WO2018061495A1 - Electric wire and laser device - Google Patents

Electric wire and laser device Download PDF

Info

Publication number
WO2018061495A1
WO2018061495A1 PCT/JP2017/029063 JP2017029063W WO2018061495A1 WO 2018061495 A1 WO2018061495 A1 WO 2018061495A1 JP 2017029063 W JP2017029063 W JP 2017029063W WO 2018061495 A1 WO2018061495 A1 WO 2018061495A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
tube
insulating tube
outer tube
insulating
Prior art date
Application number
PCT/JP2017/029063
Other languages
French (fr)
Japanese (ja)
Inventor
原 章文
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2018061495A1 publication Critical patent/WO2018061495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/20Metal tubes, e.g. lead sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs

Definitions

  • the present invention relates to high voltage wiring.
  • CV (crosslinked polyethylene insulated vinyl sheath) cable is widely used for transmission of high voltage exceeding several hundred volts.
  • the CV cable has a multilayer structure of a conductor, an inner semiconductive layer, a crosslinked polyethylene insulating layer, and an outer semiconductive layer.
  • the present invention has been made in view of such a problem, and one of exemplary purposes of an aspect thereof is to provide an electric wire capable of suppressing corona discharge.
  • An aspect of the present invention relates to an electric wire.
  • the electric wire has a substantially constant thickness and has an insulating tube whose diameter changes periodically with respect to the length direction, a conductor inserted in the insulating tube, and conductivity, and has insulation inside.
  • An outer tube into which the tube is inserted.
  • an air insulating layer is secured on the inside and outside of the insulating tube. Corona discharge can be suppressed by determining the thickness of the insulating layer so as not to generate discharge in relation to the potential of the conductor.
  • conductivity includes semiconductivity.
  • the outer tube may be a metal pipe. That is, when it is desired to lay a conductor in the metal pipe, corona discharge can be suppressed by inserting an insulating tube between them.
  • the insulating tube may be a corrugated tube.
  • the cost can be reduced by diverting a corrugated tube used for protecting a CV cable or the like or assisting the laying as a member for securing an insulating layer.
  • the outer tube has a substantially constant thickness, and the diameter may change at a different period from the insulating tube. Thereby, the insulation between a conductor and an outer side tube can be improved further.
  • the maximum value of the inner diameter of the insulating tube is r 1
  • the minimum value of the inner diameter is r 2
  • the thickness is d
  • d / (r 1 -r 2 ) is less than or equal to a predetermined value at any location in the length direction. It may be. Thereby, corona discharge can be further suppressed.
  • the laser device includes a pair of discharge electrodes and a high-frequency power source that generates an alternating high voltage applied to the pair of discharge electrodes.
  • the wiring between the high-frequency power source and the pair of discharge electrodes may include any of the above-described electric wires.
  • corona discharge can be suppressed.
  • FIGS. 1A and 1B are a cross-sectional view and a side view of the electric wire according to the first embodiment.
  • FIG. 2A is a diagram showing the electric wire when the conductor and the outer tube are closest to each other
  • FIG. 2B is an equivalent circuit diagram of FIG.
  • FIGS. 7A and 7B are diagrams showing a modification of the periodic structure employed in the insulating tube and the outer tube. It is a figure which shows a laser apparatus.
  • FIGS. 1A and 1B are a cross-sectional view and a side view of the electric wire according to the first embodiment. In addition, in each drawing, only a part of the length direction of an electric wire is shown.
  • the electric wire 100a is used for high voltage transmission of several hundred volts to several kV.
  • the electric wire 100a includes a conductor 102, an insulating tube 104, and an outer tube 106.
  • the insulating tube 104 has a substantially constant thickness d, and the diameter changes periodically with respect to the length direction.
  • the conductor 102 is not covered and its surface is exposed to air, and is inserted into the insulating tube 104 so as to be deformable.
  • the outer tube 106 has conductivity, and the insulating tube 104 is accommodated therein.
  • the outer tube 106 may be a metal pipe, and the insulating tube 104 may be a corrugated tube. In use, the outer tube 106 may be grounded or floating.
  • the conductor 102 can be deformed inside the insulating tube 104 and can move in the radial direction.
  • the insulating tube 104 can be deformed inside the outer tube 106 and can move in the radial direction.
  • FIG. 2A is a diagram showing the electric wire 100a when the conductor 102 and the outer tube 106 are closest to each other.
  • R 1 The maximum value of the inner diameter of the insulating tube 104, the minimum value of the inner diameter r 2, the thickness is as d.
  • FIG. 2B is an equivalent circuit diagram of the electric wire 100a of FIG.
  • a series connection of a capacitor C AIR formed by the air layer and a capacitor C DIE formed by the insulating layer of the insulating tube 104 is formed.
  • V AIR V ⁇ ⁇ r / ( ⁇ r + d) (4)
  • E AIR V AIR / ⁇ r (5)
  • Equation (6) V ⁇ ⁇ / ( ⁇ r + d) (6)
  • the electric field of the air layer E AIR can be reduced as ⁇ r is increased, and the thickness ⁇ r of the air layer is minimized. Therefore, corona discharge can be suppressed because no electric field concentration like voids occurs.
  • d / ⁇ r d / (r 1 ⁇ r 2 ) is equal to or less than a predetermined value at any location in the length direction.
  • the predetermined value is preferably 20% or less, and more preferably 10% or less.
  • corona discharge can be suitably suppressed.
  • a low-cost electric wire can be realized by diverting a corrugated tube used for protection of CV wiring or the like to the insulating tube 104.
  • FIG. 3 is a diagram for explaining a problem that occurs when the outer tube 106 is bent at a right angle in the electric wire 100a of the first embodiment.
  • the outer tube 106 enters the recessed portion of the insulating tube 104 at the bent portion 110 indicated by the alternate long and short dash line, the distance between the conductor 102 and the outer tube 106 decreases.
  • the worst case only the insulating tube 104 and a very thin air layer will be present between the conductor 102 and the outer tube 106.
  • electric field concentration occurs in a thin air layer, and corona discharge may occur.
  • the electric wire 100a according to the first embodiment is effective in a place where bending does not occur as shown in FIG.
  • FIG. 4 is a cross-sectional view of the electric wire 100b according to the second embodiment.
  • the outer tube 106 has a periodic structure similar to that of the insulating tube 104.
  • the period L 2 of the outer tube 106 is different from the period L 1 of the inner insulating tube 104. If the periods L 1 and L 2 are equal, the probability that the convex part of one tube contacts the concave part of the other tube is increased for each period. On the other hand, by making the two periods L 1 and L 2 different, the probability that one convex portion comes into contact with the other concave portion can be reduced. For this reason, one cycle is preferably 2 to 10 times the other cycle.
  • FIG. 5 is a diagram showing a state where the electric wire 100b of FIG. 4 is bent at a right angle.
  • the outer tube 106 can be prevented from coming into contact with the insulating tube 104 when the electric wire 100b is bent at a right angle. Thereby, a sufficiently thick air layer can be secured even in the bent portion 110, and corona discharge can be suppressed.
  • FIG. 6 is a cross-sectional view of the electric wire 100c according to the third embodiment.
  • this electric wire 100 c two layers of insulating tubes 104 and 108 are provided between the conductor 102 and the outer tube 106.
  • the outer insulating tube 108 and the inner insulating tube 104 have different periods. According to the electric wire 100c, the insulation between the conductor 102 and the outer tube 106 can be further enhanced, and corona discharge can be further suppressed.
  • FIGS. 7A and 7B are diagrams showing modifications of the periodic structure employed in the insulating tube 104 and the outer tube 106.
  • FIG. 7A has a trapezoidal cross-sectional shape
  • the tube in FIG. 7B has a triangular cross-sectional shape.
  • the period L and the amplitude of the insulating tube 104 (108) do not need to be constant, and may vary in the length direction. This variation may be periodic or may have fluctuations. The same applies to the outer tube 106.
  • the outer tube 106 may further have a periodic structure. At this time, the cycle of the outer tube 106 is different from the cycle of the insulating tube 108.
  • FIG. 8 is a diagram showing the laser device 200.
  • the laser device 200 includes a direct current power source 202, a high frequency power source 204, and a light source 206.
  • the DC power source 202 includes a noise filter 220 and a bank capacitor 222.
  • the high frequency power supply 204 includes an inverter 232 that applies a high frequency voltage of about 500 V to the transformer 230 and the primary winding W1 of the transformer 230.
  • a high-frequency high voltage of, for example, several kV (for example, 5 kV) is generated in the secondary winding W2 of the transformer 230.
  • the light source 206 is a CO 2 laser, for example, and includes a pair of discharge electrodes 240 and a DC block capacitor 242.
  • the electric wire 100 described above can be suitably used for the cables 210 and 212.
  • the power supply terminals to the pair of discharge electrodes 240 of the light source 206 are in the atmosphere.
  • the electric wire 100 is connected to the power supply terminal through a CO 2 gas chamber lower than the atmospheric pressure.
  • a metal pipe is selected for the outer tube 106 so as to withstand this pressure difference. In this application, it is desirable that the outer tube 106 of the electric wire 100 used as the cables 210 and 212 is grounded.
  • DESCRIPTION OF SYMBOLS 100 ... Electric wire, 102 ... Conductor, 104 ... Insulating tube, 106 ... Outer tube, 200 ... Laser apparatus, 202 ... DC power supply, 204 ... High frequency power supply, 206 ... Light source, 240 ... Discharge electrode.
  • the present invention can be used for high voltage transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Lasers (AREA)
  • Insulated Conductors (AREA)
  • Details Of Indoor Wiring (AREA)

Abstract

An insulating tube 104 has substantially a fixed thickness, and has a diameter that changes at regular intervals in the length direction. A conductor 102 is inserted into the insulating tube 104. An outer tube 106 has conductivity, and the insulating tube 104 is inserted into the outer tube.

Description

電線およびレーザ装置Electric wire and laser equipment
 本発明は、高電圧用の配線に関する。 The present invention relates to high voltage wiring.
 数百Vを超える高電圧の伝送に、CV(架橋ポリエチレン絶縁ビニルシース)ケーブルが広く用いられている。CVケーブルは、導体、内部半導電層、架橋ポリエチレンの絶縁層、外部半導電層の多層構造を有する。 CV (crosslinked polyethylene insulated vinyl sheath) cable is widely used for transmission of high voltage exceeding several hundred volts. The CV cable has a multilayer structure of a conductor, an inner semiconductive layer, a crosslinked polyethylene insulating layer, and an outer semiconductive layer.
 CVケーブルの絶縁層にボイドが存在すると、電界集中に起因するコロナ放電(部分放電)が発生し、CVケーブルの劣化を促進する。 If there is a void in the insulating layer of the CV cable, corona discharge (partial discharge) due to electric field concentration occurs and promotes deterioration of the CV cable.
特開2015-186418号公報Japanese Patent Laying-Open No. 2015-186418
 本発明はかかる課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、コロナ放電を抑制可能な電線の提供にある。 The present invention has been made in view of such a problem, and one of exemplary purposes of an aspect thereof is to provide an electric wire capable of suppressing corona discharge.
 本発明のある態様は電線に関する。電線は、実質的に一定の厚みを有し、長さ方向に対して径が周期的に変化する絶縁チューブと、絶縁チューブに挿設された導体と、導電性を有し、その内部に絶縁チューブが挿設されている外側チューブと、を備える。 An aspect of the present invention relates to an electric wire. The electric wire has a substantially constant thickness and has an insulating tube whose diameter changes periodically with respect to the length direction, a conductor inserted in the insulating tube, and conductivity, and has insulation inside. An outer tube into which the tube is inserted.
 この態様によると、絶縁チューブの内側および外側に空気の絶縁層が確保される。この絶縁層の厚さを、導体の電位との関係で放電が発生しないように決めることで、コロナ放電を抑制することができる。なお本明細書において、導電性は半導電性を含む。 According to this aspect, an air insulating layer is secured on the inside and outside of the insulating tube. Corona discharge can be suppressed by determining the thickness of the insulating layer so as not to generate discharge in relation to the potential of the conductor. Note that in this specification, conductivity includes semiconductivity.
 外側チューブは、金属配管であってもよい。すなわち金属配管内に導体を敷設したい場合に、それらの間に絶縁チューブを挿入することで、コロナ放電を抑制できる。 The outer tube may be a metal pipe. That is, when it is desired to lay a conductor in the metal pipe, corona discharge can be suppressed by inserting an insulating tube between them.
 絶縁チューブは、コルゲートチューブであってもよい。一般的に、CVケーブルなどの保護、あるいは敷設の補助に用いられるコルゲートチューブを、絶縁層を確保するための部材として流用することにより、コストを下げることができる。 The insulating tube may be a corrugated tube. Generally, the cost can be reduced by diverting a corrugated tube used for protecting a CV cable or the like or assisting the laying as a member for securing an insulating layer.
 外側チューブは実質的に一定の厚みを有し、径が絶縁チューブとは異なる周期で変化してもよい。これにより、導体と外側チューブとの間の絶縁性を一層高めることができる。 The outer tube has a substantially constant thickness, and the diameter may change at a different period from the insulating tube. Thereby, the insulation between a conductor and an outer side tube can be improved further.
 絶縁チューブの内径の最大値をr、内径の最小値をr、厚みをdとするとき、長さ方向のいずれの箇所においてもd/(r-r)が所定値以下となっていてもよい。これによりコロナ放電をさらに抑制できる。 Assuming that the maximum value of the inner diameter of the insulating tube is r 1 , the minimum value of the inner diameter is r 2 , and the thickness is d, d / (r 1 -r 2 ) is less than or equal to a predetermined value at any location in the length direction. It may be. Thereby, corona discharge can be further suppressed.
 本発明の別の態様は、レーザ装置に関する。レーザ装置は、一対の放電電極と、一対の放電電極に印加する交流高電圧を発生する高周波電源と、を備える。高周波電源と一対の放電電極の間の配線は、上述のいずれかの電線を含んでもよい。 Another embodiment of the present invention relates to a laser device. The laser device includes a pair of discharge electrodes and a high-frequency power source that generates an alternating high voltage applied to the pair of discharge electrodes. The wiring between the high-frequency power source and the pair of discharge electrodes may include any of the above-described electric wires.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明のある態様によれば、コロナ放電を抑制できる。 According to an aspect of the present invention, corona discharge can be suppressed.
図1(a)、(b)は、第1実施例に係る電線の断面図および側面図である。FIGS. 1A and 1B are a cross-sectional view and a side view of the electric wire according to the first embodiment. 図2(a)は、導体と外側チューブが最近接したときの電線を示す図であり、図2(b)は、図2(a)の等価回路図である。FIG. 2A is a diagram showing the electric wire when the conductor and the outer tube are closest to each other, and FIG. 2B is an equivalent circuit diagram of FIG. 第1実施例の電線において、外側チューブが直角に折れ曲がっている場合に生ずる問題を説明する図である。In the electric wire of 1st Example, it is a figure explaining the problem which arises when an outer side tube is bent at right angle. 第2実施例に係る電線の断面図である。It is sectional drawing of the electric wire which concerns on 2nd Example. 図4の電線を直角に折り曲げた状態を示す図である。It is a figure which shows the state which bent the electric wire of FIG. 4 at right angle. 第3実施例に係る電線の断面図である。It is sectional drawing of the electric wire which concerns on 3rd Example. 図7(a)、(b)は、絶縁チューブや外側チューブに採用される周期構造の変形例を示す図である。FIGS. 7A and 7B are diagrams showing a modification of the periodic structure employed in the insulating tube and the outer tube. レーザ装置を示す図である。It is a figure which shows a laser apparatus.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図面に記載される各部材の寸法(厚み、長さ、幅など)は、理解の容易化のために適宜、拡大縮小されている場合がある。さらには複数の部材の寸法は、必ずしもそれらの大小関係を表しているとは限らず、図面上で、ある部材Aが、別の部材Bよりも厚く描かれていても、部材Aが部材Bよりも薄いこともあり得る。 Dimensions (thickness, length, width, etc.) of each member described in the drawings may be appropriately enlarged or reduced for easy understanding. Furthermore, the dimensions of the plurality of members do not necessarily represent the magnitude relationship between them, and even if one member A is drawn thicker than another member B on the drawing, the member A is the member B. It can be thinner.
(第1実施例)
 図1(a)、(b)は、第1実施例に係る電線の断面図および側面図である。なお、各図面には、電線の長さ方向の一部のみが示される。電線100aは数百V~数kVの高電圧の伝送に用いられる。電線100aは、導体102、絶縁チューブ104、外側チューブ106を備える。絶縁チューブ104は、実質的に一定の厚みdを有し、長さ方向に対して径が周期的に変化している。導体102は、被覆されておらずその表面が空気に露出しており、絶縁チューブ104の内部に変形自在に挿設されている。外側チューブ106は導電性を有し、その内部に絶縁チューブ104が収容される。
(First embodiment)
FIGS. 1A and 1B are a cross-sectional view and a side view of the electric wire according to the first embodiment. In addition, in each drawing, only a part of the length direction of an electric wire is shown. The electric wire 100a is used for high voltage transmission of several hundred volts to several kV. The electric wire 100a includes a conductor 102, an insulating tube 104, and an outer tube 106. The insulating tube 104 has a substantially constant thickness d, and the diameter changes periodically with respect to the length direction. The conductor 102 is not covered and its surface is exposed to air, and is inserted into the insulating tube 104 so as to be deformable. The outer tube 106 has conductivity, and the insulating tube 104 is accommodated therein.
 たとえば外側チューブ106は金属配管であり、絶縁チューブ104はコルゲートチューブであってもよい。使用において外側チューブ106は接地してもよいし、フローティングとしてもよい。 For example, the outer tube 106 may be a metal pipe, and the insulating tube 104 may be a corrugated tube. In use, the outer tube 106 may be grounded or floating.
 導体102は、絶縁チューブ104の内部において変形可能であり、また径方向に移動可能である。また絶縁チューブ104は、外側チューブ106の内部において変形可能であり、また径方向に移動可能である。 The conductor 102 can be deformed inside the insulating tube 104 and can move in the radial direction. The insulating tube 104 can be deformed inside the outer tube 106 and can move in the radial direction.
 図2(a)は、導体102と外側チューブ106が最近接したときの電線100aを示す図である。絶縁チューブ104の内径の最大値をr、内径の最小値をr、厚みをdとする。このとき導体102と外側チューブ106の間には、長さ方向のいずれの箇所においても、厚さΔr=r-rの空気層と、厚さdの絶縁層が存在することとなる。 FIG. 2A is a diagram showing the electric wire 100a when the conductor 102 and the outer tube 106 are closest to each other. R 1 The maximum value of the inner diameter of the insulating tube 104, the minimum value of the inner diameter r 2, the thickness is as d. At this time, an air layer having a thickness Δr = r 1 −r 2 and an insulating layer having a thickness d exist between the conductor 102 and the outer tube 106 at any location in the length direction.
 図2(b)は、図2(a)の電線100aの等価回路図である。導体102と外側チューブ106の間には、空気層が形成するキャパシタCAIRと、絶縁チューブ104の絶縁層が形成するキャパシタCDIEの直列接続が形成される。このとき、キャパシタCAIRに印加される電圧VAIRは、
 VAIR=V×{(jωCAIR-1/{(jωCAIR-1+(jωCDIE-1
    =V×CDIE/(CDIE+CAIR)   …(1)
FIG. 2B is an equivalent circuit diagram of the electric wire 100a of FIG. Between the conductor 102 and the outer tube 106, a series connection of a capacitor C AIR formed by the air layer and a capacitor C DIE formed by the insulating layer of the insulating tube 104 is formed. At this time, the voltage V AIR applied to the capacitor C AIR is
V AIR = V × {(jωC AIR ) −1 / {(jωC AIR ) −1 + (jωC DIE ) −1 }
= V × C DIE / (C DIE + C AIR ) (1)
 また、空気の比誘電率を1、絶縁チューブ104の比誘電率をε、空気層の厚みをΔr、絶縁チューブ104の厚みをdとするとき、
 CAIR=ε×S/Δr  …(2)
 CDIE=ε×ε×S/d  …(3)
を得る。式(2)、(3)を式(1)に代入して整理すると、式(4)を得る。ただし、空気層と絶縁層の面積を等しいものと仮定した。
Further, when the relative permittivity of air is 1, the relative permittivity of the insulating tube 104 is ε, the thickness of the air layer is Δr, and the thickness of the insulating tube 104 is d,
C AIR = ε 0 × S / Δr (2)
C DIE = ε 0 × ε × S / d (3)
Get. Substituting equations (2) and (3) into equation (1) and rearranging results in equation (4). However, the area of the air layer and the insulating layer was assumed to be equal.
 VAIR=V×εΔr/(εΔr+d)  …(4) V AIR = V × εΔr / (εΔr + d) (4)
 また空気層に発生する電界EAIRは、以下の式であたえられる。
 EAIR=VAIR/Δr  …(5)
 式(5)に式(4)を代入すると、式(6)を得る。
 EAIR=V×ε/(εΔr+d)   …(6)
The electric field E AIR generated in the air layer is given by the following equation.
E AIR = V AIR / Δr (5)
Substituting equation (4) into equation (5) yields equation (6).
E AIR = V × ε / (εΔr + d) (6)
 したがって空気層と絶縁層の厚みの和が一定(Δr+d=R)の条件のもとでは、Δrを大きくするほど、空気層EAIRの電界を小さくすることができ、空気層の厚みΔrが極小であるボイドのような電界集中は発生しないため、コロナ放電を抑制することができる。 Therefore, under the condition that the sum of the thicknesses of the air layer and the insulating layer is constant (Δr + d = R), the electric field of the air layer E AIR can be reduced as Δr is increased, and the thickness Δr of the air layer is minimized. Therefore, corona discharge can be suppressed because no electric field concentration like voids occurs.
 好ましくはd/Δr=d/(r-r)は、長さ方向のいずれの箇所においても所定値以下となっている。所定値はたとえば20%以下とすることが好ましく、より好ましくは10%以下である。 Preferably, d / Δr = d / (r 1 −r 2 ) is equal to or less than a predetermined value at any location in the length direction. For example, the predetermined value is preferably 20% or less, and more preferably 10% or less.
 このように第1実施例に係る電線100aによれば、コロナ放電を好適に抑制できる。特にCV配線等の保護に使用されるコルゲートチューブを、絶縁チューブ104に流用することで、低コストな電線を実現できる。 Thus, according to the electric wire 100a according to the first embodiment, corona discharge can be suitably suppressed. In particular, a low-cost electric wire can be realized by diverting a corrugated tube used for protection of CV wiring or the like to the insulating tube 104.
 図3は、第1実施例の電線100aにおいて、外側チューブ106が直角に折れ曲がっている場合に生ずる問題を説明する図である。一点鎖線で示す折れ曲がり部分110において、外側チューブ106が、絶縁チューブ104の凹部に入り込むと、導体102と外側チューブ106の距離が小さくなる。最悪のケースでは、導体102と外側チューブ106の間には、絶縁チューブ104と非常に薄い空気層のみが存在することとなる。この場合、薄い空気層に電界集中が発生し、コロナ放電が生ずるおそれがある。言い換えれば、第1実施例に係る電線100aは、図3のような折れ曲がりが生じない箇所において有効である。 FIG. 3 is a diagram for explaining a problem that occurs when the outer tube 106 is bent at a right angle in the electric wire 100a of the first embodiment. When the outer tube 106 enters the recessed portion of the insulating tube 104 at the bent portion 110 indicated by the alternate long and short dash line, the distance between the conductor 102 and the outer tube 106 decreases. In the worst case, only the insulating tube 104 and a very thin air layer will be present between the conductor 102 and the outer tube 106. In this case, electric field concentration occurs in a thin air layer, and corona discharge may occur. In other words, the electric wire 100a according to the first embodiment is effective in a place where bending does not occur as shown in FIG.
(第2実施例)
 図4は、第2実施例に係る電線100bの断面図である。この電線100bでは、外側チューブ106が絶縁チューブ104と同様の周期的な構造を有している。外側チューブ106の周期Lは、内側の絶縁チューブ104の周期Lと異なっている。もし周期LとLが等しい場合、周期毎に、一方のチューブの凸部が、他方のチューブの凹部と接触する確率が高くなる。これに対して、2つの周期L,Lを異ならしめることで、一方の凸部が、他方の凹部と接触する確率を低下させることができる。このような理由から、一方の周期は、他方の周期の2~10倍であることが好ましい。
(Second embodiment)
FIG. 4 is a cross-sectional view of the electric wire 100b according to the second embodiment. In the electric wire 100b, the outer tube 106 has a periodic structure similar to that of the insulating tube 104. The period L 2 of the outer tube 106 is different from the period L 1 of the inner insulating tube 104. If the periods L 1 and L 2 are equal, the probability that the convex part of one tube contacts the concave part of the other tube is increased for each period. On the other hand, by making the two periods L 1 and L 2 different, the probability that one convex portion comes into contact with the other concave portion can be reduced. For this reason, one cycle is preferably 2 to 10 times the other cycle.
 図5は、図4の電線100bを直角に折り曲げた状態を示す図である。外側チューブ106に周期構造を導入した結果、電線100bを直角に折り曲げた場合において、外側チューブ106が絶縁チューブ104と接するのを防止できる。これにより、折り曲げた部分110においても十分に厚い空気層を確保することができ、コロナ放電を抑制できる。 FIG. 5 is a diagram showing a state where the electric wire 100b of FIG. 4 is bent at a right angle. As a result of introducing the periodic structure into the outer tube 106, the outer tube 106 can be prevented from coming into contact with the insulating tube 104 when the electric wire 100b is bent at a right angle. Thereby, a sufficiently thick air layer can be secured even in the bent portion 110, and corona discharge can be suppressed.
(第3実施例)
 図6は、第3実施例に係る電線100cの断面図である。この電線100cでは、導体102と外側チューブ106の間に、2層の絶縁チューブ104、108が設けられる。外側の絶縁チューブ108と内側の絶縁チューブ104は異なる周期を有している。この電線100cによれば、導体102と外側チューブ106の絶縁性を一層高めることができ、コロナ放電をさらに抑制できる。
(Third embodiment)
FIG. 6 is a cross-sectional view of the electric wire 100c according to the third embodiment. In this electric wire 100 c, two layers of insulating tubes 104 and 108 are provided between the conductor 102 and the outer tube 106. The outer insulating tube 108 and the inner insulating tube 104 have different periods. According to the electric wire 100c, the insulation between the conductor 102 and the outer tube 106 can be further enhanced, and corona discharge can be further suppressed.
 以上、本発明について、いくつかの実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 The present invention has been described based on several embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. By the way. Hereinafter, such modifications will be described.
(変形例)
 図7(a)、(b)は、絶縁チューブ104や外側チューブ106に採用される周期構造の変形例を示す図である。図7(a)のチューブは、台形状の断面形状を有し、図7(b)のチューブは、三角状の断面形状を有する。
(Modification)
FIGS. 7A and 7B are diagrams showing modifications of the periodic structure employed in the insulating tube 104 and the outer tube 106. FIG. The tube in FIG. 7A has a trapezoidal cross-sectional shape, and the tube in FIG. 7B has a triangular cross-sectional shape.
 絶縁チューブ104(108)の周期Lおよび振幅は一定である必要はなく、長さ方向に関して変動していてもよい。この変動は周期的であってもよいし、ゆらぎを有してもよい。外側チューブ106についても同様である。 The period L and the amplitude of the insulating tube 104 (108) do not need to be constant, and may vary in the length direction. This variation may be periodic or may have fluctuations. The same applies to the outer tube 106.
 図6の電線100bにおいて、さらに外側チューブ106が周期構造を有してもよい。このとき外側チューブ106の周期は、絶縁チューブ108の周期と異なっている。 6, the outer tube 106 may further have a periodic structure. At this time, the cycle of the outer tube 106 is different from the cycle of the insulating tube 108.
(用途)
 続いて、上述の電線100の用途を説明する。図8は、レーザ装置200を示す図である。レーザ装置200は、直流電源202、高周波電源204、光源206を備える。直流電源202は、ノイズフィルタ220およびバンクコンデンサ222を備える。高周波電源204は、トランス230、トランス230の一次巻線W1に500V程度の高周波電圧を印加するインバータ232を備える。トランス230の二次巻線W2には、たとえば数kV(たとえば5kV)の高周波の高電圧が発生する。この高周波高電圧は、ケーブル210,212を介して、光源206に供給される。光源206はたとえばCOレーザであり、一対の放電電極240およびDCブロック用のコンデンサ242を備える。上述した電線100は、ケーブル210,212に好適に用いることができる。
(Use)
Then, the use of the above-mentioned electric wire 100 is demonstrated. FIG. 8 is a diagram showing the laser device 200. The laser device 200 includes a direct current power source 202, a high frequency power source 204, and a light source 206. The DC power source 202 includes a noise filter 220 and a bank capacitor 222. The high frequency power supply 204 includes an inverter 232 that applies a high frequency voltage of about 500 V to the transformer 230 and the primary winding W1 of the transformer 230. A high-frequency high voltage of, for example, several kV (for example, 5 kV) is generated in the secondary winding W2 of the transformer 230. This high frequency high voltage is supplied to the light source 206 via the cables 210 and 212. The light source 206 is a CO 2 laser, for example, and includes a pair of discharge electrodes 240 and a DC block capacitor 242. The electric wire 100 described above can be suitably used for the cables 210 and 212.
 光源206の一対の放電電極240への給電端子は、大気雰囲気中にある。電線100は、大気圧よりも低いCOガスチャンバーを通って給電端子とつながっている。外側チューブ106は、この圧力差に耐えられるように金属配管が選択される。この用途において、ケーブル210,212として用いる電線100の外側チューブ106は、接地することが望ましい。 The power supply terminals to the pair of discharge electrodes 240 of the light source 206 are in the atmosphere. The electric wire 100 is connected to the power supply terminal through a CO 2 gas chamber lower than the atmospheric pressure. A metal pipe is selected for the outer tube 106 so as to withstand this pressure difference. In this application, it is desirable that the outer tube 106 of the electric wire 100 used as the cables 210 and 212 is grounded.
100…電線、102…導体、104…絶縁チューブ、106…外側チューブ、200…レーザ装置、202…直流電源、204…高周波電源、206…光源、240…放電電極。 DESCRIPTION OF SYMBOLS 100 ... Electric wire, 102 ... Conductor, 104 ... Insulating tube, 106 ... Outer tube, 200 ... Laser apparatus, 202 ... DC power supply, 204 ... High frequency power supply, 206 ... Light source, 240 ... Discharge electrode.
 本発明は高電圧伝送に利用できる。 The present invention can be used for high voltage transmission.

Claims (6)

  1.  実質的に一定の厚みを有し、長さ方向に対して径が周期的に変化する絶縁チューブと、
     前記絶縁チューブに挿設された導体と、
     導電性を有し、その内部に前記絶縁チューブが挿設されている外側チューブと、
     を備えることを特徴とする電線。
    An insulating tube having a substantially constant thickness, the diameter of which varies periodically with respect to the length direction;
    A conductor inserted in the insulating tube;
    An outer tube having electrical conductivity and having the insulating tube inserted therein;
    An electric wire comprising:
  2.  前記外側チューブは、金属配管であることを特徴とする請求項1に記載の電線。 The electric wire according to claim 1, wherein the outer tube is a metal pipe.
  3.  前記外側チューブは実質的に一定の厚みを有し、径が前記絶縁チューブとは異なる周期で変化することを特徴とする請求項1または2に記載の電線。 The electric wire according to claim 1 or 2, wherein the outer tube has a substantially constant thickness, and the diameter changes at a different period from the insulating tube.
  4.  前記絶縁チューブは、コルゲートチューブであることを特徴とする請求項1から3のいずれかに記載の電線。 The electric wire according to any one of claims 1 to 3, wherein the insulating tube is a corrugated tube.
  5.  前記絶縁チューブの内径の最大値をr、内径の最小値をr、厚みをdとするとき、長さ方向のいずれの箇所においてもd/(r-r)が所定値以下となっていることを特徴とする請求項1から4のいずれかに記載の電線。 When the maximum value of the inner diameter of the insulating tube is r 1 , the minimum value of the inner diameter is r 2 , and the thickness is d, d / (r 1 −r 2 ) is less than or equal to a predetermined value at any location in the length direction. The electric wire according to claim 1, wherein the electric wire is formed.
  6.  一対の放電電極と、
     前記一対の放電電極に印加する交流高電圧を発生する高周波電源と、
     を備え、前記高周波電源と前記一対の放電電極の間の配線は、請求項1から5のいずれかに記載の電線を含むことを特徴とするレーザ装置。
    A pair of discharge electrodes;
    A high frequency power source for generating an alternating high voltage to be applied to the pair of discharge electrodes;
    And a wire between the high-frequency power source and the pair of discharge electrodes includes the electric wire according to any one of claims 1 to 5.
PCT/JP2017/029063 2016-09-27 2017-08-10 Electric wire and laser device WO2018061495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187849 2016-09-27
JP2016187849A JP2018055864A (en) 2016-09-27 2016-09-27 Wire and laser device

Publications (1)

Publication Number Publication Date
WO2018061495A1 true WO2018061495A1 (en) 2018-04-05

Family

ID=61760417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029063 WO2018061495A1 (en) 2016-09-27 2017-08-10 Electric wire and laser device

Country Status (3)

Country Link
JP (1) JP2018055864A (en)
TW (1) TWI649769B (en)
WO (1) WO2018061495A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110401157B (en) * 2018-04-24 2020-10-13 淄博永鑫电器有限公司 Anti-corrosion cable bridge with isolation groove

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684813A (en) * 1979-12-11 1981-07-10 Sumitomo Electric Industries Large capacity power cable line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846573B2 (en) * 2002-06-14 2006-11-15 三菱電機株式会社 Laser processing apparatus and control method of the processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684813A (en) * 1979-12-11 1981-07-10 Sumitomo Electric Industries Large capacity power cable line

Also Published As

Publication number Publication date
TW201814734A (en) 2018-04-16
TWI649769B (en) 2019-02-01
JP2018055864A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US6984788B2 (en) Data transmission cable for connection to mobile devices
KR102416896B1 (en) Joint box
US20060180339A1 (en) Design for linear broadband low frequency cable
BR9807143A (en) Power transformer / inductor.
KR102457873B1 (en) Joint sleeve and Connection structrue
JP4620475B2 (en) power cable
TWI709979B (en) Cable
WO2018061495A1 (en) Electric wire and laser device
JP2007305379A (en) Harness
US8124878B2 (en) Apparatus for electrical screening of a high-voltage bushing
JP6575341B2 (en) Insulation structure and insulation member
RU2686458C1 (en) Flexible high-voltage cable
TWI708268B (en) Cable
JP4964432B2 (en) Parallel wire
JP6888524B2 (en) coaxial cable
US20200339046A1 (en) Current-carrying cable
US20220215985A1 (en) Combination cable for electrical energy and data transmission
US20210343451A1 (en) Communication cable and wire harness
KR101200616B1 (en) Structure of stranded conductor for electrical power cable
KR20230134941A (en) Different diameter pre-molded joint for jointing beyween extra high voltage cables with different conductor size and different diameter rubber unit
JP2019139891A (en) Armor cable with electromagnetic shielding function
KR20140115509A (en) Premolded joint for DC cable
RU2295791C1 (en) Cable for supplying low-temperature plasma generator with power
SE514822C2 (en) Prefabricated joint body for high electrical stresses
JPH02142315A (en) Terminal connection of cv cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855453

Country of ref document: EP

Kind code of ref document: A1