WO2018062132A1 - Non-coated fabric for airbag and airbag using same - Google Patents

Non-coated fabric for airbag and airbag using same Download PDF

Info

Publication number
WO2018062132A1
WO2018062132A1 PCT/JP2017/034651 JP2017034651W WO2018062132A1 WO 2018062132 A1 WO2018062132 A1 WO 2018062132A1 JP 2017034651 W JP2017034651 W JP 2017034651W WO 2018062132 A1 WO2018062132 A1 WO 2018062132A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
fiber
less
airbag
air permeability
Prior art date
Application number
PCT/JP2017/034651
Other languages
French (fr)
Japanese (ja)
Inventor
龍二 上村
浩和 西村
務 明智
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018542574A priority Critical patent/JP7068633B2/en
Publication of WO2018062132A1 publication Critical patent/WO2018062132A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles

Definitions

  • the present invention relates to a non-coated fabric for an airbag and an airbag using the same.
  • the side impact accident requires a shorter distance between the side of the vehicle body that receives the impact and the occupant, and it is necessary to deploy the airbag at a higher speed, and it is necessary to minimize air leakage during deployment. For this reason, a coating fabric with low air permeability is generally used for curtain airbags and side airbags.
  • airbag woven fabric used for an airbag (hereinafter sometimes referred to as “airbag woven fabric”), it is desired to replace a heavy coated fabric with a high cost with a non-coated fabric.
  • the air permeability As an airbag, it is necessary to consider the air permeability from the airbag fabric that is the airbag body and the air permeability from the sewing portion that stitches the airbag fabric together. In order to keep the air permeability of the main body portion and the sewing portion as low as possible with a non-coated fabric, it is preferable to use a woven fabric with high density.
  • the following techniques have been disclosed in the past as techniques for reducing the air permeability of an airbag.
  • Patent Document 1 discloses a technique in which two types of polyester fibers having different single yarn fineness are mixed to reduce the gap between the single yarns to reduce air permeability.
  • Patent Document 2 discloses a technique in which weaving is performed using a cam-driven loom so that a denser fabric is woven to reduce air permeability.
  • Patent Document 3 discloses a technology for providing a fabric for an airbag having high slip resistance and low breathability by weaving at a high density using a single yarn fiber having a flat single yarn cross-sectional shape. Is disclosed.
  • the present invention has been made with a focus on lowering the air permeability and increasing the density of non-coated fabrics for airbags, and its purpose is less air leakage than non-coated fabrics for airbags developed in the prior art.
  • An object of the present invention is to provide a non-coating fabric for an airbag that can be used even in a portion that could not be used unless the coating fabric for an airbag is used conventionally, and an airbag using the same.
  • the present inventors have succeeded in weaving a non-coating fabric for airbags containing fibers of a substantially triangular cross section having a specific degree of irregularity in the woven yarn,
  • the present invention was completed by discovering that the air permeability is lower than that of the conventional non-coated fabric and the sliding resistance value is high.
  • the present invention has the following configuration. (1) Including a single yarn fiber having a substantially triangular cross-section and an irregularity of 1.3 to 2.2, a cover factor (CF) of 2050 to 2600, and an air permeability under a 20 kPa differential pressure of 0.
  • Non-coating fabric for airbag which is 25 L / cm 2 / min or less.
  • a test piece of 20 cm square is cut out from an arbitrary place excluding the range of 30 cm from both ends in the width direction of the woven fabric, the test piece is folded in half along the fiber axis direction (a), and then in the fiber axis direction (a). Fold in half along the orthogonal fiber axis direction (b), fold again in half along the fiber axis direction (a), and half in the fiber axis direction (b) orthogonal to the fiber axis direction (a) Fold it into 5cm squares. A load of 50 N is applied to the entire surface of the folded test piece for 1 minute, and then the test piece is left for 1 minute in a state where it is spread to 20 cm square.
  • the air permeability under a differential pressure of 20 kPa is measured using a circle having a diameter of 10 cm centering on the intersection of the first fold and the second fold as a measurement site.
  • the change rate of the air permeability under a 20 kPa differential pressure after folding of the woven fabric measured by the method described in (2) with respect to the air permeability under a 20 kPa differential pressure of the woven fabric is 150% or less (1)
  • the boiling water shrinkage rate of the yarn defined in 8.1 of JIS L1013 (1999) is 7% or more and 12% or less, and the yarn is made of nylon fiber (1) to (5)
  • a method for producing a non-coated fabric for bags (9) The method for producing a non-coated fabric for an air bag according to (8), wherein the cross-sectional shape is a polygonal shape and the number of vertices is 3 or more and 6 or less. (10) The method for producing a non-coated fabric for an airbag according to (8) or (9), wherein the cross-sectional shape is a polygonal shape and the number of vertices is three.
  • the non-coating woven fabric for airbags of the present invention includes substantially triangular cross-section fibers having a specific degree of irregularity in the woven yarn, so that it can be woven at a high density, has a lower air permeability than conventional non-coated woven fabrics, and slip resistance. High value can be exhibited.
  • FIG. 2 is a scanning electron micrograph showing a cross section of a single yarn fiber obtained in Example 1.
  • FIG. 3 is a scanning electron micrograph showing a cross section of a single yarn fiber obtained in Comparative Example 3.
  • FIG. It is the schematic of the measuring method of a yarn widening ratio.
  • the non-coating woven fabric for an airbag of the present invention includes a single yarn fiber having a substantially triangular cross section and an irregularity of 1.3 to 2.2, and has a cover factor (CF) of 2050 to 2600, with a difference of 20 kPa. It is characterized in that the air permeability under pressure is 0.25 L / cm 2 / min or less.
  • the inventors of the present invention can fabricate airbag fabrics using a substantially triangular cross-section fiber having a specific atypical degree instead of the conventionally used round cross-section or atypical cross-section fibers, thereby achieving high density.
  • the inventors have found that a woven fabric that can be woven, has a lower air permeability than a conventional non-coated fabric, and has a high sliding resistance value has been obtained, thereby completing the present invention.
  • the present invention will be described in detail.
  • the material of the fiber constituting the non-coated fabric for an airbag of the present invention is not particularly limited.
  • an aliphatic polyamide fiber such as nylon 66, nylon 6, nylon 46, nylon 12 or the like, an aroma such as aramid fiber.
  • polyester fibers such as group polyamide fiber, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • wholly aromatic polyester fibers, ultra high molecular weight polyethylene fibers, polyparaphenylene benzobis oxazole fibers (PBO fibers), polyphenylene sulfide fibers, and polyether ketone fibers can be used.
  • polyester fiber and polyamide fiber are preferable, and nylon 66 made of polyhexamethylene adipamide fiber is preferable from the viewpoint of durability against high temperature gas.
  • nylon 66 When using nylon 66 as a constituent fiber of the non-coating fabric for airbags, it is preferable to use nylon 66 having a relative viscosity of 3.2 or more due to sulfuric acid. If the relative viscosity is less than 3.2, the strength required for the airbag fabric may be insufficient. More preferably, it is 3.3 or more, More preferably, it is 3.4 or more. However, if the relative viscosity is too high, not only does the polymerization cost increase, but the spinning operability tends to deteriorate. Therefore, the relative viscosity is preferably 3.6 or less, more preferably 3.5 or less.
  • Fibers obtained from raw materials regenerated from plastic waste may be used for some or all of the fibers constituting the fabric.
  • the material which comprises a fiber may contain the various additive for improving the process passability in a manufacturing process.
  • the additive include an antioxidant, a heat stabilizer, a smoothing agent, an antistatic agent, a thickener, and a flame retardant.
  • the fibers constituting the airbag fabric may be original yarns or dyed after yarn production.
  • a single yarn fiber having a substantially triangular cross section perpendicular to the fiber axis direction (hereinafter sometimes simply referred to as a substantially triangular cross section fiber).
  • a substantially triangular cross section fiber By using fibers whose cross-sectional shape of the single yarn fibers is substantially triangular, weaving can be performed at high density on a loom, and a low-breathing fabric can be obtained.
  • the present inventors consider the reason as follows.
  • the fiber whose cross-sectional shape of the single yarn fiber is approximately triangular is the reason why when the external force is applied to the fiber, the single yarn fiber moves and is packed in a fine state to exhibit high density and low air permeability characteristics It is considered as one of That is, the external force applied when wetting the weft with a scissors on a loom or constraining the weft with a warp, the single yarn fibers are closely packed as a result, compared to the fibers having a gap between the single yarn fibers, Even though the fineness is the same, the actual fiber diameter is small, so it is assumed that weaving can be performed at a higher density on the loom.
  • the air permeability is lower than that of the conventional fabric because the fabric can be woven at a high density, the gap between the fibers during ventilation is reduced, and the single yarn fibers are closely packed by the pressure applied during ventilation. This is probably because the air permeability inside the fiber also decreases as a result of the decrease in the voids inside the fiber.
  • the reason for the movement of the single yarn fiber by the external force is that, when the shape appearing in the cross section perpendicular to the fiber axis direction of the single yarn fiber is a substantially triangular shape, the cross sectional shape is different from that of other polygonal fibers.
  • the number of vertices is small, and there is little catching between single yarns.
  • the single yarn fiber used in the present invention has an irregularity of 1.3 or more and 2.2 or less.
  • the degree of atypicality is used as an index of the atypical shape of the single yarn fiber cross section.
  • the cross-sectional shape is preferably an equilateral triangle, but in the actual raw yarn, a phenomenon (die-swell phenomenon) that spreads when the molten resin is extruded from the nozzle occurs.
  • the apex is rounded.
  • the most preferable variant in the present invention is centered around 1.6.
  • the degree of profile is preferably 1.35 or more and 2.0 or less, more preferably 1.4 or more and 1.8 or less.
  • the degree of profile is too small, a gap is generated between the single yarn fibers, the air permeability of the fabric is lowered, and at the same time, the movement of the single yarn fibers may be suppressed.
  • the degree of atypicality is too large, the unevenness of the fiber surface becomes large, causing a catch between adjacent fibers, and the single yarn fiber may be difficult to move. It should be noted that there is little change in the degree of irregularity before and after weaving, and usually the single yarn fiber after weaving has the same degree of irregularity as the single yarn fiber (original yarn) before weaving. Therefore, it is preferable that the degree of irregularity of the unwoven yarn taken out from the fabric is also in the above range.
  • the atypical degree of the single yarn fiber cross section is determined by the method described in the examples.
  • the single yarn fiber according to the present invention connects the apexes (a, b, c) of substantially triangles (outer periphery of the single yarn fiber cross section) 34 appearing in the cross section orthogonal to the fiber axis direction.
  • the straight line is inside or on the outer periphery 34 of the cross section of the single yarn fiber.
  • the triangle 33 connecting the vertices a, b, and c of the substantially triangle 34 with a straight line is inside the outer periphery 34 of the single yarn fiber cross section.
  • This relationship is the intersection 22 of the perpendicular bisector 21 of line segments ab, bc, and ca connecting the vertices a, b, and c of the outer periphery 34 of the single yarn fiber cross section and the outer periphery 34 of the single yarn fiber cross section. Is synonymous with being located outside the triangle 33.
  • an ideal one in which the shape appearing in the cross section orthogonal to the fiber axis direction is an equilateral triangle is ideal. In this case, the triangle 33 coincides with the outer periphery 34 of the single yarn fiber cross section.
  • the shape 34 ′ that appears in the cross section orthogonal to the fiber axis direction and the apex (a ′, b ′, c ′) connecting straight lines (eg, a′b ′) and / or shape (triangle 33 ′) are not in the above-described relationship, ie, the triangle 33 ′ is not within the outer circumference 34 ′ of the fiber cross section (substantially This means that the cross-sectional shape of the single yarn fiber is close to the Y shape), and the amount of voids between the single yarn fibers increases, so that not only the air permeability is increased, but also inside the fiber (multifilament) The single yarn fibers tend to be difficult to move.
  • the number of entanglements in the raw yarn production stage is preferably 5 / m or more and 30 / m or less for high-density weaving.
  • the entanglement degree of the yarn at the stage of weaving from the woven fabric is preferably 20 pieces / m or less, more preferably 15 pieces / m or less, and even more preferably 8 pieces / m or less in terms of the average value of warp and weft. There is no particular lower limit, and the degree of entanglement may be 0 / m.
  • the entanglement degree in the raw yarn stage is more preferably 8 pieces / m or more, and further preferably 10 pieces / m or more.
  • the upper limit of the entanglement degree is more preferably 28 pieces / m or less, and further preferably 25 pieces / m or less.
  • the yarn widening ratio is moved so that the single yarn fibers are closely packed in the fiber by an external force such as tension, and the single yarn fibers are displaced at the interface with the adjacent single yarn fibers.
  • an index indicating a state of moving in a direction orthogonal to the fiber axis.
  • a large value of the widening ratio means that the single yarn fiber is easy to move due to the influence of external force.
  • the fiber widening rate of the fiber taken out by weaving the non-coated fabric for airbag is 2.4 or more and 3.5 or less.
  • the yarn widening ratio is less than 2.4, the single yarn fiber is difficult to move, and when an external force is applied to the fiber, the single yarn fiber is difficult to densely fill, making it difficult to weave more densely. Tend to be.
  • the yarn widening ratio is more preferably 2.5 or more, and even more preferably 2.6 or more. If the yarn widening ratio is higher than 3.5, the single yarn fibers are likely to move too much, and the gap between the single yarn fibers cannot be maintained tightly and the air permeability may be increased. More preferably, it is 3.4 or less.
  • the yarn widening ratio is obtained by a measuring method described later.
  • the mechanical properties of the fibers constituting the non-coated fabric for the airbag are preferably such that the cutting strength is 7.0 cN / dtex or more, more preferably It is 7.5 cN / dtex or more.
  • the cutting strength is preferably higher, but considering the yield during production, etc., it is preferably 9.5 cN / dtex or less, more preferably 9.0 cN / dtex or less.
  • the single yarn fineness of the filament constituting the fiber is 1 dtex or more and 8 dtex or less. If the single yarn fineness is too large, the number of single yarn fibers per the same fineness will decrease, and the air permeability inside the fibers will increase, and it may be difficult to obtain a low-breathing airbag. On the other hand, if the single yarn fineness is too small, the productivity of the fiber may be lowered. More preferably, it is 2 dtex or more and 7.5 dtex or less, More preferably, it is 2.5 dtex or more and 6.5 dtex or less.
  • the number of filaments constituting the fiber is preferably 40 or more and 200 or less.
  • the number of filaments is more preferably 50 or more, further preferably 60 or more, more preferably 180 or less, and still more preferably 160 or less.
  • the total fineness of the fiber is not particularly limited, but is preferably 100 dtex or more and 600 dtex or less, more preferably 150 dtex or more and 500 dtex or less, further preferably 200 dtex or more and 500 dtex or less, and 235 dtex or more and 470 dtex or less. Is particularly preferred. If the total fineness is less than 100 dtex, the tensile strength and tear strength may be insufficient when the fabric is used for an airbag. On the other hand, if it exceeds 600 dtex, strength problems are unlikely to occur, but the flexibility required for the airbag is impaired, and the fabric surface becomes hard, which may damage the human skin at the time of collision. .
  • the structure of the non-coated fabric for the airbag is not particularly limited, but a plain weave is preferable considering the uniformity of the fabric properties.
  • the warp yarns and weft yarns do not have to be the same, and the thickness, the number of yarns, the type of fiber, and the like may be different as long as strength, air permeability, etc. satisfying the performance as an airbag are obtained.
  • the cross-sectional shape described above is substantially triangular in 100% of the fibers constituting the non-coating fabric for airbags (the total of warp and weft), and has a specific degree of irregularity. It is preferable to use 25% or more of fibers (multifilament) including single yarn fibers. More preferably, it is 50% or more, and most preferably 100%.
  • the non-coating fabric for an airbag has a cover factor (CF) calculated by the following formula 1 of 2050 or more and 2600 or less. If the cover factor exceeds 2600, the warp is damaged by the tension applied to the warp during weaving, and it may become difficult to weave at high density. Moreover, if it is less than 2050, there exists a possibility that it may become difficult to obtain the low air permeability required as an airbag.
  • the cover factor is more preferably 2200 or more and 2500 or less.
  • the non-coating fabric for an airbag has an air permeability (high-pressure air permeability) under a differential pressure of 20 kPa of 0.25 L / cm 2 / min or less.
  • High air permeability is more preferably less 0.20L / cm 2 / min, more preferably not more than 0.15L / cm 2 / min.
  • the non-coating fabric for airbags has a high-pressure air permeability (air permeability under a differential pressure of 20 kPa) after being folded by a predetermined method of 0.30 L / cm 2 / min or less.
  • the airbag fabric is folded or stored in a predetermined position in the vehicle in a compressed state, so if the air permeability after folding is high, it is difficult to secure the internal pressure necessary to restrain the passenger when the airbag is deployed.
  • High pressure air permeability after folding more preferably not more than 0.25L / cm 2 / min, more preferably not more than 0.20L / cm 2 / min.
  • the high-pressure air permeability after folding the airbag fabric is determined by the method described in the examples.
  • the non-coating woven fabric for an airbag has an air permeability change rate (the following formula 2) represented by a ratio of the high-pressure air permeability before and after folding to 150% or less. If the rate of change in air permeability exceeds 150%, it may be difficult to secure the internal pressure necessary for restraining the occupant when the airbag is deployed. More preferably, it is 130% or less, More preferably, it is 120% or less.
  • Air permeability change rate (%) (high pressure air permeability after folding) / (high pressure air permeability before folding) ⁇ 100 (Formula 2)
  • the non-coating fabric for airbags has a sliding resistance defined by ASTM D6479 and an average value in the vertical direction and the horizontal direction is 700N or more and 1200N or less.
  • the sliding resistance is less than 700 N, the sewing part opens when the airbag is deployed, and air permeability as an airbag is deteriorated, which is not preferable.
  • the slip resistance exceeds 1200 N, the fabric becomes stiff, so the flexibility required for the airbag is impaired, and the fabric surface becomes hard, which may damage the human skin at the time of collision. is there. More preferably, they are 750N or more and 1100N or less, More preferably, they are 800N or more and 1050N or less.
  • the fiber used for the non-coating fabric for airbags of the present invention and the method for producing the non-coating fabric for airbags using the same will be described. What is necessary is just to manufacture the fiber which comprises the non-coating fabric for airbags in accordance with a conventional method. For example, raw resin is melt-extruded using a single-screw or twin-screw extruder, weighed using a gear pump, extruded into a nozzle through an appropriate metal nonwoven fabric filter, and then melted into a fiber.
  • the product is passed through a heating cylinder directly under the nozzle as it is, cooled with cooling air, applied with a spinning oil agent, wound around a take-up roller, stretched as it is, and then subjected to an entanglement treatment to obtain a filament.
  • the fibers constituting the non-coated fabric for an airbag of the present invention have a substantially triangular cross section and have a specific degree of atypical shape.
  • a nozzle having an appropriate shape For example, using a nozzle in which three discharge holes are arranged so that the outer edge surrounding the hole is substantially triangular, the resin discharged by the die-swell phenomenon in which the molten resin spreads immediately after being discharged from the nozzle is joined
  • a nozzle having a discharge hole shape as shown in FIG. 1 is used. It is preferable. By using the nozzle of this shape, it becomes easy to adjust the profile of the fiber cross section.
  • the atypical degree of the nozzle is preferably 2 or more and 10 or less, and more preferably 3 or more and 8 or less. If the nozzle profile is too small, the fiber cross-section after yarn forming tends to be a shape close to a round cross-section. On the other hand, if the degree of atypical shape of the nozzle is too large, the cross section of the fiber after yarn forming tends to be flat or a shape close to the Y shape.
  • the degree of irregularity of the nozzle can be expressed by the ratio of the radius between the circumscribed circle and the inscribed circle of the nozzle hole (radius of the circumscribed circle / radius of the inscribed circle).
  • the circumscribed circle 11 is a circle represented by a broken line in FIG. 1 and passing through the vertices A, B, and C of the nozzle discharge hole outer edge 13.
  • the inscribed circle 12 is represented by an alternate long and short dash line in FIG. 1, and the adjacent isosceles triangles when the discharge hole is regarded as a shape composed of three approximately isosceles triangles having the vertices A, B and C as vertices. Are circles that pass through intersections D, E, and F of equal sides.
  • the nozzle temperature may be appropriately determined according to the resin to be used.
  • the nozzle temperature is preferably 280 ° C. or higher and 320 ° C. or lower. If the nozzle temperature is too low, pressure loss when passing through the nozzle increases, and spinning may be difficult. On the other hand, if the nozzle temperature is too high, polymer degradation and gelation are likely to occur, which causes clogging of the filter and breakage of the filter, which not only decreases productivity but also decreases fiber strength. There is a fear.
  • an apparatus such as a heat insulating cylinder or a heating cylinder may be installed between the nozzle and the take-up roll for winding the fiber.
  • the length of the heat insulating cylinder or the heating cylinder is preferably in the range of 2 cm to 50 cm from the nozzle, for example.
  • the length of the heating cylinder is shorter than 2 cm, the cooling air in the subsequent cooling process enters, and the temperature of the nozzle surface becomes non-uniform, and fineness spots may easily occur between the fibers.
  • the heat insulating cylinder or the heating cylinder is longer than 50 cm, periodic longitudinal unevenness called so-called resonance tends to occur.
  • the temperature of the cooling air used for cooling the melted yarn is preferably in the range of 15 ° C to 30 ° C. If the temperature of the cooling air is lower than 15 ° C., there may be a large difference in physical properties such as the degree of atypicality and strength between the fibers. There is. More preferably, it is 18 degreeC or more and 28 degrees C or less, More preferably, it is 20 degreeC or more and 25 degrees C or less.
  • the wind speed of the cooling air is preferably in the range of 0.1 m / sec to 1 m / sec. If it is less than 0.1 m / sec, it may be difficult to sufficiently cool the thread shape, and fineness spots may easily occur between the fibers. On the other hand, if the wind speed exceeds 1 m / sec, the cooling speed is likely to be different between the upstream side and the downstream side of the cooling air, and fineness unevenness may occur between the fibers.
  • the draft ratio calculated by the following formula 3 is 100 or more and 150 or less.
  • Draft ratio take-up roller speed [m / min] / (single hole volume discharge [m 3 / min] / nozzle hole cross-sectional area [m 2 ]) (Formula 3)
  • the draft ratio is less than 100, the yarn swaying is increased, and there is a tendency that fusion between fibers and yarn breakage are easily caused.
  • the draw ratio is preferably 4.5 times or more and 4.9 times or less. If the draw ratio is less than 4.5 times, the strength of the fiber may decrease. On the other hand, if the draw ratio is higher than 4.9 times, molecular chain alignment spots are generated in the filament cross section, cracks are likely to occur in the filament, and fiber strength is reduced, and yarn breakage is likely to occur during fiber production. There is a fear.
  • the temperature during stretching depends on the subsequent weaving method, it is preferably in the range of 20 ° C. or higher and 240 ° C. or lower. If the drawing temperature is lower than 20 ° C., thread breakage may occur before the necessary draw ratio is reached. On the other hand, when the stretching temperature exceeds 240 ° C., the yarn is melted and the stretching tends to be difficult.
  • the entanglement by the fluid treatment such as air pressure that is, the so-called interlace treatment is kept to a minimum.
  • the entanglement degree of the fiber at the raw yarn stage is preferably 5 / m or more and 30 / m or less.
  • the degree of entanglement at the raw yarn stage is preferably within the above range.
  • the boiling water shrinkage rate is not particularly limited, but the boiling water shrinkage rate is 7% or more and 12% or less in order to increase the slip resistance of the airbag fabric. It is preferable to do. If the boiling water shrinkage rate is too small, there is a risk that the slip-off resistance will be small because the tightness between the fibers is small when processing is performed in the manufacturing process of the airbag fabric. On the other hand, if the boiling water shrinkage is too large, the stability of the fibers over time is poor, and this is not preferable because it causes a large variation in fabric properties depending on the storage period. More preferably, they are 8% or more and 11% or less, More preferably, they are 8.5% or more and 10% or less.
  • the method for weaving the non-coated fabric for airbag is not particularly limited, and a conventionally known method may be used.
  • the warp tension during weaving is preferably 0.1 cN / dtex or more and 0.5 cN / dtex or less. More preferably, it is 0.15 cN / dtex or more and 0.4 cN / dtex or less, More preferably, it is 0.18 cN / dtex or more and 0.35 cN / dtex or less.
  • the warp tension is lower than 0.1 cN / dtex, it is difficult to weave the fabric at a high density, and the entanglement degree of the warp is easily maintained, and the low ventilation required for the airbag when the fabric is used. It may be difficult to obtain sex. If it is higher than 0.5 cN / dtex, the force applied to the warp is too great and fluff may occur.
  • the loom used for weaving is not particularly limited, and a water jet loom, an air jet loom, a rapier room, or a multiphase loom is preferably used.
  • the water jet loom is preferable from the viewpoint of speeding up, widening, and machine price.
  • the operation method of the loom used for weaving is not particularly limited, and may be, for example, a crank-type opening loom or a cam-type opening loom.
  • a cam-type opening loom with a long wrinkle opening time because the weft flying is stable and weaving can be performed at a higher density on the machine. .
  • the loom rotation speed is preferably 400 rpm or more and 1000 rpm or less. If the loom rotational speed is too slow, productivity is impaired, which is not preferable. On the other hand, if the loom rotational speed is too fast, it is difficult to stably weave at a high density. More preferably, it is 500 rpm or more and 900 rpm or less, More preferably, it is 550 rpm or more and 800 rpm or less.
  • the non-coating woven fabric for airbags according to the present invention containing substantially triangular cross-section fibers can be woven while suppressing the protrusion before weaving. Therefore, the weaving efficiency of the conventional woven fabric is improved even when weaving under higher density conditions.
  • the inventors have found that it can be maintained at the same time. That is, the substantially triangular cross-section fibers of the present invention are densely packed between single yarn fibers by external force applied when wefts are hammered on a loom or when wefts are constrained with warps. Compared to fibers with gaps, the actual fiber diameter is small even if the fineness is the same, so it is presumed that weaving can be performed at a higher density on the loom.
  • the amount of protrusion is not limited to a substantially triangular cross-section fiber, and other shapes such as a polygonal shape such as a regular hexagonal shape and a regular square shape, and a rhombus shape are also conceivable.
  • the substantially triangular cross-sectional fiber shape of the present invention is preferable from the viewpoint of easy movement of fibers constituting the fabric, low air permeability of the fabric, and low air permeability even after folding.
  • the cover factor (cf) of the weft obtained by the following formula 4 is 1040 or more
  • the gap between the fibers has a linear shape, and therefore a polygonal shape is preferable.
  • a shape in which two or more triangular cross-sectional shapes and other polygonal shapes are connected is also preferable. Therefore, there is no problem even in the shape of a rhombus with a bias applied to a quadrangle.
  • the number of vertices of the polygon increases, the closer to the round cross section, and the more complex the shape, the easier it is to create a gap between single yarn fibers when receiving external force, so the number of vertices is 3 or more and 6 or less. It is preferable. More preferably, they are 3 or more and 4 or less, More preferably, they are three substantially triangular cross-section fibers.
  • Ft of weft during weaving (weft driving setting [mains / 2.54 cm]) ⁇ ⁇ (weft fineness [dtex] ⁇ 0.9) (Formula 4)
  • the protruding amount of the ear tends to increase as compared with the central portion of the fabric, and is also a factor that hinders stable flying of the weft.
  • the reason for the difference in the amount of protrusion between the ear part and the center part of the fabric is that the warp crimp is strongly formed in the center part of the fabric due to the tension along the fiber axis against the weft by the adjacent warp. Then, since there is no warp on one side, the wefts are loosened and the warp crimps are weakly formed, so it is assumed that this results in a difference in warp length between the central part of the fabric and the ear part.
  • the amount of protrusion measured by the predetermined method set forth in the examples is 320 ° to 350 °.
  • the smaller the amount the higher the amount of protrusion.
  • the protruding amount is less than 320 °, the opening area is not sufficiently secured, so that weft flight is not stable and weaving efficiency is not increased, which is not preferable.
  • the protruding amount is larger than 350 °, it is an area in which weaving as a high-density fabric is practically impossible. More preferably, they are 325 degrees or more and 340 degrees or less, More preferably, they are 327 degrees or more and 335 degrees or less.
  • An index indicating weaving efficiency is the number of stops of weft driving. As mentioned above, if weft jumping is impossible due to excessive densification, or if weaving conditions such as warp tension and weaving machine timing are not set properly, weaving cannot be performed and It will stop. It is preferable that the number of stops of weft driving when weaving the airbag fabric is 4 times / 100 m or less. If it stops more than this, production efficiency falls and it is not preferable. More preferably 3 times / 100 m or less, and still more preferably 2 times / 100 m or less.
  • the processing method after weaving the non-coated fabric for an airbag is not particularly limited. Therefore, any processing may be applied as long as the above-described characteristics of the present invention, that is, the characteristics that the single yarn fiber moves in the woven fabric due to the influence of external force can be maintained.
  • Examples of the processing method of the non-coating fabric for airbag after weaving include heat treatment such as scouring, drying, and heat setting. These may be carried out alone or in combination of two or more. Specifically, as a mode of combination of processing methods of fabric after weaving, a mode in which a green machine woven in a water jet loom is naturally dried or subjected to a heat treatment process for drying; a green machine woven in various looms is used in a scouring process.
  • Examples include an embodiment in which the raw material woven by various looms is subjected to a scouring step and then subjected to a heat treatment step for heat setting.
  • the fabric (raw machine) that has been woven on the loom may be cut and sewed as it is without being subjected to the processing steps as described above to form an airbag.
  • the heat treatment temperature (drying temperature) of the living machine is set to 20 ° C. or more and 190 ° C. or less. Preferably they are 40 degreeC or more and 160 degrees C or less, More preferably, they are 60 degreeC or more and 140 degrees C or less.
  • the heat treatment time (drying time) is preferably 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less.
  • the living machine can be heat treated at the above temperature, and the method is not particularly limited. Therefore, the apparatus for performing the heat treatment step is not particularly limited. For example, a dryer (dryer type heating furnace) using hot air as a heating medium, a cylinder dryer using hot air or steam as a heating medium, etc. Any of them can be used.
  • the weaving machine after weaving may be naturally dried to complete the airbag fabric.
  • the raw machine is 50 ° C. or higher and 100 ° C. or lower.
  • a hot water treatment to pass through the water tank is performed (scouring process).
  • the fabric is contracted while removing the oil agent, the sizing agent, and the like applied in the spinning process and the weaving process from the fabric.
  • the temperature of water is more preferably 60 ° C. or higher and 98 ° C. or lower, and further preferably 70 ° C.
  • the hot water treatment is preferably performed for 10 seconds or more and 3 minutes or less. More preferably, it is 20 seconds or more and 2 minutes or less, More preferably, it is 30 seconds or more and 1 minute or less.
  • the water used in the hot water treatment includes tap water, pure water, surfactants such as sodium alkylbenzene sulfonate, alkaline scouring agents such as soda ash, enzymes, or an aqueous solution in which one or more organic solvents are dissolved. May be used.
  • the hot water treatment is preferably performed while applying a tension of 0.040 cN / dtex or less in the warp direction of the raw machine.
  • a tension of 0.040 cN / dtex or less in the warp direction of the raw machine By performing the hot water treatment under a predetermined tension, the yarns in the raw machine can be rearranged by sufficiently shrinking the fabric.
  • polyamide fibers such as nylon 66 are used, hydrogen bonds in the fibers are more likely to be broken due to the presence of water, which makes it easier to obtain a more flexible base fabric.
  • the tension in the warp direction exceeds 0.040 cN / dtex, the fabric is difficult to freely shrink during the hot water treatment, and the property that the fabric itself is close to the state of being heat-set in a tension state is easy to move. There is a risk of being easily damaged.
  • the fabric subjected to the scouring process (warm water treatment) is subjected to a heat treatment process.
  • the tension in the warp direction in the heat treatment (drying) step is also preferably 0.040 cN / dtex or less.
  • the heat treatment temperature (drying temperature) is preferably 150 ° C. or less from the viewpoint of ensuring low air permeability of the airbag fabric. More preferably, it is 140 degrees C or less.
  • the drying temperature is preferably low, but if it is too low, the drying time becomes long, which is not industrially preferable.
  • the heat treatment time is preferably 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less.
  • relatively low temperature water Specifically, water at 30 ° C. or higher and 90 ° C. or lower is used.
  • the temperature of water is preferably 40 ° C. or higher and 80 ° C. or lower, and more preferably 50 ° C. or higher and 70 ° C. or lower. If it is in the said temperature range, the oil agent, sizing agent, etc. which are provided by a spinning process or a weaving process can be efficiently removed from a textile fabric.
  • the scouring process is not limited, and a conventionally known scouring method can be employed.
  • surfactants such as sodium alkylbenzene sulfonate, alkaline scouring agents such as soda ash, enzymes, and an aqueous solution in which one or more organic solvents are dissolved. May be used.
  • the scouring process may be performed while applying tension in the running direction of the raw machine and the direction (width direction) perpendicular to the running direction.
  • the overfeed rate in the running direction of the living machine is preferably 0% or more and 5% or less, more preferably 1% or more and 4% or less, and further preferably 2% or more and 3% or less.
  • the overfeed rate in the width direction of the production machine is preferably 0% or more and 3% or less, more preferably 0.5% or more and 2.5% or less, and further preferably 1% or more and 2% or less. is there.
  • the scouring treatment is preferably performed for 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less.
  • the scoured woven fabric (growth machine) may be subjected to a dehydration or drying treatment and then subjected to a heat treatment step. In the heat treatment step, the woven fabric is heated to 110 ° C. or higher, so that the drying treatment or the like is not performed.
  • the scoured fabric may be directly subjected to a heat treatment step.
  • the scoured fabric is heat treated at 110 ° C. or higher and 190 ° C. or lower (heat treatment step).
  • the heat treatment temperature is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, preferably 185 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 175 ° C. or lower. If the heat treatment temperature is too low, it tends to be necessary for a long time to dry the woven fabric wetted by the scouring treatment. There is a possibility that the mesh becomes large and the air permeability becomes high.
  • the heat treatment temperature is too high, not only the fibers constituting the fabric may be thermally deteriorated and the mechanical strength may be lowered, but also the fabric is hardened by heat shrinkage and the fabric is cured. There is a possibility that the property that the single yarn fiber is easy to move is likely to be impaired.
  • heat treatment is performed while applying tension to the fabric (heat setting).
  • tension to the fabric (heat setting).
  • the overfeed rate in the running direction of the fabric is 1.5% or more and 6.0% or less, preferably 2.0% or more and 5.0% or less, more preferably 2.5% or more and 4.5% or less. It is.
  • the overfeed rate (width filling rate) in the direction (width direction) orthogonal to the running direction of the fabric is 1.0% to 4.0%, preferably 1.5% to 3.5%. More preferably, it is 2.0% or more and 3.0% or less.
  • the overfeed rate in the running direction of the fabric should be 0% or more and 5.0% or less in the heat setting step. Is more preferably 1.0% or more and 4.0% or less, and further preferably 1.5% or more and 3.0% or less.
  • the overfeed rate (width filling rate) in the direction orthogonal to the running direction of the fabric (width direction) is preferably 0% or more and 3.0% or less, more preferably 0.5% or more and 2.5%. % Or less, more preferably 1.0% or more and 2.0% or less.
  • the overfeed rate in the running direction of the fabric is a value represented by the following formula 5.
  • the speed of the feed roller (V 1 ) that is upstream of the heat treatment process and supplies the fabric to the heat treatment process is made higher than the speed of the take-up roller (V 2 ) that is downstream of the heat treatment process.
  • Overfeed rate in travel direction (%) (V 1 / V 2 ) ⁇ 100 (Formula 5) [V 1 : Feed roller speed, V 2 : Winding roller speed]
  • the overfeed rate in the direction (width) orthogonal to the running direction of the fabric is a value represented by the following formula 6.
  • the heat treatment process is performed in a state where both ends in the width direction of the fabric are fixed, but the distance from one fixed end to the other end is made narrower than the width of the fabric before supplying the heat treatment process. It can be in an overfeed state.
  • Overfeed rate (%) in the direction perpendicular to the running direction of the fabric (1 ⁇ L 0 / L 1 ) ⁇ 100 (Formula 6) [L 0 : width (m) of the previous woven fabric supplied to the heat treatment step, L 1 : width (m) of the woven fabric supplied to the heat treatment step]
  • the overfeed rate in the running direction and the width direction of the woven fabric is within the above-mentioned range, the movement of the single yarn fiber when the woven fabric receives an external force and the spreading of the woven yarn in the direction perpendicular to the fiber axis suitably occur. Therefore, it is preferable. If the overfeed rate is too small, the yarn shrinks during heat treatment, and the single yarn fiber itself is excessively tensioned. Therefore, the single yarn fiber is difficult to move even when external force is applied, or the yarn is woven in the direction perpendicular to the fiber axis. There is a risk that the yarn will not easily spread and the air permeability will increase. On the other hand, if the overfeed rate is too large, the crimp becomes large due to the contraction force of the fibers, which may cause gaps between the fibers and deteriorate the air permeability.
  • an apparatus for example, an apparatus for holding a fabric called a pin tenter or a clip tenter can be cited.
  • the heating means for example, a dryer type heating furnace can be used.
  • An airbag can be obtained by cutting, sewing or welding the above-described non-coated fabric for an airbag so as to have a desired shape.
  • a perpendicular bisector 21 of line segments ab, bc, and ac connecting the vertices is drawn, and passes through three intersections 22 of the fiber cross section intersecting with the vertical bisector 21 and inscribed in the fiber cross section. Describe a circle (inscribed circle 32).
  • a value obtained by dividing the radius of the circumscribed circle 31 by the radius of the inscribed circle 32 was defined as the degree of irregularity (see FIGS. 2 to 5).
  • the average degree of the five filaments was used as the degree of profile.
  • the atypical degree of the nozzle hole was calculated in the same manner.
  • the fiber cross-sectional shape is a shape other than a substantially triangular shape
  • a circumscribed circle and an inscribed circle that are in contact with the outer edge of the fiber cross section are set, and the degree of irregularity is obtained from the ratio of these radii.
  • the atypical degree was obtained using the radius of the smallest inscribed circle.
  • fibers (multifilament) 61 are bundled so as to have a circumference of 20 cm to form a single ring.
  • the fiber 61 is suspended through a Teflon (registered trademark) rod 62 having a diameter of 1 cm, in which the ring portion is horizontally installed.
  • Teflon (registered trademark) rod 62 having a diameter of 1 cm, in which the ring portion is horizontally installed.
  • the position of the binding point 64 is adjusted so that the binding point 64 does not come on the Teflon (registered trademark) rod 62 and the lowest point.
  • a load 63 that is 1.52 times the total fineness (dtex) of the fiber is suspended from the lowest point of the annular fiber 61.
  • the load 63 is hung on the fiber 61 via a bonding thread 67 using the fiber used for the measurement.
  • the thickest fiber width (b) is measured, and the ratio (a / b) between them is calculated.
  • the above measurement was repeated 10 times while changing the fiber, and the average value was defined as the yarn widening ratio.
  • the yarn widening ratio of the unwoven yarn from the woven fabric was also measured by the same method.
  • a circular portion having a diameter of 10 cm centering on the intersection of the first fold and the second fold is used as a measurement site, and the air permeability under a pressure difference of 20 kPa is measured using a high pressure air permeability measuring machine (manufactured by OEM System Co., Ltd.). Measured. The average value of the five test pieces was taken as the high-pressure air permeability after folding.
  • Entanglement degree The entanglement degree of the raw yarn and the unwoven yarn was calculated based on JIS L1013 8.15.
  • Number of stops of weft driving was measured according to the following formula 7.
  • Number of stops of weft driving (times / 100 m) ⁇ (s 0 ⁇ s 1 ) / f 1 ⁇ 100 (Formula 7)
  • S 0 Total number of stops of weft driving when weaving a certain brand (times)
  • s 1 Number of times weft yarn cheese is switched (times)
  • f 1 Weaving total length (m) of a brand
  • Example 1 Polyamide 66 resin was melt-extruded using a single-screw extruder, weighed using a gear pump, and the hole shape was processed into the shape shown in FIG. 1 through a metal nonwoven fabric filter (NF-07 manufactured by Nippon Seisen Co., Ltd.). The mixture was extruded into a nozzle (degree of irregularity 6) to obtain a fibrous melt.
  • a metal nonwoven fabric filter NF-07 manufactured by Nippon Seisen Co., Ltd.
  • a fatty acid ester-based spinning oil agent is applied, wound around a take-up roller and stretched by a known method as it is, 470 dtex, A 144-filament approximately triangular section polyamide 66 fiber (approximately triangular section thread) was obtained.
  • a scanning electron micrograph of the fiber cross section is shown in FIG. The obtained substantially triangular cross section yarn was used for warp and weft, and was woven in a crank opening type water jet loom.
  • the warp tension was adjusted to 0.30 cN / dtex, the number of wefts driven was set to 52.5 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 330 °, the weft flight was stable, and the operating rate was 98%. After weaving, it was passed through a hot water bath at 98 ° C., and the hot water treatment was performed by adjusting the processing tension so that the running tension in the warp direction was 0.027 cN / dtex (scouring treatment A).
  • Example 2 A fiber having an atypical cross section was produced in the same manner as in Example 1 except that a nozzle with a grade 4 was used at the time of spinning, and this was woven to obtain a woven fabric.
  • the protrusion angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%.
  • Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
  • Example 3 A fiber having an irregular cross section was produced in the same manner as in Example 1 except that a nozzle with an irregularity degree of 8 was used during spinning, and this was woven to obtain a woven fabric.
  • the protrusion angle before weaving was 328 °, the weft flight was stable, and the operation rate was 97%.
  • Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
  • Example 4 A fiber having an irregular cross section is produced in the same manner as in Example 1 except that weaving is performed with a warp tension of 0.39 cN / dtex during weaving and a number of driven on the machine of 55.5 / 2.54 cm. This was woven to obtain a woven fabric. A plain weave fabric having a background fabric density of 60 / 2.54 cm was obtained. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
  • Example 5 In the same manner as in Example 1, using a nozzle with a degree of profile 6 during spinning, a triangular cross-section polyamide 66 fiber having 350 dtex and 108 filaments was obtained. The obtained triangular cross-section yarn was used for warp and weft and woven in a crank-opening water jet loom. The warp tension was adjusted to 0.39 cN / dtex, the number of wefts driven was set to 61 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%.
  • Example 6 A fiber having an irregular cross section was produced in the same manner as in Example 1, and this was woven in a water jet loom of a cam opening type (dwell angle 60 °). The warp tension was adjusted to 0.39 cN / dtex, the number of wefts driven was set to 56.5 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%.
  • Polyamide 66 resin is melt-extruded using a single-screw extruder, weighed using a gear pump, and extruded through a metal nonwoven fabric filter (NF-07, manufactured by Nippon Seisen Co., Ltd.) to a nozzle (degree of irregularity 1.0).
  • a fibrous melt was obtained.
  • the fibrous melt is directly passed through a heating cylinder directly under the nozzle and cooled with cooling air, and then a fatty acid ester-based spinning oil is applied, wound around a take-up roller, and stretched by a known method as it is.
  • 470 dtex, 144 A filament round section polyamide 66 fiber was obtained.
  • the obtained polyamide 66 fiber was used for warp and weft and woven in a water jet loom of a cam opening type (dwell angle 60 °).
  • the warp tension was adjusted to 0.39 cN / dtex
  • the number of wefts driven was set to 52.5 / 2.54 cm
  • weaving was performed at a loom speed of 600 rpm.
  • the amount of protrusion before weaving at this time was 328 °
  • the weft flight was stable, and the number of stops was 2 times / 100 m.
  • Comparative Example 3 According to the procedure of Comparative Example 1, a 235 dtex, 36 filament round cross section polyamide 66 fiber and 235 dtex, 72 filament were produced and combined to produce a 470 dtex original yarn having two different single yarn finenesses. This was used for warps and wefts and woven in a crank opening type water jet loom. A plain weave fabric having a warp and weft fabric density of 54 / 2.54 cm was obtained. Table 2 shows the properties of the raw yarn and the fabric. Compared to the fabric of the example in which the cross-sectional shape of the single yarn fiber was made of a substantially triangular fiber, the fabric obtained in Comparative Example 3 had a high pressure permeability. Further, when weaving at a higher density than this, yarns having different single yarn fineness were mixed, so that the yarn strength was weak, and the yarn could not be woven easily because of fluffing.
  • Comparative example 4 According to the procedure of Comparative Example 1, 470 dtex, 144 filament round cross-section polyamide 66 fiber was produced and woven in a crank opening type water jet loom. The warp tension was adjusted to 0.60 cN / dtex, the number of wefts driven was set to 52.5 / 2.54c, and weaving was performed at a loom speed of 300 rpm. At this time, the amount of protrusion before weaving was 318 °, the flying of the weft was not stable, and the number of stops was 50 times / 100 m. Table 2 shows the properties of the raw yarn and the fabric.
  • the woven fabric obtained in Comparative Example 4 had a high pressure permeability.
  • damage to the warp was observed, and the tensile strength in the warp direction was reduced.
  • the occupancy rate was also bad.
  • the cross-sectional shape of the single yarn fiber was higher in the high-pressure air permeability than the fabric of the example made of a substantially triangular fiber. Further, the fabric of Comparative Example 5 had high high-pressure air permeability after being folded. This is presumably because the laminated structure of single yarn fibers having a flat cross section was disturbed when the woven fabric was folded. Also, the slip resistance was relatively weak.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Air Bags (AREA)

Abstract

[Problem] To provide a non-coated fabric for an airbag that has less air leakage than non-coated fabrics for airbags developed by conventional technology and that is usable in locations where use was not possible except for conventional coated fabrics for airbags, and an airbag using the same. [Solution] The non-coated fabric for an airbag includes single fibers having a substantially triangular cross-sectional shape and atypism of 1.3 – 2.2, and has a cover factor (CF) of 2050 – 2600 and a ventilation rate of 0.25 L/cm2/min or less under a pressure differential of 20 kPa.

Description

エアバッグ用ノンコーティング織物及びそれを用いたエアバッグNon-coated fabric for airbag and airbag using the same
 本発明は、エアバッグ用ノンコーティング織物及びそれを用いたエアバッグに関する。 The present invention relates to a non-coated fabric for an airbag and an airbag using the same.
 昨今、安全意識の高まりや安全規制の変化の影響を受けて、自動車において運転席用エアバッグや助手席用エアバッグなどの前突事故を想定した安全対策だけでなく、側突事故を想定したカーテンエアバッグやサイドエアバッグなどの採用が多くなってきている。 In recent years, as a result of heightened safety awareness and changes in safety regulations, in addition to safety measures assuming frontal accidents such as driver airbags and passenger airbags in automobiles, side accidents are also assumed. The adoption of curtain airbags and side airbags is increasing.
 前突事故に比べて、側突事故は衝撃を受ける車体側面と乗員との距離が近く、より高速にエアバッグを展開させる必要があり、展開時のエア漏れを極力抑えることが必要である。このため、カーテンエアバッグやサイドエアバッグには通気性が低いコーティング織物が一般的に使用されている。 比 べ Compared to the frontal crash, the side impact accident requires a shorter distance between the side of the vehicle body that receives the impact and the occupant, and it is necessary to deploy the airbag at a higher speed, and it is necessary to minimize air leakage during deployment. For this reason, a coating fabric with low air permeability is generally used for curtain airbags and side airbags.
 しかし、安全意識の高まりによりエアバッグの搭載部位が増える一方で、車体軽量化による燃費向上要求や、車体価格を低減させるためのアッセンブリ用品のコストダウン要求がある。そのため、エアバッグに使用される織物(以下、「エアバッグ用織物」と記載する場合がある)としては、重量が重たくコストの高いコーティング織物をノンコーティング織物で代替させることが望まれている。 However, as safety awareness increases, the number of parts where airbags are mounted increases, while there are demands for improving fuel consumption by reducing the weight of the body and for reducing the cost of assembly equipment to reduce the body price. Therefore, as a woven fabric used for an airbag (hereinafter sometimes referred to as “airbag woven fabric”), it is desired to replace a heavy coated fabric with a high cost with a non-coated fabric.
 エアバッグとしての通気性を考えた際には、エアバッグ本体部となるエアバッグ用織物からの通気性と、エアバッグ織物同士を縫い合わせている縫製部からの通気性を考える必要がある。ノンコーティング織物で、本体部や縫製部の通気性をなるべく低く保つためには高密度に織り込んだ織物とすることが好ましい。
  エアバッグの通気性を下げるための技術として、過去に以下の技術が開示されている。
When considering the air permeability as an airbag, it is necessary to consider the air permeability from the airbag fabric that is the airbag body and the air permeability from the sewing portion that stitches the airbag fabric together. In order to keep the air permeability of the main body portion and the sewing portion as low as possible with a non-coated fabric, it is preferable to use a woven fabric with high density.
The following techniques have been disclosed in the past as techniques for reducing the air permeability of an airbag.
 特許文献1には、単糸繊度が異なる2種のポリエステル繊維を混合して、単糸間の隙間を少なくして通気性を低くさせる技術が開示されている。 Patent Document 1 discloses a technique in which two types of polyester fibers having different single yarn fineness are mixed to reduce the gap between the single yarns to reduce air permeability.
 特許文献2には、カム駆動方式の織機を使用して製織することで、より高密度な織物を製織し通気性を低くさせる技術が開示されている。 Patent Document 2 discloses a technique in which weaving is performed using a cam-driven loom so that a denser fabric is woven to reduce air permeability.
 特許文献3には、単糸断面形状が扁平形状をした単糸繊維を使用して高密度に製織をすることで高い滑脱抵抗力と通気性が低い特性を有するエアバッグ用織物を提供する技術が開示されている。 Patent Document 3 discloses a technology for providing a fabric for an airbag having high slip resistance and low breathability by weaving at a high density using a single yarn fiber having a flat single yarn cross-sectional shape. Is disclosed.
特開平8-325888号公報JP-A-8-325888 特開2000-328388号公報JP 2000-328388 A 特開2006-16707号公報JP 2006-16707 A
 上述の通り、エアバッグ用ノンコーティング織物を低通気化させる方法は種々検討されているが、従来のコーティング織物を代用できるほど通気性が低いエアバッグ用ノンコーティング織物は開発されていなかった。 As described above, various methods for reducing the air permeability of a non-coated fabric for an air bag have been studied, but no non-coated fabric for an air bag has been developed that has low air permeability so that a conventional coated fabric can be substituted.
 本発明はエアバッグ用ノンコーティング織物の低通気化、高密度化に着目してなされたものであって、その目的は、従来技術で開発されたエアバッグ用ノンコーティング織物よりもエア漏れが少なく、従来はエアバッグ用コーティング織物でなければ使用できなかった部位にも使用できるエアバッグ用ノンコーティング織物及びそれを用いたエアバッグを提供することにある。 The present invention has been made with a focus on lowering the air permeability and increasing the density of non-coated fabrics for airbags, and its purpose is less air leakage than non-coated fabrics for airbags developed in the prior art. An object of the present invention is to provide a non-coating fabric for an airbag that can be used even in a portion that could not be used unless the coating fabric for an airbag is used conventionally, and an airbag using the same.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、織糸に特定の異型度を有する略三角断面の繊維を含むエアバッグ用ノンコーティング織物は、高密度に製織でき、従来ノンコーティング織物よりも通気度が低く、滑脱抵抗値が高い特性が発揮できることを見出し、本発明を完成した。本発明は、下記の構成よりなる。
(1)断面形状が略三角形であり、異型度が1.3~2.2である単糸繊維を含み、カバーファクター(CF)が2050以上2600以下、20kPa差圧下での通気度が0.25L/cm/min以下であるエアバッグ用ノンコーティング織物。
(2)ASTM D 6479で定義される滑脱抵抗力が、タテ方向とヨコ方向の平均値で700N以上、1200N以下である(1)に記載のエアバッグ用ノンコーティング織物。
(3)下記方法により測定される前記織物の折り畳み後の20kPa差圧下での通気度が0.30L/cm/min以下である(1)または(2)に記載のエアバッグ用ノンコーティング織物。
 [織物の折り畳み後の20kPa差圧下での通気度]
 織物の幅方向両端部から30cmの範囲を除いた任意の箇所から20cm四方の試験片を切り出し、試験片を繊維軸方向(a)に沿って半分に折り、次いで前記繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折り、再び前記繊維軸方向(a)に沿って半分に折り、前記繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折って、5cm四方に折り畳む。折り畳まれた試験片の全面に50Nの荷重を1分間付与し、次いで20cm四方に広げた状態で1分間放置する。1回目の折目と2回目の折目の交点を中心とする直径10cmの円を測定部位として20kPa差圧下での通気度を測定する。
(4)前記織物の20kPa差圧下での通気度に対する、(2)に記載の方法により測定される織物の折り畳み後の20kPa差圧下での通気度の変化率が150%以下である(1)~(3)のいずれか記載のエアバッグ用ノンコーティング織物。
(5)前記織物を構成する繊維の総繊度が100dtex以上600dtex以下であり、フィラメントの本数が40本以上200本以下、単糸繊度が1dtex以上8dtex以下である(1)~(4)のいずれかに記載のエアバッグ用ノンコーティング織物。
(6)JIS L1013(1999)の8.1で定義される原糸の沸水収縮率が7%以上12%以下であり、原糸がナイロン繊維からなる(1)~(5)のいずれかに記載のエアバッグ用ノンコーティング織物。
(7)(1)~(6)のいずれかに記載のエアバッグ用ノンコーティング織物を用いたエアバッグ。
(8)断面形状が丸断面形状以外の異型繊維を使用し、製織時の緯糸のカバーファクターの設定が1040以上であり、ノズル側の織前のせり出し量が320°以上350°以下であるエアバッグ用ノンコーティング織物の製造方法。
(9)断面形状が多角形状であり、頂点の個数が3個以上6個以下である(8)に記載のエアバッグ用ノンコーティング織物の製造方法。
(10)断面形状が多角形状であり、頂点の個数が3個である(8)又は(9)に記載のエアバッグ用ノンコーティング織物の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have succeeded in weaving a non-coating fabric for airbags containing fibers of a substantially triangular cross section having a specific degree of irregularity in the woven yarn, The present invention was completed by discovering that the air permeability is lower than that of the conventional non-coated fabric and the sliding resistance value is high. The present invention has the following configuration.
(1) Including a single yarn fiber having a substantially triangular cross-section and an irregularity of 1.3 to 2.2, a cover factor (CF) of 2050 to 2600, and an air permeability under a 20 kPa differential pressure of 0. Non-coating fabric for airbag which is 25 L / cm 2 / min or less.
(2) The non-coating fabric for an air bag according to (1), wherein the sliding resistance defined by ASTM D 6479 is 700N or more and 1200N or less as an average value in the vertical direction and the horizontal direction.
(3) The non-coated fabric for an air bag according to (1) or (2), wherein the air permeability under a differential pressure of 20 kPa after folding of the fabric measured by the following method is 0.30 L / cm 2 / min or less. .
[Air permeability under 20 kPa differential pressure after folding fabric]
A test piece of 20 cm square is cut out from an arbitrary place excluding the range of 30 cm from both ends in the width direction of the woven fabric, the test piece is folded in half along the fiber axis direction (a), and then in the fiber axis direction (a). Fold in half along the orthogonal fiber axis direction (b), fold again in half along the fiber axis direction (a), and half in the fiber axis direction (b) orthogonal to the fiber axis direction (a) Fold it into 5cm squares. A load of 50 N is applied to the entire surface of the folded test piece for 1 minute, and then the test piece is left for 1 minute in a state where it is spread to 20 cm square. The air permeability under a differential pressure of 20 kPa is measured using a circle having a diameter of 10 cm centering on the intersection of the first fold and the second fold as a measurement site.
(4) The change rate of the air permeability under a 20 kPa differential pressure after folding of the woven fabric measured by the method described in (2) with respect to the air permeability under a 20 kPa differential pressure of the woven fabric is 150% or less (1) A non-coated fabric for an airbag according to any one of (3) to (3).
(5) Any of (1) to (4), wherein the total fineness of the fibers constituting the woven fabric is 100 dtex or more and 600 dtex or less, the number of filaments is 40 or more and 200 or less, and the single yarn fineness is 1 dtex or more and 8 dtex or less. The non-coating fabric for airbags according to crab.
(6) The boiling water shrinkage rate of the yarn defined in 8.1 of JIS L1013 (1999) is 7% or more and 12% or less, and the yarn is made of nylon fiber (1) to (5) The non-coating fabric for airbags as described.
(7) An airbag using the non-coated fabric for airbags according to any one of (1) to (6).
(8) Air in which the cross-sectional shape uses atypical fibers other than the round cross-sectional shape, the weft cover factor setting during weaving is 1040 or more, and the amount of protrusion before weaving on the nozzle side is 320 ° or more and 350 ° or less A method for producing a non-coated fabric for bags.
(9) The method for producing a non-coated fabric for an air bag according to (8), wherein the cross-sectional shape is a polygonal shape and the number of vertices is 3 or more and 6 or less.
(10) The method for producing a non-coated fabric for an airbag according to (8) or (9), wherein the cross-sectional shape is a polygonal shape and the number of vertices is three.
 本発明のエアバッグ用ノンコーティング織物は、織糸に特定の異型度を有する略三角断面繊維を含んでいるため、高密度に製織でき、従来のノンコーティング織物よりも通気度が低く、滑脱抵抗値が高い特性を発揮することができる。 The non-coating woven fabric for airbags of the present invention includes substantially triangular cross-section fibers having a specific degree of irregularity in the woven yarn, so that it can be woven at a high density, has a lower air permeability than conventional non-coated woven fabrics, and slip resistance. High value can be exhibited.
異型断面を有するノズルと、その異型度の求め方を示す図である。It is a figure which shows the nozzle which has an atypical cross section, and how to obtain | require the atypical degree. 単糸繊維の好ましい断面形状の一例と、当該単糸繊維の断面の異型度の求め方を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the preferable cross-sectional shape of a single yarn fiber, and how to obtain | require the atypical degree of the cross section of the said single yarn fiber. 他の単糸繊維の断面形状と、当該単糸繊維の断面の異型度の求め方を示す断面模式図である。It is a cross-sectional schematic diagram which shows how to obtain | require the cross-sectional shape of another single yarn fiber, and the atypical degree of the cross section of the said single yarn fiber. 実施例1で得られた単糸繊維の断面を示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing a cross section of a single yarn fiber obtained in Example 1. FIG. 比較例3で得られた単糸繊維の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of a single yarn fiber obtained in Comparative Example 3. FIG. ヤーン拡幅比の測定方法の概略図である。It is the schematic of the measuring method of a yarn widening ratio.
 本発明のエアバッグ用ノンコーティング織物は、断面形状が略三角形であり、異型度が1.3~2.2である単糸繊維を含み、カバーファクター(CF)が2050以上2600以下、20kPa差圧下での通気度が0.25L/cm2/min以下であるところに
特徴を有する。
 本発明者等は、従来使用されてきた丸断面や異型断面等の繊維に変えて、特定の異型度を有する略三角断面繊維を使用してエアバッグ用織物を製織することで、高密度に製織でき、従来ノンコーティング織物よりも通気度が低く、滑脱抵抗値が高い特性を有する織物が得られることを見出し、本発明を完成した。以下、本発明を詳細に説明する。
The non-coating woven fabric for an airbag of the present invention includes a single yarn fiber having a substantially triangular cross section and an irregularity of 1.3 to 2.2, and has a cover factor (CF) of 2050 to 2600, with a difference of 20 kPa. It is characterized in that the air permeability under pressure is 0.25 L / cm 2 / min or less.
The inventors of the present invention can fabricate airbag fabrics using a substantially triangular cross-section fiber having a specific atypical degree instead of the conventionally used round cross-section or atypical cross-section fibers, thereby achieving high density. The inventors have found that a woven fabric that can be woven, has a lower air permeability than a conventional non-coated fabric, and has a high sliding resistance value has been obtained, thereby completing the present invention. Hereinafter, the present invention will be described in detail.
 本発明のエアバッグ用ノンコーティング織物を構成する繊維の素材は特に限定されるものではないが、例えばナイロン66、ナイロン6、ナイロン46、ナイロン12等の脂肪族ポリアミド繊維、アラミド繊維のような芳香族ポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル繊維等が挙げられる。また、全芳香族ポリエステル繊維、超高分子量ポリエチレン繊維、ポリパラフェニレン・ベンゾビス・オキサゾール繊維(PBO繊維)、ポリフェニレンサルファイド繊維、及びポリエーテルケトン繊維等も使用することができる。ただし、経済性を勘案するとポリエステル繊維、ポリアミド繊維が好ましく、高温ガスに対する耐久性の点からは、ポリヘキサメチレンアジパミド繊維からなるナイロン66が好ましい。 The material of the fiber constituting the non-coated fabric for an airbag of the present invention is not particularly limited. For example, an aliphatic polyamide fiber such as nylon 66, nylon 6, nylon 46, nylon 12 or the like, an aroma such as aramid fiber. And polyester fibers such as group polyamide fiber, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. Also, wholly aromatic polyester fibers, ultra high molecular weight polyethylene fibers, polyparaphenylene benzobis oxazole fibers (PBO fibers), polyphenylene sulfide fibers, and polyether ketone fibers can be used. However, in consideration of economy, polyester fiber and polyamide fiber are preferable, and nylon 66 made of polyhexamethylene adipamide fiber is preferable from the viewpoint of durability against high temperature gas.
 エアバッグ用ノンコーティング織物の構成繊維としてナイロン66を使用する場合は、硫酸による相対粘度が3.2以上のナイロン66を使用することが好ましい。相対粘度が3.2未満であるとエアバッグ用織物として必要な強力が不足する場合がある。より好ましくは3.3以上であり、さらに好ましくは3.4以上である。しかし相対粘度が高すぎると重合コストが嵩むだけでなく、紡糸操業性が悪化する傾向がある。したがって相対粘度は3.6以下が好ましく、より好ましくは3.5以下である。 When using nylon 66 as a constituent fiber of the non-coating fabric for airbags, it is preferable to use nylon 66 having a relative viscosity of 3.2 or more due to sulfuric acid. If the relative viscosity is less than 3.2, the strength required for the airbag fabric may be insufficient. More preferably, it is 3.3 or more, More preferably, it is 3.4 or more. However, if the relative viscosity is too high, not only does the polymerization cost increase, but the spinning operability tends to deteriorate. Therefore, the relative viscosity is preferably 3.6 or less, more preferably 3.5 or less.
 織物を構成する繊維はその一部または全部に、プラスチック廃材から再生された原材料より得られた繊維を使用してもよい。また、繊維を構成する材料は、製造工程での工程通過性を向上させるための各種添加剤を含有するものであってもよい。添加剤としては、例えば酸化防止剤、熱安定剤、平滑剤、帯電防止剤、増粘剤、難燃剤等が挙げられる。さらにエアバッグ用織物を構成する繊維は、原着糸や製糸後染色されたものであってもよい。 Fibers obtained from raw materials regenerated from plastic waste may be used for some or all of the fibers constituting the fabric. Moreover, the material which comprises a fiber may contain the various additive for improving the process passability in a manufacturing process. Examples of the additive include an antioxidant, a heat stabilizer, a smoothing agent, an antistatic agent, a thickener, and a flame retardant. Furthermore, the fibers constituting the airbag fabric may be original yarns or dyed after yarn production.
 本発明のエアバッグ用ノンコーティング織物では、繊維軸方向に直交する断面形状が略三角形である単糸繊維(以下、単に略三角断面繊維と称する場合がある)を使用することが重要である。
 単糸繊維の断面形状が略三角形である繊維を使用することで、織機上で高密度に製織することができ、低通気な織物が得られる。その理由について本発明者等は次のように考えている。単糸繊維の断面形状が略三角形である繊維は、繊維に対して外力が加わった時、単糸繊維が移動し細密な状態で充填されることが高密度で低通気な特性を発揮する理由の一つとして考えられる。
 すなわち、織機上で緯糸を筬で打ち込むときや経糸で緯糸を拘束したときに加わる外力で、単糸繊維同士が細密充填される結果、単糸繊維同士の間に隙間がある繊維に比べて、繊度は同じでも実繊維径が小さくなるため、織機上でより高密度に製織できるものと推察される。また、従来の織物に比べて通気度が低くなるのは、織物を高密度に製織できて通気時の繊維間の空隙が減少することと、通気時にかかる圧力で単糸繊維同士が細密充填されて繊維内部の空隙が減少する結果、繊維内の通気度も減少するためと考えられる。
In the non-coated fabric for an airbag of the present invention, it is important to use a single yarn fiber having a substantially triangular cross section perpendicular to the fiber axis direction (hereinafter sometimes simply referred to as a substantially triangular cross section fiber).
By using fibers whose cross-sectional shape of the single yarn fibers is substantially triangular, weaving can be performed at high density on a loom, and a low-breathing fabric can be obtained. The present inventors consider the reason as follows. The fiber whose cross-sectional shape of the single yarn fiber is approximately triangular is the reason why when the external force is applied to the fiber, the single yarn fiber moves and is packed in a fine state to exhibit high density and low air permeability characteristics It is considered as one of
That is, the external force applied when wetting the weft with a scissors on a loom or constraining the weft with a warp, the single yarn fibers are closely packed as a result, compared to the fibers having a gap between the single yarn fibers, Even though the fineness is the same, the actual fiber diameter is small, so it is assumed that weaving can be performed at a higher density on the loom. In addition, the air permeability is lower than that of the conventional fabric because the fabric can be woven at a high density, the gap between the fibers during ventilation is reduced, and the single yarn fibers are closely packed by the pressure applied during ventilation. This is probably because the air permeability inside the fiber also decreases as a result of the decrease in the voids inside the fiber.
 上述のように外力により単糸繊維が移動する理由としては、単糸繊維の繊維軸方向に直交する断面に現れる形状が略三角形の場合には、断面形状が他の多角形状である繊維に比べて頂点の数が少なく、単糸同士の引っかかりが少ないことが挙げられる。 As described above, the reason for the movement of the single yarn fiber by the external force is that, when the shape appearing in the cross section perpendicular to the fiber axis direction of the single yarn fiber is a substantially triangular shape, the cross sectional shape is different from that of other polygonal fibers. The number of vertices is small, and there is little catching between single yarns.
 本発明で使用する単糸繊維は異型度が1.3以上2.2以下である。異型度は単糸繊維断面の異型形状の指標として用いられている。理論上は断面形状が正三角形のものが好ましいが、実際の原糸ではノズルから溶融されたレジンが押し出される際に広がる現象(ダイ-スウェル現象)が生じるため、単糸繊維の断面形状は各頂点が丸みを帯びた形となる。このため、本発明において最も好ましい異型度は、1.6付近が中心である。異型度は1.35以上、2.0以下であるのが好ましく、より好ましくは1.4以上、1.8以下である。異型度が小さすぎると、単糸繊維間に隙間が生じて織物の通気度が低下すると同時に、単糸繊維の移動が抑制される場合がある。一方、異型度が大きすぎると、繊維表面の凹凸が大きくなって隣接する繊維間で引っかかりが生じ、やはり単糸繊維が移動し難くなる場合がある。
 なお、製織前後での異型度の変化は少なく、通常、製織後の単糸繊維は、製織前の単糸繊維(原糸)と同程度の異型度を有している。したがって、織物から取り出した解織糸の異型度も上記範囲であることが好ましい。単糸繊維断面の異型度は実施例に記載の方法により求められる。
The single yarn fiber used in the present invention has an irregularity of 1.3 or more and 2.2 or less. The degree of atypicality is used as an index of the atypical shape of the single yarn fiber cross section. Theoretically, the cross-sectional shape is preferably an equilateral triangle, but in the actual raw yarn, a phenomenon (die-swell phenomenon) that spreads when the molten resin is extruded from the nozzle occurs. The apex is rounded. For this reason, the most preferable variant in the present invention is centered around 1.6. The degree of profile is preferably 1.35 or more and 2.0 or less, more preferably 1.4 or more and 1.8 or less. If the degree of profile is too small, a gap is generated between the single yarn fibers, the air permeability of the fabric is lowered, and at the same time, the movement of the single yarn fibers may be suppressed. On the other hand, if the degree of atypicality is too large, the unevenness of the fiber surface becomes large, causing a catch between adjacent fibers, and the single yarn fiber may be difficult to move.
It should be noted that there is little change in the degree of irregularity before and after weaving, and usually the single yarn fiber after weaving has the same degree of irregularity as the single yarn fiber (original yarn) before weaving. Therefore, it is preferable that the degree of irregularity of the unwoven yarn taken out from the fabric is also in the above range. The atypical degree of the single yarn fiber cross section is determined by the method described in the examples.
 本発明に係る単糸繊維は、図2に示すように、その繊維軸方向に直交する断面に現れる略三角形(単糸繊維断面の外周)34の頂点(a,b,c)同士を結んだ直線が、当該単糸繊維断面の外周34の内側又は外周34上にあることが好ましい。また上記略三角形34の頂点a,b,及びcを直線で結んだ三角形33が、単糸繊維断面の外周34の内側にあることも好ましい。この関係は、上記単糸繊維断面の外周34の頂点a,b,cを結んだ線分ab,bc,及びcaの垂直二等分線21と上記単糸繊維断面の外周34との交点22が、上記三角形33の外側に位置することと同義である。本発明に係る単糸繊維としては、繊維軸方向に直交する断面に現れる形状が、正三角形であるものが理想的である。この場合には、上記三角形33と単糸繊維断面の外周34とが一致する。 As shown in FIG. 2, the single yarn fiber according to the present invention connects the apexes (a, b, c) of substantially triangles (outer periphery of the single yarn fiber cross section) 34 appearing in the cross section orthogonal to the fiber axis direction. It is preferable that the straight line is inside or on the outer periphery 34 of the cross section of the single yarn fiber. It is also preferable that the triangle 33 connecting the vertices a, b, and c of the substantially triangle 34 with a straight line is inside the outer periphery 34 of the single yarn fiber cross section. This relationship is the intersection 22 of the perpendicular bisector 21 of line segments ab, bc, and ca connecting the vertices a, b, and c of the outer periphery 34 of the single yarn fiber cross section and the outer periphery 34 of the single yarn fiber cross section. Is synonymous with being located outside the triangle 33. As the single yarn fiber according to the present invention, an ideal one in which the shape appearing in the cross section orthogonal to the fiber axis direction is an equilateral triangle is ideal. In this case, the triangle 33 coincides with the outer periphery 34 of the single yarn fiber cross section.
 一方、例えば図3に示す繊維のように、一定の異型度を有していても、繊維軸方向に直交する断面に現れる形状34’と、当該形状34’の頂点(a’,b’,c’)を結んだ直線(例えばa’b’)及び/又は形状(三角形33’)が上述の関係にない場合、すなわち三角形33’が繊維断面の外周34’内にない場合には(実質的には単糸繊維の断面形状がY型に近い形状であることを意味する)、単糸繊維間の空隙量が多くなるため、通気度が高くなるのみならず、繊維(マルチフィラメント)内で単糸繊維が移動し難くなる傾向がある。 On the other hand, for example, as in the fiber shown in FIG. 3, the shape 34 ′ that appears in the cross section orthogonal to the fiber axis direction and the apex (a ′, b ′, c ′) connecting straight lines (eg, a′b ′) and / or shape (triangle 33 ′) are not in the above-described relationship, ie, the triangle 33 ′ is not within the outer circumference 34 ′ of the fiber cross section (substantially This means that the cross-sectional shape of the single yarn fiber is close to the Y shape), and the amount of voids between the single yarn fibers increases, so that not only the air permeability is increased, but also inside the fiber (multifilament) The single yarn fibers tend to be difficult to move.
 外力によりマルチフィラメント内で移動し易い単糸繊維とするためには、繊維の交絡度を低くすることが好ましい。原糸製造段階での交絡数は5個/m以上30個/m以下とすることが高密度製織を行う上で好ましい。織物から解織した段階での糸の交絡度は経糸と緯糸の平均値で20個/m以下が好ましく、より好ましくは15個/m以下であり、更に好ましくは8個/m以下である。下限は特になく、交絡度は0個/mでも構わない。交絡度が上記範囲内であれば、単糸繊維の移動が阻害され難く、高密度で低通気度なエアバッグ用ノンコーティング織物が得られる。なお、原糸段階での交絡度は8個/m以上がより好ましく、10個/m以上がさらに好ましい。交絡度の上限は、より好ましくは28個/m以下であり、さらに好ましくは25個/m以下である。 In order to obtain a single yarn fiber that can easily move in the multifilament by an external force, it is preferable to lower the entanglement degree of the fiber. The number of entanglements in the raw yarn production stage is preferably 5 / m or more and 30 / m or less for high-density weaving. The entanglement degree of the yarn at the stage of weaving from the woven fabric is preferably 20 pieces / m or less, more preferably 15 pieces / m or less, and even more preferably 8 pieces / m or less in terms of the average value of warp and weft. There is no particular lower limit, and the degree of entanglement may be 0 / m. If the entanglement degree is within the above range, the movement of the single yarn fiber is hardly inhibited, and a non-coated fabric for an air bag having a high density and a low air permeability can be obtained. In addition, the entanglement degree in the raw yarn stage is more preferably 8 pieces / m or more, and further preferably 10 pieces / m or more. The upper limit of the entanglement degree is more preferably 28 pieces / m or less, and further preferably 25 pieces / m or less.
 上記繊維を構成する単糸繊維の移動のし易さは、エアバッグ用ノンコーティング織物を解織して取り出した糸(繊維)の拡幅率からも把握することが出来る。そこで本発明では、糸の拡幅率を、張力等の外力により繊維内で単糸繊維が最密充填されるように移動し、且つ、単糸繊維が、隣接する単糸繊維との界面でずれることにより繊維軸に直交する方向に移動する様子を示す指標として使用する。拡幅率の値が大きいことは外力の影響により単糸繊維が動き易いことを意味する。 The ease of movement of the single yarn fibers constituting the fibers can also be grasped from the widening rate of the yarn (fiber) taken out by unweaving the non-coating fabric for airbag. Therefore, in the present invention, the yarn widening ratio is moved so that the single yarn fibers are closely packed in the fiber by an external force such as tension, and the single yarn fibers are displaced at the interface with the adjacent single yarn fibers. Thus, it is used as an index indicating a state of moving in a direction orthogonal to the fiber axis. A large value of the widening ratio means that the single yarn fiber is easy to move due to the influence of external force.
 エアバッグ用ノンコーティング織物を解織して取り出した繊維の拡幅率は、2.4以上3.5以下であることが好ましい。糸の拡幅率が2.4未満の場合には、単糸繊維が移動し難く、繊維に対して外力が加わった際に単糸繊維が細密充填し辛く、より高密度に製織することが難しくなる傾向がある。したがって、糸の拡幅率は2.5以上であるのがより好ましく、さらに好ましくは2.6以上である。糸の拡幅率が3.5より高いと、単糸繊維が移動し易くなりすぎて、単糸繊維間の隙間が密に詰まった状態を維持できなくなり通気度が高くなってしまう虞がある。より好ましくは3.4以下である。糸の拡幅率は後述する測定方法により得られる。 It is preferable that the fiber widening rate of the fiber taken out by weaving the non-coated fabric for airbag is 2.4 or more and 3.5 or less. When the yarn widening ratio is less than 2.4, the single yarn fiber is difficult to move, and when an external force is applied to the fiber, the single yarn fiber is difficult to densely fill, making it difficult to weave more densely. Tend to be. Accordingly, the yarn widening ratio is more preferably 2.5 or more, and even more preferably 2.6 or more. If the yarn widening ratio is higher than 3.5, the single yarn fibers are likely to move too much, and the gap between the single yarn fibers cannot be maintained tightly and the air permeability may be increased. More preferably, it is 3.4 or less. The yarn widening ratio is obtained by a measuring method described later.
 エアバッグ用ノンコーティング織物を構成する繊維の機械的特性は、エアバッグに要求される機械的特性を満足する観点からは、切断強度が7.0cN/dtex以上であるのが好ましく、より好ましくは7.5cN/dtex以上である。切断強度は高い方が好ましいが、生産時の歩留まりなどを考慮すると9.5cN/dtex以下が好ましく、より好ましくは9.0cN/dtex以下である。 From the viewpoint of satisfying the mechanical properties required for the airbag, the mechanical properties of the fibers constituting the non-coated fabric for the airbag are preferably such that the cutting strength is 7.0 cN / dtex or more, more preferably It is 7.5 cN / dtex or more. The cutting strength is preferably higher, but considering the yield during production, etc., it is preferably 9.5 cN / dtex or less, more preferably 9.0 cN / dtex or less.
 繊維を構成するフィラメントの単糸繊度は1dtex以上8dtex以下であることが好ましい。単糸繊度が大きすぎると、同じ繊度あたりの単糸繊維本数が減少するため、繊維内部の通気度が高くなり、低通気なエアバッグが得られ難くなる場合がある。一方、単糸繊度が小さすぎると、繊維の生産性が低下する場合がある。より好ましくは2dtex以上7.5dtex以下であり、さらに好ましくは2.5dtex以上6.5dtex以下である。 It is preferable that the single yarn fineness of the filament constituting the fiber is 1 dtex or more and 8 dtex or less. If the single yarn fineness is too large, the number of single yarn fibers per the same fineness will decrease, and the air permeability inside the fibers will increase, and it may be difficult to obtain a low-breathing airbag. On the other hand, if the single yarn fineness is too small, the productivity of the fiber may be lowered. More preferably, it is 2 dtex or more and 7.5 dtex or less, More preferably, it is 2.5 dtex or more and 6.5 dtex or less.
 繊維を構成するフィラメントの本数は40本以上200本以下であることが好ましい。フィラメント本数が40本未満の場合には繊維内部の通気度が高くなり、低通気なエアバッグが得られ難くなる傾向がある。一方、フィラメント本数が200本を超えると、繊維の生産性が低下する傾向がある。フィラメントの本数は50本以上であるのがより好ましく、さらに好ましくは60本以上であり、180本以下がより好ましく、さらに好ましくは160本以下である。 The number of filaments constituting the fiber is preferably 40 or more and 200 or less. When the number of filaments is less than 40, the air permeability inside the fiber is high, and it is difficult to obtain a low-breathing airbag. On the other hand, when the number of filaments exceeds 200, the productivity of fibers tends to decrease. The number of filaments is more preferably 50 or more, further preferably 60 or more, more preferably 180 or less, and still more preferably 160 or less.
 繊維の総繊度に特に制限はないが、100dtex以上600dtex以下であることが好ましく、150dtex以上500dtex以下であることがより好ましく、200dtex以上500dtex以下であることがさらに好ましく、235dtex以上470dtex以下であることが特に好ましい。総繊度が100dtex未満の場合は、エアバッグ用織物としたときに引張強力及び引裂強力が不足する虞がある。一方、600dtexを超える場合には、強度的な問題は生じ難いが、エアバッグに必要とされる柔軟性が損なわれ、布帛表面が硬くなることから衝突時に人体の皮膚を傷つけてしまう虞がある。 The total fineness of the fiber is not particularly limited, but is preferably 100 dtex or more and 600 dtex or less, more preferably 150 dtex or more and 500 dtex or less, further preferably 200 dtex or more and 500 dtex or less, and 235 dtex or more and 470 dtex or less. Is particularly preferred. If the total fineness is less than 100 dtex, the tensile strength and tear strength may be insufficient when the fabric is used for an airbag. On the other hand, if it exceeds 600 dtex, strength problems are unlikely to occur, but the flexibility required for the airbag is impaired, and the fabric surface becomes hard, which may damage the human skin at the time of collision. .
 エアバッグ用ノンコーティング織物の組織は特に限定されないが、織物物性の均一さを勘案すると平織りが好ましい。織糸は、経糸、緯糸が同一でなくてもよく、エアバッグとしての性能を満たす強力、通気度等が得られる限り、太さや糸本数、繊維の種類等が異なっていてもよい。なお、低通気度な織物とする観点からは、エアバッグ用ノンコーティング織物を構成する繊維100%中(経糸、緯糸の合計)、上述した断面形状が略三角形であり、特定の異型度を有する単糸繊維を含む繊維(マルチフィラメント)を25%以上使用することが好ましい。より好ましくは50%以上であり、最も好ましくは100%である。 The structure of the non-coated fabric for the airbag is not particularly limited, but a plain weave is preferable considering the uniformity of the fabric properties. The warp yarns and weft yarns do not have to be the same, and the thickness, the number of yarns, the type of fiber, and the like may be different as long as strength, air permeability, etc. satisfying the performance as an airbag are obtained. From the viewpoint of making the fabric low in air permeability, the cross-sectional shape described above is substantially triangular in 100% of the fibers constituting the non-coating fabric for airbags (the total of warp and weft), and has a specific degree of irregularity. It is preferable to use 25% or more of fibers (multifilament) including single yarn fibers. More preferably, it is 50% or more, and most preferably 100%.
 エアバッグ用ノンコーティング織物は下記式1で算出されるカバーファクター(CF)が2050以上2600以下である。カバーファクターが2600を超えると製織時に経糸にかけるテンションで経糸がダメージを受けて毛羽立ち、高密度に製織することが難しくなる虞がある。また、2050未満ではエアバッグとして必要な低通気度が得られ難くなる虞がある。カバーファクターはより好ましくは2200以上2500以下である。
 CF = (経糸密度[本/2.54cm])×√(経糸繊度[dtex]×0.9)+(緯糸密度[本/2.54cm]×√(緯糸繊度[dtex]×0.9)) (式1)
The non-coating fabric for an airbag has a cover factor (CF) calculated by the following formula 1 of 2050 or more and 2600 or less. If the cover factor exceeds 2600, the warp is damaged by the tension applied to the warp during weaving, and it may become difficult to weave at high density. Moreover, if it is less than 2050, there exists a possibility that it may become difficult to obtain the low air permeability required as an airbag. The cover factor is more preferably 2200 or more and 2500 or less.
CF = (warp density [w / 2.54 cm]) × √ (warp fineness [dtex] × 0.9) + (weft density [w / 2.54 cm] × √ (weft fineness [dtex] × 0.9) (Formula 1)
 エアバッグ用ノンコーティング織物は、20kPaの差圧下での通気度(高圧通気度)が0.25L/cm/min以下である。高圧通気度が0.25L/cm/minを超えるとエアバッグとして必要な低通気性を確保できない。高圧通気度はより好ましくは0.20L/cm/min以下であり、さらに好ましくは0.15L/cm/min以下である。 The non-coating fabric for an airbag has an air permeability (high-pressure air permeability) under a differential pressure of 20 kPa of 0.25 L / cm 2 / min or less. When the high-pressure air permeability exceeds 0.25 L / cm 2 / min, the low air permeability necessary for an airbag cannot be ensured. High air permeability is more preferably less 0.20L / cm 2 / min, more preferably not more than 0.15L / cm 2 / min.
 また、エアバッグ用ノンコーティング織物は、所定の方法で折り畳んだ後の高圧通気度(20kPaの差圧下での通気度)が0.30L/cm/min以下であることが好ましい。エアバッグ用織物は、折り畳まれたり、無造作に圧縮された状態で車内の所定箇所に格納されるので、折り畳み後の通気度が高いとエアバッグ展開時に乗員の拘束に必要な内圧を確保し難くなる傾向がある。折り畳み後の高圧通気度は、より好ましくは0.25L/cm/min以下であり、更に好ましくは0.20L/cm/min以下である。エアバッグ用織物の折り畳み後の高圧通気度は実施例に記載の方法により求められる。 Moreover, it is preferable that the non-coating fabric for airbags has a high-pressure air permeability (air permeability under a differential pressure of 20 kPa) after being folded by a predetermined method of 0.30 L / cm 2 / min or less. The airbag fabric is folded or stored in a predetermined position in the vehicle in a compressed state, so if the air permeability after folding is high, it is difficult to secure the internal pressure necessary to restrain the passenger when the airbag is deployed. Tend to be. High pressure air permeability after folding, more preferably not more than 0.25L / cm 2 / min, more preferably not more than 0.20L / cm 2 / min. The high-pressure air permeability after folding the airbag fabric is determined by the method described in the examples.
 さらに、エアバッグ用ノンコーティング織物は、折り畳み前後の高圧通気度の比で表される通気度変化率(下記式2)が150%以下であることが好ましい。通気度変化率が150%を超えると、エアバッグ展開時に乗員の拘束に必要な内圧の確保が困難になる虞がある。より好ましくは130%以下であり、さらに好ましくは120%以下である。
 通気度変化率(%)= (折り畳み後の高圧通気度)/(折り畳み前の高圧通気度)×100  (式2)
Furthermore, it is preferable that the non-coating woven fabric for an airbag has an air permeability change rate (the following formula 2) represented by a ratio of the high-pressure air permeability before and after folding to 150% or less. If the rate of change in air permeability exceeds 150%, it may be difficult to secure the internal pressure necessary for restraining the occupant when the airbag is deployed. More preferably, it is 130% or less, More preferably, it is 120% or less.
Air permeability change rate (%) = (high pressure air permeability after folding) / (high pressure air permeability before folding) × 100 (Formula 2)
 エアバッグ用ノンコーティング織物は、ASTM D6479で定義される滑脱抵抗力が、タテ方向とヨコ方向の平均値が700N以上1200N以下であることが好ましい。滑脱抵抗力が700N未満の場合には、エアバッグを展開する際に縫製部が目開きしてしまい、エアバッグとしての通気性が悪くなってしまうために好ましくない。一方、滑脱抵抗力が1200Nを超えると、織物が剛直になるために、エアバッグに必要とされる柔軟性が損なわれ、布帛表面が硬くなることから衝突時に人体の皮膚を傷つけてしまう虞がある。より好ましくは750N以上1100N以下であり、更に好ましくは800N以上1050N以下である。 It is preferable that the non-coating fabric for airbags has a sliding resistance defined by ASTM D6479 and an average value in the vertical direction and the horizontal direction is 700N or more and 1200N or less. When the sliding resistance is less than 700 N, the sewing part opens when the airbag is deployed, and air permeability as an airbag is deteriorated, which is not preferable. On the other hand, if the slip resistance exceeds 1200 N, the fabric becomes stiff, so the flexibility required for the airbag is impaired, and the fabric surface becomes hard, which may damage the human skin at the time of collision. is there. More preferably, they are 750N or more and 1100N or less, More preferably, they are 800N or more and 1050N or less.
 次に、本発明のエアバッグ用ノンコーティング織物に用いられる繊維及びそれをもちいたエアバッグ用ノンコーティング織物の製造方法について説明する。
 エアバッグ用ノンコーティング織物を構成する繊維は定法に従って製造すればよい。例えば、原料樹脂を単軸或いは2軸などの押出機を用いて溶融押出し、ギアポンプを用いて計量し、適当な金属不織布フィルターを介してノズルへ押出して繊維状溶融物とした後、繊維状溶融物をそのままノズル直下の加熱筒を通過させて冷却風にて冷却し、紡糸油剤を付与し、引取ローラーに巻回してそのまま延伸を行い、次いで交絡処理を施すことでフィラメントとすることが出来る。
Next, the fiber used for the non-coating fabric for airbags of the present invention and the method for producing the non-coating fabric for airbags using the same will be described.
What is necessary is just to manufacture the fiber which comprises the non-coating fabric for airbags in accordance with a conventional method. For example, raw resin is melt-extruded using a single-screw or twin-screw extruder, weighed using a gear pump, extruded into a nozzle through an appropriate metal nonwoven fabric filter, and then melted into a fiber. The product is passed through a heating cylinder directly under the nozzle as it is, cooled with cooling air, applied with a spinning oil agent, wound around a take-up roller, stretched as it is, and then subjected to an entanglement treatment to obtain a filament.
 本発明のエアバッグ用ノンコーティング織物を構成する繊維は、上述の通り、断面形状が略三角形であり、特定の異型度を有することが必要である。斯かる繊維を得るためには、適切な形状を有するノズルを使用して紡糸することが好ましい。例えば、3つの吐出孔を、これを囲む外縁が略三角形状となるように配置したノズルを使用して、ノズルから吐出された直後に溶融樹脂が広がるダイ-スウェル現象で吐出された樹脂を接合させて糸状に形成する方法;吐出孔形状がY型のノズルを使用し、3つの直線状のスリットから溶融樹脂を吐出させる方法;或いは、図1に示されるような、3つの略二等辺三角形を、隣り合う略二等辺三角形が底辺の端部を共有するように配置した吐出孔形状を有するノズルから溶融樹脂を吐出する方法等が挙げられる。 As described above, the fibers constituting the non-coated fabric for an airbag of the present invention have a substantially triangular cross section and have a specific degree of atypical shape. In order to obtain such a fiber, it is preferable to perform spinning using a nozzle having an appropriate shape. For example, using a nozzle in which three discharge holes are arranged so that the outer edge surrounding the hole is substantially triangular, the resin discharged by the die-swell phenomenon in which the molten resin spreads immediately after being discharged from the nozzle is joined A method of forming a thread shape; a method of discharging molten resin from three linear slits using a nozzle having a Y-shaped discharge hole; or three substantially isosceles triangles as shown in FIG. And a method of discharging molten resin from a nozzle having a discharge hole shape in which adjacent isosceles triangles are arranged so as to share the end of the base.
 繊維断面の異型度はノズルの異型度により大きく左右されるので、特定の異型度を有する略三角断面形状の繊維を得るためには、図1に示すような吐出孔形状を有するノズルを使用することが好ましい。該形状のノズルを用いることで、繊維断面の異型度の調整が容易になる。
 ノズルの異型度は2以上10以下が好ましく、3以上8以下がより好ましい。ノズル異型度が小さすぎると、製糸後の繊維断面が丸断面に近い形状になりやすくなる。一方、ノズルの異型度が大きすぎると、製糸後の繊維断面が偏平状やY型に近い形状になり易くなる。
Since the degree of irregularity of the fiber cross section largely depends on the degree of irregularity of the nozzle, in order to obtain a fiber having a substantially triangular sectional shape having a specific degree of irregularity, a nozzle having a discharge hole shape as shown in FIG. 1 is used. It is preferable. By using the nozzle of this shape, it becomes easy to adjust the profile of the fiber cross section.
The atypical degree of the nozzle is preferably 2 or more and 10 or less, and more preferably 3 or more and 8 or less. If the nozzle profile is too small, the fiber cross-section after yarn forming tends to be a shape close to a round cross-section. On the other hand, if the degree of atypical shape of the nozzle is too large, the cross section of the fiber after yarn forming tends to be flat or a shape close to the Y shape.
 ノズルの異形度は、ノズル孔の外接円と内接円との半径の比(外接円の半径/内接円の半径)で表すことができる。図1を参照しながら具体的に説明すると、外接円11は図1中破線で表されノズルの吐出孔外縁13の頂点A,B,及びCを通る円である。一方、内接円12は図1中一点鎖線で表され、上記吐出孔を上記A,B及びCを頂点とする3つの略二等辺三角形からなる形状と見立てた場合に、隣接する二等辺三角形の等辺の交点D,E,Fを通る円である。 The degree of irregularity of the nozzle can be expressed by the ratio of the radius between the circumscribed circle and the inscribed circle of the nozzle hole (radius of the circumscribed circle / radius of the inscribed circle). Specifically, the circumscribed circle 11 is a circle represented by a broken line in FIG. 1 and passing through the vertices A, B, and C of the nozzle discharge hole outer edge 13. On the other hand, the inscribed circle 12 is represented by an alternate long and short dash line in FIG. 1, and the adjacent isosceles triangles when the discharge hole is regarded as a shape composed of three approximately isosceles triangles having the vertices A, B and C as vertices. Are circles that pass through intersections D, E, and F of equal sides.
 ノズル温度は、使用する樹脂に応じて適宜決定すればよいが、例えばナイロン66等のポリアミド繊維を使用する場合は、ノズルの温度を280℃以上320℃以下とするのが好ましい。ノズル温度が低すぎるとノズルを通過するときの圧力損失が大きくなり紡糸が困難になる場合がある。一方ノズル温度が高すぎるとポリマーの劣化やゲル化が生じ易くなり、これがフィルターの目詰まりや糸切れなどの原因となるため、生産性を低下させるばかりでなく、繊維の強度を低下させてしまう虞がある。 The nozzle temperature may be appropriately determined according to the resin to be used. For example, when using a polyamide fiber such as nylon 66, the nozzle temperature is preferably 280 ° C. or higher and 320 ° C. or lower. If the nozzle temperature is too low, pressure loss when passing through the nozzle increases, and spinning may be difficult. On the other hand, if the nozzle temperature is too high, polymer degradation and gelation are likely to occur, which causes clogging of the filter and breakage of the filter, which not only decreases productivity but also decreases fiber strength. There is a fear.
 ノズル面の温度を均一にするため、ノズルから繊維を巻き取る巻取りロールまでの間には、保温筒や加熱筒のような装置を設置してもよい。保温筒又は加熱筒の長さは、例えばノズルから2cm以上50cm以下の範囲であるのが好ましい。加熱筒の長さが2cmより短くなると、その後に続く冷却工程の冷却風が入り込み、ノズル面の温度が不均一になり繊維間で繊度斑が発生し易くなる虞がある。一方、保温筒又は加熱筒が50cmより長くなると、いわゆるレゾナンスと呼ばれる周期的な長手方向の糸斑が発生し易くなる傾向がある。 In order to make the temperature of the nozzle surface uniform, an apparatus such as a heat insulating cylinder or a heating cylinder may be installed between the nozzle and the take-up roll for winding the fiber. The length of the heat insulating cylinder or the heating cylinder is preferably in the range of 2 cm to 50 cm from the nozzle, for example. When the length of the heating cylinder is shorter than 2 cm, the cooling air in the subsequent cooling process enters, and the temperature of the nozzle surface becomes non-uniform, and fineness spots may easily occur between the fibers. On the other hand, when the heat insulating cylinder or the heating cylinder is longer than 50 cm, periodic longitudinal unevenness called so-called resonance tends to occur.
 溶融された糸条を冷却するために用いる冷却風の温度は15℃以上30℃以下の範囲とするのが好ましい。冷却風の温度が15℃より低いと繊維間で異型度、強度などの物性差が大きくなる虞があり、一方、冷却風の温度が30℃より高くなると繊維断面の異型度が小さくなりすぎる虞がある。より好ましくは18℃以上28℃以下であり、さらに好ましくは20℃以上25℃以下である。 The temperature of the cooling air used for cooling the melted yarn is preferably in the range of 15 ° C to 30 ° C. If the temperature of the cooling air is lower than 15 ° C., there may be a large difference in physical properties such as the degree of atypicality and strength between the fibers. There is. More preferably, it is 18 degreeC or more and 28 degrees C or less, More preferably, it is 20 degreeC or more and 25 degrees C or less.
 冷却風の風速は0.1m/sec以上1m/sec以下の範囲が好ましい。0.1m/sec未満では糸状を十分に冷却し難い場合があり、繊維間に繊度斑が発生し易くなる虞がある。一方、風速が1m/secを超えると冷却風上流と下流側で冷却速度が異なり易くなり、繊維間で繊度斑が発生する虞がある。 The wind speed of the cooling air is preferably in the range of 0.1 m / sec to 1 m / sec. If it is less than 0.1 m / sec, it may be difficult to sufficiently cool the thread shape, and fineness spots may easily occur between the fibers. On the other hand, if the wind speed exceeds 1 m / sec, the cooling speed is likely to be different between the upstream side and the downstream side of the cooling air, and fineness unevenness may occur between the fibers.
 また、冷却された糸条を巻き取る際には、以下の式3より算出されるドラフト比を100以上150以下とすることが好ましい。
 ドラフト比 = 引き取りローラー速度[m/min]/(単孔体積吐出量[m/min]/ノズル孔断面積[m]) (式3)
 ドラフト比が100より小さくなると、糸揺れが大きくなり繊維間での融着や、糸切れを引き起こし易くなる傾向がある。一方、ドラフト比が150より大きくなると、単糸繊維の断面内での分子鎖の配向斑、特に断面中央部と略三角形の頂点近傍での分子鎖の配向差が大きくなり、強度低下などの問題が生じ易くなる傾向がある。
Moreover, when winding the cooled yarn, it is preferable that the draft ratio calculated by the following formula 3 is 100 or more and 150 or less.
Draft ratio = take-up roller speed [m / min] / (single hole volume discharge [m 3 / min] / nozzle hole cross-sectional area [m 2 ]) (Formula 3)
When the draft ratio is less than 100, the yarn swaying is increased, and there is a tendency that fusion between fibers and yarn breakage are easily caused. On the other hand, when the draft ratio is larger than 150, the molecular chain orientation unevenness in the cross section of the single yarn fiber, particularly the molecular chain orientation difference between the central portion of the cross section and the apex of the substantially triangle increases, resulting in problems such as strength reduction. Tends to occur.
 延伸倍率は4.5倍以上4.9倍以下とするのが好ましい。延伸倍率が4.5倍未満では繊維の強度が低下する虞がある。一方、延伸倍率が4.9倍より高いとフィラメント断面内で分子鎖の配向斑が生じ、フィラメント内にクラックが生じ易くなり、繊維の強度低下や、繊維の製造時に糸切れなどを起こし易くなる虞がある。 The draw ratio is preferably 4.5 times or more and 4.9 times or less. If the draw ratio is less than 4.5 times, the strength of the fiber may decrease. On the other hand, if the draw ratio is higher than 4.9 times, molecular chain alignment spots are generated in the filament cross section, cracks are likely to occur in the filament, and fiber strength is reduced, and yarn breakage is likely to occur during fiber production. There is a fear.
 延伸時の温度は、後の製織方法にもよるが20℃以上240℃以下の範囲とすることが好ましい。延伸温度が20℃より低いと必要な延伸倍率に達する前に糸切れが生じる虞がある。一方、延伸温度が240℃を超えると糸が溶断し、延伸が困難になる傾向がある。 Although the temperature during stretching depends on the subsequent weaving method, it is preferably in the range of 20 ° C. or higher and 240 ° C. or lower. If the drawing temperature is lower than 20 ° C., thread breakage may occur before the necessary draw ratio is reached. On the other hand, when the stretching temperature exceeds 240 ° C., the yarn is melted and the stretching tends to be difficult.
 本発明のエアバッグ用ノンコーティング織物に用いる繊維では、空気圧などの流体処理、いわゆるインターレース処理による交絡は必要最小限にとどめることが好ましい。具体的には原糸段階での繊維の交絡度は5個/m以上30個/m以下であるのが好ましい。交絡度を上述の範囲内とするためには、延伸処理の終了後、巻き取るまでの間に、インターレース処理を行い、繊維の交絡度を調整することが好ましい。 In the fibers used in the non-coating fabric for an air bag of the present invention, it is preferable that the entanglement by the fluid treatment such as air pressure, that is, the so-called interlace treatment is kept to a minimum. Specifically, the entanglement degree of the fiber at the raw yarn stage is preferably 5 / m or more and 30 / m or less. In order to make the degree of entanglement within the above-mentioned range, it is preferable to adjust the degree of fiber entanglement by performing an interlace treatment after the drawing process and before winding.
 交絡度が小さすぎると、次工程、すなわち製織工程で毛羽が発生し易くなり、織物に品位の低下が見られる場合がある。一方交絡度が大きすぎると、製織後の織物の状態でも多数の交絡が残存することにより、単糸繊維の移動が阻害される虞がある。したがって原糸段階での交絡度は上述の範囲内にすることが好ましい。 If the degree of entanglement is too small, fluff is likely to occur in the next process, that is, the weaving process, and the fabric may be deteriorated in quality. On the other hand, if the degree of entanglement is too large, a large number of entanglements remain even in the state of the woven fabric after weaving, which may impede the movement of the single yarn fibers. Therefore, the degree of entanglement at the raw yarn stage is preferably within the above range.
 本発明のエアバッグ用ノンコーティング織物に用いる繊維では、沸水収縮率は特に限定されるものではないが、エアバッグ用織物の滑脱抵抗力を高めるために沸水収縮率を7%以上12%以下とすることが好ましい。沸水収縮率が小さ過ぎれば、エアバッグ用織物の製造工程で加工を実施した際に、繊維同士の締め付けあいが少ないため滑脱抵抗力が小さくなる虞がある。一方、沸水収縮率が大き過ぎれば、繊維の経時的な安定性が悪く、保管期間に応じて織物の製造ロットごとに織物物性のばらつきが大きくなる原因となるため好ましくない。より好ましくは8%以上11%以下であり、更に好ましくは8.5%以上10%以下である。 In the fiber used for the non-coating fabric for airbags of the present invention, the boiling water shrinkage rate is not particularly limited, but the boiling water shrinkage rate is 7% or more and 12% or less in order to increase the slip resistance of the airbag fabric. It is preferable to do. If the boiling water shrinkage rate is too small, there is a risk that the slip-off resistance will be small because the tightness between the fibers is small when processing is performed in the manufacturing process of the airbag fabric. On the other hand, if the boiling water shrinkage is too large, the stability of the fibers over time is poor, and this is not preferable because it causes a large variation in fabric properties depending on the storage period. More preferably, they are 8% or more and 11% or less, More preferably, they are 8.5% or more and 10% or less.
 エアバッグ用ノンコーティング織物を製織する方法は特に限定されず、従来公知の方法を使用すればよい。例えば製織時の経糸張力は0.1cN/dtex以上0.5cN/dtex以下が好ましい。より好ましくは0.15cN/dtex以上0.4cN/dtex以下、さらに好ましくは0.18cN/dtex以上0.35cN/dtex以下である。経糸張力が0.1cN/dtexより低いと、織密度を高密度に製織することが難しく、かつ、経糸の交絡度が維持されたままとなり易く、織物としたときにエアバッグに必要な低通気性が得られ難くなる場合がある。0.5cN/dtexより高い場合は、経糸にかかる力が大きすぎて毛羽が発生する虞がある。 The method for weaving the non-coated fabric for airbag is not particularly limited, and a conventionally known method may be used. For example, the warp tension during weaving is preferably 0.1 cN / dtex or more and 0.5 cN / dtex or less. More preferably, it is 0.15 cN / dtex or more and 0.4 cN / dtex or less, More preferably, it is 0.18 cN / dtex or more and 0.35 cN / dtex or less. When the warp tension is lower than 0.1 cN / dtex, it is difficult to weave the fabric at a high density, and the entanglement degree of the warp is easily maintained, and the low ventilation required for the airbag when the fabric is used. It may be difficult to obtain sex. If it is higher than 0.5 cN / dtex, the force applied to the warp is too great and fluff may occur.
 製織に使用する織機も特に限定されず、ウォータージェットルーム、エアジェットルーム、レピアルーム、又は多相織機などが好ましく用いられる。高速化や広幅化、あるいは機械価格の観点からは、ウォータージェットルームが好ましい。 The loom used for weaving is not particularly limited, and a water jet loom, an air jet loom, a rapier room, or a multiphase loom is preferably used. The water jet loom is preferable from the viewpoint of speeding up, widening, and machine price.
 製織に使用する織機の稼動方式についても特に限定されず、例えばクランク式開口織機であっても、カム式開口織機であっても構わない。ただし、織物の高密度化といった観点では、公知の通り、綜絖の開口時間が長いカム式開口織機を使用した方が緯糸の飛走が安定し、より高密度に機上で製織ができるため好ましい。 The operation method of the loom used for weaving is not particularly limited, and may be, for example, a crank-type opening loom or a cam-type opening loom. However, from the viewpoint of increasing the density of the woven fabric, as is well known, it is preferable to use a cam-type opening loom with a long wrinkle opening time because the weft flying is stable and weaving can be performed at a higher density on the machine. .
 エアバッグ用ノンコーティング織物を製織するに当たって、織機回転数は400rpm以上1000rpm以下であることが好ましい。織機回転数が遅過ぎると生産性が損なわれるため好ましくなく、一方で織機回転数が速過ぎると安定して高密度に製織することが難しくなるため好ましくない。より好ましくは500rpm以上900rpm以下であり、より好ましくは550rpm以上800rpm以下である。 When weaving a non-coated fabric for an airbag, the loom rotation speed is preferably 400 rpm or more and 1000 rpm or less. If the loom rotational speed is too slow, productivity is impaired, which is not preferable. On the other hand, if the loom rotational speed is too fast, it is difficult to stably weave at a high density. More preferably, it is 500 rpm or more and 900 rpm or less, More preferably, it is 550 rpm or more and 800 rpm or less.
 エアバッグ用ノンコーティング織物を製織するに当たって、安定して緯糸を飛走させることが製織効率を良くする上で非常に重要である。安定な緯糸の飛走を実現させるためには緯糸挿入時に、経糸が上下に捌かれて作られる開口領域が十分に確保されていることが1つの条件であるが、より高密度に織物を製織する場合、織った織物を把持するテンプルからの織前がせり出してきて開口領域が十分に確保されないために製織が難しくなる。 When weaving a non-coated fabric for an airbag, it is very important to improve the weaving efficiency to make the wefts fly stably. In order to achieve stable weft flying, one condition is that a sufficient opening area is created by wefting up and down when wefts are inserted, but weaving the fabric at a higher density. In this case, weaving becomes difficult because the pre-weaving from the temple holding the woven fabric protrudes and the opening area is not sufficiently secured.
 本発明による、略三角断面繊維を含むエアバッグ用ノンコーティング織物は、織り前のせり出しを抑制しながら製織できるために、より高密度な条件で製織をしても製織効率を従来の織物の製織時と同等に維持できることを発明者らは見出した。すなわち、本発明の略三角断面繊維は織機上で緯糸を筬で打ち込むときや経糸で緯糸を拘束したときに加わる外力で、単糸繊維同士が細密充填される結果、単糸繊維同士の間に隙間がある繊維に比べて、繊度は同じでも実繊維径が小さくなるため、織機上でより高密度に製織できるものと推察される。 The non-coating woven fabric for airbags according to the present invention containing substantially triangular cross-section fibers can be woven while suppressing the protrusion before weaving. Therefore, the weaving efficiency of the conventional woven fabric is improved even when weaving under higher density conditions. The inventors have found that it can be maintained at the same time. That is, the substantially triangular cross-section fibers of the present invention are densely packed between single yarn fibers by external force applied when wefts are hammered on a loom or when wefts are constrained with warps. Compared to fibers with gaps, the actual fiber diameter is small even if the fineness is the same, so it is presumed that weaving can be performed at a higher density on the loom.
 従来よりも高密度に製織してもせり出し量を抑制するためには、繊維が外力を受けた際に単糸繊維間の隙間が無く細密充填された形をとることが必要である。従って、せり出し量が抑えられるのは略三角断面繊維に限定されるものではなく、正六角形形状・正四角形状などの多角形状や、菱形形状などの他の形状も考えられる。しかし、織物を構成する繊維の動き易さや、織物の低通気化、折り畳み後でも低通気性を保つといった観点では本発明の略三角断面繊維形状が好ましい。 In order to suppress the amount of protrusion even when weaving at a higher density than before, it is necessary to take a form in which the fibers are closely packed without gaps between the single yarn fibers when subjected to external force. Therefore, the amount of protrusion is not limited to a substantially triangular cross-section fiber, and other shapes such as a polygonal shape such as a regular hexagonal shape and a regular square shape, and a rhombus shape are also conceivable. However, the substantially triangular cross-sectional fiber shape of the present invention is preferable from the viewpoint of easy movement of fibers constituting the fabric, low air permeability of the fabric, and low air permeability even after folding.
 特に製織時において、以下の式4で求める緯糸のカバーファクター(cf)が1040以上となる高密度製織を行う場合は、略三角断面繊維に代表される異型繊維を使用することが好ましい。高密度で低通気な特性を発現させる場合には、繊維と繊維間の隙間が直線形状となることが好ましいため、多角形状が好ましい。三角断面形状・他の多角形状を2つ以上連結させたよう形状も好ましい。従って四角形状にバイアスをかけた菱形形状などの形状でも何ら問題ない。しかしながら、多角形状の頂点が増える程丸断面に近づき、複雑な形状ほど外力を受けた際に単糸繊維間の間に隙間が生まれやすくなるため、頂点の個数は3個以上6個以下であることが好ましい。より好ましくは3個以上4個以下、更に好ましくは3個の略三角断面繊維である。
 製織時の緯糸のcf = (緯糸打ち込み設定[本/2.54cm])×√(緯糸繊度[dtex]×0.9) (式4)
In particular, during weaving, when performing high density weaving in which the cover factor (cf) of the weft obtained by the following formula 4 is 1040 or more, it is preferable to use an atypical fiber typified by a substantially triangular cross-section fiber. In the case of developing a high density and low air permeability property, it is preferable that the gap between the fibers has a linear shape, and therefore a polygonal shape is preferable. A shape in which two or more triangular cross-sectional shapes and other polygonal shapes are connected is also preferable. Therefore, there is no problem even in the shape of a rhombus with a bias applied to a quadrangle. However, as the number of vertices of the polygon increases, the closer to the round cross section, and the more complex the shape, the easier it is to create a gap between single yarn fibers when receiving external force, so the number of vertices is 3 or more and 6 or less. It is preferable. More preferably, they are 3 or more and 4 or less, More preferably, they are three substantially triangular cross-section fibers.
Ft of weft during weaving = (weft driving setting [mains / 2.54 cm]) × √ (weft fineness [dtex] × 0.9) (Formula 4)
 開口領域が十分に確保されていることを調べる1つの指標として、耳部のせり出し量を調べる方法がある。耳部のせり出し量は、織物中央部に比べて増加する傾向にあり、緯糸の安定な飛走を妨げる要因でもある。
 耳部と織物中央部でせり出し量が異なる理由は、織物中央部では隣接し合う経糸によって緯糸に対して繊維軸に沿って張力がかかるため、経糸のクリンプが強く形成されるが、両耳部では一方側の経糸が無いために緯糸がゆるんで経糸のクリンプが弱く形成されるために、織物中央部と耳部で経糸の長さに差が生まれる結果であると推察される。
As one index for examining whether the opening area is sufficiently secured, there is a method for examining the protruding amount of the ear. The protruding amount of the ear portion tends to increase as compared with the central portion of the fabric, and is also a factor that hinders stable flying of the weft.
The reason for the difference in the amount of protrusion between the ear part and the center part of the fabric is that the warp crimp is strongly formed in the center part of the fabric due to the tension along the fiber axis against the weft by the adjacent warp. Then, since there is no warp on one side, the wefts are loosened and the warp crimps are weakly formed, so it is assumed that this results in a difference in warp length between the central part of the fabric and the ear part.
 実施例に掲げる所定の方法によって測定されたせり出し量は320°以上350°以下であることが好ましい。ストロボを使用して測定する本測定では、筬を完全に打ちこんだところを0°=360°として、緯糸を打ち込んでからノズル側の織前せり出しに筬が当たる時点を記録するため、前述のせり出し量が小さければ小さいほどせり出し量が増えるという指標である。せり出し量が320°よりも小さいと開口領域が十分に確保されないため、緯糸の飛走が安定せず、製織効率が上がらないため好ましくない。せり出し量が350°よりも大きくなるときは、事実上高密度な織物として製織不可能な領域である。より好ましくは325°以上340°以下、更に好ましくは327°以上335°以下である。 It is preferable that the amount of protrusion measured by the predetermined method set forth in the examples is 320 ° to 350 °. In this measurement, which uses a strobe, the position where the wrinkle is completely driven is set to 0 ° = 360 °, and the time point at which the wrinkle hits the weave on the nozzle side after the weft has been driven is recorded. The smaller the amount, the higher the amount of protrusion. If the protruding amount is less than 320 °, the opening area is not sufficiently secured, so that weft flight is not stable and weaving efficiency is not increased, which is not preferable. When the protruding amount is larger than 350 °, it is an area in which weaving as a high-density fabric is practically impossible. More preferably, they are 325 degrees or more and 340 degrees or less, More preferably, they are 327 degrees or more and 335 degrees or less.
 製織効率を示す指標として、緯糸打ち込みの停台回数がある。前述のように、無理な高密度化で安定な緯糸の飛走が実現されなかったり、経糸テンションや織機タイミングなどの製織条件がうまく設定されていなかったりすると、緯糸打ち込みができずに、織機が停止してしまう。エアバッグ用織物を製織する上での緯糸打ち込みの停台回数は4回/100m以下であることが好ましい。これ以上停台すると生産効率が落ちて好ましくない。より好ましくは3回/100m以下、更に好ましくは2回/100m以下である。 An index indicating weaving efficiency is the number of stops of weft driving. As mentioned above, if weft jumping is impossible due to excessive densification, or if weaving conditions such as warp tension and weaving machine timing are not set properly, weaving cannot be performed and It will stop. It is preferable that the number of stops of weft driving when weaving the airbag fabric is 4 times / 100 m or less. If it stops more than this, production efficiency falls and it is not preferable. More preferably 3 times / 100 m or less, and still more preferably 2 times / 100 m or less.
 エアバッグ用ノンコーティング織物の製織後の加工方法は特に限定されるものではない。したがって、上述した本発明の特徴、すなわち外力の影響により織物内で単糸繊維が移動するとの特徴が維持できる限り、どのような加工を施してもよい。製織後のエアバッグ用ノンコーティング織物の加工方法としては、例えば、精練処理、乾燥、熱セットなどの熱処理が挙げられる。これらは単独で実施してもよく、2つ以上を組み合わせて実施してもよい。
 製織後の織物の加工方法の組合せの態様として具体的には、ウォータージェットルームで製織した生機を自然乾燥する、もしくは乾燥のため熱処理工程に供する態様;各種織機で製織された生機を精練工程に供した後、乾燥のため熱処理工程に供する態様;各種織機で製織された生機を精練工程に供した後、熱セットのため熱処理工程に供する態様;等が挙げられる。もちろん、織機上で織り上げたままの織物(生機)を上述のような加工工程に供することなくそのまま裁断、縫製してエアバッグとしてもよい。
The processing method after weaving the non-coated fabric for an airbag is not particularly limited. Therefore, any processing may be applied as long as the above-described characteristics of the present invention, that is, the characteristics that the single yarn fiber moves in the woven fabric due to the influence of external force can be maintained. Examples of the processing method of the non-coating fabric for airbag after weaving include heat treatment such as scouring, drying, and heat setting. These may be carried out alone or in combination of two or more.
Specifically, as a mode of combination of processing methods of fabric after weaving, a mode in which a green machine woven in a water jet loom is naturally dried or subjected to a heat treatment process for drying; a green machine woven in various looms is used in a scouring process. Examples include an embodiment in which the raw material woven by various looms is subjected to a scouring step and then subjected to a heat treatment step for heat setting. Of course, the fabric (raw machine) that has been woven on the loom may be cut and sewed as it is without being subjected to the processing steps as described above to form an airbag.
 まず、ウォータージェットルームで製織した生機を自然乾燥する、もしくは乾燥のため熱処理工程に供する態様について説明する(以下、第1の態様と称する場合がある。)。特定温度での熱処理工程を実施する場合、生機の熱処理温度(乾燥温度)を20℃以上190℃以下とする。好ましくは40℃以上160℃以下であり、より好ましくは60℃以上140℃以下である。また、熱処理時間(乾燥時間)は10秒以上5分以下とするのが好ましい。より好ましくは20秒以上3分以下であり、さらに好ましくは30秒以上2分以下である。熱処理工程では上記温度で生機を熱処理できればよく、その方法は特に限定されない。したがって熱処理工程を実施する装置は特に限定されず、例えば熱風を加熱媒体とする乾燥機(ドライヤー式加熱炉)、熱風や蒸気等を加熱媒体とするシリンダー乾燥機等、織物の乾燥に用いられる装置であればいずれも使用することができる。また、第1の態様では上記熱処理工程に換えて、製織後の生機を自然乾燥して、エアバッグ用織物を完成させてもよい。 First, a mode in which a green machine woven in a water jet loom is naturally dried or subjected to a heat treatment step for drying will be described (hereinafter sometimes referred to as a first mode). When the heat treatment step at a specific temperature is performed, the heat treatment temperature (drying temperature) of the living machine is set to 20 ° C. or more and 190 ° C. or less. Preferably they are 40 degreeC or more and 160 degrees C or less, More preferably, they are 60 degreeC or more and 140 degrees C or less. The heat treatment time (drying time) is preferably 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less. In the heat treatment process, it is sufficient that the living machine can be heat treated at the above temperature, and the method is not particularly limited. Therefore, the apparatus for performing the heat treatment step is not particularly limited. For example, a dryer (dryer type heating furnace) using hot air as a heating medium, a cylinder dryer using hot air or steam as a heating medium, etc. Any of them can be used. In the first embodiment, instead of the heat treatment step, the weaving machine after weaving may be naturally dried to complete the airbag fabric.
 各種織機で製織された生機を精練工程に供した後、乾燥のため熱処理工程に供する態様では(以下、第2の態様と称する場合がある。)、製織後、生機を50℃以上100℃以下の水槽に通す温水処理を施す(精練工程)。温水処理では、紡糸工程や製織工程で付与される油剤やサイジング剤等を織物から取り除きつつ、織物を収縮させる。水の温度が50℃未満である場合には織物を十分に収縮させ難い場合がある。水の温度は60℃以上98℃以下であるのがより好ましく、さらに好ましくは70℃以上95℃以下である。温水処理は10秒以上3分以下実施するのが好ましい。より好ましくは20秒以上2分以下であり、さらに好ましくは30秒以上1分以下である。温水処理で使用する水としては、水道水、純水の他、アルキルベンゼンスルホン酸ソーダなどの界面活性剤、ソーダ灰などのアルカリ精練剤、酵素、又は有機溶剤等の1種以上を溶解した水溶液を使用してもよい。 In an embodiment in which a raw machine woven by various looms is subjected to a scouring process and then subjected to a heat treatment process for drying (hereinafter sometimes referred to as a second aspect), after weaving, the raw machine is 50 ° C. or higher and 100 ° C. or lower. A hot water treatment to pass through the water tank is performed (scouring process). In the hot water treatment, the fabric is contracted while removing the oil agent, the sizing agent, and the like applied in the spinning process and the weaving process from the fabric. When the temperature of water is less than 50 ° C., it may be difficult to sufficiently shrink the fabric. The temperature of water is more preferably 60 ° C. or higher and 98 ° C. or lower, and further preferably 70 ° C. or higher and 95 ° C. or lower. The hot water treatment is preferably performed for 10 seconds or more and 3 minutes or less. More preferably, it is 20 seconds or more and 2 minutes or less, More preferably, it is 30 seconds or more and 1 minute or less. The water used in the hot water treatment includes tap water, pure water, surfactants such as sodium alkylbenzene sulfonate, alkaline scouring agents such as soda ash, enzymes, or an aqueous solution in which one or more organic solvents are dissolved. May be used.
 また温水処理は、生機の経糸方向に0.040cN/dtex以下のテンションを掛けながら実施することが好ましい。所定のテンション下で温水処理を実施することによって、織物を十分に収縮させることで生機中の糸条を再配列させることができる。また、ナイロン66等のポリアミド繊維を用いる場合には、水の存在より繊維中の水素結合が切断されやすくなり、これによって、より柔軟性の高い基布が得られやすくなる。経糸方向のテンションが0.040cN/dtexを超えると、温水処理時に織物が自由に収縮し難くなり、また織物自体が緊張状態で熱固定された状態に近くなるため単糸繊維が動き易い性質が損なわれやすくなる虞がある。 Also, the hot water treatment is preferably performed while applying a tension of 0.040 cN / dtex or less in the warp direction of the raw machine. By performing the hot water treatment under a predetermined tension, the yarns in the raw machine can be rearranged by sufficiently shrinking the fabric. Further, when polyamide fibers such as nylon 66 are used, hydrogen bonds in the fibers are more likely to be broken due to the presence of water, which makes it easier to obtain a more flexible base fabric. When the tension in the warp direction exceeds 0.040 cN / dtex, the fabric is difficult to freely shrink during the hot water treatment, and the property that the fabric itself is close to the state of being heat-set in a tension state is easy to move. There is a risk of being easily damaged.
 次いで、精練工程(温水処理)を経た織物を熱処理工程に供する。第2の態様に係る熱処理工程では、熱セット加工を施さずに、織物を乾燥させることが好ましい。温水処理と同様の理由から、熱処理(乾燥)工程での経糸方向のテンションも0.040cN/dtex以下とすることが好ましい。
 熱処理温度(乾燥温度)はエアバッグ用織物の低通気性を確保する観点からは、150℃以下であることが好ましい。より好ましくは140℃以下である。乾燥温度は低い方が好ましいが、低すぎると乾燥時間が長くなり、工業的に好ましくない。好ましくは100℃以上より好ましくは110℃以上である。熱処理時間は10秒以上5分以下とするのが好ましい。より好ましくは20秒以上3分以下であり、さらに好ましくは30秒以上2分以下である。
Next, the fabric subjected to the scouring process (warm water treatment) is subjected to a heat treatment process. In the heat treatment step according to the second aspect, it is preferable to dry the woven fabric without performing heat setting. For the same reason as the hot water treatment, the tension in the warp direction in the heat treatment (drying) step is also preferably 0.040 cN / dtex or less.
The heat treatment temperature (drying temperature) is preferably 150 ° C. or less from the viewpoint of ensuring low air permeability of the airbag fabric. More preferably, it is 140 degrees C or less. The drying temperature is preferably low, but if it is too low, the drying time becomes long, which is not industrially preferable. Preferably it is 100 degreeC or more, More preferably, it is 110 degreeC or more. The heat treatment time is preferably 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less.
 各種織機で製織された生機を精練工程に供した後、熱セットのため熱処理工程に供する態様では(以下、第3の態様と称する場合がある。)、精練工程で、比較的低温の水、具体的には30℃以上90℃以下の水を使用する。水の温度は、好ましくは40℃以上80℃以下であり、より好ましくは50℃以上70℃以下である。上記温度範囲内であれば、紡糸工程や製織工程で付与される油剤やサイジング剤等を効率よく織物から取り除くことができる。 In an embodiment in which a raw machine woven by various looms is subjected to a scouring process and then subjected to a heat treatment process for heat setting (hereinafter sometimes referred to as a third aspect), in the scouring process, relatively low temperature water, Specifically, water at 30 ° C. or higher and 90 ° C. or lower is used. The temperature of water is preferably 40 ° C. or higher and 80 ° C. or lower, and more preferably 50 ° C. or higher and 70 ° C. or lower. If it is in the said temperature range, the oil agent, sizing agent, etc. which are provided by a spinning process or a weaving process can be efficiently removed from a textile fabric.
 特定温度の水を使用する限り精練工程に制限は無く、従来公知の精練方法を採用することができる。精練工程で使用する水としては、水道水、純水の他、アルキルベンゼンスルホン酸ソーダなどの界面活性剤、ソーダ灰などのアルカリ精練剤、酵素、及び有機溶剤等の1種以上を溶解した水溶液を使用してもよい。 As long as water at a specific temperature is used, the scouring process is not limited, and a conventionally known scouring method can be employed. As water used in the scouring process, in addition to tap water and pure water, surfactants such as sodium alkylbenzene sulfonate, alkaline scouring agents such as soda ash, enzymes, and an aqueous solution in which one or more organic solvents are dissolved. May be used.
 また、精練工程は、生機の走行方向と、走行方向に直交する方向(幅方向)に張力を与えながら実施してもよい。例えば、生機の走行方向のオーバーフィード率は0%以上5%以下とするのが好ましく、より好ましくは1%以上4%以下であり、さらに好ましくは2%以上3%以下である。一方、生機の幅方向のオーバーフィード率は、0%以上3%以下とするのが好ましく、より好ましくは0.5%以上2.5%以下であり、さらに好ましくは1%以上2%以下である。 Further, the scouring process may be performed while applying tension in the running direction of the raw machine and the direction (width direction) perpendicular to the running direction. For example, the overfeed rate in the running direction of the living machine is preferably 0% or more and 5% or less, more preferably 1% or more and 4% or less, and further preferably 2% or more and 3% or less. On the other hand, the overfeed rate in the width direction of the production machine is preferably 0% or more and 3% or less, more preferably 0.5% or more and 2.5% or less, and further preferably 1% or more and 2% or less. is there.
 精練処理は10秒以上5分以下実施するのが好ましい。より好ましくは20秒以上3分以下であり、さらに好ましくは30秒以上2分以下である。精練処理後の織物(生機)は、一旦脱水や乾燥処理を施した後、熱処理工程に供してもよいが、熱処理工程では織物を110℃以上に加熱するので、乾燥処理等を実施せずに、精練処理後の織物を直接熱処理工程に供してもよい。 The scouring treatment is preferably performed for 10 seconds to 5 minutes. More preferably, it is 20 seconds or more and 3 minutes or less, More preferably, it is 30 seconds or more and 2 minutes or less. The scoured woven fabric (growth machine) may be subjected to a dehydration or drying treatment and then subjected to a heat treatment step. In the heat treatment step, the woven fabric is heated to 110 ° C. or higher, so that the drying treatment or the like is not performed. The scoured fabric may be directly subjected to a heat treatment step.
 次いで、精練処理後の織物を110℃以上190℃以下で熱処理する(熱処理工程)。熱処理温度は、好ましくは120℃以上であり、より好ましくは130℃以上であり、185℃以下であるのが好ましく、より好ましくは180℃以下であり、さらに好ましくは175℃以下である。熱処理温度が低すぎると、精練処理で濡れた織物を乾燥させるのに長時間必要になる傾向があり、効率的でないばかりか、繊維が本来有している収縮力が十分発揮されず繊維間の目合いが大きくなってしまい、通気度が高くなってしまう虞がある。一方、熱処理温度が高過ぎると、織物を構成する繊維が熱劣化して力学的な強度が低下してしまう虞があるのみならず、熱収縮により織物に強い緊張が与えられ、織物が硬化し、単糸繊維が動き易い性質が損なわれやすくなる虞がある。 Next, the scoured fabric is heat treated at 110 ° C. or higher and 190 ° C. or lower (heat treatment step). The heat treatment temperature is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, preferably 185 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 175 ° C. or lower. If the heat treatment temperature is too low, it tends to be necessary for a long time to dry the woven fabric wetted by the scouring treatment. There is a possibility that the mesh becomes large and the air permeability becomes high. On the other hand, if the heat treatment temperature is too high, not only the fibers constituting the fabric may be thermally deteriorated and the mechanical strength may be lowered, but also the fabric is hardened by heat shrinkage and the fabric is cured. There is a possibility that the property that the single yarn fiber is easy to move is likely to be impaired.
 第3の態様では織物に張力を与えながら熱処理を実施する(熱セット)。より通気度の低い織物を得る観点からは、オーバーフィードとなるように織物を熱処理工程に供給するのが好ましい。織物の走行方向のオーバーフィード率は1.5%以上6.0%以下であり、好ましくは2.0%以上5.0%以下であり、より好ましくは2.5%以上4.5%以下である。一方、織物の走行方向に直交する方向(幅方向)のオーバーフィード率(巾入れ率)は、1.0%以上4.0%以下であり、好ましくは1.5%以上3.5%以下であり、より好ましくは2.0%以上3.0%以下である。
 なお、精練工程と熱処理(熱セット)工程の両方で生機をオーバーフィードの状態で供給する場合、熱セット工程では、織物の走行方向のオーバーフィード率を0%以上5.0%以下とすることが好ましく、より好ましくは1.0%以上4.0%以下であり、さらに好ましくは1.5%以上3.0%以下である。一方、織物の走行方向に直交する方向(幅方向)のオーバーフィード率(巾入れ率)は、0%以上3.0%以下とするのが好ましく、より好ましくは0.5%以上2.5%以下であり、さらに好ましくは1.0%以上2.0%以下である。
In the third aspect, heat treatment is performed while applying tension to the fabric (heat setting). From the viewpoint of obtaining a woven fabric having a lower air permeability, it is preferable to supply the woven fabric to the heat treatment step so as to overfeed. The overfeed rate in the running direction of the fabric is 1.5% or more and 6.0% or less, preferably 2.0% or more and 5.0% or less, more preferably 2.5% or more and 4.5% or less. It is. On the other hand, the overfeed rate (width filling rate) in the direction (width direction) orthogonal to the running direction of the fabric is 1.0% to 4.0%, preferably 1.5% to 3.5%. More preferably, it is 2.0% or more and 3.0% or less.
In addition, when supplying the raw machine in an overfeed state in both the scouring step and the heat treatment (heat setting) step, the overfeed rate in the running direction of the fabric should be 0% or more and 5.0% or less in the heat setting step. Is more preferably 1.0% or more and 4.0% or less, and further preferably 1.5% or more and 3.0% or less. On the other hand, the overfeed rate (width filling rate) in the direction orthogonal to the running direction of the fabric (width direction) is preferably 0% or more and 3.0% or less, more preferably 0.5% or more and 2.5%. % Or less, more preferably 1.0% or more and 2.0% or less.
 ここで、織物の走行方向のオーバーフィード率とは下記式5により表される値である。熱処理工程の上流側にあり、織物を熱処理工程に供給する送りローラーの速度(V)を、熱処理工程の下流側にある巻取りローラーの速度(V)よりも速くすることによりオーバーフィードの状態とすることができる。
  走行方向のオーバーフィード率(%)=(V/V)×100 (式5)
   [V:送りローラー速度、V:巻取りローラー速度]
Here, the overfeed rate in the running direction of the fabric is a value represented by the following formula 5. The speed of the feed roller (V 1 ) that is upstream of the heat treatment process and supplies the fabric to the heat treatment process is made higher than the speed of the take-up roller (V 2 ) that is downstream of the heat treatment process. State.
Overfeed rate in travel direction (%) = (V 1 / V 2 ) × 100 (Formula 5)
[V 1 : Feed roller speed, V 2 : Winding roller speed]
 一方、織物の走行方向に直交する方向(幅)のオーバーフィード率とは、下記式6により表される値である。通常、熱処理工程は、織物の幅方向両端を固定した状態で実施するが、固定した一方の端部から他方の端部までの距離を、熱処理工程供給前の織物の幅よりも狭くすることでオーバーフィードの状態とすることができる。
  織物の走行方向に直交する方向のオーバーフィード率(%)=(1-L/L)×100 (式6)
   [L:熱処理工程に供給される前織物の幅(m)、L:熱処理工程に供給された後の織物の幅(m)]
On the other hand, the overfeed rate in the direction (width) orthogonal to the running direction of the fabric is a value represented by the following formula 6. Usually, the heat treatment process is performed in a state where both ends in the width direction of the fabric are fixed, but the distance from one fixed end to the other end is made narrower than the width of the fabric before supplying the heat treatment process. It can be in an overfeed state.
Overfeed rate (%) in the direction perpendicular to the running direction of the fabric = (1−L 0 / L 1 ) × 100 (Formula 6)
[L 0 : width (m) of the previous woven fabric supplied to the heat treatment step, L 1 : width (m) of the woven fabric supplied to the heat treatment step]
 織物の走行方向、及び幅方向のオーバーフィード率が上述の範囲内であれば、織物が外力を受けた際の単糸繊維の移動や、繊維軸直交方向への織糸の拡がりが好適に生じるので好ましい。オーバーフィード率が小さ過ぎると、熱処理で糸が収縮することにより単糸繊維自体にも過剰な張力がかかるため、外力を受けても単糸繊維が移動し難くなったり、繊維軸直交方向に織糸が拡がり難くなって、通気度が増加する虞がある。また、オーバーフィード率が大き過ぎると、繊維の収縮力によりクリンプが大きくなることで、繊維間に隙間が生じて通気度が悪化する虞がある。 If the overfeed rate in the running direction and the width direction of the woven fabric is within the above-mentioned range, the movement of the single yarn fiber when the woven fabric receives an external force and the spreading of the woven yarn in the direction perpendicular to the fiber axis suitably occur. Therefore, it is preferable. If the overfeed rate is too small, the yarn shrinks during heat treatment, and the single yarn fiber itself is excessively tensioned. Therefore, the single yarn fiber is difficult to move even when external force is applied, or the yarn is woven in the direction perpendicular to the fiber axis. There is a risk that the yarn will not easily spread and the air permeability will increase. On the other hand, if the overfeed rate is too large, the crimp becomes large due to the contraction force of the fibers, which may cause gaps between the fibers and deteriorate the air permeability.
 熱セットは公知の装置と加熱手段とを併用して実施すればよい。斯かる装置としては、例えば、ピンテンターやクリップテンターと呼ばれる織物を保持する装置が挙げられる。加熱手段としては、例えば、ドライヤー式加熱炉が使用できる。
 上述のエアバッグ用ノンコーティング織物を、所望の形状となるように裁断、縫製又は溶着することでエアバッグが得られる。
What is necessary is just to implement a heat setting using a well-known apparatus and a heating means together. As such an apparatus, for example, an apparatus for holding a fabric called a pin tenter or a clip tenter can be cited. As the heating means, for example, a dryer type heating furnace can be used.
An airbag can be obtained by cutting, sewing or welding the above-described non-coated fabric for an airbag so as to have a desired shape.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
(1)総繊度
 JIS L1095 9.4.1に準拠して測定した。
(1) Total fineness It measured based on JIS L1095 9.4.1.
(2)フィラメント数
 JIS L1013(1999)の8.4に準拠して算出した。
(2) Filament number It calculated based on 8.4 of JIS L1013 (1999).
(3)強度、伸度
 JIS L1017 8.5 a) 標準時試験の定義により、20℃、65%RHに温湿度が管理された部屋に24間放置した後、引張試験機(株式会社オリエンテック製「テンシロン万能材料試験機」)により、強度、伸度を得た。
(3) Strength and elongation JIS L1017 8.5 a) According to the standard test definition, after leaving for 24 hours in a room where temperature and humidity are controlled at 20 ° C. and 65% RH, a tensile tester (made by Orientec Co., Ltd.) Strength and elongation were obtained by “Tensilon Universal Material Testing Machine”).
(4)沸水収縮率
 JIS L1013(1999)の8.18.1に記載の(a)かせ収縮率(A法)により測定した。
(4) Boiling water shrinkage rate Measured by (a) skein shrinkage rate (Method A) described in 8.18.1 of JIS L1013 (1999).
(5)織密度(打ち込み本数)
 JIS L1096(1999)の8.6に準拠して測定した。
(5) Weaving density (number of driven)
It measured based on 8.6 of JIS L1096 (1999).
(6)断面形状、異型度
 走査型電子顕微鏡を用いて、任意に選んだ5本の繊維の断面を撮影する(倍率1000~2000)。市販のソフトウェア(例えばNIS-Elements Documentation)を使用し、得られた繊維の断面写真において目視で繊維の断面に現れる略三角形の頂点3点(a,b,cと称する)を選択し、この3点a,b,cを通り、繊維断面に外接する円を描写する(外接円31)。次いで、上記頂点を結ぶ線分ab、bc、及びacの垂直二等分線21を作図し、この垂直二等分線21と交差する繊維断面の3つの交点22を通り、繊維断面に内接する円を描写する(内接円32)。そして、上記外接円31の半径を内接円32の半径で除した値を異型度とした(図2~5参照)。異型度は5本のフィラメントの平均値を用いた。ノズル孔の異型度も同様の方法で算出した。
 なお、繊維断面形状が略三角形以外の形状である場合は、繊維断面の外縁に接する外接円と内接円とを設定し、これらの半径の比から異型度を求めた。繊維断面内に複数の内接円を描写できる場合は、最小の内接円の半径を用いて異型度を求めた。
(6) Sectional shape and degree of profile Using a scanning electron microscope, a section of five arbitrarily selected fibers is photographed (magnification 1000 to 2000). Using commercially available software (for example, NIS-Elements Documentation), in the obtained cross-sectional photograph of the fiber, three substantially vertexes (referred to as “a”, “b”, and “c”) of the triangular shape appearing on the cross section of the fiber are selected. A circle that passes through points a, b, and c and circumscribes the fiber cross section is drawn (circumscribed circle 31). Next, a perpendicular bisector 21 of line segments ab, bc, and ac connecting the vertices is drawn, and passes through three intersections 22 of the fiber cross section intersecting with the vertical bisector 21 and inscribed in the fiber cross section. Describe a circle (inscribed circle 32). A value obtained by dividing the radius of the circumscribed circle 31 by the radius of the inscribed circle 32 was defined as the degree of irregularity (see FIGS. 2 to 5). The average degree of the five filaments was used as the degree of profile. The atypical degree of the nozzle hole was calculated in the same manner.
In addition, when the fiber cross-sectional shape is a shape other than a substantially triangular shape, a circumscribed circle and an inscribed circle that are in contact with the outer edge of the fiber cross section are set, and the degree of irregularity is obtained from the ratio of these radii. When a plurality of inscribed circles could be drawn in the fiber cross section, the atypical degree was obtained using the radius of the smallest inscribed circle.
(7)ヤーン拡幅比
 図6に示すように、繊維(マルチフィラメント)61を周長が20cmになるように結束し1重の輪を作る。この輪部分を水平に設置した直径1cmのテフロン(登録商標)棒62を通し、繊維61を吊るす。このとき、結束点64がテフロン(登録商標)棒62上および最下点に来ないように結束点64の位置を調節する。繊維の総繊度(dtex)に対して1.52倍の荷重63を輪状の繊維61の最下点に吊るす。なお荷重63は、測定に用いた繊維を使用した接合糸67を介して繊維61に吊るす。この状態でテフロン(登録商標)棒62の最上部に位置するマルチフィラメントの繊維幅(a)と、結束点64が無い側の荷重点(繊維61の最下点)から5cm上側に位置する繊維の最も太い繊維幅(b)とを測定し、両者の比(a/b)を算出する。繊維を変えて、上記測定を10回繰り返しその平均値をヤーン拡幅比とした。なお、織物からの解織糸のヤーン拡幅比も同様の方法により測定した。
(7) Yarn Widening Ratio As shown in FIG. 6, fibers (multifilament) 61 are bundled so as to have a circumference of 20 cm to form a single ring. The fiber 61 is suspended through a Teflon (registered trademark) rod 62 having a diameter of 1 cm, in which the ring portion is horizontally installed. At this time, the position of the binding point 64 is adjusted so that the binding point 64 does not come on the Teflon (registered trademark) rod 62 and the lowest point. A load 63 that is 1.52 times the total fineness (dtex) of the fiber is suspended from the lowest point of the annular fiber 61. The load 63 is hung on the fiber 61 via a bonding thread 67 using the fiber used for the measurement. In this state, the fiber width (a) of the multifilament located at the top of the Teflon rod 62 and the fiber located 5 cm above the load point on the side without the binding point 64 (the bottom point of the fiber 61). The thickest fiber width (b) is measured, and the ratio (a / b) between them is calculated. The above measurement was repeated 10 times while changing the fiber, and the average value was defined as the yarn widening ratio. The yarn widening ratio of the unwoven yarn from the woven fabric was also measured by the same method.
(8)高圧通気度(20kPa差圧下での通気度)
 実施例及び比較例で得られた織物の幅方向両端部から30cmの範囲を除いた部分からランダムに選択した5箇所の測定部位において、高圧通気度測定機(OEMシステム(株)製)を使用して20kPa差圧下での通気度を測定し、その平均値を高圧通気度とした。
(8) High pressure air permeability (air permeability under differential pressure of 20 kPa)
Using five high-pressure air permeability measuring machines (manufactured by OEM System Co., Ltd.) at five measurement sites randomly selected from the portion excluding the range of 30 cm from both ends in the width direction of the fabrics obtained in Examples and Comparative Examples. Then, the air permeability under a differential pressure of 20 kPa was measured, and the average value was taken as the high pressure air permeability.
(9)折り畳み後の高圧通気度(20kPa差圧下での通気度)
 織物の幅方向両端部から30cmの範囲を除いた任意の箇所から20cm四方の試験片を5枚切り取出し、試験片を繊維軸方向(a)に沿って半分に折り、前記繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折った後、再び前記繊維軸方向(a)に沿って半分、繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折って、5cm四方に折り畳んだ。折り畳まれた試験片の全面に50Nの荷重を1分間付与し、次いで、20cm四方に広げた状態で1分間放置した。1回目の折目と2回目の折目の交点を中心とする直径10cmの円部分を測定部位とし、20kPa差圧下での通気度を高圧通気度測定機(OEMシステム(株)製)を用いて測定した。5枚の試験片の平均値を折り畳み後の高圧通気度とした。
(9) High pressure air permeability after folding (air permeability under differential pressure of 20 kPa)
Five test pieces of 20 cm square are cut out from any part excluding the range of 30 cm from both ends in the width direction of the woven fabric, the test pieces are folded in half along the fiber axis direction (a), and the fiber axis direction (a ) Along the fiber axis direction (b) perpendicular to the fiber axis direction (a), and again along the fiber axis direction (b) perpendicular to the fiber axis direction (a). Folded in half and folded in 5cm square. A load of 50 N was applied to the entire surface of the folded test piece for 1 minute, and then the test piece was left for 1 minute in a state of being expanded to 20 cm square. A circular portion having a diameter of 10 cm centering on the intersection of the first fold and the second fold is used as a measurement site, and the air permeability under a pressure difference of 20 kPa is measured using a high pressure air permeability measuring machine (manufactured by OEM System Co., Ltd.). Measured. The average value of the five test pieces was taken as the high-pressure air permeability after folding.
 (10)通気度変化率
 以下の式2により、折り畳み前後の通気度変化率を求めた。
  通気度変化率 (%) = (折り畳み後の高圧通気度)/(折り畳み前の高圧通気度)×100  (式2)
(10) Air permeability change rate The air permeability change rate before and after folding was determined by the following equation 2.
Permeability change rate (%) = (High-pressure air permeability after folding) / (High-pressure air permeability before folding) x 100 (Formula 2)
(11)交絡度
 原糸、及び解織糸の交絡度は、JIS L1013 8.15に準拠して算出した。
(11) Entanglement degree The entanglement degree of the raw yarn and the unwoven yarn was calculated based on JIS L1013 8.15.
(12)滑脱抵抗力
 ASTM D 6479 により測定した。
(12) Sliding resistance force Measured according to ASTM D 6479.
(13)織前のせり出し量
 市販されているストロボスコープを使用して、筬が完全に打ち込まれたタイミングを0°=360°として、ウォータージェットルーム織機に搭載されているダイヤル目盛りにストロボスコープの目盛りをゼロ合わせした。緯糸が挿入されてから、ノズル側の織前のせり出しに筬が接触するタイミングを読み取った。1時間おきに3回測定し、3回分の平均値を記録した。
(13) Projection amount before weaving Using a commercially available stroboscope, the timing when the heel was completely driven was set to 0 ° = 360 °, and the stroboscope was placed on the dial scale mounted on the water jet loom. The scale was set to zero. After the weft was inserted, the timing at which the heels contacted the protrusion before weaving on the nozzle side was read. Three measurements were taken every hour, and the average value for the three was recorded.
(14)停台回数
 以下の式7に従って、緯糸打ち込みの停台回数を測定した。
 緯糸打ち込みの停台回数(回/100m) = {(s0―s) / f×100 
(式7)
[s:ある銘柄製織時の緯糸打ち込みの全停台回数(回)、s:緯糸原糸チーズの切り替わり回数(回)、f:ある銘柄の生機製織全長(m)]
(14) Number of stops The number of stops of weft driving was measured according to the following formula 7.
Number of stops of weft driving (times / 100 m) = {(s 0 −s 1 ) / f 1 × 100
(Formula 7)
[S 0 : Total number of stops of weft driving when weaving a certain brand (times), s 1 : Number of times weft yarn cheese is switched (times), f 1 : Weaving total length (m) of a brand
<実施例1>
 ポリアミド66レジンを単軸の押出機を用いて溶融押出し、ギアポンプを用いて計量し、金属不織布フィルター(日本精線株式会社製NF-07)を介して図1記載の形状に孔形状を加工したノズル(異型度6)へ押出して繊維状溶融物とした。繊維状溶融物をそのままノズル直下の加熱筒を通過させ、冷却風にて冷却した後に、脂肪酸エステル系の紡糸油剤を付与し、引取ローラーに巻回してそのまま公知の方法で延伸を行い、470dtex、144フィラメントの略三角断面ポリアミド66繊維(略三角断面糸)を得た。この繊維断面の走査型電子顕微鏡写真を図4に示す。
 得られた略三角断面糸を経糸、緯糸に使用し、クランク開口式のウォータージェットルームにて製織した。経糸テンションは0.30cN/dtexとなるように調整し、緯糸の打ち込み本数は52.5本/2.54cmに設定し、織機回転数は600rpmで製織を行った。このときの織り前のせり出し角度は330°であり、緯糸の飛走は安定し、稼動率は98%であった。製織後、98℃の温水槽に通し、経糸方向の走行テンションが0.027cN/dtexとなるように加工テンションを調整して温水処理を実施した(精練処理A)。続けて0.027cN/dtexの経糸方向の走行テンション下で乾燥処理を施して、経の織物密度が57本/2.54cm、緯の織物密度が58本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表1に示す。
<Example 1>
Polyamide 66 resin was melt-extruded using a single-screw extruder, weighed using a gear pump, and the hole shape was processed into the shape shown in FIG. 1 through a metal nonwoven fabric filter (NF-07 manufactured by Nippon Seisen Co., Ltd.). The mixture was extruded into a nozzle (degree of irregularity 6) to obtain a fibrous melt. After passing the fibrous melt as it is through a heating cylinder directly under the nozzle and cooling with cooling air, a fatty acid ester-based spinning oil agent is applied, wound around a take-up roller and stretched by a known method as it is, 470 dtex, A 144-filament approximately triangular section polyamide 66 fiber (approximately triangular section thread) was obtained. A scanning electron micrograph of the fiber cross section is shown in FIG.
The obtained substantially triangular cross section yarn was used for warp and weft, and was woven in a crank opening type water jet loom. The warp tension was adjusted to 0.30 cN / dtex, the number of wefts driven was set to 52.5 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 330 °, the weft flight was stable, and the operating rate was 98%. After weaving, it was passed through a hot water bath at 98 ° C., and the hot water treatment was performed by adjusting the processing tension so that the running tension in the warp direction was 0.027 cN / dtex (scouring treatment A). Subsequently, drying treatment was performed under running tension in the warp direction of 0.027 cN / dtex to obtain a plain weave fabric having a warp fabric density of 57 / 2.54 cm and a weft fabric density of 58 / 2.54 cm. . Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<実施例2>
 紡糸時に異型度4のノズルを使用したこと以外は実施例1と同様な手法で、異型断面を有する繊維を製造し、これを製織して織物を得た。織り前のせり出し角度は327°であり、緯糸の飛走は安定し、稼動率は96%であった。原糸の物性、及び織物の物性を表1に示す。
<Example 2>
A fiber having an atypical cross section was produced in the same manner as in Example 1 except that a nozzle with a grade 4 was used at the time of spinning, and this was woven to obtain a woven fabric. The protrusion angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<実施例3>
 紡糸時に異型度8のノズルを使用したこと以外は実施例1と同様な手法で、異型断面を有する繊維を製造し、これを製織して織物を得た。織り前のせり出し角度は328°であり、緯糸の飛走は安定し、稼動率は97%であった。原糸の物性、及び織物の物性を表1に示す。
<Example 3>
A fiber having an irregular cross section was produced in the same manner as in Example 1 except that a nozzle with an irregularity degree of 8 was used during spinning, and this was woven to obtain a woven fabric. The protrusion angle before weaving was 328 °, the weft flight was stable, and the operation rate was 97%. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<実施例4>
 製織時の経糸テンションを0.39cN/dtexとし、機上の打ち込み本数を55.5本/2.54cmとして製織を行うこと以外は実施例1と同様な手法で、異型断面を有する繊維を製造し、これを製織して織物を得た。経緯の織物密度が60本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表1に示す。
<Example 4>
A fiber having an irregular cross section is produced in the same manner as in Example 1 except that weaving is performed with a warp tension of 0.39 cN / dtex during weaving and a number of driven on the machine of 55.5 / 2.54 cm. This was woven to obtain a woven fabric. A plain weave fabric having a background fabric density of 60 / 2.54 cm was obtained. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<実施例5>
 紡糸時に異型度6のノズルを使用して実施例1と同様にして、350dtex、108フィラメントの三角断面ポリアミド66繊維を得た。
 得られた三角断面糸を経糸、緯糸に使用し、クランク開口式のウォータージェットルームにて製織した。経糸テンションは0.39cN/dtexとなるように調整し、緯糸の打ち込み本数は61本/2.54cmに設定し、織機回転数は600rpmで製織を行った。このときの織り前のせり出し角度は327°であり、緯糸の飛走は安定し、稼動率は96%であった。製織後、98℃の温水槽に通し、経糸方向の走行テンションが0.027cN/dtexとなるように加工テンションを調整して温水処理を実施した。続けて0.027cN/dtexの経糸方向の走行テンション下で乾燥処理を施して、経、緯の織物密度が66本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表1に示す。
<Example 5>
In the same manner as in Example 1, using a nozzle with a degree of profile 6 during spinning, a triangular cross-section polyamide 66 fiber having 350 dtex and 108 filaments was obtained.
The obtained triangular cross-section yarn was used for warp and weft and woven in a crank-opening water jet loom. The warp tension was adjusted to 0.39 cN / dtex, the number of wefts driven was set to 61 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%. After weaving, it was passed through a hot water bath at 98 ° C., and the hot water treatment was carried out by adjusting the processing tension so that the running tension in the warp direction was 0.027 cN / dtex. Subsequently, drying treatment was performed under running tension in the warp direction of 0.027 cN / dtex to obtain a plain weave fabric having a warp and weft fabric density of 66 / 2.54 cm. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<実施例6>
 実施例1と同様な手法で、異型断面を有する繊維を製造し、これをカム開口式(ドエル角度60°)のウォータージェットルームにて製織した。経糸テンションは0.39cN/dtexとなるように調整し、緯糸の打ち込み本数は56.5本/2.54cmに設定し、織機回転数は600rpmで製織を行った。このときの織り前のせり出し角度は327°であり、緯糸の飛走は安定し、稼動率は96%であった。製織後、98℃の温水槽に通し、経糸方向の走行テンションが0.027cN/dtexとなるように加工テンションを調整して温水処理を実施した。続けて0.027cN/dtexの経糸方向の走行テンション下で乾燥処理を施して、経、緯の織物密度が61本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表1に示す。
<Example 6>
A fiber having an irregular cross section was produced in the same manner as in Example 1, and this was woven in a water jet loom of a cam opening type (dwell angle 60 °). The warp tension was adjusted to 0.39 cN / dtex, the number of wefts driven was set to 56.5 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. At this time, the protruding angle before weaving was 327 °, the weft flight was stable, and the operation rate was 96%. After weaving, it was passed through a hot water bath at 98 ° C., and the hot water treatment was carried out by adjusting the processing tension so that the running tension in the warp direction was 0.027 cN / dtex. Subsequently, drying treatment was performed under running tension in the warp direction of 0.027 cN / dtex to obtain a plain weave fabric having a warp and weft fabric density of 61 / 2.54 cm. Table 1 shows the physical properties of the raw yarn and the physical properties of the fabric.
<比較例1>
 ポリアミド66レジンを単軸の押出機を用いて溶融押出し、ギアポンプを用いて計量し、金属不織布フィルター(日本精線株式会社製NF-07)を介してノズル(異型度1.0)へ押出して繊維状溶融物とした。繊維状溶融物をそのままノズル直下の加熱筒を通過させ、冷却風にて冷却した後に脂肪酸エステル系の紡糸油剤を付与し、引取ローラーに巻回してそのまま公知の方法で延伸を行い、470dtex、144フィラメントの丸断面ポリアミド66繊維を得た。
<Comparative Example 1>
Polyamide 66 resin is melt-extruded using a single-screw extruder, weighed using a gear pump, and extruded through a metal nonwoven fabric filter (NF-07, manufactured by Nippon Seisen Co., Ltd.) to a nozzle (degree of irregularity 1.0). A fibrous melt was obtained. The fibrous melt is directly passed through a heating cylinder directly under the nozzle and cooled with cooling air, and then a fatty acid ester-based spinning oil is applied, wound around a take-up roller, and stretched by a known method as it is. 470 dtex, 144 A filament round section polyamide 66 fiber was obtained.
 得られたポリアミド66繊維を経糸、緯糸に使用しカム開口式(ドエル角度60°)のウォータージェットルームにて製織した。経糸テンションは0.39cN/dtexとなるように調整し、緯糸の打ち込み本数は52.5本/2.54cmに設定し、織機回転数は600rpmで製織を行った。このときの織り前のせり出し量は328°であり、緯糸の飛走は安定し、停台回数は2回/100mであった。製織後、98℃の温水槽を通し、経糸方向の走行テンションが0.027cN/dtexとなるように加工テンションを調整して温水処理を実施した後、続けて走行テンションが0.027cN/dtexのテンション下で乾燥処理を施して、経の織物密度が57本/2.54cm、緯の織物密度が58本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表2に示す。
 単糸繊維の断面形状が略三角形の繊維でできた実施例の織物と比べると、比較例1で得られた織物は高圧通気度が高いものであった。
The obtained polyamide 66 fiber was used for warp and weft and woven in a water jet loom of a cam opening type (dwell angle 60 °). The warp tension was adjusted to 0.39 cN / dtex, the number of wefts driven was set to 52.5 / 2.54 cm, and weaving was performed at a loom speed of 600 rpm. The amount of protrusion before weaving at this time was 328 °, the weft flight was stable, and the number of stops was 2 times / 100 m. After weaving, after passing through a 98 ° C. hot water tank and adjusting the processing tension so that the running tension in the warp direction is 0.027 cN / dtex, the hot water treatment is performed, and then the running tension is 0.027 cN / dtex. A drying treatment was performed under tension to obtain a plain weave fabric having a warp fabric density of 57 / 2.54 cm and a weft fabric density of 58 / 2.54 cm. Table 2 shows the properties of the raw yarn and the fabric.
Compared with the woven fabric of the example in which the cross-sectional shape of the single yarn fiber was made of a substantially triangular fiber, the woven fabric obtained in Comparative Example 1 had a high pressure permeability.
<比較例2>
 ポリアミド66繊維の沸水収縮率を6.7%に設定する以外は比較例1の手順に従って、470dtex、144フィラメントの丸断面ポリアミド66繊維を製造し、これをカム開口式(ドエル角度100°)のレピア織機にて製織した。製織して経、緯の織物密度が60本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表2に示す。
 レピア織機で製織を行ったため、織機回転数が遅く、織物の生産性が悪かった。また、高密度に製織しても高圧通気度が高いものであった。
<Comparative example 2>
Except for setting the boiling water shrinkage of the polyamide 66 fiber to 6.7%, according to the procedure of Comparative Example 1, a 470 dtex, 144 filament round cross section polyamide 66 fiber was produced, and this was made into a cam opening type (dwell angle 100 °). Weaved with a rapier loom. After weaving, a plain weave fabric with a weft fabric density of 60 / 2.54 cm was obtained. Table 2 shows the properties of the raw yarn and the fabric.
Since weaving was performed with a rapier loom, the loom rotation speed was slow and the productivity of the fabric was poor. Further, even when weaving at a high density, the high-pressure air permeability was high.
<比較例3>
 比較例1の手順に従って、235dtex、36フィラメントの丸断面ポリアミド66繊維と、235dtex、72フィラメントをそれぞれ製造し、合糸させて単糸繊度が2通り混在する470dtexの原糸を作った。これを経糸、緯糸に使用しクランク開口式のウォータージェットルームにて製織した。経、緯の織物密度が54本/2.54cmの平織り布を得た。原糸の物性、及び織物の物性を表2に示す。
 単糸繊維の断面形状が略三角形の繊維でできた実施例の織物と比べると、比較例3で得られた織物は高圧通気度が高いものであった。また、これ以上高密度に製織しようとすると、違う単糸繊度の糸が混在しているために糸強度が弱く、毛羽立ち易く製織することができなかった。
<Comparative Example 3>
According to the procedure of Comparative Example 1, a 235 dtex, 36 filament round cross section polyamide 66 fiber and 235 dtex, 72 filament were produced and combined to produce a 470 dtex original yarn having two different single yarn finenesses. This was used for warps and wefts and woven in a crank opening type water jet loom. A plain weave fabric having a warp and weft fabric density of 54 / 2.54 cm was obtained. Table 2 shows the properties of the raw yarn and the fabric.
Compared to the fabric of the example in which the cross-sectional shape of the single yarn fiber was made of a substantially triangular fiber, the fabric obtained in Comparative Example 3 had a high pressure permeability. Further, when weaving at a higher density than this, yarns having different single yarn fineness were mixed, so that the yarn strength was weak, and the yarn could not be woven easily because of fluffing.
<比較例4>
 比較例1の手順に従って、470dtex、144フィラメントの丸断面ポリアミド66繊維を製造し、これをクランク開口式のウォータージェットルームにて製織した。経糸テンションは0.60cN/dtexとなるように調整し、緯糸の打ち込み本数は52.5本/2.54cに設定し、織機回転数は300rpmで製織を行った。このときの織り前のせり出し量は318°であり、緯糸の飛走が安定せず、停台回数は50回/100mであった。原糸の物性、及び織物の物性を表2に示す。
 単糸繊維の断面形状が略三角形の繊維でできた実施例の織物と比べると、比較例4で得られた織物は高圧通気度が高いものであった。また、経糸へのダメージが見られて、経方向の引張強度が低下していた。稼動率も悪かった。
<Comparative example 4>
According to the procedure of Comparative Example 1, 470 dtex, 144 filament round cross-section polyamide 66 fiber was produced and woven in a crank opening type water jet loom. The warp tension was adjusted to 0.60 cN / dtex, the number of wefts driven was set to 52.5 / 2.54c, and weaving was performed at a loom speed of 300 rpm. At this time, the amount of protrusion before weaving was 318 °, the flying of the weft was not stable, and the number of stops was 50 times / 100 m. Table 2 shows the properties of the raw yarn and the fabric.
Compared with the woven fabric of the example in which the cross-sectional shape of the single yarn fiber was made of a substantially triangular fiber, the woven fabric obtained in Comparative Example 4 had a high pressure permeability. In addition, damage to the warp was observed, and the tensile strength in the warp direction was reduced. The occupancy rate was also bad.
<比較例5>
 使用するノズルの孔形状をスリット状にして、繊維軸方向に直交する断面を公知の方法で扁平形状にしたこと、ポリアミド66繊維の沸水収縮率を6.8%にすること、クランク開口式の織機を使用したこと以外は比較例1と同様の手順で繊維を製造し、これを製織して織物を得た。このときの織り前のせり出し量は319°であり、緯糸の飛走があまり安定せず、停台回数は105回/100mであった。原糸の物性、及び織物の物性を表2に示す。
 単糸繊維の断面形状が略三角形の繊維でできた実施例の織物に比べて、高圧通気度が高いものであった。また、比較例5の織物は折り畳んだ後の高圧通気度が高いものであった。これは、織物を折り畳んだ際に扁平断面の単糸繊維の積層構造が乱れたためと考えられる。また、滑脱抵抗力も比較的弱かった。
<Comparative Example 5>
The hole shape of the nozzle to be used was slit, and the cross section perpendicular to the fiber axis direction was flattened by a known method, the boiling water shrinkage of the polyamide 66 fiber was 6.8%, the crank opening type A fiber was produced in the same procedure as in Comparative Example 1 except that a loom was used, and this was woven to obtain a woven fabric. The amount of protrusion before weaving at this time was 319 °, the weft run was not very stable, and the number of stops was 105 times / 100 m. Table 2 shows the properties of the raw yarn and the fabric.
The cross-sectional shape of the single yarn fiber was higher in the high-pressure air permeability than the fabric of the example made of a substantially triangular fiber. Further, the fabric of Comparative Example 5 had high high-pressure air permeability after being folded. This is presumably because the laminated structure of single yarn fibers having a flat cross section was disturbed when the woven fabric was folded. Also, the slip resistance was relatively weak.
<比較例6>
 紡糸時に異型度12のノズルを使用すること、クランク開口式の織機を使用したこと以外は比較例1の手順に従って、470dtex、144フィラメントのY字断面ポリアミド66繊維を得た。これを製織して織物を得た。このときの織り前のせり出し量は319°であり、緯糸の飛走があまり安定せず、停台回数は103回/100mであった。原糸の物性、及び織物の物性を表2に示す。
 三角断面の繊維でできた実施例の織物に比べて、高圧通気度が高いものであった。
<Comparative Example 6>
A Y-shaped polyamide 66 fiber of 470 dtex, 144 filaments was obtained according to the procedure of Comparative Example 1 except that a nozzle with a profile of 12 was used during spinning and a crank opening type loom was used. This was woven to obtain a woven fabric. At this time, the amount of protrusion before weaving was 319 °, the weft flying was not very stable, and the number of stops was 103 times / 100 m. Table 2 shows the properties of the raw yarn and the fabric.
The high-pressure air permeability was higher than that of the woven fabric of the example made of fibers having a triangular cross section.
<比較例7>
 紡糸時に異型度3のノズルを使用すること、クランク開口式の織機を使用したこと以外は比較例1の手順に従って、470dtex、144フィラメントのY字断面ポリアミド66繊維を得た。これを製織して織物を得た。このときの織り前のせり出し量は319°であり、緯糸の飛走があまり安定せず、停台回数は103回/100mであった。原糸の物性、及び織物の物性を表2に示す。
 三角断面の繊維でできた実施例の織物に比べて、高圧通気度が高いものであった。
<Comparative Example 7>
A Y-section polyamide 66 fiber of 470 dtex, 144 filaments was obtained according to the procedure of Comparative Example 1 except that a nozzle with a degree of profile 3 was used during spinning and a crank opening type loom was used. This was woven to obtain a woven fabric. At this time, the amount of protrusion before weaving was 319 °, the weft flying was not very stable, and the number of stops was 103 times / 100 m. Table 2 shows the properties of the raw yarn and the fabric.
The high-pressure air permeability was higher than that of the woven fabric of the example made of fibers having a triangular cross section.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、より高密度で低い通気度を有するエアバッグ用ノンコーティング織物及びそれを用いたエアバッグを提供することができる。 According to the present invention, it is possible to provide a non-coated fabric for airbag having a higher density and lower air permeability and an airbag using the same.
 11 ノズルに設けられた吐出孔に外接する円
 12 ノズルに設けられた吐出孔に内接する円
 13 ノズルに設けられた吐出孔の外縁
 21、21’ 単糸繊維の繊維軸方向に直交する断面に現れる形状の頂点同士を結んだ直線の線分の垂直2等分線
 22、22’ 垂直2等分線と単糸繊維断面の外周との交点
 31、31’ 外接円
 32、32’ 内接円
 33、33’ 単糸繊維の断面に現れる形状の頂点を結んだ三角形
 34、34’ 単糸繊維の断面外周
 61 測定サンプル(繊維)
 62 直径1cmのテフロン(登録商標)棒
 63 荷重
 64 結束点
 65 一定引張張力を印加したときの、テフロン(登録商標)棒の最上部に位置する繊維の幅(a)の測定点
 66 一定引張張力を印加したときの繊維の幅(b)の測定点
 67 測定サンプルと同じ糸を用いた、荷重との接合糸
11 A circle circumscribing the discharge hole provided in the nozzle 12 A circle inscribed in the discharge hole provided in the nozzle 13 An outer edge of the discharge hole provided in the nozzle 21, 21 ′ In a cross section orthogonal to the fiber axis direction of the single yarn fiber Vertical bisectors 22 and 22 'of straight line segments connecting the vertices of the appearing shapes Intersection points of the vertical bisectors and the outer periphery of the single yarn fiber section 31, 31' circumscribed circle 32, 32 'inscribed circle 33, 33 ′ Triangle connecting the vertices of the shape appearing in the cross section of the single yarn fiber 34, 34 ′ Perimeter of the cross section of the single yarn fiber 61 Measurement sample (fiber)
62 Teflon (registered trademark) rod having a diameter of 1 cm 63 Load 64 Binding point 65 Measurement point of the width (a) of the fiber located at the top of the Teflon (registered trademark) rod when a constant tensile tension is applied 66 Constant tensile tension Measuring point of fiber width (b) when applying 67. Bonded yarn with load using the same yarn as the measurement sample

Claims (10)

  1.  断面形状が略三角形であり、異型度が1.3~2.2である単糸繊維を含み、カバーファクター(CF)が2050以上2600以下、20kPa差圧下での通気度が0.25L/cm/min以下であるエアバッグ用ノンコーティング織物。 Including a single yarn fiber having a cross-sectional shape of approximately triangular and an irregularity of 1.3 to 2.2, a cover factor (CF) of 2050 or more and 2600 or less, and an air permeability under a differential pressure of 20 kPa is 0.25 L / cm. Non-coating fabric for airbag which is 2 / min or less.
  2.  ASTM D 6479で定義される滑脱抵抗力が、タテ方向とヨコ方向の平均値で700N以上、1200N以下である請求項1に記載のエアバッグ用ノンコーティング織物。 The non-coating woven fabric for an air bag according to claim 1, wherein the sliding resistance defined by ASTM D 6479 is an average value in a vertical direction and a horizontal direction of 700 N or more and 1200 N or less.
  3.  下記方法により測定される前記織物の折り畳み後の20kPa差圧下での通気度が0.30L/cm/min以下である請求項1または2に記載のエアバッグ用ノンコーティング織物。
     [織物の折り畳み後の20kPa差圧下での通気度]
     織物の幅方向両端部から30cmの範囲を除いた任意の箇所から20cm四方の試験片を切り出し、試験片を繊維軸方向(a)に沿って半分に折り、次いで前記繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折り、再び前記繊維軸方向(a)に沿って半分に折り、前記繊維軸方向(a)に直交する繊維軸方向(b)に沿って半分に折って、5cm四方に折り畳む。折り畳まれた試験片の全面に50Nの荷重を1分間付与し、次いで20cm四方に広げた状態で1分間放置する。1回目の折目と2回目の折目の交点を中心とする直径10cmの円を測定部位として20kPa差圧下での通気度を測定する。
    The non-coated fabric for an air bag according to claim 1 or 2, wherein the air permeability under a 20 kPa differential pressure after folding of the fabric measured by the following method is 0.30 L / cm 2 / min or less.
    [Air permeability under 20 kPa differential pressure after folding fabric]
    A test piece of 20 cm square is cut out from an arbitrary place excluding the range of 30 cm from both ends in the width direction of the woven fabric, the test piece is folded in half along the fiber axis direction (a), and then in the fiber axis direction (a). Fold in half along the orthogonal fiber axis direction (b), fold again in half along the fiber axis direction (a), and half in the fiber axis direction (b) orthogonal to the fiber axis direction (a) Fold it into 5cm squares. A load of 50 N is applied to the entire surface of the folded test piece for 1 minute, and then the test piece is left for 1 minute in a state where it is spread to 20 cm square. The air permeability under a differential pressure of 20 kPa is measured using a circle having a diameter of 10 cm centering on the intersection of the first fold and the second fold as a measurement site.
  4.  前記織物の20kPa差圧下での通気度に対する、請求項2に記載の方法により測定される織物の折り畳み後の20kPa差圧下での通気度の変化率が150%以下である請求項1~3のいずれか記載のエアバッグ用ノンコーティング織物。 The rate of change of the air permeability under a 20 kPa differential pressure after folding the fabric measured by the method according to claim 2 with respect to the air permeability under a 20 kPa differential pressure of the woven fabric is 150% or less. Any of the non-coating textiles for airbags.
  5.  前記織物を構成する繊維の総繊度が100dtex以上600dtex以下であり、フィラメントの本数が40本以上200本以下、単糸繊度が1dtex以上8dtex以下である請求項1~4のいずれかに記載のエアバッグ用ノンコーティング織物。 The air according to any one of claims 1 to 4, wherein the total fineness of fibers constituting the woven fabric is 100 dtex or more and 600 dtex or less, the number of filaments is 40 or more and 200 or less, and the single yarn fineness is 1 dtex or more and 8 dtex or less. Non-coated fabric for bags.
  6.  JIS L1013(1999)の8.1で定義される原糸の沸水収縮率が7%以上12%以下であり、ナイロン繊維からなる請求項1~5のいずれかに記載のエアバッグ用ノンコーティング織物。 The non-coating fabric for an air bag according to any one of claims 1 to 5, wherein the base yarn defined in 8.1 of JIS L1013 (1999) has a boiling water shrinkage of 7% or more and 12% or less and is made of nylon fiber. .
  7.  請求項1~6のいずれかに記載のエアバッグ用ノンコーティング織物を用いたことを特徴とするエアバッグ。 An airbag using the non-coated fabric for airbags according to any one of claims 1 to 6.
  8.  断面形状が丸断面形状以外の異型繊維を使用し、製織時の緯糸のカバーファクターの設定が1040以上であり、ノズル側の織前のせり出し量が320°以上350°以下であるエアバッグ用ノンコーティング織物の製造方法。 Non-airbag for airbags that use atypical fibers having a cross-sectional shape other than a round cross-sectional shape, the weft cover factor setting during weaving is 1040 or more, and the amount of protrusion before weaving on the nozzle side is 320 ° to 350 ° A method for producing a coated fabric.
  9.  断面形状が多角形状であり、頂点の個数が3個以上6個以下である請求項8に記載のエアバッグ用ノンコーティング織物の製造方法。 The method for producing a non-coated fabric for an air bag according to claim 8, wherein the cross-sectional shape is a polygonal shape and the number of vertices is 3 or more and 6 or less.
  10.  断面形状が多角形状であり、頂点の個数が3個である請求項8又は9に記載のエアバッグ用ノンコーティング織物の製造方法。 The method for producing a non-coated fabric for an air bag according to claim 8 or 9, wherein the cross-sectional shape is a polygonal shape and the number of vertices is three.
PCT/JP2017/034651 2016-09-30 2017-09-26 Non-coated fabric for airbag and airbag using same WO2018062132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542574A JP7068633B2 (en) 2016-09-30 2017-09-26 Non-coated woven fabric for airbags and airbags using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-193037 2016-09-30
JP2016193037 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062132A1 true WO2018062132A1 (en) 2018-04-05

Family

ID=61762727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034651 WO2018062132A1 (en) 2016-09-30 2017-09-26 Non-coated fabric for airbag and airbag using same

Country Status (2)

Country Link
JP (1) JP7068633B2 (en)
WO (1) WO2018062132A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199449A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Fabric base for non-coated air bag and air bag
JP2002069801A (en) * 2000-09-05 2002-03-08 Tsudakoma Corp Method for cutting weft in removing abnormal yarn
JP2002317343A (en) * 2001-04-19 2002-10-31 Toyobo Co Ltd High-density woven fabric for air bag
JP2003293243A (en) * 2002-03-29 2003-10-15 Toray Ind Inc Fabric and air bag
JP2012144822A (en) * 2011-01-13 2012-08-02 Tsudakoma Corp Method for weaving in air jet type loom
JP2014159651A (en) * 2013-02-19 2014-09-04 Tsudakoma Corp Weft yarn bending device for water jet loom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199449A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Fabric base for non-coated air bag and air bag
JP2002069801A (en) * 2000-09-05 2002-03-08 Tsudakoma Corp Method for cutting weft in removing abnormal yarn
JP2002317343A (en) * 2001-04-19 2002-10-31 Toyobo Co Ltd High-density woven fabric for air bag
JP2003293243A (en) * 2002-03-29 2003-10-15 Toray Ind Inc Fabric and air bag
JP2012144822A (en) * 2011-01-13 2012-08-02 Tsudakoma Corp Method for weaving in air jet type loom
JP2014159651A (en) * 2013-02-19 2014-09-04 Tsudakoma Corp Weft yarn bending device for water jet loom

Also Published As

Publication number Publication date
JPWO2018062132A1 (en) 2019-07-11
JP7068633B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP5365272B2 (en) Fabric for airbag and method for producing fabric for airbag
JP5253685B1 (en) Synthetic fiber
TWI241965B (en) Coated air bag bottom and air bag
JP3855775B2 (en) Coat airbag base fabric
JP5100895B2 (en) Airbag base fabric
BRPI0910390B1 (en) AIR BAG TISSUE
JP2012502194A (en) Airbag fabric and method for producing the same
JP2007182646A (en) Flame-retardant ultrafine polyester fiber, method for producing the same and high-density woven fabric
KR102508797B1 (en) Fabrics and airbags for airbags
JPH07252740A (en) Base fabric for air bag
CN110997995B (en) Fabric for airbag, coated fabric for airbag, and airbag using same
JP2010174390A (en) Woven fabric for airbag, and method for producing the same
JP4538967B2 (en) Airbag fabric
JP4175162B2 (en) Seat belt webbing and manufacturing method thereof
JP2004176221A (en) Ground fabric for coated air bag and method for producing the same
WO2018062132A1 (en) Non-coated fabric for airbag and airbag using same
JP4306392B2 (en) Non-coated airbag base fabric and its manufacturing method
JP4306391B2 (en) Airbag base fabric and manufacturing method thereof
JP6008058B1 (en) Airbag fabric and airbag
JP2009000751A (en) Woven fabric for polishing cloth, its manufacturing method, and the polishing cloth
JP2002293209A (en) Fiber for airbag, method for manufacturing the same and base cloth for non-coated airbag
JP2011058132A (en) Base cloth for air bag and method for producing the same
JP6008057B1 (en) Airbag fabric and airbag
JP3859135B2 (en) Airbag base fabric
JPH09209223A (en) High-strength multifilament yarn, its production and non-air permeable high-strength cloth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856083

Country of ref document: EP

Kind code of ref document: A1