WO2018061924A1 - Communication control method and communication system - Google Patents

Communication control method and communication system Download PDF

Info

Publication number
WO2018061924A1
WO2018061924A1 PCT/JP2017/033880 JP2017033880W WO2018061924A1 WO 2018061924 A1 WO2018061924 A1 WO 2018061924A1 JP 2017033880 W JP2017033880 W JP 2017033880W WO 2018061924 A1 WO2018061924 A1 WO 2018061924A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
idle
bearer
terminal
base station
Prior art date
Application number
PCT/JP2017/033880
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 下城
雅純 清水
淳 巳之口
滋 岩科
スリサクル タコルスリ
マラ レディ サマ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2018061924A1 publication Critical patent/WO2018061924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to a communication control method executed in a communication system in which a terminal can simultaneously access a plurality of user data packet paths, and the communication system.
  • a terminal In a mobile network, a terminal (UE: User Equipment) uses a user data packet path (bearer (PDN connection), PDU) with a PDN (Packet Data Network) corresponding to the service in order to use a target service. (Referred to as Protocol Data Unit session)) (see Patent Document 1).
  • PDN Packet Data Network
  • the base station that manages the terminal determines whether the user data packet path is in operation by monitoring the presence / absence of packets transmitted / received through the user data packet path.
  • the user data packet path has been released and is in an idle state.
  • the present invention has been made to solve the above-described problem. Even when a terminal accesses a plurality of user data packet paths at the same time, it appropriately determines the operating status of each path and performs control related to release of the path. One of the purposes is to appropriately perform the above.
  • a communication control method includes a terminal, a base station, a processing server that executes processing related to the terminal, and one or a plurality of serving gateways, and a plurality of bearers pass through the base station.
  • the base station requests the processing server to release the one bearer, and the processing server responds to the request from the base station in response to a request from the base station. Performing a release process.
  • the base station measures the idle time for each bearer and is measured. It is determined for each bearer whether or not the idle time has reached a predetermined idle timer threshold for each of the plurality of bearers. When it is determined that the idle time has reached the idle timer threshold for one bearer, the base station requests the processing server to release the one bearer, and the processing server responds to the request from the base station. Release one bearer. Accordingly, even when the terminal accesses a plurality of bearers (user data packet paths) at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
  • a communication control method includes a terminal, a base station, a processing server that executes processing related to the terminal, a plurality of control planes that transmit control signals for communication services used by the terminal, A plurality of user planes that transmit user signals for the communication service, and a communication system in which a PDU session is set between the terminal and each of the plurality of user planes via the base station,
  • the base station measures the idle time, which is the duration of the idle state of the PDU session, for each PDU session; and the base station determines that the PDU session is in the idle state.
  • An idle timer threshold for determining that there is a predetermined idle for each of the plurality of PDU sessions. Determining, for each PDU session, whether or not the measured idle time has reached a timer threshold, and if it is determined that the idle time has reached the idle timer threshold for one PDU session; The base station requesting the processing server to release the one PDU session; and the processing server performing the one PDU session release process in response to a request from the base station. Prepare.
  • the base station measures the idle time for each PDU session and is measured. It is determined for each PDU session whether or not the idle time has reached a predetermined idle timer threshold for each of a plurality of PDU sessions. When it is determined that the idle time has reached the idle timer threshold for one PDU session, the base station requests the processing server to release the one PDU session, and the processing server responds to the request from the base station. In response, one PDU session is released. Accordingly, even when the terminal accesses a plurality of PDU sessions (user data packet paths) at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
  • a communication control method includes a terminal, a base station, a processing server that executes processing related to the terminal, and a plurality of control signals for transmitting a communication service used by the terminal.
  • a communication control method executed in a communication system wherein the terminal measures an idle time, which is a duration of an idle state of a PDU session, for each PDU session, and the terminal is in an idle state of a PDU session. This is an idle timer threshold value for judging that the ID is determined in advance for each of a plurality of PDU sessions.
  • a communication control method includes a terminal, a base station, a processing server that executes processing related to the terminal, and a plurality of control signals for transmitting a communication service used by the terminal. And a plurality of user planes for transmitting user signals for the communication service, and a PDU session is set between the terminal and each of the plurality of user planes via the base station.
  • a communication control method executed in a communication system wherein the processing server measures an idle time, which is a duration of an idle state of a PDU session, for each PDU session; Is an idle timer threshold for determining that is in an idle state, and in advance for each of a plurality of PDU sessions Determining, for each PDU session, whether or not the measured idle time has reached the determined idle timer threshold, and determining that the idle time has reached the idle timer threshold for one PDU session
  • the processing server includes a step of releasing the one PDU session, and has the same effect as described above.
  • the present invention even when a terminal accesses a plurality of user data packet paths at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
  • FIG. 1 It is a figure which shows the structural example of the communication system which concerns on 1st Embodiment.
  • (A) is a figure showing an example of a correspondence table concerning an idle timer held by MME
  • (b) and (c) are figures showing an example of a correspondence table concerning an idle timer held by eNB. is there.
  • It is a sequence diagram which shows the releasing process of S1 bearer in 1st Embodiment.
  • multiple bearers are set between a plurality of SGWs (Serving gateways) different from a terminal (User Equipment (hereinafter referred to as “UE” in the embodiment of the invention)) in an EPC (Evolved Packet Core) network.
  • the eNodeB corresponding to the base station (hereinafter referred to as “eNB” in the embodiment of the present invention) takes the lead in controlling to release one of the plurality of bearers.
  • control is performed to release one bearer among a plurality of bearers under the circumstances where a plurality of bearers are set between a UE and a single SGW.
  • a PDU session is set between a UE and each of a plurality of user planes in a so-called next generation network (NGN: Next Generation Network).
  • NTN Next Generation Network
  • the fourth embodiment is an embodiment that is different from the third embodiment regarding a so-called next-generation network.
  • the fifth to seventh embodiments are various modifications relating to the next generation network. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the communication system 1 includes a terminal (UE) 10, an eNB 20, and an MME (Processing for location management, authentication control, communication path setting, etc. of the UE 10 located in the network.
  • Mobility Management Entity 30, HSS (Home Subscriber Server) 60 that manages user information (subscriber information) of the terminal user, SGW 40 described later, and PGW (Packet data network gateway) described later located upstream of the SGW 40. 50.
  • the “processing server” according to the present invention corresponds to the MME 30.
  • the SGW 40 is a gateway device that functions as a serving packet switch that accommodates LTE, and one or a plurality of SGWs 40 are provided corresponding to the requirements of the communication service used by the UE 10.
  • the PGW 50 is a junction point with a PDN (Packet data network), and is a gateway device that performs IP address assignment, packet transfer to the SGW, and the like.
  • PDN Packet data network
  • SGWs here, SGW1, SGW2
  • PGWs here, PGW1, PGW2
  • the eNB 20 measures the idle time, which is the duration of the idle state of the bearer, for each bearer, and sets the idle time measured by the measurement unit 21 to an idle timer threshold described later.
  • a determination unit 22 that determines whether or not the bearer has been reached, and requests the MME 30 to release the one bearer when the determination unit 22 determines that the idle time has reached the idle timer threshold for one bearer.
  • the MME 30 includes a release processing unit 31 that performs a release process of one bearer in response to a request from the request unit 23.
  • the idle timer threshold value (hereinafter also referred to as “Idle timer” in the embodiment of the present invention) is an idle time reference value for determining that one bearer is in an idle state. It is determined in advance by the MME 30 (or SMF (Slice Management Function) (not shown)) based on the type, the usage type of the UE, the subscriber type of the terminal user, and the like.
  • the MME 30 holds a correspondence table storing an E-RAN (Enterprise Radio Access Network) ID, EPS (Enhanced Packet System) ID, DCN (Data Center Network) ID, etc. and an idle timer threshold value in association with each other. The timer threshold value is notified to the eNB 20.
  • E-RAN Enterprise Radio Access Network
  • EPS Enhanced Packet System
  • DCN Data Center Network
  • the Idle timer is stored in a table format, for example, in association with each bearer by the determination unit 22 of the eNB 20.
  • the determination unit 22 determines for each bearer whether or not the idle time measured by the measurement unit 21 has reached the idle timer threshold, using the stored Idle timer information.
  • each functional block may be realized by one device physically and / or logically coupled, or two physically and / or logically separated two wired and / or wirelessly linked to each other. You may implement
  • the hardware configuration example described below is not limited to the eNB 20 and may be employed in the HSS 60, the PGW 50, the SGW 40, the MME 30, and the UE 10 illustrated in FIG.
  • the eNB 20 in an embodiment of the present invention may function as a computer that performs bearer (PDU session) release control according to the present invention.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the eNB 20 according to the embodiment of the present invention.
  • the eNB 20 described above may be physically configured as a computer device including a processor 20A, a memory 20B, a storage 20C, a communication module 20D, an input device 20E, an output device 20F, a bus 20G, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the eNB 20 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
  • Each function in the eNB 20 reads predetermined software (program) on hardware such as the processor 20A and the memory 20B, so that the processor 20A performs calculation, performs communication by the communication module 20D, and stores data in the memory 20B and the storage 20C. This is realized by controlling reading and / or writing.
  • the processor 20A controls the entire computer by operating an operating system, for example.
  • the processor 20A may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the measurement unit 21, the determination unit 22, the request unit 23, and the like described above may be realized by the processor 20A.
  • the processor 20A reads a program (program code), a software module, and data from the storage 20C and / or the communication module 20D to the memory 20B, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the measurement unit 21, the determination unit 22, the request unit 23, and the like may be realized by a control program stored in the memory 20B and operated by the processor 20A, and may be similarly realized for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 20A, they may be executed simultaneously or sequentially by two or more processors 20A.
  • the processor 20A may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 20B is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 20B may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 20B can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 20C is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 20C may be called an auxiliary storage device.
  • the above-described storage medium may be, for example, a database, a server, or other suitable medium including the memory 20B and / or the storage 20C.
  • the communication module 20D is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, or the like.
  • the input device 20E is an input device that accepts external input.
  • the output device 20F is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 20E and the output device 20F may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 20A and the memory 20B is connected by a bus 20G for communicating information.
  • the bus 20G may be configured with a single bus or may be configured with different buses between devices.
  • the eNB 20 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Alternatively, some or all of the functional blocks may be realized by the hardware. For example, the processor 20A may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the attach process in the first embodiment will be described with reference to FIG.
  • the Attach Request is transmitted from the eNB to the MME (Step 1 in FIG. 4).
  • the MME selects “SGW1” as the SGW and “PGW1” as the PGW according to the service type used by the UE, and establishes a default bearer (step 2 in FIG. 4).
  • UE authentication processing is also executed as in the conventional case.
  • the MME receives the idle timer information (IDLE timer1) when the UE uses the service related to the bearer 1 from the table of FIG.
  • IDLE timer1 idle timer information
  • an Initial Context Request with E-RAN ID-1 and acquired IDLE timer1 added is sent to the eNB (step 3 in FIG. 4)
  • an RRC connection is established between the UE and the eNB (FIG. 4).
  • Step 4 thereby, bearer 1 is established between UE and eNB, between eNB and SGW1, and between SGW1 and PGW1.
  • the eNB acquires the idle timer information (IDLE timer 1) related to the bearer 1 in step 3 described above.
  • the Bearer Request is transmitted from the eNB to the MME (step 5 in FIG. 4).
  • the MME selects “SGW2” as the SGW and “PGW2” as the PGW according to the service type used by the UE, and establishes a default bearer (step 6 in FIG. 4).
  • the MME receives the idle timer information (IDLE timer 2) when the UE uses the service related to the bearer 2 from the table of FIG. 2 (a) stored in its own device (MME) or from the SMF (not shown).
  • IDLE timer 2 the idle timer information
  • Step 7 in FIG. 4 an RRC connection is established between the UE and eNB (FIG. 4).
  • Step 8) bearer 2 is established between UE and eNB, between eNB and SGW2, and between SGW2 and PGW2.
  • the eNB acquires idle timer information (IDLE timer 2) related to the bearer 2 in step 7 described above.
  • bearers 1 and 2 are established by repeating almost the same bearer establishment procedure twice.
  • the EPS ID may be included in the Initial Context Request instead of the E-RAN ID for transmission.
  • the S1 bearer release process shown in FIG. 5 and the bearer release process shown in FIG. 6 can be executed as the process of releasing one bearer.
  • “S1” in the S1 bearer is an interface name between the eNB-MME and the eNB-SGW.
  • the idle timers of the bearers 1 and 2 are operating in the eNB with the bearers 1 and 2 already established (step 1 in FIG. 5). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 5) while there is no uplink / downlink traffic of one bearer (here, for example, bearer 2), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
  • Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 5), and eNB sends S1 UE context Release Request including E-RAB (E-UTRAN Access Bearer) / EPS ID. It transmits to MME (step 4 of FIG. 5), and MME transmits Release Access Bearer Request to SGW2 corresponding to bearer 2 (step 5 of FIG. 5). Thereby, SGW2 releases S1 bearer between eNB and SGW2, and transmits Release Access Bearer Response to MME (step 6 of Drawing 5). After that, the MME sends an S1 UE context Release Command including the E-RAB / EPS ID to the eNB (Step 7 in FIG.
  • E-RAB E-UTRAN Access Bearer
  • Step 8) of FIG. 5 a specific S1 bearer (between eNB and SGW2) and a bearer between UE and eNB in bearer 2, and releasing a bearer between SGW2 and PGW2, as shown in FIG. It remains without being.
  • the bearer 1 remains without being released.
  • the bearer 1 since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
  • the idle timers of the bearers 1 and 2 are operating in the eNB with the bearers 1 and 2 already established (step 1 in FIG. 6). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 6) while there is no up / down traffic of one bearer (for example, bearer 2 in this case), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
  • Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 6), and eNB transmits Indication of Bearer Release including E-RAB / EPS ID to MME (FIG. 6).
  • the MME sends a Delete Bearer Command to the SGW 2 corresponding to the bearer 2 (step 5 in FIG. 6).
  • SGW2 sends a Delete Bearer Command to PGW2 (step 6 in FIG. 6), PGW2 sends a Delete Bearer Request to SGW2 (step 7 in FIG. 6), and SGW2 deletes Delete Bearer Request. Is transmitted to the MME (step 8 in FIG. 6).
  • the MME sends a Deactivate Bearer Request including the E-RAB / EPS ID to the eNB (step 9 in FIG. 6), and the RRC Connection Release is executed for the bearer 2 between the eNB and the UE that receives the request (see FIG. 6). 6 step 10).
  • the eNB sends a Deactivate Bearer Response including the E-RAB / EPS ID to the MME (Step 11 in FIG. 6), and the MME sends a Delete Bearer Response to the SGW 2 (Step 12 in FIG. 6).
  • the SGW 2 transmits a Delete Bearer Response to the PGW 2 (Step 13 in FIG. 6).
  • the bearer 2 is released between the UE and the PGW 2 as shown in FIG.
  • the bearer 1 since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
  • the communication system 1S according to the second embodiment has substantially the same configuration as the communication system 1 (FIG. 1) of the first embodiment described above, but a plurality of bearers are between the UE 10 and a single SGW 40. Is different from the communication system 1 (FIG. 1) of the first embodiment in that it reaches a single PGW 50.
  • the MME uses the idle timer information (IDLE timer 1) when the UE uses the service related to the bearer 1 and the idle timer information (IDLE timer 2) when the UE uses the service related to the bearer 2 as its own (MME).
  • IDLE timer 1 when the UE uses the service related to the bearer 1
  • IDLE timer 2 when the UE uses the service related to the bearer 2 as its own (MME).
  • the Initial Context Request including the combination of E-RAN ID1 and IDLE timer1 and the combination of E-RAN ID2 and IDLE timer2 is sent to the eNB.
  • an RRC connection is then established between the UE and the eNB (step 4 in FIG. 8), which allows the UE and eNB, the eNB and the single SGW, and the single Bearer 1 and Bearer 2 are established between the SGW and the single PGW.
  • bearers 1 and 2 are established by executing the bearer establishment procedure once.
  • a bearer release process shown in FIG. 9 is executed as a process of releasing one bearer.
  • the idle timer of the bearer 1 and the idle timer of the bearer 2 are operating in the eNB (step 1 in FIG. 9). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 9) without the uplink / downlink traffic of one bearer (here, for example, bearer 2), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
  • Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 9), and eNB transmits Indication of Bearer Release including E-RAB / EPS ID to MME (FIG. 9).
  • the MME sends a Delete Bearer Command to the SGW (Step 5 in FIG. 9).
  • the SGW sends a Delete Bearer Command to the PGW (step 6 in FIG. 9), the PGW sends a Delete Bearer Request to the SGW (step 7 in FIG. 9), and the SGW then deletes the Delete Bearer Request. Is transmitted to the MME (step 8 in FIG. 9).
  • the MME sends a Deactivate Bearer Request including the E-RAB / EPS ID to the eNB (step 9 in FIG. 9), and RRC Connection Release is executed for the bearer 2 between the eNB and the UE that receives the request (see FIG. 9). 9 step 10). Thereafter, the eNB transmits a Deactivate Bearer Response including the E-RAB / EPS ID to the MME (Step 11 in FIG. 9), and the MME transmits a Delete Bearer Response to the SGW (Step 12 in FIG. 9). The SGW transmits a Delete Bearer Response to the PGW (step 13 in FIG. 9). As described above, as shown in FIG. 9, the bearer 2 is released between the UE and the PGW.
  • the bearer 1 since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
  • a PDU session is set between the UE and each of a plurality of user planes, and one of the PDU sessions is led by a base station (eNB).
  • eNB base station
  • the communication system 2 includes a terminal (UE) 10, an eNB 20 corresponding to a base station, and a common control plane (hereinafter referred to as an embodiment of the invention) in a next-generation network. (Hereinafter referred to as “Common CP”)) 35, SDM (Subscription Data Management) 65 for managing user information (subscriber information) of the terminal user, CP-SM (Control Plane-Session Management) 70 to be described later, And a user plane (hereinafter referred to as “UP” in the embodiment of the present invention) 80.
  • the “processing server” according to the present invention corresponds to Common CP35.
  • the CP-SM 70 corresponds to a session management function unit in a gateway that transmits a control signal for a communication service used by the UE 10, and one or more CP-SMs 70 are provided corresponding to the requirements of the communication service.
  • CP-SM1 and CP-SM2 are set as an example.
  • UP 80 corresponds to a gateway that transmits a user signal for a communication service used by UE 10, and UP 80 is set corresponding to each CP-SM 70. That is, UP-1 is set corresponding to CP-SM1, and UP-2 is set corresponding to CP-SM2.
  • a V2X (Vehicle to Everything) service and a video distribution service are assumed, and the processing of FIG. Therefore, a V2X session is set between the UE 10 and the UP-1, and an MBB (Mobile broadband) session is set between the UE 10 and the UP-2 for the moving image distribution service.
  • V2X Vehicle to Everything
  • MBB Mobile broadband
  • Common CP 35 and eNB 20 related functional blocks release processing unit 36, measurement unit 21 and the like related to the present invention
  • Idle timer correspondence table shown in FIGS. 2 (a) and 2 (c) Idle timer correspondence table shown in FIGS. 2 (a) and 2 (c), and each of FIG. Since the hardware configuration example of the apparatus is the same as that of the first embodiment, a duplicate description is omitted here.
  • the correspondence table of Idle timer shown in FIG. 2A is held by the Common CP 35 corresponding to the MME 30 in FIG.
  • the idle timer is stored in a table format, for example, in association with each PDU session by the determination unit 22 of the eNB 20.
  • the determination unit 22 determines, for each PDU session, whether or not the idle time measured by the measurement unit 21 has reached the idle timer threshold using the stored Idle timer information.
  • UE authentication and slice selection are executed by a conventional method among UE, eNB and Common CP (abbreviated as “C-CP” in FIGS. 11 and 12).
  • C-CP Common CP
  • Step 1 in FIG. 11 a V2X slice is selected for the V2X service, and an MBB slice is selected for the video distribution service.
  • the PDU Session Request is transmitted from the eNB to the Common CP (Step 2 in FIG. 11).
  • the Common CP obtains the user information (subscriber information) of the UE such as the UE ID from the SDM (Step 3 in FIG. 11), and transmits the PDU Session Request to the CP-SM1 (Step 4 in FIG. 11).
  • CP-SM1 selects UP-1 as the UP for the V2X slice (step 5 in FIG. 11), and transmits a PDU Session Request to UP-1 (step 6 in FIG. 11).
  • UP-1 Upon receiving the PDU Session Request, UP-1 sends a PDU Session Response to CP-SM1 as an affirmative response (Step 7 in FIG. 11), and CP-SM1 sends a PDU Session Response to the Common CP (FIG. 11). Step 8). Further, the Common CP obtains the idle timer information when the UE uses the V2X service from the table of FIG. 2 (a) stored in its own device (Common CP) or from the SMF (not shown), and the Session ID.
  • the PDU Session Response to which the UE ID, UP ID and the acquired idle timer information are added is transmitted to the eNB, and the eNB transmits the PDU Session Response to the UE (Step 9 in FIG. 11).
  • the eNB receives the PDU Session Response to which the idle timer information for the V2X slice is added, and acquires the idle timer information for the V2X slice.
  • a PDU session for the V2X slice (hereinafter referred to as “V2X PDU session”) is established between the UE and the eNB and between the eNB and the UP-1 (step 10 in FIG. 11).
  • MBB PDU session For the PDU session for the MBB slice (hereinafter referred to as “MBB PDU session”), when the UE sends a PDU Session Request for the MBB slice to the eNB, the PDU Session Request is sent from the eNB to the Common CP. (Step 11 in FIG. 11). Thereafter, for the MBB slice, processing similar to Steps 3 to 8 is executed between Common CP, CP-SM2 and UP-2 (Step 12 in FIG. 11). Further, the Common CP acquires idle timer information when the UE uses the MBB service from the table of FIG. 2A stored in the own device (Common CP) or from the SMF (not shown), and the Session ID.
  • Common CP acquires idle timer information when the UE uses the MBB service from the table of FIG. 2A stored in the own device (Common CP) or from the SMF (not shown), and the Session ID.
  • the PDU Session Response to which the UE ID, UP ID and the acquired idle timer information are added is transmitted to the eNB, and the eNB transmits the PDU Session Response to the UE (Step 13 in FIG. 11).
  • the eNB receives the PDU Session Response to which the idle timer information for the MBB slice is added, and acquires the idle timer information for the MBB slice.
  • an MBB PDU session is established between the UE and eNB and between the eNB and UP-2 (step 14 in FIG. 11).
  • V2X PDU session and an MBB PDU session are established by repeating almost the same PDU session establishment procedure twice.
  • the process shown in FIG. 12 is executed as a process of releasing one PDU session.
  • the V2X PDU session and the MBB PDU session are already established, and the V2X PDU session idle timer and the MBB PDU session idle timer are operating in the eNB (step 1 in FIG. 12). . That is, the idle time is measured for each PDU session by the measurement unit 21 in FIG.
  • the idle timer of the PDU session reaches a threshold (IDLE timer 2) without any upstream / downstream traffic of one PDU session (for example, MBB PDU session in this case) (step 2 in FIG. 12)
  • the judging unit 22 It is determined that the idle time of the MBB PDU session has reached IDLE timer2, and the request unit 23 requests the release of the MBB PDU session, and the MBB PDU session release process is executed as follows.
  • the RRC Connection Release is executed between the eNB and the UE for the MBB PDU session (Step 3 in FIG. 12), and the eNB transmits a PDU Session Release Request including the UE ID and Session ID to the Common CP (FIG. 12).
  • the Common CP identifies CP-SM2 from the Session ID included in the PDU Session Release Request (Step 5 in FIG. 12), and transmits the PDU Session Release Request including the UE ID and Session ID to CP-SM2.
  • CP-SM2 sends a Release Session Request including the UE ID and Session ID to UP-2 (Step 7 in FIG. 12), and UP-2 corresponds to the UE ID included in the received Release Session Request. Release the UE context for the UE (step 8 in FIG. 12).
  • UP-2 sends a Release Session Response including the UE ID and Session ID to CP-SM2 as an affirmative response (Step 9 in FIG. 12), and CP-SM2 includes the UE ID and Session ID.
  • PDU Session Release Response is sent to Common CP (Step 10 in FIG. 12).
  • MBB NAS Network Attached Storage
  • the MBB PDU session is released (Step 11b in FIG. 12).
  • the MBB PDU session is released between the UE and UP-2.
  • the UE state remains Connected. Accordingly, even when the terminal accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
  • the MME in the EPC network is AMF (Access and Mobility Management Function)
  • the SGW is SMF (Session Management Function) and UP (U-Plane node), respectively.
  • the node name is changed, and the message exchange between the MME-SGW in the EPC network is replaced with the message exchange between the AMF-SMF or the AMF-UP via the SMF.
  • the functions of SGW and PGW in the EPC network are integrated into UP, thereby omitting message exchange between SGW and PGW.
  • a radio access network includes a device corresponding to the base station (eNB) 20 described in the first to third embodiments. It is referred to as “RAN”.
  • FIG. 13 shows PDU session establishment processing in the fourth embodiment.
  • PDU1 the PDU session
  • PDU2 the new PDU session
  • UP # 2 the UE and the second UP
  • UP # 2 When the AMF sends a Modify Session Request to UP # 2 via the second SMF (SMF # 2) (Step 6 in FIG. 13), UP # 2 that has received the Modify Session Request receives Modify as an affirmative response. Session Response is transmitted to AMF via SMF # 2 (Step 7 in FIG. 13). Thereby, a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
  • PDU2 PDU session
  • FIG. 14 shows a PDU session release process in the fourth embodiment.
  • a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
  • an idle timer for each PDU is operating in the RAN. That is, the idle time is measured for each PDU session by the measurement unit 21 (FIG. 1) in the RAN (step 1 in FIG. 14). Then, when the idle timer of the PDU2 expires without the upstream / downstream traffic of one PDU session (here, PDU2) (step 2 in FIG. 14), the determination unit 22 (FIG. 1) expires the idle timer of the PDU2. PDU2 is requested to be released by the request unit 23 (FIG. 1), and the following PDU2 release process is executed.
  • RRC Connection Release is executed between RAN and UE for PDU2 (step 3 in FIG. 14), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (step in FIG. 14). 4). Then, when AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 5 in FIG. 14), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 6 in FIG. 14). Further, the AMF sends a UE Context Release Command to the RAN as a response to the UE Context Release Request (step 7 in FIG. 14), while the RAN sends a UE Context Release Complete to the AMF (FIG. 14). Step 8). Accordingly, as shown in FIG. 14, PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
  • PDU1 PDU1
  • PDU1 PDU1
  • the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
  • the AMF is the “processing server” described in the claims
  • the SMF is the “control plane”
  • the UP is the “user plane”.
  • RAN corresponds to a “base station”, respectively.
  • the operation status of each bearer or each PDU session is appropriately determined to release the bearer or PDU session. Such control can be performed appropriately.
  • an idle timer threshold for determining that it is in an idle state is used.
  • This idle timer threshold is determined by the base station (eNB). It is stored in association with each bearer or each PDU session as shown in FIG. 2 (b) and FIG. 2 (c). In this way, by managing the idle timer threshold by the base station (eNB), it is possible to appropriately monitor the idle time when a new bearer or PDU session is established, and to determine the operating status of each bearer or each PDU session. Can be done appropriately.
  • the HSS 60 in FIG. 1 and FIG. 7 and the SDM 65 in FIG. 10 are not essential components for the control related to the release of the bearer or PDU session of the present invention, and the appropriate idle timer threshold for each bearer or PDU session is As long as the configuration is notified, the HSS 60 and the SDM 65 may be omitted.
  • the UE 10 includes a measurement unit 21, a determination unit 22, and a request unit 23 according to the first to fourth embodiments instead of the radio access network (RAN) 25.
  • the node name is changed to AMF37 for the MME in the EPC network and SMF75 and UP80 for the SGW, respectively.
  • the RAN 25 includes a device corresponding to the base station (eNB) 20 described in the first to third embodiments, and is referred to as “RAN” below.
  • FIG. 16 shows a PDU session establishment process in the fifth embodiment.
  • PDU1 the PDU session
  • PDU2 the new PDU session
  • UP # 2 the UE and the second UP
  • UP # 2 Service Request (UP # 2)
  • UP # 2 Service Request (UP # 2)
  • UP # 2 Service Request
  • the AMF is requested.
  • PDU2 idle timer threshold for a new PDU session
  • the AMF transmits an Initial Context Setup Request to which the calculated PDU2 idle timer threshold information is added to the RAN (step 3 in FIG. 16)
  • the Initial Context Setup Request is forwarded to the UE (in FIG. 16).
  • the UE acquires information on the idle timer threshold for PDU2 thereby.
  • a radio bearer is set up between the UE and the RAN (step 5 in FIG. 16), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 6 in FIG. 16).
  • the AMF sends a Modify Session Request to UP # 2 via the second SMF (SMF # 2) (Step 7 in FIG. 16)
  • UP # 2 that has received the Modify Session Request receives Modify as a positive response.
  • Session Response is transmitted to AMF via SMF # 2 (Step 8 in FIG. 16).
  • PDU2 a new PDU session
  • FIG. 17 shows a PDU session release process in the fifth embodiment.
  • a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
  • an idle timer for each PDU is operating in the UE. That is, the idle time is measured for each PDU session by the measurement unit 21 in the UE 10 in FIG. 15 (step 1 in FIG. 17). Then, when the idle timer of the PDU2 expires without the uplink / downlink traffic of one PDU session (here, PDU2) (step 2 in FIG. 17), the determination unit 22 determines that the idle timer of the PDU2 has expired, The request unit 23 requests the release of PDU2, and the following PDU2 release process is executed.
  • RRC Connection Release is executed between RAN and UE for PDU2 (Step 3 in FIG. 17), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (Step in FIG. 17). 4). Then, when AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 5 in FIG. 17), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 6 in FIG. 17). Further, the AMF transmits a UE Context Release Command to the RAN as a response to the UE Context Release Request (Step 7 in FIG. 17), while the RAN transmits a UE Context Release Complete to the AMF (FIG. 17). Step 8). Thus, as shown in FIG. 17, PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
  • PDU1 PDU1
  • PDU1 PDU1
  • the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
  • the AMF 37 includes the measurement unit 21 and the determination unit 22 in the first to fourth embodiments in addition to the release processing unit 36.
  • FIG. 19 shows PDU session establishment processing in the sixth embodiment.
  • the new PDU session (PDU2) becomes the UE and the second UP (UP # 2). Processes set between and are shown.
  • a service request (Service Request (UP # 2)) provided by UP # 2 is sent from the UE to the AMF via the RAN (step 1 in FIG. 19)
  • the AMF is requested.
  • an idle timer threshold value for a new PDU session (PDU2) is calculated (step 2 in FIG. 19).
  • the AMF transmits an Initial Context Setup Request to the RAN (Step 3 in FIG. 19)
  • the Initial Context Setup Request is transferred to the UE (Step 4 in FIG. 19).
  • a radio bearer is set up between the UE and the RAN (step 5 in FIG. 19), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 6 in FIG. 19).
  • FIG. 20 shows a PDU session release process in the sixth embodiment.
  • a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
  • an idle timer for each PDU is operating in the AMF. That is, the idle time is measured for each PDU session by the measurement unit 21 in the AMF 37 in FIG. 18 (step 1 in FIG. 20). Then, when the idle timer of the PDU2 expires without the uplink / downlink traffic of one PDU session (here, PDU2), the determination unit 22 determines that the idle timer of the PDU2 has expired (step 2 in FIG. 20). The release processing unit 36 executes the following PDU2 release processing.
  • RRC Connection Release between RAN and UE is executed for PDU2 (Steps 3 and 4 in FIG. 20), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (FIG. 20).
  • Step 5 When the AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 6 in FIG. 20), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 7 in FIG. 20).
  • the AMF sends a UE Context Release Command to the RAN as a response to the UE Context Release Request (step 8 in FIG. 20), while the RAN sends a UE Context Release Complete to the AMF (FIG. 20).
  • PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
  • PDU1 PDU1
  • PDU1 PDU1
  • the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
  • an SMF calculates an idle timer threshold for a new PDU session, instead of AMF, for a so-called next-generation network.
  • the RAN holds information on the calculated idle timer threshold and measures the idle time for each PDU session, but instead of the RAN as in the fifth and sixth embodiments, The idle timer threshold information calculated by the UE or AMF may be held, and the idle time may be measured for each PDU session.
  • FIG. 21 shows a PDU session establishment process in the seventh embodiment, which includes an idle timer threshold value calculation process by the SMF.
  • PDU1 a PDU session
  • PDU2 a new PDU session
  • a service request (Service Request (UP # 2)) provided by UP # 2 is sent from the UE to the AMF via the RAN (step 1 in FIG. 21)
  • the AMF PDU Session Request (UP # 2) is transmitted to the second SMF (SMF # 2) (step 2 in FIG. 21).
  • the SMF # 2 calculates an idle timer threshold for a new PDU session (PDU2) based on the requested service characteristics and the like (step 3 in FIG. 21).
  • the SMF # 2 transmits a PDU Session Response to which the calculated PDU2 idle timer threshold information is added to the AMF (step 4 in FIG. 21)
  • the AMF receives the PDU2 idle timer threshold information.
  • the added Initial Context Setup Request is transmitted to the RAN (Step 5 in FIG. 21).
  • the RAN obtains information on the idle timer threshold for PDU2, and thereafter, it is possible to measure the idle time of PDU2 using the information on the threshold.
  • a radio bearer is set up between the UE and the RAN (step 6 in FIG. 21), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 7 in FIG. 21).
  • UP # 2 that receives the Modify Session Request sends Modify Session Response as an affirmative response to SMF # 2.
  • the data is transmitted to the AMF via (step 9 in FIG. 21).
  • a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
  • the SMF may calculate the idle timer threshold, and the information on the calculated idle timer threshold is appropriately transmitted to a device (here, RAN) that performs the idle time measurement. And retained.
  • a device here, RAN
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • the base station (eNB) of this embodiment can accommodate one or a plurality of cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote). A communication service can also be provided by Radio Head).
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, access point, femto cell, small cell, and the like.
  • a terminal is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal , Wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table) , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.

Abstract

In this communication system where a plurality of bearers are set between a UE and one or more SGWs via an eNB, the eNB measures an idle time for each of the bearers, and determines, for each of the bearers, whether or not the measured idle time has reached an idle timer threshold set in advance for each of the plurality of bearers (step 1). When determining, for one of the bearers, that the idle timer has reached the idle timer threshold (step 2), the eNB requests an MME to release the one bearer (step 4), and the MME executes a process of releasing the one bearer in accordance with the request from the eNB (step 5, etc.).

Description

通信制御方法および通信システムCommunication control method and communication system
 本発明は、端末が同時に複数のユーザデータパケット経路にアクセス可能とされた通信システムにて実行される通信制御方法、および当該通信システムに関する。 The present invention relates to a communication control method executed in a communication system in which a terminal can simultaneously access a plurality of user data packet paths, and the communication system.
 モバイルネットワークにおいて端末(UE:User Equipment)は、目的とするサービスを利用するために、そのサービスに対応するPDN(Packet Data Network)との間に、ユーザデータパケット経路(ベアラ(PDNコネクション)、PDU(Protocol Data Unit)セッションなどと称される))を確立する必要がある(特許文献1参照)。 In a mobile network, a terminal (UE: User Equipment) uses a user data packet path (bearer (PDN connection), PDU) with a PDN (Packet Data Network) corresponding to the service in order to use a target service. (Referred to as Protocol Data Unit session)) (see Patent Document 1).
 ただし、端末がサービスを利用していないときはユーザデータパケット経路を確立しておく必要は無い。そのため、既存技術では、端末を管理する基地局が上記ユーザデータパケット経路にて送受信されるパケットの有無を監視することで上記ユーザデータパケット経路の稼働状況を判断し、稼働していないと判断される場合、当該ユーザデータパケット経路は解放されアイドル状態とされていた。 However, it is not necessary to establish a user data packet route when the terminal is not using the service. Therefore, in the existing technology, the base station that manages the terminal determines whether the user data packet path is in operation by monitoring the presence / absence of packets transmitted / received through the user data packet path. The user data packet path has been released and is in an idle state.
特開2012-175575号公報JP 2012-175575 A
 近年、端末が同時に複数のサービスを利用するケースが想定されるため、端末が同時に複数のユーザデータパケット経路にアクセスする技術が提案されつつある。 In recent years, since it is assumed that a terminal uses a plurality of services at the same time, a technique in which a terminal accesses a plurality of user data packet paths at the same time is being proposed.
 しかしながら、上述した基地局による稼働状況確認に係る既存技術では、端末が同時に複数のユーザデータパケット経路にアクセスするケースは想定されていない。そのため、複数のユーザデータパケット経路のうちどれか1つが稼働していれば、即ち、複数のユーザデータパケット経路のうちどれか1つで送受信されるパケットが有れば、複数のユーザデータパケット経路の全てが稼働している(即ち、アイドル状態ではない)と判断されてしまうという不都合があった。 However, in the existing technology related to the operation status confirmation by the base station described above, a case where a terminal accesses a plurality of user data packet paths at the same time is not assumed. Therefore, if any one of the plurality of user data packet paths is operating, that is, if there is a packet transmitted / received on any one of the plurality of user data packet paths, the plurality of user data packet paths It is inconvenient that it is determined that all of these are operating (that is, not in an idle state).
 本発明は、上記課題を解決するために成されたものであり、端末が同時に複数のユーザデータパケット経路にアクセスするケースでも、各経路の稼働状況を適切に判断し、経路の解放に係る制御を適切に行うことを目的の1つとする。 The present invention has been made to solve the above-described problem. Even when a terminal accesses a plurality of user data packet paths at the same time, it appropriately determines the operating status of each path and performs control related to release of the path. One of the purposes is to appropriately perform the above.
 本発明の一態様に係る通信制御方法は、端末と、基地局と、端末に係る処理を実行する処理サーバと、一又は複数のサービングゲートウェイと、を含み、複数のベアラが前記基地局を経由して前記端末と前記一又は複数のサービングゲートウェイ間に設定された通信システム、にて実行される通信制御方法であって、前記基地局が、ベアラのアイドル状態の継続時間であるアイドル時間をベアラごとに測定するステップと、前記基地局が、ベアラがアイドル状態であると判断するためのアイドルタイマ閾値であって前記複数のベアラの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、ベアラごとに判断するステップと、一のベアラについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記基地局が、前記処理サーバに当該一のベアラの解放を要求するステップと、前記処理サーバが、前記基地局からの要求に応じて前記一のベアラの解放処理を行うステップと、を備える。 A communication control method according to an aspect of the present invention includes a terminal, a base station, a processing server that executes processing related to the terminal, and one or a plurality of serving gateways, and a plurality of bearers pass through the base station. A communication control method executed in a communication system set up between the terminal and the one or more serving gateways, wherein the base station sets an idle time that is a duration of an idle state of a bearer Measuring each time, and the base station is an idle timer threshold value for determining that a bearer is in an idle state, and is measured to the idle timer threshold value determined in advance for each of the plurality of bearers Determining whether or not an idle time has been reached for each bearer; and for one bearer, the idle time for the idle timer threshold The base station requests the processing server to release the one bearer, and the processing server responds to the request from the base station in response to a request from the base station. Performing a release process.
 上記の通信制御方法では、複数のベアラが基地局を経由して端末と一又は複数のサービングゲートウェイ間に設定された通信システムにおいて、基地局は、アイドル時間をベアラごとに測定し、測定されたアイドル時間が複数のベアラの各々について予め定められたアイドルタイマ閾値に達したか否かを、ベアラごとに判断する。そして、一のベアラについてアイドル時間がアイドルタイマ閾値に達したと判断された場合、基地局は、処理サーバに当該一のベアラの解放を要求し、処理サーバは、基地局からの要求に応じて一のベアラの解放処理を行う。これにより、端末が同時に複数のベアラ(ユーザデータパケット経路)にアクセスするケースでも、各経路の稼働状況を適切に判断し、経路の解放に係る制御を適切に行うことができる。 In the communication control method described above, in a communication system in which a plurality of bearers are set between a terminal and one or a plurality of serving gateways via a base station, the base station measures the idle time for each bearer and is measured. It is determined for each bearer whether or not the idle time has reached a predetermined idle timer threshold for each of the plurality of bearers. When it is determined that the idle time has reached the idle timer threshold for one bearer, the base station requests the processing server to release the one bearer, and the processing server responds to the request from the base station. Release one bearer. Accordingly, even when the terminal accesses a plurality of bearers (user data packet paths) at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
 また、本発明は、いわゆる次世代ネットワーク(NGN:Next Generation Network)にも適用可能であり、例えば、以下のように記述することができる。本発明の一態様に係る通信制御方法は、端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、前記基地局が、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、前記基地局が、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって前記複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記基地局が、前記処理サーバに当該一のPDUセッションの解放を要求するステップと、前記処理サーバが、前記基地局からの要求に応じて前記一のPDUセッションの解放処理を行うステップと、を備える。 The present invention can also be applied to a so-called next generation network (NGN), and can be described as follows, for example. A communication control method according to an aspect of the present invention includes a terminal, a base station, a processing server that executes processing related to the terminal, a plurality of control planes that transmit control signals for communication services used by the terminal, A plurality of user planes that transmit user signals for the communication service, and a communication system in which a PDU session is set between the terminal and each of the plurality of user planes via the base station, The base station measures the idle time, which is the duration of the idle state of the PDU session, for each PDU session; and the base station determines that the PDU session is in the idle state. An idle timer threshold for determining that there is a predetermined idle for each of the plurality of PDU sessions. Determining, for each PDU session, whether or not the measured idle time has reached a timer threshold, and if it is determined that the idle time has reached the idle timer threshold for one PDU session; The base station requesting the processing server to release the one PDU session; and the processing server performing the one PDU session release process in response to a request from the base station. Prepare.
 上記の通信制御方法では、PDUセッションが基地局を経由して端末と複数のユーザプレーンそれぞれとの間に設定された通信システムにおいて、基地局は、アイドル時間をPDUセッションごとに測定し、測定されたアイドル時間が複数のPDUセッションの各々について予め定められたアイドルタイマ閾値に達したか否かを、PDUセッションごとに判断する。そして、一のPDUセッションについてアイドル時間がアイドルタイマ閾値に達したと判断された場合、基地局は、処理サーバに当該一のPDUセッションの解放を要求し、処理サーバは、基地局からの要求に応じて一のPDUセッションの解放処理を行う。これにより、端末が同時に複数のPDUセッション(ユーザデータパケット経路)にアクセスするケースでも、各経路の稼働状況を適切に判断し、経路の解放に係る制御を適切に行うことができる。 In the communication control method described above, in a communication system in which a PDU session is set between a terminal and each of a plurality of user planes via a base station, the base station measures the idle time for each PDU session and is measured. It is determined for each PDU session whether or not the idle time has reached a predetermined idle timer threshold for each of a plurality of PDU sessions. When it is determined that the idle time has reached the idle timer threshold for one PDU session, the base station requests the processing server to release the one PDU session, and the processing server responds to the request from the base station. In response, one PDU session is released. Accordingly, even when the terminal accesses a plurality of PDU sessions (user data packet paths) at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
 また、本発明の別の態様に係る通信制御方法は、端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、前記端末が、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、前記端末が、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記端末が、前記処理サーバに当該一のPDUセッションの解放を要求するステップと、前記処理サーバが、前記端末からの要求に応じて前記一のPDUセッションの解放処理を行うステップと、を備え、上記と同様の効果を奏する。 In addition, a communication control method according to another aspect of the present invention includes a terminal, a base station, a processing server that executes processing related to the terminal, and a plurality of control signals for transmitting a communication service used by the terminal. A control plane and a plurality of user planes transmitting user signals for the communication service, and a PDU session is set between the terminal and each of the plurality of user planes via the base station A communication control method executed in a communication system, wherein the terminal measures an idle time, which is a duration of an idle state of a PDU session, for each PDU session, and the terminal is in an idle state of a PDU session. This is an idle timer threshold value for judging that the ID is determined in advance for each of a plurality of PDU sessions. Determining whether or not the measured idle time has reached a timer limit for each PDU session, and if it is determined that the idle time has reached the idle timer threshold for one PDU session, The terminal requesting the processing server to release the one PDU session, and the processing server performing the one PDU session release process in response to a request from the terminal; The same effect as described above is achieved.
 また、本発明のさらに別の態様に係る通信制御方法は、端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、前記処理サーバが、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、前記処理サーバが、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記処理サーバが、前記一のPDUセッションの解放処理を行うステップと、を備え、上記と同様の効果を奏する。 A communication control method according to still another aspect of the present invention includes a terminal, a base station, a processing server that executes processing related to the terminal, and a plurality of control signals for transmitting a communication service used by the terminal. And a plurality of user planes for transmitting user signals for the communication service, and a PDU session is set between the terminal and each of the plurality of user planes via the base station. A communication control method executed in a communication system, wherein the processing server measures an idle time, which is a duration of an idle state of a PDU session, for each PDU session; Is an idle timer threshold for determining that is in an idle state, and in advance for each of a plurality of PDU sessions Determining, for each PDU session, whether or not the measured idle time has reached the determined idle timer threshold, and determining that the idle time has reached the idle timer threshold for one PDU session In this case, the processing server includes a step of releasing the one PDU session, and has the same effect as described above.
 本発明によれば、端末が同時に複数のユーザデータパケット経路にアクセスするケースでも、各経路の稼働状況を適切に判断し、経路の解放に係る制御を適切に行うことができる。 According to the present invention, even when a terminal accesses a plurality of user data packet paths at the same time, it is possible to appropriately determine the operating status of each path and appropriately perform control related to the release of the path.
第1実施形態に係る通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system which concerns on 1st Embodiment. (a)は、MMEにより保持されるアイドルタイマに係る対応テーブルの一例を示す図であり、(b)および(c)は、eNBにより保持されるアイドルタイマに係る対応テーブルの一例を示す図である。(A) is a figure showing an example of a correspondence table concerning an idle timer held by MME, and (b) and (c) are figures showing an example of a correspondence table concerning an idle timer held by eNB. is there. 各装置のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of each apparatus. 第1実施形態におけるアタッチ処理を示すシーケンス図である。It is a sequence diagram which shows the attach process in 1st Embodiment. 第1実施形態におけるS1ベアラの解放処理を示すシーケンス図である。It is a sequence diagram which shows the releasing process of S1 bearer in 1st Embodiment. 第1実施形態におけるベアラ解放処理を示すシーケンス図である。It is a sequence diagram which shows the bearer release process in 1st Embodiment. 第2実施形態に係る通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system which concerns on 2nd Embodiment. 第2実施形態におけるアタッチ処理を示すシーケンス図である。It is a sequence diagram which shows the attach process in 2nd Embodiment. 第2実施形態におけるベアラ解放処理を示すシーケンス図である。It is a sequence diagram which shows the bearer release process in 2nd Embodiment. 第3実施形態に係る通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system which concerns on 3rd Embodiment. 第3実施形態におけるPDUセッション確立処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session establishment process in 3rd Embodiment. 第3実施形態におけるMBBスライス解放処理を示すシーケンス図である。It is a sequence diagram which shows the MBB slice release process in 3rd Embodiment. 第4実施形態におけるPDUセッション確立処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session establishment process in 4th Embodiment. 第4実施形態におけるPDUセッション解放処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session release process in 4th Embodiment. 第5実施形態に係る通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system which concerns on 5th Embodiment. 第5実施形態におけるPDUセッション確立処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session establishment process in 5th Embodiment. 第5実施形態におけるPDUセッション解放処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session release process in 5th Embodiment. 第6実施形態に係る通信システムの構成例を示す図である。It is a figure which shows the structural example of the communication system which concerns on 6th Embodiment. 第6実施形態におけるPDUセッション確立処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session establishment process in 6th Embodiment. 第6実施形態におけるPDUセッション解放処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session release process in 6th Embodiment. 第7実施形態におけるPDUセッション確立処理を示すシーケンス図である。It is a sequence diagram which shows the PDU session establishment process in 7th Embodiment.
 以下、図面を参照しながら、本発明の第1~第7実施形態について説明する。第1実施形態は、EPC(Evolved Packet Core)ネットワークにおいて複数ベアラが端末(User Equipment(以下、発明の実施形態では「UE」という))と異なる複数のSGW(Serving gateway)間に設定された状況で、基地局に相当するeNodeB(以下、発明の実施形態では「eNB」という)主導で複数ベアラのうち一のベアラを解放する制御を行う実施形態であり、第2実施形態は、EPCネットワークにおいて複数ベアラがUEと単一のSGW間に設定された状況で、eNB主導で複数ベアラのうち一のベアラを解放する制御を行う実施形態である。また、第3実施形態は、いわゆる次世代ネットワーク(NGN:Next Generation Network)においてPDUセッションがUEと複数のユーザプレーンそれぞれとの間に設定された状況で、eNB主導で複数ベアラのうち一のベアラを解放する制御を行う実施形態であり、第4実施形態は、いわゆる次世代ネットワークに関する、上記第3実施形態とは異なる実施形態である。第5~7実施形態は、次世代ネットワークに関するさまざまな変形例である。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, first to seventh embodiments of the present invention will be described with reference to the drawings. In the first embodiment, multiple bearers are set between a plurality of SGWs (Serving gateways) different from a terminal (User Equipment (hereinafter referred to as “UE” in the embodiment of the invention)) in an EPC (Evolved Packet Core) network. In this embodiment, the eNodeB corresponding to the base station (hereinafter referred to as “eNB” in the embodiment of the present invention) takes the lead in controlling to release one of the plurality of bearers. In this embodiment, control is performed to release one bearer among a plurality of bearers under the circumstances where a plurality of bearers are set between a UE and a single SGW. In the third embodiment, a PDU session is set between a UE and each of a plurality of user planes in a so-called next generation network (NGN: Next Generation Network). The fourth embodiment is an embodiment that is different from the third embodiment regarding a so-called next-generation network. The fifth to seventh embodiments are various modifications relating to the next generation network. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 [第1実施形態]
 前述したように、第1実施形態では、EPCネットワークにおいて複数ベアラがUEと異なる複数のSGW間に設定された状況で、基地局主導で複数ベアラのうち一のベアラを解放する制御を行う実施形態を説明する。
[First Embodiment]
As described above, in the first embodiment, in a situation in which a plurality of bearers are set between a plurality of SGWs different from the UE in the EPC network, an embodiment for performing control to release one bearer among the plurality of bearers led by the base station. Will be explained.
 (第1実施形態のシステム構成)
 図1に示すように第1実施形態に係る通信システム1は、端末(UE)10と、eNB20と、ネットワークに在圏するUE10の位置管理、認証制御、通信経路設定等の処理を行うMME(Mobility Management Entity)30と、端末ユーザのユーザ情報(加入者情報)を管理するHSS(Home Subscriber Server)60と、後述するSGW40と、SGW40の上流側に位置する後述するPGW(Packet data network gateway)50と、を含んで構成されている。ここでは本発明に係る「処理サーバ」はMME30に対応する。
(System configuration of the first embodiment)
As shown in FIG. 1, the communication system 1 according to the first embodiment includes a terminal (UE) 10, an eNB 20, and an MME (Processing for location management, authentication control, communication path setting, etc. of the UE 10 located in the network. Mobility Management Entity) 30, HSS (Home Subscriber Server) 60 that manages user information (subscriber information) of the terminal user, SGW 40 described later, and PGW (Packet data network gateway) described later located upstream of the SGW 40. 50. Here, the “processing server” according to the present invention corresponds to the MME 30.
 SGW40は、LTEを収容する在圏パケット交換機の機能を果たすゲートウェイ装置であり、UE10により利用される通信サービスの要件に対応して一又は複数のSGW40が設けられる。 The SGW 40 is a gateway device that functions as a serving packet switch that accommodates LTE, and one or a plurality of SGWs 40 are provided corresponding to the requirements of the communication service used by the UE 10.
 PGW50は、PDN(Packet data network)との接合点であり、IPアドレスの割当て、SGWへのパケット転送などを行うゲートウェイ装置である。 The PGW 50 is a junction point with a PDN (Packet data network), and is a gateway device that performs IP address assignment, packet transfer to the SGW, and the like.
 本実施形態では、一例として、UE10により利用される複数の通信サービスの要件それぞれに対応してSGW(ここではSGW1、SGW2)およびPGW(ここではPGW1、PGW2)が設けられた例を説明する。 In this embodiment, as an example, an example will be described in which SGWs (here, SGW1, SGW2) and PGWs (here, PGW1, PGW2) are provided corresponding to requirements of a plurality of communication services used by the UE 10.
 本発明に関連する機能ブロックとして、eNB20は、ベアラのアイドル状態の継続時間であるアイドル時間をベアラごとに測定する測定部21と、測定部21により測定されたアイドル時間が後述するアイドルタイマ閾値に達したか否かをベアラごとに判断する判断部22と、判断部22により一のベアラについてアイドル時間がアイドルタイマ閾値に達したと判断された場合にMME30に当該一のベアラの解放を要求する要求部23と、を備える。また、MME30は、要求部23からの要求に応じて一のベアラの解放処理を行う解放処理部31を備える。 As a functional block related to the present invention, the eNB 20 measures the idle time, which is the duration of the idle state of the bearer, for each bearer, and sets the idle time measured by the measurement unit 21 to an idle timer threshold described later. A determination unit 22 that determines whether or not the bearer has been reached, and requests the MME 30 to release the one bearer when the determination unit 22 determines that the idle time has reached the idle timer threshold for one bearer. And a request unit 23. Further, the MME 30 includes a release processing unit 31 that performs a release process of one bearer in response to a request from the request unit 23.
 上記のアイドルタイマ閾値(以下、発明の実施形態では「Idle timer」ともいう)は、一のベアラがアイドル状態であると判断するためのアイドル時間基準値であり、複数のベアラの各々について、サービスタイプ、UEの利用法タイプ(Usage type)、端末ユーザの加入者タイプ(subscriber type)等に基づきMME30(又は図示しないSMF(Slice Management Function:スライス管理機能部))によって予め定められる。MME30は、E-RAN(Enterprise Radio Access Network) ID、EPS(Enhanced Packet System) ID、DCN(Data Center Network) ID等とアイドルタイマ閾値とを対応付けて記憶した対応テーブルを保持し、対応するアイドルタイマ閾値をeNB20に通知する。一例として、図2(a)に示すE-RAN IDとアイドルタイマ閾値とを対応付けて記憶した対応テーブルがMME30により保持される。図2(b)に示すように、Idle timerは、eNB20の判断部22により各ベアラに対応付けて、例えばテーブル形式で記憶されている。判断部22は、記憶したIdle timer情報を用いて、測定部21により測定されたアイドル時間がアイドルタイマ閾値に達したか否かをベアラごとに判断する。 The idle timer threshold value (hereinafter also referred to as “Idle timer” in the embodiment of the present invention) is an idle time reference value for determining that one bearer is in an idle state. It is determined in advance by the MME 30 (or SMF (Slice Management Function) (not shown)) based on the type, the usage type of the UE, the subscriber type of the terminal user, and the like. The MME 30 holds a correspondence table storing an E-RAN (Enterprise Radio Access Network) ID, EPS (Enhanced Packet System) ID, DCN (Data Center Network) ID, etc. and an idle timer threshold value in association with each other. The timer threshold value is notified to the eNB 20. As an example, a correspondence table storing the E-RAN ID and the idle timer threshold value shown in FIG. As shown in FIG. 2B, the Idle timer is stored in a table format, for example, in association with each bearer by the determination unit 22 of the eNB 20. The determination unit 22 determines for each bearer whether or not the idle time measured by the measurement unit 21 has reached the idle timer threshold, using the stored Idle timer information.
 ここで、図3を参照して、本発明の「基地局」に相当するeNB20のハードウェア構成の一例について説明する。eNB20の機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、有線及び/又は無線で相互にリンクした物理的及び/又は論理的に分離した2つ以上の装置により実現されてもよい。なお、以下で説明するハードウェア構成例は、eNB20に限らず、図1に示すHSS60、PGW50、SGW40、MME30、UE10において採用してもよい。 Here, an example of a hardware configuration of the eNB 20 corresponding to the “base station” of the present invention will be described with reference to FIG. The functional block (configuration unit) of the eNB 20 is realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. In other words, each functional block may be realized by one device physically and / or logically coupled, or two physically and / or logically separated two wired and / or wirelessly linked to each other. You may implement | achieve with the above apparatus. Note that the hardware configuration example described below is not limited to the eNB 20 and may be employed in the HSS 60, the PGW 50, the SGW 40, the MME 30, and the UE 10 illustrated in FIG.
 例えば、本発明の一実施の形態におけるeNB20は、本発明に係るベアラ(PDUセッション)解放制御を行うコンピュータとして機能してもよい。図3は、本発明の一実施の形態に係るeNB20のハードウェア構成の一例を示す図である。上述のeNB20は、物理的には、プロセッサ20A、メモリ20B、ストレージ20C、通信モジュール20D、入力装置20E、出力装置20F、バス20Gなどを含むコンピュータ装置として構成されてもよい。 For example, the eNB 20 in an embodiment of the present invention may function as a computer that performs bearer (PDU session) release control according to the present invention. FIG. 3 is a diagram illustrating an example of a hardware configuration of the eNB 20 according to the embodiment of the present invention. The eNB 20 described above may be physically configured as a computer device including a processor 20A, a memory 20B, a storage 20C, a communication module 20D, an input device 20E, an output device 20F, a bus 20G, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。eNB20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the eNB 20 may be configured to include one or a plurality of devices illustrated in the figure, or may be configured not to include some devices.
 eNB20における各機能は、プロセッサ20A、メモリ20Bなどのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ20Aが演算を行い、通信モジュール20Dによる通信、メモリ20B及びストレージ20Cにおけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the eNB 20 reads predetermined software (program) on hardware such as the processor 20A and the memory 20B, so that the processor 20A performs calculation, performs communication by the communication module 20D, and stores data in the memory 20B and the storage 20C. This is realized by controlling reading and / or writing.
 プロセッサ20Aは、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ20Aは、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の測定部21、判断部22、要求部23などは、プロセッサ20Aで実現されてもよい。 The processor 20A controls the entire computer by operating an operating system, for example. The processor 20A may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the measurement unit 21, the determination unit 22, the request unit 23, and the like described above may be realized by the processor 20A.
 また、プロセッサ20Aは、プログラム(プログラムコード)、ソフトウェアモジュール及びデータを、ストレージ20C及び/又は通信モジュール20Dからメモリ20Bに読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、測定部21、判断部22、要求部23などは、メモリ20Bに格納され、プロセッサ20Aで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ20Aで実行される旨を説明してきたが、2以上のプロセッサ20Aにより同時又は逐次に実行されてもよい。プロセッサ20Aは、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 20A reads a program (program code), a software module, and data from the storage 20C and / or the communication module 20D to the memory 20B, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the measurement unit 21, the determination unit 22, the request unit 23, and the like may be realized by a control program stored in the memory 20B and operated by the processor 20A, and may be similarly realized for other functional blocks. Although the above-described various processes have been described as being executed by one processor 20A, they may be executed simultaneously or sequentially by two or more processors 20A. The processor 20A may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ20Bは、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ20Bは、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ20Bは、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 20B is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 20B may be called a register, a cache, a main memory (main storage device), or the like. The memory 20B can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
 ストレージ20Cは、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ20Cは、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ20B及び/又はストレージ20Cを含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 20C is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 20C may be called an auxiliary storage device. The above-described storage medium may be, for example, a database, a server, or other suitable medium including the memory 20B and / or the storage 20C.
 通信モジュール20Dは、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカードなどともいう。 The communication module 20D is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, or the like.
 入力装置20Eは、外部からの入力を受け付ける入力デバイスである。出力装置20Fは、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置20E及び出力装置20Fは、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 20E is an input device that accepts external input. The output device 20F is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 20E and the output device 20F may have an integrated configuration (for example, a touch panel).
 また、プロセッサ20A、メモリ20Bなどの各装置は、情報を通信するためのバス20Gで接続される。バス20Gは、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Further, each device such as the processor 20A and the memory 20B is connected by a bus 20G for communicating information. The bus 20G may be configured with a single bus or may be configured with different buses between devices.
 また、eNB20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ20Aは、これらのハードウェアの少なくとも1つで実装されてもよい。 The eNB 20 includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). Alternatively, some or all of the functional blocks may be realized by the hardware. For example, the processor 20A may be implemented by at least one of these hardware.
 (第1実施形態の処理内容)
 以下、図4~図6を参照して第1実施形態の処理内容を説明する。
(Processing content of the first embodiment)
Hereinafter, the processing content of the first embodiment will be described with reference to FIGS.
 まず、図4を参照して第1実施形態におけるアタッチ処理を説明する。UEがアタッチ処理を要求するAttach RequestをeNBへ送信すると、Attach RequestはeNBからMMEへ送信される(図4のステップ1)。そして、MMEは、UEが利用するサービスタイプ等に応じて、SGWとして「SGW1」を、PGWとして「PGW1」をそれぞれ選択し、デフォルトベアラを確立する(図4のステップ2)。その際、図4には省略したが、従来と同様にUEの認証処理も実行される。さらに、MMEは、上記UEがベアラ1に係るサービスを利用する際のアイドルタイマ情報(IDLE timer1)を、自機(MME)が保存している図2(a)のテーブルから又は図示しないSMFから取得し、E-RAN ID-1と取得したIDLE timer1が付加されたInitial Context RequestをeNBに送信すると(図4のステップ3)、その後、UEとeNB間でRRCコネクションが確立され(図4のステップ4)、これにより、UEとeNB間、eNBとSGW1間、および、SGW1とPGW1間で、ベアラ1が確立される。eNBは、上記ステップ3により、ベアラ1に係るアイドルタイマ情報(IDLE timer1)を取得する。 First, the attach process in the first embodiment will be described with reference to FIG. When the UE transmits an Attach Request for requesting an attach process to the eNB, the Attach Request is transmitted from the eNB to the MME (Step 1 in FIG. 4). Then, the MME selects “SGW1” as the SGW and “PGW1” as the PGW according to the service type used by the UE, and establishes a default bearer (step 2 in FIG. 4). At that time, although omitted in FIG. 4, UE authentication processing is also executed as in the conventional case. Further, the MME receives the idle timer information (IDLE timer1) when the UE uses the service related to the bearer 1 from the table of FIG. 2 (a) stored in the own device (MME) or from the SMF (not shown). When an Initial Context Request with E-RAN ID-1 and acquired IDLE timer1 added is sent to the eNB (step 3 in FIG. 4), an RRC connection is established between the UE and the eNB (FIG. 4). Step 4), thereby, bearer 1 is established between UE and eNB, between eNB and SGW1, and between SGW1 and PGW1. The eNB acquires the idle timer information (IDLE timer 1) related to the bearer 1 in step 3 described above.
 ベアラ2についてもほぼ同様に、UEがベアラ2に関するBearer RequestをeNBへ送信すると、Bearer RequestはeNBからMMEへ送信される(図4のステップ5)。そして、MMEは、UEが利用するサービスタイプ等に応じて、SGWとして「SGW2」を、PGWとして「PGW2」をそれぞれ選択し、デフォルトベアラを確立する(図4のステップ6)。さらに、MMEは、上記UEがベアラ2に係るサービスを利用する際のアイドルタイマ情報(IDLE timer2)を、自機(MME)が保存している図2(a)のテーブルから又は図示しないSMFから取得し、E-RAN ID-2と取得したIDLE timer2が付加されたInitial Context RequestをeNBに送信すると(図4のステップ7)、その後、UEとeNB間でRRCコネクションが確立され(図4のステップ8)、これにより、UEとeNB間、eNBとSGW2間、および、SGW2とPGW2間で、ベアラ2が確立される。eNBは、上記ステップ7により、ベアラ2に係るアイドルタイマ情報(IDLE timer2)を取得する。 In the same manner for the bearer 2, when the UE transmits a Bearer Request for the bearer 2 to the eNB, the Bearer Request is transmitted from the eNB to the MME (step 5 in FIG. 4). Then, the MME selects “SGW2” as the SGW and “PGW2” as the PGW according to the service type used by the UE, and establishes a default bearer (step 6 in FIG. 4). Further, the MME receives the idle timer information (IDLE timer 2) when the UE uses the service related to the bearer 2 from the table of FIG. 2 (a) stored in its own device (MME) or from the SMF (not shown). When an Initial Context Request with E-RAN ID-2 and acquired IDLE timer2 added is sent to the eNB (Step 7 in FIG. 4), an RRC connection is established between the UE and eNB (FIG. 4). Step 8) Thereby, bearer 2 is established between UE and eNB, between eNB and SGW2, and between SGW2 and PGW2. The eNB acquires idle timer information (IDLE timer 2) related to the bearer 2 in step 7 described above.
 以上のように、ほぼ同様のベアラ確立手順を2回繰り返すことで、ベアラ1、2が確立される。なお、上記ステップ3、7では、E-RAN IDに代わり、EPS IDをInitial Context Requestに含めて送信してもよい。 As described above, bearers 1 and 2 are established by repeating almost the same bearer establishment procedure twice. In steps 3 and 7, the EPS ID may be included in the Initial Context Request instead of the E-RAN ID for transmission.
 第1実施形態では、一のベアラを解放する処理として、図5に示すS1ベアラの解放処理と、図6に示すベアラ解放処理とが実行可能である。以下、順に説明する。なお、S1ベアラにおける「S1」とは、eNB-MME、eNB-SGW間インターフェース名である。 In the first embodiment, the S1 bearer release process shown in FIG. 5 and the bearer release process shown in FIG. 6 can be executed as the process of releasing one bearer. Hereinafter, it demonstrates in order. Note that “S1” in the S1 bearer is an interface name between the eNB-MME and the eNB-SGW.
 図5に示すS1ベアラの解放処理では、ベアラ1、2が既に確立された状態で、eNBにおいてベアラ1、2のアイドルタイマが動作中である(図5のステップ1)。即ち、図1の測定部21によりベアラごとにアイドル時間が測定されている。そして、一のベアラ(ここでは例えばベアラ2)の上り/下りトラヒックが無いまま、ベアラ2のアイドルタイマが閾値に達すると(図5のステップ2)、図1の判断部22によりベアラ2のアイドル時間がIDLE timer2に達したと判断され、図1の要求部23によりベアラ2の解放が要求され、以下のようにベアラ2の解放処理が実行される。 In the S1 bearer release process shown in FIG. 5, the idle timers of the bearers 1 and 2 are operating in the eNB with the bearers 1 and 2 already established (step 1 in FIG. 5). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 5) while there is no uplink / downlink traffic of one bearer (here, for example, bearer 2), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
 ここでは、ベアラ2についてeNBとUE間でRadio Bearer Releaseが実行され(図5のステップ3)、eNBは、E-RAB(E-UTRAN Access Bearer)/EPS IDを含んだS1 UE context Release RequestをMMEへ送信し(図5のステップ4)、MMEは、Release Access Bearer Requestを、ベアラ2に対応するSGW2へ送信する(図5のステップ5)。これにより、SGW2は、eNBとSGW2間のS1ベアラを解放し、Release Access Bearer ResponseをMMEへ送信する(図5のステップ6)。その後、MMEがE-RAB/EPS IDを含んだS1 UE context Release CommandをeNBへ送信し(図5のステップ7)、これを受けたeNBとUE間でベアラ2についてRRC Connection Releaseが実行され(図5のステップ8)、これにより、図5に示すように、ベアラ2における、特定のS1ベアラ(eNB-SGW2間)およびUE-eNB間のベアラが解放され、SGW2-PGW2間のベアラは解放されずに残る。一方、ベアラ1は解放されずに残る。 Here, Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 5), and eNB sends S1 UE context Release Request including E-RAB (E-UTRAN Access Bearer) / EPS ID. It transmits to MME (step 4 of FIG. 5), and MME transmits Release Access Bearer Request to SGW2 corresponding to bearer 2 (step 5 of FIG. 5). Thereby, SGW2 releases S1 bearer between eNB and SGW2, and transmits Release Access Bearer Response to MME (step 6 of Drawing 5). After that, the MME sends an S1 UE context Release Command including the E-RAB / EPS ID to the eNB (Step 7 in FIG. 5), and RRC Connection Release is executed for the bearer 2 between the eNB and the UE that receives this ( Step 8) of FIG. 5, thereby releasing a specific S1 bearer (between eNB and SGW2) and a bearer between UE and eNB in bearer 2, and releasing a bearer between SGW2 and PGW2, as shown in FIG. It remains without being. On the other hand, the bearer 1 remains without being released.
 このときベアラ1は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、端末が同時に複数のベアラにアクセスするケースでも、各ベアラの稼働状況を適切に判断し、ベアラ解放に係る制御を適切に行うことができる。 At this time, since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
 次に、図6に示すベアラ解放処理を説明する。図6に示すベアラ解放処理では、ベアラ1、2が既に確立された状態で、eNBにおいてベアラ1、2のアイドルタイマが動作中である(図6のステップ1)。即ち、図1の測定部21によりベアラごとにアイドル時間が測定されている。そして、一のベアラ(ここでは例えばベアラ2)の上り/下りトラヒックが無いまま、ベアラ2のアイドルタイマが閾値に達すると(図6のステップ2)、図1の判断部22によりベアラ2のアイドル時間がIDLE timer2に達したと判断され、図1の要求部23によりベアラ2の解放が要求され、以下のようにベアラ2の解放処理が実行される。 Next, the bearer release process shown in FIG. 6 will be described. In the bearer release process shown in FIG. 6, the idle timers of the bearers 1 and 2 are operating in the eNB with the bearers 1 and 2 already established (step 1 in FIG. 6). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 6) while there is no up / down traffic of one bearer (for example, bearer 2 in this case), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
 ここでは、ベアラ2についてeNBとUE間でRadio Bearer Releaseが実行され(図6のステップ3)、eNBは、E-RAB/EPS IDを含んだIndication of Bearer ReleaseをMMEへ送信し(図6のステップ4)、MMEは、Delete Bearer Commandを、ベアラ2に対応するSGW2へ送信する(図6のステップ5)。これを受けたSGW2は、Delete Bearer CommandをPGW2へ送信し(図6のステップ6)、PGW2は、Delete Bearer RequestをSGW2へ送信し(図6のステップ7)、そして、SGW2は、Delete Bearer RequestをMMEへ送信する(図6のステップ8)。さらに、MMEがE-RAB/EPS IDを含んだDeactivate Bearer RequestをeNBへ送信し(図6のステップ9)、これを受けたeNBとUE間でベアラ2についてRRC Connection Releaseが実行される(図6のステップ10)。その後、eNBは、E-RAB/EPS IDを含んだDeactivate Bearer ResponseをMMEへ送信し(図6のステップ11)、MMEは、Delete Bearer ResponseをSGW2へ送信し(図6のステップ12)、さらに、SGW2は、Delete Bearer ResponseをPGW2へ送信する(図6のステップ13)。以上により、図6に示すように、UE-PGW2間でベアラ2は解放される。 Here, Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 6), and eNB transmits Indication of Bearer Release including E-RAB / EPS ID to MME (FIG. 6). Step 4) The MME sends a Delete Bearer Command to the SGW 2 corresponding to the bearer 2 (step 5 in FIG. 6). Upon receiving this, SGW2 sends a Delete Bearer Command to PGW2 (step 6 in FIG. 6), PGW2 sends a Delete Bearer Request to SGW2 (step 7 in FIG. 6), and SGW2 deletes Delete Bearer Request. Is transmitted to the MME (step 8 in FIG. 6). Further, the MME sends a Deactivate Bearer Request including the E-RAB / EPS ID to the eNB (step 9 in FIG. 6), and the RRC Connection Release is executed for the bearer 2 between the eNB and the UE that receives the request (see FIG. 6). 6 step 10). After that, the eNB sends a Deactivate Bearer Response including the E-RAB / EPS ID to the MME (Step 11 in FIG. 6), and the MME sends a Delete Bearer Response to the SGW 2 (Step 12 in FIG. 6). The SGW 2 transmits a Delete Bearer Response to the PGW 2 (Step 13 in FIG. 6). As a result, the bearer 2 is released between the UE and the PGW 2 as shown in FIG.
 このときベアラ1は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、端末が同時に複数のベアラにアクセスするケースでも、各ベアラの稼働状況を適切に判断し、ベアラ解放に係る制御を適切に行うことができる。 At this time, since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
 [第2実施形態]
 前述したように、第2実施形態では、EPCネットワークにおいて複数ベアラがUEと単一のSGW間に設定された状況で、基地局(eNB)主導で複数ベアラのうち一のベアラを解放する制御を行う実施形態を説明する。
[Second Embodiment]
As described above, in the second embodiment, in a situation where multiple bearers are set between a UE and a single SGW in an EPC network, control for releasing one bearer among the multiple bearers led by a base station (eNB) is performed. An embodiment to be performed will be described.
 (第2実施形態のシステム構成)
 図7に示すように第2実施形態に係る通信システム1Sは、前述した第1実施形態の通信システム1(図1)とほぼ同様の構成であるが、複数ベアラがUE10と単一のSGW40間に設定され単一のPGW50に到達する点が第1実施形態の通信システム1(図1)と異なる。
(System configuration of the second embodiment)
As shown in FIG. 7, the communication system 1S according to the second embodiment has substantially the same configuration as the communication system 1 (FIG. 1) of the first embodiment described above, but a plurality of bearers are between the UE 10 and a single SGW 40. Is different from the communication system 1 (FIG. 1) of the first embodiment in that it reaches a single PGW 50.
 eNB20およびMME30が備える本発明に関連する機能ブロック(解放処理部31、測定部21等)、図2(a)、(b)に示すIdle timerの対応テーブル、並びに、図3の各装置のハードウェア構成例は、第1実施形態と同様なので、ここでは重複した説明を省略する。 Functional blocks (release processing unit 31, measurement unit 21, etc.) related to the present invention included in eNB 20 and MME 30, the idle timer correspondence table shown in FIGS. 2 (a) and 2 (b), and hardware of each device in FIG. Since the hardware configuration example is the same as that of the first embodiment, a duplicate description is omitted here.
 (第2実施形態の処理内容)
 以下、図8および図9を参照して第2実施形態の処理内容を説明する。図8に示す第2実施形態におけるアタッチ処理では、UEが複数のベアラ(ここではベアラ1、2)に係るアタッチ処理を要求するAttach RequestをeNBへ送信すると、Attach RequestはeNBからMMEへ送信される(図8のステップ1)。そして、MMEは、UEが利用するサービスタイプ等に応じて単一のSGWと単一のPGWを選択し、2つのデフォルトベアラを確立する(図8のステップ2)。その際、図8には省略したが、従来と同様にUEの認証処理も実行される。
(Processing contents of the second embodiment)
Hereinafter, the processing content of the second embodiment will be described with reference to FIGS. 8 and 9. In the attach process in the second embodiment illustrated in FIG. 8, when the UE transmits an Attach Request requesting an attach process related to a plurality of bearers (here, bearers 1 and 2) to the eNB, the Attach Request is transmitted from the eNB to the MME. (Step 1 in FIG. 8). And MME selects a single SGW and a single PGW according to the service type etc. which UE uses, and establishes two default bearers (step 2 of FIG. 8). At that time, although omitted in FIG. 8, UE authentication processing is also executed as in the conventional case.
 そして、MMEは、UEがベアラ1に係るサービスを利用する際のアイドルタイマ情報(IDLE timer1)およびUEがベアラ2に係るサービスを利用する際のアイドルタイマ情報(IDLE timer2)を、自機(MME)が保存している図2(a)のテーブルから又は図示しないSMFから取得し、E-RAN ID1とIDLE timer1の組合せおよびE-RAN ID2とIDLE timer2の組合せを含んだInitial Context RequestをeNBへ送信すると(図8のステップ3)、その後、UEとeNB間でRRCコネクションが確立され(図8のステップ4)、これにより、UEとeNB間、eNBと単一のSGW間、および、単一のSGWと単一のPGW間で、ベアラ1およびベアラ2が確立される。 Then, the MME uses the idle timer information (IDLE timer 1) when the UE uses the service related to the bearer 1 and the idle timer information (IDLE timer 2) when the UE uses the service related to the bearer 2 as its own (MME). ) Is saved from the table in Fig. 2 (a) or SMF (not shown), and the Initial Context Request including the combination of E-RAN ID1 and IDLE timer1 and the combination of E-RAN ID2 and IDLE timer2 is sent to the eNB. After transmission (step 3 in FIG. 8), an RRC connection is then established between the UE and the eNB (step 4 in FIG. 8), which allows the UE and eNB, the eNB and the single SGW, and the single Bearer 1 and Bearer 2 are established between the SGW and the single PGW.
 以上のように、ベアラ確立手順を1回実行することで、ベアラ1、2が確立される。 As described above, bearers 1 and 2 are established by executing the bearer establishment procedure once.
 第2実施形態では、一のベアラを解放する処理として、図9に示すベアラ解放処理が実行される。図9に示すベアラ解放処理では、ベアラ1、2が既に確立された状態で、eNBにおいてベアラ1のアイドルタイマおよびベアラ2のアイドルタイマが動作中である(図9のステップ1)。即ち、図1の測定部21によりベアラごとにアイドル時間が測定されている。そして、一のベアラ(ここでは例えばベアラ2)の上り/下りトラヒックが無いまま、ベアラ2のアイドルタイマが閾値に達すると(図9のステップ2)、図1の判断部22によりベアラ2のアイドル時間がIDLE timer2に達したと判断され、図1の要求部23によりベアラ2の解放が要求され、以下のようにベアラ2の解放処理が実行される。 In the second embodiment, a bearer release process shown in FIG. 9 is executed as a process of releasing one bearer. In the bearer release process shown in FIG. 9, with the bearers 1 and 2 already established, the idle timer of the bearer 1 and the idle timer of the bearer 2 are operating in the eNB (step 1 in FIG. 9). That is, the idle time is measured for each bearer by the measurement unit 21 in FIG. Then, when the idle timer of the bearer 2 reaches a threshold value (step 2 in FIG. 9) without the uplink / downlink traffic of one bearer (here, for example, bearer 2), the determination unit 22 in FIG. It is determined that the time has reached IDLE timer2, and the request unit 23 in FIG. 1 requests the bearer 2 to be released, and the bearer 2 release process is executed as follows.
 ここでは、ベアラ2についてeNBとUE間でRadio Bearer Releaseが実行され(図9のステップ3)、eNBは、E-RAB/EPS IDを含んだIndication of Bearer ReleaseをMMEへ送信し(図9のステップ4)、MMEは、Delete Bearer CommandをSGWへ送信する(図9のステップ5)。これを受けたSGWは、Delete Bearer CommandをPGWへ送信し(図9のステップ6)、PGWは、Delete Bearer RequestをSGWへ送信し(図9のステップ7)、そして、SGWは、Delete Bearer RequestをMMEへ送信する(図9のステップ8)。さらに、MMEがE-RAB/EPS IDを含んだDeactivate Bearer RequestをeNBへ送信し(図9のステップ9)、これを受けたeNBとUE間でベアラ2についてRRC Connection Releaseが実行される(図9のステップ10)。その後、eNBは、E-RAB/EPS IDを含んだDeactivate Bearer ResponseをMMEへ送信し(図9のステップ11)、MMEは、Delete Bearer ResponseをSGWへ送信し(図9のステップ12)、さらに、SGWは、Delete Bearer ResponseをPGWへ送信する(図9のステップ13)。以上により、図9に示すように、UE-PGW間でベアラ2は解放される。 Here, Radio Bearer Release is executed between eNB and UE for bearer 2 (step 3 in FIG. 9), and eNB transmits Indication of Bearer Release including E-RAB / EPS ID to MME (FIG. 9). Step 4) The MME sends a Delete Bearer Command to the SGW (Step 5 in FIG. 9). Upon receiving this, the SGW sends a Delete Bearer Command to the PGW (step 6 in FIG. 9), the PGW sends a Delete Bearer Request to the SGW (step 7 in FIG. 9), and the SGW then deletes the Delete Bearer Request. Is transmitted to the MME (step 8 in FIG. 9). Further, the MME sends a Deactivate Bearer Request including the E-RAB / EPS ID to the eNB (step 9 in FIG. 9), and RRC Connection Release is executed for the bearer 2 between the eNB and the UE that receives the request (see FIG. 9). 9 step 10). Thereafter, the eNB transmits a Deactivate Bearer Response including the E-RAB / EPS ID to the MME (Step 11 in FIG. 9), and the MME transmits a Delete Bearer Response to the SGW (Step 12 in FIG. 9). The SGW transmits a Delete Bearer Response to the PGW (step 13 in FIG. 9). As described above, as shown in FIG. 9, the bearer 2 is released between the UE and the PGW.
 このときベアラ1は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、端末が同時に複数のベアラにアクセスするケースでも、各ベアラの稼働状況を適切に判断し、ベアラ解放に係る制御を適切に行うことができる。 At this time, since the bearer 1 remains without being released, the UE state remains Connected. Thereby, even when a terminal accesses a plurality of bearers at the same time, it is possible to appropriately determine the operating status of each bearer and appropriately perform control related to bearer release.
 [第3実施形態]
 前述したように、第3実施形態では、いわゆる次世代ネットワークにおいてPDUセッションがUEと複数のユーザプレーンそれぞれとの間に設定された状況で、基地局(eNB)主導で複数PDUセッションのうち一のPDUセッションを解放する制御を行う実施形態を説明する。
[Third Embodiment]
As described above, in the third embodiment, in a so-called next generation network, a PDU session is set between the UE and each of a plurality of user planes, and one of the PDU sessions is led by a base station (eNB). An embodiment for performing control to release a PDU session will be described.
 (第3実施形態のシステム構成)
 図10に示すように第3実施形態に係る通信システム2は、端末(UE)10と、基地局に相当するeNB20と、次世代ネットワークにおける共通制御プレーン(Common Control Plane(以下、発明の実施形態では「Common CP」という))35と、端末ユーザのユーザ情報(加入者情報)を管理するSDM(Subscription Data Management)65と、後述するCP-SM(Control Plane-Session Management)70と、後述するユーザプレーン(User Plane(以下、発明の実施形態では「UP」という))80と、を含んで構成されている。ここでは本発明に係る「処理サーバ」はCommon CP35に対応する。
(System configuration of the third embodiment)
As shown in FIG. 10, the communication system 2 according to the third embodiment includes a terminal (UE) 10, an eNB 20 corresponding to a base station, and a common control plane (hereinafter referred to as an embodiment of the invention) in a next-generation network. (Hereinafter referred to as “Common CP”)) 35, SDM (Subscription Data Management) 65 for managing user information (subscriber information) of the terminal user, CP-SM (Control Plane-Session Management) 70 to be described later, And a user plane (hereinafter referred to as “UP” in the embodiment of the present invention) 80. Here, the “processing server” according to the present invention corresponds to Common CP35.
 CP-SM70は、UE10により利用される通信サービスのための制御信号を伝送するゲートウェイにおけるセッション管理機能部に相当し、通信サービスの要件に対応して1つ又は複数のCP-SM70が設けられる。ここでは、一例としてCP-SM1とCP-SM2とが設定される。 The CP-SM 70 corresponds to a session management function unit in a gateway that transmits a control signal for a communication service used by the UE 10, and one or more CP-SMs 70 are provided corresponding to the requirements of the communication service. Here, CP-SM1 and CP-SM2 are set as an example.
 UP80は、UE10により利用される通信サービスのためのユーザ信号を伝送するゲートウェイに相当し、個々のCP-SM70に対応してUP80が設定される。即ち、UP-1がCP-SM1に対応して設定され、UP-2がCP-SM2に対応して設定される。 UP 80 corresponds to a gateway that transmits a user signal for a communication service used by UE 10, and UP 80 is set corresponding to each CP-SM 70. That is, UP-1 is set corresponding to CP-SM1, and UP-2 is set corresponding to CP-SM2.
 本実施形態では、図10に示すように、UE10により利用される通信サービスとして、例えば、V2X(Vehicle to Everything)サービスと動画配信サービスとが想定され、後述する図11の処理により、V2XサービスのためにUE10とUP-1間にV2Xセッションが設定され、動画配信サービスのためにUE10とUP-2間にMBB(Mobile broadband)セッションが設定される。 In this embodiment, as shown in FIG. 10, as a communication service used by the UE 10, for example, a V2X (Vehicle to Everything) service and a video distribution service are assumed, and the processing of FIG. Therefore, a V2X session is set between the UE 10 and the UP-1, and an MBB (Mobile broadband) session is set between the UE 10 and the UP-2 for the moving image distribution service.
 Common CP35およびeNB20が備える本発明に関連する機能ブロック(解放処理部36、測定部21等)、図2(a)、図2(c)に示すIdle timerの対応テーブル、並びに、図3の各装置のハードウェア構成例は、第1実施形態と同様なので、ここでは重複した説明を省略する。図2(a)に示すIdle timerの対応テーブルは、図1のMME30に対応するCommon CP35により保持される。図2(c)に示すように、Idle timerは、eNB20の判断部22により各PDUセッションに対応付けて、例えばテーブル形式で記憶されている。判断部22は、記憶したIdle timer情報を用いて、測定部21により測定されたアイドル時間がアイドルタイマ閾値に達したか否かをPDUセッションごとに判断する。 Common CP 35 and eNB 20 related functional blocks (release processing unit 36, measurement unit 21 and the like) related to the present invention, Idle timer correspondence table shown in FIGS. 2 (a) and 2 (c), and each of FIG. Since the hardware configuration example of the apparatus is the same as that of the first embodiment, a duplicate description is omitted here. The correspondence table of Idle timer shown in FIG. 2A is held by the Common CP 35 corresponding to the MME 30 in FIG. As shown in FIG. 2C, the idle timer is stored in a table format, for example, in association with each PDU session by the determination unit 22 of the eNB 20. The determination unit 22 determines, for each PDU session, whether or not the idle time measured by the measurement unit 21 has reached the idle timer threshold using the stored Idle timer information.
 (第3実施形態の処理内容)
 以下、図11および図12を参照して第3実施形態の処理内容を説明する。図11に示す第3実施形態におけるアタッチ処理では、まず、UE、eNBおよびCommon CP(図11、図12では「C-CP」と略記する)間で従来手法によりUEの認証およびスライス選択が実行される(図11のステップ1)。ここではV2XサービスのためにV2Xスライスが選択され、動画配信サービスのためにMBBスライスが選択される。
(Processing content of the third embodiment)
Hereinafter, the processing content of the third embodiment will be described with reference to FIGS. 11 and 12. In the attach process in the third embodiment shown in FIG. 11, first, UE authentication and slice selection are executed by a conventional method among UE, eNB and Common CP (abbreviated as “C-CP” in FIGS. 11 and 12). (Step 1 in FIG. 11). Here, a V2X slice is selected for the V2X service, and an MBB slice is selected for the video distribution service.
 次に、UEがV2XスライスのためのPDU Session RequestをeNBへ送信すると、このPDU Session RequestはeNBからCommon CPへ送信される(図11のステップ2)。そして、Common CPは、SDMからUE ID等のUEのユーザ情報(加入者情報)を入手し(図11のステップ3)、上記PDU Session RequestをCP-SM1へ送信する(図11のステップ4)。さらに、CP-SM1は、V2XスライスのためのUPとしてUP-1を選択し(図11のステップ5)、UP-1にPDU Session Requestを送信する(図11のステップ6)。上記PDU Session Requestを受信したUP-1は、肯定応答としてPDU Session ResponseをCP-SM1に送信し(図11のステップ7)、CP-SM1はPDU Session ResponseをCommon CPに送信する(図11のステップ8)。さらに、Common CPは、上記UEがV2Xサービスを利用する際のアイドルタイマ情報を、自機(Common CP)が保存している図2(a)のテーブルから又は図示しないSMFから取得し、Session ID、UE ID、UP IDおよび取得したアイドルタイマ情報が付加されたPDU Session ResponseをeNBに送信し、eNBは、当該PDU Session ResponseをUEに送信する(図11のステップ9)。このステップ9において、eNBは、V2Xスライスのためのアイドルタイマ情報が付加されたPDU Session Responseを受信し、V2Xスライスのためのアイドルタイマ情報を取得する。そして、UEとeNB間、および、eNBとUP-1間に、V2XスライスのためのPDUセッション(以下「V2X PDUセッション」という)が確立される(図11のステップ10)。 Next, when the UE transmits a PDU Session Request for the V2X slice to the eNB, the PDU Session Request is transmitted from the eNB to the Common CP (Step 2 in FIG. 11). Then, the Common CP obtains the user information (subscriber information) of the UE such as the UE ID from the SDM (Step 3 in FIG. 11), and transmits the PDU Session Request to the CP-SM1 (Step 4 in FIG. 11). . Furthermore, CP-SM1 selects UP-1 as the UP for the V2X slice (step 5 in FIG. 11), and transmits a PDU Session Request to UP-1 (step 6 in FIG. 11). Upon receiving the PDU Session Request, UP-1 sends a PDU Session Response to CP-SM1 as an affirmative response (Step 7 in FIG. 11), and CP-SM1 sends a PDU Session Response to the Common CP (FIG. 11). Step 8). Further, the Common CP obtains the idle timer information when the UE uses the V2X service from the table of FIG. 2 (a) stored in its own device (Common CP) or from the SMF (not shown), and the Session ID. Then, the PDU Session Response to which the UE ID, UP ID and the acquired idle timer information are added is transmitted to the eNB, and the eNB transmits the PDU Session Response to the UE (Step 9 in FIG. 11). In step 9, the eNB receives the PDU Session Response to which the idle timer information for the V2X slice is added, and acquires the idle timer information for the V2X slice. Then, a PDU session for the V2X slice (hereinafter referred to as “V2X PDU session”) is established between the UE and the eNB and between the eNB and the UP-1 (step 10 in FIG. 11).
 MBBスライスのためのPDUセッション(以下「MBB PDUセッション」という)についてもほぼ同様に、UEがMBBスライスのためのPDU Session RequestをeNBへ送信すると、このPDU Session RequestはeNBからCommon CPへ送信される(図11のステップ11)。以後、MBBスライスについて、Common CP、CP-SM2およびUP-2間で上記ステップ3~8と同様の処理が実行される(図11のステップ12)。さらに、Common CPは、上記UEがMBBサービスを利用する際のアイドルタイマ情報を、自機(Common CP)が保存している図2(a)のテーブルから又は図示しないSMFから取得し、Session ID、UE ID、UP IDおよび取得したアイドルタイマ情報が付加されたPDU Session ResponseをeNBに送信し、eNBは、当該PDU Session ResponseをUEに送信する(図11のステップ13)。このステップ13において、eNBは、MBBスライスのためのアイドルタイマ情報が付加されたPDU Session Responseを受信し、MBBスライスのためのアイドルタイマ情報を取得する。そして、UEとeNB間、および、eNBとUP-2間に、MBB PDUセッションが確立される(図11のステップ14)。 For the PDU session for the MBB slice (hereinafter referred to as “MBB PDU session”), when the UE sends a PDU Session Request for the MBB slice to the eNB, the PDU Session Request is sent from the eNB to the Common CP. (Step 11 in FIG. 11). Thereafter, for the MBB slice, processing similar to Steps 3 to 8 is executed between Common CP, CP-SM2 and UP-2 (Step 12 in FIG. 11). Further, the Common CP acquires idle timer information when the UE uses the MBB service from the table of FIG. 2A stored in the own device (Common CP) or from the SMF (not shown), and the Session ID. Then, the PDU Session Response to which the UE ID, UP ID and the acquired idle timer information are added is transmitted to the eNB, and the eNB transmits the PDU Session Response to the UE (Step 13 in FIG. 11). In step 13, the eNB receives the PDU Session Response to which the idle timer information for the MBB slice is added, and acquires the idle timer information for the MBB slice. Then, an MBB PDU session is established between the UE and eNB and between the eNB and UP-2 (step 14 in FIG. 11).
 以上のように、ほぼ同様のPDUセッション確立手順を2回繰り返すことで、V2X PDUセッションおよびMBB PDUセッションが確立される。 As described above, a V2X PDU session and an MBB PDU session are established by repeating almost the same PDU session establishment procedure twice.
 第3実施形態では、一のPDUセッションを解放する処理として、図12に示す処理が実行される。図12に示す処理では、V2X PDUセッションおよびMBB PDUセッションが既に確立された状態で、eNBにおいて、V2X PDUセッションのアイドルタイマおよびMBB PDUセッションのアイドルタイマが動作中である(図12のステップ1)。即ち、図1の測定部21によりPDUセッションごとにアイドル時間が測定されている。そして、一のPDUセッション(ここでは例えばMBB PDUセッション)の上り/下りトラヒックが無いまま、当該PDUセッションのアイドルタイマが閾値(IDLE timer2)に達すると(図12のステップ2)、判断部22によりMBB PDUセッションのアイドル時間がIDLE timer2に達したと判断され、要求部23によりMBB PDUセッションの解放が要求され、以下のようにMBB PDUセッションの解放処理が実行される。 In the third embodiment, the process shown in FIG. 12 is executed as a process of releasing one PDU session. In the process shown in FIG. 12, the V2X PDU session and the MBB PDU session are already established, and the V2X PDU session idle timer and the MBB PDU session idle timer are operating in the eNB (step 1 in FIG. 12). . That is, the idle time is measured for each PDU session by the measurement unit 21 in FIG. When the idle timer of the PDU session reaches a threshold (IDLE timer 2) without any upstream / downstream traffic of one PDU session (for example, MBB PDU session in this case) (step 2 in FIG. 12), the judging unit 22 It is determined that the idle time of the MBB PDU session has reached IDLE timer2, and the request unit 23 requests the release of the MBB PDU session, and the MBB PDU session release process is executed as follows.
 ここでは、MBB PDUセッションについてeNBとUE間でRRC Connection Releaseが実行され(図12のステップ3)、eNBは、UE IDおよびSession IDを含んだPDU Session Release RequestをCommon CPへ送信する(図12のステップ4)。そして、Common CPは、PDU Session Release Requestに含まれたSession IDからCP-SM2を特定し(図12のステップ5)、UE IDおよびSession IDを含んだPDU Session Release RequestをCP-SM2へ送信する(図12のステップ6)。CP-SM2は、UE IDおよびSession IDを含んだRelease Session RequestをUP-2へ送信し(図12のステップ7)、UP-2は、受信したRelease Session Requestに含まれたUE IDに対応するUEに関するUEコンテキストをリリースする(図12のステップ8)。 Here, the RRC Connection Release is executed between the eNB and the UE for the MBB PDU session (Step 3 in FIG. 12), and the eNB transmits a PDU Session Release Request including the UE ID and Session ID to the Common CP (FIG. 12). Step 4). Then, the Common CP identifies CP-SM2 from the Session ID included in the PDU Session Release Request (Step 5 in FIG. 12), and transmits the PDU Session Release Request including the UE ID and Session ID to CP-SM2. (Step 6 in FIG. 12). CP-SM2 sends a Release Session Request including the UE ID and Session ID to UP-2 (Step 7 in FIG. 12), and UP-2 corresponds to the UE ID included in the received Release Session Request. Release the UE context for the UE (step 8 in FIG. 12).
 そして、UP-2は、肯定応答として、UE IDおよびSession IDを含んだRelease Session ResponseをCP-SM2に送信し(図12のステップ9)、CP-SM2は、UE IDおよびSession IDを含んだPDU Session Release ResponseをCommon CPに送信する(図12のステップ10)。さらに、Common CPとUE間でMBB NAS(Network Attached Storage)が解放され(図12のステップ11a)、MBB PDUセッションが解放される(図12のステップ11b)。以上により、図12に示すように、UEとUP-2間でMBB PDUセッションは解放される。 Then, UP-2 sends a Release Session Response including the UE ID and Session ID to CP-SM2 as an affirmative response (Step 9 in FIG. 12), and CP-SM2 includes the UE ID and Session ID. PDU Session Release Response is sent to Common CP (Step 10 in FIG. 12). Further, the MBB NAS (Network Attached Storage) is released between the Common CP and the UE (Step 11a in FIG. 12), and the MBB PDU session is released (Step 11b in FIG. 12). Thus, as shown in FIG. 12, the MBB PDU session is released between the UE and UP-2.
 このときV2X PDUセッションは解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、端末が同時に複数のPDUセッションにアクセスするケースでも、各PDUセッションの稼働状況を適切に判断し、PDUセッション解放に係る制御を適切に行うことができる。 At this time, since the V2X PDU session remains without being released, the UE state remains Connected. Accordingly, even when the terminal accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
 [第4実施形態]
 以下の第4実施形態では、いわゆる次世代ネットワークに関し、上記第3実施形態とは異なる実施形態を説明する。この第4実施形態および後述する第5~7実施形態では、EPCネットワークにおけるMMEがAMF(Access and mobility Management Function)に、SGWがSMF(Session Management Function)およびUP(U-Plane node)に、それぞれノード名が変更になり、EPCネットワークにおけるMME-SGW間のメッセージのやり取りが、AMF-SMF間、又はSMF経由のAMF-UP間のメッセージのやり取りに置き換わる。また、EPCネットワークにおけるSGWおよびPGWの機能がUPに集約され、これにより、SGW-PGW間のメッセージのやり取りが省略される。また、第4~第7実施形態でも、無線アクセスネットワーク(RAN:Radio Access Network)には、第1~第3実施形態で述べた基地局(eNB)20に相当する装置が存在し、以下では「RAN」と称している。
[Fourth Embodiment]
In the following fourth embodiment, an embodiment different from the third embodiment will be described with respect to a so-called next-generation network. In the fourth embodiment and the fifth to seventh embodiments described later, the MME in the EPC network is AMF (Access and Mobility Management Function), and the SGW is SMF (Session Management Function) and UP (U-Plane node), respectively. The node name is changed, and the message exchange between the MME-SGW in the EPC network is replaced with the message exchange between the AMF-SMF or the AMF-UP via the SMF. Further, the functions of SGW and PGW in the EPC network are integrated into UP, thereby omitting message exchange between SGW and PGW. Also in the fourth to seventh embodiments, a radio access network (RAN) includes a device corresponding to the base station (eNB) 20 described in the first to third embodiments. It is referred to as “RAN”.
 図13は、第4実施形態におけるPDUセッション確立処理を示す。ここでは、PDUセッション(PDU1)がUEと第1のUP(UP#1)との間に既に設定された状況で、新たなPDUセッション(PDU2)がUEと第2のUP(UP#2)との間に設定される処理が示されている。 FIG. 13 shows PDU session establishment processing in the fourth embodiment. Here, in a situation where the PDU session (PDU1) has already been set up between the UE and the first UP (UP # 1), the new PDU session (PDU2) becomes the UE and the second UP (UP # 2). Processes set between and are shown.
 具体的には、UEからRAN経由で、UP#2により提供されるサービスのリクエスト(Service Request (UP#2))がAMFへ送られると(図13のステップ1)、AMFは、リクエストされたサービスの特性等に基づき、新たなPDUセッション(PDU2)のためのアイドルタイマ閾値を算出する(図13のステップ2)。そして、AMFが、算出されたPDU2用アイドルタイマ閾値の情報が付加されたInitial Context Setup RequestをRANに送信すると(図13のステップ3)、UEとRAN間で無線ベアラがセットアップされ(図13のステップ4)、その後、RANからAMFへInitial Context Setup Completeが送信される(図13のステップ5)。そして、AMFが、第2のSMF(SMF#2)経由でUP#2にModify Session Requestを送信すると(図13のステップ6)、上記Modify Session Requestを受信したUP#2は、肯定応答としてModify Session ResponseをSMF#2経由でAMFに送信する(図13のステップ7)。これにより、UEとRAN間、およびRANとUP#2間で、新たなPDUセッション(PDU2)が確立される。 Specifically, when a request for a service provided by UP # 2 (Service Request (UP # 2)) is sent from the UE to the AMF via the RAN (step 1 in FIG. 13), the AMF is requested. Based on the service characteristics and the like, an idle timer threshold value for a new PDU session (PDU2) is calculated (step 2 in FIG. 13). Then, when the AMF transmits an Initial Context Setup Request to which the calculated PDU2 idle timer threshold information is added to the RAN (step 3 in FIG. 13), a radio bearer is set up between the UE and the RAN (FIG. 13). Step 4) After that, Initial Context Setup Complete is transmitted from the RAN to the AMF (Step 5 in FIG. 13). When the AMF sends a Modify Session Request to UP # 2 via the second SMF (SMF # 2) (Step 6 in FIG. 13), UP # 2 that has received the Modify Session Request receives Modify as an affirmative response. Session Response is transmitted to AMF via SMF # 2 (Step 7 in FIG. 13). Thereby, a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
 図14は、第4実施形態におけるPDUセッション解放処理を示す。ここでは、複数のPDUセッション(PDU1、PDU2)が設定された状況で、一のPDUセッション(PDU2)を解放する処理が示されている。 FIG. 14 shows a PDU session release process in the fourth embodiment. Here, a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
 具体的には、複数のPDUセッション(PDU1、PDU2)が設定された状況で、RANにおいて、各PDUについてのアイドルタイマが動作中である。即ち、RANにおける測定部21(図1)によりPDUセッションごとにアイドル時間が測定されている(図14のステップ1)。そして、一のPDUセッション(ここではPDU2)の上り/下りトラヒックが無いまま、当該PDU2のアイドルタイマが満了すると(図14のステップ2)、判断部22(図1)により当該PDU2のアイドルタイマ満了と判断され、要求部23(図1)によりPDU2の解放が要求され、以下のようなPDU2の解放処理が実行される。 Specifically, in a situation where a plurality of PDU sessions (PDU1, PDU2) are set, an idle timer for each PDU is operating in the RAN. That is, the idle time is measured for each PDU session by the measurement unit 21 (FIG. 1) in the RAN (step 1 in FIG. 14). Then, when the idle timer of the PDU2 expires without the upstream / downstream traffic of one PDU session (here, PDU2) (step 2 in FIG. 14), the determination unit 22 (FIG. 1) expires the idle timer of the PDU2. PDU2 is requested to be released by the request unit 23 (FIG. 1), and the following PDU2 release process is executed.
 ここでは、PDU2についてRANとUE間でRRC Connection Releaseが実行され(図14のステップ3)、RANは、UP#2により提供されるサービスに関するUE Context Release RequestをAMFへ送信する(図14のステップ4)。そして、AMFが、SMF#2経由でUP#2にRelease Access Session Requestを送信すると(図14のステップ5)、上記Release Access Session Requestを受信したUP#2は、肯定応答としてRelease Access Session ResponseをSMF#2経由でAMFに送信する(図14のステップ6)。さらに、AMFは、上記UE Context Release Requestへの応答として、UE Context Release CommandをRANに送信し(図14のステップ7)、これに対し、RANはUE Context Release CompleteをAMFに送信する(図14のステップ8)。以上により、図14に示すように、UEとRAN間、およびRANとUP#2間で、PDU2が解放される。 Here, RRC Connection Release is executed between RAN and UE for PDU2 (step 3 in FIG. 14), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (step in FIG. 14). 4). Then, when AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 5 in FIG. 14), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 6 in FIG. 14). Further, the AMF sends a UE Context Release Command to the RAN as a response to the UE Context Release Request (step 7 in FIG. 14), while the RAN sends a UE Context Release Complete to the AMF (FIG. 14). Step 8). Accordingly, as shown in FIG. 14, PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
 このとき、別のPDUセッション(PDU1)は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、UEが同時に複数のPDUセッションにアクセスするケースでも、各PDUセッションの稼働状況を適切に判断し、PDUセッション解放に係る制御を適切に行うことができる。 At this time, since another PDU session (PDU1) remains without being released, the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
 なお、上記の第4実施形態および後述する第5~7実施形態におけるAMFは、特許請求の範囲に記載された「処理サーバ」に、SMFは「制御プレーン」に、UPは「ユーザプレーン」に、RANは「基地局」に、それぞれ対応する。 In the fourth embodiment and the fifth to seventh embodiments described later, the AMF is the “processing server” described in the claims, the SMF is the “control plane”, and the UP is the “user plane”. RAN corresponds to a “base station”, respectively.
 上述した第1~第4実施形態によれば、端末が同時に複数のベアラ又はPDUセッションにアクセスするケースでも、各ベアラ又は各PDUセッションの稼働状況を適切に判断し、ベアラ又はPDUセッションの解放に係る制御を適切に行うことができる。 According to the first to fourth embodiments described above, even when a terminal accesses a plurality of bearers or PDU sessions at the same time, the operation status of each bearer or each PDU session is appropriately determined to release the bearer or PDU session. Such control can be performed appropriately.
 また、各ベアラ又は各PDUセッションの稼働状況を判断するためのアイドル時間監視において、アイドル状態であると判断するためのアイドルタイマ閾値が用いられるが、このアイドルタイマ閾値は、基地局(eNB)によって各ベアラ又は各PDUセッションに対応付けて、図2(b)、図2(c)のように記憶されている。このようにアイドルタイマ閾値を基地局(eNB)により管理することで、新規のベアラ又はPDUセッションが確立された場合等にアイドル時間監視を適切に行い、各ベアラ又は各PDUセッションの稼働状況判断を適切に行うことができる。 In addition, in the idle time monitoring for determining the operating status of each bearer or each PDU session, an idle timer threshold for determining that it is in an idle state is used. This idle timer threshold is determined by the base station (eNB). It is stored in association with each bearer or each PDU session as shown in FIG. 2 (b) and FIG. 2 (c). In this way, by managing the idle timer threshold by the base station (eNB), it is possible to appropriately monitor the idle time when a new bearer or PDU session is established, and to determine the operating status of each bearer or each PDU session. Can be done appropriately.
 なお、本発明のベアラ又はPDUセッションの解放に係る制御に関し、図1および図7のHSS60、並びに図10のSDM65は必須構成要件ではなく、ベアラ又はPDUセッションごとの適切なアイドルタイマ閾値がeNB20に通知される構成であれば、HSS60、SDM65は省略してもよい。 It should be noted that the HSS 60 in FIG. 1 and FIG. 7 and the SDM 65 in FIG. 10 are not essential components for the control related to the release of the bearer or PDU session of the present invention, and the appropriate idle timer threshold for each bearer or PDU session is As long as the configuration is notified, the HSS 60 and the SDM 65 may be omitted.
 [第5実施形態]
 以下の第5実施形態では、いわゆる次世代ネットワークに関し、上記第4実施形態におけるRANに代わり、UEが、PDUセッションごとにアイドル時間を測定し、一のPDUセッションに係るアイドルタイマが満了した場合に当該PDUセッションの解放を要求する実施形態を説明する。
[Fifth Embodiment]
In the following fifth embodiment, regarding a so-called next generation network, instead of the RAN in the fourth embodiment, when the UE measures the idle time for each PDU session and the idle timer related to one PDU session expires. An embodiment for requesting release of the PDU session will be described.
 図15に示すように、第5実施形態における通信システムでは、無線アクセスネットワーク(RAN)25に代わり、UE10が、第1~4実施形態における測定部21、判断部22および要求部23を備える。また、前述したように、EPCネットワークにおけるMMEがAMF37に、SGWがSMF75およびUP80に、それぞれノード名が変更になる。RAN25には、第1~第3実施形態で述べた基地局(eNB)20に相当する装置が存在し、以下では「RAN」と称している。 As shown in FIG. 15, in the communication system according to the fifth embodiment, the UE 10 includes a measurement unit 21, a determination unit 22, and a request unit 23 according to the first to fourth embodiments instead of the radio access network (RAN) 25. In addition, as described above, the node name is changed to AMF37 for the MME in the EPC network and SMF75 and UP80 for the SGW, respectively. The RAN 25 includes a device corresponding to the base station (eNB) 20 described in the first to third embodiments, and is referred to as “RAN” below.
 図16は、第5実施形態におけるPDUセッション確立処理を示す。ここでは、PDUセッション(PDU1)がUEと第1のUP(UP#1)との間に既に設定された状況で、新たなPDUセッション(PDU2)がUEと第2のUP(UP#2)との間に設定される処理が示されている。 FIG. 16 shows a PDU session establishment process in the fifth embodiment. Here, in a situation where the PDU session (PDU1) has already been set up between the UE and the first UP (UP # 1), the new PDU session (PDU2) becomes the UE and the second UP (UP # 2). Processes set between and are shown.
 具体的には、UEからRAN経由で、UP#2により提供されるサービスのリクエスト(Service Request (UP#2))がAMFへ送られると(図16のステップ1)、AMFは、リクエストされたサービスの特性等に基づき、新たなPDUセッション(PDU2)のためのアイドルタイマ閾値を算出する(図16のステップ2)。そして、AMFが、算出されたPDU2用アイドルタイマ閾値の情報が付加されたInitial Context Setup RequestをRANに送信すると(図16のステップ3)、上記Initial Context Setup RequestはUEへ転送され(図16のステップ4)、これにより、UEはPDU2用アイドルタイマ閾値の情報を取得する。その後、UEとRAN間で無線ベアラがセットアップされ(図16のステップ5)、RANからAMFへInitial Context Setup Completeが送信される(図16のステップ6)。そして、AMFが、第2のSMF(SMF#2)経由でUP#2にModify Session Requestを送信すると(図16のステップ7)、上記Modify Session Requestを受信したUP#2は、肯定応答としてModify Session ResponseをSMF#2経由でAMFに送信する(図16のステップ8)。これにより、UEとRAN間、およびRANとUP#2間で、新たなPDUセッション(PDU2)が確立される。 Specifically, when a request for a service provided by UP # 2 (Service Request (UP # 2)) is sent from the UE to the AMF via the RAN (step 1 in FIG. 16), the AMF is requested. Based on the service characteristics and the like, an idle timer threshold for a new PDU session (PDU2) is calculated (step 2 in FIG. 16). Then, when the AMF transmits an Initial Context Setup Request to which the calculated PDU2 idle timer threshold information is added to the RAN (step 3 in FIG. 16), the Initial Context Setup Request is forwarded to the UE (in FIG. 16). In step 4), the UE acquires information on the idle timer threshold for PDU2 thereby. Thereafter, a radio bearer is set up between the UE and the RAN (step 5 in FIG. 16), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 6 in FIG. 16). Then, when the AMF sends a Modify Session Request to UP # 2 via the second SMF (SMF # 2) (Step 7 in FIG. 16), UP # 2 that has received the Modify Session Request receives Modify as a positive response. Session Response is transmitted to AMF via SMF # 2 (Step 8 in FIG. 16). Thereby, a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
 図17は、第5実施形態におけるPDUセッション解放処理を示す。ここでは、複数のPDUセッション(PDU1、PDU2)が設定された状況で、一のPDUセッション(PDU2)を解放する処理が示されている。 FIG. 17 shows a PDU session release process in the fifth embodiment. Here, a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
 具体的には、複数のPDUセッション(PDU1、PDU2)が設定された状況で、UEにおいて、各PDUについてのアイドルタイマが動作中である。即ち、図15のUE10における測定部21によりPDUセッションごとにアイドル時間が測定されている(図17のステップ1)。そして、一のPDUセッション(ここではPDU2)の上り/下りトラヒックが無いまま、当該PDU2のアイドルタイマが満了すると(図17のステップ2)、判断部22により当該PDU2のアイドルタイマ満了と判断され、要求部23によりPDU2の解放が要求され、以下のようなPDU2の解放処理が実行される。 Specifically, in a situation where a plurality of PDU sessions (PDU1, PDU2) are set, an idle timer for each PDU is operating in the UE. That is, the idle time is measured for each PDU session by the measurement unit 21 in the UE 10 in FIG. 15 (step 1 in FIG. 17). Then, when the idle timer of the PDU2 expires without the uplink / downlink traffic of one PDU session (here, PDU2) (step 2 in FIG. 17), the determination unit 22 determines that the idle timer of the PDU2 has expired, The request unit 23 requests the release of PDU2, and the following PDU2 release process is executed.
 ここでは、PDU2についてRANとUE間でRRC Connection Releaseが実行され(図17のステップ3)、RANは、UP#2により提供されるサービスに関するUE Context Release RequestをAMFへ送信する(図17のステップ4)。そして、AMFが、SMF#2経由でUP#2にRelease Access Session Requestを送信すると(図17のステップ5)、上記Release Access Session Requestを受信したUP#2は、肯定応答としてRelease Access Session ResponseをSMF#2経由でAMFに送信する(図17のステップ6)。さらに、AMFは、上記UE Context Release Requestへの応答として、UE Context Release CommandをRANに送信し(図17のステップ7)、これに対し、RANはUE Context Release CompleteをAMFに送信する(図17のステップ8)。以上により、図17に示すように、UEとRAN間、およびRANとUP#2間で、PDU2が解放される。 Here, RRC Connection Release is executed between RAN and UE for PDU2 (Step 3 in FIG. 17), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (Step in FIG. 17). 4). Then, when AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 5 in FIG. 17), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 6 in FIG. 17). Further, the AMF transmits a UE Context Release Command to the RAN as a response to the UE Context Release Request (Step 7 in FIG. 17), while the RAN transmits a UE Context Release Complete to the AMF (FIG. 17). Step 8). Thus, as shown in FIG. 17, PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
 このとき、別のPDUセッション(PDU1)は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、UEが同時に複数のPDUセッションにアクセスするケースでも、各PDUセッションの稼働状況を適切に判断し、PDUセッション解放に係る制御を適切に行うことができる。 At this time, since another PDU session (PDU1) remains without being released, the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
 [第6実施形態]
 以下の第6実施形態では、いわゆる次世代ネットワークに関し、上記第4実施形態におけるRANに代わり、AMFが、PDUセッションごとにアイドル時間を測定し、一のPDUセッションに係るアイドルタイマが満了した場合に当該PDUセッションの解放処理を行う実施形態を説明する。
[Sixth Embodiment]
In the following sixth embodiment, regarding a so-called next-generation network, when the AMF measures the idle time for each PDU session instead of the RAN in the fourth embodiment and the idle timer related to one PDU session expires. An embodiment for performing the PDU session release process will be described.
 図18に示すように、第6実施形態における通信システムでは、AMF37が、解放処理部36に加え、第1~4実施形態における測定部21および判断部22を備える。 As shown in FIG. 18, in the communication system according to the sixth embodiment, the AMF 37 includes the measurement unit 21 and the determination unit 22 in the first to fourth embodiments in addition to the release processing unit 36.
 図19は、第6実施形態におけるPDUセッション確立処理を示す。ここでは、PDUセッション(PDU1)がUEと第1のUP(UP#1)との間に既に設定された状況で、新たなPDUセッション(PDU2)がUEと第2のUP(UP#2)との間に設定される処理が示されている。 FIG. 19 shows PDU session establishment processing in the sixth embodiment. Here, in a situation where the PDU session (PDU1) has already been set up between the UE and the first UP (UP # 1), the new PDU session (PDU2) becomes the UE and the second UP (UP # 2). Processes set between and are shown.
 具体的には、UEからRAN経由で、UP#2により提供されるサービスのリクエスト(Service Request (UP#2))がAMFへ送られると(図19のステップ1)、AMFは、リクエストされたサービスの特性等に基づき、新たなPDUセッション(PDU2)のためのアイドルタイマ閾値を算出する(図19のステップ2)。そして、AMFが、Initial Context Setup RequestをRANに送信すると(図19のステップ3)、上記Initial Context Setup RequestはUEへ転送される(図19のステップ4)。その後、UEとRAN間で無線ベアラがセットアップされ(図19のステップ5)、RANからAMFへInitial Context Setup Completeが送信される(図19のステップ6)。そして、AMFが、第2のSMF(SMF#2)経由でUP#2にModify Session Requestを送信すると(図19のステップ7)、上記Modify Session Requestを受信したUP#2は、肯定応答としてModify Session ResponseをSMF#2経由でAMFに送信する(図19のステップ8)。これにより、UEとRAN間、およびRANとUP#2間で、新たなPDUセッション(PDU2)が確立される。 Specifically, when a service request (Service Request (UP # 2)) provided by UP # 2 is sent from the UE to the AMF via the RAN (step 1 in FIG. 19), the AMF is requested. Based on the service characteristics and the like, an idle timer threshold value for a new PDU session (PDU2) is calculated (step 2 in FIG. 19). When the AMF transmits an Initial Context Setup Request to the RAN (Step 3 in FIG. 19), the Initial Context Setup Request is transferred to the UE (Step 4 in FIG. 19). Thereafter, a radio bearer is set up between the UE and the RAN (step 5 in FIG. 19), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 6 in FIG. 19). Then, when the AMF sends a Modify Session Request to UP # 2 via the second SMF (SMF # 2) (Step 7 in FIG. 19), UP # 2 that received the Modify Session Request receives Modify as a positive response. Session Response is transmitted to AMF via SMF # 2 (Step 8 in FIG. 19). Thereby, a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
 図20は、第6実施形態におけるPDUセッション解放処理を示す。ここでは、複数のPDUセッション(PDU1、PDU2)が設定された状況で、一のPDUセッション(PDU2)を解放する処理が示されている。 FIG. 20 shows a PDU session release process in the sixth embodiment. Here, a process of releasing one PDU session (PDU2) in a situation where a plurality of PDU sessions (PDU1, PDU2) are set is shown.
 具体的には、複数のPDUセッション(PDU1、PDU2)が設定された状況で、AMFにおいて、各PDUについてのアイドルタイマが動作中である。即ち、図18のAMF37における測定部21によりPDUセッションごとにアイドル時間が測定されている(図20のステップ1)。そして、一のPDUセッション(ここではPDU2)の上り/下りトラヒックが無いまま、当該PDU2のアイドルタイマが満了すると、判断部22により当該PDU2のアイドルタイマ満了と判断され(図20のステップ2)、解放処理部36により、以下のようなPDU2の解放処理が実行される。 Specifically, in a situation where a plurality of PDU sessions (PDU1, PDU2) are set, an idle timer for each PDU is operating in the AMF. That is, the idle time is measured for each PDU session by the measurement unit 21 in the AMF 37 in FIG. 18 (step 1 in FIG. 20). Then, when the idle timer of the PDU2 expires without the uplink / downlink traffic of one PDU session (here, PDU2), the determination unit 22 determines that the idle timer of the PDU2 has expired (step 2 in FIG. 20). The release processing unit 36 executes the following PDU2 release processing.
 ここでは、PDU2についてRANとUE間のRRC Connection Releaseが実行され(図20のステップ3、4)、RANは、UP#2により提供されるサービスに関するUE Context Release RequestをAMFへ送信する(図20のステップ5)。そして、AMFが、SMF#2経由でUP#2にRelease Access Session Requestを送信すると(図20のステップ6)、上記Release Access Session Requestを受信したUP#2は、肯定応答としてRelease Access Session ResponseをSMF#2経由でAMFに送信する(図20のステップ7)。さらに、AMFは、上記UE Context Release Requestへの応答として、UE Context Release CommandをRANに送信し(図20のステップ8)、これに対し、RANはUE Context Release CompleteをAMFに送信する(図20のステップ9)。以上により、図20に示すように、UEとRAN間、およびRANとUP#2間で、PDU2が解放される。 Here, RRC Connection Release between RAN and UE is executed for PDU2 ( Steps 3 and 4 in FIG. 20), and RAN sends UE Context Release Request for the service provided by UP # 2 to AMF (FIG. 20). Step 5). When the AMF sends a Release Access Session Request to UP # 2 via SMF # 2 (Step 6 in FIG. 20), UP # 2 that has received the Release Access Session Request receives Release Access Session Response as an affirmative response. It transmits to AMF via SMF # 2 (step 7 in FIG. 20). Furthermore, the AMF sends a UE Context Release Command to the RAN as a response to the UE Context Release Request (step 8 in FIG. 20), while the RAN sends a UE Context Release Complete to the AMF (FIG. 20). Step 9). Thus, as shown in FIG. 20, PDU2 is released between the UE and the RAN and between the RAN and the UP # 2.
 このとき、別のPDUセッション(PDU1)は解放されずに残っているため、UEの状態はConnectedのままとなる。これにより、UEが同時に複数のPDUセッションにアクセスするケースでも、各PDUセッションの稼働状況を適切に判断し、PDUセッション解放に係る制御を適切に行うことができる。 At this time, since another PDU session (PDU1) remains without being released, the UE state remains Connected. Accordingly, even when the UE accesses a plurality of PDU sessions at the same time, it is possible to appropriately determine the operating status of each PDU session and appropriately perform control related to PDU session release.
 [第7実施形態]
 以下の第7実施形態では、いわゆる次世代ネットワークに関し、AMFに代わり、SMFが、新たなPDUセッションのためのアイドルタイマ閾値を算出する実施形態を説明する。なお、以下では、RANが、算出されたアイドルタイマ閾値の情報を保持し、PDUセッションごとにアイドル時間を測定する例を示すが、上記第5、第6実施形態のように、RANに代わり、UE又はAMFが算出されたアイドルタイマ閾値の情報を保持し、PDUセッションごとにアイドル時間を測定してもよい。
[Seventh Embodiment]
In the following seventh embodiment, an embodiment will be described in which an SMF calculates an idle timer threshold for a new PDU session, instead of AMF, for a so-called next-generation network. In the following, an example is shown in which the RAN holds information on the calculated idle timer threshold and measures the idle time for each PDU session, but instead of the RAN as in the fifth and sixth embodiments, The idle timer threshold information calculated by the UE or AMF may be held, and the idle time may be measured for each PDU session.
 図21は、第7実施形態におけるPDUセッション確立処理を示しており、同処理には、SMFによるアイドルタイマ閾値の算出処理が含まれている。なお、ここでは、PDUセッション(PDU1)がUEと第1のUP(UP#1)との間に既に設定された状況で、新たなPDUセッション(PDU2)がUEと第2のUP(UP#2)との間に設定される処理が示されている。 FIG. 21 shows a PDU session establishment process in the seventh embodiment, which includes an idle timer threshold value calculation process by the SMF. In this case, in a situation where a PDU session (PDU1) has already been set up between the UE and the first UP (UP # 1), a new PDU session (PDU2) is transferred between the UE and the second UP (UP # 1). The process set between 2) is shown.
 具体的には、UEからRAN経由で、UP#2により提供されるサービスのリクエスト(Service Request (UP#2))がAMFへ送られると(図21のステップ1)、AMFは、上記サービスのためのPDU Session Request (UP#2)を第2のSMF(SMF#2)へ送信する(図21のステップ2)。そして、SMF#2は、リクエストされたサービスの特性等に基づき、新たなPDUセッション(PDU2)のためのアイドルタイマ閾値を算出する(図21のステップ3)。その後、SMF#2が、算出されたPDU2用アイドルタイマ閾値の情報が付加されたPDU Session ResponseをAMFに送信すると(図21のステップ4)、AMFが、上記のPDU2用アイドルタイマ閾値の情報が付加されたInitial Context Setup RequestをRANに送信する(図21のステップ5)。これにより、RANはPDU2用アイドルタイマ閾値の情報を取得し、以後、当該閾値の情報を用いてPDU2のアイドル時間を測定することが可能となる。その後、UEとRAN間で無線ベアラがセットアップされ(図21のステップ6)、RANからAMFへInitial Context Setup Completeが送信される(図21のステップ7)。さらに、AMFが、SMF#2経由でUP#2にModify Session Requestを送信すると(図21のステップ8)、上記Modify Session Requestを受信したUP#2は、肯定応答としてModify Session ResponseをSMF#2経由でAMFに送信する(図21のステップ9)。これにより、UEとRAN間、およびRANとUP#2間で、新たなPDUセッション(PDU2)が確立される。 Specifically, when a service request (Service Request (UP # 2)) provided by UP # 2 is sent from the UE to the AMF via the RAN (step 1 in FIG. 21), the AMF PDU Session Request (UP # 2) is transmitted to the second SMF (SMF # 2) (step 2 in FIG. 21). Then, the SMF # 2 calculates an idle timer threshold for a new PDU session (PDU2) based on the requested service characteristics and the like (step 3 in FIG. 21). Thereafter, when the SMF # 2 transmits a PDU Session Response to which the calculated PDU2 idle timer threshold information is added to the AMF (step 4 in FIG. 21), the AMF receives the PDU2 idle timer threshold information. The added Initial Context Setup Request is transmitted to the RAN (Step 5 in FIG. 21). As a result, the RAN obtains information on the idle timer threshold for PDU2, and thereafter, it is possible to measure the idle time of PDU2 using the information on the threshold. Thereafter, a radio bearer is set up between the UE and the RAN (step 6 in FIG. 21), and Initial Context Setup Complete is transmitted from the RAN to the AMF (step 7 in FIG. 21). Further, when the AMF sends a Modify Session Request to UP # 2 via SMF # 2 (Step 8 in FIG. 21), UP # 2 that receives the Modify Session Request sends Modify Session Response as an affirmative response to SMF # 2. The data is transmitted to the AMF via (step 9 in FIG. 21). Thereby, a new PDU session (PDU2) is established between the UE and the RAN and between the RAN and the UP # 2.
 上記第7実施形態のように、AMFに代わり、SMFがアイドルタイマ閾値を算出してもよく、算出されたアイドルタイマ閾値の情報は、アイドル時間測定を行う装置(ここではRAN)へ適切に送信され保持される。 As in the seventh embodiment, instead of the AMF, the SMF may calculate the idle timer threshold, and the information on the calculated idle timer threshold is appropriately transmitted to a device (here, RAN) that performs the idle time measurement. And retained.
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。 As mentioned above, although this embodiment was described in detail, it is clear for those skilled in the art that this embodiment is not limited to embodiment described in this specification. The present embodiment can be implemented as a modification and change without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present embodiment.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRCコネクションセットアップ(RRC Connection Setup)メッセージ、RRCコネクション再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information etc. can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning.
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。 The terms “system” and “network” used in this specification are used interchangeably.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。 In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the above parameters are not limited in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements (eg, TPC, etc.) can be identified by any suitable name, the various names assigned to these various channels and information elements are However, it is not limited.
 本実施形態の基地局(eNB)は、1つまたは複数の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 The base station (eNB) of this embodiment can accommodate one or a plurality of cells (also called sectors). When the base station accommodates a plurality of cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can be divided into a base station subsystem (for example, an indoor small base station RRH: Remote). A communication service can also be provided by Radio Head). The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein. A base station may also be referred to in terms such as a fixed station, NodeB, access point, femto cell, small cell, and the like.
 端末(UE)は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A terminal (UE) is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal , Wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table) , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like. In addition, “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as "determined" or "determined". In addition, “determination” and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 In the present specification, when a designation such as “first” or “second” is used, any reference to the element does not generally limit the quantity or order of the elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
 「含む(include)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “include”, “comprising”, and variations thereof, are used in the specification or claims, these terms are similar to the term “comprising”. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。 In this specification, unless there is only one device that is clearly present in context or technically, a plurality of devices are also included.
 1、1S、2…通信システム、10…UE(端末)、20…eNB(基地局)、20A…プロセッサ、20B…メモリ、20C…ストレージ、20D…通信モジュール、20E…入力装置、20F…出力装置、20G…バス、21…測定部、22…判断部、23…要求部、25…RAN(基地局)、30…MME(処理サーバ)、31…解放処理部、35…Common CP(処理サーバ)、36…解放処理部、37…AMF(処理サーバ)、40…SGW、50…PGW、60…HSS、65…SDM、70…CP-SM(制御プレーン)、80…UP(ユーザプレーン)。
 
DESCRIPTION OF SYMBOLS 1, 1S, 2 ... Communication system, 10 ... UE (terminal), 20 ... eNB (base station), 20A ... Processor, 20B ... Memory, 20C ... Storage, 20D ... Communication module, 20E ... Input device, 20F ... Output device , 20G ... bus, 21 ... measurement unit, 22 ... determination unit, 23 ... request unit, 25 ... RAN (base station), 30 ... MME (processing server), 31 ... release processing unit, 35 ... Common CP (processing server) 36 ... Release processing unit, 37 ... AMF (processing server), 40 ... SGW, 50 ... PGW, 60 ... HSS, 65 ... SDM, 70 ... CP-SM (control plane), 80 ... UP (user plane).

Claims (12)

  1.  端末と、基地局と、端末に係る処理を実行する処理サーバと、一又は複数のサービングゲートウェイと、を含み、複数のベアラが前記基地局を経由して前記端末と前記一又は複数のサービングゲートウェイ間に設定された通信システム、にて実行される通信制御方法であって、
     前記基地局が、ベアラのアイドル状態の継続時間であるアイドル時間をベアラごとに測定するステップと、
     前記基地局が、ベアラがアイドル状態であると判断するためのアイドルタイマ閾値であって前記複数のベアラの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、ベアラごとに判断するステップと、
     一のベアラについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記基地局が、前記処理サーバに当該一のベアラの解放を要求するステップと、
     前記処理サーバが、前記基地局からの要求に応じて前記一のベアラの解放処理を行うステップと、
     を備える通信制御方法。
    A terminal, a base station, a processing server that executes processing related to the terminal, and one or more serving gateways, and a plurality of bearers pass through the base station and the terminal and the one or more serving gateways A communication control method executed in a communication system set in between,
    The base station measuring for each bearer idle time, which is the duration of the idle state of the bearer;
    Whether the measured idle time has reached the idle timer threshold for the base station to determine that the bearer is in an idle state and is predetermined for each of the plurality of bearers The step of judging for each bearer,
    When it is determined that the idle time has reached the idle timer threshold for one bearer, the base station requests the processing server to release the one bearer;
    The processing server performing a release process of the one bearer in response to a request from the base station;
    A communication control method comprising:
  2.  前記一のベアラの解放を要求するステップにおいて、前記処理サーバは、当該一のベアラに対応するS1ベアラの解放を要求する、
     請求項1に記載の通信制御方法。
    In the step of requesting release of the one bearer, the processing server requests release of an S1 bearer corresponding to the one bearer.
    The communication control method according to claim 1.
  3.  前記通信システムは、前記サービングゲートウェイの上流側に位置する一又は複数のパケットデータネットワークゲートウェイ、をさらに含み、
     前記一のベアラの解放を要求するステップにおいて、前記処理サーバは、当該一のベアラに対応するS1ベアラ、および、当該一のベアラに対応するサービングゲートウェイとパケットデータネットワークゲートウェイ間のベアラ、の解放を要求する、
     請求項1に記載の通信制御方法。
    The communication system further includes one or more packet data network gateways located upstream of the serving gateway;
    In the step of requesting the release of the one bearer, the processing server releases the S1 bearer corresponding to the one bearer and the bearer between the serving gateway corresponding to the one bearer and the packet data network gateway. Request,
    The communication control method according to claim 1.
  4.  前記アイドルタイマ閾値は、前記基地局により各ベアラに対応付けて記憶されている、
     請求項1~3の何れか一項に記載の通信制御方法。
    The idle timer threshold is stored in association with each bearer by the base station,
    The communication control method according to any one of claims 1 to 3.
  5.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、
     前記基地局が、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、
     前記基地局が、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、
     一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記基地局が、前記処理サーバに当該一のPDUセッションの解放を要求するステップと、
     前記処理サーバが、前記基地局からの要求に応じて前記一のPDUセッションの解放処理を行うステップと、
     を備える通信制御方法。
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication control method executed in a communication system including a plurality of user planes, wherein a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The base station measuring, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether the measured idle time has reached the idle timer threshold for the base station to determine that the PDU session is idle and predetermined for each of a plurality of PDU sessions. Determining whether or not for each PDU session;
    When the base station determines that the idle time has reached the idle timer threshold for one PDU session, the base station requests the processing server to release the one PDU session;
    The processing server performing a release process of the one PDU session in response to a request from the base station;
    A communication control method comprising:
  6.  前記アイドルタイマ閾値は、前記基地局により各PDUセッションに対応付けて記憶されている、
     請求項5に記載の通信制御方法。
    The idle timer threshold is stored in association with each PDU session by the base station,
    The communication control method according to claim 5.
  7.  端末と、基地局と、端末に係る処理を実行する処理サーバと、一又は複数のサービングゲートウェイと、を含み、複数のベアラが前記基地局を経由して前記端末と前記一又は複数のサービングゲートウェイ間に設定された通信システムであって、
     前記基地局は、
     ベアラのアイドル状態の継続時間であるアイドル時間をベアラごとに測定する測定部と、
     ベアラがアイドル状態であると判断するためのアイドルタイマ閾値であって前記複数のベアラの各々について予め定められた当該アイドルタイマ閾値に、前記測定部により測定された前記アイドル時間が達したか否かを、ベアラごとに判断する判断部と、
     前記判断部により一のベアラについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記処理サーバに当該一のベアラの解放を要求する要求部と、
     を備え、
     前記処理サーバは、
     前記基地局からの要求に応じて前記一のベアラの解放処理を行う解放処理部、
     を備える、
     通信システム。
    A terminal, a base station, a processing server that executes processing related to the terminal, and one or more serving gateways, and a plurality of bearers pass through the base station and the terminal and the one or more serving gateways A communication system set in between,
    The base station
    A measurement unit that measures the idle time, which is the duration of the idle state of the bearer, for each bearer;
    Whether or not the idle time measured by the measuring unit has reached an idle timer threshold for determining that the bearer is in an idle state, the idle timer threshold being predetermined for each of the plurality of bearers And a determination unit that determines for each bearer,
    A request unit that requests the processing server to release the one bearer when the determination unit determines that the idle time has reached the idle timer threshold for the one bearer;
    With
    The processing server
    A release processing unit that performs a release process of the one bearer in response to a request from the base station;
    Comprising
    Communications system.
  8.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システムであって、
     前記基地局は、
     PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定する測定部と、
     PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、前記測定部により測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断する判断部と、
     前記判断部により一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記処理サーバに当該一のPDUセッションの解放を要求する要求部と、
     を備え、
     前記処理サーバは、
     前記基地局からの要求に応じて前記一のPDUセッションの解放処理を行う解放処理部、
     を備える、
     通信システム。
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication system in which a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The base station
    A measurement unit that measures, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether or not the idle time measured by the measurement unit has reached an idle timer threshold for determining that the PDU session is in an idle state, which is predetermined for each of a plurality of PDU sessions. A determination unit that determines for each PDU session;
    A request unit that requests the processing server to release the one PDU session when the determination unit determines that the idle time has reached the idle timer threshold for one PDU session;
    With
    The processing server
    A release processing unit that performs a release process of the one PDU session in response to a request from the base station;
    Comprising
    Communications system.
  9.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、
     前記端末が、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、
     前記端末が、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、
     一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記端末が、前記処理サーバに当該一のPDUセッションの解放を要求するステップと、
     前記処理サーバが、前記端末からの要求に応じて前記一のPDUセッションの解放処理を行うステップと、
     を備える通信制御方法。
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication control method executed in a communication system including a plurality of user planes, wherein a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The terminal measures, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether or not the measured idle time has reached the idle timer threshold for determining that the PDU session is in an idle state, which is predetermined for each of a plurality of PDU sessions. Determining for each PDU session;
    The terminal requesting the processing server to release the one PDU session when it is determined that the idle time has reached the idle timer threshold for one PDU session;
    The processing server performing a release process of the one PDU session in response to a request from the terminal;
    A communication control method comprising:
  10.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システム、にて実行される通信制御方法であって、
     前記処理サーバが、PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定するステップと、
     前記処理サーバが、PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断するステップと、
     一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記処理サーバが、前記一のPDUセッションの解放処理を行うステップと、
     を備える通信制御方法。
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication control method executed in a communication system including a plurality of user planes, wherein a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The processing server measuring, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether the measured idle time has reached the idle timer threshold for the processing server to determine that the PDU session is idle and is predetermined for each of a plurality of PDU sessions. Determining whether or not for each PDU session;
    When it is determined that the idle time has reached the idle timer threshold for one PDU session, the processing server performs a release process of the one PDU session;
    A communication control method comprising:
  11.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システムであって、
     前記端末は、
     PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定する測定部と、
     PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、前記測定部により測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断する判断部と、
     前記判断部により一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記処理サーバに当該一のPDUセッションの解放を要求する要求部と、
     を備え、
     前記処理サーバは、
     前記端末からの要求に応じて前記一のPDUセッションの解放処理を行う解放処理部、
     を備える、
     通信システム。
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication system in which a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The terminal
    A measurement unit that measures, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether or not the idle time measured by the measurement unit has reached an idle timer threshold for determining that the PDU session is in an idle state, which is predetermined for each of a plurality of PDU sessions. A determination unit that determines for each PDU session;
    A request unit that requests the processing server to release the one PDU session when the determination unit determines that the idle time has reached the idle timer threshold for one PDU session;
    With
    The processing server
    A release processing unit that performs a release process of the one PDU session in response to a request from the terminal;
    Comprising
    Communications system.
  12.  端末と、基地局と、端末に係る処理を実行する処理サーバと、前記端末が利用する通信サービスのための制御信号を伝送する複数の制御プレーンと、前記通信サービスのためのユーザ信号を伝送する複数のユーザプレーンと、を含み、PDUセッションが前記基地局を経由して前記端末と前記複数のユーザプレーンそれぞれとの間に設定された通信システムであって、
     前記処理サーバは、
     PDUセッションのアイドル状態の継続時間であるアイドル時間をPDUセッションごとに測定する測定部と、
     PDUセッションがアイドル状態であると判断するためのアイドルタイマ閾値であって複数のPDUセッションの各々について予め定められた当該アイドルタイマ閾値に、前記測定部により測定された前記アイドル時間が達したか否かを、PDUセッションごとに判断する判断部と、
     前記判断部により一のPDUセッションについて前記アイドル時間が前記アイドルタイマ閾値に達したと判断された場合に、前記一のPDUセッションの解放処理を行う解放処理部と、
     を備える、
     通信システム。
     
    A terminal, a base station, a processing server for executing processing related to the terminal, a plurality of control planes for transmitting a control signal for a communication service used by the terminal, and a user signal for the communication service A communication system in which a PDU session is set between the terminal and each of the plurality of user planes via the base station,
    The processing server
    A measurement unit that measures, for each PDU session, an idle time that is a duration of an idle state of the PDU session;
    Whether or not the idle time measured by the measurement unit has reached an idle timer threshold for determining that the PDU session is in an idle state, which is predetermined for each of a plurality of PDU sessions. A determination unit that determines for each PDU session;
    A release processing unit that performs release processing of the one PDU session when the determination unit determines that the idle time has reached the idle timer threshold for one PDU session;
    Comprising
    Communications system.
PCT/JP2017/033880 2016-09-30 2017-09-20 Communication control method and communication system WO2018061924A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-193505 2016-09-30
JP2016193505 2016-09-30
JP2017019782 2017-02-06
JP2017-019782 2017-02-06
JP2017-046273 2017-03-10
JP2017046273 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018061924A1 true WO2018061924A1 (en) 2018-04-05

Family

ID=61759742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033880 WO2018061924A1 (en) 2016-09-30 2017-09-20 Communication control method and communication system

Country Status (1)

Country Link
WO (1) WO2018061924A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176407A1 (en) * 2008-06-09 2011-07-21 Telefonaktiebolaget Lm Ericsson (Publ) System and method of releasing resources in a telecommunication network
JP2012175575A (en) * 2011-02-23 2012-09-10 Ntt Docomo Inc Communication service provision system, communication service control node, mobile communication terminal device and communication service provision method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176407A1 (en) * 2008-06-09 2011-07-21 Telefonaktiebolaget Lm Ericsson (Publ) System and method of releasing resources in a telecommunication network
JP2012175575A (en) * 2011-02-23 2012-09-10 Ntt Docomo Inc Communication service provision system, communication service control node, mobile communication terminal device and communication service provision method

Similar Documents

Publication Publication Date Title
WO2018232570A1 (en) Registration and session establishment methods, terminal, and amf entity
JP2013529039A (en) HANDOVER METHOD, COMMUNICATION DEVICE, AND COMMUNICATION SYSTEM
TW202040978A (en) Method and apparatus of processing flow-association-missing error
CN110603828B (en) Network device and wireless communication method
JPWO2019077801A1 (en) Communication system, communication control device, and communication method
WO2019192445A1 (en) Method and device for creation and joining of multicast group
WO2019223702A1 (en) Pdu session management method, apparatus and system
JP2018056857A (en) User device, base station, and core network
WO2018030545A1 (en) Core network and base station
JP6898937B2 (en) Communication control method and communication system
JP7018884B2 (en) Communication method
WO2021022919A1 (en) Method for performing access control on user equipment, network system, and related device
JP2021077995A (en) Communication control apparatus
WO2019159372A1 (en) Information transfer method and node group
WO2018061924A1 (en) Communication control method and communication system
JP2018191148A (en) Control method
JP2018170713A (en) Communication terminal
JP6967018B2 (en) RAN connection control method and base station
WO2019193764A1 (en) Base station device and communication system
JP7345565B2 (en) Communication device and communication method
JP2020194990A (en) Node group and migration method
JP2018191147A (en) Control method
US20230164649A1 (en) Method and apparatus for providing access policy in wireless communication system
WO2018034078A1 (en) Communications system, processing server, and bearer establishment control method
JPWO2018003480A1 (en) Communication control apparatus, user apparatus and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP