WO2018061499A1 - Piezoelectric power generation device and transmitter equipped with same - Google Patents

Piezoelectric power generation device and transmitter equipped with same Download PDF

Info

Publication number
WO2018061499A1
WO2018061499A1 PCT/JP2017/029361 JP2017029361W WO2018061499A1 WO 2018061499 A1 WO2018061499 A1 WO 2018061499A1 JP 2017029361 W JP2017029361 W JP 2017029361W WO 2018061499 A1 WO2018061499 A1 WO 2018061499A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric power
power generation
piezoelectric
reversal
spring
Prior art date
Application number
PCT/JP2017/029361
Other languages
French (fr)
Japanese (ja)
Inventor
春田 一政
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018541974A priority Critical patent/JP6465259B2/en
Publication of WO2018061499A1 publication Critical patent/WO2018061499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present disclosure relates to a piezoelectric power generation device and a transmitter including the same.
  • the piezoelectric power generator is configured to include one or a plurality of piezoelectric elements, and generates a voltage corresponding to the deformation amount by being deformed by receiving an external force.
  • Various piezoelectric power generation devices using this property have been proposed (see, for example, International Publication No. 2015/029317 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-103729 (Patent Document 2)).
  • an operation button for example, a remote controller
  • an inversion spring is arranged behind the operation button.
  • the reversing spring is pressed together with the operation button, and the reversing spring is reversed (or buckled). Since the impact generated during the reversal is transmitted to the user's finger, the user is given a feeling of “pressing the operation button” (so-called click feeling), so that the operability of the operation button can be improved.
  • a reversing spring is applied to a piezoelectric power generation device for the reason of the above improvement in operability.
  • a piezoelectric generator for example, a lever
  • a piezoelectric generator for example, a piezoelectric generator
  • a reversing spring disposed between the movable part and the piezoelectric generator
  • a voltage converter for example, a DC / DC converter
  • the command output unit outputs the operation command to the voltage conversion unit as the reversing spring is reversed.
  • the present inventors have found that the following problems arise in the piezoelectric power generation device having the above-described configuration. That is, immediately after the reversing spring is reversed, the deformation amount of the piezoelectric power generation body temporarily decreases (instantaneously) due to the difference in shape before and after the reversing spring is reversed, and takes a minimum value ( Details will be described later). Therefore, when the operation command is output immediately after the reversal of the reversing spring and the voltage conversion unit is operated, the power to be subjected to voltage conversion by the voltage conversion unit is relatively small, so that the load at the subsequent stage of the voltage conversion unit, etc. There is a possibility that sufficient power cannot be supplied.
  • the present disclosure has been made to solve the above-described problem, and an object of the present disclosure is to provide a technology capable of supplying a larger amount of power from a voltage conversion unit in a piezoelectric power generation apparatus and a transmitter including the piezoelectric power generation apparatus. .
  • the piezoelectric power generation device includes a movable part, a piezoelectric power generation body, a reversing spring, a voltage conversion part, and a command output part.
  • the movable part is displaced by receiving an external force.
  • the piezoelectric power generator is deformed as the movable part is displaced, and generates a voltage corresponding to the amount of deformation.
  • the reversing spring is disposed between the movable part and the piezoelectric power generator, and reverses with the displacement of the movable part.
  • the voltage conversion unit converts the voltage of the electric power generated by the piezoelectric power generator when receiving an operation command.
  • the command output unit outputs an operation command to the voltage conversion unit as the reversing spring is reversed.
  • the amount of deformation of the piezoelectric power generator temporarily decreases with the reversal of the reversal spring, even if the displacement of the movable part is increased.
  • the command output unit includes a delay circuit that delays the output timing of the operation command by a predetermined time from the inversion timing of the inversion spring.
  • the predetermined time is set to a time required for the amount of deformation of the piezoelectric power generator after the reversal of the reversing spring to be equal to or greater than the amount of deformation at the start of reversal of the reversing spring accompanying the displacement of the movable part.
  • the predetermined time is set to 100 milliseconds or less.
  • the command output unit is configured to output an operation command with the reversal of the reversing spring and to output the operation command with a return from the reversal of the reversing spring.
  • the delay circuit is configured so as to delay the output timing of the operation command when the reversing spring is inverted, while not delaying the output timing of the operation command when returning from the reversal of the reversing spring.
  • a transmitter includes the piezoelectric power generation device and a transmission unit.
  • the transmission unit receives power whose voltage has been converted by the voltage conversion unit, and transmits a radio signal using the power.
  • FIG. 6 is a Venn diagram corresponding to the logic circuit shown in FIG. 5. It is a graph which shows the relationship between the displacement amount of the lever in a comparative example, and the deformation amount of a piezoelectric electric power generation body.
  • the piezoelectric power generation device according to the present embodiment is applied to a transmitter functioning as a so-called remote controller.
  • power is generated by the piezoelectric power generation device using an external force (load) applied to the operation button when the user presses down the operation button.
  • the transmission unit operates and a predetermined radio signal is transmitted.
  • the transmitter according to the present embodiment does not require a power source such as a dry battery that needs to be replaced.
  • FIG. 1 is a perspective view of the piezoelectric power generation device according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the piezoelectric power generation device shown in FIG. With reference to FIG. 1 and FIG. 2, first, the mechanism of the piezoelectric power generation apparatus 100 according to the present embodiment will be described.
  • the piezoelectric power generating apparatus 100 includes a first flexible wiring board 1, a lever 2, a second flexible wiring board 3, a reversing spring 4, an auxiliary spring 5, a screw 6, a piezoelectric power generating body 7, and a case body. 8.
  • Operation buttons are installed on the main surface on the side where the first flexible wiring board 1 is located in the casing of the transmitter 100A (see FIG. 4) (not shown).
  • two operation buttons that can be operated independently are provided at the positions of arrows AR1 and AR2 shown in FIG.
  • external forces Fx and Fy are applied to the piezoelectric power generation apparatus 100 in the directions of arrows AR1 and AR2, respectively.
  • the case body 8 is a member that serves as a base for supporting other components constituting the piezoelectric power generation device 100.
  • the case body 8 has a box-like shape including a bottom plate portion 80 having a substantially rectangular shape in plan view and side wall portions 81 to 84 erected from four sides of the bottom plate portion 80.
  • Other components constituting the piezoelectric power generation apparatus 100 are mainly accommodated in a space surrounded by the bottom plate portion 80 and the side wall portions 81 to 84.
  • Each support portion 85 is a portion for supporting the piezoelectric power generator 7 so as to be able to bend and deform.
  • Shaft support holes 811 and 821 are provided at predetermined positions near the side wall 83 of the side walls 81 and 82 so as to face each other.
  • the shaft support holes 811 and 812 are portions for supporting the lever 2 so as to be rotatable.
  • the piezoelectric power generation body 7 includes a plurality of (four in the present embodiment) piezoelectric elements 71 having a rectangular shape in plan view.
  • the piezoelectric elements 71 are stacked so that the thickness directions of the piezoelectric elements 71 coincide with each other.
  • Each piezoelectric element 71 has flexibility, and generates a voltage corresponding to the amount of deformation (power generation) by being deformed in the thickness direction.
  • any of a unimorph type, a bimorph type, and a multimorph type may be used.
  • a multimorph type piezoelectric element 71 including a piezoelectric body in which a plurality of piezoelectric films are stacked is provided. used.
  • the piezoelectric body is formed by laminating a plurality of piezoelectric films made of, for example, lead zirconate titanate ceramics.
  • lead-free piezoelectric ceramics (potassium sodium niobate ceramics, alkali niobate ceramics, etc.) may be used.
  • the lever (movable part) 2 includes a base 20 having a substantially rectangular shape in plan view, and standing walls 21 and 22 erected from two opposite sides of the base 20 so as to face each other.
  • the base 20 is disposed so as to face the piezoelectric power generator 7.
  • the standing wall portions 21 and 22 are arranged so as to face the side wall portions 81 and 82 of the case body 8, respectively.
  • a pair of screw holes 23 are provided at predetermined positions of the base 20. By attaching the screw 6 to each of the pair of screw holes 23, the second flexible wiring board 3 and the auxiliary spring 5 are fixed to the lever 2.
  • Shaft portions 211 and 221 are provided at predetermined positions on the outer surfaces of the standing wall portions 21 and 22 and near the side wall portion 83 of the case body 8 so as to protrude outward.
  • the shaft portions 211 and 221 are respectively supported by the shaft support holes 811 and 821 by being inserted into the shaft support holes 811 and 821 provided in the case body 8.
  • the lever 2 is rotatably supported by the case body 8 with the axis line connecting the shaft portions 211 and 221 as the rotation axis AX.
  • the first flexible wiring board 1 is provided on the main surface of the pair of main surfaces of the base 20 of the lever 2 on the side where the piezoelectric generator 7 is not located.
  • the first flexible wiring board 1 is formed by forming various conductive patterns on the surface of a multilayer base material, and has switches X and Y at predetermined positions.
  • the switches X and Y are provided so as to be aligned along a direction parallel to the extending direction of the rotation axis AX of the lever 2. As a result, the switches X and Y are positioned to face the two operation buttons (not shown) described above.
  • each of the switches X and Y is constituted by a membrane switch, but other types of switches can also be used.
  • the second flexible wiring board 3 is provided on the main surface of the pair of main surfaces of the base 20 of the lever 2 on the side where the piezoelectric power generator 7 is located.
  • the second flexible wiring board 3 is formed by forming various conductive patterns on the surface of a single-layer or multilayer substrate.
  • a reversing spring 4 and an auxiliary spring 5 are disposed between the second flexible wiring board 3 and the piezoelectric power generator 7.
  • the reversal spring 4 is mounted on a portion of the second flexible wiring board 3 that is located on the main surface of the base portion 20 of the lever 2 and that faces the central portion of the piezoelectric generator 7.
  • the reversal spring 4 is constituted by a metal member having a dome shape or a laminated structure thereof, for example.
  • the reversing spring 4 is in a posture that protrudes downward so that a space is formed between the second flexible wiring board 3 (that is, the top of the dome-shaped reversing spring 4 is positioned on the piezoelectric power generator 7 side). It is fixed to the second flexible wiring board 3.
  • the reversal spring 4 is buckled so that the uneven shape is reversed when an external force is applied and a predetermined load is applied. On the other hand, when the external force is released, the buckling is canceled and the original spring is released. Return to shape.
  • the reversal spring 4 when the user depresses the operation button, the above buckling phenomenon occurs when the pressing stroke becomes a predetermined value or more, and the spring constant of the reversal spring 4 is instantaneously lowered. Thereby, the user can obtain a click feeling by applying an impact from the reversing spring 4, and the operability when operating the operation buttons is improved.
  • the second flexible wiring board 3 and the reversing spring 4 constitute a switch Z having a pair of contacts.
  • One of the pair of contacts is constituted by a reversing spring 4.
  • the other contact is provided as a conductive terminal (not shown) in a portion of the second flexible wiring board 3 that is covered by the reversal spring 4.
  • the auxiliary spring 5 has an elongated plate shape that is substantially V-shaped when viewed from the side, and is attached to the second flexible wiring board 3 so as to protrude downward so as to receive the reversing spring 4.
  • the auxiliary spring 5 adjusts the spring constant for transmitting the external force received by the lever 2 to the piezoelectric power generator 7.
  • the auxiliary spring 5 it is possible to adjust the degree of click feeling by the reversing spring 4 and to correct the balance of the force applied to the piezoelectric power generator 7 and the reversing spring 4. Further, the provision of the auxiliary spring 5 ensures that the buckling phenomenon of the reversing spring 4 occurs when the user operates the operation button.
  • FIG. 3 is a conceptual diagram for explaining the operation of the piezoelectric power generation apparatus according to the present embodiment.
  • FIG. 3A shows a state of the piezoelectric power generation apparatus 100 before the external force Fx is applied.
  • the lever 2 is rotatably supported by the case body 8 with the point P1 as a fulcrum.
  • a displacement amount of the lever 2 based on a state before the external force Fx is applied is denoted as ⁇ z.
  • the switches X and Z are both off.
  • the deformation amount ⁇ d of the piezoelectric power generator 7 increases, and the power generation amount by the piezoelectric power generator 7 increases.
  • FIG. 4 is a circuit block diagram schematically showing a configuration of a transmitter according to a comparative example.
  • the transmitter 900 ⁇ / b> A includes a piezoelectric power generation device 900 and a transmission unit 200.
  • the transmission unit 200 is a load that operates with electric power supplied from the piezoelectric power generation device 100. More specifically, the transmission unit 200 includes, for example, an RF (Radio Frequency) antenna 201 and an RF circuit 202. The transmission unit 200 transmits an RF signal to a receiver (not shown) provided at a position away from the transmitter 900A using the electric power supplied from the piezoelectric power generation device 900. This RF signal may be a signal indicating a control command to the receiver, or a signal for transmitting various information to the receiver.
  • RF Radio Frequency
  • the piezoelectric power generator 900 includes a piezoelectric power generator 7, a discharge circuit 101, a full-wave rectifier circuit 102, a capacitor C, switches X to Z, a signal output unit 903, a DC / DC converter 104, and a control circuit 105. With.
  • the piezoelectric power generation body 7 includes a plurality of piezoelectric elements 71 (see FIG. 1 or 2) and output terminals T1 and T2.
  • output voltage V the potential of the output terminal T1 based on the potential of the output terminal T2 is referred to as “output voltage V”.
  • the discharge circuit 101 is connected between the output terminal T1 and the output terminal T2 of the piezoelectric power generator 7, and is configured to be able to discharge the electric charge (or power) stored in the piezoelectric power generator 7. More specifically, discharge circuit 101 includes, for example, an NMOS (n-type Metal Oxide-Semiconductor) transistor, and switches from a non-conductive state (off) to a conductive state (on) in response to a discharge command from control circuit 105. And switch. When the discharge circuit 101 is turned on, the output terminal T1 and the output terminal T2 are short-circuited, so that the charge stored in the piezoelectric power generator 7 is discharged.
  • NMOS n-type Metal Oxide-Semiconductor
  • the full-wave rectifier circuit 102 is a general full-wave rectifier circuit such as a diode bridge, and is electrically connected between the piezoelectric generator 7 and the signal output unit 903.
  • the full-wave rectifier circuit 102 performs full-wave rectification on the output voltage V of the piezoelectric generator 7 and outputs a rectified voltage (rectified voltage) Vc between the power line PL and the power line GL.
  • the power line GL is electrically connected to the reference potential GND.
  • the capacitor C is electrically connected between the power line PL and the power line GL.
  • the capacitor C smoothes the rectified voltage Vc.
  • the signal output unit 903 includes input nodes INx, INy, INz, diodes D1 to D4, resistors R1 to R5, a switching element Q, and an output node OUT.
  • the switching element Q is, for example, an NMOS transistor.
  • Each of the switches X and Y has a pair of contacts.
  • One of the pair of contacts of the switch X is electrically connected to the power line PL, and the other is electrically connected to the input node INx of the signal output unit 903.
  • one of the pair of contacts of the switch Y is electrically connected to the power line PL, and the other is electrically connected to the input node INy of the signal output unit 903.
  • the input node INx is electrically connected to the gate of the switching element Q via the diode D1.
  • the anode of the diode D1 is electrically connected to the power line GL via the resistor R1.
  • the input node INy is electrically connected to the gate of the switching element Q via the diode D2.
  • the anode of the diode D2 is electrically connected to the power line GL via the resistor R2.
  • the gate of the switching element Q is electrically connected to the power line GL via the resistor R3.
  • the source of the switching element Q is electrically connected to the power line GL.
  • the drain of the switching element Q is electrically connected to the power line PL via the resistor R4.
  • the anode of the diode D3 is electrically connected to the connection node between the resistor R3 and the drain of the switching element Q.
  • the cathode of the diode D3 is electrically connected to the output node OUT.
  • a resistor R5 is electrically connected between the power line connecting the cathode of the diode D3 and the output node OUT and the power line GL.
  • the switch Z also has a pair of contacts.
  • One contact of the switch Z is constituted by a reversing spring 4 (see FIG. 2), and is electrically connected to the power line PL.
  • the other contact of the switch Z is constituted by a conductive terminal (not shown) provided on the second flexible wiring board 3 (see FIG. 2), and is electrically connected to the input node INz of the signal output unit 903. Yes.
  • the input node INz is electrically connected to the anode of the diode D4.
  • the cathode of the diode D4 is electrically connected to the output node OUT.
  • the DC / DC converter 104 is electrically connected to an input terminal Vin electrically connected to the power line PL, an output terminal Vout electrically connected to the control circuit 105 and the RF circuit 202, and an output node OUT of the signal output unit 903. And an enable terminal EN connected to each other.
  • the DC / DC converter 104 boosts (or steps down) the rectified voltage Vc to a predetermined voltage based on the on / off states of the switches X, Y, and Z, and supplies the rectified voltage Vc to the control circuit 105 and the transmission unit 200.
  • the DC / DC converter 104 supplies power to the control circuit 105 and the transmission unit 200 when receiving the enable signal Sen at the H (high) level at the enable terminal EN, while the enable terminal EN When EN receives an L (low) level enable signal Sen, power is not supplied to the control circuit 105 and the transmitter 200.
  • the control circuit 105 is connected between the output terminal Vout of the DC / DC converter 104 and the power line GL, and operates by receiving power supply from the DC / DC converter 104.
  • the control circuit 105 receives at least one of the signal Sx and the signal Sy and outputs an operation command corresponding to the received signal to the RF circuit 202. Further, the control circuit 105 outputs a discharge command to the discharge circuit 101 at a predetermined timing.
  • FIG. 5 is a diagram illustrating a logic circuit of the signal output unit 903.
  • the signal output unit 903 includes input nodes INx, INy, INz, an output node OUT, a NOR circuit (negative OR circuit) 903A, and an OR circuit (logical OR circuit) 903B.
  • the NOR circuit 903A outputs, to the OR circuit 903B, a signal indicating a result of a negative OR operation between the signal input to the input node INx and the signal input to the input node INy.
  • the OR circuit 903B outputs, to the output node OUT, an enable signal Sen indicating a logical OR operation result between the signal from the NOR circuit 903A and the signal input to the input node INz.
  • the enable signal Sen from the output node OUT is transmitted to the enable terminal EN of the DC / DC converter 104.
  • the signal output unit 903 outputs the H level or L level enable signal Sen to the enable terminal EN of the DC / DC converter 104 in accordance with the combination of the on / off states of the switches X, Y, and Z.
  • What enable signal Sen is output from the signal output unit 903 in accordance with the combination of the states of the switches X, Y, and Z will be summarized below.
  • the H level enable signal corresponds to an “operation command” according to the present disclosure.
  • FIG. 6 is a Venn diagram corresponding to the logic circuit shown in FIG. In the Venn diagram, regions where the enable signal Sen is at the H level are indicated by hatching. A region where the enable signal Sen is at the L level is shown in white without hatching.
  • an H level enable signal Sen is output as shown in the region K1 (see FIG. 3A).
  • the signal output unit 903 When the switch Z is ON, the signal output unit 903 outputs an H level enable signal Sen. More specifically, when one of the switches X and Y is on, the other is off, and the switch Z is on, as shown in regions K6 and K7, the H level enable A signal Sen is output (see FIG. 3C). Even when all of the switches X, Y, and Z are on, as shown in the region K8, the H level enable signal Sen is output. In the present embodiment, the state in which the switch Z is on (see the region K5) even though both the switches X and Y are off does not actually occur.
  • FIG. 7 is a graph showing the relationship between the displacement amount ⁇ z of the lever 2 and the deformation amount ⁇ d of the piezoelectric generator 7 in the comparative example.
  • the horizontal axis indicates the displacement amount ⁇ z of the lever 2 (that is, the amount by which the lever 2 is pushed by a user operation).
  • the vertical axis represents the deformation amount ⁇ d of the piezoelectric power generator 7. This deformation amount ⁇ d can be read as the amount of power generated by the piezoelectric power generator 7.
  • the deformation amount ⁇ d of the piezoelectric power generator 7 increases as the displacement amount ⁇ z increases. Then, when the displacement amount ⁇ z reaches z1, the deformation amount ⁇ d takes the maximum value d1.
  • the signal output unit 103 is provided with a delay circuit 106 for delaying the output timing of the enable signal Sen by the delay time ⁇ T from the inversion timing of the inversion spring 4.
  • FIG. 8 is a circuit block diagram schematically showing the configuration of the transmitter according to the present embodiment.
  • a transmitter 100 ⁇ / b> A illustrated in FIG. 8 includes a piezoelectric power generation device 100 and a transmission unit 200.
  • the piezoelectric power generation apparatus 100 includes a signal output unit 103 instead of the signal output unit 903 (see FIG. 4) in the comparative example.
  • the signal output unit 103 is different from the signal output unit 903 in that it further includes a delay circuit 106.
  • the signal output unit 103 corresponds to a “command output unit” according to the present disclosure.
  • the delay circuit 106 is, for example, a general RC delay circuit (integration circuit), and is provided on the transmission line of the enable signal Sen connecting the input node INz and the output node OUT. More specifically, delay circuit 106 includes a resistor R6 and a capacitor C6. The resistor R6 is electrically connected between the input node INz and the anode of the diode D4. Capacitor C6 is electrically connected between resistor R6 and an anode connection node of diode D4 and power line GL. Since the other configuration of transmitter 100A (piezoelectric power generation device 100 and transmitter 200) is the same as the corresponding configuration of transmitter 900A according to the comparative example, detailed description will not be repeated.
  • transmitter 100A piezoelectric power generation device 100 and transmitter 200
  • the delay time ⁇ T corresponds to a “predetermined time” according to the present disclosure.
  • FIG. 9 is a graph showing the relationship between the displacement amount ⁇ z of the lever 2 and the deformation amount ⁇ d of the piezoelectric generator 7 in the present embodiment. As described with reference to FIG. 7, when the displacement amount ⁇ z reaches z1, the deformation amount ⁇ d of the piezoelectric power generator 7 takes the maximum value d1.
  • the delay time ⁇ T is equal to or more than the time required for the deformation amount ⁇ d of the piezoelectric power generation body 7 to be greater than d1 after the switch Z is turned on as the reversing spring 4 is reversed. Is also determined to be longer.
  • the enable signal Sen is output to the enable terminal EN of the DC / DC converter 104 in a state where the deformation amount ⁇ d of the piezoelectric power generator 7 is not less than d1 and not more than d3 (d1 ⁇ ⁇ d ⁇ d3). Therefore, sufficient power can be supplied from the DC / DC converter 104 to the control circuit 105 and the transmission unit 200.
  • the delay time ⁇ T is excessively long, the user may feel uncomfortable. More specifically, the time difference between the time when the user operates the switch X or Y and the time when the RF signal is transmitted from the transmitter 100A to the receiver (not shown) and a predetermined operation is performed ( When the time lag becomes a length that can be sensed by the user, there is a possibility of giving the user a stress (uncomfortable feeling) that the operation is not immediately performed even though the switch is operated. In order not to give such stress to the user, the delay time ⁇ T is preferably short to some extent. In general, since a time lag of 100 ms or less is often not perceived by the user, the delay time ⁇ T is preferably set to 100 ms or less.
  • FIG. 10 is a time chart for explaining an example of the operation of transmitter 100A in the present embodiment.
  • the horizontal axis indicates the elapsed time.
  • the vertical axis represents the external force Fx on / off, the switch X on / off, the switch Y on / off, the switch Z on / off, and the potential (H level) of the enable terminal EN of the DC / DC converter 104 in order from the top. / L level), output voltage V of the piezoelectric generator 7, and on / off of the discharge command.
  • the enable signal Sen of the signal output unit 103 is at the H level. Therefore, the potential of the enable terminal EN of the DC / DC converter 104 is at the H level (see region K1 in FIG. 6). However, since power generation by the piezoelectric power generator 7 has not yet been performed, the DC / DC converter 104 is not operating, and power supply from the piezoelectric power generation apparatus 100 to the transmission unit 200 is not performed.
  • the reversing spring 4 starts reversing.
  • the switch Z is turned on.
  • a click feeling is given to the user due to the inversion that occurs in the period from time t3 to time t4.
  • the potential of the enable terminal EN becomes H level (see region K6 in FIG. 6).
  • the DC / DC converter 104 converts the voltage of the electric power stored in the piezoelectric power generator 7 and supplies it to the control circuit 105 and the transmission unit 200.
  • the transmission unit 200 outputs an RF signal (not shown) indicating that the switch X is turned on (first transmission operation). Therefore, after time t5, the output voltage V of the piezoelectric power generator 7 decreases.
  • a discharge command is output from the control circuit 105 to the discharge circuit 101 at time t6.
  • the reset operation for discharging the electric charge stored in the piezoelectric power generator 7 is started.
  • the electrodes of the piezoelectric power generator are short-circuited, thereby resetting the output voltage of the piezoelectric power generator 7 to 0V.
  • the output of the discharge command is stopped at time t7.
  • the potential of the enable terminal EN becomes H level (see the region K1 in FIG. 6).
  • the DC / DC converter 104 converts the voltage of the electric power stored in the piezoelectric power generator 7 and supplies it to the control circuit 105 and the transmission unit 200.
  • the transmitter 200 outputs an RF signal (not shown) indicating that the switch X has been turned off (second transmission operation).
  • the application of the external force Fx ends.
  • power is supplied from the piezoelectric power generation apparatus 100 to the transmission unit 200, so that the output voltage V of the piezoelectric power generation body 7 decreases.
  • the reset operation similar to the period from time t6 to time t7 is performed.
  • the timing at which the enable signal Sen is output to the enable terminal EN of the DC / DC converter 104 is the delay time ⁇ T by the delay circuit 106 provided in the signal output unit 103. Delayed.
  • the potential of the enable terminal EN is switched from the L level to the H level when the deformation amount ⁇ d of the piezoelectric power generation body 7 is d1 or more and d3 or less (d1 ⁇ ⁇ d ⁇ d3).
  • the voltage conversion operation of the DC / DC converter 104 is performed. As a result, sufficient power can be supplied to the control circuit 105 and the transmission unit 200.
  • two transmission operations are performed while the user operates the operation button only once.
  • the RF signal transmitted in the first transmission operation is different from the RF signal transmitted in the second transmission operation, and the receiver (see FIG. (Not shown) can be set to operate, so that malfunction of the receiver can be prevented.
  • the transmission operation is performed twice, and only one of them may be performed.
  • a delay circuit 106 may be provided immediately before or after the output node OUT (that is, between the output node OUT and the enable terminal EN). However, in this case, the output timing of the enable signal Sen is delayed both when the reversing spring 4 is reversed (during the first transmission operation) and when the reverse spring 4 is restored (when the second transmission operation is performed).
  • the delay circuit 106 is provided after the input node INz.
  • the output timing of the enable signal Sen is delayed along with the switching of the ON state / OFF state of the switch Z (see times t4 and t9), while the switching of the ON state / OFF state of the switches X and Y (time)
  • the output timing of the enable signal Sen is not delayed by t2 and t11).
  • the output timing of the enable signal Sen is delayed at the time of the first transmission operation (at the time of reversal of the reversal spring 4), while the enable signal Sen at the time of the second transmission operation (at the time of reversal of the reversal spring 4). Does not delay output timing.
  • the piezoelectric power generator 7 According to the measurement by the present inventor, a large amount of electric power is generated by the piezoelectric power generator 7 during the second transmission operation compared to during the first transmission operation. Therefore, in many cases, sufficient power can be supplied to the control circuit 105 and the transmission unit 200. Therefore, by configuring the delay circuit 106 so as not to delay the output timing of the enable signal Sen, the second transmission operation can be performed early.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A piezoelectric power generation device (100) equipped with a lever (2), a piezoelectric power generation body (7), a reverse spring (4), a DC/DC converter (104), and a signal output unit (103). The reverse spring (4) is arranged between the lever (2) and the piezoelectric power generation body (7), and reverses in conjunction with displacement of the lever (2). When an H-level enable signal (Sen) is received the DC/DC converter (104) converts the voltage of the power generated by the piezoelectric power generation body (7). The amount of deformation (Δd) of the piezoelectric power generation body (7) temporarily decreases in conjunction with the reversing of the reverse spring (4), even when the amount of displacement (Δz) of the lever (2) increases. The signal output unit (103) includes a delay circuit (106) that delays the output timing of the enable signal (Sen) by a delay time (ΔT) with respect to the reversal timing of the reverse spring (4).

Description

圧電発電装置およびそれを備えた送信機Piezoelectric generator and transmitter having the same
 本開示は、圧電発電装置およびそれを備えた送信機に関する。 The present disclosure relates to a piezoelectric power generation device and a transmitter including the same.
 圧電発電体は、1または複数の圧電素子を含んで構成され、外力を受けて変形することにより、その変形量に応じた電圧を発生する。この性質を利用した各種圧電発電装置が提案されている(たとえば国際公開第2015/029317号(特許文献1)および特開2011-103729号公報(特許文献2)参照)。 The piezoelectric power generator is configured to include one or a plurality of piezoelectric elements, and generates a voltage corresponding to the deformation amount by being deformed by receiving an external force. Various piezoelectric power generation devices using this property have been proposed (see, for example, International Publication No. 2015/029317 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-103729 (Patent Document 2)).
国際公開第2015/029317号International Publication No. 2015/029317 特開2011-103729号公報JP 2011-103729 A
 一般に、操作ボタンが設けられた機器(たとえばリモートコントーラ)において、操作ボタンの背後に反転バネが配置された構成が知られている。ユーザが操作ボタンを操作する際に、操作ボタンとともに反転バネが押圧され、反転バネが反転(あるいは座屈)する。この反転の際に生じる衝撃がユーザの指に伝わることで、「操作ボタンを押した」との感覚(いわゆるクリック感)がユーザに与えられるため、操作ボタンの操作性を向上させることができる。 Generally, in a device provided with an operation button (for example, a remote controller), a configuration in which an inversion spring is arranged behind the operation button is known. When the user operates the operation button, the reversing spring is pressed together with the operation button, and the reversing spring is reversed (or buckled). Since the impact generated during the reversal is transmitted to the user's finger, the user is given a feeling of “pressing the operation button” (so-called click feeling), so that the operability of the operation button can be improved.
 たとえば上記のような操作性向上を理由として、反転バネが圧電発電装置に適用される場合がある。この場合、操作ボタン等が設けられた可動部(たとえばレバー)と、圧電発電体と、可動部および圧電発電体の間に配置された反転バネとに加えて、電圧変換部と、指令出力部とをさらに備えた圧電発電装置の構成が考えられる。電圧変換部(たとえばDC/DCコンバータ)は、動作指令(たとえばH(ハイ)レベルのイネーブル信号)を受けた場合に、圧電発電体により発電された電力の電圧を変換する。指令出力部は、反転バネの反転に伴い電圧変換部に上記動作指令を出力する。 For example, there is a case where a reversing spring is applied to a piezoelectric power generation device for the reason of the above improvement in operability. In this case, in addition to a movable part (for example, a lever) provided with operation buttons and the like, a piezoelectric generator, a reversing spring disposed between the movable part and the piezoelectric generator, a voltage converter, a command output unit A configuration of a piezoelectric power generation device that further includes: A voltage converter (for example, a DC / DC converter) converts the voltage of the electric power generated by the piezoelectric power generator when receiving an operation command (for example, an enable signal of H (high) level). The command output unit outputs the operation command to the voltage conversion unit as the reversing spring is reversed.
 上記構成を有する圧電発電装置において、本発明者は、以下のような課題が生じることを見出した。すなわち、反転バネが反転した直後には、反転バネの反転前後の形状の違いに起因して、圧電発電体の変形量が一時的(瞬間的)に減少し、極小値を取ることになる(詳細は後述)。したがって、反転バネの反転直後に動作指令が出力され、電圧変換部が動作した場合には、電圧変換部による電圧変換が行なわれる電力が相対的に小さくなり、電圧変換部の後段の負荷等に十分な電力を供給することができない可能性がある。 The present inventors have found that the following problems arise in the piezoelectric power generation device having the above-described configuration. That is, immediately after the reversing spring is reversed, the deformation amount of the piezoelectric power generation body temporarily decreases (instantaneously) due to the difference in shape before and after the reversing spring is reversed, and takes a minimum value ( Details will be described later). Therefore, when the operation command is output immediately after the reversal of the reversing spring and the voltage conversion unit is operated, the power to be subjected to voltage conversion by the voltage conversion unit is relatively small, so that the load at the subsequent stage of the voltage conversion unit, etc. There is a possibility that sufficient power cannot be supplied.
 本開示は上記課題を解決するためになされたものであり、その目的は、圧電発電装置およびそれを備えた送信機において、より大きな電力を電圧変換部から供給可能な技術を提供することである。 The present disclosure has been made to solve the above-described problem, and an object of the present disclosure is to provide a technology capable of supplying a larger amount of power from a voltage conversion unit in a piezoelectric power generation apparatus and a transmitter including the piezoelectric power generation apparatus. .
 本開示のある局面に従う圧電発電装置は、可動部と、圧電発電体と、反転バネと、電圧変換部と、指令出力部とを備える。可動部は、外力を受けることにより変位する。圧電発電体は、可動部の変位に伴い変形し、変形量に応じた電圧を発生する。反転バネは、可動部と圧電発電体との間に配置され、可動部の変位に伴い反転する。電圧変換部は、動作指令を受けた場合に、圧電発電体により発電された電力の電圧を変換する。指令出力部は、反転バネの反転に伴い電圧変換部に動作指令を出力する。圧電発電体の変形量は、可動部の変位量が増加していても反転バネの反転に伴い一時的に減少する。指令出力部は、動作指令の出力タイミングを反転バネの反転タイミングよりも所定時間だけ遅延させる遅延回路を含む。 The piezoelectric power generation device according to an aspect of the present disclosure includes a movable part, a piezoelectric power generation body, a reversing spring, a voltage conversion part, and a command output part. The movable part is displaced by receiving an external force. The piezoelectric power generator is deformed as the movable part is displaced, and generates a voltage corresponding to the amount of deformation. The reversing spring is disposed between the movable part and the piezoelectric power generator, and reverses with the displacement of the movable part. The voltage conversion unit converts the voltage of the electric power generated by the piezoelectric power generator when receiving an operation command. The command output unit outputs an operation command to the voltage conversion unit as the reversing spring is reversed. The amount of deformation of the piezoelectric power generator temporarily decreases with the reversal of the reversal spring, even if the displacement of the movable part is increased. The command output unit includes a delay circuit that delays the output timing of the operation command by a predetermined time from the inversion timing of the inversion spring.
 好ましくは、上記所定時間は、反転バネの反転後に圧電発電体の変形量が、可動部の変位に伴って反転バネの反転開始時の変形量以上となるのに要する時間に設定される。 Preferably, the predetermined time is set to a time required for the amount of deformation of the piezoelectric power generator after the reversal of the reversing spring to be equal to or greater than the amount of deformation at the start of reversal of the reversing spring accompanying the displacement of the movable part.
 好ましくは、上記所定時間は、100ミリ秒以下に設定される。
 好ましくは、指令出力部は、反転バネの反転に伴い動作指令を出力するととともに、反転バネの反転からの復帰に伴い動作指令を出力するように構成される。遅延回路は、反転バネの反転時には動作指令の出力タイミングを遅延させる一方で、反転バネの反転からの復帰時には動作指令の出力タイミングを遅延させないように構成される。
Preferably, the predetermined time is set to 100 milliseconds or less.
Preferably, the command output unit is configured to output an operation command with the reversal of the reversing spring and to output the operation command with a return from the reversal of the reversing spring. The delay circuit is configured so as to delay the output timing of the operation command when the reversing spring is inverted, while not delaying the output timing of the operation command when returning from the reversal of the reversing spring.
 本開示の他の局面に従う送信機は、上記圧電発電装置と、送信部とを備える。送信部は、電圧変換部により電圧が変換された電力を受け、当該電力を用いて無線信号を送信する。 A transmitter according to another aspect of the present disclosure includes the piezoelectric power generation device and a transmission unit. The transmission unit receives power whose voltage has been converted by the voltage conversion unit, and transmits a radio signal using the power.
 本開示によれば、圧電発電装置およびそれを備えた送信機において、より大きな電力を電圧変換部から供給することができる。 According to the present disclosure, it is possible to supply larger electric power from the voltage conversion unit in the piezoelectric power generation device and the transmitter including the piezoelectric power generation device.
本実施の形態に係る圧電発電装置の斜視図である。It is a perspective view of the piezoelectric power generation device concerning this embodiment. 図1に示した圧電発電装置の分解斜視図である。It is a disassembled perspective view of the piezoelectric power generator shown in FIG. 本実施の形態における圧電発電装置の動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of the piezoelectric power generator in this Embodiment. 比較例に係る送信機の構成を概略的に示す回路ブロック図である。It is a circuit block diagram which shows roughly the structure of the transmitter which concerns on a comparative example. 信号出力部の論理回路を示す図である。It is a figure which shows the logic circuit of a signal output part. 図5に示した論理回路に対応するベン図である。FIG. 6 is a Venn diagram corresponding to the logic circuit shown in FIG. 5. 比較例におけるレバーの変位量と圧電発電体の変形量との関係を示すグラフである。It is a graph which shows the relationship between the displacement amount of the lever in a comparative example, and the deformation amount of a piezoelectric electric power generation body. 本実施の形態に係る送信機の構成を概略的に示す回路ブロック図である。It is a circuit block diagram which shows roughly the structure of the transmitting apparatus which concerns on this Embodiment. 本実施の形態におけるレバーの変位量と圧電発電体の変形量との関係を示すグラフである。It is a graph which shows the relationship between the displacement amount of the lever in this Embodiment, and the deformation amount of a piezoelectric electric power generation body. 本実施の形態における送信機の動作の一例を説明するためのタイムチャートである。It is a time chart for demonstrating an example of operation | movement of the transmitter in this Embodiment.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 以下では、本実施の形態に係る圧電発電装置が、いわゆるリモートコントローラとして機能する送信機に適用される構成を例に説明する。この送信機においては、ユーザが操作ボタンを押し下げる際に操作ボタンに付与される外力(荷重)を利用して圧電発電装置による発電が行なわれる。発電された電力を用いることで送信部が動作し、所定の無線信号が送信される。このように、本実施の形態に係る送信機は、交換が必要な乾電池等の電源を必要としない。 Hereinafter, a configuration in which the piezoelectric power generation device according to the present embodiment is applied to a transmitter functioning as a so-called remote controller will be described as an example. In this transmitter, power is generated by the piezoelectric power generation device using an external force (load) applied to the operation button when the user presses down the operation button. By using the generated power, the transmission unit operates and a predetermined radio signal is transmitted. Thus, the transmitter according to the present embodiment does not require a power source such as a dry battery that needs to be replaced.
 [実施の形態]
 <圧電発電装置の機構>
 図1は、本実施の形態に係る圧電発電装置の斜視図である。図2は、図1に示した圧電発電装置の分解斜視図である。図1および図2を参照して、まず、本実施の形態に係る圧電発電装置100の機構について説明する。
[Embodiment]
<Mechanism of piezoelectric generator>
FIG. 1 is a perspective view of the piezoelectric power generation device according to the present embodiment. FIG. 2 is an exploded perspective view of the piezoelectric power generation device shown in FIG. With reference to FIG. 1 and FIG. 2, first, the mechanism of the piezoelectric power generation apparatus 100 according to the present embodiment will be described.
 圧電発電装置100は、第1のフレキシブル配線基板1と、レバー2と、第2のフレキシブル配線基板3と、反転バネ4と、補助バネ5と、ビス6と、圧電発電体7と、ケース体8とを備える。 The piezoelectric power generating apparatus 100 includes a first flexible wiring board 1, a lever 2, a second flexible wiring board 3, a reversing spring 4, an auxiliary spring 5, a screw 6, a piezoelectric power generating body 7, and a case body. 8.
 操作ボタン(図示せず)は、図示しない送信機100A(図4参照)の筐体のうち、第1のフレキシブル配線基板1が位置する側の主面上に設置されている。なお、本実施の形態においては、独立して操作可能な2つの操作ボタンが、図1中に示す矢印AR1,AR2の位置に設置されている。当該操作ボタンがユーザによって操作されることにより、圧電発電装置100に対して矢印AR1,AR2方向にそれぞれ外力Fx,Fyが付与される。 Operation buttons (not shown) are installed on the main surface on the side where the first flexible wiring board 1 is located in the casing of the transmitter 100A (see FIG. 4) (not shown). In the present embodiment, two operation buttons that can be operated independently are provided at the positions of arrows AR1 and AR2 shown in FIG. When the operation button is operated by the user, external forces Fx and Fy are applied to the piezoelectric power generation apparatus 100 in the directions of arrows AR1 and AR2, respectively.
 ケース体8は、圧電発電装置100を構成する他の部品を支持するベースとなる部材である。ケース体8は、平面視略矩形状の底板部80と、底板部80の四辺から立設された側壁部81~84とを含む箱状の形状を有する。圧電発電装置100を構成する他の部品は、底板部80および側壁部81~84によって囲まれた空間に主として収容されている。 The case body 8 is a member that serves as a base for supporting other components constituting the piezoelectric power generation device 100. The case body 8 has a box-like shape including a bottom plate portion 80 having a substantially rectangular shape in plan view and side wall portions 81 to 84 erected from four sides of the bottom plate portion 80. Other components constituting the piezoelectric power generation apparatus 100 are mainly accommodated in a space surrounded by the bottom plate portion 80 and the side wall portions 81 to 84.
 底板部80の四隅には、それぞれ底板部80の内底面から突出するように4つの支持部85が設けられている。各支持部85は、圧電発電体7を撓み変形可能に支持するための部位である。側壁部81,82の側壁部83寄りの所定位置には、互いに対向するように軸支孔811,821が設けられている。軸支孔811,812は、レバー2を回動可能に軸支するための部位である。 Four support portions 85 are provided at the four corners of the bottom plate portion 80 so as to protrude from the inner bottom surface of the bottom plate portion 80, respectively. Each support portion 85 is a portion for supporting the piezoelectric power generator 7 so as to be able to bend and deform. Shaft support holes 811 and 821 are provided at predetermined positions near the side wall 83 of the side walls 81 and 82 so as to face each other. The shaft support holes 811 and 812 are portions for supporting the lever 2 so as to be rotatable.
 圧電発電体7は、平面視矩形状の板状の複数(本実施の形態では4個)の圧電素子71を含む。各圧電素子71は、互いの厚み方向が合致するように積層されている。各圧電素子71は、可撓性を有し、厚み方向に変形することで、変形量に応じた電圧を発生する(発電する)。圧電素子71としては、ユニモルフ型、バイモルフ型およびマルチモルフ型のいずれを使用してもよいが、本実施の形態においては、複数の圧電膜が積層された圧電体を含むマルチモルフ型の圧電素子71が使用される。圧電体は、たとえばチタン酸ジルコン酸鉛系セラミックスからなる圧電膜を複数積層してなるものである。なお、圧電体として、非鉛系圧電体セラミックス(ニオブ酸カリウムナトリウム系セラミックス、アルカリニオブ酸系セラミックス等)を用いてもよい。 The piezoelectric power generation body 7 includes a plurality of (four in the present embodiment) piezoelectric elements 71 having a rectangular shape in plan view. The piezoelectric elements 71 are stacked so that the thickness directions of the piezoelectric elements 71 coincide with each other. Each piezoelectric element 71 has flexibility, and generates a voltage corresponding to the amount of deformation (power generation) by being deformed in the thickness direction. As the piezoelectric element 71, any of a unimorph type, a bimorph type, and a multimorph type may be used. However, in the present embodiment, a multimorph type piezoelectric element 71 including a piezoelectric body in which a plurality of piezoelectric films are stacked is provided. used. The piezoelectric body is formed by laminating a plurality of piezoelectric films made of, for example, lead zirconate titanate ceramics. As the piezoelectric body, lead-free piezoelectric ceramics (potassium sodium niobate ceramics, alkali niobate ceramics, etc.) may be used.
 レバー(可動部)2は、平面視略矩形状の基部20と、互いに対向するように基部20の相対する二辺から立設された立壁部21,22とを有する。基部20は、圧電発電体7に対向するように配置されている。立壁部21,22は、それぞれケース体8の側壁部81,82に対向するように配置されている。 The lever (movable part) 2 includes a base 20 having a substantially rectangular shape in plan view, and standing walls 21 and 22 erected from two opposite sides of the base 20 so as to face each other. The base 20 is disposed so as to face the piezoelectric power generator 7. The standing wall portions 21 and 22 are arranged so as to face the side wall portions 81 and 82 of the case body 8, respectively.
 基部20の所定位置には、一対のビス穴23が設けられている。一対のビス穴23の各々にビス6が取り付けられることにより、第2のフレキシブル配線基板3および補助バネ5がレバー2に固定される。 A pair of screw holes 23 are provided at predetermined positions of the base 20. By attaching the screw 6 to each of the pair of screw holes 23, the second flexible wiring board 3 and the auxiliary spring 5 are fixed to the lever 2.
 立壁部21,22の外側面であってケース体8の側壁部83寄りの所定位置には、外側に向けて突出するように軸部211,221が設けられている。軸部211,221は、それぞれケース体8に設けられた軸支孔811,821に挿入されることで軸支孔811,821によって軸支される。これにより、レバー2は、軸部211,221を結ぶ軸線を回転軸AXとして、ケース体8によって回動可能に支持される。 Shaft portions 211 and 221 are provided at predetermined positions on the outer surfaces of the standing wall portions 21 and 22 and near the side wall portion 83 of the case body 8 so as to protrude outward. The shaft portions 211 and 221 are respectively supported by the shaft support holes 811 and 821 by being inserted into the shaft support holes 811 and 821 provided in the case body 8. Thereby, the lever 2 is rotatably supported by the case body 8 with the axis line connecting the shaft portions 211 and 221 as the rotation axis AX.
 レバー2がケース体8によって回動可能に支持されることにより、レバー2の基部20に外力が付与された場合には、レバー2が、圧電発電体7の厚み方向に実質的に沿った方向に変位する。このレバー2の変位に伴い、レバー2が受けた外力は、反転バネ4および補助バネ5を介して圧電発電体7へと伝達される。これにより各圧電素子71に撓み変形が生じることになる。 When the lever 2 is rotatably supported by the case body 8 and an external force is applied to the base portion 20 of the lever 2, the lever 2 is in a direction substantially along the thickness direction of the piezoelectric power generation body 7. It is displaced to. With the displacement of the lever 2, the external force received by the lever 2 is transmitted to the piezoelectric power generator 7 via the reversing spring 4 and the auxiliary spring 5. As a result, each piezoelectric element 71 is bent and deformed.
 第1のフレキシブル配線基板1は、レバー2の基部20の一対の主表面のうちの圧電発電体7が位置しない側の主表面上に設けられている。第1のフレキシブル配線基板1は、複層の基材の表面等に各種導電パターンが形成されてなるものであり、その所定位置にスイッチX,Yを有する。 The first flexible wiring board 1 is provided on the main surface of the pair of main surfaces of the base 20 of the lever 2 on the side where the piezoelectric generator 7 is not located. The first flexible wiring board 1 is formed by forming various conductive patterns on the surface of a multilayer base material, and has switches X and Y at predetermined positions.
 スイッチX,Yは、レバー2の回転軸AXの延在方向と平行な方向に沿って並んで位置するように設けられている。これにより、スイッチX,Yは、上述した2つの操作ボタン(図示せず)に対向して位置することになる。本実施の形態において、スイッチX,Yの各々は、メンブレンスイッチにより構成されるが、他の種類のスイッチを用いることもできる。 The switches X and Y are provided so as to be aligned along a direction parallel to the extending direction of the rotation axis AX of the lever 2. As a result, the switches X and Y are positioned to face the two operation buttons (not shown) described above. In the present embodiment, each of the switches X and Y is constituted by a membrane switch, but other types of switches can also be used.
 第2のフレキシブル配線基板3は、レバー2の基部20の一対の主表面のうちの圧電発電体7が位置する側の主表面上に設けられている。第2のフレキシブル配線基板3は、単層または複層の基材の表面等に各種導電パターンが形成されてなるものである。第2のフレキシブル配線基板3と圧電発電体7との間には、反転バネ4および補助バネ5が配置されている。 The second flexible wiring board 3 is provided on the main surface of the pair of main surfaces of the base 20 of the lever 2 on the side where the piezoelectric power generator 7 is located. The second flexible wiring board 3 is formed by forming various conductive patterns on the surface of a single-layer or multilayer substrate. A reversing spring 4 and an auxiliary spring 5 are disposed between the second flexible wiring board 3 and the piezoelectric power generator 7.
 反転バネ4は、第2のフレキシブル配線基板3のうちのレバー2の基部20の主表面上に位置する部分であって、かつ圧電発電体7の中央部に対向する部分に実装されている。反転バネ4は、たとえばドーム状の形状を有する金属部材またはその積層構造物にて構成されている。反転バネ4は、第2のフレキシブル配線基板3との間に空間が形成されるように下に凸となる姿勢で(すなわち、ドーム状の反転バネ4の頂部が圧電発電体7側に位置することとなるように)第2のフレキシブル配線基板3に固定されている。反転バネ4は、外力が付与されて所定の荷重がかかった場合に、その凹凸形状が反転するように座屈する一方で、外力の付与が解除された場合には座屈が解消されて元の形状に復帰する。 The reversal spring 4 is mounted on a portion of the second flexible wiring board 3 that is located on the main surface of the base portion 20 of the lever 2 and that faces the central portion of the piezoelectric generator 7. The reversal spring 4 is constituted by a metal member having a dome shape or a laminated structure thereof, for example. The reversing spring 4 is in a posture that protrudes downward so that a space is formed between the second flexible wiring board 3 (that is, the top of the dome-shaped reversing spring 4 is positioned on the piezoelectric power generator 7 side). It is fixed to the second flexible wiring board 3. The reversal spring 4 is buckled so that the uneven shape is reversed when an external force is applied and a predetermined load is applied. On the other hand, when the external force is released, the buckling is canceled and the original spring is released. Return to shape.
 反転バネ4を用いることにより、ユーザが操作ボタンを押し下げた場合に、押圧ストロークが所定値以上になった時点で上述の座屈現象が生じ、反転バネ4のバネ定数が瞬間的に下がる。これにより、反転バネ4からの衝撃が加わることでユーザはクリック感を得ることができ、操作ボタンを操作する際の操作性が向上する。 By using the reversal spring 4, when the user depresses the operation button, the above buckling phenomenon occurs when the pressing stroke becomes a predetermined value or more, and the spring constant of the reversal spring 4 is instantaneously lowered. Thereby, the user can obtain a click feeling by applying an impact from the reversing spring 4, and the operability when operating the operation buttons is improved.
 第2のフレキシブル配線基板3と反転バネ4とは、一対の接点を有するスイッチZを構成する。この一対の接点のうちの一方は、反転バネ4により構成されている。他方の接点は、第2のフレキシブル配線基板3のうち、反転バネ4によって覆われる部分に導電端子(図示せず)として設けられている。このように構成することにより、反転バネ4が反転していない状態ではスイッチZを非導通状態(オフ)とする一方で、反転バネ4が反転した状態においてはスイッチZを導通状態(オン)とすることができる。スイッチX~Zの構成および動作については図3および図4にて、より詳細に説明する。 The second flexible wiring board 3 and the reversing spring 4 constitute a switch Z having a pair of contacts. One of the pair of contacts is constituted by a reversing spring 4. The other contact is provided as a conductive terminal (not shown) in a portion of the second flexible wiring board 3 that is covered by the reversal spring 4. With this configuration, the switch Z is turned off when the reversing spring 4 is not reversed (off), while the switch Z is turned on when the reversing spring 4 is reversed. can do. The configuration and operation of the switches X to Z will be described in more detail with reference to FIGS.
 補助バネ5は、側面視略V字状の細長い板状の形状を有し、反転バネ4を受け入れるように下に凸となる姿勢で第2のフレキシブル配線基板3に取り付けられている。補助バネ5は、レバー2が受けた外力を圧電発電体7に伝達するバネ定数を調整するものである。補助バネ5を設けることにより、反転バネ4によるクリック感の程度を調整したり、圧電発電体7および反転バネ4に加わる力のバランスを補正したりすることが可能になる。また、補助バネ5を設けることにより、ユーザが操作ボタンを操作した際に反転バネ4の座屈現象が確実に生じることになる。 The auxiliary spring 5 has an elongated plate shape that is substantially V-shaped when viewed from the side, and is attached to the second flexible wiring board 3 so as to protrude downward so as to receive the reversing spring 4. The auxiliary spring 5 adjusts the spring constant for transmitting the external force received by the lever 2 to the piezoelectric power generator 7. By providing the auxiliary spring 5, it is possible to adjust the degree of click feeling by the reversing spring 4 and to correct the balance of the force applied to the piezoelectric power generator 7 and the reversing spring 4. Further, the provision of the auxiliary spring 5 ensures that the buckling phenomenon of the reversing spring 4 occurs when the user operates the operation button.
 <圧電発電装置の動作>
 次に、圧電発電装置に外力が付与された場合の動作について説明する。スイッチX,Yは基本的に共通の構成を有するので、以下ではスイッチXが押圧される場合を例に説明し、スイッチYについては図示を省略する。
<Operation of piezoelectric generator>
Next, an operation when an external force is applied to the piezoelectric power generation device will be described. Since the switches X and Y basically have a common configuration, an example in which the switch X is pressed will be described below, and the illustration of the switch Y is omitted.
 図3は、本実施の形態における圧電発電装置の動作を説明するための概念図である。図3(A)は、外力Fxを付与する前の圧電発電装置100の状態を示す。圧電発電装置100においては、レバー2が、点P1を支点としてケース体8によって回動自在に支持されている。外力Fxが付与される前の状態を基準としたレバー2の変位量をΔzと記載する。外力Fxの付与前には、スイッチX,Zはいずれもオフである。 FIG. 3 is a conceptual diagram for explaining the operation of the piezoelectric power generation apparatus according to the present embodiment. FIG. 3A shows a state of the piezoelectric power generation apparatus 100 before the external force Fx is applied. In the piezoelectric power generation apparatus 100, the lever 2 is rotatably supported by the case body 8 with the point P1 as a fulcrum. A displacement amount of the lever 2 based on a state before the external force Fx is applied is denoted as Δz. Before the application of the external force Fx, the switches X and Z are both off.
 図3(B)に示すように、レバー2に対して外力Fxの付与が開始されると、スイッチXがオフからオンへと切り替わる。さらに、点P2が力点となるとともに、レバー2が回動して点P3が作用点となることによって、反転バネ4および圧電発電体7に力が加えられることになる。ただし、レバー2の変位量Δzがz1に達した時点では反転バネ4は下に凸の形状をしている。したがって、反転バネ4とスイッチZとは接触しておらず、スイッチZはオフのままである。 As shown in FIG. 3B, when the application of the external force Fx to the lever 2 is started, the switch X is switched from OFF to ON. Further, the point P2 becomes a force point, and the lever 2 rotates and the point P3 becomes an action point, whereby a force is applied to the reversing spring 4 and the piezoelectric power generator 7. However, when the displacement amount Δz of the lever 2 reaches z1, the reversing spring 4 has a downwardly convex shape. Therefore, the reversing spring 4 and the switch Z are not in contact, and the switch Z remains off.
 図3(C)に示すように、外力Fxの付与が継続されると、レバー2の変位量Δzがz2に達した時点で反転バネ4が反転する。これにより、反転バネ4とスイッチZとが接触し、スイッチZがオフからオンへと切り替わる。 As shown in FIG. 3C, when the application of the external force Fx is continued, the reversing spring 4 is reversed when the displacement amount Δz of the lever 2 reaches z2. As a result, the reversing spring 4 and the switch Z come into contact with each other, and the switch Z is switched from OFF to ON.
 図3(D)に示すように、外力Fxの付与がさらに継続されるに従って、圧電発電体7の変形量Δdが大きくなり、圧電発電体7による発電量が大きくなる。 As shown in FIG. 3D, as the external force Fx is further applied, the deformation amount Δd of the piezoelectric power generator 7 increases, and the power generation amount by the piezoelectric power generator 7 increases.
 <送信機の回路構成>
 続いて、以上のように構成された圧電発電装置を送信機に適用した場合の送信機の回路構成の一例について説明する。本実施の形態に係る送信機の理解を容易にするため、まず、比較例に係る送信機の回路構成について説明する。
<Transmitter circuit configuration>
Next, an example of a circuit configuration of the transmitter when the piezoelectric power generation device configured as described above is applied to the transmitter will be described. In order to facilitate understanding of the transmitter according to the present embodiment, first, the circuit configuration of the transmitter according to the comparative example will be described.
 <比較例>
 図4は、比較例に係る送信機の構成を概略的に示す回路ブロック図である。送信機900Aは、圧電発電装置900と、送信部200とを備える。
<Comparative example>
FIG. 4 is a circuit block diagram schematically showing a configuration of a transmitter according to a comparative example. The transmitter 900 </ b> A includes a piezoelectric power generation device 900 and a transmission unit 200.
 送信部200は、圧電発電装置100から供給された電力によって動作する負荷である。より詳細には、送信部200は、たとえば、RF(Radio Frequency)アンテナ201と、RF回路202とを含む。送信部200は、圧電発電装置900から供給された電力を用いて、送信機900Aから離れた位置に設けられた受信器(図示せず)へとRF信号を送信する。このRF信号は、受信器への制御指令を示す信号であってもよいし、各種情報を受信器に伝達するための信号であってもよい。 The transmission unit 200 is a load that operates with electric power supplied from the piezoelectric power generation device 100. More specifically, the transmission unit 200 includes, for example, an RF (Radio Frequency) antenna 201 and an RF circuit 202. The transmission unit 200 transmits an RF signal to a receiver (not shown) provided at a position away from the transmitter 900A using the electric power supplied from the piezoelectric power generation device 900. This RF signal may be a signal indicating a control command to the receiver, or a signal for transmitting various information to the receiver.
 圧電発電装置900は、圧電発電体7と、放電回路101と、全波整流回路102と、コンデンサCと、スイッチX~Zと、信号出力部903と、DC/DCコンバータ104と、制御回路105とを備える。 The piezoelectric power generator 900 includes a piezoelectric power generator 7, a discharge circuit 101, a full-wave rectifier circuit 102, a capacitor C, switches X to Z, a signal output unit 903, a DC / DC converter 104, and a control circuit 105. With.
 圧電発電体7は、複数の圧電素子71(図1または図2参照)と、出力端子T1,T2とを含む。以下では、出力端子T2の電位を基準とした出力端子T1の電位を「出力電圧V」と記載する。 The piezoelectric power generation body 7 includes a plurality of piezoelectric elements 71 (see FIG. 1 or 2) and output terminals T1 and T2. Hereinafter, the potential of the output terminal T1 based on the potential of the output terminal T2 is referred to as “output voltage V”.
 放電回路101は、圧電発電体7の出力端子T1と出力端子T2との間に接続され、圧電発電体7に蓄えられた電荷(あるいは電力)を放電可能に構成されている。より具体的には、放電回路101は、たとえばNMOS(n-type Metal Oxide-Semiconductor)トランジスタを含み、制御回路105からの放電指令に応答して非導通状態(オフ)から導通状態(オン)へと切り替わる。放電回路101がオンになった場合に、出力端子T1と出力端子T2とが短絡されることで、圧電発電体7に蓄えられた電荷が放電される。 The discharge circuit 101 is connected between the output terminal T1 and the output terminal T2 of the piezoelectric power generator 7, and is configured to be able to discharge the electric charge (or power) stored in the piezoelectric power generator 7. More specifically, discharge circuit 101 includes, for example, an NMOS (n-type Metal Oxide-Semiconductor) transistor, and switches from a non-conductive state (off) to a conductive state (on) in response to a discharge command from control circuit 105. And switch. When the discharge circuit 101 is turned on, the output terminal T1 and the output terminal T2 are short-circuited, so that the charge stored in the piezoelectric power generator 7 is discharged.
 全波整流回路102は、ダイオードブリッジ等の一般的な全波整流回路であって、圧電発電体7と信号出力部903との間に電気的に接続されている。全波整流回路102は、圧電発電体7の出力電圧Vを全波整流し、整流された電圧(整流電圧)Vcを電力線PLと電力線GLとの間に出力する。電力線GLは、基準電位GNDに電気的に接続されている。 The full-wave rectifier circuit 102 is a general full-wave rectifier circuit such as a diode bridge, and is electrically connected between the piezoelectric generator 7 and the signal output unit 903. The full-wave rectifier circuit 102 performs full-wave rectification on the output voltage V of the piezoelectric generator 7 and outputs a rectified voltage (rectified voltage) Vc between the power line PL and the power line GL. The power line GL is electrically connected to the reference potential GND.
 コンデンサCは、電力線PLと電力線GLとの間に電気的に接続されている。コンデンサCは、整流電圧Vcを平滑化する。 The capacitor C is electrically connected between the power line PL and the power line GL. The capacitor C smoothes the rectified voltage Vc.
 信号出力部903は、入力ノードINx,INy,INzと、ダイオードD1~D4と、抵抗R1~R5と、スイッチング素子Qと、出力ノードOUTとを含む。スイッチング素子Qは、たとえばNMOSトランジスタである。 The signal output unit 903 includes input nodes INx, INy, INz, diodes D1 to D4, resistors R1 to R5, a switching element Q, and an output node OUT. The switching element Q is, for example, an NMOS transistor.
 スイッチX,Yの各々は、一対の接点を有する。スイッチXの一対の接点のうちの一方は、電力線PLに電気的に接続され、他方は、信号出力部903の入力ノードINxに電気的に接続されている。同様に、スイッチYの一対の接点のうちの一方は、電力線PLに電気的に接続され、他方は、信号出力部903の入力ノードINyに電気的に接続されている。 Each of the switches X and Y has a pair of contacts. One of the pair of contacts of the switch X is electrically connected to the power line PL, and the other is electrically connected to the input node INx of the signal output unit 903. Similarly, one of the pair of contacts of the switch Y is electrically connected to the power line PL, and the other is electrically connected to the input node INy of the signal output unit 903.
 入力ノードINxは、ダイオードD1を介してスイッチング素子Qのゲートに電気的に接続されている。ダイオードD1のアノードは、抵抗R1を介して電力線GLに電気的に接続されている。同様に、入力ノードINyは、ダイオードD2を介してスイッチング素子Qのゲートに電気的に接続されている。ダイオードD2のアノードは、抵抗R2を介して電力線GLに電気的に接続されている。スイッチング素子Qのゲートは、抵抗R3を介して電力線GLに電気的に接続されている。 The input node INx is electrically connected to the gate of the switching element Q via the diode D1. The anode of the diode D1 is electrically connected to the power line GL via the resistor R1. Similarly, the input node INy is electrically connected to the gate of the switching element Q via the diode D2. The anode of the diode D2 is electrically connected to the power line GL via the resistor R2. The gate of the switching element Q is electrically connected to the power line GL via the resistor R3.
 スイッチング素子Qのソースは、電力線GLに電気的に接続されている。スイッチング素子Qのドレインは、抵抗R4を介して電力線PLに電気的に接続されている。抵抗R3とスイッチング素子Qのドレインとの接続ノードには、ダイオードD3のアノードが電気的に接続されている。ダイオードD3のカソードは、出力ノードOUTに電気的に接続されている。ダイオードD3のカソードおよび出力ノードOUTを結ぶ電力線と、電力線GLとの間には、抵抗R5が電気的に接続されている。 The source of the switching element Q is electrically connected to the power line GL. The drain of the switching element Q is electrically connected to the power line PL via the resistor R4. The anode of the diode D3 is electrically connected to the connection node between the resistor R3 and the drain of the switching element Q. The cathode of the diode D3 is electrically connected to the output node OUT. A resistor R5 is electrically connected between the power line connecting the cathode of the diode D3 and the output node OUT and the power line GL.
 上述のように、スイッチZも一対の接点を有する。スイッチZの一方の接点は、反転バネ4(図2参照)により構成され、電力線PLに電気的に接続されている。スイッチZの他方の接点は、第2のフレキシブル配線基板3(図2参照)に設けられた導電端子(図示せず)により構成され、信号出力部903の入力ノードINzに電気的に接続されている。入力ノードINzは、ダイオードD4のアノードに電気的に接続されている。ダイオードD4のカソードは、出力ノードOUTに電気的に接続されている。 As described above, the switch Z also has a pair of contacts. One contact of the switch Z is constituted by a reversing spring 4 (see FIG. 2), and is electrically connected to the power line PL. The other contact of the switch Z is constituted by a conductive terminal (not shown) provided on the second flexible wiring board 3 (see FIG. 2), and is electrically connected to the input node INz of the signal output unit 903. Yes. The input node INz is electrically connected to the anode of the diode D4. The cathode of the diode D4 is electrically connected to the output node OUT.
 DC/DCコンバータ104は、電力線PLに電気的に接続された入力端子Vinと、制御回路105およびRF回路202に電気的に接続された出力端子Voutと、信号出力部903の出力ノードOUTに電気的に接続されたイネーブル端子ENとを含む。DC/DCコンバータ104は、スイッチX,Y,Zのオン状態/オフ状態に基づき、整流電圧Vcを所定の電圧に昇圧(または降圧)して制御回路105および送信部200に供給する。より具体的には、DC/DCコンバータ104は、イネーブル端子ENにH(ハイ)レベルのイネーブル信号Senを受けた場合に、制御回路105および送信部200への電力供給を行なう一方で、イネーブル端子ENにL(ロー)レベルのイネーブル信号Senを受けた場合には、制御回路105および送信部200への電力供給を行なわない。 The DC / DC converter 104 is electrically connected to an input terminal Vin electrically connected to the power line PL, an output terminal Vout electrically connected to the control circuit 105 and the RF circuit 202, and an output node OUT of the signal output unit 903. And an enable terminal EN connected to each other. The DC / DC converter 104 boosts (or steps down) the rectified voltage Vc to a predetermined voltage based on the on / off states of the switches X, Y, and Z, and supplies the rectified voltage Vc to the control circuit 105 and the transmission unit 200. More specifically, the DC / DC converter 104 supplies power to the control circuit 105 and the transmission unit 200 when receiving the enable signal Sen at the H (high) level at the enable terminal EN, while the enable terminal EN When EN receives an L (low) level enable signal Sen, power is not supplied to the control circuit 105 and the transmitter 200.
 制御回路105は、DC/DCコンバータ104の出力端子Voutと電力線GLとの間に接続されており、DC/DCコンバータ104からの電力供給を受けて動作する。制御回路105は、信号Sxおよび信号Syのうちの少なくとも一方を受け、受けた信号に応じた動作指令をRF回路202に出力する。また、制御回路105は、所定のタイミングで放電指令を放電回路101に出力する。 The control circuit 105 is connected between the output terminal Vout of the DC / DC converter 104 and the power line GL, and operates by receiving power supply from the DC / DC converter 104. The control circuit 105 receives at least one of the signal Sx and the signal Sy and outputs an operation command corresponding to the received signal to the RF circuit 202. Further, the control circuit 105 outputs a discharge command to the discharge circuit 101 at a predetermined timing.
 図5は、信号出力部903の論理回路を示す図である。信号出力部903は、入力ノードINx,INy,INzと、出力ノードOUTと、NOR回路(否定論理和回路)903Aと、OR回路(論理和回路)903Bとを含む。 FIG. 5 is a diagram illustrating a logic circuit of the signal output unit 903. The signal output unit 903 includes input nodes INx, INy, INz, an output node OUT, a NOR circuit (negative OR circuit) 903A, and an OR circuit (logical OR circuit) 903B.
 NOR回路903Aは、入力ノードINxに入力された信号と、入力ノードINyに入力された信号との否定論理和の演算結果を示す信号をOR回路903Bに出力する。OR回路903Bは、NOR回路903Aからの信号と、入力ノードINzに入力された信号との論理和の演算結果を示すイネーブル信号Senを出力ノードOUTに出力する。出力ノードOUTからのイネーブル信号Senは、DC/DCコンバータ104のイネーブル端子ENに伝送される。 The NOR circuit 903A outputs, to the OR circuit 903B, a signal indicating a result of a negative OR operation between the signal input to the input node INx and the signal input to the input node INy. The OR circuit 903B outputs, to the output node OUT, an enable signal Sen indicating a logical OR operation result between the signal from the NOR circuit 903A and the signal input to the input node INz. The enable signal Sen from the output node OUT is transmitted to the enable terminal EN of the DC / DC converter 104.
 このように、信号出力部903は、スイッチX,Y,Zのオン状態/オフ状態の組み合わせに応じて、HレベルまたはLレベルのイネーブル信号SenをDC/DCコンバータ104のイネーブル端子ENに出力する。スイッチX,Y,Zの状態の組み合わせに応じて信号出力部903からどのようなイネーブル信号Senが出力されるかについて、以下に整理して説明する。なお、Hレベルのイネーブル信号は、本開示に係る「動作指令」に相当する。 In this way, the signal output unit 903 outputs the H level or L level enable signal Sen to the enable terminal EN of the DC / DC converter 104 in accordance with the combination of the on / off states of the switches X, Y, and Z. . What enable signal Sen is output from the signal output unit 903 in accordance with the combination of the states of the switches X, Y, and Z will be summarized below. The H level enable signal corresponds to an “operation command” according to the present disclosure.
 図6は、図5に示した論理回路に対応するベン図である。このベン図では、イネーブル信号SenがHレベルとなる領域が斜線を付して示されている。イネーブル信号SenがLレベルとなる領域は、斜線が付されずに白抜きで示されている。 FIG. 6 is a Venn diagram corresponding to the logic circuit shown in FIG. In the Venn diagram, regions where the enable signal Sen is at the H level are indicated by hatching. A region where the enable signal Sen is at the L level is shown in white without hatching.
 スイッチX,Y,Zがいずれもオフである場合には、領域K1に示すように、Hレベルのイネーブル信号Senが出力される(図3(A)参照)。 When the switches X, Y, and Z are all off, an H level enable signal Sen is output as shown in the region K1 (see FIG. 3A).
 スイッチX,Yのうちの一方がオンであって他方がオフであり、かつ、スイッチZがオフである場合には、領域K2,K3に示すように、Lレベルのイネーブル信号Senが出力される(図3(B)参照)。また、スイッチX,Yがいずれもオンであり、かつ、スイッチZがオフである場合にも、領域K4に示すように、Lレベルのイネーブル信号Senが出力される。 When one of the switches X and Y is on, the other is off, and the switch Z is off, an L level enable signal Sen is output as shown in regions K2 and K3. (See FIG. 3B). Even when the switches X and Y are both on and the switch Z is off, the L level enable signal Sen is output as shown in the region K4.
 スイッチZがオンである場合には、信号出力部903は、Hレベルのイネーブル信号Senを出力する。より詳細に説明すると、スイッチX,Yのうちの一方がオンであって他方がオフであり、かつ、スイッチZがオンである場合には、領域K6,K7に示すように、Hレベルのイネーブル信号Senが出力される(図3(C)参照)。また、スイッチX,Y,Zがいずれもオンである場合にも、領域K8に示すように、Hレベルのイネーブル信号Senが出力される。なお、本実施の形態では、スイッチX,YがいずれもオフであるにもかかわらずスイッチZがオンである状態(領域K5参照)は、実際には生じない。 When the switch Z is ON, the signal output unit 903 outputs an H level enable signal Sen. More specifically, when one of the switches X and Y is on, the other is off, and the switch Z is on, as shown in regions K6 and K7, the H level enable A signal Sen is output (see FIG. 3C). Even when all of the switches X, Y, and Z are on, as shown in the region K8, the H level enable signal Sen is output. In the present embodiment, the state in which the switch Z is on (see the region K5) even though both the switches X and Y are off does not actually occur.
 以上のように構成された圧電発電装置900において、本発明者は、以下のような課題が生じることを見出した。 In the piezoelectric power generation apparatus 900 configured as described above, the present inventors have found that the following problems occur.
 図7は、比較例におけるレバー2の変位量Δzと圧電発電体7の変形量Δdとの関係を示すグラフである。図7および後述する図9において、横軸は、レバー2の変位量Δz(すなわち、ユーザ操作によりレバー2が押し込まれた量)を示す。縦軸は、圧電発電体7の変形量Δdを示す。この変形量Δdは、圧電発電体7による発電電力量と読み替えることが可能である。 FIG. 7 is a graph showing the relationship between the displacement amount Δz of the lever 2 and the deformation amount Δd of the piezoelectric generator 7 in the comparative example. In FIG. 7 and FIG. 9 described later, the horizontal axis indicates the displacement amount Δz of the lever 2 (that is, the amount by which the lever 2 is pushed by a user operation). The vertical axis represents the deformation amount Δd of the piezoelectric power generator 7. This deformation amount Δd can be read as the amount of power generated by the piezoelectric power generator 7.
 図7に示すように、レバー2の変位量Δzがz1に達するまでは、変位量Δzの増加に伴い、圧電発電体7の変形量Δdは増加する。そして、変位量Δzがz1に達した時点で、変形量Δdは極大値d1をとる。 As shown in FIG. 7, until the displacement amount Δz of the lever 2 reaches z1, the deformation amount Δd of the piezoelectric power generator 7 increases as the displacement amount Δz increases. Then, when the displacement amount Δz reaches z1, the deformation amount Δd takes the maximum value d1.
 しかしながら、変位量Δzがz1に達した直後に反転バネ4が反転する(Δz=z2参照)。これにより、反転バネ4の反転前後の形状の違いに起因して、圧電発電体7の変形量Δdが一時的に減少して極小値d2をとる。その後、レバー2が最下点に達するまで、変位量Δzが増加するに従って変形量Δdは引き続き増加する(Δz=z2~z3参照)。 However, the reversing spring 4 is reversed immediately after the displacement amount Δz reaches z1 (see Δz = z2). As a result, due to the difference in the shape of the reversing spring 4 before and after reversal, the deformation amount Δd of the piezoelectric power generation body 7 temporarily decreases and takes the minimum value d2. Thereafter, until the lever 2 reaches the lowest point, the deformation amount Δd continues to increase as the displacement amount Δz increases (see Δz = z2 to z3).
 図3(C)にて説明したように、反転バネ4が反転すると、スイッチX,Yのうちの少なくとも一方に加えてスイッチZもオンされる。そうすると、Hレベルのイネーブル信号Senが信号出力部103から出力されるので(図6の領域K6~K8参照)、DC/DCコンバータ104が動作を開始する。 3C, when the reversing spring 4 is reversed, the switch Z is turned on in addition to at least one of the switches X and Y. Then, since the H level enable signal Sen is output from the signal output unit 103 (see regions K6 to K8 in FIG. 6), the DC / DC converter 104 starts its operation.
 このように、比較例では、反転バネ4の反転直後に、言い換えるとレバー2の変位量Δz=z2における圧電発電体7の変形量Δdの極小値d2付近で、DC/DCコンバータ104による電圧変換が行なわれることになる。したがって、DC/DCコンバータ104による電圧変換が行なわれる電力が相対的に小さくなり、DC/DCコンバータ104の後段の制御回路105および送信部200に十分な電力を供給することができない可能性がある。 Thus, in the comparative example, immediately after the reversal spring 4 is reversed, in other words, in the vicinity of the minimum value d2 of the deformation amount Δd of the piezoelectric generator 7 when the displacement amount Δz = z2 of the lever 2, the voltage conversion by the DC / DC converter 104 is performed. Will be performed. Therefore, the power for voltage conversion by the DC / DC converter 104 becomes relatively small, and there is a possibility that sufficient power cannot be supplied to the control circuit 105 and the transmitter 200 at the subsequent stage of the DC / DC converter 104. .
 そこで、本実施の形態においては、イネーブル信号Senの出力タイミングを反転バネ4の反転タイミングよりも遅延時間ΔTだけ遅延させるための遅延回路106が信号出力部103に設けられた構成を採用する。 Therefore, in the present embodiment, a configuration is adopted in which the signal output unit 103 is provided with a delay circuit 106 for delaying the output timing of the enable signal Sen by the delay time ΔT from the inversion timing of the inversion spring 4.
 <本実施の形態>
 図8は、本実施の形態に係る送信機の構成を概略的に示す回路ブロック図である。図8に示す送信機100Aは、圧電発電装置100と、送信部200とを備える。圧電発電装置100は、比較例における信号出力部903(図4参照)に代えて信号出力部103を含む。信号出力部103は、遅延回路106をさらに含む点において、信号出力部903と異なる。なお、信号出力部103は、本開示に係る「指令出力部」に相当する。
<This embodiment>
FIG. 8 is a circuit block diagram schematically showing the configuration of the transmitter according to the present embodiment. A transmitter 100 </ b> A illustrated in FIG. 8 includes a piezoelectric power generation device 100 and a transmission unit 200. The piezoelectric power generation apparatus 100 includes a signal output unit 103 instead of the signal output unit 903 (see FIG. 4) in the comparative example. The signal output unit 103 is different from the signal output unit 903 in that it further includes a delay circuit 106. The signal output unit 103 corresponds to a “command output unit” according to the present disclosure.
 遅延回路106は、たとえば一般的なRC遅延回路(積分回路)であって、入力ノードINzと出力ノードOUTとを結ぶイネーブル信号Senの伝送線路に設けられる。より詳細には、遅延回路106は、抵抗R6と、コンデンサC6とを含む。抵抗R6は、入力ノードINzとダイオードD4のアノードとの間に電気的に接続されている。コンデンサC6は、抵抗R6およびダイオードD4のアノードの接続ノードと、電力線GLとの間に電気的に接続されている。送信機100A(圧電発電装置100および送信部200)のそれ以外の構成は、比較例に係る送信機900Aの対応する構成と同等であるため、詳細な説明は繰り返さない。 The delay circuit 106 is, for example, a general RC delay circuit (integration circuit), and is provided on the transmission line of the enable signal Sen connecting the input node INz and the output node OUT. More specifically, delay circuit 106 includes a resistor R6 and a capacitor C6. The resistor R6 is electrically connected between the input node INz and the anode of the diode D4. Capacitor C6 is electrically connected between resistor R6 and an anode connection node of diode D4 and power line GL. Since the other configuration of transmitter 100A (piezoelectric power generation device 100 and transmitter 200) is the same as the corresponding configuration of transmitter 900A according to the comparative example, detailed description will not be repeated.
 次に、遅延回路106によるイネーブル信号Senの遅延時間ΔTの設定手法について説明する。なお、遅延時間ΔTは、本開示に係る「所定時間」に相当する。 Next, a method for setting the delay time ΔT of the enable signal Sen by the delay circuit 106 will be described. The delay time ΔT corresponds to a “predetermined time” according to the present disclosure.
 図9は、本実施の形態におけるレバー2の変位量Δzと圧電発電体7の変形量Δdとの関係を示すグラフである。図7にて説明したように、変位量Δzがz1に達した時点で、圧電発電体7の変形量Δdが極大値d1をとる。 FIG. 9 is a graph showing the relationship between the displacement amount Δz of the lever 2 and the deformation amount Δd of the piezoelectric generator 7 in the present embodiment. As described with reference to FIG. 7, when the displacement amount Δz reaches z1, the deformation amount Δd of the piezoelectric power generator 7 takes the maximum value d1.
 本実施の形態において、遅延時間ΔTは、反転バネ4の反転に伴いスイッチZがオンされてから、圧電発電体7の変形量Δdがd1よりも大きくなるまでに要する時間と等しいか、それよりも長くなるように定められる。これにより、圧電発電体7の変形量Δdがd1以上かつd3以下(d1≦Δd≦d3)の状態において、イネーブル信号SenがDC/DCコンバータ104のイネーブル端子ENに出力されることになる。したがって、DC/DCコンバータ104から制御回路105および送信部200に十分な電力を供給することが可能になる。 In the present embodiment, the delay time ΔT is equal to or more than the time required for the deformation amount Δd of the piezoelectric power generation body 7 to be greater than d1 after the switch Z is turned on as the reversing spring 4 is reversed. Is also determined to be longer. Thus, the enable signal Sen is output to the enable terminal EN of the DC / DC converter 104 in a state where the deformation amount Δd of the piezoelectric power generator 7 is not less than d1 and not more than d3 (d1 ≦ Δd ≦ d3). Therefore, sufficient power can be supplied from the DC / DC converter 104 to the control circuit 105 and the transmission unit 200.
 その一方で、遅延時間ΔTが過度に長くなると、ユーザに違和感を与えてしまう可能性がある。より詳細に説明すると、ユーザがスイッチXまたはスイッチYを操作した時刻と、送信機100Aから受信器(図示せず)へとRF信号が送信され所定の動作が行なわれる時刻との間の時間差(タイムラグ)がユーザによって感知可能な長さになると、スイッチを操作したにもかかわらず直ちに動作が行なわれていないとのストレス(違和感)をユーザに与えてしまう可能性がある。そのようなストレスをユーザに与えないようにするために、遅延時間ΔTは、ある程度短い方が好ましい。一般に、100ms以下のタイムラグはユーザに感知されないことが多いので、遅延時間ΔTは、100ms以下に設定することが好ましい。 On the other hand, if the delay time ΔT is excessively long, the user may feel uncomfortable. More specifically, the time difference between the time when the user operates the switch X or Y and the time when the RF signal is transmitted from the transmitter 100A to the receiver (not shown) and a predetermined operation is performed ( When the time lag becomes a length that can be sensed by the user, there is a possibility of giving the user a stress (uncomfortable feeling) that the operation is not immediately performed even though the switch is operated. In order not to give such stress to the user, the delay time ΔT is preferably short to some extent. In general, since a time lag of 100 ms or less is often not perceived by the user, the delay time ΔT is preferably set to 100 ms or less.
 <送信機の動作タイムチャート>
 次に、送信機100Aの動作の一例として、ユーザがスイッチXに対応する操作ボタン(図示せず)を押し下げる操作を行なった場合の送信機100Aの動作について、詳細に説明する。
<Transmitter operation time chart>
Next, as an example of the operation of transmitter 100A, the operation of transmitter 100A when the user performs an operation of depressing an operation button (not shown) corresponding to switch X will be described in detail.
 図10は、本実施の形態における送信機100Aの動作の一例を説明するためのタイムチャートである。図10において、横軸は経過時間を示す。縦軸は、上から順に、外力Fxのオン/オフ、スイッチXのオン/オフ、スイッチYのオン/オフ、スイッチZのオン/オフ、DC/DCコンバータ104のイネーブル端子ENの電位(Hレベル/Lレベル)、圧電発電体7の出力電圧V、放電指令のオン/オフを示す。 FIG. 10 is a time chart for explaining an example of the operation of transmitter 100A in the present embodiment. In FIG. 10, the horizontal axis indicates the elapsed time. The vertical axis represents the external force Fx on / off, the switch X on / off, the switch Y on / off, the switch Z on / off, and the potential (H level) of the enable terminal EN of the DC / DC converter 104 in order from the top. / L level), output voltage V of the piezoelectric generator 7, and on / off of the discharge command.
 時刻t1までの期間においては、スイッチX,Y,Zがいずれもオフであるため、信号出力部103のイネーブル信号Senは、Hレベルである。よって、DC/DCコンバータ104のイネーブル端子ENの電位は、Hレベルである(図6の領域K1参照)。しかしながら、圧電発電体7による発電がまだ行なわれていないため、DC/DCコンバータ104は動作しておらず、圧電発電装置100から送信部200への電力供給は行なわれない。 During the period up to time t1, since the switches X, Y, and Z are all off, the enable signal Sen of the signal output unit 103 is at the H level. Therefore, the potential of the enable terminal EN of the DC / DC converter 104 is at the H level (see region K1 in FIG. 6). However, since power generation by the piezoelectric power generator 7 has not yet been performed, the DC / DC converter 104 is not operating, and power supply from the piezoelectric power generation apparatus 100 to the transmission unit 200 is not performed.
 時刻t1において外力Fxの付与が開始され、時刻t2においてスイッチXがオンになる。そうすると、イネーブル端子ENの電位がLレベルになる(図6の領域K2参照)。時刻t2とほぼ同時に、圧電発電体7に撓み変形が生じ始め、この変形に伴って圧電発電体7による発電が開始される。圧電発電体7により発電された電力は、送信部200へと供給されることなく圧電発電体7に蓄えられる。 Application of external force Fx is started at time t1, and switch X is turned on at time t2. Then, the potential of the enable terminal EN becomes L level (see the region K2 in FIG. 6). Almost simultaneously with time t2, the piezoelectric power generator 7 begins to bend and deform, and power generation by the piezoelectric power generator 7 is started along with this deformation. The electric power generated by the piezoelectric power generator 7 is stored in the piezoelectric power generator 7 without being supplied to the transmitter 200.
 時刻t3において、反転バネ4が反転を始める。時刻t4において、反転バネ4の反転が完了すると、スイッチZがオンになる。なお、時刻t3から時刻t4までの期間に生じた反転により、ユーザにクリック感が与えられる。 At time t3, the reversing spring 4 starts reversing. When the reversal of the reversing spring 4 is completed at time t4, the switch Z is turned on. In addition, a click feeling is given to the user due to the inversion that occurs in the period from time t3 to time t4.
 時刻t4から遅延時間ΔTだけ経過した後の時刻t5において、イネーブル端子ENの電位は、Hレベルになる(図6の領域K6参照)。これにより、DC/DCコンバータ104は、圧電発電体7に蓄えられていた電力の電圧を変換し、制御回路105および送信部200に供給する。送信部200は、スイッチXがオンされたことを示すRF信号(図示せず)を出力する(第1の送信動作)。そのため、時刻t5以降においては、圧電発電体7の出力電圧Vは低下する。 At time t5 after the lapse of the delay time ΔT from time t4, the potential of the enable terminal EN becomes H level (see region K6 in FIG. 6). Thereby, the DC / DC converter 104 converts the voltage of the electric power stored in the piezoelectric power generator 7 and supplies it to the control circuit 105 and the transmission unit 200. The transmission unit 200 outputs an RF signal (not shown) indicating that the switch X is turned on (first transmission operation). Therefore, after time t5, the output voltage V of the piezoelectric power generator 7 decreases.
 第1の送信動作が完了すると、時刻t6において、制御回路105から放電回路101へと放電指令が出力される。これにより、圧電発電体7に蓄えられた電荷を放電させるためのリセット動作が開始される。具体的には、圧電発電体の電極間が短絡させられ、それにより圧電発電体7の出力電圧が0Vにリセットされる。その後、時刻t7において、放電指令の出力が停止される。 When the first transmission operation is completed, a discharge command is output from the control circuit 105 to the discharge circuit 101 at time t6. Thereby, the reset operation for discharging the electric charge stored in the piezoelectric power generator 7 is started. Specifically, the electrodes of the piezoelectric power generator are short-circuited, thereby resetting the output voltage of the piezoelectric power generator 7 to 0V. Thereafter, the output of the discharge command is stopped at time t7.
 時刻t8において外力Fxの付与が解除され始めると、反転バネ4が元の形状に復帰するための反転を始め、時刻t9において反転バネ4の反転からの復帰が完了する。そうすると、時刻t9とほぼ同時刻において、スイッチZがオフになる。一方、スイッチXは、依然としてオンのままである。 When the application of the external force Fx starts to be released at time t8, the reversing spring 4 starts reversing to return to the original shape, and the reversing from the reversing of the reversing spring 4 is completed at time t9. Then, the switch Z is turned off at substantially the same time as time t9. On the other hand, the switch X remains on.
 時刻t9から遅延時間ΔTだけ経過した後の時刻t10において、イネーブル端子ENの電位は、Lレベルになる(図6の領域K2参照)。これにより、DC/DCコンバータ104は、その動作を停止する。 At time t10 after the delay time ΔT has elapsed from time t9, the potential of the enable terminal EN becomes L level (see region K2 in FIG. 6). Thereby, the DC / DC converter 104 stops its operation.
 時刻t10とほぼ同時に、外力Fxが減少することによって圧電発電体7の撓み変形が解消し始める。この変形に伴って圧電発電体7による発電が行なわれる。発電された電力は、送信部200へと供給されることなく圧電発電体7に蓄えられる。 Almost simultaneously with time t10, the bending deformation of the piezoelectric power generation body 7 starts to be eliminated as the external force Fx decreases. Along with this deformation, power generation by the piezoelectric power generator 7 is performed. The generated electric power is stored in the piezoelectric power generator 7 without being supplied to the transmitter 200.
 時刻t11においてスイッチXがオフになると、イネーブル端子ENの電位は、Hレベルになる(図6の領域K1参照)。これに伴い、DC/DCコンバータ104は、圧電発電体7に蓄えられていた電力の電圧を変換し、制御回路105および送信部200へと供給する。送信部200は、スイッチXがオフされたことを示すRF信号(図示せず)を出力する(第2の送信動作)。 When the switch X is turned off at time t11, the potential of the enable terminal EN becomes H level (see the region K1 in FIG. 6). Along with this, the DC / DC converter 104 converts the voltage of the electric power stored in the piezoelectric power generator 7 and supplies it to the control circuit 105 and the transmission unit 200. The transmitter 200 outputs an RF signal (not shown) indicating that the switch X has been turned off (second transmission operation).
 時刻t12において、外力Fxの付与が終了する。時刻t12以降においては、圧電発電装置100から送信部200へと電力供給が行なわれることで圧電発電体7の出力電圧Vは低下する。その後、時刻13~時刻14の期間において、時刻t6~時刻t7の期間と同様のリセット動作が行なわれる。 At time t12, the application of the external force Fx ends. After time t12, power is supplied from the piezoelectric power generation apparatus 100 to the transmission unit 200, so that the output voltage V of the piezoelectric power generation body 7 decreases. Thereafter, during the period from time 13 to time 14, the reset operation similar to the period from time t6 to time t7 is performed.
 なお、ここでは説明は省略するが、ユーザがスイッチYに対応する操作ボタン(図示せず)を操作した場合、および、ユーザがスイッチX,Yに対応する操作ボタンを同時に操作した場合についても、上記説明に準じた一連の動作が実施されることになる。 Although description is omitted here, when the user operates an operation button (not shown) corresponding to the switch Y and when the user operates the operation buttons corresponding to the switches X and Y at the same time, A series of operations according to the above description will be performed.
 以上のように、本実施の形態によれば、イネーブル信号SenがDC/DCコンバータ104のイネーブル端子ENへと出力されるタイミングが、信号出力部103に設けられた遅延回路106により遅延時間ΔTだけ遅延される。遅延時間ΔTを適切に定めることによって、圧電発電体7の変形量Δdがd1以上かつd3以下(d1≦Δd≦d3)の状態において、イネーブル端子ENの電位がLレベルからHレベルへと切り替わり、DC/DCコンバータ104の電圧変換動作が行なわれるようになる。その結果、制御回路105および送信部200に十分な電力を供給することが可能になる。 As described above, according to the present embodiment, the timing at which the enable signal Sen is output to the enable terminal EN of the DC / DC converter 104 is the delay time ΔT by the delay circuit 106 provided in the signal output unit 103. Delayed. By appropriately determining the delay time ΔT, the potential of the enable terminal EN is switched from the L level to the H level when the deformation amount Δd of the piezoelectric power generation body 7 is d1 or more and d3 or less (d1 ≦ Δd ≦ d3). The voltage conversion operation of the DC / DC converter 104 is performed. As a result, sufficient power can be supplied to the control circuit 105 and the transmission unit 200.
 さらに、送信機100Aでは、ユーザが1回だけ操作ボタンを操作する間に、2回の送信動作(第1および第2の送信動作)が行なわれる。たとえば、第1の送信動作で送信されるRF信号と、第2の送信動作で送信されるRF信号とを異なる信号とし、かつ、それら両方のRF信号を受信したことを条件に受信機(図示せず)が動作するように設定することにより、受信機の誤動作を防止することができる。ただし、2回の送信動作が行なわれることは必須ではなく、いずれか1回だけであってもよい。 Furthermore, in the transmitter 100A, two transmission operations (first and second transmission operations) are performed while the user operates the operation button only once. For example, the RF signal transmitted in the first transmission operation is different from the RF signal transmitted in the second transmission operation, and the receiver (see FIG. (Not shown) can be set to operate, so that malfunction of the receiver can be prevented. However, it is not essential that the transmission operation is performed twice, and only one of them may be performed.
 また、イネーブル信号Senを遅延させることが目的であれば、出力ノードOUTのすぐ前段または後段(すなわち、出力ノードOUTとイネーブル端子ENとの間)に遅延回路106を設けることも考えられる。しかしながら、そうすると、反転バネ4の反転時(第1の送信動作時)および反転からの復帰時(第2の送信動作時)の両方において、イネーブル信号Senの出力タイミングが遅延されることになる。 If the purpose is to delay the enable signal Sen, a delay circuit 106 may be provided immediately before or after the output node OUT (that is, between the output node OUT and the enable terminal EN). However, in this case, the output timing of the enable signal Sen is delayed both when the reversing spring 4 is reversed (during the first transmission operation) and when the reverse spring 4 is restored (when the second transmission operation is performed).
 これに対し、本実施の形態において、遅延回路106は、入力ノードINzの後段に設けられる。このため、スイッチZのオン状態/オフ状態の切り替え(時刻t4,t9参照)に伴うイネーブル信号Senの出力タイミングの遅延が行なわれる一方で、スイッチX,Yのオン状態/オフ状態の切り替え(時刻t2,t11参照)によるイネーブル信号Senの出力タイミングの遅延は行なわれない。つまり、第1の送信動作時(反転バネ4の反転時)にはイネーブル信号Senの出力タイミングを遅延させる一方で、第2の送信動作時(反転バネ4の復帰時)にはイネーブル信号Senの出力タイミングを遅延させない。 On the other hand, in the present embodiment, the delay circuit 106 is provided after the input node INz. For this reason, the output timing of the enable signal Sen is delayed along with the switching of the ON state / OFF state of the switch Z (see times t4 and t9), while the switching of the ON state / OFF state of the switches X and Y (time) The output timing of the enable signal Sen is not delayed by t2 and t11). In other words, the output timing of the enable signal Sen is delayed at the time of the first transmission operation (at the time of reversal of the reversal spring 4), while the enable signal Sen at the time of the second transmission operation (at the time of reversal of the reversal spring 4). Does not delay output timing.
 本発明者の測定によれば、第2の送信動作時には、第1の送信動作時と比べて、大きな電力が圧電発電体7により発電される。そのため、制御回路105および送信部200に十分な電力を供給可能である場合が多い。したがって、イネーブル信号Senの出力タイミングを遅延させないように遅延回路106を構成することで、第2の送信動作を早期に実施することが可能になる。 According to the measurement by the present inventor, a large amount of electric power is generated by the piezoelectric power generator 7 during the second transmission operation compared to during the first transmission operation. Therefore, in many cases, sufficient power can be supplied to the control circuit 105 and the transmission unit 200. Therefore, by configuring the delay circuit 106 so as not to delay the output timing of the enable signal Sen, the second transmission operation can be performed early.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present disclosure is shown not by the above description of the embodiments but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 1 第1のフレキシブル配線基板、2 レバー、20 基部、21,22 立壁部、211,221 軸部、23 ビス穴、3 第2のフレキシブル配線基板、4 反転バネ、5 補助バネ、6 ビス、7 圧電発電体、71 圧電素子、8 ケース体、80 底板部、81,82,83,84 側壁部、811,812,821 軸支孔、85 支持部、100,900 圧電発電装置、100A,900A 送信機、101 放電回路、102 全波整流回路、103,903 信号出力部、104 DC/DCコンバータ、105 制御回路、106 遅延回路、200 送信部、201 アンテナ、202 RF回路、903A NOR回路、903B OR回路、X,Y,Z スイッチ、R1~R6 抵抗、D1~D4 ダイオード、C,C6 コンデンサ、Q スイッチング素子、GL,PL 電力線、INx,INy,INz 入力ノード、OUT 出力ノード、T1,T2,Vout 出力端子、EN イネーブル端子。 1 First flexible wiring board, 2 lever, 20 base, 21, 22 standing wall, 211, 221 shaft, 23 screw holes, 3 second flexible wiring board, 4 reversing spring, 5 auxiliary spring, 6 screws, 7 Piezoelectric generator, 71 piezoelectric element, 8 case body, 80 bottom plate, 81, 82, 83, 84 side wall, 811, 812, 821 shaft support hole, 85 support, 100, 900 piezoelectric generator, 100A, 900A transmission Machine, 101 discharge circuit, 102 full-wave rectifier circuit, 103,903 signal output unit, 104 DC / DC converter, 105 control circuit, 106 delay circuit, 200 transmission unit, 201 antenna, 202 RF circuit, 903A NOR circuit, 903B OR Circuit, X, Y, Z switch, R1-R6 resistance, D1-D4 Dio De, C, C6 capacitor, Q switching element, GL, PL power line, INx, INy, INz input nodes, OUT output node, T1, T2, Vout output terminal, EN enable terminal.

Claims (5)

  1.  外力を受けることにより変位する可動部と、
     前記可動部の変位に伴い変形し、変形量に応じた電圧を発生する圧電発電体と、
     前記可動部と前記圧電発電体との間に配置され、前記可動部の変位に伴い反転する反転バネと、
     動作指令を受けた場合に、前記圧電発電体により発電された電力の電圧を変換する電圧変換部と、
     前記反転バネの反転に伴い前記電圧変換部に前記動作指令を出力する指令出力部とを備え、
     前記圧電発電体の変形量は、前記可動部の変位量が増加していても前記反転バネの反転に伴い一時的に減少し、
     前記指令出力部は、前記動作指令の出力タイミングを前記反転バネの反転タイミングよりも所定時間だけ遅延させる遅延回路を含む、圧電発電装置。
    A movable part that is displaced by receiving an external force;
    A piezoelectric power generator that is deformed in accordance with the displacement of the movable part and generates a voltage corresponding to the amount of deformation;
    A reversing spring disposed between the movable part and the piezoelectric power generation body and reversing with displacement of the movable part;
    When receiving an operation command, a voltage converter that converts the voltage of the electric power generated by the piezoelectric generator, and
    A command output unit that outputs the operation command to the voltage conversion unit in accordance with the reversal of the reversing spring;
    The amount of deformation of the piezoelectric power generator temporarily decreases with the reversal of the reversing spring, even if the amount of displacement of the movable part increases.
    The command output unit includes a delay circuit that delays an output timing of the operation command by a predetermined time from an inversion timing of the inversion spring.
  2.  前記所定時間は、前記反転バネの反転後に前記圧電発電体の変形量が、前記可動部の変位に伴って前記反転バネの反転開始時の変形量以上となるのに要する時間に設定される、請求項1に記載の圧電発電装置。 The predetermined time is set to a time required for the deformation amount of the piezoelectric power generation body after the reversal of the reversal spring to be equal to or greater than the deformation amount at the start of reversal of the reversal spring with the displacement of the movable part. The piezoelectric power generation device according to claim 1.
  3.  前記所定時間は、100ミリ秒以下に設定される、請求項1または2に記載の圧電発電装置。 The piezoelectric power generation device according to claim 1 or 2, wherein the predetermined time is set to 100 milliseconds or less.
  4.  前記指令出力部は、前記反転バネの反転に伴い前記動作指令を出力するととともに、前記反転バネの反転からの復帰に伴い前記動作指令を出力するように構成され、
     前記遅延回路は、前記反転バネの反転時には前記動作指令の前記出力タイミングを遅延させる一方で、前記反転バネの反転からの復帰時には前記動作指令の前記出力タイミングを遅延させないように構成される、請求項1~3のいずれか1項に記載の圧電発電装置。
    The command output unit is configured to output the operation command along with reversal of the reversing spring, and to output the operation command upon return from reversal of the reversing spring,
    The delay circuit is configured to delay the output timing of the operation command when the reversing spring is reversed, while not delaying the output timing of the operation command when returning from the reversal of the reversing spring. Item 4. The piezoelectric power generation device according to any one of Items 1 to 3.
  5.  請求項1~4のいずれか1項に記載の圧電発電装置と、
     前記電圧変換部により電圧が変換された電力を受け、当該電力を用いて無線信号を送信する送信部とを備える、送信機。
    The piezoelectric power generation device according to any one of claims 1 to 4,
    A transmitter comprising: a transmitter that receives electric power whose voltage is converted by the voltage converter and transmits a radio signal using the electric power.
PCT/JP2017/029361 2016-09-29 2017-08-15 Piezoelectric power generation device and transmitter equipped with same WO2018061499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018541974A JP6465259B2 (en) 2016-09-29 2017-08-15 Piezoelectric generator and transmitter having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191185 2016-09-29
JP2016191185 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061499A1 true WO2018061499A1 (en) 2018-04-05

Family

ID=61762667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029361 WO2018061499A1 (en) 2016-09-29 2017-08-15 Piezoelectric power generation device and transmitter equipped with same

Country Status (2)

Country Link
JP (1) JP6465259B2 (en)
WO (1) WO2018061499A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262575A (en) * 2005-03-16 2006-09-28 Taiheiyo Cement Corp Generator
JP2010519891A (en) * 2007-02-23 2010-06-03 ソシエテ ドゥ テクノロジー ミシュラン Capacitive load release method
WO2015072258A1 (en) * 2013-11-12 2015-05-21 株式会社村田製作所 Power generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262575A (en) * 2005-03-16 2006-09-28 Taiheiyo Cement Corp Generator
JP2010519891A (en) * 2007-02-23 2010-06-03 ソシエテ ドゥ テクノロジー ミシュラン Capacitive load release method
WO2015072258A1 (en) * 2013-11-12 2015-05-21 株式会社村田製作所 Power generation device

Also Published As

Publication number Publication date
JP6465259B2 (en) 2019-02-06
JPWO2018061499A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6098736B2 (en) Piezoelectric generator module and remote controller
RU2430447C1 (en) Electronic device and tactile feedback circuit
JP3753676B2 (en) switch
US20050275581A1 (en) Energy-autonomous electromechanical wireless switch
US7952038B1 (en) Two-stage switch apparatus
JP2003224315A (en) Electrostatic generator, power unit, remote control, and electronic equipment
JP6673489B2 (en) Piezoelectric generator, piezoelectric generator module and transmitter
US5266863A (en) Piezoelectric actuator
US9058060B2 (en) Keyboard module and method for fabricating the same
JP6465259B2 (en) Piezoelectric generator and transmitter having the same
JP2006216898A (en) Piezoelectric generator
US20160315563A1 (en) Piezoelectric power generation module and remote controller
JP6481773B2 (en) Power generation device and transmitter having the same
JP6658900B2 (en) Piezoelectric generator, piezoelectric generator module and transmitter
US8188388B2 (en) Operation key structure
US9871600B2 (en) Wireless switch
JP6540803B2 (en) POWER GENERATOR AND ELECTRICAL EQUIPMENT COMPRISING THE SAME
KR20160030655A (en) device for harvesting energy, manufacturing method, and wireless apparatus including the same
JP2003177857A (en) Tactile switch using piezoelectric element
JP5075205B2 (en) Microcomputer system
WO2019138831A1 (en) Wireless switch
JP2018508128A (en) Piezoelectric generator, push button, wireless module, and method of manufacturing piezoelectric generator
JP2018125917A (en) Piezoelectric power generation device, piezoelectric power generation module and transmitter
CN210327532U (en) Keyboard with a keyboard body
KR20160008450A (en) Wireless Switch

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541974

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855457

Country of ref document: EP

Kind code of ref document: A1