅の1つの上向きスケールを有していても良い。 On the upper surface of the scale base 1784, an upward scale 1786 used for position measurement of the substrate holder 1522 and an upward scale 1788 used for position measurement of the measurement table 1782 are attached at predetermined intervals in the Y-axis direction. The upward scales 1786 and 1788 have a two-dimensional diffraction grating on the upper surface so that the measurement range of the position information in the X-axis direction is wider than the Y-axis direction (so that the X-axis direction is the longitudinal direction). Yes. The positional relationship between the upward scale 1786 and the upward scale 1788 is assumed to be known. Note that the pitch of the two-dimensional diffraction gratings formed on the upward scales 1786 and 1788 may be the same or different. Further, the scale base 1784 may have a single wide upward scale that serves both for the position measurement of the substrate holder 1522 and for the position measurement of the measurement table 1782, instead of the two upward scales 1786 and 1788. .
 基板ホルダ1522には、上記第15の実施形態(図63など参照)と同様に、ヘッドベース88を介して下向きヘッド74x、74yがそれぞれ2つ取り付けられている。基板ホルダ1522のY粗動ステージ24に対するXY平面内の位置情報が、下向きヘッド74x、74yと、対応する上向きスケール1786とによって構成されるエンコーダシステムによって求められる点は、上記第15の実施形態(すなわち第1の実施形態)と同様であるので、説明を省略する。 Similarly to the fifteenth embodiment (see FIG. 63 and the like), two downward heads 74x and 74y are attached to the substrate holder 1522 via the head base 88, respectively. The position information of the substrate holder 1522 in the XY plane with respect to the Y coarse movement stage 24 is obtained by the encoder system constituted by the downward heads 74x and 74y and the corresponding upward scale 1786, in the fifteenth embodiment ( That is, since it is the same as that of the first embodiment, the description is omitted.
 計測テーブル1782は、上記第16の実施形態(図64参照)の計測テーブル624と同様に、Yリニアアクチュエータ682によってY軸方向に所定のストロークで駆動される。計測テーブル1782には、上記第16の実施形態と同様に、上向きヘッド80x、80yがそれぞれ2つ取り付けられている。計測テーブル1782の光学定盤18aに対するXY平面内の位置情報が、上向きヘッド80x、80yと、対応する下向きスケール984とによって構成されるエンコーダシステムによって求められる点は、上記第16の実施形態(すなわち第6の実施形態)と同様であるので、説明を省略する。 The measurement table 1782 is driven with a predetermined stroke in the Y-axis direction by the Y linear actuator 682, similarly to the measurement table 624 of the sixteenth embodiment (see FIG. 64). As in the sixteenth embodiment, two upward heads 80x and 80y are attached to the measurement table 1782, respectively. The point that the position information of the measurement table 1782 in the XY plane with respect to the optical surface plate 18a is obtained by the encoder system constituted by the upward heads 80x and 80y and the corresponding downward scale 984 is that in the sixteenth embodiment (ie, Since this is the same as in the sixth embodiment, the description thereof is omitted.
 Y粗動ステージ24のXY平面内の位置情報は、計測テーブル1782を介して光学定盤18aを基準に求められる。Y粗動ステージ24の位置情報を求めるための計測系は、概念的には、基板ホルダ1522のY粗動ステージ24に対する位置情報を求めるための計測系(エンコーダシステム)と同じである。すなわち、計測テーブル1782には、下向きXヘッド74xと、下向きYヘッド74yとがそれぞれ2つ取り付けられており、これら下向きヘッド74x、74と、上向きスケール1788とによって構成されるエンコーダシステムによって、計測テーブル1782に対するY粗動ステージ24のXY平面内の位置情報が求められる。不図示の主制御装置は、上述した光学定盤18aに対する計測テーブル1782の位置情報、計測テーブル1782に対するY粗動ステージ24の位置情報、及びY粗動ステージ24に対する基板ホルダ1522の位置情報に基づいて、基板ホルダ1522の位置情報を光学定盤18aを基準に求める。 The position information of the Y coarse movement stage 24 in the XY plane is obtained with reference to the optical surface plate 18a via the measurement table 1782. The measurement system for obtaining the position information of the Y coarse movement stage 24 is conceptually the same as the measurement system (encoder system) for obtaining the position information of the substrate holder 1522 with respect to the Y coarse movement stage 24. In other words, two downward X heads 74 x and two downward Y heads 74 y are attached to the measurement table 1782, and the measurement table is measured by an encoder system including the downward heads 74 x and 74 and the upward scale 1788. Position information in the XY plane of the Y coarse movement stage 24 with respect to 1782 is obtained. The main controller (not shown) is based on the position information of the measurement table 1782 with respect to the optical surface plate 18a, the position information of the Y coarse movement stage 24 with respect to the measurement table 1782, and the position information of the substrate holder 1522 with respect to the Y coarse movement stage 24. Thus, the position information of the substrate holder 1522 is obtained with reference to the optical surface plate 18a.
《第18の実施形態》
 次に第18の実施形態に係る液晶露光装置について、図66~図68用いて説明する。第18の実施形態に係る液晶露光装置の構成は、基板ステージ装置1820、及びその計測系の構成が異なる点を除き、上記第1の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成又は機能を有する要素については、上記第1の実施形態と同じ符号を付して適宜その説明を省略する。
<< Eighteenth embodiment >>
Next, a liquid crystal exposure apparatus according to an eighteenth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the eighteenth embodiment is substantially the same as that of the first embodiment except that the configuration of the substrate stage apparatus 1820 and its measurement system is different. The elements having the same configurations or functions as those of the first embodiment will be described with the same reference numerals as those of the first embodiment, and description thereof will be omitted as appropriate.
 上記第1の実施形態(図2など参照)では、微動ステージ22の位置情報を求めるための上向きスケール72、及び上向きスケール72の位置情報を求めるための上向きヘッド80x、80yが、それぞれY粗動ステージ24に固定されていたのに対し、本第18の実施形態では、図67に示されるように、上向きスケール72、及び上向きヘッド80x、80yが、自重支持装置28が備えるYステップガイド44に固定されている点が異なる。 In the first embodiment (see FIG. 2 and the like), the upward scale 72 for obtaining the position information of the fine movement stage 22 and the upward heads 80x and 80y for obtaining the position information of the upward scale 72 are respectively Y coarse movements. In the eighteenth embodiment, as shown in FIG. 67, the upward scale 72 and the upward heads 80x and 80y are attached to the Y step guide 44 provided in the self-weight support device 28. It is different in that it is fixed.
 上向きスケール72は、スケールベース84の上面に固定されている。スケールベース84は、図66に示されるように、微動ステージ22の+Y側、及び-Y側にそれぞれ1つ配置されている。スケールベース84は、図67に示されるように、X軸方向から見てL字状に形成されたアーム部材1886を介してYステップガイド44に固定されている。従って、スケールベース84(及び上向きスケール72)は、Yステップガイド44、及びY粗動ステージ24と一体的にY軸方向に所定の長ストロークで移動可能となっている。上述したように、Yステップガイド44は、Y粗動ステージ24が有する一対のXビーム36の間に配置されている(Xビーム36のZ位置とYステップガイド44のZ位置とが一部重複している)ことから、Xビーム36には、アーム部材1886を通過させるため(アーム部材86とXビーム36との接触を防止するため)の貫通穴45が形成されている。 The upward scale 72 is fixed to the upper surface of the scale base 84. As shown in FIG. 66, one scale base 84 is disposed on each of the fine movement stage 22 on the + Y side and the −Y side. As shown in FIG. 67, the scale base 84 is fixed to the Y step guide 44 via an arm member 1886 formed in an L shape when viewed from the X-axis direction. Therefore, the scale base 84 (and the upward scale 72) is movable with a predetermined long stroke in the Y-axis direction integrally with the Y step guide 44 and the Y coarse movement stage 24. As described above, the Y step guide 44 is disposed between the pair of X beams 36 included in the Y coarse movement stage 24 (the Z position of the X beam 36 and the Z position of the Y step guide 44 partially overlap each other). For this reason, the X beam 36 is formed with a through hole 45 for allowing the arm member 1886 to pass therethrough (to prevent contact between the arm member 86 and the X beam 36).
 下向きヘッド74x、74y、及び上向きスケール72を含む微動ステージ計測系76(図6参照)の構成、及び動作は、上記第1の実施形態と同じであるので説明を省略する。また、下向きスケール78、及び上向きヘッド80x、80yを含む粗動ステージ計測系82(図6参照)の構成、及び動作も、上記第1の実施形態と同じであるので説明を省略する。ただし、本実施形態において、粗動ステージ計測系82が計測するのは、実際には、Yステップガイド44の位置情報である点が上記第1の実施形態と異なる。このように、本実施形態の基板計測系1870は、微動ステージ22(基板P)の位置情報を、Yステップガイド44を介して光学定盤18aを基準に求める。 Since the configuration and operation of the fine movement stage measurement system 76 (see FIG. 6) including the downward heads 74x and 74y and the upward scale 72 are the same as those in the first embodiment, description thereof is omitted. Further, the configuration and operation of the coarse movement stage measurement system 82 (see FIG. 6) including the downward scale 78 and the upward heads 80x and 80y are also the same as those in the first embodiment, and thus the description thereof is omitted. However, in this embodiment, the coarse movement stage measurement system 82 actually measures the position information of the Y step guide 44, which is different from the first embodiment. As described above, the substrate measurement system 1870 of the present embodiment obtains the positional information of the fine movement stage 22 (substrate P) with reference to the optical surface plate 18 a via the Y step guide 44.
 本第18の実施形態によれば、微動ステージ22を支持する(微動ステージ22と同じ系に含まれる)Yステップガイド44に上向きスケール72が固定されているので、上記第1の実施形態に比べ、粗動ステージ24、26の動作の影響を抑制することができ、微動ステージ22の位置計測精度をより向上することができる。 According to the eighteenth embodiment, since the upward scale 72 is fixed to the Y step guide 44 that supports the fine movement stage 22 (included in the same system as the fine movement stage 22), compared to the first embodiment. The influence of the operations of the coarse movement stages 24 and 26 can be suppressed, and the position measurement accuracy of the fine movement stage 22 can be further improved.
《第19の実施形態》
 次に第19の実施形態に係る液晶露光装置について、図69、図70用いて説明する。第19の実施形態に係る液晶露光装置の構成は、装置本体1918、及び基板計測系1970(図70参照)の構成が異なる点を除き、上記第18の実施形態と概ね同じであるので、以下、相違点についてのみ説明し、上記第18の実施形態と同じ構成又は機能を有する要素については、上記第18の実施形態と同じ符号を付して適宜その説明を省略する。
<< Nineteenth embodiment >>
Next, a liquid crystal exposure apparatus according to a nineteenth embodiment will be described with reference to FIGS. The configuration of the liquid crystal exposure apparatus according to the nineteenth embodiment is substantially the same as that of the eighteenth embodiment except that the configuration of the apparatus main body 1918 and the substrate measurement system 1970 (see FIG. 70) is different. Only the differences will be described, and elements having the same configuration or function as those in the eighteenth embodiment are denoted by the same reference numerals as those in the eighteenth embodiment, and description thereof will be omitted as appropriate.
 上記第18の実施形態(図66参照)において、装置本体18は、光学定盤18a、中架台部18b、及び下架台部18cが一体的に組み立てられた状態で防振装置19を介して床F上に設置されたのに対し、本第19の実施形態において、装置本体1918は、図69に示されるように、投影光学系16を支持する部分(以下、「第1の部分」と称する)と、Yステップガイド44を支持する部分(以下、「第2の部分」と称する)とが、互いに物理的に分離した状態で床F上に設置されている点が異なる。 In the eighteenth embodiment (see FIG. 66), the apparatus main body 18 is configured such that the optical surface plate 18a, the middle gantry 18b, and the lower gantry 18c are assembled together via the vibration isolator 19 in an assembled state. On the other hand, in the nineteenth embodiment, the apparatus main body 1918 has a portion that supports the projection optical system 16 (hereinafter referred to as a “first portion”) as shown in FIG. ) And a portion that supports the Y step guide 44 (hereinafter referred to as a “second portion”) are installed on the floor F in a state of being physically separated from each other.
 装置本体1918のうち、投影光学系16を支持する第1の部分は、光学定盤18a、一対の中架台部18b、及び一対の第1下架台部18dを備え、正面視で(X軸方向から見て)門型(逆U字型)に形成されている。第1の部分は、複数の防振装置19を介して床F上に設置されている。これに対し装置本体1918のうち、Yステップガイド44を支持する第2の部分は、第2下架台部18eを備えている。第2下架台部18eは、平板状の部材から成り、一対の第1下架台部18dの間に挿入されている。第2下架台部18eは、上記第1の部分を支持する複数の防振装置19とは別の複数の防振装置19を介して床F上に設置されている。一対の第1下架台部18dと第2下架台部18eとの間には、隙間が形成されており、第1の部分と第2の部分とは、振動的に分離(絶縁)されている。第2下架台部18e上に機械的なリニアガイド装置52を介してYステップガイド44が載置されている点は、上記第18の実施形態と同様である。 The first portion of the apparatus main body 1918 that supports the projection optical system 16 includes an optical surface plate 18a, a pair of middle frame portions 18b, and a pair of first lower frame portions 18d. It is formed in a gate shape (inverted U shape). The first part is installed on the floor F via a plurality of vibration isolation devices 19. On the other hand, the second part of the apparatus main body 1918 that supports the Y step guide 44 includes a second lower mount part 18e. The second lower frame 18e is made of a flat plate-like member and is inserted between the pair of first lower frames 18d. The second undercarriage 18e is installed on the floor F via a plurality of vibration isolation devices 19 different from the plurality of vibration isolation devices 19 that support the first part. A gap is formed between the pair of first lower frame 18d and second lower frame 18e, and the first part and the second part are vibrationally separated (insulated). . The point that the Y step guide 44 is placed on the second undercarriage 18e via the mechanical linear guide device 52 is the same as in the eighteenth embodiment.
 図69では、図示が一部省略されているが、一対のベースフレーム30の構成は、上記第18(第1)の実施形態と同様である。一対のベースフレーム30は、第2下架台部18eを含み、装置本体218とは振動的に分離された状態で床F上に設置されている。一対のベースフレーム30上にY粗動ステージ24、及びX粗動ステージ26が載置されている点、並びにYステップガイド44上に自重支持装置28を介して微動ステージ22が載置されている点は、上記第18の実施形態と同じである。 69, a part of the illustration is omitted, but the configuration of the pair of base frames 30 is the same as that of the eighteenth (first) embodiment. The pair of base frames 30 includes a second lower base 18e, and is installed on the floor F in a state of being vibrationally separated from the apparatus main body 218. The Y coarse movement stage 24 and the X coarse movement stage 26 are placed on the pair of base frames 30, and the fine movement stage 22 is placed on the Y step guide 44 via the self-weight support device 28. The point is the same as in the eighteenth embodiment.
 次に第19の実施形態に係る基板計測系1970の構成、及び動作について説明する。なお、計測系を除く基板ステージ装置1920の構成、及び動作は、上記第18の実施形態と同じであるので、説明を省略する。 Next, the configuration and operation of the substrate measurement system 1970 according to the nineteenth embodiment will be described. Since the configuration and operation of the substrate stage apparatus 1920 excluding the measurement system are the same as those in the eighteenth embodiment, the description thereof is omitted.
 図70には、第19の実施形態に係る基板計測系1970の概念図が示されている。基板計測系1970のうち、微動ステージ22(実際には基板ホルダ32)のXY平面内の位置情報を求めるための微動ステージ計測系76(図6参照)の構成は、上記第18(第1)の実施形態と同じであるので、説明を省略する。本第19の実施形態に係る基板計測系1970は、基板ホルダ32の水平面に対して交差する方向の位置情報を求めるためのZチルト位置計測系1998の構成が上記第18(第1)の実施形態と異なる。 FIG. 70 shows a conceptual diagram of a substrate measurement system 1970 according to the nineteenth embodiment. Of the substrate measurement system 1970, the configuration of the fine movement stage measurement system 76 (see FIG. 6) for obtaining positional information in the XY plane of the fine movement stage 22 (actually the substrate holder 32) is the 18th (first). Since this is the same as the embodiment, the description is omitted. In the substrate measurement system 1970 according to the nineteenth embodiment, the configuration of the Z tilt position measurement system 1998 for obtaining position information in a direction intersecting the horizontal plane of the substrate holder 32 is the above-described eighteenth (first) implementation. Different from form.
 Zチルト位置計測系1998は、図70に示されるように、基板ホルダ32のZチルト方向の位置情報を、微動ステージ計測系76と同様に、Y粗動ステージ24を介して光学定盤18a(図69参照)を基準に求める。 As shown in FIG. 70, the Z tilt position measurement system 1998 obtains position information of the substrate holder 32 in the Z tilt direction via the Y coarse movement stage 24 as in the fine movement stage measurement system 76. (See FIG. 69).
 図69に示されるように、基板ホルダ32の+Y側及び-Y側の側面に固定されたヘッドベース1988のそれぞれには、2つの下向きXヘッド74x、及び2つの下向きYヘッド74yと併せて、2つの下向きZヘッド74zがX軸方向に離間して取り付けられている(図70参照)。下向きZヘッド74zとしては、上向きスケール72に対して計測ビームを照射する公知のレーザ変位計が用いられている。不図示の主制御装置は、合計で4つの下向きZヘッド74z(図9参照)の出力に基づいて、微動ステージ22のY粗動ステージ24に対するZチルト方向の変位量情報を求める。 As shown in FIG. 69, each of the head bases 1988 fixed to the side surfaces of the substrate holder 32 on the + Y side and the −Y side includes two downward X heads 74x and two downward Y heads 74y. Two downward Z heads 74z are mounted apart from each other in the X-axis direction (see FIG. 70). As the downward Z head 74z, a known laser displacement meter that irradiates a measurement beam to the upward scale 72 is used. The main controller (not shown) obtains displacement amount information in the Z tilt direction of the fine movement stage 22 with respect to the Y coarse movement stage 24 based on the outputs of the four downward Z heads 74z (see FIG. 9) in total.
 また、Yステップガイド44の+Y側及び-Y側の側面に固定された一対のスケールベース84のそれぞれには、上記第1の実施形態のヘッドベース96と同様に(図4参照)、ヘッドベース1996が2つ固定されている。また、図70に示されるように、ヘッドベース1996には、2つの上向きXヘッド84x、及び2つの上向きYヘッド80yと併せて、1つの上向きZヘッド80zが取り付けられている。上向きZヘッド80zも下向きZヘッド74zと同様のレーザ変位計が用いられているが、各Zヘッド74z、80zの種類は、異なっていても良い。不図示の主制御装置は、合計で4つの上向きZヘッド80z(図70参照)の出力に基づいて、Y粗動ステージ24の光学定盤18a(図69参照)に対するZチルト方向の変位量情報を求める。 Further, each of the pair of scale bases 84 fixed to the side surfaces of the Y step guide 44 on the + Y side and the −Y side is similar to the head base 96 of the first embodiment (see FIG. 4). Two 1996 are fixed. As shown in FIG. 70, one upward Z head 80 z is attached to the head base 1996 together with two upward X heads 84 x and two upward Y heads 80 y. The upward Z head 80z uses the same laser displacement meter as the downward Z head 74z, but the types of the Z heads 74z and 80z may be different. The main control device (not shown) has displacement information in the Z tilt direction with respect to the optical surface plate 18a (see FIG. 69) of the Y coarse movement stage 24 based on the outputs of the four upward Z heads 80z (see FIG. 70) in total. Ask for.
 以上説明した第19の実施形態では、基板PのZチルト方向の位置情報を、光学定盤18a(すなわち投影光学系16)を基準に求めることが可能であるので、基板PのXY平面内の位置情報と併せて、基板PのZチルト方向の位置情報を高精度で取得することができる。すなわち、一例として国際公開第2015/147319号に開示されるように、重量キャンセル装置42を基準に基板PのZチルト方向の位置情報を求める場合には、重量キャンセル装置42がYステップガイド44上に載置されていることから、Yステップガイド44の移動時における振動などに起因して、基板Pの位置計測に誤差が発生する可能性がある。これに対し、本実施形態では、仮にYステップガイド44の移動時に振動などが発生したとしても、Yステップガイド44の位置情報が光学定盤18aを基準に常時計測されているため、Yステップガイド44を介して基板Pの位置情報を計測しても、該Yステップガイド44の位置ズレが、基板Pの計測結果に反映されない。従って、基板Pの位置情報を高精度で計測することができる。 In the nineteenth embodiment described above, the position information of the substrate P in the Z tilt direction can be obtained with reference to the optical surface plate 18a (that is, the projection optical system 16). Together with the position information, the position information of the substrate P in the Z tilt direction can be obtained with high accuracy. That is, as disclosed in International Publication No. 2015/147319 as an example, when the position information of the substrate P in the Z tilt direction is obtained based on the weight cancellation device 42, the weight cancellation device 42 is placed on the Y step guide 44. Therefore, there is a possibility that an error occurs in the position measurement of the substrate P due to vibration or the like when the Y step guide 44 moves. On the other hand, in this embodiment, even if vibration or the like occurs when the Y step guide 44 is moved, the position information of the Y step guide 44 is always measured with reference to the optical surface plate 18a. Even if the position information of the substrate P is measured via the position 44, the position shift of the Y step guide 44 is not reflected in the measurement result of the substrate P. Therefore, the position information of the substrate P can be measured with high accuracy.
 また、装置本体1980のうち、Yステップガイド44を支持する第2の部分(第2下架台部18e)が、投影光学系16を支持する第1の部分と振動的に分離しているので、Yステップガイド44が基板PのY軸方向への移動に伴ってY軸方向へ移動する際、該移動に起因する振動、変形などの投影光学系16に対する影響を抑制することができ、これにより露光精度を向上することができる。 In addition, since the second part (second lower mount part 18e) of the apparatus main body 1980 that supports the Y step guide 44 is vibrationally separated from the first part that supports the projection optical system 16, When the Y step guide 44 moves in the Y axis direction along with the movement of the substrate P in the Y axis direction, the influence on the projection optical system 16 such as vibration and deformation caused by the movement can be suppressed. The exposure accuracy can be improved.
 なお、上記第1の実施形態では、一対のヘッドベース88が、それぞれ微動ステージ22(基板ホルダ32)の位置を計測するための4つのヘッド(各一対の下向きXヘッド74x及び下向きYヘッド74y)を有し、合計で8つの基板ホルダ位置計測用のヘッドが設けられた場合について説明したが、基板ホルダ位置計測用のヘッドの数は、8つより少なくても良い。以下では、このような実施形態について説明する。 In the first embodiment, each of the pair of head bases 88 includes four heads for measuring the position of the fine movement stage 22 (substrate holder 32) (each pair of the downward X head 74x and the downward Y head 74y). However, the number of heads for measuring the substrate holder position may be less than eight. Hereinafter, such an embodiment will be described.
《第20の実施形態》
 次に、第20の実施形態について図71~図74(C)に基づいて説明する。本第20の実施形態に係る液晶露光装置の構成は、基板計測系2070の一部の構成を除き、前述の第1の実施形態と同じなので、以下、相違点についてのみ説明し、第1の実施形態と同じ構成及び機能を有する要素については、第1の実施形態と同じ符号を付してその説明を省略する。
<< 20th Embodiment >>
Next, a twentieth embodiment will be described with reference to FIGS. 71 to 74C. Since the configuration of the liquid crystal exposure apparatus according to the twentieth embodiment is the same as that of the first embodiment except for a part of the configuration of the substrate measurement system 2070, only the differences will be described below. Elements having the same configurations and functions as those of the embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 図71には、本第20の実施形態に係る基板ホルダ32及び基板計測系2070の一対のヘッドベース88が、投影光学系16とともに平面図にて示されている。図71では、説明をわかり易くするため、Y粗動ステージ24等の図示が省略されている。また、図71では、ヘッドベース88が点線で図示されている。 71 shows a pair of head bases 88 of the substrate holder 32 and the substrate measurement system 2070 according to the twentieth embodiment together with the projection optical system 16 in a plan view. In FIG. 71, the Y coarse movement stage 24 and the like are not shown for easy understanding. In FIG. 71, the head base 88 is indicated by a dotted line.
 本第20の実施形態に係る液晶露光装置では、図71に示されるように、基板ホルダ32の基板載置領域を挟む+Y側、及び-Y側の領域に、それぞれスケールベース84が配置されている。各スケールベース84の上面には、エンコーダスケール2072(以下、単にスケール2072と称する)がX軸方向に関して格子領域が互いに離れて配置されるようにX軸方向に所定間隔で、例えば5つ配置されている。 In the liquid crystal exposure apparatus according to the twentieth embodiment, as shown in FIG. 71, scale bases 84 are arranged in the + Y side and −Y side regions sandwiching the substrate placement region of the substrate holder 32, respectively. Yes. On the upper surface of each scale base 84, for example, five encoder scales 2072 (hereinafter simply referred to as scales 2072) are arranged at predetermined intervals in the X-axis direction so that the lattice regions are arranged apart from each other in the X-axis direction. ing.
 複数のスケール2072はそれぞれ、反射型の2次元格子が形成される格子領域(格子部)を有している。なお、スケール2072の全域に渡って格子を形成しても良いが、スケール2072の端部で精度良く格子を形成するのが困難であるため、本実施形態ではスケール2072において格子領域の周囲が余白部となるように格子を形成する。このため、X軸方向に関して隣接する一対のスケール2072の間隔よりも格子領域の間隔の方が広くなっており、計測ビームが格子領域外に照射されている間は位置計測が不能な非計測期間(非計測区間とも呼ぶが、以下では非計測期間と総称する)となる。 Each of the plurality of scales 2072 has a lattice region (lattice portion) where a reflective two-dimensional lattice is formed. Note that although a grid may be formed over the entire area of the scale 2072, it is difficult to accurately form a grid at the end of the scale 2072. Therefore, in this embodiment, the periphery of the grid area in the scale 2072 is blank. A lattice is formed so as to be a part. For this reason, the interval between the lattice regions is wider than the interval between the pair of adjacent scales 2072 in the X-axis direction, and the position measurement is not possible while the measurement beam is irradiated outside the lattice region. (Although also referred to as a non-measurement section, hereinafter, it is collectively referred to as a non-measurement period).
 基板ホルダ32の+Y側に配置された5つのスケール2072と、-Y側に配置された5つのスケール2072では、隣接するスケール2072(格子領域)間の間隔は、同じであるが、その配置位置が、+Y側の5つのスケール2072に対して、-Y側の5つのスケール2072が全体的に、所定距離D(隣接するスケール2072(格子領域)の間隔より幾分大きな距離)+X側にずれて配置されている。これは、基板ホルダ32の位置情報を計測する後述する2つのXヘッド74x及び2つのYヘッド74yの合計4つのヘッドのうちの2つ以上がいずれのスケールにも対向しない状態が発生しない(すなわち、4つのヘッドで計測ビームがスケールから外れる非計測期間が重ならない)ようにするためである。 In the five scales 2072 arranged on the + Y side of the substrate holder 32 and the five scales 2072 arranged on the −Y side, the intervals between the adjacent scales 2072 (lattice regions) are the same, but the arrangement positions thereof are the same. However, with respect to the five scales 2072 on the + Y side, the five scales 2072 on the −Y side generally shift to the predetermined distance D (a distance slightly larger than the interval between the adjacent scales 2072 (lattice regions)) + X side. Are arranged. This is because a state in which two or more of a total of four heads, that is, two X heads 74x and two Y heads 74y to be described later that measure the position information of the substrate holder 32 do not face any scale does not occur (that is, This is because the non-measurement periods in which the measurement beams are off the scale by the four heads do not overlap.
 各スケール2072は、例えば石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。各スケール2072の上面には、X軸方向及びY軸方向を周期方向とする所定ピッチ(例えば1μm)の反射型の2次元回折格子(2次元グレーティング)RGが形成されている。以下では、前述の格子領域を単に2次元グレーティングRGとも呼ぶ。なお、図71では、図示の便宜上、2次元グレーティングRGの格子線間の間隔(ピッチ)は、実際よりも格段に広く図示されている。以下で説明するその他の図においても同様である。以下では、基板ホルダ32の+Y側の領域に配置された5つのスケール2072を、第1格子群と称し、基板ホルダ32の-Y側の領域に配置された5つのスケール2072を、第2格子群と称するものとする。 Each scale 2072 is made of a plate-shaped (strip-shaped) member having a rectangular shape in plan view and extending in the X-axis direction, for example, formed of quartz glass. On the upper surface of each scale 2072, a reflective two-dimensional diffraction grating (two-dimensional grating) RG having a predetermined pitch (for example, 1 μm) with the X-axis direction and the Y-axis direction as periodic directions is formed. Hereinafter, the above-described lattice region is also simply referred to as a two-dimensional grating RG. In FIG. 71, for the sake of illustration, the interval (pitch) between the lattice lines of the two-dimensional grating RG is shown much wider than actual. The same applies to other figures described below. Hereinafter, the five scales 2072 disposed in the + Y side region of the substrate holder 32 are referred to as a first lattice group, and the five scales 2072 disposed in the −Y side region of the substrate holder 32 are referred to as the second lattice. It shall be called a group.
 +Y側に位置する一方のヘッドベース88の下面(-Z側の面)には、スケール2072にそれぞれ対向する状態で、Xヘッド74xとYヘッド74yがX軸方向に所定間隔(隣接するスケール2072の間隔より大きな距離)離れて固定されている。同様に、-Y側に位置する他方のヘッドベース88の下面(-Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74yとXヘッド74xがX軸方向に所定間隔離れて固定されている。すなわち、第1格子群と対向するXヘッド74xおよびYヘッド74yと、第2格子群と対向するXヘッド74xおよびYヘッド74yはそれぞれ、隣接するスケール2072の格子領域の間隔よりも広い間隔で計測ビームをスケール2072に照射する。以下では、説明の便宜上、一方のヘッドベース88が有するXヘッド74x、Yヘッド74yを、それぞれヘッド74a、ヘッド74bと呼び、他方のヘッドベース88が有するYヘッド74y、Xヘッド74xを、それぞれヘッド74c、ヘッド74dとも呼ぶものとする。 On the lower surface (the surface on the −Z side) of one head base 88 positioned on the + Y side, the X head 74x and the Y head 74y are in a predetermined interval in the X axis direction (adjacent scale 2072) in a state of facing the scale 2072, respectively. A distance greater than the distance between) is fixed. Similarly, the Y head 74y and the X head 74x are separated from each other by a predetermined distance in the X-axis direction on the lower surface (the surface on the −Z side) of the other head base 88 positioned on the −Y side in a state of facing the scale 2072. Is fixed. That is, the X head 74x and Y head 74y that face the first lattice group and the X head 74x and Y head 74y that face the second lattice group are measured at intervals wider than the interval between the lattice regions of the adjacent scale 2072. The beam is irradiated on the scale 2072. In the following, for convenience of explanation, the X head 74x and Y head 74y of one head base 88 are referred to as head 74a and head 74b, respectively, and the Y head 74y and X head 74x of the other head base 88 are respectively heads. 74c and head 74d are also called.
 この場合、ヘッド74aとヘッド74cが、同一のX位置(Y軸方向と平行な同一直線上)に配置され、ヘッド74bとヘッド74dが、ヘッド74aとヘッド74cのX位置と異なる、同一のX位置(Y軸方向と平行な同一直線上)に配置されている。ヘッド74a、74dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド74b、74cとそれぞれ対向する2次元グレーティングRGとによって、一対のYリニアエンコーダが構成されている。 In this case, the head 74a and the head 74c are arranged at the same X position (on the same straight line parallel to the Y-axis direction), and the head 74b and the head 74d are different from the X position of the head 74a and the head 74c. It is arranged at a position (on the same straight line parallel to the Y-axis direction). A pair of X linear encoders are configured by the two-dimensional gratings RG facing the heads 74a and 74d, and a pair of Y linear encoders are configured by the two-dimensional gratings RG facing the heads 74b and 74c.
 本第20の実施形態に係る液晶露光装置では、ヘッドベース88の残りの部分を含み、その他の部分の構成は、主制御装置100の基板計測系2070を用いた基板ホルダ32の駆動制御(位置制御)を除き、前述した第1の実施形態に係る液晶露光装置10と同様になっている。 In the liquid crystal exposure apparatus according to the twentieth embodiment, the remaining part of the head base 88 is included, and the configuration of the other parts is the drive control (position) of the substrate holder 32 using the substrate measurement system 2070 of the main controller 100. Except for control, the liquid crystal exposure apparatus 10 according to the first embodiment is the same as that described above.
 本第20の実施形態に係る液晶露光装置では、図72(A)に示される、スケールベース84の+X端部近傍に一対のヘッドベース88が対向する第1位置と、図72(B)に示される、スケールベース84の-X端部近傍に一対のヘッドベース88が対向する第2位置との間で、基板ホルダ32がX軸方向に移動する範囲内で、一対のヘッドベース88のヘッド74a~74d、すなわち一対のXリニアエンコーダ及び一対のYリニアエンコーダによる基板ホルダ32の位置計測が可能である。図72(A)は、ヘッド74bのみがいずれのスケール2072にも対向していない状態を示し、図72(B)は、ヘッド74cのみがいずれのスケール2072にも対向していない状態を示している。 In the liquid crystal exposure apparatus according to the twentieth embodiment, as shown in FIG. 72A, the first position where the pair of head bases 88 face each other near the + X end portion of the scale base 84, and FIG. The heads of the pair of head bases 88 within a range in which the substrate holder 32 moves in the X-axis direction between the second position where the pair of head bases 88 oppose each other in the vicinity of the −X end portion of the scale base 84 shown in FIG. 74a to 74d, that is, the position of the substrate holder 32 can be measured by a pair of X linear encoders and a pair of Y linear encoders. 72A shows a state in which only the head 74b does not face any scale 2072, and FIG. 72B shows a state in which only the head 74c does not face any scale 2072. Yes.
 図72(A)に示される第1位置と図72(B)に示される第2位置との間で基板ホルダ32がX軸方向に移動する過程で、一対のヘッドベース88とスケール2072との位置関係は、図73(A)~図73(D)にそれぞれ示される第1の状態~第4の状態と、4つのヘッド74a~74dの全てが、いずれかのスケール2072の2次元グレーティングRGに対向する(すなわち、4つのヘッド74a~74dの全てで計測ビームが2次元グレーティングRGに照射される)第5の状態との5つの状態の間で遷移する。以下では、ヘッドがスケール2072の2次元グレーティングRGに対向する、あるいは計測ビームがスケール2072の2次元グレーティングRGに照射されると言う代わりに、単にヘッドがスケールに対向すると表現する。 In the process in which the substrate holder 32 moves in the X-axis direction between the first position shown in FIG. 72A and the second position shown in FIG. 72B, the pair of head bases 88 and the scale 2072 The positional relationship is such that the first state to the fourth state shown in FIGS. 73A to 73D and the four heads 74a to 74d are all two-dimensional gratings RG of any scale 2072. (I.e., all four heads 74a to 74d are irradiated with the measurement beam on the two-dimensional grating RG) and transition to a fifth state. In the following, instead of saying that the head faces the two-dimensional grating RG of the scale 2072 or that the measurement beam is irradiated on the two-dimensional grating RG of the scale 2072, it is expressed that the head just faces the scale.
 ここでは、説明の便宜上、6つのスケール2072を取り上げ、各スケールにそれぞれ識別のための記号a~fを付して、スケール2072a~2072fと表記する(図73(A)参照)。 Here, for convenience of explanation, six scales 2072 are taken up, and symbols a to f for identification are given to the scales, respectively, and expressed as scales 2072a to 2072f (see FIG. 73A).
 図73(A)の第1の状態は、ヘッド74aがスケール2072bに対向し、且つヘッド74c、74dがスケール2072eに対向し、ヘッド74bのみが、いずれのスケールにも対向しない状態を示し、図73(B)の第2の状態は、図73(A)の状態から基板ホルダ32が-X方向に所定距離移動してヘッド74a、74bがスケール2072bに対向し、且つヘッド74dがスケール2072eに対向し、ヘッド74cのみがいずれのスケールにも対向しなくなった状態を示す。図73(A)の状態から図73(B)の状態に遷移する過程で、ヘッド74a、74bがスケール2072bに対向し、且つヘッド74c,74dが、スケール2072eに対向する第5の状態を経由する。 73A shows a state in which the head 74a faces the scale 2072b, the heads 74c and 74d face the scale 2072e, and only the head 74b does not face any scale. In the second state of 73 (B), the substrate holder 32 is moved a predetermined distance in the −X direction from the state of FIG. 73 (A), the heads 74a and 74b are opposed to the scale 2072b, and the head 74d is directed to the scale 2072e. It shows a state in which only the head 74c is opposed to any scale. In the process of transition from the state of FIG. 73A to the state of FIG. 73B, the heads 74a and 74b face the scale 2072b, and the heads 74c and 74d go through the fifth state facing the scale 2072e. To do.
 図73(C)の第3の状態は、図73(B)の状態から基板ホルダ32が-X方向に所定距離移動してヘッド74aのみがいずれのスケールにも対向しなくなった状態を示す。図73(B)の状態から図73(C)の状態に遷移する過程で、ヘッド74a、74bがスケール2072bに対向し、且つヘッド74cがスケール2072dに対向し、且つヘッド74dがスケール2072eに対向する第5の状態を経由する。 73 (C) shows a state in which the substrate holder 32 has moved a predetermined distance in the −X direction from the state of FIG. 73 (B) and only the head 74a is no longer opposed to any scale. In the process of transition from the state shown in FIG. 73B to the state shown in FIG. 73C, the heads 74a and 74b face the scale 2072b, the head 74c faces the scale 2072d, and the head 74d faces the scale 2072e. Go through the fifth state.
 図73(D)の第4の状態は、図73(C)の状態から基板ホルダ32が-X方向に所定距離移動してヘッド74dのみがいずれのスケールにも対向しなくなった状態を示す。図73(C)の状態から図73(D)の状態に遷移する過程で、ヘッド74aがスケール2072aに対向し、且つヘッド74bがスケール2072bに対向し、且つヘッド74cがスケール2072dに対向し、且つヘッド74dがスケール2072eに対向する第5の状態を経由する。 73 (D) shows a state where the substrate holder 32 has moved a predetermined distance in the −X direction from the state shown in FIG. 73 (C), and only the head 74d is no longer opposed to any scale. In the process of transition from the state of FIG. 73C to the state of FIG. 73D, the head 74a faces the scale 2072a, the head 74b faces the scale 2072b, and the head 74c faces the scale 2072d. In addition, the head 74d goes through the fifth state in which it faces the scale 2072e.
 図73(D)の状態から、基板ホルダ32が所定距離-X方向に移動すると、ヘッド74aがスケール2072aに対向し、且つヘッド74bがスケール2072bに対向し、且つヘッド74c、74dがスケール2072dに対向する第5の状態を経由した後、ヘッド74aがスケール2072aに対向し、且つヘッド74c、74dがスケール2072dに対向し、ヘッド74bのみが、いずれのスケールにも対向しない第1の状態となる。 When the substrate holder 32 is moved in the −X direction by a predetermined distance from the state shown in FIG. 73D, the head 74a faces the scale 2072a, the head 74b faces the scale 2072b, and the heads 74c and 74d move to the scale 2072d. After passing through the fifth state facing each other, the head 74a faces the scale 2072a, the heads 74c and 74d face the scale 2072d, and only the head 74b enters the first state that does not face any scale. .
 以上は、基板ホルダ32の±Y側にそれぞれ5つ配置されたスケール2072のうちの各3つのスケール2072と、一対のヘッドベース88との間の状態(位置関係)の遷移についての説明であるが、10のスケール2072と一対のヘッドベース88との間でも、基板ホルダ32の±Y側にそれぞれ配置された5つのスケールのうちの隣接する各3つのスケール2072について見れば、一対のヘッドベース88との位置関係は、上述と同様の順序で遷移する。 The above is the description of the transition of the state (positional relationship) between each of the three scales 2072 of the five scales 2072 arranged on the ± Y side of the substrate holder 32 and the pair of head bases 88. However, even if there are three scales 2072 adjacent to each other among the five scales arranged on the ± Y side of the substrate holder 32 even between the ten scales 2072 and the pair of head bases 88, a pair of head bases The positional relationship with 88 changes in the same order as described above.
 このように、本第20の実施形態では、基板ホルダ32がX軸方向に移動されても、2つのXヘッド74x、すなわちヘッド74a、74dと2つのYヘッド74y、すなわちヘッド74b、74cとの合計4つのうちの少なくとも3つが、常にいずれかのスケール2072(2次元グレーティングRG)に対向する。さらに、基板ホルダ32がY軸方向に移動されても、4つのヘッドともY軸方向に関して計測ビームがスケール2072(2次元グレーティングRG)から外れないようにスケール2072の格子領域の幅が設定されているため、4つのヘッドの少なくとも3つが常にいずれかのスケール2072に対向する。したがって、主制御装置100は、常時、ヘッド74a~74dのうちの3つを用いて、基板ホルダ32のX軸方向、Y軸方向及びθz方向の位置情報を管理することが可能である。以下、この点についてさらに説明する。 Thus, in the twentieth embodiment, even if the substrate holder 32 is moved in the X-axis direction, the two X heads 74x, that is, the heads 74a and 74d, and the two Y heads 74y, that is, the heads 74b and 74c, At least three out of the total of four always face one of the scales 2072 (two-dimensional grating RG). Further, even if the substrate holder 32 is moved in the Y-axis direction, the width of the lattice region of the scale 2072 is set so that the measurement beams do not deviate from the scale 2072 (two-dimensional grating RG) in the Y-axis direction for all four heads. Therefore, at least three of the four heads always face one of the scales 2072. Therefore, main controller 100 can always manage position information of substrate holder 32 in the X-axis direction, Y-axis direction, and θz direction using three of heads 74a to 74d. Hereinafter, this point will be further described.
 Xヘッド74x、Yヘッド74yの計測値を、それぞれCX、CYとすると、計測値C,Cは、それぞれ、次式(1a)、(1b)で表すことができる。 X heads 74x, the measured value of Y heads 74y, respectively CX, When CY, measured value C X, C Y, respectively, the following equation (1a), can be represented by (1b).
  C= (p-X)cosθz+(q-Y)sinθz  ……(1a)
  C=-(p-X)sinθz+(q-Y)cosθz  ……(1b)
 ここで、X、Y、θzは、それぞれ基板ホルダ32のX軸方向、Y軸方向及びθz方向の位置を示す。また、pi、は、ヘッド74a~74dそれぞれのX位置(X座標値)、Y位置(Y座標値)である。本実施形態では、ヘッド74a、74b、74c、74dそれぞれのX座標値p及びY座標値q(i=1、2、3、4)は、各一対のXヘッド80x及びYヘッド80yとそれに対向するスケール78から出力される計測結果、及び、ヘッドベース1996とスケール72との相対位置関係により算出される。
C X = (p i −X) cos θz + (q i −Y) sin θz (1a)
C Y = − (p i −X) sin θz + (q i −Y) cos θz (1b)
Here, X, Y, and θz indicate the positions of the substrate holder 32 in the X-axis direction, the Y-axis direction, and the θz direction, respectively. P i and q i are the X position (X coordinate value) and Y position (Y coordinate value) of each of the heads 74a to 74d. In the present embodiment, the X coordinate value p i and the Y coordinate value q i (i = 1, 2, 3, 4) of each of the heads 74a, 74b, 74c, and 74d are the same as each pair of the X head 80x and the Y head 80y. It is calculated from the measurement result output from the scale 78 facing it and the relative positional relationship between the head base 1996 and the scale 72.
 したがって、基板ホルダ32と一対のヘッドベース88とが図72(A)に示されるような位置関係にあり、このとき基板ホルダ32のXY平面内の3自由度方向の位置が(X、Y、θz)であるものとすると、3つのヘッド74a、74c、74dの計測値は、理論上、次の式(2a)~(2c)(アフィン変換の関係とも呼ぶ)で表すことができる。 Therefore, the substrate holder 32 and the pair of head bases 88 are in a positional relationship as shown in FIG. 72A. At this time, the positions of the substrate holder 32 in the three-degree-of-freedom direction in the XY plane are (X, Y, θz), the measured values of the three heads 74a, 74c, and 74d can theoretically be expressed by the following equations (2a) to (2c) (also referred to as affine transformation relationships).
  C= (p-X)cosθz+(q-Y)sinθz  ……(2a)
  C=-(p-X)sinθz+(q-Y)cosθz  ……(2b)
  C= (p-X)cosθz+(q-Y)sinθz  ……(2c)
 基板ホルダ32が座標原点(X,Y、θz)=(0,0,0)にある基準状態では、連立方程式(2a)~(2c)より、C=p,C=q,C=pとなる。基準状態は、例えば投影光学系16による投影領域の中心に、基板ホルダ32中心(基板Pの中心にほぼ一致)が一致し、θz回転がゼロの状態である。したがって、基準状態では、ヘッド74bによる基板ホルダ32のY位置の計測も可能となっており、ヘッド74bによる計測値Cは、式(1b)に従い、C=qとなる。
C 1 = (p 1 −X) cos θz + (q 1 −Y) sin θz (2a)
C 3 = − (p 3 −X) sin θz + (q 3 −Y) cos θz (2b)
C 4 = (p 4 −X) cos θz + (q 4 −Y) sin θz (2c)
In the reference state where the substrate holder 32 is at the coordinate origin (X, Y, θz) = (0, 0, 0), C 1 = p 1 , C 3 = q 3 , from simultaneous equations (2a) to (2c) C 4 = p 4 The reference state is a state where, for example, the center of the substrate holder 32 (substantially coincides with the center of the substrate P) coincides with the center of the projection area by the projection optical system 16 and the θz rotation is zero. Therefore, in the reference state, measurement of the Y position of the substrate holder 32 by the head 74b has also become possible, the measurement value C 2 by the head 74b, in accordance with formula (1b), a C 2 = q 2.
 従って、基準状態において、3つのヘッド74a、74c、74dの計測値を、それぞれp,q,pと初期設定すれば、以降基板ホルダ32の変位(X,Y,θz)に対して、3つのヘッド74a、74c、74dは、式(2a)~(2c)で与えられる理論値を提示することになる。 Therefore, in the reference state, if the measurement values of the three heads 74a, 74c, and 74d are initially set as p 1 , q 3 , and p 4 , respectively, the displacement (X, Y, θz) of the substrate holder 32 is thereafter performed. The three heads 74a, 74c, and 74d present the theoretical values given by the equations (2a) to (2c).
 なお、基準状態において、ヘッド74a、74c、74dのいずれか1つ、例えばヘッド74cに代えて、ヘッド74bの計測値Cを、qに初期設定しても良い。 Incidentally, in the reference state, the head 74a, 74c, one of the 74d, for example, in place of the head 74c, the measurement values C 2 of the head 74b, it may be initially set to q 2.
 この場合には、以降基板ホルダ32の変位(X,Y,θz)に対して、3つのヘッド74a、74b、74dは、式(2a)、(2c)、(2d)で与えられる理論値を提示することになる。 In this case, the three heads 74a, 74b, and 74d have the theoretical values given by the equations (2a), (2c), and (2d) with respect to the displacement (X, Y, θz) of the substrate holder 32 thereafter. Will be presented.
  C= (p-X)cosθz+(q-Y)sinθz  ……(2a)
  C= (p-X)cosθz+(q-Y)sinθz  ……(2c)
  C=-(p-X)sinθz+(q-Y)cosθz  ……(2d)
 連立方程式(2a)~(2c)及び連立方程式(2a)、(2c)、(2d)では、変数が3つ(X,Y,θz)に対して3つの式が与えられている。従って、逆に、連立方程式(2a)~(2c)における従属変数C,C,C、あるいは連立方程式(2a)、(2c)、(2d)における従属変数C,C,Cが与えられれば、変数X,Y,θzを求めることができる。ここで、近似sinθz≒θzを適用すると、あるいはより高次の近似を適用しても、容易に方程式を解くことができる。従って、ヘッド74a、74c、74d(又はヘッド74a、74b、74d)の計測値C,C,C(又はC,C,C)より基板ホルダ32の位置(X,Y,θz)を算出することができる。
C 1 = (p 1 −X) cos θz + (q 1 −Y) sin θz (2a)
C 4 = (p 4 −X) cos θz + (q 4 −Y) sin θz (2c)
C 2 = − (p 2 −X) sin θz + (q 2 −Y) cos θz (2d)
In the simultaneous equations (2a) to (2c) and the simultaneous equations (2a), (2c), (2d), three equations are given for three variables (X, Y, θz). Therefore, conversely, the dependent variables C 1 , C 3 , C 4 in the simultaneous equations (2a) to (2c) or the dependent variables C 1 , C 4 , C in the simultaneous equations (2a), (2c), (2d) If 2 is given, the variables X, Y, and θz can be obtained. Here, the equation can be easily solved by applying the approximation sin θz≈θz or applying higher-order approximation. Accordingly, the positions (X, Y, and C) of the substrate holder 32 from the measured values C 1 , C 3 , and C 4 (or C 1 , C 2 , and C 4 ) of the heads 74a, 74c, and 74d (or the heads 74a, 74b, and 74d). θz) can be calculated.
 次に、本第20の実施形態に係る液晶露光装置で行われる、基板ホルダ32の位置情報を計測する、基板計測系2070のヘッドの切り換え時におけるつなぎ処理、すなわち計測値の初期設定について、主制御装置100の動作を中心として説明する。 Next, the connection process at the time of switching the head of the substrate measurement system 2070, that is, the initial setting of the measurement value, which is performed by the liquid crystal exposure apparatus according to the twentieth embodiment, is performed. The operation of the control device 100 will be mainly described.
 本第20の実施形態では、前述の如く、基板ホルダ32の有効ストローク範囲では常に3つのエンコーダ(Xヘッド及びYヘッド)が基板ホルダ32の位置情報を計測しており、エンコーダ(Xヘッド又はYヘッド)の切り換え処理を行う際には、例えば図74(B)に示されるように、4つのヘッド74a~74dのそれぞれが、いずれかのスケール2072に対向し、基板ホルダ32の位置を計測可能な状態(前述の第5の状態)となる。図74(B)は、図74(A)に示されるように、ヘッド74a、74b及び74dで基板ホルダ32の位置を計測していた状態から、基板ホルダ32が-X方向に移動して、図74(C)に示されるように、ヘッド74b、74c、74dで基板ホルダ32の位置を計測する状態に遷移する途中で出現する第5の状態の一例を示す。すなわち、図74(B)は、基板ホルダ32の位置情報の計測に用いられる3つのヘッドが、ヘッド74a、74b、74dからヘッド74b、74c、74dに切り換えられている最中の状態を示す。 In the twentieth embodiment, as described above, in the effective stroke range of the substrate holder 32, three encoders (X head and Y head) always measure the position information of the substrate holder 32, and the encoder (X head or Y head). When the head) switching process is performed, for example, as shown in FIG. 74B, each of the four heads 74a to 74d faces one of the scales 2072, and the position of the substrate holder 32 can be measured. State (the above-mentioned fifth state). In FIG. 74B, as shown in FIG. 74A, the substrate holder 32 moves in the −X direction from the state where the position of the substrate holder 32 is measured by the heads 74a, 74b and 74d. As shown in FIG. 74C, an example of a fifth state that appears during the transition to a state in which the position of the substrate holder 32 is measured by the heads 74b, 74c, and 74d is shown. That is, FIG. 74B shows a state in which the three heads used for measuring the position information of the substrate holder 32 are being switched from the heads 74a, 74b, and 74d to the heads 74b, 74c, and 74d.
 基板ホルダ32のXY平面内の位置制御(位置情報の計測)に用いられるヘッド(エンコーダ)の切り換え処理(つなぎ)を行おうとする瞬間において、図74(B)に示されるように、ヘッド74a、74b、74c及び74dが、それぞれスケール2072b、2072b、2072d、2072eに対向している。図74(A)から図74(C)を一見すると、図74(B)においてヘッド74aからヘッド74cに切り換えようとしているように見えるが、ヘッド74aとヘッド74cとでは、計測方向が異なることからも明らかなように、つなぎを行おうとするタイミングにおいてヘッド74aの計測値(カウント値)をそのままヘッド74cの計測値の初期値として与えても何の意味もない。 As shown in FIG. 74B, at the moment when the switching process (connection) of the head (encoder) used for position control (measurement of position information) in the XY plane of the substrate holder 32 is performed, as shown in FIG. 74b, 74c, and 74d are opposed to the scales 2072b, 2072b, 2072d, and 2072e, respectively. At first glance from FIG. 74 (A) to FIG. 74 (C), it seems that the head 74a is going to be switched to the head 74c in FIG. 74 (B), but the measurement direction is different between the head 74a and the head 74c. As is apparent, it is meaningless to give the measured value (count value) of the head 74a as it is as the initial value of the measured value of the head 74c at the timing of connection.
 そこで、本実施形態では、主制御装置100が、3つのヘッド74a、74b及び74dを用いる基板ホルダ32の位置情報の計測(及び位置制御)から、3つのヘッド74b、74c、74dを用いる基板ホルダ32の位置情報の計測(及び位置制御)に切り換えるようになっている。すなわち、この方式は通常のエンコーダつなぎの概念とは異なり、あるヘッドから別のヘッドにつなぐというのではなく、3つのヘッド(エンコーダ)の組み合わせから別の3つのヘッド(エンコーダ)の組み合わせにつなぐものである。 Therefore, in the present embodiment, the main controller 100 uses the three heads 74b, 74c, and 74d to measure the position information of the substrate holder 32 that uses the three heads 74a, 74b, and 74d (and the position control). Switching to 32 position information measurement (and position control). In other words, this method is different from the concept of normal encoder connection, not from one head to another, but from a combination of three heads (encoders) to another three heads (encoders). It is.
 主制御装置100は、まず、ヘッド74a、74d及び74bの計測値C,C,Cに基づいて、連立方程式(2a)、(2c)、(2d)を解き、基板ホルダのXY平面内の位置情報(X,Y,θz)を算出する。 First, main controller 100 solves simultaneous equations (2a), (2c), and (2d) based on measured values C 1 , C 4 , and C 2 of heads 74a, 74d, and 74b, and obtains an XY plane of the substrate holder. The position information (X, Y, θz) is calculated.
 次に、主制御装置100は、次式(3)のアフィン変換の式に、上で算出したX,θzを代入して、ヘッド74cの計測値の初期値(ヘッド74cが計測すべき値)を求める。 Next, main controller 100 substitutes X and θz calculated above for the affine transformation formula of the following formula (3), and the initial value of the measured value of head 74c (the value to be measured by head 74c). Ask for.
  C=-(p-X)sinθz+(q-Y)cosθz  ……(3)
 上式(3)において、p,qは、ヘッド74cの計測点のX座標値、Y座標値である。
C 3 = − (p 3 −X) sin θz + (q 3 −Y) cos θz (3)
In the above equation (3), p 3 and q 3 are the X coordinate value and the Y coordinate value of the measurement point of the head 74c.
 上記初期値Cをヘッド74cの初期値として与えることで、基板ホルダ32の3自由度方向の位置(X,Y,θz)を維持したまま、矛盾なくつなぎが完了することになる。それ以降は、切り換え後に使用するヘッド74b、74c、74dの計測値C,C,Cを用いて、次の連立方程式(2b)~(2d)を解いて、基板ホルダ32の位置座標(X,Y,θz)を算出する。 By giving the initial value C 3 as the initial value of the head 74c, 3 degrees of freedom of the position of the substrate holder 32 while maintaining (X, Y, [theta] z) a, so that the conflict no joint is completed. Thereafter, the following simultaneous equations (2b) to (2d) are solved using the measured values C 2 , C 3 , and C 4 of the heads 74b, 74c, and 74d used after switching, and the position coordinates of the substrate holder 32 are obtained. (X, Y, θz) is calculated.
  C=-(p-X)sinθz+(q-Y)cosθz  ……(2b)
  C= (p-X)cosθz+(q-Y)sinθz  ……(2c)
  C=-(p-X)sinθz+(q-Y)cosθz  ……(2d)
 なお、上では、3つのヘッドから、この3つのヘッドと異なる別のヘッドを1つ含む異なる3つのヘッドへの切り換えについて説明したが、これは切り換え前の3つのヘッドの計測値から求まる基板ホルダ32の位置(X、Y、θz)を用いて、切り換え後に用いられる別のヘッドで計測すべき値を、アフィン変換の原理に基づいて、算出し、その算出した値を、切り換え後に用いられる別のヘッドの初期値として設定しているため、このように説明した。しかしながら、切り換え後に用いられる別のヘッドで計測すべき値の算出等の手順には触れず、切り換え及びつなぎ処理の直接の対象である2つのヘッドにのみ注目すれば、切り換え前に使用している3つのヘッドのうちの1つのヘッドを別の1つのヘッドに切り換えているとも言える。いずれにしても、ヘッドの切り換えは、切り換え前に基板ホルダの位置情報の計測及び位置制御に用いられているヘッドと、切り換え後に用いられるヘッドとが、ともに、いずれかのスケール2072に同時に対向している状態で行われる。
C 3 = − (p 3 −X) sin θz + (q 3 −Y) cos θz (2b)
C 4 = (p 4 −X) cos θz + (q 4 −Y) sin θz (2c)
C 2 = − (p 2 −X) sin θz + (q 2 −Y) cos θz (2d)
In the above description, switching from three heads to three different heads including another head different from the three heads has been described. This is a substrate holder obtained from the measured values of the three heads before switching. Using 32 positions (X, Y, θz), a value to be measured by another head used after switching is calculated based on the principle of affine transformation, and the calculated value is used as another value used after switching. Since this is set as the initial value of the head, this is described. However, the procedure for calculating the value to be measured by another head used after switching is not touched, and if attention is paid to only two heads that are the direct targets of switching and connecting processing, they are used before switching. It can also be said that one of the three heads is switched to another head. In any case, when switching the head, the head used for measurement and position control of the position information of the substrate holder before switching and the head used after switching both face one scale 2072 simultaneously. It is done in the state.
 なお、上の説明は、ヘッド74a~74dの切り換えの一例であるが、いずれの3つのヘッドから別の3つのヘッドへの切り換え、あるいはいずれのヘッドから別のヘッドへの切り換えにおいても、上記の説明と同様の手順でヘッドの切り換えが行われる。 The above explanation is an example of the switching of the heads 74a to 74d. However, the above-described switching is possible even when switching from any three heads to another three heads or switching from any head to another head. The head is switched in the same procedure as described.
 ところで、本第20の実施形態のように、格子部を複数のスケール(2次元グレーティングRG)で構成する場合、それぞれ計測ビームが照射されるスケール同士が、より厳密には各スケールに形成された格子(2次元グレーティングRG)が相互にずれると、エンコーダシステムの計測誤差が発生する。 By the way, as in the twentieth embodiment, when the grating portion is configured with a plurality of scales (two-dimensional grating RG), the scales irradiated with the measurement beams are formed on each scale more strictly. When the grating (two-dimensional grating RG) is shifted from each other, a measurement error of the encoder system occurs.
 また、本第20の実施形態では、基板ホルダ32のX位置に応じて、基板ホルダ32の位置情報計測及び位置制御に用いられる少なくとも3つのヘッドの計測ビームが照射される少なくとも2つのスケール2072の組み合わせが異なり、いわば、これら少なくとも2つのスケールの組み合わせ毎に座標系が存在すると考えることができ、例えば少なくとも2つのスケールの相対位置変動などによって、これらの座標系間にずれ(グリッド誤差)が生じると、エンコーダシステムの計測誤差が発生する。なお、少なくとも2つのスケールの相対位置関係は長期的に変化するため、グリッド誤差、すなわち計測誤差も変動する。 In the twentieth embodiment, according to the X position of the substrate holder 32, at least two scales 2072 irradiated with measurement beams of at least three heads used for position information measurement and position control of the substrate holder 32 are used. It can be considered that there is a coordinate system for each combination of at least two scales. For example, a relative position variation of at least two scales causes a shift (grid error) between these coordinate systems. Measurement error of the encoder system occurs. In addition, since the relative positional relationship between at least two scales changes over a long period, the grid error, that is, the measurement error also varies.
 しかるに、本第20の実施形態では、ヘッドの切り換えに際し、切り換え後のヘッドの初期値を設定する時点では、4つのヘッド74a~74dの全てが同時に少なくとも2つのスケール2072のいずれかに対向する第5の状態が発生する。この第5の状態では、4つのヘッド全てで基板ホルダ32の位置情報の計測が可能であるが、基板ホルダの位置座標(X、Y、θz)の計測のためには、ヘッドは3つしか必要がないので、1つは冗長となる。そこで、主制御装置100は、この冗長ヘッドの計測値を利用することで、座標系間のずれ(グリッド誤差)に起因するエンコーダシステムの計測誤差の補正情報(グリッド補正情報又は格子補正情報)の取得、及びグリッド誤差に起因するエンコーダシステムの計測誤差が補償されるような基板ホルダ32の駆動(位置制御)を行うこととしている。 However, in the twentieth embodiment, when the heads are switched, when the initial values of the heads after the switching are set, all of the four heads 74a to 74d simultaneously face one of the at least two scales 2072. State 5 occurs. In this fifth state, the position information of the substrate holder 32 can be measured with all four heads, but only three heads are required for measuring the position coordinates (X, Y, θz) of the substrate holder. One is redundant because it is not necessary. Therefore, main controller 100 uses the measurement value of the redundant head to correct correction information (grid correction information or grid correction information) of the measurement error of the encoder system due to a shift between the coordinate systems (grid error). Acquisition and driving (position control) of the substrate holder 32 are performed so that the measurement error of the encoder system due to the grid error is compensated.
 例えば4つのヘッド74a~74dのそれぞれが、同時に少なくとも2つのスケールに対向しているときに、2組の3つ1組のヘッドによる基板ホルダの位置座標(X、Y、θz)の計測を行い、その計測により得られた、具体的には、前述のアフィン変換の式を利用した連立方程式を解くことで得られた位置(X、Y、θz)の差、すなわちオフセットΔx、Δy、Δθzを求め、このオフセットを、そのとき4つのヘッド74a~74dが対向している少なくとも2つのスケールの組み合わせから成る座標系のオフセットとする。このオフセットは、その少なくとも2つのスケールに対向する4つのヘッドのうちの3つのヘッドによる基板ホルダ32の位置情報の計測及び基板ホルダ32の位置の制御で用いられる。なお、前述したヘッドの切り換え及びつなぎ処理が行われる前後では、切り換え前に基板ホルダ32の位置情報の計測及び位置の制御に用いられていた3つのヘッドが対向する少なくとも2つのスケールの組み合わせと、切り換え後に基板ホルダ32の位置情報の計測及び位置の制御に用いられていた3つのヘッドが対向する少なくとも2つのスケールの組み合わせとは、当然異なるので、ヘッドの切り換えが行われる前と後では、異なるオフセットが、基板ホルダ32の位置情報の計測及び位置の制御でグリッド又は格子補正情報として用いられる。 For example, when each of the four heads 74a to 74d is opposed to at least two scales at the same time, the position coordinates (X, Y, θz) of the substrate holder are measured by two sets of three heads. Specifically, the difference between the positions (X, Y, θz) obtained by solving the simultaneous equations using the above-described affine transformation formula, that is, the offsets Δx, Δy, Δθz, obtained by the measurement, is calculated. This offset is determined as a coordinate system offset consisting of a combination of at least two scales at which the four heads 74a to 74d face each other. This offset is used in measurement of position information of the substrate holder 32 and control of the position of the substrate holder 32 by three of the four heads facing the at least two scales. Before and after the head switching and joining process described above, a combination of at least two scales facing the three heads used for measuring the position information of the substrate holder 32 and controlling the position before switching, Since the combination of at least two scales facing the three heads used for measuring the position information and controlling the position of the substrate holder 32 after the switching is naturally different, it is different before and after the head switching. The offset is used as grid or lattice correction information in measurement of position information of the substrate holder 32 and control of the position.
 ここで、一例として、基板ホルダ32が-X方向に移動している過程で、図74(A)の状態の直前に現れる、次のような第5の状態(ケース1の状態と呼ぶ)を考える。すなわち、ヘッド74a、74bがスケール2072bに対向し、ヘッド74c、74dがスケール2072eに対向する状態である。この状態では、ヘッド74a~74dのうち、いずれの3つヘッドの組み合わせから成る2組のヘッドを用いても、オフセットを求めることはできる。しかるに、図74(A)の状態では、ヘッド74cが計測不能となり、このヘッド74cの計測を復帰させるために、図74(B)に示され第5の状態において、3つのヘッド74a、74b、74dの計測値から算出される基板ホルダの位置座標(X、Y、θz)が用いられる。また、基板ホルダ32が-X方向に移動している過程で、ケース1の状態に先立ち、計測不能状態となっていたヘッド74bの復帰が行われる。このヘッド74bの復帰には、3つのヘッド74a、74c、74dの計測値から算出される基板ホルダの位置座標(X、Y、θz)が用いられる。そこで、ケース1の状態では、3つのヘッド74a、74b、74dの組及び3つのヘッド74a、74c、74dの組を除く、3つのヘッドの組、すなわち、3つのヘッド74a、74b、74cの組と、3つのヘッド74b、74c、74dを用いてスケール2072b、2072eの組み合わせから成る座標系の格子補正情報を取得するものとする。 Here, as an example, the following fifth state (referred to as the state of case 1) that appears immediately before the state of FIG. 74 (A) in the process of moving the substrate holder 32 in the −X direction is as follows. Think. That is, the heads 74a and 74b are opposed to the scale 2072b, and the heads 74c and 74d are opposed to the scale 2072e. In this state, the offset can be obtained by using two sets of heads 74a to 74d, which are combinations of any three heads. However, in the state of FIG. 74 (A), the head 74c cannot be measured, and in order to restore the measurement of the head 74c, in the fifth state shown in FIG. 74 (B), the three heads 74a, 74b, The position coordinates (X, Y, θz) of the substrate holder calculated from the measured value of 74d are used. Further, in the process in which the substrate holder 32 is moving in the −X direction, the head 74b that has been in a measurement impossible state is returned prior to the case 1 state. For returning the head 74b, the position coordinates (X, Y, θz) of the substrate holder calculated from the measured values of the three heads 74a, 74c, 74d are used. Therefore, in the state of case 1, a set of three heads excluding a set of three heads 74a, 74b, and 74d and a set of three heads 74a, 74c, and 74d, that is, a set of three heads 74a, 74b, and 74c. Further, it is assumed that lattice correction information of a coordinate system composed of a combination of scales 2072b and 2072e is acquired using the three heads 74b, 74c, and 74d.
 具体的には、主制御装置100は、ケース1の状態で、ヘッド74a、74b,74cの計測値を用いて基板ホルダ32の位置座標(便宜上、(X、Y、θz)とする)を算出するとともに、ヘッド74b、74c、74dの計測値を用いて基板ホルダ32の位置座標(便宜上、(X、Y、θz)とする)を算出する。そして、2つの位置の差ΔX=X-X、ΔY=Y-Y、Δθz=Δθz-Δθzを求め、このオフセットを格子補正情報として、例えば内部メモリ(記憶装置)に記憶する。 Specifically, main controller 100 uses the measurement values of heads 74a, 74b, and 74c in the state of case 1 as the position coordinates of substrate holder 32 (for convenience, (X 1 , Y 1 , θz 1 )). ) And the position coordinates of the substrate holder 32 (for convenience, (X 2 , Y 2 , θz 2 )) are calculated using the measured values of the heads 74b, 74c, and 74d. Then, the difference between the two positions ΔX = X 2 −X 1 , ΔY = Y 2 −Y 1 , Δθz = Δθz 1 −Δθz 2 is obtained, and this offset is stored as lattice correction information in, for example, an internal memory (storage device). To do.
 また、例えば、図74(B)に示される第5の状態では、基板ホルダ32の位置制御に用いられるヘッドが、ヘッド74aからヘッド74cへ切り換えられ、その際に、3つのヘッド74a、74b、74dの計測値を用いて前述のアフィン変換の式により基板ホルダ32の位置座標の算出が行われる。このとき、主制御装置100は、この位置座標の算出ととともに、このヘッドの切り換えのための基板ホルダ32の位置座標の算出に用いられる3つのヘッド74a、74b、74dの組と、次のヘッドの切換時に切り換え後のヘッドの計測値の設定のために用いられる3つのヘッド74b、74c、74dの組とを除く、例えば3つのヘッド74a、74b、74cの組と、3つのヘッド74a、74b、74dの組とを用いて、スケール2072b、2072eの組み合わせと同様に、上記のヘッドの切り換え後において基板ホルダ32の位置計測および位置制御に用いられるヘッド74b、74c、74dが対向する3つのスケール2072b,2072d及び2072eの組み合わせから成る座標系の格子補正情報(オフセット)を取得する。 Also, for example, in the fifth state shown in FIG. 74B, the head used for position control of the substrate holder 32 is switched from the head 74a to the head 74c, and at that time, the three heads 74a, 74b, The position coordinate of the substrate holder 32 is calculated by the above-described affine transformation formula using the measurement value of 74d. At this time, the main control device 100 calculates the position coordinates, sets the three heads 74a, 74b, 74d used for calculating the position coordinates of the substrate holder 32 for switching the head, and the next head. For example, a set of three heads 74a, 74b and 74c and a set of three heads 74a and 74b are excluded from the set of three heads 74b, 74c and 74d used for setting the measurement value of the head after switching. , 74d, and the three scales facing the heads 74b, 74c, 74d used for position measurement and position control of the substrate holder 32 after the head switching, as in the combination of the scales 2072b, 2072e. The lattice correction information (offset) of the coordinate system consisting of a combination of 2072b, 2072d and 2072e Give to.
 本実施形態では、主制御装置100は、図72(A)に示される第1位置から図72(B)に示される第2位置へ基板ホルダ32が-X方向又は+X方向に移動する過程で、順次切り換えられる、基板ホルダ32の位置制御に用いられる3つのヘッドが対向する少なくとも2つのスケール2072の全ての組み合わせに対応する複数の座標系について、上述した手順で、オフセットΔX、ΔY、Δθzを求め、格子補正情報として記憶装置に記憶している。 In the present embodiment, the main controller 100 moves the substrate holder 32 in the −X direction or the + X direction from the first position shown in FIG. 72A to the second position shown in FIG. 72B. The offsets ΔX, ΔY, Δθz are set in the above-described procedure with respect to a plurality of coordinate systems corresponding to all combinations of at least two scales 2072 that are sequentially switched and used to control the position of the substrate holder 32. It is obtained and stored in the storage device as lattice correction information.
 また、例えば、主制御装置100は、図73(A)に示される第1の状態から図73(B)に示される第2の状態に遷移する過程で、ヘッド74a、74bがスケール2072bに対向し、且つヘッド74c,74dが、スケール2072eに対向する第5の状態で、前述のヘッドの切り換え及びつなぎ処理を行った後、復帰したヘッド74bを含む3つのヘッド74a、74b、74dの計測値を位置制御に用いながら、ヘッド74cの計測が不能となるまでの基板ホルダ32の移動中に、複数の位置でそれぞれ、前述した手順で、スケール2072bとスケール2072eとから成る座標系の格子補正情報(オフセット)を取得しても良い。すなわち、基板ホルダ32の位置計測及び位置制御に用いる3つのヘッドが対向する少なくとも2つのスケール2072の組み合わせ毎に1つの格子補正情報ではなく、複数の格子補正情報を取得しても良い。また、基板ホルダ32の位置計測及び位置制御に用いる3つのヘッドと、冗長な1つのヘッドと、を含む4つのヘッドが同じ組み合わせの少なくとも2つのスケール2072と対向している間、上記手法を用いて実質的に連続して格子補正情報を取得しても良い。この場合、組み合わせが同じ少なくとも2つのスケール2072において4つのヘッドが対向する期間(区間)の全域に渡って格子補正情報を取得することが可能となる。なお、基板ホルダ32の位置計測及び位置制御に用いる3つのヘッドが対向する少なくとも2つのスケール2072の組み合わせ毎に取得する格子補正情報は同数でなくても良く、例えばスケールの組み合わせによって取得する格子補正情報の数を異ならせても良い。例えば、露光動作において3つのヘッドが対向する少なくとも2つのスケール2072の組み合わせと、露光動作以外(アライメント動作、基板交換動作など)において3つのヘッドが対向する少なくとも2つのスケール2072の組み合わせで、格子補正情報の数を異ならせても良い。また、本実施形態では、一例として、基板ホルダ32への基板のロード前、あるいはロード後かつ基板処理動作(露光動作やアライメント動作などを含む)前に、基板ホルダ32の位置計測及び位置制御に用いる3つのヘッドが対向する少なくとも2つのスケール2072の全ての組み合わせについて格子補正情報を取得して記憶装置に記憶しておき、定期的または随時、格子補正情報の更新を行っていく。格子補正情報の更新は、例えば基板処理動作を行える状態であれば、基板処理動作中も含めて任意のタイミングで行って良い。 Further, for example, in the process of transition from the first state shown in FIG. 73 (A) to the second state shown in FIG. 73 (B), main controller 100 causes heads 74a and 74b to face scale 2072b. In the fifth state in which the heads 74c and 74d are opposed to the scale 2072e, the measured values of the three heads 74a, 74b, and 74d including the head 74b that has returned after performing the above-described head switching and joining process. In the position control, while the substrate holder 32 is moved until the head 74c cannot be measured, the lattice correction information of the coordinate system composed of the scale 2072b and the scale 2072e is obtained at each of the plurality of positions by the above-described procedure. (Offset) may be acquired. That is, a plurality of pieces of lattice correction information may be acquired instead of one piece of lattice correction information for each combination of at least two scales 2072 facing three heads used for position measurement and position control of the substrate holder 32. Further, the above method is used while four heads including three heads used for position measurement and position control of the substrate holder 32 and one redundant head are opposed to at least two scales 2072 of the same combination. The lattice correction information may be acquired substantially continuously. In this case, lattice correction information can be acquired over the entire period (section) in which the four heads face each other on at least two scales 2072 having the same combination. Note that the lattice correction information acquired for each combination of at least two scales 2072 facing the three heads used for position measurement and position control of the substrate holder 32 need not be the same. For example, the lattice correction acquired by a combination of scales The number of information may be different. For example, lattice correction is performed using a combination of at least two scales 2072 facing three heads in an exposure operation and a combination of at least two scales 2072 facing three heads other than the exposure operation (alignment operation, substrate replacement operation, etc.). The number of information may be different. In the present embodiment, as an example, the position measurement and position control of the substrate holder 32 are performed before or after loading the substrate onto the substrate holder 32 and before the substrate processing operation (including exposure operation and alignment operation). Lattice correction information is acquired and stored in a storage device for all combinations of at least two scales 2072 facing three heads to be used, and the lattice correction information is updated periodically or as needed. The lattice correction information may be updated at an arbitrary timing including during the substrate processing operation as long as the substrate processing operation can be performed.
 なお、実際には、一度必要な全ての格子補正情報(オフセットΔX、ΔY、Δθz)を取得した後は、ヘッドの切り換えが行われる度にオフセットΔX、ΔY、Δθzの更新を行っても良いが、必ずしもこのようにする必要はなく、所定回数のヘッドの切り換えが行われる毎、あるいは所定枚数の基板の露光終了毎など、予め定めたインターバルでオフセットΔX、ΔY、Δθzの更新を行うこととしても良い。ヘッドの切り換えが行われない期間中に、オフセットの取得、更新を行っても良い。また、上述のオフセット更新は露光動作前に行っても良いし、必要であれば、露光動作中に行っても良い。 In practice, after all necessary lattice correction information (offset ΔX, ΔY, Δθz) is acquired, the offsets ΔX, ΔY, Δθz may be updated each time the head is switched. However, it is not always necessary to do this, and the offsets ΔX, ΔY, and Δθz may be updated at predetermined intervals, such as every time the head is switched a predetermined number of times, or every time a predetermined number of substrates are exposed. good. The offset may be acquired and updated during a period when the head is not switched. Further, the offset update described above may be performed before the exposure operation, or may be performed during the exposure operation if necessary.
 なお、上記の各オフセットを用いて、基板計測系2070の計測情報(位置座標)ではなく、例えば基板ホルダ32の駆動の際の位置決め又は位置制御の目標値を補正することとしても良く、この場合には、基板ホルダ32の位置誤差(目標値の補正が行われなかった場合に発生するグリッド誤差に起因する位置誤差)を補償することが可能になる。 In addition, it is good also as correct | amending the target value of positioning or position control at the time of the drive of the board | substrate holder 32 instead of the measurement information (positional coordinate) of the board | substrate measurement system 2070 using each said offset. In this case, it is possible to compensate for the position error of the substrate holder 32 (position error caused by a grid error that occurs when the target value is not corrected).
 以上説明した本第20の実施形態に係る液晶露光装置は、前述した第1の実施形態と同等の作用効果を奏する。これに加え、本第20の実施形態に係る液晶露光装置によると、基板ホルダ32の駆動中に、基板計測系2070のXヘッド74x(Xリニアエンコーダ)とYヘッド74y(Yリニアエンコーダ)とを少なくとも各1つ含む3つのヘッド(エンコーダ)によりXY平面内における基板ホルダ32の位置情報(θz回転を含む)が計測される。そして、主制御装置100により、XY平面内における基板ホルダ32の位置が切り換えの前後で維持されるように、XY平面内における基板ホルダ32の位置情報の計測に用いるヘッド(エンコーダ)が、切り換え前に基板ホルダ32の位置計測及び位置制御に用いられていた3つのヘッド(エンコーダ)のうちのいずれかのヘッド(エンコーダ)から別のヘッド(エンコーダ)に切り換えられる。このため、基板ホルダ32の位置の制御に用いるエンコーダの切り換えが行われているにもかかわらず、切り換えの前後で基板ホルダ32のXY平面内の位置が維持され、正確なつなぎが可能になる。したがって、複数のヘッド(エンコーダ)間でヘッドの切り換え及びつなぎ(計測値のつなぎ処理)を行いながら、所定の経路に沿って正確に基板ホルダ32(基板P)をXY平面に沿って移動させることが可能になる。 The liquid crystal exposure apparatus according to the twentieth embodiment described above exhibits the same operational effects as those of the first embodiment described above. In addition, according to the liquid crystal exposure apparatus of the twentieth embodiment, the X head 74x (X linear encoder) and the Y head 74y (Y linear encoder) of the substrate measurement system 2070 are driven while the substrate holder 32 is being driven. Position information (including θz rotation) of the substrate holder 32 in the XY plane is measured by three heads (encoders) including at least one each. The head (encoder) used for measuring the position information of the substrate holder 32 in the XY plane is switched by the main controller 100 so that the position of the substrate holder 32 in the XY plane is maintained before and after switching. In addition, one of the three heads (encoders) used for position measurement and position control of the substrate holder 32 is switched to another head (encoder). For this reason, although the encoder used for controlling the position of the substrate holder 32 is switched, the position of the substrate holder 32 in the XY plane is maintained before and after the switching, and accurate connection becomes possible. Therefore, the substrate holder 32 (substrate P) is accurately moved along the XY plane along a predetermined path while performing head switching and connection (measurement value connection processing) among a plurality of heads (encoders). Is possible.
 また、本第20の実施形態に係る液晶露光装置によると、例えば基板の露光中、主制御装置100により、基板ホルダ32の位置情報の計測結果と該位置情報の計測に用いられた3つのヘッドのXY平面内における位置情報((X,Y)座標値)とに基づいて、XY平面内で基板ホルダ32が駆動される。この場合、主制御装置100は、アフィン変換の関係を利用してXY平面内における基板ホルダ32の位置情報を算出しながらXY平面内で基板ホルダ32を駆動する。これにより、複数のYヘッド74y又は複数のXヘッド74xをそれぞれ有するエンコーダシステムを用いて基板ホルダ32の移動中に制御に用いるヘッド(エンコーダ)を切り換えながら、基板ホルダ32(基板P)の移動を精度良く制御することが可能になる。 Further, according to the liquid crystal exposure apparatus of the twentieth embodiment, for example, during exposure of the substrate, the main controller 100 uses the three heads used for measuring the position information of the substrate holder 32 and measuring the position information. The substrate holder 32 is driven in the XY plane based on the position information ((X, Y) coordinate value) in the XY plane. In this case, main controller 100 drives substrate holder 32 in the XY plane while calculating position information of substrate holder 32 in the XY plane using the relationship of affine transformation. Thus, the substrate holder 32 (substrate P) is moved while switching the head (encoder) used for control during the movement of the substrate holder 32 using the encoder system having each of the plurality of Y heads 74y or the plurality of X heads 74x. It becomes possible to control with high accuracy.
 また、本第20の実施形態に係る液晶露光装置によると、基板ホルダ32のX位置に応じて異なる、基板ホルダ32の位置情報計測及び位置制御に用いられるヘッドが対向するスケールの組み合わせ毎に、前述したオフセットΔX、ΔY、Δθz(格子補正情報)が取得され、必要に応じて更新される。したがって、基板ホルダ32のX位置に応じて異なる基板ホルダ32の位置情報計測及び位置制御に用いられるヘッドが対向するスケールの組み合わせ毎の座標系間のグリッド誤差(X,Y位置誤差及び回転誤差)に起因するエンコーダの計測誤差、又は基板ホルダ32の位置誤差が補償されるように、基板ホルダ32を駆動(位置制御)することが可能となる。したがって、この点においても、基板ホルダ(基板P)を精度良く位置制御することが可能になる。 Further, according to the liquid crystal exposure apparatus according to the twentieth embodiment, for each combination of scales facing the head used for position information measurement and position control of the substrate holder 32, which differs depending on the X position of the substrate holder 32, The aforementioned offsets ΔX, ΔY, Δθz (lattice correction information) are acquired and updated as necessary. Therefore, the grid error (X, Y position error and rotation error) between coordinate systems for each combination of scales facing the heads used for position information measurement and position control of the substrate holder 32, which differs depending on the X position of the substrate holder 32. The substrate holder 32 can be driven (position control) so that the encoder measurement error or the position error of the substrate holder 32 due to the above can be compensated. Accordingly, also in this respect, the position of the substrate holder (substrate P) can be accurately controlled.
 なお、上記第20実施形態において、隣接する一対のスケールの1つから外れて計測ビームが他方のスケールに乗り換えるヘッド(上記別のヘッドに相当)を用いて基板ホルダの移動を制御するための補正情報(前述した別のヘッドの初期値)を、少なくとも1つのスケール2072と対向する3つのヘッドで計測される位置情報に基づいて取得するものとしたが、この補正情報は、別のヘッドの計測ビームが他方のスケールに乗り換えた後で、少なくとも1つのスケール2072と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに取得すれば良い。また、少なくとも1つのスケール2072と対向する3つのヘッドを、上記別のヘッドを含む異なる3つのヘッドに切り換えて基板ホルダの位置計測あるいは位置制御を行う場合、その切換は、上記補正情報が取得された後で、少なくとも1つのスケール2072と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに行えば良い。なお、補正情報の取得と切換とを実質的に同時に行っても良い。 In the twentieth embodiment, the correction for controlling the movement of the substrate holder using a head (corresponding to the other head) in which the measurement beam is switched from one of a pair of adjacent scales to the other scale. Information (initial value of another head described above) is obtained based on position information measured by at least three heads facing one scale 2072. This correction information is obtained by measuring another head. It may be acquired after the beam is switched to the other scale and before one of the three heads facing at least one scale 2072 is out of the two-dimensional grating RG. Further, when the position measurement or the position control of the substrate holder is performed by switching three heads facing at least one scale 2072 to three different heads including the other head, the correction information is acquired for the switching. Thereafter, it may be performed before at least one of the three heads facing the scale 2072 is removed from the two-dimensional grating RG. Note that acquisition and switching of correction information may be performed substantially simultaneously.
 なお、上記第20の実施形態では、X軸方向(第1方向)に関して、第1格子群の2次元グレーティングRGがない領域(非格子領域)が第2格子群の2次元グレーティングRGがない領域(非格子領域)と重ならないように、言い換えれば、計測ビームが2次元グレーティングRGから外れる非計測期間が4つのヘッドで重ならないように、第1格子群、第2格子群の各5つのスケール2072が基板ホルダ32上に配置されている。この場合、+Y側のヘッドベース88が有するヘッド74a、74bは、X軸方向に関して第1格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置され、-Y側のヘッドベース88が有するヘッド74c、74dは、X軸方向に関して第2格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置されている。しかしながら、複数の2次元格子を含む格子部とこれに対向可能な複数のヘッドとの組み合わせがこれに限定されるものではない。要は、X軸方向への移動体の移動中、2次元グレーティングRGから計測ビームが外れる(計測不能な)非計測期間が4つのヘッド74a、74b、74c、74dで重ならないように、ヘッド74a、74bの間隔及びヘッド74c、74dの間隔、位置、第1、第2格子群の格子部の位置や長さ又は格子部の間隔やその位置を設定すれば良い。例えば、第1格子群と第2格子群とで、X軸方向に関して非格子領域の位置および幅が同一であっても、第1格子群の少なくとも1つのスケール2072(2次元グレーティングRG)と対向する2つのヘッドと、第2格子群の少なくとも1つのスケール2072(2次元グレーティングRG)と対向する2つのヘッドを、X軸方向に関して非格子領域の幅よりも広い距離だけずらして配置しても良い。この場合、第1格子群と対向する2つのヘッドのうち+X側に配置されるヘッドと、第2格子群と対向する2つのヘッドのうち-X側に配置されるヘッドとの間隔を、非格子領域の幅よりも広い間隔としても良いし、第1格子群と対向する2つのヘッドと、第2格子群と対向する2つのヘッドを、X軸方向に関して交互に配置し、かつ隣接する一対のヘッドの間隔を非格子領域の幅よりも広く設定しても良い。 In the twentieth embodiment, with respect to the X-axis direction (first direction), the region without the two-dimensional grating RG of the first lattice group (non-grid region) is the region without the two-dimensional grating RG of the second lattice group. In other words, the five scales of the first grating group and the second grating group are arranged so that the non-measurement period in which the measurement beam deviates from the two-dimensional grating RG does not overlap with the four heads. 2072 is disposed on the substrate holder 32. In this case, the heads 74a and 74b included in the head base 88 on the + Y side are arranged at a distance wider than the width of the region without the two-dimensional grating RG of the first lattice group in the X-axis direction, and the head base 88 on the −Y side. The heads 74c, 74d included in the are disposed at a distance wider than the width of the region without the two-dimensional grating RG of the second grating group in the X-axis direction. However, the combination of a grating portion including a plurality of two-dimensional gratings and a plurality of heads that can face the grating portion is not limited to this. In short, during the movement of the moving body in the X-axis direction, the head 74a is arranged so that the non-measurement period in which the measurement beam is deviated (unmeasurable) from the two-dimensional grating RG does not overlap with the four heads 74a, 74b, 74c, 74d. 74b and heads 74c and 74d, positions, positions, lengths and lengths of the lattice portions of the first and second lattice groups, lattice intervals and positions thereof may be set. For example, even if the first lattice group and the second lattice group have the same position and width of the non-lattice region in the X-axis direction, the first lattice group faces the at least one scale 2072 (two-dimensional grating RG) of the first lattice group. And two heads facing at least one scale 2072 (two-dimensional grating RG) of the second grating group may be shifted by a distance wider than the width of the non-grating area in the X-axis direction. good. In this case, the distance between the head disposed on the + X side of the two heads facing the first lattice group and the head disposed on the −X side of the two heads facing the second lattice group is set to a non-interval. The interval may be wider than the width of the lattice region, or two heads facing the first lattice group and two heads facing the second lattice group are alternately arranged in the X-axis direction and adjacent pairs. The head interval may be set wider than the width of the non-lattice region.
 また、上記第20の実施形態では、基板ホルダ32の+Y側の領域に第1格子群が配置され、かつ基板ホルダ32の-Y側の領域に第2格子群が配置される場合について説明したが、第1格子群及び第2格子群の一方、例えば第1格子群に代えて、X軸方向に延びる2次元格子が形成された単一のスケール部材を用いても良い。この場合において、その単一のスケール部材には、1つのヘッドが常時対向することとしても良い。この場合には、第2格子群に対向して3つのヘッドを設け、該3つのヘッドのX軸方向の間隔(計測ビームの照射位置間の間隔)を、隣接するスケール2072上の2次元グレーティングRG間の間隔より広くすることで、基板ホルダ32のX軸方向の位置によらず、第2格子群に対向する3つのヘッドのうちの少なくとも2つが第2格子群の少なくとも1つの2次元グレーティングRGに対向可能な構成としても良い。あるいは、基板ホルダ32のX軸方向の位置によらず、上記の単一のスケール部材に常時少なくとも2つのヘッドが対向可能な構成を採用し、併せて第2格子群の少なくとも1つの2次元グレーティングRGに少なくとも2つのヘッドが対向可能な構成としても良い。この場合には、その少なくとも2つのヘッドはそれぞれ、X軸方向への基板ホルダ32の移動中、計測ビームが複数のスケール2072(2次元グレーティングRG)の1つから外れるととともに、1つのスケール2072(2次元グレーティングRG)に隣接する別のスケール2072(2次元グレーティングRG)に乗り換えることになる。しかしながら、少なくとも2つのヘッドのX軸方向の間隔を、隣接するスケール2072の2次元グレーティングRGの間隔より広くすることで、少なくとも2つのヘッドで非計測期間が重ならない、すなわち常に少なくとも1つのヘッドで計測ビームがスケール2072に照射される。これらの構成では常に少なくとも3つのヘッドが少なくとも1つのスケール2072と対向して3自由度方向の位置情報を計測可能である。 In the twentieth embodiment, the case where the first lattice group is disposed in the + Y side region of the substrate holder 32 and the second lattice group is disposed in the −Y side region of the substrate holder 32 has been described. However, a single scale member in which a two-dimensional lattice extending in the X-axis direction may be used instead of one of the first lattice group and the second lattice group, for example, the first lattice group. In this case, one head may always face the single scale member. In this case, three heads are provided so as to face the second grating group, and the distance between the three heads in the X-axis direction (the distance between the irradiation positions of the measurement beams) is set as a two-dimensional grating on the adjacent scale 2072. By making it wider than the interval between the RGs, at least two of the three heads facing the second grating group are at least one two-dimensional grating of the second grating group regardless of the position of the substrate holder 32 in the X-axis direction. It is good also as a structure which can oppose RG. Alternatively, a configuration in which at least two heads can always face the single scale member regardless of the position of the substrate holder 32 in the X-axis direction is adopted, and at least one two-dimensional grating of the second grating group is also used. A configuration may be adopted in which at least two heads can face the RG. In this case, each of the at least two heads moves away from one of the plurality of scales 2072 (two-dimensional grating RG) during movement of the substrate holder 32 in the X-axis direction, and one scale 2072. Transfer to another scale 2072 (two-dimensional grating RG) adjacent to (two-dimensional grating RG). However, by making the interval in the X-axis direction of at least two heads wider than the interval between the two-dimensional gratings RG of the adjacent scales 2072, the non-measurement periods do not overlap with each other, that is, always with at least one head. A measurement beam is irradiated on the scale 2072. In these configurations, at least three heads always face at least one scale 2072 and can measure position information in three degrees of freedom.
 なお、第1格子群と第2格子群とで、スケールの数、隣接するスケールの間隔などが異なっても良い。この場合、第1格子群と対向する少なくとも2つのヘッドと第2格子群と対向する少なくとも2つのヘッドで、ヘッド(計測ビーム)の間隔、位置などが異なっても良い。 Note that the number of scales and the interval between adjacent scales may be different between the first lattice group and the second lattice group. In this case, at least two heads facing the first grating group and at least two heads facing the second grating group may have different head (measurement beam) intervals, positions, and the like.
 なお、上記第20の実施形態では、単一の2次元グレーティングRG(格子領域)がそれぞれ形成された複数のスケール2072を用いることとしたが、これに限らず、2つ以上の格子領域が、X軸方向に離れて形成されたスケール2072を、第1格子群又は第2格子群の少なくとも一方に含んでいても良い。 In the twentieth embodiment, a plurality of scales 2072 each having a single two-dimensional grating RG (lattice region) are used. However, the present invention is not limited to this. A scale 2072 formed apart in the X-axis direction may be included in at least one of the first lattice group or the second lattice group.
 なお、上記第20の実施形態では、常に3つのヘッドにより基板ホルダ32の位置(X、Y、θz)を計測、制御するため、同一構成の各5つのスケール2072を含む第1格子群と第2格子群とで、X軸方向に関して所定距離ずらして配置する場合について説明したが、これに限らず、第1格子群と第2格子群とで、X軸方向に関してずらすことなく(互いにほぼ完全に対向してスケール2072の列を配置し)、一方のヘッドベース88と他方のヘッドベース88とで、基板ホルダ32の位置計測用のヘッド(ヘッド74x、74y)の配置をX軸方向に関して異ならせても良い。この場合にも、常に3つのヘッドにより基板ホルダ32の位置(X、Y、θz)を計測、制御することが可能になる。 In the twentieth embodiment, since the position (X, Y, θz) of the substrate holder 32 is always measured and controlled by three heads, the first lattice group including the five scales 2072 of the same configuration and the first lattice group Although the case where the two lattice groups are arranged with a predetermined distance shifted in the X-axis direction has been described, the present invention is not limited to this, and the first lattice group and the second lattice group are not shifted in the X-axis direction (almost completely mutually). A row of scales 2072 is arranged opposite the head base 88), and the position measurement heads ( heads 74x, 74y) of the substrate holder 32 are different in the X-axis direction between one head base 88 and the other head base 88. May be allowed. Also in this case, the position (X, Y, θz) of the substrate holder 32 can always be measured and controlled by the three heads.
 なお、上記第20の実施形態では、ヘッド74a、74bとヘッド74c、74dとの合計4つのヘッドを用いる場合について説明したが、これに限らず、5つ以上のヘッドを用いることとしても良い。すなわち、第1格子群、第2格子群にそれぞれ対向する各2つのヘッドの少なくとも一方に、少なくとも1つの冗長ヘッドを加えても良い。この構成について以下の第21の実施形態で説明する。 In the twentieth embodiment, the case where a total of four heads 74a and 74b and heads 74c and 74d are used has been described. However, the present invention is not limited to this, and five or more heads may be used. That is, at least one redundant head may be added to at least one of the two heads facing the first lattice group and the second lattice group. This configuration will be described in the following twenty-first embodiment.
《第21の実施形態》
 次に、第21の実施形態について図75に基づいて説明する。本第21の実施形態に係る液晶露光装置の構成は、基板計測系2170の一部の構成を除き、前述の第1及び第20の実施形態と同じなので、以下、相違点についてのみ説明し、第1及び第20の実施形態と同じ構成及び機能を有する要素については、第1及び第20の実施形態と同じ符号を付してその説明を省略する。
<< 21st embodiment >>
Next, a twenty-first embodiment will be described with reference to FIG. The configuration of the liquid crystal exposure apparatus according to the twenty-first embodiment is the same as the first and twentieth embodiments described above except for a part of the configuration of the substrate measurement system 2170. Therefore, only the differences will be described below. Elements having the same configurations and functions as those of the first and twentieth embodiments are denoted by the same reference numerals as those of the first and twentieth embodiments, and description thereof is omitted.
 図75には、本第21の実施形態に係る基板ホルダ32及び基板計測系2170の一対のヘッドベース88が、投影光学系16とともに平面図にて示されている。図75では、説明をわかり易くするため、Y粗動ステージ24等の図示が省略されている。また、図75では、ヘッドベース88が点線で図示されるとともに、ヘッドベース88の上面に設けられたXヘッド80x、Yヘッド80yの図示も省略されている。 75, a pair of head bases 88 of the substrate holder 32 and the substrate measurement system 2170 according to the twenty-first embodiment are shown in a plan view together with the projection optical system 16. In FIG. 75, the Y coarse movement stage 24 and the like are not shown for easy understanding. In FIG. 75, the head base 88 is shown by dotted lines, and the illustration of the X head 80x and the Y head 80y provided on the upper surface of the head base 88 is also omitted.
 本第21の実施形態に係る液晶露光装置では、図75に示されるように、基板ホルダ32の基板載置領域を挟んで+Y側、及び-Y側の領域に、それぞれスケール2072がX軸方向に所定間隔で、例えば5つ配置されている。基板載置領域の+Y側に配置された5つのスケール2072と、-Y側の領域に配置された5つのスケール2072では、隣接するスケール2072間の間隔は、同じであり、かつ基板載置領域の+Y側、及び-Y側の各5つのスケール2072同士は、互いに対向して同一のX位置に配置されている。したがって、隣接するスケール2072間の隙間の位置が、ほぼ同一のY軸方向の所定線幅の直線上に位置している。 In the liquid crystal exposure apparatus according to the twenty-first embodiment, as shown in FIG. 75, scales 2072 are respectively disposed in the + Y side and −Y side regions across the substrate placement region of the substrate holder 32 in the X-axis direction. For example, five are arranged at predetermined intervals. In the five scales 2072 arranged on the + Y side of the substrate placement area and the five scales 2072 arranged on the −Y side area, the interval between the adjacent scales 2072 is the same, and the substrate placement area The five scales 2072 on the + Y side and the −Y side of each of the two are opposed to each other and arranged at the same X position. Accordingly, the position of the gap between the adjacent scales 2072 is located on a straight line having a predetermined line width in the substantially same Y-axis direction.
 +Y側に位置する一方のヘッドベース88の下面(-Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74y、Xヘッド74x及びYヘッド74yの合計3つのヘッドが-X側から順にX軸方向に所定間隔(隣接するスケール2072相互の間隔より大きな距離)離れて固定されている。-Y側に位置する他方のヘッドベース88の下面(-Z側の面)には、スケール2072にそれぞれ対向する状態で、Yヘッド74yとXヘッド74xがX軸方向に所定間隔離れて固定されている。以下では、説明の便宜上、一方のヘッドベース88が有する3つのヘッドを、-X側から順にそれぞれヘッド74e、ヘッド74a、ヘッド74bと呼び、他方のヘッドベース88が有するYヘッド74y、Xヘッド74xを、それぞれヘッド74c、ヘッド74dとも呼ぶものとする。 On the lower surface (the surface on the −Z side) of one head base 88 positioned on the + Y side, a total of three heads, the Y head 74y, the X head 74x, and the Y head 74y, are in a state of facing the scale 2072, respectively. In order from the side, they are fixed at a predetermined interval (a distance larger than the interval between adjacent scales 2072) in the X-axis direction. The Y head 74y and the X head 74x are fixed to the lower surface (the surface on the −Z side) of the other head base 88 positioned on the −Y side with a predetermined distance therebetween in the X axis direction, facing the scale 2072. ing. Hereinafter, for convenience of explanation, the three heads included in one head base 88 are referred to as the head 74e, the head 74a, and the head 74b in this order from the −X side, and the Y head 74y and the X head 74x included in the other head base 88. Are also referred to as a head 74c and a head 74d, respectively.
 この場合、ヘッド74aとヘッド74cが、同一のX位置(同一のY軸方向の直線上)に配置され、ヘッド74bとヘッド74dが、同一のX位置(同一のY軸方向の直線上)に配置されている。ヘッド74a、74dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド74b、74c、74eとそれぞれ対向する2次元グレーティングRGとによって、3つのYリニアエンコーダが構成されている。 In this case, the head 74a and the head 74c are arranged at the same X position (on the same straight line in the Y-axis direction), and the head 74b and the head 74d are arranged at the same X position (on the same straight line in the Y-axis direction). Has been placed. A pair of X linear encoders are configured by the two-dimensional gratings RG facing the heads 74a and 74d, and three Y linear encoders are configured by the two-dimensional gratings RG facing the heads 74b, 74c, and 74e. Yes.
 本第21の実施形態に係る液晶露光装置では、その他の部分の構成は、前述の第20の実施形態に係る液晶露光装置と同様になっている。 In the liquid crystal exposure apparatus according to the twenty-first embodiment, the configuration of other parts is the same as that of the liquid crystal exposure apparatus according to the twentieth embodiment.
 本第21の実施形態では、+Y側と-Y側のスケール2072の列の配置を、X軸方向に関してずらしていないにも拘らず、一対のヘッドベース88が基板ホルダ32に同期してY軸方向に移動している(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている)限り、ヘッド74a~74eのうちの3つが、基板ホルダ32のX位置によらず、常にスケール2072(2次元グレーティングRG)に対向する。 In the twenty-first embodiment, the pair of head bases 88 are synchronized with the substrate holder 32 in the Y axis, although the arrangement of the scales 2072 on the + Y side and the −Y side is not shifted in the X axis direction. As long as the head holder 88 is moved in the direction (or the Y position of the substrate holder 32 is maintained at a position where the pair of head bases 88 and the row of scales 2072 face each other), three of the heads 74a to 74e are Regardless of the X position of 32, it always faces the scale 2072 (two-dimensional grating RG).
 以上説明した本第21の実施形態に係る液晶露光装置は、前述した第20の実施形態に係る液晶露光装置と同様の作用効果を奏する。 The liquid crystal exposure apparatus according to the twenty-first embodiment described above exhibits the same operational effects as the liquid crystal exposure apparatus according to the twentieth embodiment described above.
 なお、上記第21の実施形態は、基板ホルダ32の位置情報計測用の複数のヘッドは、ヘッドの切り換えに必要な4つのヘッド、例えばヘッド74e、74b、74c、74dに加え、その4つのヘッドのうちの1つのヘッド74cと非計測期間が一部重なる1つのヘッド74aを含んでいるとも捉えることができる。そして、本第21の実施形態では、基板ホルダ32の位置情報(X、Y、θz)の計測において、4つのヘッド74e、74b、74c、74dと、1つのヘッド74cと、を含む5つのヘッドのうち、計測ビームが複数の格子領域(2次元グレーティングRG)の少なくとも1つに照射される少なくとも3つのヘッドの計測情報が用いられる。 In the twenty-first embodiment, the plurality of heads for measuring positional information of the substrate holder 32 are four heads necessary for switching the heads, for example, the heads 74e, 74b, 74c, and 74d, and the four heads. It can also be understood that one of the heads 74c and one head 74a whose non-measurement period partially overlaps is included. In the twenty-first embodiment, in measuring the positional information (X, Y, θz) of the substrate holder 32, five heads including four heads 74e, 74b, 74c, 74d and one head 74c. Among them, measurement information of at least three heads that is irradiated with at least one of a plurality of grating regions (two-dimensional grating RG) is used.
 なお、上記第21の実施形態は、複数のヘッドのうち、少なくとも2つのヘッドで非計測期間が重なる場合、例えば2つのヘッドが同時にスケール2072(格子領域、例えば2次元グレーティングRG)から外れ、同時に隣接するスケール2072(格子領域、例えば2次元グレーティングRG)に乗り換える場合の一例である。この場合、少なくとも2つのヘッドの計測が切れても、計測を継続するために少なくとも3つのヘッドが格子部の格子領域(2次元グレーティング)と対向している必要がある。しかも、その少なくとも3つのヘッドは、計測が切れた少なくとも2つのヘッドの1つ以上が隣接する格子領域に乗り換えるまでは計測が切れないことが前提である。すなわち、非計測期間が重なる少なくとも2つのヘッドがあっても、それに加えて少なくとも3つのヘッドがあれば、格子領域が間隔を空けて配置されていても計測を継続できる。 In the twenty-first embodiment, when at least two of the plurality of heads overlap the non-measurement period, for example, the two heads are simultaneously removed from the scale 2072 (lattice region, for example, the two-dimensional grating RG) and simultaneously This is an example in the case of switching to an adjacent scale 2072 (lattice region, for example, a two-dimensional grating RG). In this case, even if the measurement of at least two heads is interrupted, at least three heads need to face the grating region (two-dimensional grating) of the grating part in order to continue the measurement. Moreover, it is premised that the at least three heads cannot be measured until one or more of the at least two heads that have been measured are switched to the adjacent lattice region. That is, even if there are at least two heads that overlap in the non-measurement period and there are at least three heads in addition to that, the measurement can be continued even if the lattice regions are arranged at intervals.
《第22の実施形態》
 次に、第22の実施形態について図76に基づいて説明する。本第22の実施形態に係る液晶露光装置の構成は、図76に示されるように、基板ホルダ32の基板載置領域の+Y側と-Y側にそれぞれ配置されたスケール2072の列が、第21の実施形態と同様に対向配置され、且つ-Y側に位置する一方のヘッドベース88が、前述の第20の実施形態と同様に各2つのXヘッド74x、Yヘッド74yを有している点が、前述の第21の実施形態に係る液晶露光装置の構成と相違するが、その他の部分の構成は第21の実施形態に係る液晶露光装置と同様になっている。
<< Twenty-second embodiment >>
Next, a twenty-second embodiment will be described with reference to FIG. In the configuration of the liquid crystal exposure apparatus according to the twenty-second embodiment, as shown in FIG. 76, the rows of scales 2072 respectively arranged on the + Y side and the −Y side of the substrate placement region of the substrate holder 32 are Similarly to the twenty-first embodiment, one head base 88 arranged oppositely and located on the −Y side has two X heads 74x and two Y heads 74y as in the twentieth embodiment. Although the point is different from the configuration of the liquid crystal exposure apparatus according to the twenty-first embodiment described above, the configuration of other parts is the same as that of the liquid crystal exposure apparatus according to the twenty-first embodiment.
 一方のヘッドベース88の下面(-Z側の面)には、Yヘッド74y(ヘッド74c)の-Y側に隣接してXヘッド74x(以下、適宜、ヘッド74eと呼ぶ)が設けられるとともに、Xヘッド74x(ヘッド74d)の-Y側に隣接してYヘッド74y(以下、適宜、ヘッド74fと呼ぶ)が設けられている。 On the lower surface (the surface on the −Z side) of one head base 88, an X head 74x (hereinafter referred to as a head 74e as appropriate) is provided adjacent to the −Y side of the Y head 74y (head 74c). A Y head 74y (hereinafter referred to as a head 74f as appropriate) is provided adjacent to the −Y side of the X head 74x (head 74d).
 本実施形態に係る液晶露光装置では、一対のヘッドベース88がY軸方向に移動している状態(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている状態)において、基板ホルダ32のX軸方向の移動に伴い、3つのヘッド74a、74c、74e(第1グループのヘッドと称する)及び3つのヘッド74b,74d、74f(第2グループのヘッドと称する)の一方が、いずれのスケールにも対向しなくなる場合があるが、そのときには、必ず第1グループのヘッドと第2グループのヘッドとの他方が、スケール2072(2次元グレーティングRG)に対向する。すなわち、本第22の実施形態に係る液晶露光装置では、+Y側と-Y側のスケール2072の列の配置を、X軸方向に関してずらしていないにも拘らず、基板ホルダ32のX軸方向への移動において、一対のヘッドベース88がY軸方向に移動している(又は一対のヘッドベース88とスケール2072の列とが対向する位置で基板ホルダ32のY位置が維持されている)限り、第1グループのヘッドと第2グループのヘッドの少なくとも一方に含まれる3つのヘッドによって、基板ホルダ32のX位置によらず、基板ホルダ32の位置(X、Y、θz)の計測が可能になっている。 In the liquid crystal exposure apparatus according to the present embodiment, the Y position of the substrate holder 32 is in a state where the pair of head bases 88 are moving in the Y-axis direction (or the position where the pair of head bases 88 and the row of scales 2072 face each other. In the X-axis direction of the substrate holder 32, the three heads 74a, 74c, 74e (referred to as the first group head) and the three heads 74b, 74d, 74f (second group). One of the heads of the first group and the second group of heads is always connected to the scale 2072 (two-dimensional grating RG). Opposite to. That is, in the liquid crystal exposure apparatus according to the twenty-second embodiment, the arrangement of the + Y-side and −Y-side scales 2072 in the X-axis direction is not shifted in relation to the X-axis direction. As long as the pair of head bases 88 are moved in the Y-axis direction (or the Y position of the substrate holder 32 is maintained at a position where the pair of head bases 88 and the row of the scale 2072 face each other), The three heads included in at least one of the first group head and the second group head can measure the position (X, Y, θz) of the substrate holder 32 regardless of the X position of the substrate holder 32. ing.
 ここで、例えば第1グループのヘッド(ヘッド74a、74c、74e)がいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール2072に対向した場合に、それらのヘッド74a、74c、74eを復帰させる(計測を再開させる)場合について考える。この場合、第1グループのヘッド(ヘッド74a、74c、74e)による計測が再開される前の時点では、第2グループのヘッド(ヘッド74b,74d、74f)によって、基板ホルダ32の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置100は、図76に示されるように、一対のヘッドベース88が、+Y側、-Y側にそれぞれ配置された隣接する2つのスケール2072を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール2072の一方と他方に対向した時点で、前述した第21の実施形態で詳述した手法により、第2グループのヘッド(ヘッド74b,74d、74f)の計測値に基づき、基板ホルダの位置(X、Y、θz)を算出し、この算出した基板ホルダの位置(X、Y、θz)を、前述したアフィン変換の式に代入することで、第1のグループのヘッド(ヘッド74a、74c、74e)の初期値を同時に算出して設定する。これにより、簡単に、第1グループのヘッドを復帰させて、これらのヘッドによる基板ホルダ32の位置の計測、制御を再開させることができる。 Here, for example, when the heads of the first group ( heads 74a, 74c, 74e) do not face any scale and become impossible to measure and then face the scale 2072 again, those heads 74a, 74c. , 74e are restored (measurement is resumed). In this case, at the time before the measurement by the first group heads ( heads 74a, 74c, 74e) is resumed, the position of the substrate holder 32 by the second group heads ( heads 74b, 74d, 74f) (X, Measurement and control of Y, θz) are continued. Therefore, as shown in FIG. 76, main controller 100 has a pair of head bases 88 straddling two adjacent scales 2072 arranged on the + Y side and the −Y side, respectively, When the two groups of heads face one of the two adjacent scales 2072 and the other, the second group of heads ( heads 74b, 74d, 74f) is obtained by the method described in detail in the twenty-first embodiment. The position (X, Y, θz) of the substrate holder is calculated on the basis of the measured value, and the calculated position (X, Y, θz) of the substrate holder is substituted into the above-described affine transformation formula, The initial values of the heads of one group ( heads 74a, 74c, 74e) are calculated and set simultaneously. Thereby, the heads of the first group can be easily returned, and the measurement and control of the position of the substrate holder 32 by these heads can be resumed.
 以上説明した本第22の実施形態に係る液晶露光装置によると、前述した第21の実施形態に係る液晶露光装置と同様の作用効果を奏する。 The liquid crystal exposure apparatus according to the twenty-second embodiment described above has the same effects as the liquid crystal exposure apparatus according to the twenty-first embodiment described above.
《第22の実施形態の変形例》
 この変形例は、第22の実施形態に係る液晶露光装置において、+Y側に位置する他方のヘッドベース88として、一方のヘッドベース88と同じ構成(又は紙面上下方向に関して対称な構成)のヘッドユニットが用いられる場合である。
<< Modification of the twenty-second embodiment >>
This modification is a liquid crystal exposure apparatus according to the twenty-second embodiment, wherein the other head base 88 located on the + Y side has the same configuration as the one head base 88 (or a configuration that is symmetrical with respect to the vertical direction on the paper surface). Is used.
 この場合、上述と同様に、同一のY軸方向の直線状に配置された各4つのヘッドが属する第1グループのヘッドと、第2グループのヘッドとに8つのヘッドをグループ分けする。 In this case, as described above, the eight heads are grouped into the first group head and the second group head to which each of the four heads arranged in a straight line in the same Y-axis direction belongs.
 第1グループのヘッドがいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール2072に対向した場合に、第1グループのヘッドを復帰させ、それらのヘッドによる計測を再開させる場合について考える。 When the head of the first group stops facing any scale and becomes impossible to measure, and when it again faces the scale 2072, the head of the first group is returned and the measurement by those heads is resumed. think about.
 この場合、第1グループのヘッドによる計測が再開される前の時点では、第2グループのヘッドのうちの3つのヘッドによって、基板ホルダ32の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置100は、前述と同様、一対のヘッドベース88が、+Y側、-Y側にそれぞれ配置された隣接する2つのスケール2072を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール2072の一方と他方に対向した時点で、第1グループのヘッドそれぞれの計測値の初期値を算出するが、この場合は、第1グループの4つのヘッドの全ての初期値を同時に算出することはできない。その理由は、計測に復帰させるヘッドが3つ(XヘッドとYヘッドとを合わせた数)であれば、前述と同様の手順でそれら3つのヘッドの計測値の初期値を設定した場合に、それらの初期値を前述の計測値C、C、C等として、前述の連立方程式を解くことで、基板ホルダの位置(X、Y、θ)が一意に定まるので、特に問題はない。しかし、基板ホルダの位置(X、Y、θ)を一意に定めることのできる、4つのヘッドの計測値を用いる、アフィン変換の関係を利用した連立方程式を観念できないからである。 In this case, measurement and control of the position (X, Y, θz) of the substrate holder 32 are continued by three of the heads of the second group before the measurement by the heads of the first group is resumed. Has been. Therefore, in the same manner as described above, main controller 100 has a pair of head bases 88 straddling two adjacent scales 2072 arranged on the + Y side and the −Y side, respectively, and the first group head and the second group head. At the time when one of the two adjacent scales 2072 faces the other, the initial value of the measured value of each head of the first group is calculated. In this case, all the four heads of the first group The initial value cannot be calculated simultaneously. The reason is that if there are three heads to be returned to the measurement (the total number of X heads and Y heads), when the initial values of the measurement values of these three heads are set in the same procedure as described above, By solving the simultaneous equations using the initial values as the measured values C 1 , C 2 , C 3, etc., the position (X, Y, θ) of the substrate holder is uniquely determined, so there is no particular problem. . However, it is because the simultaneous equations using the relationship of affine transformation using the measurement values of the four heads that can uniquely determine the position (X, Y, θ) of the substrate holder cannot be considered.
 そこで、本変形例では、復帰させる第1グループを、別のヘッドをそれぞれ含む3つヘッドが属する、2つのグループにグループ分けし、グループ毎に前述と同様の手法で、3つのヘッドについて、初期値を同時に算出して設定する。初期値の設定後は、いずれかのグループの3つのヘッドの計測値を、基板ホルダ32の位置制御に用いれば良い。位置制御に用いない方のグループのヘッドによる基板ホルダ32の位置計測を、基板ホルダ32の位置制御と並行して実行しても良い。なお、復帰させる第1のグループの各ヘッドの初期値を、前述の手法により、順次個別に算出することも可能である。 Therefore, in this modified example, the first group to be returned is grouped into two groups to which three heads each including another head belong, and each group is initialized for the three heads by the same method as described above. Calculate and set the value at the same time. After the initial values are set, the measurement values of the three heads in any group may be used for position control of the substrate holder 32. The position measurement of the substrate holder 32 by the head of the group not used for position control may be executed in parallel with the position control of the substrate holder 32. It should be noted that the initial value of each head of the first group to be restored can be calculated individually by the above-described method.
 上述した第20~第22の実施形態に係るエンコーダの切り換え(エンコーダ出力のつなぎ)処理は、第2~第19の実施形態において、基板ホルダの位置計測を粗動ステージ、あるいは計測テーブルを基準に行うエンコーダシステムにも適用可能である。また、上述した第20~第22の実施形態に係るエンコーダの切り換え(エンコーダ出力のつなぎ)は、第1~第5、第8~第15、第18、第19の各実施形態において、粗動ステージの位置計測を光学定盤18aを基準に行うエンコーダシステム、あるいは第6、第7、第16、第17の各実施形態において、計測テーブルの位置計測を光学定盤18aを基準に行うエンコーダシステムにも適用可能である。 The encoder switching (encoder output linking) processing according to the twentieth to twenty-second embodiments described above is based on the coarse movement stage or the measurement table in the second to nineteenth embodiments. The present invention can also be applied to an encoder system to be performed. In addition, the switching of the encoders according to the twentieth to twenty-second embodiments described above (linking encoder outputs) is performed in the first to fifth, eighth to fifteenth, eighteenth, and nineteenth embodiments. Encoder system that performs stage position measurement based on optical surface plate 18a, or encoder system that performs measurement table position measurement based on optical surface plate 18a in each of the sixth, seventh, sixteenth, and seventeenth embodiments. It is also applicable to.
 なお、以上説明した第1~第22の各実施形態の構成は、適宜変更が可能である。一例として、上記各実施形態における基板計測系(基板計測系70、270など)は、基板ステージ装置の構成を問わず、物体(上記各実施形態では基板P)を保持する移動体の位置計測に用いることができる。すなわち、上記第1~第5の実施形態に係る基板ホルダ32のような、基板Pのほぼ全面を吸着保持するタイプの基板ホルダを備える基板ステージ装置に対し、上記第6の実施形態に係る基板計測系670のような、計測テーブル624を介して光学定盤18aを基準に基板ホルダの位置情報を求めるタイプの計測系を適用することも可能である。 It should be noted that the configurations of the first to twenty-second embodiments described above can be changed as appropriate. As an example, the substrate measurement system (substrate measurement systems 70, 270, etc.) in each of the above embodiments is used to measure the position of a moving body that holds an object (substrate P in each of the above embodiments) regardless of the configuration of the substrate stage apparatus. Can be used. That is, the substrate according to the sixth embodiment is different from the substrate stage apparatus including the substrate holder of the type that holds and holds almost the entire surface of the substrate P, such as the substrate holder 32 according to the first to fifth embodiments. It is also possible to apply a measurement system such as the measurement system 670 that obtains the position information of the substrate holder with reference to the optical surface plate 18a via the measurement table 624.
 また、上記各実施形態に係る計測系と同様の構成の計測系を、基板P以外の計測対象物に適用しても良く、一例として、マスクステージ装置14におけるマスクMの位置計測に、上記基板計測系70などと同様の構成の計測系を用いても良い。特に、国際公開第2010/131485号に開示されるような、マスクをスキャン方向と直交する方向に長ストロークでステップ移動させるマスクステージ装置の計測系には、上記各実施形態に係る計測系を好適に用いることができる。 In addition, a measurement system having the same configuration as the measurement system according to each of the above embodiments may be applied to a measurement object other than the substrate P. As an example, for measuring the position of the mask M in the mask stage device 14, the substrate A measurement system having the same configuration as the measurement system 70 or the like may be used. In particular, the measurement system according to each of the embodiments described above is suitable for a measurement system of a mask stage apparatus that is disclosed in International Publication No. 2010/131485, in which a mask is stepped with a long stroke in a direction orthogonal to the scan direction. Can be used.
 また、上記第1~第22の実施形態の基板計測系において、エンコーダヘッド、及びスケールの配置は逆であっても良い。すなわち、基板ホルダの位置情報を求めるためのXリニアエンコーダ、Yリニアエンコーダは、基板ホルダにスケールが取り付けられ、粗動ステージ、あるいは計測テーブルにエンコーダヘッドが取り付けられても良い。その場合、粗動ステージ、あるいは計測テーブルに取り付けられるスケールは、例えばX軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。同様に、粗動ステージ、あるいは計測テーブルの位置情報を求めるためのXリニアエンコーダ、Yリニアエンコーダは、計測テーブルにスケールが取り付けられ、光学定盤18aにエンコーダヘッドが取り付けられても良い。その場合、光学定盤18aに取り付けられるエンコーダヘッドは、例えばY軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。基板ホルダ、及び光学定盤18aにエンコーダヘッドが固定される場合、粗動ステージ、あるいは計測テーブルに固定されるスケールを共通化しても良い。 In the substrate measurement systems of the first to twenty-second embodiments, the arrangement of the encoder head and the scale may be reversed. That is, in the X linear encoder and the Y linear encoder for obtaining the position information of the substrate holder, a scale may be attached to the substrate holder, and an encoder head may be attached to the coarse movement stage or the measurement table. In that case, it is preferable that a plurality of scales attached to the coarse movement stage or the measurement table are arranged, for example, along the X-axis direction and can be switched to each other. Similarly, in the coarse motion stage or the X linear encoder and the Y linear encoder for obtaining position information of the measurement table, a scale may be attached to the measurement table, and an encoder head may be attached to the optical surface plate 18a. In that case, it is preferable that a plurality of encoder heads attached to the optical surface plate 18a are arranged, for example, along the Y-axis direction and can be switched to each other. When the encoder head is fixed to the substrate holder and the optical surface plate 18a, a scale fixed to the coarse movement stage or the measurement table may be shared.
 また、基板計測系において、基板ステージ装置側にX軸方向に延びる1つ又は複数のスケールが固定され、装置本体18側にY軸方向に延びる1つ又は複数のスケールが固定される場合について説明したが、これに限られず、基板ステージ装置側にY軸方向に延びる1つ又は複数のスケール、装置本体18側にX軸方向に延びる1つ又は複数のスケールがそれぞれ固定されても良い。この場合、粗動ステージ、あるいは計測テーブルは、基板Pの露光動作などにおける基板ホルダの移動中にX軸方向に駆動される。 In the substrate measurement system, one or more scales extending in the X-axis direction are fixed on the substrate stage apparatus side, and one or more scales extending in the Y-axis direction are fixed on the apparatus main body 18 side. However, the present invention is not limited to this, and one or more scales extending in the Y-axis direction may be fixed to the substrate stage apparatus side, and one or more scales extending in the X-axis direction may be fixed to the apparatus main body 18 side. In this case, the coarse movement stage or the measurement table is driven in the X-axis direction during the movement of the substrate holder in the exposure operation of the substrate P or the like.
 また、複数のスケールが離間して配置される場合、スケールの数は、とくに限定されず、例えば基板Pの大きさ、あるいは基板Pの移動ストロークに応じて適宜変更が可能である。また、長さの異なる複数のスケールを用いても良いし、X軸方向又はY軸方向に並んで配置された複数の格子領域をそれぞれの格子部に含むのであれば、格子部を構成するスケールの数は、特に問わない。 Further, when a plurality of scales are arranged apart from each other, the number of scales is not particularly limited, and can be appropriately changed according to the size of the substrate P or the movement stroke of the substrate P, for example. In addition, a plurality of scales having different lengths may be used, and if each of the lattice parts includes a plurality of lattice regions arranged side by side in the X-axis direction or the Y-axis direction, the scales constituting the lattice part The number of is not particularly limited.
 また、計測テーブル、及びその駆動系は、装置本体18の上架台部18aの下面に設けるよう構成しているが、下架台部18cや中架台部18bに設けるようにしても良い。 In addition, the measurement table and its drive system are configured to be provided on the lower surface of the upper base 18a of the apparatus body 18, but may be provided on the lower base 18c and the middle base 18b.
 また、上記各実施形態では、2次元グレーティングが形成されたスケールを用いる場合について説明したが、これに限られず、各スケールの表面にXスケールとYスケールとが独立に形成されても良い。この場合、スケール内において、XスケールとYスケールとの長さを互いに異ならせるようにしても良い。また両者をX軸方向に相対的にずらして配置するようにしても良い。また、回折干渉方式のエンコーダシステムを用いる場合について説明したが、これに限られず、いわゆるピックアップ方式、磁気方式などの他のエンコーダも用いることができ、例えば米国特許第6,639,686号明細書などに開示されるいわゆるスキャンエンコーダなども用いることができる。 In each of the above embodiments, the case where a scale on which a two-dimensional grating is formed is described. However, the present invention is not limited to this, and an X scale and a Y scale may be independently formed on the surface of each scale. In this case, the lengths of the X scale and the Y scale may be different from each other in the scale. Moreover, you may make it arrange | position both relatively shifting in the X-axis direction. Further, the case where the diffraction interference type encoder system is used has been described. However, the present invention is not limited to this, and other encoders such as a so-called pickup type and magnetic type can also be used, for example, US Pat. No. 6,639,686. A so-called scan encoder disclosed in the above can also be used.
 なお、上記第20~第22の実施形態及びその変形例(以下、第22の実施形態と略記する)では、ヘッドを少なくとも4つ設ける場合について説明したが、かかる場合、第1方向に関して並んで配置された複数の格子領域を格子部に含むのであれば、格子部を構成するスケール2072の数は、特に問わない。その複数の格子領域は、基板ホルダ32の基板Pを挟むY軸方向の一側及び他側の両方に配置する必要はなく、一方にのみ配置されていても良い。ただし、少なくとも基板Pの露光動作中、基板ホルダ32の位置(X、Y、θz)を継続して制御するためには、以下の条件を満足する必要がある。 In the twentieth to twenty-second embodiments and the modified examples (hereinafter abbreviated as the twenty-second embodiment), the case where at least four heads are provided has been described. In such a case, the heads are arranged in the first direction. The number of scales 2072 constituting the lattice portion is not particularly limited as long as the lattice portion includes a plurality of arranged lattice regions. The plurality of lattice regions need not be disposed on both one side and the other side in the Y-axis direction across the substrate P of the substrate holder 32, and may be disposed on only one side. However, in order to continuously control the position (X, Y, θz) of the substrate holder 32 at least during the exposure operation of the substrate P, the following conditions must be satisfied.
 すなわち、少なくとも4つのヘッドのうち1つのヘッドで計測ビームが複数の格子領域(例えば、前述の2次元グレーティングRG)から外れている間、残りの少なくとも3つのヘッドは計測ビームが複数の格子領域の少なくとも1つに照射されるとともに、X軸方向(第1方向)への基板ホルダ32の移動によって、上述の少なくとも4つのヘッドの中で計測ビームが複数の格子領域から外れる上記1つのヘッドが切り換わる。この場合において、少なくとも4つのヘッドは、X軸方向(第1方向)に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、Y軸方向(第2方向)に関して前記2つのヘッドの少なくとも一方と計測ビームの位置が異なるととともに、X軸方向に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、を含み、前記2つのヘッドは、X軸方向に関して、複数の格子領域のうち隣接する一対の格子領域の間隔よりも広い間隔で計測ビームを照射する。 That is, while at least one of the four heads has a measurement beam deviating from a plurality of grating regions (for example, the above-described two-dimensional grating RG), the remaining at least three heads have a measurement beam having a plurality of grating regions. At least one of the above-described at least four heads is separated from the plurality of grating regions by the movement of the substrate holder 32 in the X-axis direction (first direction). Change. In this case, at least four heads include at least two heads having different measurement beam positions (irradiation positions) in the X-axis direction (first direction) and at least two heads in the Y-axis direction (second direction). And two heads having different measurement beam positions (irradiation positions) with respect to the X-axis direction, the two heads having a plurality of grating regions in the X-axis direction. Of these, the measurement beam is irradiated at an interval wider than the interval between a pair of adjacent lattice regions.
 なお、X軸方向に並んだ格子領域(例えば2次元グレーティングRG)の列を、Y軸方向に関して3列以上配置しても良い。例えば、上記第22の実施形態では、-Y側の5つのスケール2072に代えて、その5つのスケール2072のそれぞれをY軸方向に2等分したような面積をそれぞれ有する10個の格子領域(例えば2次元グレーティングRG)から成る、Y軸方向に隣接した2つの格子領域(例えば2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGにヘッド74e、74fが対向可能、且つ他方の列の2次元グレーティングRGにヘッド74c、74dが対向可能となるような構成を採用しても良い。また、上記第22の実施形態の変形例では、+Y側の5つのスケール2072についても、上述と同様の10個の格子領域から成る、Y軸方向に隣接した2つの格子領域(例えば2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGに一対のヘッドが対向可能、且つ他方の列の2次元グレーティングRGに残りの一対のヘッドが対向可能となるような構成を採用しても良い。 Note that three or more rows of lattice regions (for example, a two-dimensional grating RG) arranged in the X-axis direction may be arranged in the Y-axis direction. For example, in the twenty-second embodiment, instead of the five scales 2072 on the −Y side, ten lattice regions each having an area that is obtained by dividing each of the five scales 2072 into two equal parts in the Y-axis direction ( For example, two rows of lattice regions (for example, a two-dimensional grating RG) adjacent to each other in the Y-axis direction are provided, and the heads 74e and 74f can be opposed to the two-dimensional grating RG in one row, and the other A configuration may be adopted in which the heads 74c and 74d can face the two-dimensional grating RG in this row. In the modified example of the twenty-second embodiment, the five scales 2072 on the + Y side also have two lattice regions adjacent to each other in the Y-axis direction (for example, a two-dimensional grating). RG) is provided, and a pair of heads can be opposed to the two-dimensional grating RG in one row, and the remaining pair of heads can be opposed to the two-dimensional grating RG in the other row. Also good.
 なお、上記第20~第22の実施形態では、X軸方向(第1方向)への基板ホルダ32の移動において、少なくとも4つのヘッド相互間で、いずれの2つのヘッドについてみても、計測ビームがいずれの2次元グレーティングRGにも照射されない(格子領域から外れる)、すなわちヘッドでの計測が不能となる(非計測区間)が重ならないように、スケール及びヘッドの少なくとも一方の位置あるいは間隔、あるいは位置及び間隔などを設定することが重要である。 In the twentieth to twenty-second embodiments, in the movement of the substrate holder 32 in the X-axis direction (first direction), the measurement beam is not observed in any two heads between at least four heads. The position or interval or position of at least one of the scale and the head does not overlap so that none of the two-dimensional gratings RG is irradiated (out of the lattice area), that is, the measurement with the head becomes impossible (non-measurement section). It is important to set the interval and the like.
 なお、上記第20ないし第22の実施形態において、計測ビームが1つのスケールから外れて別のスケールに乗り換える別のヘッドの初期値を設定するものとしたが、これに限らず、別のヘッドの計測値の補正情報など、別のヘッドを用いて基板ホルダの移動を制御するための補正情報を取得しても良い。別のヘッドを用いて基板ホルダの移動を制御するための補正情報には、初期値は勿論含まれるが、これに限らず、その別のヘッドが計測を再開できるための情報であれば良く、計測再開後に計測すべき値からのオフセット値などでも良い。 In the twentieth to the twenty-second embodiments, the initial value of another head that changes the measurement beam from one scale and switches to another scale is set. However, the present invention is not limited to this. Correction information for controlling the movement of the substrate holder, such as measurement value correction information, may be acquired using another head. The correction information for controlling the movement of the substrate holder using another head includes, of course, the initial value, but is not limited to this, and any information that allows the other head to resume measurement may be used. An offset value from a value to be measured after the measurement is resumed may be used.
 なお、上記第20ないし第22の実施形態において、基板ホルダ32の位置情報を計測する各Xヘッド74xに代えて、X軸方向及びZ軸方向を計測方向とするエンコーダヘッド(XZヘッド)を用いるとともに、各Yヘッド74yに代えて、Y軸方向及びZ軸方向を計測方向とするエンコーダヘッド(YZヘッド)を用いても良い。これらのヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のセンサヘッドを用いることができる。かかる場合には、主制御装置100は、前述のヘッドの切り換え及びつなぎ処理に際して、切り換え前に基板ホルダ32の位置制御に用いられる3つのヘッドの計測値を用いて、所定の演算を行うことで、XY平面内の3自由度方向(X、Y、θz)に関する基板ホルダ32の位置の計測結果の連続性を保証するためのつなぎ処理に加えて、前述と同様の手法により、残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の位置の計測結果の連続性を保証するためのつなぎ処理をも行っても良い。代表的に第20の実施形態を例にとって具体的に説明すると、主制御装置100は、4つのヘッド74a、74b、74c、74dのうち、計測ビームが1つの2次元グレーティングRG(格子領域)から外れて別の2次元グレーティングRG(格子領域)に乗り換える1つのヘッドを用いて残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の移動を制御するための補正情報を、残りの3つのヘッドによるZ軸方向(第3方向)の計測情報、あるいはその残りの3つのヘッドを用いて計測される残りの3自由度方向(Z、θx、θy)に関する基板ホルダ32の位置情報に基づいて取得することとすれば良い。 In the twentieth to twenty-second embodiments, encoder heads (XZ heads) whose measurement directions are the X-axis direction and the Z-axis direction are used instead of the X heads 74x that measure the position information of the substrate holder 32. In addition, instead of each Y head 74y, an encoder head (YZ head) whose measurement directions are the Y-axis direction and the Z-axis direction may be used. As these heads, for example, sensor heads having the same configuration as the displacement measurement sensor head disclosed in US Pat. No. 7,561,280 can be used. In such a case, the main controller 100 performs a predetermined calculation using the measurement values of the three heads used for position control of the substrate holder 32 before switching at the time of the above-described head switching and joining processing. In addition to the joint process for assuring the continuity of the measurement result of the position of the substrate holder 32 with respect to the three-degree-of-freedom directions (X, Y, θz) in the XY plane, the remaining three degrees of freedom are obtained by the same method as described above. A linking process for assuring the continuity of the measurement result of the position of the substrate holder 32 with respect to the degree direction (Z, θx, θy) may also be performed. The main controller 100 will be specifically described by taking the twentieth embodiment as a representative example. The main controller 100 includes a four-dimensional head RG (grating region) from which the measurement beam is one of the four heads 74a, 74b, 74c, and 74d. Correction information for controlling the movement of the substrate holder 32 with respect to the remaining three-degree-of-freedom directions (Z, θx, θy) using one head that changes and switches to another two-dimensional grating RG (lattice region) Measurement information in the Z-axis direction (third direction) by the three heads or position information of the substrate holder 32 regarding the remaining three degrees of freedom directions (Z, θx, θy) measured using the remaining three heads. It may be obtained based on the above.
 また、複数のスケール板2072の高さと傾斜が相互にずれていると、前述の座標系間にずれが生じ、これによりエンコーダシステムの計測誤差が発生する。そこで、複数のスケール板2072間の高さと傾斜のずれに起因するエンコーダシステムの計測誤差も補正することとしても良い。例えば、前述したように第20の実施形態では、ヘッドの切り換えに際し、切り換え後のヘッドの初期値を設定する時点では、4つのヘッド74a~74dの全てが同時にいずれかのスケール2072に対向する第5の状態が発生する。そこで、主制御装置100は、この第5の状態における冗長ヘッドの計測値を利用することで、複数のスケール板2072間の高さと傾斜のずれに起因する座標系間のずれをキャリブレーション(較正)することとしても良い。 Also, if the heights and inclinations of the plurality of scale plates 2072 are deviated from each other, a deviation occurs between the aforementioned coordinate systems, which causes a measurement error of the encoder system. Therefore, the measurement error of the encoder system due to the height and inclination deviation between the plurality of scale plates 2072 may be corrected. For example, as described above, in the twentieth embodiment, when the heads are switched, when the initial values of the heads after switching are set, all of the four heads 74a to 74d are simultaneously opposed to any one of the scales 2072. State 5 occurs. Therefore, main controller 100 uses the measurement value of the redundant head in the fifth state to calibrate the deviation between the coordinate systems due to the deviation between the height and the inclination between the plurality of scale plates 2072 (calibration). ) It is also good to do.
 例えば、前述のオフセット(ΔX、ΔY、Δθz)の取得の際と同様に、第5の状態において、2組の3つ1組のヘッドによる基板ホルダ32の位置(Z、θx、θy)の計測を行い、その計測により得られた計測値同士の差、すなわちオフセットΔZ、Δθx、Δθyを求め、このオフセットをヘッドの切り換え前後の基板ホルダ32の位置情報の計測及び位置の制御に用いられる3つのヘッドと対向する少なくとも2つのスケールの組み合わせによってそれぞれ定まる座標系間のZ軸方向、θx、θy方向のずれのキャリブレーションに用いることができる。 For example, as in the case of obtaining the offset (ΔX, ΔY, Δθz) described above, in the fifth state, the position (Z, θx, θy) of the substrate holder 32 is measured by two sets of three heads. The difference between the measurement values obtained by the measurement, that is, the offsets ΔZ, Δθx, Δθy are obtained, and the offsets are used to measure the position information of the substrate holder 32 before and after the head switching and to control the position. It can be used for calibration of deviations in the Z-axis direction, θx, and θy directions between coordinate systems respectively determined by a combination of at least two scales facing the head.
 なお、上記第1~第22実施形態において、Z・チルト位置計測系及びエンコーダシステムによって基板計測系を構成するものとしたが、例えばX、Yヘッドの代わりにXZ、YZヘッドを用いることで、エンコーダシステムのみで基板計測系を構成しても良い。 In the first to twenty-second embodiments, the Z / tilt position measurement system and the encoder system constitute the substrate measurement system. For example, instead of the X and Y heads, XZ and YZ heads are used, The substrate measurement system may be configured only by the encoder system.
 また、上記第17の実施形態において、一対の計測テーブル1782とは別に、X軸方向に関して計測テーブル1782から離れて配置される少なくとも1つのヘッドを設けても良い。例えば、X軸方向に関して投影光学系16から離れて配置され、基板Pのアライメントマークを検出するマーク検出系(アライメント系)に対して±Y側にそれぞれ計測テーブル1782と同じ可動のヘッドユニットを設け、基板マークの検出動作においてマーク検出系の±Y側に配置される一対のヘッドユニットを用いてY粗動ステージ24の位置情報を計測しても良い。この場合、マーク検出動作において、一対の計測テーブル1782で全ての計測ビームがスケール1788(又は684)から外れても、基板計測系(別の一対のヘッドユニット)によるY粗動ステージ24の位置情報の計測が継続可能となり、マーク検出系の位置など、露光装置の設計の自由度を高められる。なお、Z軸方向に関する基板Pの位置情報を計測する基板計測系をマーク検出系の近傍に配置することで、基板のZ位置の検出動作においても基板計測系によるY粗動ステージ24の位置情報の計測が可能となる。または、基板計測系を投影光学系16の近傍に配置し、基板のZ位置の検出動作において一対の計測テーブル1782でY粗動ステージ24の位置情報を計測しても良い。また、本実施形態では、投影光学系16から離れて設定される基板交換位置にY粗動ステージ24が配置されると、一対の計測テーブル1782の全てのヘッドで計測ビームがスケール1788(又は684)から外れる。そこで、基板交換位置に配置されるY粗動ステージ24の複数のスケール1788(又は684)の少なくとも1つと対向する少なくとも1つのヘッド(可動のヘッド又は固定のヘッドのいずれでも良い)を設け、基板交換動作においても基板計測系によるY粗動ステージ24の位置情報の計測を可能としても良い。ここで、Y粗動ステージ24が基板交換位置に到達する前、言い換えれば、基板交換位置に配置される少なくとも1つのヘッドがスケール1788(又は684)に対向する前に、一対の計測テーブル1782の全てのヘッドで計測ビームがスケール1788(又は684)から外れる場合は、Y粗動ステージ24の移動経路の途中に少なくとも1つのヘッドを追加で配置し、基板計測系による基板ホルダ32の位置情報の計測を継続可能としても良い。なお、一対の計測テーブル1782とは別に設けられる少なくとも1つのヘッドを用いる場合、一対の計測テーブル1782の計測情報を用いて前述のつなぎ処理を行っても良い。 Further, in the seventeenth embodiment, apart from the pair of measurement tables 1782, at least one head arranged away from the measurement table 1782 in the X-axis direction may be provided. For example, the same movable head unit as the measurement table 1782 is provided on the ± Y side with respect to a mark detection system (alignment system) that is arranged away from the projection optical system 16 in the X-axis direction and detects an alignment mark on the substrate P. The positional information of the Y coarse movement stage 24 may be measured using a pair of head units arranged on the ± Y side of the mark detection system in the detection operation of the substrate mark. In this case, in the mark detection operation, even if all the measurement beams are removed from the scale 1788 (or 684) by the pair of measurement tables 1782, the positional information of the Y coarse movement stage 24 by the substrate measurement system (another pair of head units). Measurement can be continued, and the degree of freedom in designing the exposure apparatus, such as the position of the mark detection system, can be increased. In addition, by arranging a substrate measurement system for measuring the position information of the substrate P in the Z-axis direction in the vicinity of the mark detection system, the position information of the Y coarse movement stage 24 by the substrate measurement system is also used in the detection operation of the Z position of the substrate. Can be measured. Alternatively, the substrate measurement system may be arranged in the vicinity of the projection optical system 16 and the position information of the Y coarse movement stage 24 may be measured by the pair of measurement tables 1782 in the detection operation of the Z position of the substrate. Further, in this embodiment, when the Y coarse movement stage 24 is arranged at the substrate exchange position set apart from the projection optical system 16, the measurement beams are scaled by the scales 1788 (or 684) at all the heads of the pair of measurement tables 1782. ). Therefore, at least one head (either a movable head or a fixed head) facing at least one of the plurality of scales 1788 (or 684) of the Y coarse movement stage 24 arranged at the substrate exchange position is provided, and the substrate Even in the exchange operation, the position information of the Y coarse movement stage 24 may be measured by the substrate measurement system. Here, before the Y coarse movement stage 24 reaches the substrate replacement position, in other words, before at least one head arranged at the substrate replacement position faces the scale 1788 (or 684), the pair of measurement tables 1782 When the measurement beams are deviated from the scale 1788 (or 684) in all the heads, at least one head is additionally arranged in the middle of the movement path of the Y coarse movement stage 24, and the position information of the substrate holder 32 by the substrate measurement system is displayed. Measurement may be continued. Note that when at least one head provided separately from the pair of measurement tables 1782 is used, the above-described connection processing may be performed using the measurement information of the pair of measurement tables 1782.
 同様に、上記第1~第22実施形態において、各Xヘッド74xに代えて、前述のXZヘッドを用いるとともに、各Yヘッド74yに代えて、前述のYZヘッドを用いても良い。かかる場合において、一対のXZヘッドと一対のYZヘッドと、これらが対向可能なスケールとを含むエンコーダシステムでは、複数のヘッド74x、74yの回転(θz)と傾斜(θx及びθyの少なくとも一方)との少なくとも一方に関する位置情報を計測することとしても良い。 Similarly, in the first to twenty-second embodiments, the XZ head described above may be used instead of each X head 74x, and the YZ head described above may be used instead of each Y head 74y. In such a case, in an encoder system including a pair of XZ heads, a pair of YZ heads, and a scale that can be opposed to each other, rotation (θz) and inclination (at least one of θx and θy) of the plurality of heads 74x and 74y, It is good also as measuring the positional information regarding at least one of these.
 なお、スケール72,78,2072などでは表面に格子が形成される(表面が格子面である)ものとしたが、例えば格子を覆うカバー部材(ガラス又は薄膜など)を設け、格子面をスケールの内部としても良い。 In the scales 72, 78, 2072, etc., a lattice is formed on the surface (the surface is a lattice surface). However, for example, a cover member (glass or thin film) covering the lattice is provided, and the lattice surface is the scale surface. It may be inside.
 なお、上記第17の実施形態では、各一対のXヘッド80x及びYヘッド80yが、Y粗動ステージ24の位置を計測するためのヘッドとともに、計測テーブル1782に設けられる場合について説明したが、各一対のXヘッド80x及びYヘッド80yは、計測テーブル1782を介することなく、Y粗動ステージ24の位置を計測するためのヘッドに設けられていても良い。 In the seventeenth embodiment, the case where each pair of the X head 80x and the Y head 80y is provided on the measurement table 1782 together with the head for measuring the position of the Y coarse movement stage 24 has been described. The pair of X head 80x and Y head 80y may be provided in a head for measuring the position of the Y coarse movement stage 24 without using the measurement table 1782.
 なお、これまでの説明では、基板エンコーダシステムが備える各ヘッドのXY平面内における計測方向が、X軸方向又はY軸方向である場合について説明したが、これに限らず、2次元グレーティングに代えて、XY平面内で、X軸方向及びY軸方向に交差し、かつ互いに直交する2方向(便宜上、α方向、β方向と呼ぶ)を周期方向とする2次元格子を用いても良く、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。また、前述の第1の実施形態では、各Xスケール、Yスケールに代えて、例えばα方向、β方向を周期方向とする1次元格子を用いるとともに、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。 In the description so far, the case where the measurement direction in the XY plane of each head included in the substrate encoder system is the X-axis direction or the Y-axis direction has been described. In the XY plane, a two-dimensional lattice having a periodic direction in two directions (referred to as α direction and β direction for convenience) intersecting the X axis direction and the Y axis direction and orthogonal to each other may be used. Correspondingly, as each of the heads described above, a head having the α direction (and the Z axis direction) or the β direction (and the Z axis direction) as the respective measurement directions may be used. Further, in the first embodiment described above, instead of each X scale and Y scale, for example, a one-dimensional grating having a periodic direction in the α direction and the β direction is used, and correspondingly, as each head described above, It is also possible to use a head whose respective measurement directions are the α direction (and the Z axis direction) or the β direction (and the Z axis direction).
 なお、上記第20~第22の実施形態において、第1格子群を前述のXスケールの列で構成し、第2格子群を前述のYスケールの列で構成し、これに対応して、Xスケールの列に対向可能に複数のXヘッド(又はXZヘッド)を所定の間隔(隣接するXスケール間の間隔より大きな間隔)で配置するとともに、Yスケールの列に対向可能に複数のYヘッド(又はYZヘッド)を所定の間隔(隣接するYスケール間の間隔より大きな間隔)で配置することとしても良い。 In the twentieth to twenty-second embodiments, the first lattice group is composed of the aforementioned X-scale column, and the second lattice group is composed of the aforementioned Y-scale column. A plurality of X heads (or XZ heads) are arranged at a predetermined interval (an interval larger than the interval between adjacent X scales) so as to be able to face the scale row, and a plurality of Y heads (being able to face the Y scale row) Alternatively, YZ heads) may be arranged at a predetermined interval (interval larger than the interval between adjacent Y scales).
 なお、上記第20~第22の実施形態において、X軸方向又はY軸方向に並んで配置される各スケールとして、長さの異なる複数のスケールを用いても勿論良い。この場合において、周期方向が同じ、あるいは直交するスケールの列を2列以上、並んで設ける場合には、スケール間のスペースが、お互いに重ならないように設定可能な長さのスケールを選択することとしても良い。すなわち、一列のスケール列を構成するスケール間のスペースの配置間隔は、等間隔でなくても良い。また、例えば、粗動ステージ上のスケール列において、X軸方向における両端部寄りにそれぞれ配置されるスケール(スケール列において、各端部に配置されるスケール)のX軸方向の長さよりも、中央部に配置されるスケールの方を物理的に長くしても良い。 In the twentieth to twenty-second embodiments, as a matter of course, a plurality of scales having different lengths may be used as the scales arranged side by side in the X-axis direction or the Y-axis direction. In this case, when two or more rows of scales having the same or orthogonal directions are provided side by side, select a scale having a length that can be set so that the spaces between the scales do not overlap each other. It is also good. That is, the arrangement interval of the spaces between the scales constituting one scale row may not be equal. Further, for example, in the scale row on the coarse movement stage, the center of the scales arranged near the both ends in the X-axis direction (the scales arranged at the respective ends in the scale row) is longer than the length in the X-axis direction. The scale arranged in the part may be physically longer.
 なお、上記第6、第7、第16、第17の各実施形態において、計測テーブル用エンコーダは、少なくとも計測テーブルの移動方向(上記実施形態ではY軸方向)の位置情報を計測すれば良いが、移動方向と異なる少なくとも1つの方向(X、Z、θx、θy、θzの少なくとも1つ)の位置情報も計測して良い。例えば、計測方向がX軸方向のヘッド(Xヘッド)のX軸方向の位置情報も計測し、このX情報とXヘッドの計測情報とでX軸方向の位置情報を求めても良い。ただし、計測方向がY軸方向のヘッド(Yヘッド)では、計測方向と直交するX軸方向の位置情報を用いなくても良い。同様に、Xヘッドでは、計測方向と直交するY軸方向の位置情報を用いなくても良い。要は、ヘッドの計測方向と異なる少なくとも1つの方向の位置情報を計測し、この計測情報とヘッドの計測情報とで計測方向に関する基板ホルダ622などの位置情報を求めても良い。また、例えばX軸方向に関して位置が異なる2本の計測ビームを使って可動ヘッドのθz方向の位置情報(回転情報)を計測し、この回転情報と、Xヘッド、及びYヘッドの計測情報とを用いて基板ホルダ622などのX軸、Y軸方向の位置情報を求めても良い。この場合、XヘッドとYヘッドとの一方を2つ、他方を1つ、計測方向が同じ2つのヘッドが計測方向と直交する方向に関して同一位置とならないように配置することで、X、Y、θz方向の位置情報を計測可能となる。もう1つのヘッドは、2つのヘッドと異なる位置に計測ビームを照射すると良い。さらに、可動ヘッド用エンコーダのヘッドがXZヘッド又はYZヘッドであれば、例えばXZヘッドとYZヘッドの一方を2つ、他方を1つ、同一直線上とならないように配置することで、Z情報だけでなくθx及びθy方向の位置情報(傾斜情報)も計測できる。θx及びθy方向の位置情報の少なくとも一方と、Xヘッド、及びYヘッドの計測情報とでX軸、Y軸方向の位置情報を求めても良い。同様に、XZヘッド又はYZヘッドでも、Z軸方向と異なる方向に関する可動ヘッドの位置情報を計測し、この計測情報とヘッド計測情報とでZ軸方向の位置情報を求めても良い。なお、可動ヘッドの位置情報を計測するエンコーダのスケールが単一のスケール(格子領域)であれば、XYθzもZθxθyも3つのヘッドで計測できるが、複数のスケール(格子領域)が離れて配置される場合は、Xヘッド、及びYヘッドを2つずつ、あるいはXZヘッド、及びYZヘッドを2つずつ配置し、4つのヘッドで非計測期間が重ならないようにX軸方向の間隔を設定すれば良い。この説明は、格子領域がXY平面と平行に配置されるスケールを前提としたが、格子領域がYZ平面と平行に配置されるスケールでも同様に適用できる。 In each of the sixth, seventh, sixteenth, and seventeenth embodiments, the measurement table encoder may measure at least position information in the movement direction of the measurement table (in the above embodiment, the Y-axis direction). Position information in at least one direction (at least one of X, Z, θx, θy, and θz) different from the moving direction may also be measured. For example, position information in the X-axis direction of a head (X head) whose measurement direction is the X-axis direction may also be measured, and position information in the X-axis direction may be obtained from this X information and measurement information of the X head. However, in the head (Y head) whose measurement direction is the Y-axis direction, position information in the X-axis direction orthogonal to the measurement direction may not be used. Similarly, in the X head, position information in the Y-axis direction orthogonal to the measurement direction may not be used. In short, position information in at least one direction different from the measurement direction of the head may be measured, and position information of the substrate holder 622 and the like related to the measurement direction may be obtained from this measurement information and the measurement information of the head. Further, for example, position information (rotation information) in the θz direction of the movable head is measured using two measurement beams having different positions in the X-axis direction, and the rotation information and measurement information of the X head and the Y head are used. The position information of the substrate holder 622 and the like in the X-axis and Y-axis directions may be obtained. In this case, two X heads and one Y head, one other, and two heads having the same measurement direction are arranged so as not to be in the same position with respect to the direction orthogonal to the measurement direction. Position information in the θz direction can be measured. The other head is preferably irradiated with a measurement beam at a position different from the two heads. Furthermore, if the head of the movable head encoder is an XZ head or a YZ head, for example, by arranging one of the XZ head and the YZ head and one of the other so as not to be on the same straight line, only Z information can be obtained. In addition, position information (tilt information) in the θx and θy directions can also be measured. Position information in the X-axis and Y-axis directions may be obtained from at least one of position information in the θx and θy directions and measurement information of the X head and the Y head. Similarly, with the XZ head or the YZ head, position information of the movable head in a direction different from the Z-axis direction may be measured, and the position information in the Z-axis direction may be obtained from the measurement information and the head measurement information. If the scale of the encoder that measures the position information of the movable head is a single scale (lattice area), XYθz and Zθxθy can be measured with three heads, but a plurality of scales (lattice areas) are arranged separately. If two X heads and two Y heads or two XZ heads and two YZ heads are arranged, and the interval in the X-axis direction is set so that the non-measurement periods do not overlap with the four heads. good. This description is based on a scale in which the lattice area is arranged in parallel with the XY plane, but can be similarly applied to a scale in which the lattice area is arranged in parallel with the YZ plane.
 また、上記第6、第7、第16、第17の各実施形態において、計測テーブルの位置情報を計測する計測装置としてエンコーダを用いるものとしたが、エンコーダ以外、例えば干渉計などを用いても良い。この場合、例えば可動ヘッド(又はその保持部)に反射面を設け、Y軸方向と平行に計測ビームを反射面に照射すれば良い。特に可動ヘッドがY軸方向のみに移動される場合は反射面を大きくする必要がなく、空気揺らぎを低減するための干渉計ビームの光路の局所的な空調も容易となる。 In each of the sixth, seventh, sixteenth, and seventeenth embodiments, an encoder is used as a measurement device that measures position information of a measurement table. However, other than the encoder, for example, an interferometer may be used. good. In this case, for example, a reflecting surface may be provided on the movable head (or its holding portion), and the reflecting surface may be irradiated with the measurement beam in parallel with the Y-axis direction. In particular, when the movable head is moved only in the Y-axis direction, it is not necessary to increase the reflecting surface, and local air conditioning of the optical path of the interferometer beam for reducing air fluctuation is facilitated.
 また、上記第17の実施形態において、Y粗動ステージ24のスケールに計測ビームを照射する可動ヘッドを、Y軸方向に関して投影系の両側に1つずつ設けるものとしたが、複数ずつ可動ヘッドを設けても良い。例えば、Y軸方向に関して複数の可動ヘッドで計測期間が一部重なるように隣接する可動ヘッド(計測ビーム)を配置すれば、Y粗動ステージ24がY軸方向に移動しても、複数の可動ヘッドによって位置計測を継続できる。この場合、複数の可動ヘッドでつなぎ処理が必要となる。そこで、投影系の±Y側の一方のみに配置され、少なくとも1つのスケールに計測ビームが照射される複数のヘッドの計測情報を用いて、計測ビームがスケールに入る別のヘッドに関する補正情報を取得しても良いし、±Y側の一方だけでなく他側に配置される少なくとも1つのヘッドの計測情報を用いても良い。要は、±Y側にそれぞれ配置される複数のヘッドのうち、スケールに計測ビームが照射されている少なくとも3つのヘッドの計測情報を用いれば良い。 In the seventeenth embodiment, one movable head that irradiates the measurement beam onto the scale of the Y coarse movement stage 24 is provided on each side of the projection system in the Y-axis direction. It may be provided. For example, if adjacent movable heads (measurement beams) are arranged so that the measurement periods partially overlap with each other in the Y-axis direction, even if the Y coarse movement stage 24 moves in the Y-axis direction, the plurality of movable heads are movable. Position measurement can be continued with the head. In this case, a connecting process is required with a plurality of movable heads. Therefore, the correction information about another head where the measurement beam enters the scale is obtained by using measurement information of a plurality of heads that are arranged only on one side of the projection system on the ± Y side and are irradiated with the measurement beam on at least one scale. Alternatively, measurement information of at least one head arranged on the other side as well as one of the ± Y sides may be used. In short, it is only necessary to use measurement information of at least three heads whose measurement beams are irradiated to the scale among a plurality of heads arranged on the ± Y side.
 また、上記第20~第22実施形態の基板計測系において、走査露光において基板Pが移動される走査方向(X軸方向)に関して複数のスケール(格子領域)を互いに離して配置するとともに、複数のヘッドを基板Pのステップ方向(Y軸方向)に移動可能としたが、これとは逆に、ステップ方向(Y軸方向)に関して複数のスケールを互いに離して配置するとともに、複数のヘッドを走査方向(X軸方向)に移動可能としても良い。 In the substrate measurement systems of the twentieth to twenty-second embodiments, a plurality of scales (lattice regions) are arranged apart from each other in the scanning direction (X-axis direction) in which the substrate P is moved in scanning exposure, and a plurality of scales are arranged. The head can be moved in the step direction (Y-axis direction) of the substrate P. On the contrary, a plurality of scales are arranged apart from each other in the step direction (Y-axis direction), and the plurality of heads are moved in the scanning direction. It may be movable in the (X-axis direction).
 また、上記第1~第22実施形態において、エンコーダシステムのヘッドは、光源からのビームをスケールに照射する光学系の全てを有している必要はなく、光学系の一部、例えば射出部のみを有するものとしても良い。 In the first to twenty-second embodiments, the head of the encoder system does not need to have all of the optical system that irradiates the scale with the beam from the light source, but only a part of the optical system, for example, the emission unit. It is good also as what has.
 また、上記第20~第22実施形態において、一対のヘッドベース88のヘッドは図71の配置(Xヘッド及びYヘッドが±Y側にそれぞれ配置されかつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が逆)に限られるものではなく、例えばXヘッド及びYヘッドが±Y側にそれぞれ配置され、かつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が同一でも良い。ただし、2つのYヘッドのX位置が同一であると、2つのXヘッドの一方で計測が切れると、θz情報が計測できなくなるため、2つのYヘッドのX位置を異ならせることが好ましい。 Further, in the twentieth to twenty-second embodiments, the heads of the pair of head bases 88 are arranged as shown in FIG. 71 (the X head and the Y head are arranged on the ± Y side, respectively, The arrangement of the X and Y heads is not limited to the opposite direction), for example, the X head and the Y head are arranged on the ± Y side, respectively, and the X and Y directions on one side and the other on the ± Y side The head arrangement may be the same. However, if the X positions of the two Y heads are the same, it is preferable to make the X positions of the two Y heads different because the θz information cannot be measured if the measurement of one of the two X heads is interrupted.
 また、上記第1~第22の実施形態において、エンコーダシステムのヘッドから計測ビームが照射されるスケール(スケール部材、格子部)を、投影光学系16側に設ける場合、投影光学系16を支持する装置本体18(フレーム部材)の一部に限らず、投影光学系16の鏡筒部分に設けても良い。 In the first to the twenty-second embodiments, when the scale (scale member, grating portion) irradiated with the measurement beam from the head of the encoder system is provided on the projection optical system 16 side, the projection optical system 16 is supported. You may provide in the lens-barrel part of the projection optical system 16 not only in a part of apparatus main body 18 (frame member).
 また、上記第1~第22の実施形態では、走査露光時のマスクM及び基板Pの移動方向(走査方向)がX軸方向である場合について説明したが、走査方向をY軸方向としても良い。この場合、マスクステージの長ストローク方向をZ軸回りに90度回転させた向きに設定するとともに、投影光学系16の向きもZ軸回りに90度回転させるなどする必要がある。 In the first to twenty-second embodiments, the case in which the movement direction (scanning direction) of the mask M and the substrate P during scanning exposure is the X-axis direction, but the scanning direction may be the Y-axis direction. . In this case, it is necessary to set the long stroke direction of the mask stage to a direction rotated 90 degrees around the Z axis, and the direction of the projection optical system 16 also needs to be rotated 90 degrees around the Z axis.
 なお、上記第20~第22の実施形態において、Y粗動ステージ24上において、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)を、複数列、互いにY軸方向に離れた異なる位置(例えば投影光学系16に対して一方の側(+Y側)の位置と、他方(-Y側)の位置)に配置する場合に、この複数のスケール群(複数のスケール列)を、基板上におけるショットの配置(ショットマップ)に基づいて使い分け出来るように構成しても良い。たとえば、複数のスケール列の全体としての長さを、スケール列間で互いに異ならせておけば、異なるショットマップに対応でき、4面取りの場合と6面取りの場合など、基板上に形成するショット領域の数の変化にも対応できる。またこのように配置すると共に、各スケール列の隙間の位置をX軸方向において互いに異なる位置にすれば、複数のスケール列にそれぞれ対応するヘッドが同時に計測範囲外になることがないので、繋ぎ処理において不定値とされるセンサの数を減らすことができ、繋ぎ処理を高精度に行うことができる。 In the twentieth to twenty-second embodiments, a scale group (scale row) in which a plurality of scales are arranged in series in the X-axis direction with a gap of a predetermined interval on the Y coarse movement stage 24. When a plurality of rows are arranged at different positions separated from each other in the Y-axis direction (for example, a position on one side (+ Y side) and a position on the other side (−Y side) with respect to the projection optical system 16), You may comprise so that a scale group (a several scale row | line | column) can be selectively used based on arrangement | positioning (shot map) of the shot on a board | substrate. For example, if the lengths of the plurality of scale rows as a whole are different from each other between the scale rows, different shot maps can be handled, and shot areas formed on the substrate in the case of four-sided and six-sided chamfers, etc. It can respond to changes in the number of In addition, if the positions of the gaps of the scale rows are made different from each other in the X-axis direction, the heads corresponding to the plurality of scale rows will not be out of the measurement range at the same time. It is possible to reduce the number of sensors having an indeterminate value in FIG.
 また、Y粗動ステージ24上で、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)において、1つのスケール(X軸計測用のパターン)のX軸方向の長さを、1ショット領域の長さ(基板ホルダ上の基板をX軸方向に移動させながらスキャン露光を行う際に、デバイスパターンが照射されて基板上に形成される長さ)分だけ連続して測定できるような長さにしても良い。このようにすれば、1ショット領域のスキャン露光中に、複数スケールに対するヘッドの乗継制御を行わずに済むため、スキャン露光中の基板P(基板ホルダ)の位置計測(位置制御)を容易にできる。 Further, one scale (pattern for X-axis measurement) in a scale group (scale array) in which a plurality of scales are arranged in series in the X-axis direction via a gap of a predetermined interval on the Y coarse movement stage 24. The length in the X-axis direction is the length of one shot region (the length formed on the substrate by irradiation of the device pattern when performing scanning exposure while moving the substrate on the substrate holder in the X-axis direction) ), The length may be measured continuously. In this way, it is not necessary to perform head transfer control for a plurality of scales during scan exposure of a one-shot area, so that position measurement (position control) of the substrate P (substrate holder) during scan exposure can be easily performed. it can.
 また、上記第1~第22の実施形態において、基板計測系は、基板ステージ装置が基板ローダとの基板交換位置まで移動する間の位置情報を取得するために、基板ステージ装置又は別のステージ装置に基板交換用のスケールを設け、下向きのヘッドを使って基板ステージ装置の位置情報を取得しても良い。あるいは、基板ステージ装置又は別のステージ装置に基板交換用のヘッドを設け、スケールや基板交換用のスケールを計測することによって基板ステージ装置の位置情報を取得しても良い。 In the first to twenty-second embodiments, the substrate measuring system obtains positional information while the substrate stage device moves to the substrate exchange position with the substrate loader, or the substrate stage device or another stage device. It is also possible to provide a scale for exchanging the substrate and obtain the position information of the substrate stage apparatus using a downward head. Alternatively, the substrate stage apparatus or another stage apparatus may be provided with a substrate replacement head, and the position information of the substrate stage apparatus may be acquired by measuring the scale or the substrate replacement scale.
 またエンコーダシステムとは別の位置計測系(たとえばステージ上のマークとそれを観察する観察系)を設けてステージの交換位置制御(管理)を行っても良い。 Also, a position measurement system (for example, a mark on the stage and an observation system for observing it) may be provided separately from the encoder system to perform stage exchange position control (management).
 なお、基板ステージ装置は、少なくとも基板Pを水平面に沿って長ストロークで駆動できれば良く、場合によっては6自由度方向の微少位置決めができなくても良い。このような2次元ステージ装置に対しても上記第1~第22の実施形態に係る基板エンコーダシステムを好適に適用できる。 Note that the substrate stage apparatus only needs to be able to drive at least the substrate P along a horizontal plane with a long stroke, and in some cases, the substrate stage device may not be able to perform fine positioning in the direction of six degrees of freedom. The substrate encoder system according to the first to twenty-second embodiments can also be suitably applied to such a two-dimensional stage apparatus.
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、エルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 The illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). Moreover, as illumination light, the single wavelength laser beam of the infrared region or visible region oscillated from the DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium), You may use the harmonic which wavelength-converted into ultraviolet light using the nonlinear optical crystal. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、投影光学系16が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系16としては、拡大系、又は縮小系であっても良い。 Further, the case where the projection optical system 16 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used. The projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 16 may be an enlargement system or a reduction system.
 また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。 Further, the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern to the square glass plate, but is used for the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, for semiconductor manufacturing. The present invention can be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
 また、露光対象となる物体はガラスプレートに限られず、ウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、フィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。 The object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank. When the exposure object is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes a film-like (flexible sheet-like member). The exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 なお、上記各実施形態の複数の構成要件は適宜組み合わせることができる。したがって、上述の複数の構成要件のうちの一部が用いられなくても良い。 It should be noted that a plurality of constituent elements of the above embodiments can be combined as appropriate. Therefore, some of the above-described plurality of constituent elements may not be used.
 なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。 It should be noted that the disclosures of all publications, international publications, US patent application publication specifications, US patent specifications, and the like related to the exposure apparatus and the like cited in the above embodiments are incorporated herein by reference.
 以上説明したように、本発明の移動体装置及び移動方法は、物体を移動するのに適している。また、本発明の露光装置及び露光方法は、物体を露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの製造に適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。 As described above, the mobile device and the moving method of the present invention are suitable for moving an object. The exposure apparatus and exposure method of the present invention are suitable for exposing an object. Moreover, the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display. The device manufacturing method of the present invention is suitable for manufacturing micro devices.
 10…液晶露光装置、20…基板ステージ装置、24…Y粗動ステージ、32…基板ホルダ、70…基板計測系、72…上向きスケール、74x…下向きXヘッド、74y…下向きYヘッド、78…下向きスケール、80x…上向きXヘッド、80y…上向きYヘッド、100…主制御装置、P…基板。 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 20 ... Substrate stage apparatus, 24 ... Y coarse movement stage, 32 ... Substrate holder, 70 ... Substrate measurement system, 72 ... Upward scale, 74x ... Downward X head, 74y ... Downward Y head, 78 ... Downward Scale, 80x ... Upward X head, 80y ... Upward Y head, 100 ... Main controller, P ... Substrate.

Claims (46)

  1.  物体を保持し、互いに交差する第1方向と第2方向へ移動可能な第1移動体と、
     前記第1および第2方向の計測成分を含み、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも3つのヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測する第1計測系と、
     前記第1格子領域と前記第1ヘッドとの他方に設けられ、前記第2方向へ移動可能な第2移動体と、
     前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して前記第2方向へ移動しながら計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測する第2計測系と、
     前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1および第2方向を含む所定平面内の3自由度方向に関する前記第1移動体の移動制御を行う制御系と、を備え、
     前記制御系は、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも4つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の少なくとも2つに関する格子補正情報を取得し、
     前記格子補正情報は、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも3つのヘッドを用いる前記第1移動体の移動制御で用いられる移動体装置。
    A first moving body that holds an object and is movable in a first direction and a second direction intersecting each other;
    The measurement components in the first and second directions are included, and a plurality of first lattice regions are arranged apart from each other with respect to the first direction, and are arranged apart from the plurality of first lattice regions with respect to the second direction. A plurality of second grating regions disposed apart from each other with respect to the first direction, and a plurality of second grating regions each irradiating a measurement beam while moving in the first direction with respect to the first grating member. One of the heads is provided on the first moving body, and the other of the first lattice member and the plurality of first heads is provided to face the moving body, A first measurement system for measuring position information of the first moving body in the first direction by at least three heads irradiated with at least two of the plurality of first and second grating regions with the measurement beam;
    A second moving body provided on the other of the first lattice region and the first head and movable in the second direction;
    One of the second grating member including the measurement components in the first and second directions and the second head that irradiates the measurement beam while moving in the second direction with respect to the second grating member is the second movement. A second measuring unit configured to measure position information of the second moving body with respect to the second direction, the second grid member and the second head provided opposite to the second moving body. Measuring system,
    A control system for performing movement control of the first moving body in directions of three degrees of freedom in a predetermined plane including the first and second directions based on the position information measured by the first and second measurement systems; With
    The control system measures the first movement measured using at least four heads of the plurality of first heads that are irradiated with at least two of the plurality of first and second grating regions. Obtaining lattice correction information on at least two of the plurality of first and second lattice regions based on body position information;
    The grating correction information is a moving body device used in movement control of the first moving body using the at least three heads on which at least two of the plurality of first and second grating regions are irradiated with the measurement beam.
  2.  前記格子補正情報は、前記少なくとも4つのヘッドの3つを用いて計測される前記3自由度方向に関する前記第1移動体の位置情報と、前記少なくとも4つのヘッドのうち、前記3つのヘッドと異なる少なくとも1つのヘッドを含む3つのヘッドを用いて計測される前記3自由度方向に関する前記第1移動体の位置情報との差に起因して生じる前記第1計測系の計測誤差または前記第1移動体の位置誤差を補償するために用いられる請求項1に記載の移動体装置。 The lattice correction information is different from the three heads of the at least four heads, and the position information of the first moving body in the three degrees of freedom direction measured using three of the at least four heads. Measurement error of the first measurement system or the first movement caused by a difference from the position information of the first moving body in the direction of the three degrees of freedom measured using three heads including at least one head 2. A mobile device according to claim 1 used to compensate for body position errors.
  3.  前記複数の第1ヘッドはそれぞれ、前記所定平面内の一方向と前記所定平面と直交する第3方向との2方向を計測方向とし、
     前記第1計測系は、前記少なくとも3つのヘッドを用いて、前記第3方向を含む、前記3自由度方向と異なる3自由度方向に関する前記第1移動体の位置情報を計測可能である請求項1又は2に記載の移動体装置。
    Each of the plurality of first heads has two measurement directions, that is, one direction in the predetermined plane and a third direction orthogonal to the predetermined plane,
    The first measurement system is capable of measuring position information of the first moving body with respect to a direction of three degrees of freedom different from the direction of three degrees of freedom including the third direction, using the at least three heads. 3. The mobile device according to 1 or 2.
  4.  前記制御系は、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも4つのヘッドを用いて計測される前記第3方向に関する前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の少なくとも2つに関する、前記異なる3自由度方向における格子補正情報を取得する請求項3に記載の移動体装置。 The control system is configured such that the position of the first moving body in the third direction is measured using the at least four heads that are irradiated with the measurement beam on at least two of the plurality of first and second grating regions. The mobile device according to claim 3, wherein lattice correction information in the different three degrees of freedom directions regarding at least two of the plurality of first and second lattice regions is acquired based on the information.
  5.  前記制御系は、前記取得した格子補正情報を、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも4つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて更新する請求項1~4のいずれか一項に記載の移動体装置。 The control system is configured to measure the acquired grating correction information using the at least four heads in which at least two of the plurality of first and second grating regions are irradiated with the measurement beam. The mobile device according to any one of claims 1 to 4, wherein the mobile device is updated based on body position information.
  6.  前記制御系は、照明光を用いる露光処理を含む所定処理中に前記格子補正情報の取得と更新との少なくとも一方を行う請求項1~5のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 5, wherein the control system performs at least one of acquisition and update of the lattice correction information during a predetermined process including an exposure process using illumination light.
  7.  前記所定処理中に前記格子補正情報の取得と更新との少なくとも一方を行うために、前記第1計測系で計測に用いられる前記少なくとも3つのヘッドを含む前記少なくとも4つのヘッドが用いられる請求項6に記載の移動体装置。 The at least four heads including the at least three heads used for measurement in the first measurement system are used to perform at least one of acquisition and update of the lattice correction information during the predetermined processing. A mobile device according to claim 1.
  8.  前記制御系は、前記複数の第1及び第2格子領域の少なくとも2つにおいて、前記第1方向に関して異なる位置でそれぞれ前記格子補正情報を取得する請求項1~7のいずれか一項に移動体装置。 The mobile body according to any one of claims 1 to 7, wherein the control system acquires the lattice correction information at different positions with respect to the first direction in at least two of the plurality of first and second lattice regions. apparatus.
  9.  前記制御系は、前記第1計測系で計測に用いられる前記少なくとも3つのヘッドを介して前記計測ビームが照射される、前記格子補正情報が取得された前記複数の第1及び第2格子領域の少なくとも2つと少なくとも1つが異なる前記複数の第1及び第2格子領域の少なくとも2つに関する格子補正情報を、前記格子補正情報とは別に取得する請求項1~8のいずれか一項に記載の移動体装置。 The control system is configured to irradiate the measurement beam via the at least three heads used for measurement in the first measurement system. The control system includes a plurality of first and second grating regions in which the lattice correction information is acquired. The movement according to any one of claims 1 to 8, wherein lattice correction information relating to at least two of the plurality of first and second lattice regions different from at least two by at least one is acquired separately from the lattice correction information. Body equipment.
  10.  前記第1方向への前記移動体の移動によって、前記第1計測系で計測に用いられる前記少なくとも3つのヘッドを介して前記計測ビームが照射される前記複数の第1及び第2格子領域の少なくとも2つはその少なくとも1つが別の第1または第2格子領域に切り換わり、
     前記制御系は、前記複数の第1及び第2格子領域の少なくとも2つに関する複数の組合せでそれぞれ格子補正情報を取得する請求項1~9のいずれか一項に記載の移動体装置。
    At least one of the plurality of first and second grating regions irradiated with the measurement beam via the at least three heads used for measurement in the first measurement system by the movement of the moving body in the first direction. Two of which at least one switches to another first or second lattice region;
    The mobile device according to any one of claims 1 to 9, wherein the control system acquires lattice correction information in a plurality of combinations related to at least two of the plurality of first and second lattice regions.
  11.  前記複数の第1ヘッドはそれぞれ、前記第1方向への前記第1移動体の移動中、前記計測ビームが前記複数の第1及び第2格子領域の1つから外れるととともに、前記1つの第1または第2格子領域に隣接する別の第1または第2格子領域に乗り換える請求項1~10のいずれか一項に記載の移動体装置。 Each of the plurality of first heads is configured so that the measurement beam is disengaged from one of the plurality of first and second grating regions during the movement of the first moving body in the first direction. The mobile device according to any one of claims 1 to 10, wherein the mobile device is switched to another first or second lattice region adjacent to one or the second lattice region.
  12.  前記複数の第1ヘッドはそれぞれ、前記所定平面内で互いに交差する2方向の一方を計測方向とし、
     前記第1計測系で計測に用いられる前記少なくとも3つのヘッドは、前記2方向の一方を計測方向とする少なくとも1つのヘッドと、前記2方向の他方を計測方向とする少なくとも2つのヘッドと、を含む請求項1~11のいずれか一項に記載の移動体装置。
    Each of the plurality of first heads has one of two directions intersecting each other in the predetermined plane as a measurement direction,
    The at least three heads used for measurement in the first measurement system include: at least one head having one of the two directions as a measurement direction; and at least two heads having the other of the two directions as a measurement direction. The mobile device according to any one of claims 1 to 11, further comprising:
  13.  前記複数の第1ヘッドは、前記所定平面内で前記第1方向と異なる方向を計測方向とするヘッドを含み、
     前記第1計測系は、前記計測方向が前記第1方向と異なるヘッドを用いて前記第1移動体の位置情報を計測するために前記第1計測装置の計測情報を用いる請求項1~12のいずれか一項に記載の移動体装置。
    The plurality of first heads includes a head whose measurement direction is a direction different from the first direction within the predetermined plane,
    The measurement information of the first measurement device according to any one of claims 1 to 12, wherein the first measurement system uses measurement information of the first measurement device to measure position information of the first moving body using a head whose measurement direction is different from the first direction. The mobile device according to any one of the above.
  14.  前記複数の第1ヘッドは、前記第1方向を計測方向とする少なくとも2つのヘッドと、前記第2方向を計測方向とする少なくとも2つのヘッドと、を含む請求項12又は13に記載の移動体装置。 The movable body according to claim 12 or 13, wherein the plurality of first heads include at least two heads having the first direction as a measurement direction and at least two heads having the second direction as a measurement direction. apparatus.
  15.  前記少なくとも4つのヘッドは、前記複数の第1格子領域の少なくとも1つに前記計測ビームを照射する少なくとも2つのヘッドと、前記複数の第2格子領域の少なくとも1つに前記計測ビームを照射する少なくとも2つのヘッドと、を含む請求項1~14のいずれか一項に記載の移動体装置。 The at least four heads irradiate at least one of the plurality of first grating regions with the measurement beam and at least one of the plurality of second grating regions with the measurement beam. The mobile device according to any one of claims 1 to 14, comprising two heads.
  16.  前記複数の第1格子領域の少なくとも1つに前記計測ビームを照射する前記少なくとも2つのヘッドは、前記第1方向に関して、前記複数の第1格子領域のうち隣接する一対の第1格子領域の間隔よりも広い間隔で前記計測ビームを照射する2つのヘッドを含み、
     前記複数の第2格子領域の少なくとも1つに前記計測ビームを照射する前記少なくとも2つのヘッドは、前記第1方向に関して、前記複数の第2格子領域のうち隣接する一対の第2格子領域の間隔よりも広い間隔で前記計測ビームを照射する2つのヘッドを含む請求項15に記載の移動体装置。
    The at least two heads that irradiate the measurement beam to at least one of the plurality of first grating regions are spaced apart from each other between a pair of adjacent first grating regions in the plurality of first grating regions with respect to the first direction. Including two heads that irradiate the measurement beam at wider intervals;
    The at least two heads that irradiate at least one of the plurality of second grating regions with the measurement beam are spaced from each other between a pair of adjacent second grating regions in the plurality of second grating regions with respect to the first direction. The movable body apparatus according to claim 15, comprising two heads that irradiate the measurement beam at a wider interval.
  17.  前記複数の第1格子領域の少なくとも1つに前記計測ビームを照射する前記少なくとも2つのヘッドは、前記一対の第1格子領域の間隔よりも広い間隔で前記計測ビームを照射する前記2つのヘッドの少なくとも一方と前記第2方向に関して異なる位置に前記計測ビームを照射する少なくとも1つのヘッドを含み、
     前記複数の第2格子領域の少なくとも1つに前記計測ビームを照射する前記少なくとも2つのヘッドは、前記一対の第2格子領域の間隔よりも広い間隔で前記計測ビームを照射する前記2つのヘッドの少なくとも一方と前記第2方向に関して異なる位置に前記計測ビームを照射する少なくとも1つのヘッドを含む請求項16に記載の移動体装置。
    The at least two heads that irradiate at least one of the plurality of first grating regions with the measurement beam are the two heads that irradiate the measurement beam at an interval wider than an interval between the pair of first grating regions. Including at least one head for irradiating the measurement beam at a position different from at least one of the second direction;
    The at least two heads that irradiate at least one of the plurality of second grating regions with the measurement beam are the two heads that irradiate the measurement beam at an interval wider than an interval between the pair of second grating regions. The mobile device according to claim 16, comprising at least one head that irradiates the measurement beam at a position different from at least one of the second direction.
  18.  前記第1格子部材は、前記第2移動体に設けられ、
     前記複数の第1格子領域と前記複数の第2格子領域は、前記第2方向に関して前記第1移動体の物体載置領域よりも外側に設けられた前記第2移動体に配置される請求項1~17のいずれか一項に記載の移動体装置。
    The first lattice member is provided on the second moving body,
    The plurality of first lattice regions and the plurality of second lattice regions are arranged on the second moving body provided outside the object placement region of the first moving body in the second direction. The mobile device according to any one of 1 to 17.
  19.  前記複数の第1及び第2格子領域はそれぞれ、反射型の2次元格子あるいは互いに配列方向が異なる2つの1次元格子を有する請求項1~18のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 18, wherein each of the plurality of first and second grating regions includes a reflective two-dimensional grating or two one-dimensional gratings having different arrangement directions.
  20.  前記複数の第1及び第2格子領域はそれぞれ、互いに異なる複数のスケールに形成される請求項1~19のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 19, wherein each of the plurality of first and second lattice regions is formed on a plurality of different scales.
  21.  前記複数の第1ヘッドはそれぞれ、前記所定平面内で互いに交差する2方向の一方と、前記所定平面と直交する第3方向との2方向を計測方向とし、
     前記第1計測系は、前記少なくとも3つのヘッドを用いて、前記第3方向を含む、前記3自由度方向と異なる3自由度方向に関する前記第1移動体の位置情報を計測可能である請求項1~20のいずれか一項に記載の移動体装置。
    Each of the plurality of first heads has two measurement directions, ie, one of two directions intersecting each other in the predetermined plane and a third direction orthogonal to the predetermined plane,
    The first measurement system is capable of measuring position information of the first moving body with respect to a direction of three degrees of freedom different from the direction of three degrees of freedom including the third direction, using the at least three heads. 21. The mobile device according to any one of 1 to 20.
  22.  前記少なくとも4つのヘッドのうち1つのヘッドで前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つから外れている間、残りの少なくとも3つのヘッドは前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射されるとともに、前記第1方向への前記第1移動体の移動によって、前記少なくとも4つのヘッドの中で前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つから外れる前記1つのヘッドが切り換わる請求項1~21のいずれか一項に記載の移動体装置。 While at least one of the at least four heads has the measurement beam deviating from at least two of the plurality of first and second grating regions, the remaining at least three heads have the measurement beam having the plurality of first beams. At least two of the first and second grating regions are irradiated, and the measurement beam is moved in the at least four heads by the movement of the first moving body in the first direction. The mobile device according to any one of claims 1 to 21, wherein the one head deviating from at least two of the two lattice regions is switched.
  23.  前記第1方向への前記第1移動体の移動において、前記少なくとも4つのヘッドで前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つから外れる非計測区間が重ならない請求項1~22のいずれか一項に記載の移動体装置。 The non-measurement section in which the measurement beam deviates from at least two of the plurality of first and second grating regions by the at least four heads does not overlap in the movement of the first moving body in the first direction. The mobile device according to any one of items 1 to 22.
  24.  前記複数の第1ヘッドは、前記少なくとも4つのヘッドの少なくとも1つと前記非計測区間が少なくとも一部重なる少なくとも1つのヘッドを含み、
     前記第1移動体の位置情報の計測において、前記少なくとも4つのヘッドと、前記少なくとも1つのヘッドと、を含む少なくとも5つのヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも3つのヘッドの計測情報が用いられる請求項23に記載の移動体装置。
    The plurality of first heads includes at least one head at least partially overlapping at least one of the at least four heads with the non-measurement section,
    In the measurement of the position information of the first moving body, the measurement beam of the plurality of first and second grating regions among at least five heads including the at least four heads and the at least one head. The mobile device according to claim 23, wherein measurement information of at least three heads irradiated to at least two is used.
  25.  前記制御系は、前記少なくとも4つのヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つの1つから外れて前記1つの第1または第2格子領域に隣接する別の第1または第2格子領域に乗り換える1つのヘッドを用いて前記第1移動体の移動を制御するための補正情報を、残りの少なくとも3つのヘッドの計測情報、あるいは前記残りの少なくとも3つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて取得する請求項1~24のいずれか一項に記載の移動体装置。 The control system may be configured such that, of the at least four heads, the measurement beam is separated from at least two of the plurality of first and second grating regions and adjacent to the one first or second grating region. Correction information for controlling the movement of the first moving body using one head that switches to the first or second lattice area, measurement information of the remaining at least three heads, or the remaining at least three heads The moving body device according to any one of claims 1 to 24, which is acquired based on position information of the first moving body that is measured by using the position information.
  26.  前記補正情報は、前記少なくとも4つのヘッドでそれぞれ前記計測ビームが前記複数の格子領域の少なくとも1つに照射されている間に取得される請求項25に記載の移動体装置。 26. The mobile device according to claim 25, wherein the correction information is acquired while the measurement beam is applied to at least one of the plurality of grating regions by the at least four heads.
  27.  前記残りの少なくとも3つのヘッドの1つで前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つの1つから外れる前に、前記残りの少なくとも3つのヘッドの1つの代わりに、前記補正情報が取得された前記1つのヘッドを含む少なくとも3つのヘッドを用いて前記第1移動体の位置情報が計測される請求項25又は26に記載の移動体装置。 Instead of one of the remaining at least three heads before the measurement beam deviates from at least one of the plurality of first and second grating regions in one of the remaining at least three heads, 27. The moving body apparatus according to claim 25 or 26, wherein position information of the first moving body is measured using at least three heads including the one head from which correction information has been acquired.
  28.  前記複数のヘッドはそれぞれ、前記所定平面内で互いに交差する2方向の一方と、前記所定平面と直交する第3方向との2方向を計測方向とし、
     前記計測系は、前記少なくとも3つのヘッドを用いて、前記第3方向を含む、前記3自由度方向と異なる3自由度方向に関する前記第1移動体の位置情報を計測し、
     前記制御系は、前記少なくとも4つのヘッドのうち、前記計測ビームが前記1つの第1または第2格子領域から外れて前記別の第1又は第2格子領域に乗り換える1つのヘッドを用いて前記異なる3自由度方向に関する前記第1移動体の移動を制御するための補正情報を、残りの少なくとも3つのヘッドの前記第3方向の計測情報、あるいは前記残りの少なくとも3つのヘッドを用いて計測される前記異なる3自由度方向に関する前記第1移動体の位置情報に基づいて取得する請求項25~27のいずれか一項に記載の移動体装置。
    Each of the plurality of heads has two measurement directions, ie, one of two directions intersecting each other in the predetermined plane and a third direction orthogonal to the predetermined plane,
    The measurement system uses the at least three heads to measure position information of the first moving body with respect to a direction of three degrees of freedom different from the direction of three degrees of freedom including the third direction,
    The control system uses the one of the at least four heads to change the measurement beam from the first or second grating region to the other first or second grating region. Correction information for controlling the movement of the first moving body in the direction of three degrees of freedom is measured using measurement information in the third direction of the remaining at least three heads, or using the remaining at least three heads. The mobile device according to any one of claims 25 to 27, acquired based on position information of the first mobile body regarding the different three degrees of freedom directions.
  29.  第1部材に対して、物体を移動させる移動体装置であって、
     前記物体を保持し、前記第1部材に対して、互いに交差する第1及び第2方向へ移動可能な第1移動体と、
     前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射されるヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測する第1計測系と、
     前記第1格子領域と前記第1ヘッドとの他方が設けられ、前記第2方向へ移動可能な第2移動体と、
     前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測する第2計測系と、
     前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1移動体の移動制御を行う制御系と、を備え、
     前記制御系は、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域に照射されるヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の格子補正情報に基づいて、前記第1移動体の移動制御する移動体装置。
    A mobile device that moves an object relative to a first member,
    A first moving body that holds the object and is movable relative to the first member in first and second directions intersecting each other;
    A plurality of first lattice regions are arranged apart from each other with respect to the first direction, and a plurality of second lattice regions arranged apart from the plurality of first lattice regions with respect to the second direction are related to the first direction. One of a first grating member arranged away from each other and a plurality of first heads each irradiating a measurement beam while moving in the first direction with respect to the first grating member is provided in the first moving body. The other of the first grating member and the plurality of first heads is provided to face the moving body, and the measurement beam of the plurality of first heads includes the plurality of first and second heads. A first measurement system that measures positional information of the first moving body in the first direction by a head that irradiates at least two of the lattice regions;
    A second moving body provided with the other of the first lattice region and the first head and movable in the second direction;
    One of a second grating member including measurement components in the first and second directions and a second head that irradiates a measurement beam to the second grating member is provided in the second moving body, and the second A second measurement system that is provided so that the other of the lattice member and the second head faces the second moving body, and measures position information of the second moving body in the second direction;
    A control system that performs movement control of the first moving body based on the position information measured by the first and second measurement systems,
    The control system is based on position information of the first moving body that is measured using a head that irradiates the plurality of first and second grating regions with the measurement beam among the plurality of first heads. A moving body device that controls movement of the first moving body based on lattice correction information of the plurality of first and second lattice regions.
  30.  請求項1~28の何れか一項に記載の移動体装置と、
     前記物体に対してエネルギビームを照射し、前記物体を露光する光学系と、を備える露光装置。
    A mobile device according to any one of claims 1 to 28;
    An exposure apparatus comprising: an optical system that irradiates the object with an energy beam and exposes the object.
  31.  前記光学系を支持するフレーム部材を、さらに備え、
     前記第1格子部材と前記複数の第1ヘッドとの他方は、前記フレーム部材に設けられる請求項30に記載の露光装置。
    A frame member for supporting the optical system;
    31. The exposure apparatus according to claim 30, wherein the other of the first lattice member and the plurality of first heads is provided on the frame member.
  32.  前記物体は、前記第1移動体の開口内で保持され、
     前記第1移動体および前記物体を浮上支持する支持部を有し、前記浮上支持される物体を少なくとも前記3自由度方向に移動するステージシステムを、さらに備える請求項30又は31に記載の露光装置。
    The object is held within an opening of the first moving body;
    32. The exposure apparatus according to claim 30 or 31, further comprising a stage system that includes a support unit that levitates and supports the first moving body and the object, and that moves the object that is levitated and supported in the direction of at least the three degrees of freedom. .
  33.  前記第2格子部材と前記第2ヘッドとの他方が前記光学系または前記フレーム部材に設けられる請求項31に記載の露光装置。 32. The exposure apparatus according to claim 31, wherein the other of the second grating member and the second head is provided in the optical system or the frame member.
  34.  前記物体は、照明光で露光される基板であり、
     前記光学系は、前記照明光で照明されるパターンの像を前記基板上に投影する投影系である請求項31~33のいずれか一項に記載の露光装置。
    The object is a substrate exposed with illumination light;
    The exposure apparatus according to any one of claims 31 to 33, wherein the optical system is a projection system that projects an image of a pattern illuminated by the illumination light onto the substrate.
  35.  前記投影系を支持するフレーム部材と、
     前記投影系の上方に配置され、前記照明光で照明されるマスクを保持して移動可能な保持部材と、
     前記保持部材にスケール部材と第3ヘッドとの一方が設けられ、前記スケール部材と前記第3ヘッドとの他方が前記投影系または前記フレーム部材に設けられ、前記保持部材の位置情報を計測するエンコーダシステムと、をさらに備える請求項34に記載の露光装置。
    A frame member that supports the projection system;
    A holding member disposed above the projection system and movable while holding a mask illuminated with the illumination light;
    One of a scale member and a third head is provided on the holding member, and the other of the scale member and the third head is provided on the projection system or the frame member, and measures the positional information of the holding member. An exposure apparatus according to claim 34, further comprising a system.
  36.  前記照明光でマスクを照明する照明光学系を、さらに備え、
     前記投影系は、それぞれ前記マスクのパターンの部分像を前記基板上に投影する複数の光学系を有する請求項34又は35に記載の露光装置。
    An illumination optical system for illuminating the mask with the illumination light,
    36. The exposure apparatus according to claim 34, wherein the projection system includes a plurality of optical systems that project partial images of the mask pattern onto the substrate.
  37.  前記基板は、前記光学系を介して前記照明光で走査露光され、
     前記複数の光学系は、前記走査露光において前記基板が移動される走査方向と直交する方向に関して互いに位置が異なる複数の投影領域に前記部分像をそれぞれ投影する請求項36に記載の露光装置。
    The substrate is scanned and exposed with the illumination light through the optical system,
    37. The exposure apparatus according to claim 36, wherein the plurality of optical systems respectively project the partial images onto a plurality of projection regions whose positions are different from each other in a direction orthogonal to a scanning direction in which the substrate is moved in the scanning exposure.
  38.  前記基板は、前記投影系を介して前記照明光で走査露光され、前記走査露光において前記第1方向または前記第2方向に移動される請求項34~37のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 34 to 37, wherein the substrate is scanned and exposed with the illumination light through the projection system and moved in the first direction or the second direction in the scanning exposure. .
  39.  前記基板は、少なくとも一辺の長さ、または対角長が500mm以上であり、フラットパネルディスプレイ用である請求項34~38のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 34 to 38, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more and is used for a flat panel display.
  40.  フラットパネルディスプレイ製造方法であって、
     請求項34~38のいずれか一項に記載の露光装置を用いて基板を露光することと、
     前記露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法。
    A flat panel display manufacturing method comprising:
    Exposing the substrate using the exposure apparatus according to any one of claims 34 to 38;
    Developing the exposed substrate; and a flat panel display manufacturing method.
  41.  デバイス製造方法であって、
     請求項34~38のいずれか一項に記載の露光装置を用いて基板を露光することと、
     前記露光された基板を現像することと、を含むデバイス製造方法。
    A device manufacturing method comprising:
    Exposing the substrate using the exposure apparatus according to any one of claims 34 to 38;
    Developing the exposed substrate. A device manufacturing method comprising:
  42.  互いに直交する第1および第2方向の計測成分を含み、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記物体を保持する第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように前記第2方向へ移動可能な第2移動体に設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも3つのヘッドによる前記第1方向に関する前記第1移動体の第1位置情報を計測することと、
     前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して前記第2方向へ移動しながら計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、第2格子部材と前記第2格子部材との他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の第2位置情報を計測することと、
     前記第1及び第2位置情報に基づいて、前記所定平面内の3自由度方向に関する前記第1移動体の移動制御を行うことと、
     前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される少なくとも4つのヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の少なくとも2つに関する格子補正情報を取得することと、を含み、
     前記格子補正情報は、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射される前記少なくとも3つのヘッドを用いる前記第1移動体の移動制御で用いられる移動方法。
    A plurality of first lattice regions that are perpendicular to each other and are arranged apart from each other with respect to the first direction, and apart from the plurality of first lattice regions with respect to the second direction; A plurality of second grating regions to be arranged are spaced apart from each other with respect to the first direction, and a plurality of measurement beams are irradiated while moving in the first direction with respect to the first grating member. One of the first heads is provided in a first moving body that holds the object, and the other of the first lattice member and the plurality of first heads faces the moving body in the second direction. The first movable body is provided on a movable second movable body, and the first of the plurality of first heads includes at least three heads that irradiate at least two of the plurality of first and second grating regions with the measurement beam. Direction And measuring the first location information of the first movable body in,
    One of the second grating member including the measurement components in the first and second directions and the second head that irradiates the measurement beam while moving in the second direction with respect to the second grating member is the second movement. The second grid member and the second grid member are provided so that the other of the second grid member faces the second mobile body, and the second position information of the second mobile body in the second direction is measured. And
    Based on the first and second position information, performing movement control of the first moving body in the direction of three degrees of freedom in the predetermined plane;
    Among the plurality of first heads, the position information of the first moving body is measured using at least four heads that irradiate at least two of the plurality of first and second grating regions with the measurement beam. Obtaining lattice correction information relating to at least two of the plurality of first and second lattice regions,
    The grating correction information is a movement method used in movement control of the first moving body using the at least three heads on which at least two of the plurality of first and second grating regions are irradiated with the measurement beam.
  43.  第1部材に対して、物体を移動させる移動方法であって、
     前記物体を保持する第1移動体を、前記第1物体に対して、互いに交差する第1及び第2方向へ移動させることと、
     第1計測系により、前記第1方向に関して複数の第1格子領域が互いに離れて配置されるとともに、前記第2方向に関して前記複数の第1格子領域から離れて配置される複数の第2格子領域が前記第1方向に関して互いに離れて配置される第1格子部材と、前記第1格子部材に対して前記第1方向へ移動しながらそれぞれ計測ビームを照射する複数の第1ヘッドとの一方が前記第1移動体に設けられ、前記第1格子部材と前記複数の第1ヘッドとの他方が前記移動体と対向するように設けられ、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域の少なくとも2つに照射されるヘッドによる前記第1方向に関する前記第1移動体の位置情報を計測することと、
     前記第1格子領域と前記第1ヘッドとの他方が設けられた第2移動体により、前記第1移動体を前記第2方向へ移動させることと、
     前記第1および第2方向の計測成分を含む第2格子部材と、前記第2格子部材に対して計測ビームを照射する第2ヘッドとの一方が前記第2移動体に設けられ、前記第2格子部材と前記第2ヘッドとの他方が前記第2移動体に対向するように設けられ、前記第2方向に関する前記第2移動体の位置情報を計測することと、
     前記第1および第2計測系で計測される前記位置情報に基づいて、前記第1移動体の移動制御ことと、を含み、
     前記制御することでは、前記複数の第1ヘッドのうち、前記計測ビームが前記複数の第1及び第2格子領域に照射されるヘッドを用いて計測される前記第1移動体の位置情報に基づいて、前記複数の第1及び第2格子領域の格子補正情報に基づいて、前記第1移動体の移動制御する移動方法。
    A moving method for moving an object relative to a first member,
    Moving a first moving body holding the object in first and second directions intersecting each other with respect to the first object;
    A plurality of first lattice regions are arranged apart from each other in the first direction by the first measurement system, and are arranged apart from the plurality of first lattice regions in the second direction. Are arranged apart from each other with respect to the first direction, and one of a plurality of first heads each irradiating a measurement beam while moving in the first direction with respect to the first lattice member Provided in a first moving body, provided such that the other of the first lattice member and the plurality of first heads is opposed to the moving body, and the measurement beams of the plurality of first heads include the plurality of measurement beams. Measuring positional information of the first moving body with respect to the first direction by a head irradiated on at least two of the first and second grating regions of
    Moving the first moving body in the second direction by a second moving body provided with the other of the first lattice region and the first head;
    One of a second grating member including measurement components in the first and second directions and a second head that irradiates a measurement beam to the second grating member is provided in the second moving body, and the second The other of the lattice member and the second head is provided so as to face the second moving body, and measuring position information of the second moving body in the second direction;
    Controlling the movement of the first moving body based on the position information measured by the first and second measurement systems,
    In the control, based on positional information of the first moving body measured using a head that irradiates the plurality of first and second grating regions with the measurement beam among the plurality of first heads. A moving method for controlling movement of the first moving body based on lattice correction information of the plurality of first and second lattice regions.
  44.  請求項42又は43に記載の移動方法により、前記物体を前記第1方向へ移動させることと、
     前記第1方向へ移動された前記物体に対してエネルギビームを照射し、前記物体を露光することと、を含む露光方法。
    Moving the object in the first direction by the moving method according to claim 42 or 43;
    Irradiating the object moved in the first direction with an energy beam to expose the object.
  45.  フラットパネルディスプレイ製造方法であって、
     請求項44に記載の露光方法を用いて基板を露光することと、
     前記露光された基板を現像することと、を含むフラットパネルディスプレイ製造方法。
    A flat panel display manufacturing method comprising:
    Exposing the substrate using the exposure method of claim 44;
    Developing the exposed substrate; and a flat panel display manufacturing method.
  46.  デバイス製造方法であって、
     請求項44に記載の露光方法を用いて基板を露光することと、
     前記露光された基板を現像することと、を含むデバイス製造方法。
    A device manufacturing method comprising:
    Exposing the substrate using the exposure method of claim 44;
    Developing the exposed substrate. A device manufacturing method comprising:
PCT/JP2017/035486 2016-09-30 2017-09-29 Movable body device, displacement method, exposure device, exposure method, flat-panel display manufacturing method, and device manufacturing method WO2018062487A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018542928A JP6787404B2 (en) 2016-09-30 2017-09-29 Mobile device, moving method, exposure device, exposure method, flat panel display manufacturing method, and device manufacturing method
CN202110746539.1A CN113504712B (en) 2016-09-30 2017-09-29 Exposure apparatus, method for manufacturing flat panel display, and method for manufacturing device
KR1020217034281A KR102478705B1 (en) 2016-09-30 2017-09-29 Movable body device, displacement method, exposure device, exposure method, flat-panel display manufacturing method, and device manufacturing method
US16/338,179 US10649348B2 (en) 2016-09-30 2017-09-29 Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method
KR1020197011264A KR102318643B1 (en) 2016-09-30 2017-09-29 A movable body apparatus, a moving method, an exposure apparatus, an exposure method, a manufacturing method of a flat panel display, and a device manufacturing method
CN201780058903.7A CN109791366B (en) 2016-09-30 2017-09-29 Movable body apparatus, moving method, exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
US16/852,963 US20200249586A1 (en) 2016-09-30 2020-04-20 Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-195247 2016-09-30
JP2016195247 2016-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/338,179 A-371-Of-International US10649348B2 (en) 2016-09-30 2017-09-29 Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method
US16/852,963 Continuation US20200249586A1 (en) 2016-09-30 2020-04-20 Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2018062487A1 true WO2018062487A1 (en) 2018-04-05

Family

ID=61759828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035486 WO2018062487A1 (en) 2016-09-30 2017-09-29 Movable body device, displacement method, exposure device, exposure method, flat-panel display manufacturing method, and device manufacturing method

Country Status (6)

Country Link
US (2) US10649348B2 (en)
JP (2) JP6787404B2 (en)
KR (2) KR102478705B1 (en)
CN (2) CN109791366B (en)
TW (1) TWI758333B (en)
WO (1) WO2018062487A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202343158A (en) * 2015-02-23 2023-11-01 日商尼康股份有限公司 Measurement device, exposure apparatus, lithography system, measurement method and exposure method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122788A1 (en) * 2009-04-21 2010-10-28 株式会社ニコン Moving-object apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2010272867A (en) * 2009-05-20 2010-12-02 Nikon Corp Aligner and exposing method, and method of manufacturing device
JP2014057082A (en) * 2007-08-24 2014-03-27 Nikon Corp Exposure method, exposure device, and device manufacturing method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP2001215718A (en) 1999-11-26 2001-08-10 Nikon Corp Exposure system and exposure method
US6639686B1 (en) 2000-04-13 2003-10-28 Nanowave, Inc. Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams
TWI408506B (en) 2005-03-29 2013-09-11 尼康股份有限公司 Exposure apparatus, method of manufacturing exposure apparatus, and method of manufacturing microcomponent
TWI653511B (en) * 2006-08-31 2019-03-11 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
CN101611470B (en) 2007-03-05 2012-04-18 株式会社尼康 Moving body apparatus, apparatus for forming pattern, method of forming pattern, method of producing device, method of producing moving body apparatus, and method of driving moving body
US7561280B2 (en) 2007-03-15 2009-07-14 Agilent Technologies, Inc. Displacement measurement sensor head and system having measurement sub-beams comprising zeroth order and first order diffraction components
JP2009252988A (en) * 2008-04-04 2009-10-29 Nikon Corp Aligner, device method for manufacturing, and maintenance method for aligner
JP2010050292A (en) * 2008-08-22 2010-03-04 Nikon Corp Exposure method and aligner, and device manufacturing method
KR101869463B1 (en) 2009-05-15 2018-06-20 가부시키가이샤 니콘 Mobile apparatus, power transmission apparatus, exposure apparatus, and device manufacturing method
US8355114B2 (en) * 2009-06-19 2013-01-15 Nikon Corporation Exposure apparatus and device manufacturing method
US8493547B2 (en) * 2009-08-25 2013-07-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8514395B2 (en) * 2009-08-25 2013-08-20 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
US9207549B2 (en) * 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
EP3723111B1 (en) * 2012-10-02 2021-09-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP2015149427A (en) * 2014-02-07 2015-08-20 キヤノン株式会社 Lithography apparatus and goods manufacturing method
CN106415397B (en) 2014-03-28 2018-09-21 株式会社尼康 Mobile body device, exposure device, the manufacturing method of flat-panel monitor, assembly manufacture method and mobile body drive method
CN113204177A (en) * 2015-03-31 2021-08-03 株式会社尼康 Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
US20180356739A1 (en) * 2015-09-30 2018-12-13 Nikon Corporation Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US10802407B2 (en) * 2015-09-30 2020-10-13 Nikon Corporation Exposure apparatus, exposure method, manufacturing method of flat-panel display, and device manufacturing method
JP6885335B2 (en) * 2015-09-30 2021-06-16 株式会社ニコン Mobile device, exposure device, flat panel display manufacturing method, device manufacturing method, and object moving method
CN109791364B (en) * 2016-09-30 2021-04-27 株式会社尼康 Movable body apparatus, moving method, exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
CN109791370B (en) * 2016-09-30 2021-05-18 株式会社尼康 Exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and exposure method
KR102307527B1 (en) * 2016-09-30 2021-10-01 가부시키가이샤 니콘 A movable body apparatus, a moving method, an exposure apparatus, an exposure method, a manufacturing method of a flat panel display, and a device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057082A (en) * 2007-08-24 2014-03-27 Nikon Corp Exposure method, exposure device, and device manufacturing method
WO2010122788A1 (en) * 2009-04-21 2010-10-28 株式会社ニコン Moving-object apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2010272867A (en) * 2009-05-20 2010-12-02 Nikon Corp Aligner and exposing method, and method of manufacturing device

Also Published As

Publication number Publication date
TWI758333B (en) 2022-03-21
CN113504712B (en) 2023-09-19
CN109791366B (en) 2021-07-23
US20200249586A1 (en) 2020-08-06
US20200033738A1 (en) 2020-01-30
CN109791366A (en) 2019-05-21
TW201827939A (en) 2018-08-01
JP2021015290A (en) 2021-02-12
KR20210132224A (en) 2021-11-03
JP7099507B2 (en) 2022-07-12
US10649348B2 (en) 2020-05-12
JPWO2018062487A1 (en) 2019-08-29
CN113504712A (en) 2021-10-15
KR20190047094A (en) 2019-05-07
JP6787404B2 (en) 2020-11-18
KR102318643B1 (en) 2021-10-27
KR102478705B1 (en) 2022-12-16

Similar Documents

Publication Publication Date Title
JP7047876B2 (en) Mobile device, moving method, exposure device, exposure method, manufacturing method of flat panel display, and device manufacturing method
JP7036171B2 (en) Mobile device, moving method, exposure device, exposure method, manufacturing method of flat panel display, and device manufacturing method
WO2017057560A1 (en) Exposure device and exposure method, and flat-panel display manufacturing method
WO2017057546A1 (en) Exposure device, exposure method, and flat-panel display manufacturing method
JP7099507B2 (en) Exposure equipment, flat panel display manufacturing method, and device manufacturing method
JP7028289B2 (en) Mobile device, exposure device, and flat panel display manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011264

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17856436

Country of ref document: EP

Kind code of ref document: A1