WO2018061393A1 - Dielectric elastomer material and transducer using same - Google Patents

Dielectric elastomer material and transducer using same Download PDF

Info

Publication number
WO2018061393A1
WO2018061393A1 PCT/JP2017/024920 JP2017024920W WO2018061393A1 WO 2018061393 A1 WO2018061393 A1 WO 2018061393A1 JP 2017024920 W JP2017024920 W JP 2017024920W WO 2018061393 A1 WO2018061393 A1 WO 2018061393A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
copolymer
group
elastomer material
dielectric
Prior art date
Application number
PCT/JP2017/024920
Other languages
French (fr)
Japanese (ja)
Inventor
有作 ▲高▼垣
祐子 松下
小林 淳
吉川 均
高橋 渉
貴雅 伊藤
淳 高原
亮介 松野
豊 大背戸
Original Assignee
住友理工株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017049455A external-priority patent/JP2018059042A/en
Application filed by 住友理工株式会社, 国立大学法人九州大学 filed Critical 住友理工株式会社
Priority to DE112017004872.9T priority Critical patent/DE112017004872B4/en
Publication of WO2018061393A1 publication Critical patent/WO2018061393A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/385Esters containing sulfur and containing nitrogen

Definitions

  • the present invention relates to a dielectric elastomer material suitable for a dielectric layer of a transducer.
  • Known transducers include actuators, sensors, power generation elements, etc. that convert mechanical energy and electrical energy, or speakers, microphones, etc. that convert acoustic energy and electrical energy.
  • Polymer materials such as dielectric elastomers are useful for constructing highly flexible, small and light transducers.
  • an electrostrictive actuator can be configured by arranging a pair of electrodes on both sides in the thickness direction of a dielectric layer made of a dielectric elastomer.
  • This type of actuator drives a member to be driven by extending and contracting a dielectric layer according to the magnitude of a voltage applied between electrodes.
  • the generated force and displacement amount of the actuator are determined by the magnitude of the applied voltage and the magnitude of the electrostatic attraction generated between the electrodes. That is, the greater the electrostatic attractive force that can be applied between the electrodes and the greater the electrostatic attractive force generated between the electrodes, the greater the generated force and displacement of the actuator.
  • a sensor and a power generation element can be configured by arranging a pair of electrodes on both sides in the thickness direction of a dielectric layer made of a dielectric elastomer.
  • an electromotive force is generated when the dielectric layer expands and contracts.
  • the amount of electromotive force generated is proportional to the amount of displacement of the interelectrode distance and the relative dielectric constant of the dielectric layer. That is, the greater the amount of displacement of the interelectrode distance and the greater the relative dielectric constant of the dielectric layer, the greater the electromotive force.
  • silicone rubber has excellent dielectric breakdown resistance but low dielectric constant. For this reason, when the dielectric layer is formed from silicone rubber, the electrostatic attractive force with respect to the applied voltage is small, and it is difficult to obtain a desired generated force and displacement in the actuator. In addition, it is difficult to obtain a desired electromotive force in the sensor and the power generation element.
  • acrylic rubber and nitrile rubber have a relative dielectric constant larger than that of silicone rubber, but it is still not sufficient. For this reason, attempts have been made to improve the dielectric constant of the dielectric layer by introducing polar groups into the base elastomer or dispersing particles having a large dielectric constant.
  • Patent Document 1 describes an artificial muscle including a stretchable thin film made of an electrostrictive polymer in which a polar group is introduced into a side chain such as silicone rubber and a stretchable electrode.
  • Patent Document 2 describes a polymer material obtained by crosslinking a copolymer of (meth) acrylic acid ester, (meth) acrylic acid, ionic liquid, and acrylonitrile.
  • Patent Document 3 describes a dielectric for a polymer actuator comprising a block copolymer (A) having a polymer block (B1) of methyl methacrylate and a polymer block (B2) of an alkyl acrylate ester. Has been.
  • Patent Document 3 describes a form in which the polymer blocks (B1) and (B2) contain a monomer having a polar group as a subcomponent for the purpose of improving the relative dielectric constant.
  • Patent Document 4 describes an elastomer dielectric film in which a polar compound is grafted.
  • Patent Document 5 describes an elastomeric dielectric film in which nanoparticles having a cyano group are dispersed.
  • JP 2008-199784 A Japanese Patent Laying-Open No. 2015-67662 International Publication No. 2009/025187 JP 2011-072112 A Japanese Patent Laying-Open No. 2015-187931
  • acrylonitrile has a polar group (cyano group: —CN).
  • polyacrylonitrile obtained by polymerizing this is hard and has a relative dielectric constant of about 4, which is not high.
  • the polymer material described in Patent Document 2 is copolymerized with acrylonitrile. However, this alone is not sufficient for improving the dielectric constant.
  • paragraph [0028] of the same document describes that when the acrylonitrile content exceeds 45 mass%, the elastic modulus increases.
  • the dielectric elastomer material of the present invention has a structure in which at least one of a monomer A, a monomer C having a crosslinkable functional group, and a monomer B having a polar group are randomly or alternately copolymerized.
  • the polar group is bonded to the polymer main chain via three or more atoms linked in a straight chain.
  • the copolymer constituting the dielectric elastomer material of the present invention includes a structural unit composed of monomer B having a polar group.
  • the polar group is a functional group having high polarity.
  • the polar group is bonded to the polymer main chain via three or more atoms connected in a straight chain. In other words, at least three atoms bonded in series are interposed between the polar group and the polymer main chain.
  • the copolymer constituting the dielectric elastomer material of the present invention has a random copolymer structure or an alternating copolymer structure composed of at least one of the monomer A and the monomer C and the monomer B.
  • the constitutional unit of the copolymer is any one of AB, BC, and ABC (the order of repeating units is not limited). Since each structural unit is couple
  • the flexibility of the copolymer, and thus the dielectric elastomer material can be increased.
  • the characteristics of the polar group having a high polarity are fully exhibited, the relative dielectric constant of the copolymer, and hence the dielectric elastomer material, can be increased.
  • the block described in Patent Document 3 is a block copolymer.
  • the block copolymer (A) is prepared after the first polymer block (B1) is produced, and then the second polymer block (B2 ) And connected to the first polymer block (B1).
  • the same monomer is continuous. For this reason, when a polymer block is produced by adding a monomer having a polar group, the polar groups interfere with each other, and the effect of improving the relative dielectric constant is small.
  • a transducer according to the present invention includes a dielectric layer made of the dielectric elastomer material according to the present invention, and a plurality of electrodes disposed via the dielectric layer.
  • the dielectric constant of the dielectric elastomer material of the present invention is large. For this reason, in the dielectric layer of the transducer of this invention, the electrostatic attraction with respect to an applied voltage is large. In addition, the dielectric elastomer material of the present invention is flexible. Therefore, according to the transducer of the present invention, a large force and displacement can be obtained even when the applied voltage is relatively small.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is a top view of the actuator for displacement amount measurement.
  • FIG. 5 is a VV cross-sectional view of FIG. 4.
  • Actuator Transducer
  • 10 Dielectric layer
  • 11a, 11b Electrode
  • 12a, 12b Wiring
  • 5 Actuator
  • 50 Dielectric layer
  • 51a, 51b Electrode
  • 52 Upper chuck
  • 53 Lower chuck
  • 6 Actuator
  • 60 Dielectric layer
  • 61a, 61b Electrode
  • 62 Power supply
  • 63 Displacement meter
  • 610a, 610b Terminal part
  • 630 Marker.
  • dielectric elastomer material and the transducer of the present invention will be described.
  • the dielectric elastomer material and transducer of the present invention are not limited to the following forms, and can be variously modified and improved by those skilled in the art without departing from the gist of the present invention. Can be implemented.
  • the dielectric elastomer material of the present invention is a copolymer having a structure in which at least one of monomer A, monomer C having a crosslinkable functional group, and monomer B having a polar group are randomly or alternately copolymerized. Includes coalescence.
  • the monomer A is not particularly limited.
  • the dielectric elastomer material of the present invention is used as a dielectric layer of a transducer, it is desirable to select a monomer that can exhibit flexibility and has a relatively high relative dielectric constant. Further, it is desirable to select a monomer that can be copolymerized with the monomer B and has a glass transition point (Tg) as a copolymer that is not higher than normal temperature (20 ° C.).
  • Examples thereof include monomers used for isoprene rubber, butadiene rubber, ethylene propylene rubber, nitrile rubber, chloroprene rubber, butyl rubber, chlorosulfonated polyethylene rubber, fluororubber, thermoplastic elastomer, acrylic rubber, silicone rubber, and urethane rubber.
  • monomers used for acrylic rubber, silicone rubber, and urethane rubber that is, (meth) acrylate monomer, silicone monomer, and urethane monomer are preferable.
  • Monomer A may be one type or two or more types.
  • the notation “(meth) acrylate” means that both acrylate and methacrylate are included.
  • the (meth) acrylate monomer means a monomer having a (meth) acryloyl group.
  • the expression “(meth) acryloyl group” means that both an acryloyl group and a methacryloyl group are included.
  • (Meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) Alkyl (meth) acrylates such as acrylate are preferred.
  • the alkyl group When employing alkyl (meth) acrylate, the alkyl group preferably has 1 to 12 carbon atoms. It is more preferable that it is 8 or less. As the number of carbon atoms increases, the alkyl group becomes longer or larger. In this case, the polar group of monomer B tends to interfere with the alkyl group of monomer A, and the effect of improving the relative dielectric constant may be reduced. Moreover, when an alkyl group becomes long, crystallinity will increase and flexibility will fall.
  • Silicone monomer means a monomer capable of siloxane bond.
  • silicone monomer diethoxydimethylsilane, diethoxymethylsilane, diethoxymethylvinylsilane, dimethoxydimethylsilane, dimethoxy (methyl) silane, dimethoxymethylvinylsilane and the like having a bifunctional alkoxy group are suitable.
  • the urethane monomer means a monomer capable of urethane bonding.
  • Monomer B has a polar group.
  • the polar group is preferably a functional group consisting of a bond having a high dipole moment that correlates with the relative dielectric constant. Specific examples include cyano groups, ether groups, ester groups, fluorine groups, trifluoromethyl groups, carbonate groups, which are known highly polar groups.
  • the polar group in the structural unit consisting of monomer B, is bonded to the polymer main chain via three or more atoms linked in a straight chain.
  • the number of atoms interposed in series between the polar group and the polymer main chain is more preferably 4 or more from the viewpoint of flexibility and polymerization control.
  • the number of atoms interposed between the polar group closest to the polymer main chain and the polymer main chain is counted.
  • the atoms interposed in series between the polar group and the polymer main chain are preferably at least one selected from carbon (C), oxygen (O), nitrogen (N), and sulfur (S).
  • the skeleton of the monomer B excluding the polar group is a silane having an alkyl (meth) acrylate having 2 or more carbon atoms in the alkyl group, a bifunctional alkoxy group, and an alkyl group having 2 or more carbon atoms. Is mentioned.
  • the monomer B is composed of cyanomethyl (meth) acrylate (polymer main chain—3 atoms between cyano groups), cyanoethyl (meth) acrylate (polymer main chain—4 atoms between cyano groups), cyanopropyl ( Preferable examples include meth) acrylate (polymer main chain—5 atoms between cyano groups) and cyanobutyl (meth) acrylate (polymer main chain—6 atoms between cyano groups).
  • cyano group-modified silane obtained by reacting acrylonitrile with dimethoxy-3-mercaptopropylmethylsilane (the number of atoms between the polymer main chain and the cyano group is 6)
  • dimethoxy-3-mercaptopropylmethylsilane dimethoxy-3-mercaptopropylmethylsilane with 2-methyleneglutaronitrile.
  • a cyano group-modified silane (the number of atoms between the polymer main chain and the cyano group is 6) or the like reacted with One of these may be used alone, or two or more may be used in combination.
  • the content of the polar group is preferably 10% by mass or more, preferably 12% by mass or more when the entire copolymer is 100% by mass.
  • the content of the polar group is preferably 25% by mass or less, preferably 22% by mass or less, based on 100% by mass of the entire copolymer.
  • it is desirable that the content of the monomer B is 50 mol% or more, preferably 60 mol% or more when the entire copolymer is 100 mol%. Further, the content of the monomer B is desirably 98 mol% or less, preferably 90 mol% or less, based on 100 mol% of the entire copolymer.
  • the monomer C has a crosslinkable functional group (crosslinking group) and plays a role of crosslinking the copolymer.
  • crosslinkable functional group include a hydroxy group, an amino group, a thiol group, a carboxyl group, a silanol group, an epoxy group, and a vinyl group.
  • Monomer C may be one type or two or more types.
  • the copolymer constituting the dielectric elastomer material of the present invention has a random copolymer structure or an alternating copolymer structure composed of at least one of the monomer A and the monomer C and the monomer B.
  • the method for producing the copolymer is not particularly limited. For example, random copolymer or alternating copolymer of monomer A and monomer B, random copolymer or alternating copolymer of monomer B and monomer C, random copolymer or alternating of monomer A, monomer B, and monomer C Any of the copolymers may be mentioned.
  • At least one of monomer A and monomer C and the precursor of monomer B are copolymerized randomly or alternately, and then the monomer having polar group is constituted of monomer B ′.
  • a cyano group-containing monomer such as acrylonitrile, 2-methyleneglutaronitrile, or tetracyanoethylene may be used.
  • the weight average molecular weight of the copolymer is preferably 10,000 or more from the viewpoint of ensuring flexibility. More preferably, it is 50,000 or more, further 80,000 or more. On the other hand, it is good that it is 5 million or less from the viewpoint of ensuring uniform solubility in a solvent required during film formation. More preferably, it is 2 million or less.
  • the weight average molecular weight may be measured using a gel permeation chromatography (GPC) apparatus.
  • the glass transition point (Tg) of the copolymer is normal temperature (20 ° C.) or lower, and is preferably 5 ° C. or lower from the viewpoint of ensuring flexibility. More preferably, it is 0 ° C. or lower.
  • the glass transition point may be measured using a differential scanning calorimeter (DSC).
  • the relative dielectric constant of the copolymer is preferably 10 or more.
  • a copolymer sample is placed in a sample holder (Solartron, model 12962A), and a dielectric constant measurement interface (manufactured by the company, model 1296) and a frequency response analyzer (manufactured by the company, model 1255B) are used together. Then, the relative dielectric constant is measured (measurement frequency: 100 Hz).
  • the copolymer has a crosslinked structure, that is, a crosslinked body.
  • a crosslinked structure When it has a crosslinked structure, the elastic modulus increases and the mechanical strength increases. Also, the dielectric breakdown strength is increased.
  • a known cross-linking agent, cross-linking accelerator, cross-linking auxiliary or the like may be used according to the cross-linking group of the monomer C.
  • sulfur when sulfur is used, a reaction residue composed of unreacted sulfur, a vulcanization accelerator, or a decomposition product thereof often remains in the copolymer after crosslinking.
  • the reaction residue is ionized and contributes to a decrease in the dielectric breakdown strength of the copolymer and thus the dielectric elastomer material. Therefore, it is desirable to use an organometallic compound or an isocyanate compound as a crosslinking agent because it reduces the ionic component in the copolymer.
  • organometallic compound When an organometallic compound is used, metal oxide particles generated from the organometallic compound are dispersed in the copolymer. Therefore, the dielectric breakdown strength of the copolymer can be further increased.
  • organometallic compounds include metal alkoxide compounds, metal acylate compounds, and metal chelate compounds. One kind selected from these may be used alone, or two or more kinds may be used in combination.
  • the organometallic compound contains one or more elements selected from titanium, zirconium, aluminum, silicon, boron, vanadium, manganese, iron, cobalt, germanium, yttrium, niobium, lanthanum, cerium, tantalum, tungsten, and magnesium. desirable.
  • the dielectric elastomer material of the present invention may contain other components in addition to the copolymer.
  • an insulating filler having electrical insulation when included, the dielectric breakdown strength of the dielectric elastomer material is increased.
  • the insulating filler inorganic particles having a volume resistivity of 10 8 ⁇ ⁇ cm or more are suitable. Examples thereof include particles of titanium oxide, silica, zirconium oxide, barium titanate, calcium carbonate, clay, fired clay, talc and the like.
  • 1 type may be used independently and 2 or more types may be used together.
  • the dielectric elastomer material of the present invention can be used as a piezoelectric layer of a transducer element having a piezoelectric function.
  • a piezoelectric compound may be used as the piezoelectric filler.
  • the compound having piezoelectricity is not limited to an organic substance or an inorganic substance, and for example, a ferroelectric having a perovskite crystal structure is desirable.
  • PZT lead zirconate titanate
  • BST barium strontium titanate
  • BLT bismuth lanthanum titanate
  • SBT Bismuth strontium tantalate
  • 1 type may be used independently and 2 or more types may be used together.
  • the dielectric elastomer material of the present invention can be produced by copolymerizing at least one of monomer A and monomer C and monomer B randomly or alternately. Alternatively, at least one of monomer A and monomer C and the precursor of monomer B (monomer B ′ having no polar group) are randomly or alternately copolymerized, and then the monomer having a polar group is converted to monomer B ′. It can be produced by reacting with a structural unit. At this time, a crosslinking agent or the like may be added to the obtained copolymer to crosslink the copolymer. Moreover, you may blend another polymer to such an extent that a function is not impaired.
  • blend other components such as an insulating filler, a piezoelectric filler, a plasticizer, a processing aid, an anti-aging agent, a softening agent, and a coloring agent, with the obtained copolymer.
  • the transducer according to the present invention includes a dielectric layer made of the dielectric elastomer material according to the present invention, and a plurality of electrodes disposed via the dielectric layer.
  • the thickness of the dielectric layer is desirably 5 ⁇ m or more from the viewpoint of ensuring film formation accuracy and reducing film defects.
  • the thickness of the dielectric layer is desirably 200 ⁇ m or less.
  • Such an electrode can be formed using a binder and a conductive material. From the viewpoint of forming an electrode that does not easily increase in electrical resistance even when stretched, an elastomer is suitable as the binder.
  • Elastomers include nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), ethylene-propylene-diene copolymer (EPDM), silicone rubber, natural rubber, styrene-butadiene rubber (SBR), acrylic rubber, urethane Examples thereof include crosslinked rubbers such as rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, and chlorinated polyethylene, and thermoplastic elastomers such as styrene, olefin, vinyl chloride, polyester, polyurethane, and polyamide. Moreover, you may use the elastomer modified
  • the type of conductive material is not particularly limited.
  • Conductive carbon powder such as carbon black, carbon nanotube, graphite, graphene, metal powder such as silver, gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron, and alloys thereof are selected as appropriate. That's fine.
  • a conductive polymer having a structure in which ⁇ electrons are conjugated may be used. One of these may be used alone, or two or more may be used in combination.
  • the electrode may contain additives such as a dispersant, a reinforcing agent, a plasticizer, an anti-aging agent, and a colorant as required in addition to the binder and the conductive material.
  • a conductive paint is prepared by adding a conductive material and, if necessary, an additive to a polymer solution obtained by dissolving the polymer for the elastomer in a solvent, and stirring and mixing. Can do.
  • the electrode may be formed by directly applying the prepared conductive paint to one surface of the dielectric layer.
  • an electrode may be formed by applying a conductive paint to the releasable film, and the formed electrode may be transferred to one surface of the dielectric layer.
  • the transducer of the present invention has a laminated structure in which a plurality of dielectric layers and electrodes are alternately laminated, a larger force can be generated.
  • a protective layer may be disposed on the outermost layer. By disposing the protective layer, insulation can be ensured and the transducer can be protected from external mechanical stress.
  • the protective layer is preferably flexible and stretchable.
  • the protective layer may be formed including, for example, urethane rubber, silicone rubber, NBR, H-NBR, ethylene-propylene copolymer rubber, EPDM, natural rubber, styrene-butadiene rubber, acrylic rubber, and the like.
  • the same or different layers may be laminated to form a dielectric layer. Further, an ion fixed layer or the like having a charge amplification function may be stacked on the dielectric layer.
  • FIG. 1 shows a schematic sectional view of an actuator.
  • the actuator 1 includes a dielectric layer 10, a pair of electrodes 11a and 11b, and wirings 12a and 12b.
  • the dielectric layer 10 is made of a crosslinked product of a random copolymer of butyl acrylate (monomer A), cyanoethyl acrylate (monomer B), and acrylic acid (monomer C).
  • the structural formula of the random copolymer is shown in the following formula (1).
  • Monomer B has a cyano group (—CN) as a polar group.
  • the monomer C has a carboxyl group (—COOH) as a crosslinking group.
  • the polar group (—CN) is linear with the carbon atom to which it is bonded as the first atom. It is connected to the polymer main chain via four linking atoms (C—C—O—C).
  • the relative permittivity of the random copolymer is 15, and the elastic modulus is 0.8 MPa.
  • the crosslinked body of the random copolymer is included in the dielectric elastomer material of the present invention.
  • the actuator 1 is included in the transducer of the present invention.
  • the electrode 11a is arranged so as to cover substantially the entire upper surface of the dielectric layer 10.
  • the electrode 11b is disposed so as to cover substantially the entire lower surface of the dielectric layer 10.
  • the electrodes 11a and 11b both contain acrylic rubber and carbon black.
  • the electrodes 11a and 11b are connected to the power supply 13 via wirings 12a and 12b, respectively.
  • the thickness of the dielectric layer 10 is reduced, and the portion extends in a direction parallel to the surfaces of the electrodes 11a and 11b. Thereby, the driving force in the vertical direction and the horizontal direction in the figure is output.
  • the structural unit composed of the monomer B of the copolymer constituting the dielectric layer 10 four atoms connected in a straight chain are interposed between the polar group and the polymer main chain. That is, the polar group and the polymer main chain are separated at a predetermined interval. For this reason, the polar group does not easily interfere with the polymer chain, and the movement of the polar group is less likely to be regulated by the polymer chain.
  • the monomers A, B, and C are randomly copolymerized, the constituent units composed of the monomer B having a polar group are less likely to be continuous as compared with the case of block copolymerization. Thereby, interference of polar groups is suppressed and a polar group becomes easy to move.
  • the flexibility of the copolymer is increased.
  • the polar group characteristic of high polarity is fully exhibited, the relative dielectric constant of the copolymer is increased. Therefore, the dielectric layer 10 is flexible and the dielectric constant of the dielectric layer 10 is large. Thereby, according to the actuator 1, a big force and displacement amount can be obtained. Further, when the structure of the actuator 1 is used as a sensor, a highly sensitive sensor can be realized.
  • Copolymer 1 First, 37.2 g (0.29 mol) of butyl acrylate of monomer A, 86.3 g (0.69 mol) of cyanoethyl acrylate of monomer B, and 1.4 g (0.02 mol) of acrylic acid of monomer C were used. The flask was placed in a neck flask and dissolved in 200 ml of N, N-dimethylformamide. Next, nitrogen bubbling was performed for 30 minutes. Then, azobisisobutyronitrile as a radical initiator was added in an amount of 0.1% by mass of the total mass of the monomer, and the mixture was heated to reflux at 65 ° C. for 14 hours in a nitrogen atmosphere.
  • copolymer 1 was a random copolymer having the structure represented by the above formula (1) (hereinafter referred to as a copolymer). Same for polymers 2 and 3).
  • the presence of a carboxyl group in the structural unit consisting of monomer C was confirmed by neutralization titration using a 0.1N potassium hydroxide methanol solution using a phenolphthalein solution as an indicator (hereinafter referred to as copolymers 2 to 12, Same in 18-21).
  • Copolymer 2 Copolymer 2 was produced in the same manner as Copolymer 1, except that the amount of butyl acrylate was changed to 25.6 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). .
  • Copolymer 3 was produced in the same manner as Copolymer 1, except that the amount of butyl acrylate was changed to 12.8 g (0.10 mol) and the amount of cyanoethyl acrylate was changed to 110.1 g (0.88 mol). .
  • Copolymer 4 A copolymer 4 was produced in the same manner as the copolymer 1 except that the monomer A was changed to 2-ethylhexyl acrylate. The blending amount of 2-ethylhexyl acrylate is 53.4 g (0.29 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 4 was a random copolymer having a structure represented by the following formula (2) (hereinafter, in the copolymers 5 and 6). the same).
  • Copolymer 5 was prepared in the same manner as Copolymer 1, except that the amount of 2-ethylhexyl acrylate was changed to 36.9 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). Manufactured.
  • Copolymer 6 was prepared in the same manner as Copolymer 1, except that the amount of 2-ethylhexyl acrylate was changed to 18.4 g (0.10 mol) and the amount of cyanoethyl acrylate was changed to 110.1 g (0.88 mol). Manufactured.
  • Copolymer 7 A copolymer 7 was produced in the same manner as the copolymer 1 except that the monomer A was changed to octyl acrylate.
  • the blending amount of octyl acrylate is 53.4 g (0.29 mol).
  • the copolymer 7 was a random copolymer having a structure represented by the following formula (3) (hereinafter the same for the copolymer 8). .
  • Copolymer 8 was produced in the same manner as Copolymer 7, except that the amount of octyl acrylate was changed to 36.9 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). .
  • Copolymer 9 A copolymer 9 was produced in the same manner as the copolymer 1 except that the monomer A was changed to ethyl acrylate. The amount of ethyl acrylate is 29.0 g (0.29 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 9 was a random copolymer having a structure represented by the following formula (4).
  • copolymer 10 was a random copolymer having a structure represented by the following formula (6).
  • CEVE as monomer B was produced. 8.8 g (0.10 mol) of ethylene glycol monovinyl ether and 5.3 g (0.10 mol) of acrylonitrile were placed in an eggplant flask, dissolved in 100 ml of 2M aqueous sodium hydroxide solution, and stirred at room temperature for 6 hours. did. After completion of the reaction, the organic phase was collected by a liquid separation operation using dichloromethane and purified water, and dried under reduced pressure to obtain CEVE having a structure represented by the following formula (7).
  • copolymer 11 was a random copolymer having a structure represented by the following formula (8).
  • Copolymer 12 was produced in the same manner as Copolymer 1, except that monomer A was not used and the amount of cyanoethyl acrylate was changed to 122.6 g (0.98 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 12 was a random copolymer having a structure represented by the following formula (9).
  • Copolymer 13 A copolymer was used in the same manner as in Copolymer 1 except that monomer C was not used, but the amount of butyl acrylate was changed to 38.5 g (0.30 mol) and the amount of cyanoethyl acrylate was changed to 87.6 g (0.70 mol). Polymer 13 was produced. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 13 was a random copolymer having a structure represented by the following formula (10).
  • a copolymer was produced from monomer A and monomer B without using monomer C.
  • 40.9 g (0.34 mol) of diethoxydimethylsilane as monomer A, 77.0 g (0.33 mol) of cyan group-modified silane 1 and 94.5 g (0.33 mol) of cyan group-modified silane 2 as monomer B ) was placed in an eggplant flask and stirred at room temperature for 1 hour. Subsequently, 10% by mass of dibutyltin diacetate as a catalyst was added to the total monomer mass, and the mixture was heated and stirred at 110 ° C. for 6 hours under atmospheric pressure.
  • copolymer 14 (cyano group-modified silicone rubber).
  • the copolymer 14 was a random copolymer having a structure represented by the following formula (13).
  • diethoxydimethylsilane was treated as monomer A.
  • diethoxydimethylsilane has a silanol group which is a crosslinkable functional group.
  • diethoxydimethylsilane may be handled as the monomer C (hereinafter, the same applies to the copolymers 15 to 17).
  • Copolymer 15 A copolymer 15 was produced in the same manner as the copolymer 14 except that only 189.1 g (0.66 mol) of the cyan group-modified silane 2 was used as the monomer B. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 15 was a random copolymer having a structure represented by the following formula (14).
  • copolymer 16 was produced in the same manner as copolymer 14 except that only 194.3 g (0.66 mol) of carbonate group-modified silane was used as monomer B.
  • the copolymer 16 was analyzed with an NMR apparatus, it was confirmed that the copolymer 16 was a random copolymer having a structure represented by the following formula (16).
  • Copolymer 17 was prepared in the same manner as Copolymer 14 except that 94.5 g (0.33 mol) of cyan group-modified silane 2 and 97.2 g (0.33 mol) of carbonate group-modified silane were used as monomer B. Manufactured. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 17 was a random copolymer having a structure represented by the following formula (17).
  • Copolymer 20 A copolymer 20 was produced in the same manner as the copolymer 19 except that the amount of butyl acrylate was changed to 69.2 g (0.54 mol) and the amount of acrylonitrile was changed to 23.3 g (0.44 mol).
  • Copolymer 21 A copolymer 21 was produced in the same manner as the copolymer 19 except that the amount of butyl acrylate was changed to 62.8 g (0.49 mol) and the amount of acrylonitrile was changed to 26.0 g (0.49 mol).
  • the weight average molecular weight of the produced copolymer was measured using a GPC apparatus, and the glass transition point was measured using DSC. Moreover, the measurement sample manufactured as follows was used for the measurement of the dielectric constant, volume resistivity, and elastic modulus of the copolymer. First, the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass. Next, the prepared polymer solution was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to obtain a thin-film measurement sample.
  • volume resistivity About volume resistivity, it measured according to the parallel terminal electrode method prescribed
  • the elastic modulus was measured according to the method for measuring the static shear modulus specified in JIS K6254: 2010. For the measurement, a strip-shaped No. 1 test piece was used, the tensile speed in the tensile test was 100 mm / min, and the tensile strain was 25%.
  • Tables 1 and 2 summarize the composition and physical properties of the copolymer.
  • Copolymers 1 to 18 are included in the copolymer constituting the dielectric elastomer material of the present invention.
  • commercially available acrylic rubber (“Nipol (registered trademark) AR53L” manufactured by Nippon Zeon Co., Ltd.), silicone rubber (“KE-1935” manufactured by Shin-Etsu Chemical Co., Ltd.), and carboxyl group-containing NBR (JSR ( The physical properties of “XER-32”) are also shown.
  • Comparative Examples 1 to 13 and Comparative Examples 1 to 4, Examples 14 to 17 and Comparative Example 5, Examples 18 and Comparative Example 6, and the same base polymer were compared with each other.
  • the main difference between Examples 1 to 13 (Copolymers 1 to 13) and Comparative Examples 1 to 3 (Copolymers 19 to 21) is the type of monomer B.
  • acrylonitrile was used as monomer B.
  • the cyano group is directly bonded to the carbon of the polymer main chain. That is, no atom is interposed between the cyano group and the polymer main chain. Therefore, it is considered that the properties as a polar group are hardly exhibited because the cyano group interferes with the polymer chain.
  • Copolymers 10 to 17 of the examples are binary copolymers composed of monomers B and C or monomers A and B. In these cases, as in the case of the ternary copolymer composed of the monomers A, B, and C, an effect of improving the dielectric constant was observed.
  • a dielectric layer was manufactured using the copolymers 1, 2, 11, 14, and 19, and an electrostrictive actuator including the dielectric layer was manufactured.
  • the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass.
  • 5 parts by mass of an acetone solution (concentration 20% by mass) of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent and 12.42 parts by mass of titanium oxide particles as an insulating filler are added to 100 parts by mass of the polymer solution.
  • a mixed solution was prepared.
  • the prepared mixed solution was applied onto a substrate, dried, and then heated at 150 ° C.
  • a thin dielectric layer having a thickness of 10 ⁇ m.
  • 10 parts by mass of carbon black was added to 100 parts by mass of the acrylic rubber polymer solution to prepare a conductive paint.
  • the prepared conductive paint was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin-film electrode having a thickness of 5 ⁇ m.
  • the volume resistivity of the electrode is 5 ⁇ ⁇ cm.
  • the manufactured electrodes were attached to both the front and back surfaces in the thickness direction of the dielectric layer to form a pair of electrodes. In this way, four types of actuators with different dielectric layers were manufactured.
  • Copolymers 1, 2, 11, and 14 are included in the copolymer constituting the dielectric elastomer material of the present invention.
  • the actuators of Examples 1, 2, 11, and 14 comprising dielectric layers made from copolymers 1, 2, 11, and 14 are included in the transducer of the present invention.
  • dielectric layers were also produced from the above-mentioned commercially available acrylic rubber and silicone rubber, and electrodes were formed on both the front and back surfaces in the thickness direction of the dielectric layer in the same manner to produce an actuator. And about each actuator, the dielectric breakdown strength, the generated force, and the displacement amount were measured.
  • FIG. 2 shows a front side view of the actuator attached to the measuring device.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • the upper end of the actuator 5 is gripped by the upper chuck 52 in the measuring apparatus.
  • the lower end of the actuator 5 is gripped by the lower chuck 53.
  • the actuator 5 is attached between the upper chuck 52 and the lower chuck 53 in a state in which the actuator 5 is previously stretched in the vertical direction (stretching ratio 25%).
  • a load cell (not shown) is disposed above the upper chuck 52.
  • the actuator 5 includes a dielectric layer 50 and a pair of electrodes 51a and 51b.
  • the dielectric layer 50 has a rectangular plate shape with a length of 50 mm and a width of 25 mm in a natural state.
  • the electrodes 51a and 51b are arranged to face each other in the front and back direction with the dielectric layer 50 interposed therebetween.
  • the electrodes 51a and 51b are in a natural state and each have a rectangular plate shape with a length of 40 mm, a width of 25 mm, and a thickness of about 10 ⁇ m.
  • the electrodes 51a and 51b are arranged in a state shifted by 10 mm in the vertical direction.
  • the electrodes 51a and 51b overlap with each other through the dielectric layer 50 in a range of 30 mm length and 25 mm width.
  • a wiring (not shown) is connected to the lower end of the electrode 51a.
  • a wiring (not shown) is connected to the upper end of the electrode 51b.
  • the electrodes 51a and 51b are connected to a power source (not shown) through each wiring.
  • the dielectric breakdown strength was measured until the dielectric layer 50 was broken by gradually increasing the voltage applied between the electrodes 51a and 51b. A value obtained by dividing the voltage value immediately before the dielectric layer 50 was broken by the thickness of the dielectric layer 50 was taken as the dielectric breakdown strength.
  • the generated force was measured using the same apparatus as that for measuring the dielectric breakdown strength (see FIGS. 2 and 3).
  • a voltage is applied between the electrodes 51a and 51b, an electrostatic attractive force is generated between the electrodes 51a and 51b, and the dielectric layer 50 is compressed. Thereby, the thickness of the dielectric layer 50 becomes thin and extends in the extending direction (vertical direction).
  • the stretching force in the vertical direction decreases due to the elongation of the dielectric layer 50.
  • the stretching force that decreased when the voltage was applied was measured by a load cell and used as the generated force.
  • the generated force was measured at an electric field strength of 30 V / ⁇ m.
  • FIG. 4 shows a top view of the actuator.
  • FIG. 5 shows a VV cross-sectional view of FIG.
  • the actuator 6 includes a dielectric layer 60 and a pair of electrodes 61a and 61b.
  • the dielectric layer 60 has a circular thin film shape with a diameter of 70 mm.
  • the dielectric layer 60 is arranged in a state of being stretched 25% in the vertical and horizontal biaxial directions.
  • the pair of electrodes 61a and 61b are arranged to face each other in the thickness direction with the dielectric layer 60 interposed therebetween.
  • the electrodes 61a and 61b have a circular thin film shape with a diameter of about 27 mm, and are arranged substantially concentrically with the dielectric layer 60, respectively.
  • a terminal portion 610a protruding in the diameter increasing direction is formed on the outer peripheral edge of the electrode 61a.
  • the terminal portion 610a has a rectangular plate shape.
  • a terminal portion 610b protruding in the diameter increasing direction is formed on the outer peripheral edge of the electrode 61b.
  • the terminal portion 610b has a rectangular plate shape.
  • the terminal portion 610b is disposed at a position facing the terminal portion 610a by 180 °.
  • the terminal portions 610a and 610b are each connected to the power source 62 via a conducting wire.
  • a marker 630 is attached to the electrode 61a in advance.
  • the displacement of the marker 630 was measured by the displacement meter 63 and used as the displacement amount of the actuator 6.
  • the displacement was measured at an electric field strength of 30 V / ⁇ m.
  • the displacement rate was computed by following Formula (ii) from the measured displacement amount.
  • Displacement rate (%) (displacement amount / radius of electrode) ⁇ 100 (ii) Tables 3 and 4 show the measurement results of the generated force, displacement rate, and dielectric breakdown strength of each actuator.
  • the copolymers 1 and 2 and the copolymer 19 are different in the type of the monomer B, and the copolymers 1 and 2 have a higher relative dielectric constant.
  • the actuators of Examples 1 and 2 including the dielectric layers manufactured from the copolymers 1 and 2 are compared with the dielectric layer manufactured from the copolymer 19.
  • the actuators of Comparative Examples 4 and 5 having a dielectric layer made of acrylic rubber or silicone rubber had higher generation force and displacement rate. .
  • ⁇ Actuator characteristics 2> A dielectric layer was manufactured using the copolymers 1 and 11, and an electrostrictive actuator provided with the dielectric layer was manufactured.
  • the structure of the manufactured actuator is the same as that in ⁇ Actuator characteristic 1> except that ion-fixed layers are laminated on both front and back surfaces in the thickness direction of the dielectric layer. That is, in the manufactured actuator, electrodes are arranged on both the front and back surfaces of a laminate composed of a cation fixed layer / dielectric layer / anion fixed layer.
  • the manufacturing method of the dielectric layer and the electrode is the same as that in ⁇ Actuator characteristic 1>.
  • the anion fixing layer and the cation fixing layer ion fixing layer
  • an anion fixing layer was produced.
  • the produced reactive ionic liquid was dissolved in a mixed solution in which titanium tetraisopropoxide and acetylacetone were mixed at a molar ratio of 1: 1.
  • Isopropyl alcohol (IPA) was added to this mixed solution, and water was added dropwise in an amount 4 times the number of moles of titanium tetraisopropoxide to conduct a hydrolysis reaction.
  • IPA isopropyl alcohol
  • the obtained sol was mixed with a 12 mass% solution (solvent: acetylacetone) of carboxyl group-modified hydrogenated nitrile rubber (HX-NBR, “Terban (registered trademark) XT8889” manufactured by LANXESS).
  • the sol was mixed such that 2.4 parts by mass in terms of TiO 2 was added to 100 parts by mass of HX-NBR.
  • a liquid elastomer composition was prepared by adding 5 parts by mass of a tetrakis (2-ethylhexyloxy) titanium acetylacetone solution (concentration 20% by mass) as a crosslinking agent to the mixed solution obtained by mixing the sol.
  • the elastomer composition was applied on a substrate, dried, and then heated at 150 ° C. for 1 hour to obtain an anion-fixing layer.
  • the thickness of the anion fixing layer was 10 ⁇ m.
  • a cation fixed layer was produced.
  • the produced reactive ionic liquid was dissolved in a mixed solution in which titanium tetraisopropoxide and acetylacetone were mixed at a molar ratio of 1: 1.
  • IPA was added to this mixed solution, and water was added dropwise in an amount 4 times the number of moles of titanium tetraisopropoxide to conduct a hydrolysis reaction.
  • a sol containing TiO 2 particles to which the cation component of the reactive ionic liquid was fixed and the anion component of the reactive ionic liquid was obtained.
  • the obtained sol was mixed with a 12% by mass solution (solvent: acetylacetone) of HX-NBR (same as above).
  • the sol was mixed such that 2.4 parts by mass in terms of TiO 2 was added to 100 parts by mass of HX-NBR.
  • a liquid elastomer composition was prepared by adding 5 parts by mass of a tetrakis (2-ethylhexyloxy) titanium acetylacetone solution (concentration 20% by mass) as a crosslinking agent to the mixed solution obtained by mixing the sol.
  • the elastomer composition was applied on a substrate, dried, and then heated at 150 ° C. for 1 hour to obtain a cation fixed layer.
  • the thickness of the cation fixing layer was 10 ⁇ m.
  • a laminate having a three-layer structure was manufactured by attaching a cation fixing layer on the surface of the dielectric layer and an anion fixing layer on the back surface, and peeling the substrate from each.
  • An actuator was manufactured by attaching electrodes to both the front and back surfaces of the manufactured laminate.
  • the actuators of Examples 1 and 11 including dielectric layers manufactured from the copolymers 1 and 11 are included in the transducer of the present invention. For each actuator, the dielectric breakdown strength, generated force, and displacement were measured in the same manner as in ⁇ Actuator characteristic 1>.
  • Table 3 above also shows the measurement results of the generated force, displacement rate, and dielectric strength of each actuator. As shown in Table 3, by laminating the ion-fixed layer on the dielectric layers produced from the copolymers 1 and 11, all of the generated force, the displacement rate, and the dielectric breakdown strength were greatly increased.
  • a dielectric layer was manufactured using the copolymers 1 to 21, and a capacitive sensor including the dielectric layer was manufactured.
  • the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass.
  • 5 parts by mass of an acetone solution (concentration 20% by mass) of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent was added to 100 parts by mass of the polymer solution to prepare a mixed solution.
  • the prepared mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin dielectric layer having a thickness of 10 ⁇ m.
  • the sensors of Examples 1-18 comprising a dielectric layer made from Copolymers 1-18 are included in the transducer of the present invention.
  • a dielectric layer was also manufactured from the above-mentioned commercially available acrylic rubber, silicone rubber, and carboxyl group-containing NBR, and electrodes manufactured in the same manner were attached to both the front and back surfaces in the thickness direction of the dielectric layer to manufacture a sensor. .
  • the initial capacitance (when not stretched) was measured.
  • the sensor was stretched in one direction of the surface direction, and the capacitance was measured at a stretch rate of 100%.
  • the amount of change in capacitance was calculated by subtracting the initial capacitance from the capacitance at the time of extension.
  • the capacitance was measured using an LCR meter (“E4980AL” manufactured by Keysight).
  • Tables 3 and 4 also show the measurement results of the capacitance and the amount of change in capacitance at the initial stage and at the extension of each sensor. As shown in Tables 3 and 4, Examples 1 to 13 and Comparative Examples 1 to 4, Examples 14 to 17 and Comparative Example 5, Examples 18 and Comparative Example 6, and the like with the same base polymer In comparison, the capacitance of the sensor of the example and the capacitance change amount were larger than those of the sensor of the comparative example. In the sensor of Example 12, the capacitance change amount was slightly smaller than that of the sensor of Comparative Example 1, but was larger than that of the sensors of Comparative Examples 2 to 4. The larger the capacitance change amount, the higher the sensitivity and the smaller displacement can be detected.
  • the transducer of the present invention can be widely used as an actuator, a sensor, a power generation element, etc. for converting mechanical energy and electric energy, or a speaker, a microphone, a noise canceller, etc. for converting acoustic energy and electric energy.
  • artificial muscles used for industrial, medical, welfare robots, assist suits, etc., small pumps for cooling electronic parts and medical use, tactile function (haptics) elements by vibration, and flexible for medical instruments It is suitable as an actuator.
  • it is suitable as a pressure sensor that is disposed on a wearable biological information sensor, artificial skin of a robot, a mattress for medical use or nursing care, a seat of a wheelchair, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a dielectric elastomer material which contains a copolymer having a structure in which a monomer A and/or a monomer C having a crosslinkable functional group and a monomer B having a polar group are randomly or alternately copolymerized. In constituent units comprising the monomer B in the copolymer, the polar group is bonded to the main polymer chain via 3 or more atoms connected in the form of a straight chain. A transducer (1) is provided with a dielectric layer (10) comprising the dielectric elastomer material and a plurality of electrodes (11a and 11b) disposed with the dielectric layer (10) interposed therebetween.

Description

誘電エラストマー材料およびそれを用いたトランスデューサDielectric elastomer material and transducer using the same
 本発明は、トランスデューサの誘電層などに好適な誘電エラストマー材料に関する。 The present invention relates to a dielectric elastomer material suitable for a dielectric layer of a transducer.
 トランスデューサとしては、機械エネルギーと電気エネルギーとの変換を行うアクチュエータ、センサ、発電素子など、あるいは音響エネルギーと電気エネルギーとの変換を行うスピーカ、マイクロフォンなどが知られている。柔軟性が高く、小型で軽量なトランスデューサを構成するためには、誘電エラストマーなどの高分子材料が有用である。 Known transducers include actuators, sensors, power generation elements, etc. that convert mechanical energy and electrical energy, or speakers, microphones, etc. that convert acoustic energy and electrical energy. Polymer materials such as dielectric elastomers are useful for constructing highly flexible, small and light transducers.
 例えば、誘電エラストマーからなる誘電層の厚さ方向両面に一対の電極を配置して、電歪型アクチュエータを構成することができる。この種のアクチュエータは、電極間に印加する電圧の大小により誘電層を伸長、収縮させることにより、駆動対象部材を駆動する。アクチュエータの発生力および変位量は、印加電圧の大きさと、電極間に生じる静電引力の大きさと、により決定される。すなわち、大きな電圧を印加することができ、かつ、電極間に生じる静電引力が大きいほど、アクチュエータの発生力および変位量は大きくなる。 For example, an electrostrictive actuator can be configured by arranging a pair of electrodes on both sides in the thickness direction of a dielectric layer made of a dielectric elastomer. This type of actuator drives a member to be driven by extending and contracting a dielectric layer according to the magnitude of a voltage applied between electrodes. The generated force and displacement amount of the actuator are determined by the magnitude of the applied voltage and the magnitude of the electrostatic attraction generated between the electrodes. That is, the greater the electrostatic attractive force that can be applied between the electrodes and the greater the electrostatic attractive force generated between the electrodes, the greater the generated force and displacement of the actuator.
 同様に、誘電エラストマーからなる誘電層の厚さ方向両面に一対の電極を配置して、センサおよび発電素子を構成することができる。センサおよび発電素子においては、誘電層が伸長、収縮することにより、起電力が生じる。起電力の発生量は、電極間距離の変位量と、誘電層の比誘電率と、に比例する。すなわち、電極間距離の変位量が大きく、誘電層の比誘電率が大きいほど、起電力は大きくなる。 Similarly, a sensor and a power generation element can be configured by arranging a pair of electrodes on both sides in the thickness direction of a dielectric layer made of a dielectric elastomer. In the sensor and the power generation element, an electromotive force is generated when the dielectric layer expands and contracts. The amount of electromotive force generated is proportional to the amount of displacement of the interelectrode distance and the relative dielectric constant of the dielectric layer. That is, the greater the amount of displacement of the interelectrode distance and the greater the relative dielectric constant of the dielectric layer, the greater the electromotive force.
 例えば、シリコーンゴムは、耐絶縁破壊性に優れるが比誘電率が小さい。このため、シリコーンゴムから誘電層を形成した場合には、印加電圧に対する静電引力が小さく、アクチュエータにおいて所望の発生力および変位量を得ることは難しい。また、センサおよび発電素子においても所望の起電力を得ることが難しい。一方、アクリルゴムやニトリルゴムの場合、シリコーンゴムと比較して比誘電率は大きいがまだ充分とはいえない。このため、母材となるエラストマーに極性基を導入したり、比誘電率が大きい粒子を分散したりして、誘電層の比誘電率を向上させる試みがなされている。 For example, silicone rubber has excellent dielectric breakdown resistance but low dielectric constant. For this reason, when the dielectric layer is formed from silicone rubber, the electrostatic attractive force with respect to the applied voltage is small, and it is difficult to obtain a desired generated force and displacement in the actuator. In addition, it is difficult to obtain a desired electromotive force in the sensor and the power generation element. On the other hand, acrylic rubber and nitrile rubber have a relative dielectric constant larger than that of silicone rubber, but it is still not sufficient. For this reason, attempts have been made to improve the dielectric constant of the dielectric layer by introducing polar groups into the base elastomer or dispersing particles having a large dielectric constant.
 例えば、特許文献1には、シリコーンゴムなどの側鎖に極性基を導入した電歪ポリマーからなる伸縮性薄膜と伸縮性電極とを含む人工筋肉が記載されている。特許文献2には、(メタ)アクリル酸エステル、(メタ)アクリル酸、イオン液体、およびアクリロニトリルの共重合体を架橋したポリマー材料が記載されている。特許文献3には、メタクリル酸メチルの重合体ブロック(B1)と、アクリル酸アルキルエステルの重合体ブロック(B2)と、を有するブロック共重合体(A)からなる高分子アクチュエータ用誘電体が記載されている。特許文献3の段落[0040]には、比誘電率を向上させることを目的として、重合体ブロック(B1)、(B2)が極性基を有するモノマーを副成分として含む形態が記載されている。特許文献4には、極性化合物がグラフト結合されているエラストマー製の誘電膜が記載されている。特許文献5には、シアノ基を有するナノ粒子が分散されているエラストマー製の誘電膜が記載されている。 For example, Patent Document 1 describes an artificial muscle including a stretchable thin film made of an electrostrictive polymer in which a polar group is introduced into a side chain such as silicone rubber and a stretchable electrode. Patent Document 2 describes a polymer material obtained by crosslinking a copolymer of (meth) acrylic acid ester, (meth) acrylic acid, ionic liquid, and acrylonitrile. Patent Document 3 describes a dielectric for a polymer actuator comprising a block copolymer (A) having a polymer block (B1) of methyl methacrylate and a polymer block (B2) of an alkyl acrylate ester. Has been. Paragraph [0040] of Patent Document 3 describes a form in which the polymer blocks (B1) and (B2) contain a monomer having a polar group as a subcomponent for the purpose of improving the relative dielectric constant. Patent Document 4 describes an elastomer dielectric film in which a polar compound is grafted. Patent Document 5 describes an elastomeric dielectric film in which nanoparticles having a cyano group are dispersed.
特開2008-199784号公報JP 2008-199784 A 特開2015-67662号公報Japanese Patent Laying-Open No. 2015-67662 国際公開2009/025187号International Publication No. 2009/025187 特開2011-072112号公報JP 2011-072112 A 特開2015-187931号公報Japanese Patent Laying-Open No. 2015-187931
 エラストマーに極性基が導入されると、エラストマーの極性は高くなり比誘電率は大きくなる。この場合、次式(i)により、電圧印加時に得られる発生力は大きくなる。このため従来は、誘電層の比誘電率を大きくするために、いかに極性基を多く含有させるかという観点で検討がなされてきた。
F=εε×(V/d) ・・・(i)
[F:発生力、ε:真空の誘電率、ε:誘電層の比誘電率、V:印加電圧、d:誘電層の厚さ]
 しかしながら、本発明者が鋭意研究を重ねたところ、単にエラストマー中の極性基量を増加させても、弾性率が大きくなるだけで比誘電率の向上効果を充分には得られないという知見を得た。この理由は、極性基量が増えると、極性基同士あるいは極性基とポリマー鎖とが干渉したり、極性基同士が相互作用により凝集化するためと考えられる。例えば、アクリロニトリルは、極性基(シアノ基:-CN)を有している。しかし、これを重合したポリアクリロニトリルは、硬く、比誘電率も4程度であり高くはない。上記特許文献2に記載されているポリマー材料は、アクリロニトリルが共重合されている。しかし、これだけでは、比誘電率の向上効果は充分とはいえない。また、同文献の段落[0028]には、アクリロニトリルの含有量が45質量%を超えると、弾性率が大きくなる旨記載されている。
When polar groups are introduced into the elastomer, the polarity of the elastomer increases and the relative dielectric constant increases. In this case, the generated force obtained when the voltage is applied is increased according to the following equation (i). For this reason, conventionally, in order to increase the relative dielectric constant of the dielectric layer, studies have been made from the viewpoint of how much polar groups are contained.
F = ε 0 ε r × (V / d) 2 (i)
[F: generated force, ε 0 : dielectric constant of vacuum, ε r : relative dielectric constant of dielectric layer, V: applied voltage, d: thickness of dielectric layer]
However, as a result of intensive studies by the present inventors, it has been found that even if the amount of polar groups in the elastomer is simply increased, the effect of improving the dielectric constant cannot be sufficiently obtained simply by increasing the elastic modulus. It was. The reason is considered to be that when the amount of polar groups increases, polar groups or polar groups and polymer chains interfere with each other, or polar groups aggregate due to interaction. For example, acrylonitrile has a polar group (cyano group: —CN). However, polyacrylonitrile obtained by polymerizing this is hard and has a relative dielectric constant of about 4, which is not high. The polymer material described in Patent Document 2 is copolymerized with acrylonitrile. However, this alone is not sufficient for improving the dielectric constant. In addition, paragraph [0028] of the same document describes that when the acrylonitrile content exceeds 45 mass%, the elastic modulus increases.
 本発明は、このような実情に鑑みてなされたものであり、比誘電率が大きく、柔軟な誘電エラストマー材料を提供することを課題とする。また、当該誘電エラストマー材料を用いて、柔軟なトランスデューサを提供することを課題とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a flexible dielectric elastomer material having a large relative dielectric constant. Another object of the present invention is to provide a flexible transducer using the dielectric elastomer material.
 (1)本発明の誘電エラストマー材料は、モノマーAと、架橋可能な官能基を有するモノマーCと、の少なくとも一方と、極性基を有するモノマーBと、がランダムまたは交互に共重合された構造を有する共重合体を含み、該共重合体中、該モノマーBからなる構成単位において、該極性基は直鎖状に繋がる3つ以上の原子を介してポリマー主鎖に結合されていることを特徴とする。 (1) The dielectric elastomer material of the present invention has a structure in which at least one of a monomer A, a monomer C having a crosslinkable functional group, and a monomer B having a polar group are randomly or alternately copolymerized. In the copolymer, in the structural unit consisting of the monomer B, the polar group is bonded to the polymer main chain via three or more atoms linked in a straight chain. And
 本発明の誘電エラストマー材料を構成する共重合体は、極性基を有するモノマーBからなる構成単位を含む。極性基は、極性が高い官能基である。モノマーBからなる構成単位において、極性基は、直鎖状に繋がる3つ以上の原子を介してポリマー主鎖に結合されている。換言すると、極性基とポリマー主鎖との間には、直列に結合する少なくとも3つの原子が介在している。極性基とポリマー主鎖との間を離間させることにより、極性基がポリマー鎖と干渉しにくくなり、極性基の動きがポリマー鎖により規制されにくくなる。これにより、極性基が動きやすくなり、共重合体、ひいては誘電エラストマー材料の柔軟性を高めることができる。また、極性が高いという極性基の特性が存分に発揮されるため、共重合体、ひいては誘電エラストマー材料の比誘電率を高めることができる。 The copolymer constituting the dielectric elastomer material of the present invention includes a structural unit composed of monomer B having a polar group. The polar group is a functional group having high polarity. In the structural unit composed of the monomer B, the polar group is bonded to the polymer main chain via three or more atoms connected in a straight chain. In other words, at least three atoms bonded in series are interposed between the polar group and the polymer main chain. By separating the polar group from the polymer main chain, the polar group is less likely to interfere with the polymer chain, and the movement of the polar group is less likely to be regulated by the polymer chain. This makes it easier for the polar groups to move, thereby increasing the flexibility of the copolymer and thus the dielectric elastomer material. In addition, since the characteristics of the polar group having a high polarity are fully exhibited, the relative dielectric constant of the copolymer, and hence the dielectric elastomer material, can be increased.
 本発明の誘電エラストマー材料を構成する共重合体は、モノマーAとモノマーCとの少なくとも一方と、モノマーBと、によるランダム共重合体または交互共重合体の構造を有する。共重合体の構成単位は、A-B、B-C、A-B-Cのいずれかである(繰り返し単位の並び順は限定されない)。各構成単位がランダムまたは交互に結合されているため、ブロック共重合体の構造と比較して、極性基を有するモノマーBからなる構成単位が連続しにくい。すなわち、極性基を有するモノマーBからなる構成単位が、隣り合わせになりにくい。これにより、極性基同士の干渉が抑制され、極性基が動きやすくなる。したがって、共重合体、ひいては誘電エラストマー材料の柔軟性を高めることができる。また、極性が高いという極性基の特性が存分に発揮されるため、共重合体、ひいては誘電エラストマー材料の比誘電率を高めることができる。 The copolymer constituting the dielectric elastomer material of the present invention has a random copolymer structure or an alternating copolymer structure composed of at least one of the monomer A and the monomer C and the monomer B. The constitutional unit of the copolymer is any one of AB, BC, and ABC (the order of repeating units is not limited). Since each structural unit is couple | bonded at random or alternately, compared with the structure of a block copolymer, the structural unit which consists of the monomer B which has a polar group cannot continue easily. That is, the structural unit consisting of the monomer B having a polar group is unlikely to be adjacent to each other. Thereby, interference of polar groups is suppressed and a polar group becomes easy to move. Therefore, the flexibility of the copolymer, and thus the dielectric elastomer material, can be increased. In addition, since the characteristics of the polar group having a high polarity are fully exhibited, the relative dielectric constant of the copolymer, and hence the dielectric elastomer material, can be increased.
 上記特許文献3に記載されているのはブロック共重合体である。同文献の段落[0056]-[0060]に記載されているように、ブロック共重合体(A)は、第一の重合体ブロック(B1)を製造した後、第二の重合体ブロック(B2)を製造し、それを第一の重合体ブロック(B1)に連結させて製造されている。製造された重合体ブロック(B1)、(B2)においては、同じモノマーが連続している。このため、極性基を有するモノマーを加えて重合体ブロックを製造した場合には、極性基同士が干渉し合い、比誘電率の向上効果は小さい。 The block described in Patent Document 3 is a block copolymer. As described in paragraphs [0056]-[0060] of the same document, the block copolymer (A) is prepared after the first polymer block (B1) is produced, and then the second polymer block (B2 ) And connected to the first polymer block (B1). In the produced polymer blocks (B1) and (B2), the same monomer is continuous. For this reason, when a polymer block is produced by adding a monomer having a polar group, the polar groups interfere with each other, and the effect of improving the relative dielectric constant is small.
 (2)本発明のトランスデューサは、上記本発明の誘電エラストマー材料からなる誘電層と、該誘電層を介して配置される複数の電極と、を備えることを特徴とする。 (2) A transducer according to the present invention includes a dielectric layer made of the dielectric elastomer material according to the present invention, and a plurality of electrodes disposed via the dielectric layer.
 上述したように、本発明の誘電エラストマー材料の比誘電率は大きい。このため、本発明のトランスデューサの誘電層においては、印加電圧に対する静電引力が大きい。加えて、本発明の誘電エラストマー材料は柔軟である。したがって、本発明のトランスデューサによると、印加電圧が比較的小さい場合においても、大きな力および変位量を得ることができる。 As described above, the dielectric constant of the dielectric elastomer material of the present invention is large. For this reason, in the dielectric layer of the transducer of this invention, the electrostatic attraction with respect to an applied voltage is large. In addition, the dielectric elastomer material of the present invention is flexible. Therefore, according to the transducer of the present invention, a large force and displacement can be obtained even when the applied voltage is relatively small.
本発明のトランスデューサの一実施形態であるアクチュエータの断面模式図である。It is a cross-sectional schematic diagram of the actuator which is one Embodiment of the transducer of this invention. 測定装置に取り付けられたアクチュエータの表側正面図である。It is a front side view of the actuator attached to the measuring device. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 変位量測定用のアクチュエータの上面図である。It is a top view of the actuator for displacement amount measurement. 図4のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 4.
1:アクチュエータ(トランスデューサ)、10:誘電層、11a、11b:電極、12a、12b:配線。
5:アクチュエータ、50:誘電層、51a、51b:電極、52:上側チャック、53:下側チャック。
6:アクチュエータ、60:誘電層、61a、61b:電極、62:電源、63:変位計、610a、610b:端子部、630:マーカー。
1: Actuator (transducer), 10: Dielectric layer, 11a, 11b: Electrode, 12a, 12b: Wiring.
5: Actuator, 50: Dielectric layer, 51a, 51b: Electrode, 52: Upper chuck, 53: Lower chuck.
6: Actuator, 60: Dielectric layer, 61a, 61b: Electrode, 62: Power supply, 63: Displacement meter, 610a, 610b: Terminal part, 630: Marker.
 以下、本発明の誘電エラストマー材料およびトランスデューサの実施の形態について説明する。なお、本発明の誘電エラストマー材料およびトランスデューサは、以下の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Hereinafter, embodiments of the dielectric elastomer material and the transducer of the present invention will be described. Note that the dielectric elastomer material and transducer of the present invention are not limited to the following forms, and can be variously modified and improved by those skilled in the art without departing from the gist of the present invention. Can be implemented.
 <誘電エラストマー材料>
 本発明の誘電エラストマー材料は、モノマーAと、架橋可能な官能基を有するモノマーCと、の少なくとも一方と、極性基を有するモノマーBと、がランダムまたは交互に共重合された構造を有する共重合体を含む。
<Dielectric elastomer material>
The dielectric elastomer material of the present invention is a copolymer having a structure in which at least one of monomer A, monomer C having a crosslinkable functional group, and monomer B having a polar group are randomly or alternately copolymerized. Includes coalescence.
 [モノマーA]
 モノマーAは特に限定されない。本発明の誘電エラストマー材料をトランスデューサの誘電層として用いる場合には、柔軟性を発現でき、比誘電率が比較的大きいモノマーを選択することが望ましい。また、モノマーBと共重合可能であり、共重合体としてのガラス転移点(Tg)が常温(20℃)以下になるモノマーを選択することが望ましい。例えば、イソプレンゴム、ブタジエンゴム、エチレンプロピレンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、フッ素ゴム、熱可塑性エラストマー、アクリルゴム、シリコーンゴム、ウレタンゴムに用いるモノマーが挙げられる。なかでも、モノマーBと共重合しやすいという観点から、アクリルゴム、シリコーンゴム、ウレタンゴムに用いるモノマー、すなわち、(メタ)アクリレートモノマー、シリコーンモノマー、ウレタンモノマーが好適である。モノマーAは、一種でも二種以上でもよい。
[Monomer A]
The monomer A is not particularly limited. When the dielectric elastomer material of the present invention is used as a dielectric layer of a transducer, it is desirable to select a monomer that can exhibit flexibility and has a relatively high relative dielectric constant. Further, it is desirable to select a monomer that can be copolymerized with the monomer B and has a glass transition point (Tg) as a copolymer that is not higher than normal temperature (20 ° C.). Examples thereof include monomers used for isoprene rubber, butadiene rubber, ethylene propylene rubber, nitrile rubber, chloroprene rubber, butyl rubber, chlorosulfonated polyethylene rubber, fluororubber, thermoplastic elastomer, acrylic rubber, silicone rubber, and urethane rubber. Among these, from the viewpoint of easy copolymerization with the monomer B, monomers used for acrylic rubber, silicone rubber, and urethane rubber, that is, (meth) acrylate monomer, silicone monomer, and urethane monomer are preferable. Monomer A may be one type or two or more types.
 「(メタ)アクリレート」の表記は、アクリレートとメタクリレートとの両方を含むことを意味する。(メタ)アクリレートモノマーは、(メタ)アクリロイル基を有するモノマーを意味する。「(メタ)アクリロイル基」の表記は、アクリロイル基とメタクリロイル基との両方を含むことを意味する。(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレートなどのアルキル(メタ)アクリレートが好適である。 The notation “(meth) acrylate” means that both acrylate and methacrylate are included. The (meth) acrylate monomer means a monomer having a (meth) acryloyl group. The expression “(meth) acryloyl group” means that both an acryloyl group and a methacryloyl group are included. (Meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) Alkyl (meth) acrylates such as acrylate are preferred.
 アルキル(メタ)アクリレートを採用する場合、アルキル基の炭素原子数は1以上12以下であることが望ましい。8以下であるとより好適である。炭素原子数が多くなると、アルキル基が長くなったり大きくなる。この場合、モノマーBの極性基がモノマーAのアルキル基と干渉しやすくなり、比誘電率の向上効果が小さくなるおそれがある。また、アルキル基が長くなると結晶性が増加して、柔軟性が低下する。 When employing alkyl (meth) acrylate, the alkyl group preferably has 1 to 12 carbon atoms. It is more preferable that it is 8 or less. As the number of carbon atoms increases, the alkyl group becomes longer or larger. In this case, the polar group of monomer B tends to interfere with the alkyl group of monomer A, and the effect of improving the relative dielectric constant may be reduced. Moreover, when an alkyl group becomes long, crystallinity will increase and flexibility will fall.
 シリコーンモノマーは、シロキサン結合が可能なモノマーを意味する。シリコーンモノマーとしては、2官能のアルコキシ基を有するジエトキシジメチルシラン、ジエトキシメチルシラン、ジエトキシメチルビニルシラン、ジメトキシジメチルシラン、ジメトキシ(メチル)シラン、ジメトキシメチルビニルシランなどが好適である。ウレタンモノマーは、ウレタン結合が可能なモノマーを意味する。 Silicone monomer means a monomer capable of siloxane bond. As the silicone monomer, diethoxydimethylsilane, diethoxymethylsilane, diethoxymethylvinylsilane, dimethoxydimethylsilane, dimethoxy (methyl) silane, dimethoxymethylvinylsilane and the like having a bifunctional alkoxy group are suitable. The urethane monomer means a monomer capable of urethane bonding.
 [モノマーB]
 モノマーBは極性基を有する。極性基は、比誘電率と相関している高い双極子モーメントを有する結合からなる官能基であることが望ましい。具体的には、既知の高極性基であるシアノ基、エーテル基、エステル基、フッ素基、トリフルオロメチル基、カーボネート基などが挙げられる。
[Monomer B]
Monomer B has a polar group. The polar group is preferably a functional group consisting of a bond having a high dipole moment that correlates with the relative dielectric constant. Specific examples include cyano groups, ether groups, ester groups, fluorine groups, trifluoromethyl groups, carbonate groups, which are known highly polar groups.
 共重合体中、モノマーBからなる構成単位において、極性基は直鎖状に繋がる3つ以上の原子を介してポリマー主鎖に結合されている。極性基とポリマー主鎖との間に直列に介在する原子数は、柔軟性および重合制御の観点から、4つ以上であるとより好適である。なお、極性基が複数ある場合には、ポリマー主鎖に最も近い極性基とポリマー主鎖との間に介在する原子数を数えることとする。極性基とポリマー主鎖との間に直列に介在する原子は、炭素(C)、酸素(O)、窒素(N)、硫黄(S)から選ばれる一種以上であることが望ましい。例えば、極性基を除くモノマーBの骨格は、アルキル基の炭素原子数が2以上のアルキル(メタ)アクリレート、2官能のアルコキシ基と、炭素原子数が2以上のアルキル基と、を有するシランなどが挙げられる。 In the copolymer, in the structural unit consisting of monomer B, the polar group is bonded to the polymer main chain via three or more atoms linked in a straight chain. The number of atoms interposed in series between the polar group and the polymer main chain is more preferably 4 or more from the viewpoint of flexibility and polymerization control. When there are a plurality of polar groups, the number of atoms interposed between the polar group closest to the polymer main chain and the polymer main chain is counted. The atoms interposed in series between the polar group and the polymer main chain are preferably at least one selected from carbon (C), oxygen (O), nitrogen (N), and sulfur (S). For example, the skeleton of the monomer B excluding the polar group is a silane having an alkyl (meth) acrylate having 2 or more carbon atoms in the alkyl group, a bifunctional alkoxy group, and an alkyl group having 2 or more carbon atoms. Is mentioned.
 以上を総合すると、モノマーBは、シアノメチル(メタ)アクリレート(ポリマー主鎖-シアノ基間の原子数3)、シアノエチル(メタ)アクリレート(ポリマー主鎖-シアノ基間の原子数4)、シアノプロピル(メタ)アクリレート(ポリマー主鎖-シアノ基間の原子数5)、シアノブチル(メタ)アクリレート(ポリマー主鎖-シアノ基間の原子数6)などが好適である。また、ジメトキシ-3-メルカプトプロピルメチルシランにアクリロニトリルを反応させたシアノ基修飾シラン(ポリマー主鎖-シアノ基間の原子数6)、ジメトキシ-3-メルカプトプロピルメチルシランに、2-メチレングルタロニトリルを反応させたシアノ基修飾シラン(ポリマー主鎖-シアノ基間の原子数6)などが好適である。これらの一種を単独で用いてもよく、二種以上を併用してもよい。 To sum up the above, the monomer B is composed of cyanomethyl (meth) acrylate (polymer main chain—3 atoms between cyano groups), cyanoethyl (meth) acrylate (polymer main chain—4 atoms between cyano groups), cyanopropyl ( Preferable examples include meth) acrylate (polymer main chain—5 atoms between cyano groups) and cyanobutyl (meth) acrylate (polymer main chain—6 atoms between cyano groups). In addition, cyano group-modified silane obtained by reacting acrylonitrile with dimethoxy-3-mercaptopropylmethylsilane (the number of atoms between the polymer main chain and the cyano group is 6), dimethoxy-3-mercaptopropylmethylsilane with 2-methyleneglutaronitrile. A cyano group-modified silane (the number of atoms between the polymer main chain and the cyano group is 6) or the like reacted with One of these may be used alone, or two or more may be used in combination.
 極性基の含有量が多くなると、共重合体の柔軟性が低下する。一方、極性基が少な過ぎると、比誘電率の向上効果が得られない。このような理由から、極性基の含有量は、共重合体の全体を100質量%とした場合の10質量%以上、好適には12質量%以上であることが望ましい。また、極性基の含有量は、共重合体の全体を100質量%とした場合の25質量%以下、好適には22質量%以下であることが望ましい。同様の理由から、モノマーBの含有量は、共重合体の全体を100mol%とした場合の50mol%以上、好適には60mol%以上であることが望ましい。また、モノマーBの含有量は、共重合体の全体を100mol%とした場合の98mol%以下、好適には90mol%以下であることが望ましい。 When the content of polar groups increases, the flexibility of the copolymer decreases. On the other hand, if there are too few polar groups, the effect of improving the relative dielectric constant cannot be obtained. For these reasons, the content of the polar group is preferably 10% by mass or more, preferably 12% by mass or more when the entire copolymer is 100% by mass. The content of the polar group is preferably 25% by mass or less, preferably 22% by mass or less, based on 100% by mass of the entire copolymer. For the same reason, it is desirable that the content of the monomer B is 50 mol% or more, preferably 60 mol% or more when the entire copolymer is 100 mol%. Further, the content of the monomer B is desirably 98 mol% or less, preferably 90 mol% or less, based on 100 mol% of the entire copolymer.
 [モノマーC]
 モノマーCは、架橋可能な官能基(架橋基)を有し、共重合体を架橋させる役割を果たす。架橋可能な官能基としては、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、シラノール基、エポキシ基、ビニル基などが挙げられる。本発明の誘電エラストマー材料をトランスデューサの誘電層として用いる場合には、モノマーCとして、柔軟性を発現でき、比誘電率が比較的大きいモノマーを選択することが望ましい。例えば、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、(メタ)アクリル酸グリシジル、3-アミノプロピルジメトキシメチルシラン、ジメトキシメチルビニルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-メルカプトプロピル(ジメトキシ)メチルシラン、3-アミノプロピルジエトキシメチルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、ジエトキシメチルビニルシランなどが挙げられる。モノマーCは、一種でも二種以上でもよい。
[Monomer C]
The monomer C has a crosslinkable functional group (crosslinking group) and plays a role of crosslinking the copolymer. Examples of the crosslinkable functional group include a hydroxy group, an amino group, a thiol group, a carboxyl group, a silanol group, an epoxy group, and a vinyl group. When the dielectric elastomer material of the present invention is used as a dielectric layer of a transducer, it is desirable to select a monomer that can exhibit flexibility and has a relatively high relative dielectric constant as the monomer C. For example, (meth) acrylic acid, hydroxyethyl (meth) acrylate, (meth) acrylamide, glycidyl (meth) acrylate, 3-aminopropyldimethoxymethylsilane, dimethoxymethylvinylsilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, Examples include 3-mercaptopropyl (dimethoxy) methylsilane, 3-aminopropyldiethoxymethylsilane, diethoxy (3-glycidyloxypropyl) methylsilane, and diethoxymethylvinylsilane. Monomer C may be one type or two or more types.
 [共重合体]
 本発明の誘電エラストマー材料を構成する共重合体は、モノマーAとモノマーCとの少なくとも一方と、モノマーBと、によるランダム共重合体または交互共重合体の構造を有する。共重合体の製造方法は特に限定されない。例えば、モノマーAおよびモノマーBのランダム共重合体または交互共重合体、モノマーBおよびモノマーCのランダム共重合体または交互共重合体、モノマーA、モノマーB、およびモノマーCのランダム共重合体または交互共重合体のいずれかが挙げられる。また、モノマーAおよびモノマーCの少なくとも一方と、モノマーBの前駆体(極性基を有しないモノマーB’)と、をランダムまたは交互に共重合した後に、極性基を有するモノマーをモノマーB’の構成単位に反応させて、極性基を有するモノマーBからなる構成単位を合成してもよい。すなわち、モノマーAおよびモノマーCの少なくとも一方と、モノマーB’とから共重合体を製造した後で、モノマーB’に極性基を付与する修飾処理を施してもよい。例えば、シアノ基を付与する場合には、アクリロニトリル、2-メチレングルタロニトリル、テトラシアノエチレンなどのシアノ基含有モノマーを用いればよい。
[Copolymer]
The copolymer constituting the dielectric elastomer material of the present invention has a random copolymer structure or an alternating copolymer structure composed of at least one of the monomer A and the monomer C and the monomer B. The method for producing the copolymer is not particularly limited. For example, random copolymer or alternating copolymer of monomer A and monomer B, random copolymer or alternating copolymer of monomer B and monomer C, random copolymer or alternating of monomer A, monomer B, and monomer C Any of the copolymers may be mentioned. Further, at least one of monomer A and monomer C and the precursor of monomer B (monomer B ′ having no polar group) are copolymerized randomly or alternately, and then the monomer having polar group is constituted of monomer B ′. You may make it react with a unit and synthesize | combine the structural unit which consists of the monomer B which has a polar group. That is, after a copolymer is produced from at least one of monomer A and monomer C and monomer B ′, a modification treatment for imparting a polar group to monomer B ′ may be performed. For example, when a cyano group is added, a cyano group-containing monomer such as acrylonitrile, 2-methyleneglutaronitrile, or tetracyanoethylene may be used.
 共重合体の重量平均分子量は、柔軟性を確保するという観点から、1万以上であるとよい。より好適には5万以上、さらには8万以上である。一方、製膜時に必要な溶剤に対する均一な溶解性を確保するという観点から、500万以下であるとよい。より好適には200万以下である。重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)装置を用いて測定すればよい。 The weight average molecular weight of the copolymer is preferably 10,000 or more from the viewpoint of ensuring flexibility. More preferably, it is 50,000 or more, further 80,000 or more. On the other hand, it is good that it is 5 million or less from the viewpoint of ensuring uniform solubility in a solvent required during film formation. More preferably, it is 2 million or less. The weight average molecular weight may be measured using a gel permeation chromatography (GPC) apparatus.
 共重合体のガラス転移点(Tg)は、常温(20℃)以下であり、柔軟性を確保するという観点から5℃以下であるとよい。より好適には0℃以下である。ガラス転移点は、示差走査熱量計(DSC)を用いて測定すればよい。 The glass transition point (Tg) of the copolymer is normal temperature (20 ° C.) or lower, and is preferably 5 ° C. or lower from the viewpoint of ensuring flexibility. More preferably, it is 0 ° C. or lower. The glass transition point may be measured using a differential scanning calorimeter (DSC).
 共重合体の比誘電率は、10以上であるとよい。本明細書においては、共重合体のサンプルをサンプルホルダー(ソーラトロン社製、12962A型)に設置し、誘電率測定インターフェイス(同社製、1296型)および周波数応答アナライザー(同社製、1255B型)を併用して、比誘電率を測定している(測定周波数100Hz)。 The relative dielectric constant of the copolymer is preferably 10 or more. In this specification, a copolymer sample is placed in a sample holder (Solartron, model 12962A), and a dielectric constant measurement interface (manufactured by the company, model 1296) and a frequency response analyzer (manufactured by the company, model 1255B) are used together. Then, the relative dielectric constant is measured (measurement frequency: 100 Hz).
 共重合体は、架橋構造を有すること、すなわち架橋体であることが望ましい。架橋構造を有すると、弾性率が大きくなり機械的強度が大きくなる。また、絶縁破壊強度も大きくなる。共重合体を架橋させるには、モノマーCの架橋基に応じて公知の架橋剤、架橋促進剤、架橋助剤などを用いればよい。例えば硫黄を用いると、架橋後の共重合体中に、未反応の硫黄、加硫促進剤やこれらの分解物などからなる反応残渣が残存することが多い。反応残渣はイオン化して、共重合体、ひいては誘電エラストマー材料の絶縁破壊強度を低下させる一因となる。したがって、共重合体中のイオン成分を少なくするという理由から、架橋剤として有機金属化合物またはイソシアネート化合物を用いることが望ましい。有機金属化合物を用いた場合、有機金属化合物から生成した金属酸化物粒子が共重合体中に分散される。よって、共重合体の絶縁破壊強度をより大きくすることができる。有機金属化合物としては、金属アルコキシド化合物、金属アシレート化合物、および金属キレート化合物が挙げられる。これらから選ばれる一種を単独で用いてもよく、二種以上を併用してもよい。有機金属化合物は、チタン、ジルコニウム、アルミニウム、ケイ素、ホウ素、バナジウム、マンガン、鉄、コバルト、ゲルマニウム、イットリウム、ニオブ、ランタン、セリウム、タンタル、タングステン、およびマグネシウムから選ばれる一種以上の元素を含むことが望ましい。 It is desirable that the copolymer has a crosslinked structure, that is, a crosslinked body. When it has a crosslinked structure, the elastic modulus increases and the mechanical strength increases. Also, the dielectric breakdown strength is increased. In order to cross-link the copolymer, a known cross-linking agent, cross-linking accelerator, cross-linking auxiliary or the like may be used according to the cross-linking group of the monomer C. For example, when sulfur is used, a reaction residue composed of unreacted sulfur, a vulcanization accelerator, or a decomposition product thereof often remains in the copolymer after crosslinking. The reaction residue is ionized and contributes to a decrease in the dielectric breakdown strength of the copolymer and thus the dielectric elastomer material. Therefore, it is desirable to use an organometallic compound or an isocyanate compound as a crosslinking agent because it reduces the ionic component in the copolymer. When an organometallic compound is used, metal oxide particles generated from the organometallic compound are dispersed in the copolymer. Therefore, the dielectric breakdown strength of the copolymer can be further increased. Examples of organometallic compounds include metal alkoxide compounds, metal acylate compounds, and metal chelate compounds. One kind selected from these may be used alone, or two or more kinds may be used in combination. The organometallic compound contains one or more elements selected from titanium, zirconium, aluminum, silicon, boron, vanadium, manganese, iron, cobalt, germanium, yttrium, niobium, lanthanum, cerium, tantalum, tungsten, and magnesium. desirable.
 本発明の誘電エラストマー材料は、共重合体に加えて他の成分を含んでいてもよい。例えば、電気絶縁性を有する絶縁フィラーを含む場合には、誘電エラストマー材料の絶縁破壊強度が大きくなる。絶縁フィラーとしては、体積抵抗率が10Ω・cm以上の無機粒子が好適である。例えば、酸化チタン、シリカ、酸化ジルコニウム、チタン酸バリウム、炭酸カルシウム、クレー、焼成クレー、タルクなどの粒子が挙げられる。絶縁フィラーとしては、一種を単独で用いてもよく、二種以上を併用してもよい。 The dielectric elastomer material of the present invention may contain other components in addition to the copolymer. For example, when an insulating filler having electrical insulation is included, the dielectric breakdown strength of the dielectric elastomer material is increased. As the insulating filler, inorganic particles having a volume resistivity of 10 8 Ω · cm or more are suitable. Examples thereof include particles of titanium oxide, silica, zirconium oxide, barium titanate, calcium carbonate, clay, fired clay, talc and the like. As an insulating filler, 1 type may be used independently and 2 or more types may be used together.
 また、圧電フィラーを含む場合には、本発明の誘電エラストマー材料を、圧電機能を有するトランスデューサ素子の圧電層として用いることができる。圧電フィラーとしては、圧電性を有する化合物を用いればよい。圧電性を有する化合物としては、有機物、無機物の制限はなく、例えばペロブスカイト型の結晶構造を有する強誘電体が望ましい。例えば、チタン酸バリウム、チタン酸ストロンチウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸リチウム、ニオブ酸カリウムナトリウム、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウムストロンチウム(BST)、チタン酸ビスマスランタン(BLT)、タンタル酸ビスマスストロンチウム(SBT)などが挙げられる。圧電フィラーとしては、一種を単独で用いてもよく、二種以上を併用してもよい。 In the case of including a piezoelectric filler, the dielectric elastomer material of the present invention can be used as a piezoelectric layer of a transducer element having a piezoelectric function. As the piezoelectric filler, a piezoelectric compound may be used. The compound having piezoelectricity is not limited to an organic substance or an inorganic substance, and for example, a ferroelectric having a perovskite crystal structure is desirable. For example, barium titanate, strontium titanate, potassium niobate, sodium niobate, lithium niobate, potassium sodium niobate, lead zirconate titanate (PZT), barium strontium titanate (BST), bismuth lanthanum titanate (BLT) ), Bismuth strontium tantalate (SBT), and the like. As a piezoelectric filler, 1 type may be used independently and 2 or more types may be used together.
 [誘電エラストマー材料の製造方法]
 本発明の誘電エラストマー材料は、モノマーAとモノマーCとの少なくとも一方と、モノマーBと、をランダムまたは交互に共重合して製造することができる。あるいは、モノマーAとモノマーCとの少なくとも一方と、モノマーBの前駆体(極性基を有しないモノマーB’)と、をランダムまたは交互に共重合した後に、極性基を有するモノマーをモノマーB’の構成単位に反応させて製造することができる。この際、得られた共重合体に架橋剤などを加えて、共重合体を架橋させてもよい。また、機能を損なわない程度に、他のポリマーをブレンドしても構わない。また、得られた共重合体に絶縁フィラー、圧電フィラー、可塑剤、加工助剤、老化防止剤、軟化剤、着色剤などの他の成分を配合してもよい。
[Production method of dielectric elastomer material]
The dielectric elastomer material of the present invention can be produced by copolymerizing at least one of monomer A and monomer C and monomer B randomly or alternately. Alternatively, at least one of monomer A and monomer C and the precursor of monomer B (monomer B ′ having no polar group) are randomly or alternately copolymerized, and then the monomer having a polar group is converted to monomer B ′. It can be produced by reacting with a structural unit. At this time, a crosslinking agent or the like may be added to the obtained copolymer to crosslink the copolymer. Moreover, you may blend another polymer to such an extent that a function is not impaired. Moreover, you may mix | blend other components, such as an insulating filler, a piezoelectric filler, a plasticizer, a processing aid, an anti-aging agent, a softening agent, and a coloring agent, with the obtained copolymer.
 <トランスデューサ>
 本発明のトランスデューサは、上記本発明の誘電エラストマー材料からなる誘電層と、該誘電層を介して配置される複数の電極と、を備える。
<Transducer>
The transducer according to the present invention includes a dielectric layer made of the dielectric elastomer material according to the present invention, and a plurality of electrodes disposed via the dielectric layer.
 誘電層の厚さは、成膜精度を確保して膜の欠陥を低減するという観点から、5μm以上であることが望ましい。一方、誘電層の厚さが大きくなると、駆動に大きな電圧が必要になりコスト高になる。このため、誘電層の厚さは、200μm以下であることが望ましい。 The thickness of the dielectric layer is desirably 5 μm or more from the viewpoint of ensuring film formation accuracy and reducing film defects. On the other hand, when the thickness of the dielectric layer is increased, a large voltage is required for driving, resulting in an increase in cost. Therefore, the thickness of the dielectric layer is desirably 200 μm or less.
 複数の電極は、誘電層に追従して変形可能であることが望ましい。このような電極は、バインダーおよび導電材を用いて形成することができる。伸縮しても電気抵抗が増加しにくい電極を形成するという観点から、バインダーとしては、エラストマーが好適である。エラストマーとしては、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、エチレン-プロピレン-ジエン共重合体(EPDM)、シリコーンゴム、天然ゴム、スチレン-ブタジエンゴム(SBR)、アクリルゴム、ウレタンゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレンなどの架橋ゴム、およびスチレン系、オレフィン系、塩ビ系、ポリエステル系、ポリウレタン系、ポリアミド系などの熱可塑性エラストマーが挙げられる。また、エポキシ基変性アクリルゴム、カルボキシル基変性水素化ニトリルゴムなどのように、官能基を導入するなどして変性したエラストマーを用いてもよい。 It is desirable that the plurality of electrodes can be deformed following the dielectric layer. Such an electrode can be formed using a binder and a conductive material. From the viewpoint of forming an electrode that does not easily increase in electrical resistance even when stretched, an elastomer is suitable as the binder. Elastomers include nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), ethylene-propylene-diene copolymer (EPDM), silicone rubber, natural rubber, styrene-butadiene rubber (SBR), acrylic rubber, urethane Examples thereof include crosslinked rubbers such as rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, and chlorinated polyethylene, and thermoplastic elastomers such as styrene, olefin, vinyl chloride, polyester, polyurethane, and polyamide. Moreover, you may use the elastomer modified | denatured by introduce | transducing a functional group like an epoxy group modified acrylic rubber, a carboxyl group modified hydrogenated nitrile rubber, etc.
 導電材の種類は、特に限定されない。カーボンブラック、カーボンナノチューブ、グラファイト、グラフェンなどの導電性炭素粉末、銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金などの金属粉末などから、適宜選択すればよい。また、銀被覆銅粉末など、金属で被覆された粒子からなる粉末を用いてもよい。また、π電子を共役させた構造の導電性ポリマーを用いてもよい。これらの一種を単独で用いてもよく、二種以上を併用してもよい。 The type of conductive material is not particularly limited. Conductive carbon powder such as carbon black, carbon nanotube, graphite, graphene, metal powder such as silver, gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron, and alloys thereof are selected as appropriate. That's fine. Moreover, you may use the powder which consists of particle | grains coat | covered with metals, such as silver covering copper powder. Alternatively, a conductive polymer having a structure in which π electrons are conjugated may be used. One of these may be used alone, or two or more may be used in combination.
 電極は、バインダーおよび導電材に加えて、必要に応じて分散剤、補強剤、可塑剤、老化防止剤、着色剤などの添加剤を含んでいてもよい。例えば、バインダーとしてエラストマーを用いる場合、当該エラストマー分のポリマーを溶剤に溶解したポリマー溶液に、導電材、必要に応じて添加剤を添加して、攪拌、混合することにより、導電塗料を調製することができる。調製した導電塗料を、誘電層の一面に直接塗布することにより、電極を形成すればよい。あるいは、離型性フィルムに導電塗料を塗布して電極を形成し、形成した電極を、誘電層の一面に転写してもよい。 The electrode may contain additives such as a dispersant, a reinforcing agent, a plasticizer, an anti-aging agent, and a colorant as required in addition to the binder and the conductive material. For example, when an elastomer is used as a binder, a conductive paint is prepared by adding a conductive material and, if necessary, an additive to a polymer solution obtained by dissolving the polymer for the elastomer in a solvent, and stirring and mixing. Can do. The electrode may be formed by directly applying the prepared conductive paint to one surface of the dielectric layer. Alternatively, an electrode may be formed by applying a conductive paint to the releasable film, and the formed electrode may be transferred to one surface of the dielectric layer.
 本発明のトランスデューサを、複数の誘電層と電極とを交互に積層させた積層構造とすると、より大きな力を発生させることができる。また、本発明のトランスデューサにおいては、最外層に保護層を配置してもよい。保護層を配置することにより、絶縁性を確保したり、外部からの機械的応力に対してトランスデューサを保護することができる。保護層は、柔軟で伸縮性を有することが望ましい。保護層は、例えば、ウレタンゴム、シリコーンゴム、NBR、H-NBR、エチレン-プロピレン共重合ゴム、EPDM、天然ゴム、スチレン-ブタジエンゴム、アクリルゴムなどを含んで形成するとよい。また、本発明のトランスデューサにおいては、同種のあるいは異種の層を積層して誘電層を構成してもよい。さらに、電荷増幅の機能を有するイオン固定層などを誘電層に積層させてもよい。 If the transducer of the present invention has a laminated structure in which a plurality of dielectric layers and electrodes are alternately laminated, a larger force can be generated. In the transducer of the present invention, a protective layer may be disposed on the outermost layer. By disposing the protective layer, insulation can be ensured and the transducer can be protected from external mechanical stress. The protective layer is preferably flexible and stretchable. The protective layer may be formed including, for example, urethane rubber, silicone rubber, NBR, H-NBR, ethylene-propylene copolymer rubber, EPDM, natural rubber, styrene-butadiene rubber, acrylic rubber, and the like. In the transducer of the present invention, the same or different layers may be laminated to form a dielectric layer. Further, an ion fixed layer or the like having a charge amplification function may be stacked on the dielectric layer.
 以下に、本発明のトランスデューサの一実施形態を説明する。図1に、アクチュエータの断面模式図を示す。図1に示すように、アクチュエータ1は、誘電層10と、一対の電極11a、11bと、配線12a、12bと、を備えている。誘電層10は、ブチルアクリレート(モノマーA)とシアノエチルアクリレート(モノマーB)とアクリル酸(モノマーC)とのランダム共重合体の架橋体からなる。ランダム共重合体の構造式を次式(1)に示す。
Figure JPOXMLDOC01-appb-C000001
Hereinafter, an embodiment of the transducer of the present invention will be described. FIG. 1 shows a schematic sectional view of an actuator. As shown in FIG. 1, the actuator 1 includes a dielectric layer 10, a pair of electrodes 11a and 11b, and wirings 12a and 12b. The dielectric layer 10 is made of a crosslinked product of a random copolymer of butyl acrylate (monomer A), cyanoethyl acrylate (monomer B), and acrylic acid (monomer C). The structural formula of the random copolymer is shown in the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 モノマーBは、極性基としてシアノ基(-CN)を有している。モノマーCは、架橋基としてカルボキシル基(-COOH)を有している。式(1)に示すように、共重合体中、モノマーBからなる構成単位において、極性基(-CN)は、自身が結合されている炭素原子を1つ目の原子として、直鎖状に繋がる4つの原子(C-C-O-C)を介してポリマー主鎖に結合されている。ランダム共重合体の比誘電率は15であり、弾性率は0.8MPaである。ランダム共重合体の架橋体は、本発明の誘電エラストマー材料に含まれる。アクチュエータ1は、本発明のトランスデューサに含まれる。 Monomer B has a cyano group (—CN) as a polar group. The monomer C has a carboxyl group (—COOH) as a crosslinking group. As shown in the formula (1), in the constituent unit consisting of the monomer B in the copolymer, the polar group (—CN) is linear with the carbon atom to which it is bonded as the first atom. It is connected to the polymer main chain via four linking atoms (C—C—O—C). The relative permittivity of the random copolymer is 15, and the elastic modulus is 0.8 MPa. The crosslinked body of the random copolymer is included in the dielectric elastomer material of the present invention. The actuator 1 is included in the transducer of the present invention.
 電極11aは、誘電層10の上面の略全体を覆うように、配置されている。同様に、電極11bは、誘電層10の下面の略全体を覆うように、配置されている。電極11a、11bは、いずれもアクリルゴムとカーボンブラックとを含んでいる。電極11a、11bは、各々、配線12a、12bを介して電源13に接続されている。 The electrode 11a is arranged so as to cover substantially the entire upper surface of the dielectric layer 10. Similarly, the electrode 11b is disposed so as to cover substantially the entire lower surface of the dielectric layer 10. The electrodes 11a and 11b both contain acrylic rubber and carbon black. The electrodes 11a and 11b are connected to the power supply 13 via wirings 12a and 12b, respectively.
 一対の電極11a、11b間に電圧を印加すると、誘電層10の厚さは薄くなり、その分だけ電極11a、11b面に対して平行方向に伸長する。これにより、図中上下方向および左右方向の駆動力が出力される。 When a voltage is applied between the pair of electrodes 11a and 11b, the thickness of the dielectric layer 10 is reduced, and the portion extends in a direction parallel to the surfaces of the electrodes 11a and 11b. Thereby, the driving force in the vertical direction and the horizontal direction in the figure is output.
 誘電層10を構成する共重合体のモノマーBからなる構成単位において、極性基とポリマー主鎖との間には直鎖状に繋がる4つの原子が介在している。つまり、極性基とポリマー主鎖とは所定の間隔で離間している。このため、極性基がポリマー鎖と干渉しにくくなり、極性基の動きがポリマー鎖により規制されにくくなる。また、モノマーA、B、Cがランダムに共重合されているため、ブロック共重合されている場合と比較して、極性基を有するモノマーBからなる構成単位が連続しにくい。これにより、極性基同士の干渉が抑制され、極性基が動きやすくなる。したがって、共重合体の柔軟性が高くなる。また、極性が高いという極性基の特性が存分に発揮されるため、共重合体の比誘電率が高くなる。したがって、誘電層10は柔軟であり誘電層10の比誘電率は大きい。これにより、アクチュエータ1によると、大きな力および変位量を得ることができる。また、アクチュエータ1の構造をセンサとして用いると、高感度のセンサを実現することができる。 In the structural unit composed of the monomer B of the copolymer constituting the dielectric layer 10, four atoms connected in a straight chain are interposed between the polar group and the polymer main chain. That is, the polar group and the polymer main chain are separated at a predetermined interval. For this reason, the polar group does not easily interfere with the polymer chain, and the movement of the polar group is less likely to be regulated by the polymer chain. In addition, since the monomers A, B, and C are randomly copolymerized, the constituent units composed of the monomer B having a polar group are less likely to be continuous as compared with the case of block copolymerization. Thereby, interference of polar groups is suppressed and a polar group becomes easy to move. Accordingly, the flexibility of the copolymer is increased. In addition, since the polar group characteristic of high polarity is fully exhibited, the relative dielectric constant of the copolymer is increased. Therefore, the dielectric layer 10 is flexible and the dielectric constant of the dielectric layer 10 is large. Thereby, according to the actuator 1, a big force and displacement amount can be obtained. Further, when the structure of the actuator 1 is used as a sensor, a highly sensitive sensor can be realized.
 次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
 <共重合体の製造>
 (1)共重合体1
 まず、モノマーAのブチルアクリレート37.2g(0.29mol)と、モノマーBのシアノエチルアクリレート86.3g(0.69mol)と、モノマーCのアクリル酸1.4g(0.02mol)と、を三つ口フラスコに入れ、N,N-ジメチルホルムアミド200mlに溶解させた。次に、窒素バブリングを30分間行った。それから、ラジカル開始剤のアゾビスイソブチロニトリルをモノマー全体質量の0.1質量%添加し、窒素雰囲気下、65℃で14時間加熱還流した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体1を得た。得られた共重合体を核磁気共鳴(NMR)装置で分析したところ、共重合体1は、上記式(1)に示した構造を有するランダム共重合体であることを確認した(以下、共重合体2、3において同じ)。モノマーCからなる構成単位においてカルボキシル基が存在することは、フェノールフタレイン溶液を指示薬とし、0.1N水酸化カリウムメタノール溶液を用いた中和滴定により確認した(以下、共重合体2~12、18~21において同じ)。
<Manufacture of copolymer>
(1) Copolymer 1
First, 37.2 g (0.29 mol) of butyl acrylate of monomer A, 86.3 g (0.69 mol) of cyanoethyl acrylate of monomer B, and 1.4 g (0.02 mol) of acrylic acid of monomer C were used. The flask was placed in a neck flask and dissolved in 200 ml of N, N-dimethylformamide. Next, nitrogen bubbling was performed for 30 minutes. Then, azobisisobutyronitrile as a radical initiator was added in an amount of 0.1% by mass of the total mass of the monomer, and the mixture was heated to reflux at 65 ° C. for 14 hours in a nitrogen atmosphere. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 1. When the obtained copolymer was analyzed with a nuclear magnetic resonance (NMR) apparatus, it was confirmed that the copolymer 1 was a random copolymer having the structure represented by the above formula (1) (hereinafter referred to as a copolymer). Same for polymers 2 and 3). The presence of a carboxyl group in the structural unit consisting of monomer C was confirmed by neutralization titration using a 0.1N potassium hydroxide methanol solution using a phenolphthalein solution as an indicator (hereinafter referred to as copolymers 2 to 12, Same in 18-21).
 (2)共重合体2
 ブチルアクリレートの配合量を25.6g(0.20mol)、シアノエチルアクリレートの配合量を97.6g(0.78mol)に変更した以外は、共重合体1と同様にして共重合体2を製造した。
(2) Copolymer 2
Copolymer 2 was produced in the same manner as Copolymer 1, except that the amount of butyl acrylate was changed to 25.6 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). .
 (3)共重合体3
 ブチルアクリレートの配合量を12.8g(0.10mol)、シアノエチルアクリレートの配合量を110.1g(0.88mol)に変更した以外は、共重合体1と同様にして共重合体3を製造した。
(3) Copolymer 3
Copolymer 3 was produced in the same manner as Copolymer 1, except that the amount of butyl acrylate was changed to 12.8 g (0.10 mol) and the amount of cyanoethyl acrylate was changed to 110.1 g (0.88 mol). .
 (4)共重合体4
 モノマーAを2-エチルヘキシルアクリレートに変更した以外は、共重合体1と同様にして共重合体4を製造した。2-エチルヘキシルアクリレートの配合量は、53.4g(0.29mol)である。得られた共重合体をNMR装置で分析したところ、共重合体4は、次式(2)に示す構造を有するランダム共重合体であることを確認した(以下、共重合体5、6において同じ)。
Figure JPOXMLDOC01-appb-C000002
(4) Copolymer 4
A copolymer 4 was produced in the same manner as the copolymer 1 except that the monomer A was changed to 2-ethylhexyl acrylate. The blending amount of 2-ethylhexyl acrylate is 53.4 g (0.29 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 4 was a random copolymer having a structure represented by the following formula (2) (hereinafter, in the copolymers 5 and 6). the same).
Figure JPOXMLDOC01-appb-C000002
 (5)共重合体5
 2-エチルヘキシルアクリレートの配合量を36.9g(0.20mol)、シアノエチルアクリレートの配合量を97.6g(0.78mol)に変更した以外は、共重合体1と同様にして共重合体5を製造した。
(5) Copolymer 5
Copolymer 5 was prepared in the same manner as Copolymer 1, except that the amount of 2-ethylhexyl acrylate was changed to 36.9 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). Manufactured.
 (6)共重合体6
 2-エチルヘキシルアクリレートの配合量を18.4g(0.10mol)、シアノエチルアクリレートの配合量を110.1g(0.88mol)に変更した以外は、共重合体1と同様にして共重合体6を製造した。
(6) Copolymer 6
Copolymer 6 was prepared in the same manner as Copolymer 1, except that the amount of 2-ethylhexyl acrylate was changed to 18.4 g (0.10 mol) and the amount of cyanoethyl acrylate was changed to 110.1 g (0.88 mol). Manufactured.
 (7)共重合体7
 モノマーAをオクチルアクリレートに変更した以外は、共重合体1と同様にして共重合体7を製造した。オクチルアクリレートの配合量は、53.4g(0.29mol)である。得られた共重合体をNMR装置で分析したところ、共重合体7は、次式(3)に示す構造を有するランダム共重合体であることを確認した(以下、共重合体8において同じ)。
Figure JPOXMLDOC01-appb-C000003
(7) Copolymer 7
A copolymer 7 was produced in the same manner as the copolymer 1 except that the monomer A was changed to octyl acrylate. The blending amount of octyl acrylate is 53.4 g (0.29 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 7 was a random copolymer having a structure represented by the following formula (3) (hereinafter the same for the copolymer 8). .
Figure JPOXMLDOC01-appb-C000003
 (8)共重合体8
 オクチルアクリレートの配合量を36.9g(0.20mol)、シアノエチルアクリレートの配合量を97.6g(0.78mol)に変更した以外は、共重合体7と同様にして共重合体8を製造した。
(8) Copolymer 8
Copolymer 8 was produced in the same manner as Copolymer 7, except that the amount of octyl acrylate was changed to 36.9 g (0.20 mol) and the amount of cyanoethyl acrylate was changed to 97.6 g (0.78 mol). .
 (9)共重合体9
 モノマーAをエチルアクリレートに変更した以外は、共重合体1と同様にして共重合体9を製造した。エチルアクリレートの配合量は、29.0g(0.29mol)である。得られた共重合体をNMR装置で分析したところ、共重合体9は、次式(4)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000004
(9) Copolymer 9
A copolymer 9 was produced in the same manner as the copolymer 1 except that the monomer A was changed to ethyl acrylate. The amount of ethyl acrylate is 29.0 g (0.29 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 9 was a random copolymer having a structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
 (10)共重合体10
 まず、モノマーBとしてのDCEAを製造した。2-メチレングルタロニトリル10.6g(0.10mol)と、3-メルカプト-1-プロパノール9.2g(0.10mol)と、ジイソプロピルアミン0.62mlと、をナスフラスコに入れ、メタノール100mlに溶解させた後、室温にて6時間撹拌した。反応終了後、減圧乾燥し、さらにトルエン100ml、アクリル酸7.2g(0.10mol)、pトルエンスルホン酸0.5g、およびハイドロキノン0.01gを添加して、6時間加熱還流した。反応終了後、精製水を用いた分液操作で有機相を回収し、減圧乾燥して次式(5)に示す構造のDCEAを得た。
Figure JPOXMLDOC01-appb-C000005
(10) Copolymer 10
First, DCEA as monomer B was produced. 2-Methyleneglutaronitrile 10.6 g (0.10 mol), 3-mercapto-1-propanol 9.2 g (0.10 mol), and diisopropylamine 0.62 ml were placed in an eggplant flask and dissolved in 100 ml of methanol. Then, the mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure, and further 100 ml of toluene, 7.2 g (0.10 mol) of acrylic acid, 0.5 g of p-toluenesulfonic acid, and 0.01 g of hydroquinone were added and heated to reflux for 6 hours. After completion of the reaction, the organic phase was recovered by a liquid separation operation using purified water and dried under reduced pressure to obtain DCEA having a structure represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000005
 次に、モノマーBのシアノエチルアクリレート97.6g(0.78mol)と、モノマーBのDCEA50.5g(0.20mol)と、モノマーCのアクリル酸1.4g(0.02mol)と、を三つ口フラスコに入れ、N,N-ジメチルホルムアミド200mlに溶解させた。続いて、窒素バブリングを30分間行った。それから、ラジカル開始剤のアゾビスイソブチロニトリルをモノマー全体質量の0.1質量%添加し、窒素雰囲気下、65℃で14時間加熱還流した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体10を得た。得られた共重合体をNMR装置で分析したところ、共重合体10は、次式(6)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000006
Next, 97.6 g (0.78 mol) of cyanoethyl acrylate of monomer B, 50.5 g (0.20 mol) of DCEA of monomer B, and 1.4 g (0.02 mol) of acrylic acid of monomer C The flask was placed in a flask and dissolved in 200 ml of N, N-dimethylformamide. Subsequently, nitrogen bubbling was performed for 30 minutes. Then, azobisisobutyronitrile as a radical initiator was added in an amount of 0.1% by mass of the total mass of the monomer, and the mixture was heated to reflux at 65 ° C. for 14 hours in a nitrogen atmosphere. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 10. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 10 was a random copolymer having a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000006
 (11)共重合体11
 まず、モノマーBとしてのCEVEを製造した。エチレングリコールモノビニルエーテル8.8g(0.10mol)と、アクリロニトリル5.3g(0.10mol)と、をナスフラスコに入れ、2Mの水酸化ナトリウム水溶液100mlに溶解させた後、室温にて6時間撹拌した。反応終了後、ジクロロメタンおよび精製水を用いた分液操作で有機相を回収し、減圧乾燥して次式(7)に示す構造のCEVEを得た。
Figure JPOXMLDOC01-appb-C000007
(11) Copolymer 11
First, CEVE as monomer B was produced. 8.8 g (0.10 mol) of ethylene glycol monovinyl ether and 5.3 g (0.10 mol) of acrylonitrile were placed in an eggplant flask, dissolved in 100 ml of 2M aqueous sodium hydroxide solution, and stirred at room temperature for 6 hours. did. After completion of the reaction, the organic phase was collected by a liquid separation operation using dichloromethane and purified water, and dried under reduced pressure to obtain CEVE having a structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
 次に、モノマーBのアクリルニトリル18.0g(0.34mol)と、モノマーBのCEVE90.4g(0.64mol)と、モノマーCのアクリル酸1.4g(0.02mol)と、を三つ口フラスコに入れ、N,N-ジメチルホルムアミド200mlに溶解させた。続いて、窒素バブリングを30分間行った。それから、ラジカル開始剤のアゾビスイソブチロニトリルをモノマー全体質量の0.1質量%添加し、窒素雰囲気下、65℃で14時間加熱還流した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体11を得た。得られた共重合体をNMR装置で分析したところ、共重合体11は、次式(8)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000008
Next, 18.0 g (0.34 mol) of acrylonitrile of monomer B, 90.4 g (0.64 mol) of CEVE of monomer B, and 1.4 g (0.02 mol) of acrylic acid of monomer C The flask was placed in a flask and dissolved in 200 ml of N, N-dimethylformamide. Subsequently, nitrogen bubbling was performed for 30 minutes. Then, azobisisobutyronitrile as a radical initiator was added in an amount of 0.1% by mass of the total mass of the monomer, and the mixture was heated to reflux at 65 ° C. for 14 hours in a nitrogen atmosphere. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 11. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 11 was a random copolymer having a structure represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000008
 (12)共重合体12
 モノマーAを用いず、シアノエチルアクリレートの配合量を122.6g(0.98mol)に変更した以外は、共重合体1と同様にして共重合体12を製造した。得られた共重合体をNMR装置で分析したところ、共重合体12は、次式(9)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000009
(12) Copolymer 12
Copolymer 12 was produced in the same manner as Copolymer 1, except that monomer A was not used and the amount of cyanoethyl acrylate was changed to 122.6 g (0.98 mol). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 12 was a random copolymer having a structure represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000009
 (13)共重合体13
 モノマーCを用いず、ブチルアクリレートの配合量を38.5g(0.30mol)、シアノエチルアクリレートの配合量を87.6g(0.70mol)に変更した以外は、共重合体1と同様にして共重合体13を製造した。得られた共重合体をNMR装置で分析したところ、共重合体13は、次式(10)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000010
(13) Copolymer 13
A copolymer was used in the same manner as in Copolymer 1 except that monomer C was not used, but the amount of butyl acrylate was changed to 38.5 g (0.30 mol) and the amount of cyanoethyl acrylate was changed to 87.6 g (0.70 mol). Polymer 13 was produced. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 13 was a random copolymer having a structure represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000010
 (14)共重合体14
 まず、モノマーBとしてのシアン基修飾シラン1とシアン基修飾シラン2とを製造した。
(14) Copolymer 14
First, cyan group-modified silane 1 and cyan group-modified silane 2 as monomer B were produced.
 [シアン基修飾シラン1]
 アクリロニトリル5.3g(0.10mol)と、ジメトキシ-3-メルカプトプロピルメチルシラン19.8g(0.11mol)とジイソプロピルアミン0.62mlと、をナスフラスコに入れ、メタノール100mlに溶解させた後、室温にて6時間撹拌した。反応終了後、減圧乾燥して、次式(11)に示す構造のシアン基修飾シラン1を得た。
Figure JPOXMLDOC01-appb-C000011
[Cyan group-modified silane 1]
Acrylonitrile (5.3 g, 0.10 mol), dimethoxy-3-mercaptopropylmethylsilane (19.8 g, 0.11 mol) and diisopropylamine (0.62 ml) were placed in an eggplant flask and dissolved in methanol (100 ml). For 6 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure to obtain cyan group-modified silane 1 having a structure represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000011
 [シアン基修飾シラン2]
 2-メチレングルタロニトリル10.6g(0.10mol)と、ジメトキシ-3-メルカプトプロピルメチルシラン19.8g(0.11mol)とジイソプロピルアミン0.62mlと、をナスフラスコに入れ、メタノール100mlに溶解させた後、室温にて6時間撹拌した。反応終了後、減圧乾燥して、次式(12)に示す構造のシアン基修飾シラン2を得た。
Figure JPOXMLDOC01-appb-C000012
[Cyan group-modified silane 2]
10.6 g (0.10 mol) of 2-methyleneglutaronitrile, 19.8 g (0.11 mol) of dimethoxy-3-mercaptopropylmethylsilane and 0.62 ml of diisopropylamine were placed in an eggplant flask and dissolved in 100 ml of methanol. Then, the mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was dried under reduced pressure to obtain cyan group-modified silane 2 having a structure represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000012
 次に、モノマーCを用いずにモノマーAとモノマーBとから共重合体を製造した。まず、モノマーAのジエトキシジメチルシラン40.9g(0.34mol)と、モノマーBとしてシアン基修飾シラン1の77.0g(0.33mol)およびシアン基修飾シラン2の94.5g(0.33mol)と、をナスフラスコに入れ、室温にて1時間撹拌した。続いて、触媒のジブチルスズジアセタートを全モノマー質量に対して10質量%添加し、大気圧下、110℃で6時間加熱撹拌した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体14(シアノ基修飾シリコーンゴム)を得た。得られた共重合体をNMR装置で分析したところ、共重合体14は、次式(13)に示す構造を有するランダム共重合体であることを確認した。なお、ここではジエトキシジメチルシランをモノマーAとして扱った。しかし、ジエトキシジメチルシランは架橋可能な官能基であるシラノール基を有する。このため、ジエトキシジメチルシランをモノマーCとして扱ってもよい(以下、共重合体15~17においても同じ)。
Figure JPOXMLDOC01-appb-C000013
Next, a copolymer was produced from monomer A and monomer B without using monomer C. First, 40.9 g (0.34 mol) of diethoxydimethylsilane as monomer A, 77.0 g (0.33 mol) of cyan group-modified silane 1 and 94.5 g (0.33 mol) of cyan group-modified silane 2 as monomer B ) Was placed in an eggplant flask and stirred at room temperature for 1 hour. Subsequently, 10% by mass of dibutyltin diacetate as a catalyst was added to the total monomer mass, and the mixture was heated and stirred at 110 ° C. for 6 hours under atmospheric pressure. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 14 (cyano group-modified silicone rubber). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 14 was a random copolymer having a structure represented by the following formula (13). Here, diethoxydimethylsilane was treated as monomer A. However, diethoxydimethylsilane has a silanol group which is a crosslinkable functional group. For this reason, diethoxydimethylsilane may be handled as the monomer C (hereinafter, the same applies to the copolymers 15 to 17).
Figure JPOXMLDOC01-appb-C000013
 (15)共重合体15
 モノマーBとしてシアン基修飾シラン2のみを189.1g(0.66mol)用いたこと以外は、共重合体14と同様にして共重合体15を製造した。得られた共重合体をNMR装置で分析したところ、共重合体15は、次式(14)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000014
(15) Copolymer 15
A copolymer 15 was produced in the same manner as the copolymer 14 except that only 189.1 g (0.66 mol) of the cyan group-modified silane 2 was used as the monomer B. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 15 was a random copolymer having a structure represented by the following formula (14).
Figure JPOXMLDOC01-appb-C000014
 (16)共重合体16
 まず、モノマーBとしてのカーボネート基修飾シランを製造した。ビニルエチレンカーボネート11.4g(0.10mol)と、ジメトキシ-3-メルカプトプロピルメチルシラン19.8g(0.11mol)とジイソプロピルアミン0.62mlと、をナスフラスコに入れ、メタノール100mlに溶解させた後、室温にて6時間撹拌した。反応終了後、減圧乾燥して、次式(15)に示す構造のカーボネート基修飾シランを得た。
Figure JPOXMLDOC01-appb-C000015
(16) Copolymer 16
First, carbonate group-modified silane as monomer B was produced. 11.4 g (0.10 mol) of vinyl ethylene carbonate, 19.8 g (0.11 mol) of dimethoxy-3-mercaptopropylmethylsilane and 0.62 ml of diisopropylamine were placed in an eggplant flask and dissolved in 100 ml of methanol. And stirred at room temperature for 6 hours. After completion of the reaction, the residue was dried under reduced pressure to obtain a carbonate group-modified silane having a structure represented by the following formula (15).
Figure JPOXMLDOC01-appb-C000015
 次に、モノマーBとしてカーボネート基修飾シランのみを194.3g(0.66mol)用いたこと以外は、共重合体14と同様にして共重合体16を製造した。得られた共重合体をNMR装置で分析したところ、共重合体16は、次式(16)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000016
Next, copolymer 16 was produced in the same manner as copolymer 14 except that only 194.3 g (0.66 mol) of carbonate group-modified silane was used as monomer B. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 16 was a random copolymer having a structure represented by the following formula (16).
Figure JPOXMLDOC01-appb-C000016
 (17)共重合体17
 モノマーBとして、シアン基修飾シラン2を94.5g(0.33mol)、カーボネート基修飾シランを97.2g(0.33mol)用いたこと以外は、共重合体14と同様にして共重合体17を製造した。得られた共重合体をNMR装置で分析したところ、共重合体17は、次式(17)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000017
(17) Copolymer 17
Copolymer 17 was prepared in the same manner as Copolymer 14 except that 94.5 g (0.33 mol) of cyan group-modified silane 2 and 97.2 g (0.33 mol) of carbonate group-modified silane were used as monomer B. Manufactured. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 17 was a random copolymer having a structure represented by the following formula (17).
Figure JPOXMLDOC01-appb-C000017
 (18)共重合体18
 まず、カルボキシル基含有NBR(JSR(株)製「XER-32」)1.25gをテトラヒドロフラン(THF)100mlに溶解させた後、0.5Mの9-ボラビシクロ[3.3.1]ノナン(9-BBN)のTHF溶液18.4mlと、5-クロロバレロニトリル0.95gと、を添加して、0.5時間撹拌した。続いて、水浴中で、ポタシウム 2,6-ジ-tert-ブチルフェノール1.90gを加えて、2時間撹拌した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体18(シアノ基修飾NBR)を得た。得られた共重合体をNMR装置で分析したところ、共重合体18は、次式(18)に示す構造を有するランダム共重合体であることを確認した。
Figure JPOXMLDOC01-appb-C000018
(18) Copolymer 18
First, 1.25 g of carboxyl group-containing NBR (“XER-32” manufactured by JSR Corporation) was dissolved in 100 ml of tetrahydrofuran (THF), and then 0.5 M of 9-borabicyclo [3.3.1] nonane (9 -18.4 ml of a THF solution of -BBN) and 0.95 g of 5-chlorovaleronitrile were added and stirred for 0.5 hour. Subsequently, 1.90 g of potassium 2,6-di-tert-butylphenol was added in a water bath and stirred for 2 hours. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 18 (cyano group-modified NBR). When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 18 was a random copolymer having a structure represented by the following formula (18).
Figure JPOXMLDOC01-appb-C000018
 (19)共重合体19
 まず、モノマーAのブチルアクリレート88.4g(0.69mol)と、極性基を有するモノマーのアクリロニトリル15.4g(0.29mol)と、モノマーCのアクリル酸1.4g(0.02mol)と、を三つ口フラスコに入れ、窒素バブリングを30分間行った。次に、ラジカル開始剤のアゾビスイソブチロニトリルをモノマー全体質量の0.1質量%添加し、窒素雰囲気下、65℃で3時間加熱還流した。反応終了後、メタノールを用いて再沈殿、洗浄を行い、減圧乾燥して共重合体19を得た。得られた共重合体をNMR装置で分析したところ、共重合体19は、次式(19)に示す構造を有するランダム共重合体であることを確認した(以下、共重合体20、21において同じ)。
Figure JPOXMLDOC01-appb-C000019
(19) Copolymer 19
First, 88.4 g (0.69 mol) of butyl acrylate of monomer A, 15.4 g (0.29 mol) of acrylonitrile having a polar group, and 1.4 g (0.02 mol) of acrylic acid of monomer C Nitrogen bubbling was performed for 30 minutes in a three-necked flask. Next, 0.1% by mass of azobisisobutyronitrile as a radical initiator was added based on the total mass of the monomer, and the mixture was heated to reflux at 65 ° C. for 3 hours in a nitrogen atmosphere. After completion of the reaction, methanol was used for reprecipitation, washing, and drying under reduced pressure to obtain a copolymer 19. When the obtained copolymer was analyzed with an NMR apparatus, it was confirmed that the copolymer 19 was a random copolymer having a structure represented by the following formula (19) (hereinafter, in the copolymers 20, 21). the same).
Figure JPOXMLDOC01-appb-C000019
 (20)共重合体20
 ブチルアクリレートの配合量を69.2g(0.54mol)、アクリロニトリルの配合量を23.3g(0.44mol)に変更した以外は、共重合体19と同様にして共重合体20を製造した。
(20) Copolymer 20
A copolymer 20 was produced in the same manner as the copolymer 19 except that the amount of butyl acrylate was changed to 69.2 g (0.54 mol) and the amount of acrylonitrile was changed to 23.3 g (0.44 mol).
 (21)共重合体21
 ブチルアクリレートの配合量を62.8g(0.49mol)、アクリロニトリルの配合量を26.0g(0.49mol)に変更した以外は、共重合体19と同様にして共重合体21を製造した。
(21) Copolymer 21
A copolymer 21 was produced in the same manner as the copolymer 19 except that the amount of butyl acrylate was changed to 62.8 g (0.49 mol) and the amount of acrylonitrile was changed to 26.0 g (0.49 mol).
 <共重合体の物性測定>
 製造した共重合体の重量平均分子量をGPC装置を用いて測定し、ガラス転移点をDSCを用いて測定した。また、共重合体の比誘電率、体積抵抗率、弾性率の測定には、次のようにして製造した測定用サンプルを用いた。まず、共重合体をアセチルアセトンに溶解し、固形分濃度が20質量%のポリマー溶液を調製した。次に、調製したポリマー溶液を基材上に塗布し、乾燥させた後、150℃で60分間加熱して、薄膜状の測定用サンプルを得た。
<Measurement of physical properties of copolymer>
The weight average molecular weight of the produced copolymer was measured using a GPC apparatus, and the glass transition point was measured using DSC. Moreover, the measurement sample manufactured as follows was used for the measurement of the dielectric constant, volume resistivity, and elastic modulus of the copolymer. First, the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass. Next, the prepared polymer solution was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to obtain a thin-film measurement sample.
 [比誘電率]
 比誘電率については、上述したように、ソーラトロン社製の装置を使用して周波数100Hzにて測定した。
[Relative permittivity]
As described above, the relative dielectric constant was measured at a frequency of 100 Hz using an apparatus manufactured by Solartron.
 [体積抵抗率]
 体積抵抗率については、JIS K6271:2008に規定される平行端子電極法に準じて測定した。測定は、直流電圧100Vを印加して行った。
[Volume resistivity]
About volume resistivity, it measured according to the parallel terminal electrode method prescribed | regulated to JISK6271: 2008. The measurement was performed by applying a DC voltage of 100V.
 [弾性率]
 弾性率については、JIS K6254:2010に規定される静的せん断弾性率の測定方法に準じて測定した。測定には、短冊状1号形の試験片を用い、引張試験における引張速度は100mm/min、引張歪みは25%とした。
[Elastic modulus]
The elastic modulus was measured according to the method for measuring the static shear modulus specified in JIS K6254: 2010. For the measurement, a strip-shaped No. 1 test piece was used, the tensile speed in the tensile test was 100 mm / min, and the tensile strain was 25%.
 表1、表2に、共重合体の組成、物性をまとめて示す。共重合体1~18は、本発明の誘電エラストマー材料を構成する共重合体に含まれる。比較のため、市販のアクリルゴム(日本ゼオン(株)製「Nipol(登録商標)AR53L」)、シリコーンゴム(信越化学工業(株)製「KE-1935」)、およびカルボキシル基含有NBR(JSR(株)製「XER-32」)の物性も併せて示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Tables 1 and 2 summarize the composition and physical properties of the copolymer. Copolymers 1 to 18 are included in the copolymer constituting the dielectric elastomer material of the present invention. For comparison, commercially available acrylic rubber (“Nipol (registered trademark) AR53L” manufactured by Nippon Zeon Co., Ltd.), silicone rubber (“KE-1935” manufactured by Shin-Etsu Chemical Co., Ltd.), and carboxyl group-containing NBR (JSR ( The physical properties of “XER-32”) are also shown.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 実施例1~13と比較例1~4、実施例14~17と比較例5、実施例18と比較例6、というように、ベースポリマーが同じもの同士を比較すると、実施例の比誘電率は、比較例のそれより大きくなった。実施例1~13(共重合体1~13)と比較例1~3(共重合体19~21)との主な違いは、モノマーBの種類である。比較例1~3においては、モノマーBとしてアクリロニトリルを使用した。この場合、共重合体19~21のモノマーBからなる構成単位において、シアノ基はポリマー主鎖の炭素に直接結合されている。すなわち、シアノ基とポリマー主鎖との間には、原子が1つも介在していない。したがって、シアノ基がポリマー鎖と干渉して、極性基としての特性が発揮されにくいと考えられる。 Comparative Examples 1 to 13 and Comparative Examples 1 to 4, Examples 14 to 17 and Comparative Example 5, Examples 18 and Comparative Example 6, and the same base polymer were compared with each other. Was larger than that of the comparative example. The main difference between Examples 1 to 13 (Copolymers 1 to 13) and Comparative Examples 1 to 3 (Copolymers 19 to 21) is the type of monomer B. In Comparative Examples 1 to 3, acrylonitrile was used as monomer B. In this case, in the structural unit comprising the monomer B of the copolymers 19 to 21, the cyano group is directly bonded to the carbon of the polymer main chain. That is, no atom is interposed between the cyano group and the polymer main chain. Therefore, it is considered that the properties as a polar group are hardly exhibited because the cyano group interferes with the polymer chain.
 実施例の共重合体1~3、4~6、7、8に着目すると、モノマーBの種類が同じ場合、その配合量が増加するにつれて、比誘電率および弾性率が大きくなることが確認された。これに対して、比較例の共重合体19~21においては、モノマーBの配合量を増加してシアノ基の含有量を多くしても、弾性率は大きくなるが、比誘電率は大きくならなかった。この理由も、シアノ基がポリマー主鎖の炭素に直接結合されていることにより、シアノ基がポリマー鎖と干渉して、極性基としての特性が発揮されにくいためと考えられる。 Focusing on the copolymers 1 to 3, 4 to 6, 7, and 8 in the examples, it was confirmed that when the monomer B was the same, the relative dielectric constant and elastic modulus increased as the blending amount increased. It was. In contrast, in the copolymers 19 to 21 of the comparative examples, even if the blending amount of the monomer B is increased and the content of the cyano group is increased, the elastic modulus is increased, but the relative dielectric constant is increased. There wasn't. This is also because the cyano group is directly bonded to the carbon of the polymer main chain, so that the cyano group interferes with the polymer chain and the characteristics as a polar group are hardly exhibited.
 実施例の共重合体10~17は、モノマーB、CまたはモノマーA、Bからなる二元共重合体である。これらについても、モノマーA、B、Cからなる三元共重合体と同じように、比誘電率の向上効果が見られた。 Copolymers 10 to 17 of the examples are binary copolymers composed of monomers B and C or monomers A and B. In these cases, as in the case of the ternary copolymer composed of the monomers A, B, and C, an effect of improving the dielectric constant was observed.
 <アクチュエータ特性1>
 共重合体1、2、11、14、19を用いて誘電層を製造し、当該誘電層を備える電歪型のアクチュエータを製造した。まず、共重合体をアセチルアセトンに溶解し、固形分濃度が20質量%のポリマー溶液を調製した。次に、ポリマー溶液100質量部に対して、架橋剤のテトラキス(2-エチルヘキシルオキシ)チタンのアセトン溶液(濃度20質量%)を5質量部、絶縁フィラーの酸化チタン粒子を12.42質量部添加して、混合液を調製した。調製した混合液を基材上に塗布し、乾燥させた後、150℃で60分間加熱することにより、厚さ10μmの薄膜状の誘電層を製造した。これとは別に、アクリルゴムポリマー溶液100質量部に対してカーボンブラックを10質量部添加して導電塗料を調製した。調製した導電塗料を基材上に塗布し、乾燥させた後、150℃で60分間加熱して、厚さ5μmの薄膜状の電極を製造した。電極の体積抵抗率は、5Ω・cmである。製造した電極を、誘電層の厚さ方向の表裏両面に貼り付けて、一対の電極を形成した。このようにして、誘電層が異なる四種類のアクチュエータを製造した。共重合体1、2、11、14は、本発明の誘電エラストマー材料を構成する共重合体に含まれる。共重合体1、2、11、14から製造された誘電層を備える実施例1、2、11、14のアクチュエータは、本発明のトランスデューサに含まれる。また、上述した市販のアクリルゴム、シリコーンゴムからも各々誘電層を製造し、同じようにして誘電層の厚さ方向の表裏両面に電極を形成して、アクチュエータを製造した。そして、各アクチュエータについて、絶縁破壊強度、発生力、および変位量を測定した。
<Actuator characteristics 1>
A dielectric layer was manufactured using the copolymers 1, 2, 11, 14, and 19, and an electrostrictive actuator including the dielectric layer was manufactured. First, the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass. Next, 5 parts by mass of an acetone solution (concentration 20% by mass) of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent and 12.42 parts by mass of titanium oxide particles as an insulating filler are added to 100 parts by mass of the polymer solution. Thus, a mixed solution was prepared. The prepared mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin dielectric layer having a thickness of 10 μm. Separately, 10 parts by mass of carbon black was added to 100 parts by mass of the acrylic rubber polymer solution to prepare a conductive paint. The prepared conductive paint was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin-film electrode having a thickness of 5 μm. The volume resistivity of the electrode is 5 Ω · cm. The manufactured electrodes were attached to both the front and back surfaces in the thickness direction of the dielectric layer to form a pair of electrodes. In this way, four types of actuators with different dielectric layers were manufactured. Copolymers 1, 2, 11, and 14 are included in the copolymer constituting the dielectric elastomer material of the present invention. The actuators of Examples 1, 2, 11, and 14 comprising dielectric layers made from copolymers 1, 2, 11, and 14 are included in the transducer of the present invention. In addition, dielectric layers were also produced from the above-mentioned commercially available acrylic rubber and silicone rubber, and electrodes were formed on both the front and back surfaces in the thickness direction of the dielectric layer in the same manner to produce an actuator. And about each actuator, the dielectric breakdown strength, the generated force, and the displacement amount were measured.
 まず、絶縁破壊強度の測定装置および測定方法について説明する。図2に、測定装置に取り付けられたアクチュエータの表側正面図を示す。図3に、図2のIII-III断面図を示す。 First, a measurement apparatus and a measurement method for dielectric breakdown strength will be described. FIG. 2 shows a front side view of the actuator attached to the measuring device. FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
 図2、図3に示すように、アクチュエータ5の上端は、測定装置における上側チャック52により把持されている。アクチュエータ5の下端は、下側チャック53により把持されている。アクチュエータ5は、予め上下方向に延伸された状態で、上側チャック52と下側チャック53との間に、取り付けられている(延伸率25%)。上側チャック52の上方には、ロードセル(図略)が配置されている。 2 and 3, the upper end of the actuator 5 is gripped by the upper chuck 52 in the measuring apparatus. The lower end of the actuator 5 is gripped by the lower chuck 53. The actuator 5 is attached between the upper chuck 52 and the lower chuck 53 in a state in which the actuator 5 is previously stretched in the vertical direction (stretching ratio 25%). A load cell (not shown) is disposed above the upper chuck 52.
 アクチュエータ5は、誘電層50と一対の電極51a、51bとからなる。誘電層50は、自然状態で、縦50mm、横25mmの矩形板状を呈している。電極51a、51bは、誘電層50を挟んで表裏方向に対向するよう配置されている。電極51a、51bは、自然状態で、各々、縦40mm、横25mm、厚さ約10μmの矩形板状を呈している。電極51a、51bは、上下方向に10mmずれた状態で配置されている。つまり、電極51a、51bは、誘電層50を介して、縦30mm、横25mmの範囲で重なっている。電極51aの下端には、配線(図略)が接続されている。同様に、電極51bの上端には、配線(図略)が接続されている。電極51a、51bは、各々の配線を介して、電源(図略)に接続されている。 The actuator 5 includes a dielectric layer 50 and a pair of electrodes 51a and 51b. The dielectric layer 50 has a rectangular plate shape with a length of 50 mm and a width of 25 mm in a natural state. The electrodes 51a and 51b are arranged to face each other in the front and back direction with the dielectric layer 50 interposed therebetween. The electrodes 51a and 51b are in a natural state and each have a rectangular plate shape with a length of 40 mm, a width of 25 mm, and a thickness of about 10 μm. The electrodes 51a and 51b are arranged in a state shifted by 10 mm in the vertical direction. That is, the electrodes 51a and 51b overlap with each other through the dielectric layer 50 in a range of 30 mm length and 25 mm width. A wiring (not shown) is connected to the lower end of the electrode 51a. Similarly, a wiring (not shown) is connected to the upper end of the electrode 51b. The electrodes 51a and 51b are connected to a power source (not shown) through each wiring.
 絶縁破壊強度の測定は、電極51a、51b間に印加する電圧を段階的に増加して、誘電層50が破壊されるまで行った。そして、誘電層50が破壊される寸前の電圧値を誘電層50の厚さで除した値を、絶縁破壊強度とした。 The dielectric breakdown strength was measured until the dielectric layer 50 was broken by gradually increasing the voltage applied between the electrodes 51a and 51b. A value obtained by dividing the voltage value immediately before the dielectric layer 50 was broken by the thickness of the dielectric layer 50 was taken as the dielectric breakdown strength.
 次に、発生力の測定装置および測定方法について説明する。発生力の測定は、絶縁破壊強度の測定と同じ装置を用いて行った(図2、図3参照)。電極51a、51b間に電圧を印加すると、電極51a、51b間に静電引力が生じて、誘電層50を圧縮する。これにより、誘電層50の厚さは薄くなり、延伸方向(上下方向)に伸長する。誘電層50の伸長により、上下方向の延伸力は減少する。電圧印加時に減少した延伸力を、ロードセルにより測定して、発生力とした。発生力の測定は、電界強度を30V/μmにして行った。 次に、変位量の測定装置および測定方法について説明する。図4に、アクチュエータの上面図を示す。図5に、図4のV-V断面図を示す。図4、図5に示すように、アクチュエータ6は、誘電層60と一対の電極61a、61bとからなる。誘電層60は、直径70mmの円形の薄膜状を呈している。誘電層60は、縦横の二軸方向に25%延伸された状態で配置されている。一対の電極61a、61bは、誘電層60を挟んで厚さ方向に対向するよう配置されている。電極61a、61bは、直径約27mmの円形の薄膜状を呈しており、各々、誘電層60と略同心円状に配置されている。電極61aの外周縁には、拡径方向に突出する端子部610aが形成されている。端子部610aは矩形板状を呈している。同様に、電極61bの外周縁には、拡径方向に突出する端子部610bが形成されている。端子部610bは矩形板状を呈している。端子部610bは、端子部610aに対して、180°対向する位置に配置されている。端子部610a、610bは、各々、導線を介して電源62に接続されている。 Next, an apparatus and a method for measuring generated force will be described. The generated force was measured using the same apparatus as that for measuring the dielectric breakdown strength (see FIGS. 2 and 3). When a voltage is applied between the electrodes 51a and 51b, an electrostatic attractive force is generated between the electrodes 51a and 51b, and the dielectric layer 50 is compressed. Thereby, the thickness of the dielectric layer 50 becomes thin and extends in the extending direction (vertical direction). The stretching force in the vertical direction decreases due to the elongation of the dielectric layer 50. The stretching force that decreased when the voltage was applied was measured by a load cell and used as the generated force. The generated force was measured at an electric field strength of 30 V / μm. Next, a displacement measuring device and a measuring method will be described. FIG. 4 shows a top view of the actuator. FIG. 5 shows a VV cross-sectional view of FIG. As shown in FIGS. 4 and 5, the actuator 6 includes a dielectric layer 60 and a pair of electrodes 61a and 61b. The dielectric layer 60 has a circular thin film shape with a diameter of 70 mm. The dielectric layer 60 is arranged in a state of being stretched 25% in the vertical and horizontal biaxial directions. The pair of electrodes 61a and 61b are arranged to face each other in the thickness direction with the dielectric layer 60 interposed therebetween. The electrodes 61a and 61b have a circular thin film shape with a diameter of about 27 mm, and are arranged substantially concentrically with the dielectric layer 60, respectively. A terminal portion 610a protruding in the diameter increasing direction is formed on the outer peripheral edge of the electrode 61a. The terminal portion 610a has a rectangular plate shape. Similarly, a terminal portion 610b protruding in the diameter increasing direction is formed on the outer peripheral edge of the electrode 61b. The terminal portion 610b has a rectangular plate shape. The terminal portion 610b is disposed at a position facing the terminal portion 610a by 180 °. The terminal portions 610a and 610b are each connected to the power source 62 via a conducting wire.
 電極61a、61b間に電圧を印加すると、電極61a、61b間に静電引力が生じて、誘電層60を圧縮する。これにより、誘電層60の厚さは薄くなり、拡径方向に伸長する。この時、電極61a、61bも、誘電層60と一体となって拡径方向に伸長する。電極61aには、予め、マーカー630が取り付けられている。マーカー630の変位を、変位計63により測定し、アクチュエータ6の変位量とした。変位量の測定は、電界強度を30V/μmにして行った。そして、測定された変位量から、次式(ii)により変位率を算出した。
変位率(%)=(変位量/電極の半径)×100 ・・・(ii)
表3および表4に、各アクチュエータの発生力、変位率、および絶縁破壊強度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
When a voltage is applied between the electrodes 61a and 61b, an electrostatic attractive force is generated between the electrodes 61a and 61b, and the dielectric layer 60 is compressed. Thereby, the thickness of the dielectric layer 60 becomes thin, and it expand | extends in the diameter expansion direction. At this time, the electrodes 61 a and 61 b are also integrated with the dielectric layer 60 and extend in the diameter increasing direction. A marker 630 is attached to the electrode 61a in advance. The displacement of the marker 630 was measured by the displacement meter 63 and used as the displacement amount of the actuator 6. The displacement was measured at an electric field strength of 30 V / μm. And the displacement rate was computed by following Formula (ii) from the measured displacement amount.
Displacement rate (%) = (displacement amount / radius of electrode) × 100 (ii)
Tables 3 and 4 show the measurement results of the generated force, displacement rate, and dielectric breakdown strength of each actuator.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 上述したように、共重合体1、2と共重合体19とにおいては、モノマーBの種類が異なり、共重合体1、2の方が比誘電率が大きい。その結果、表3および表4に示すように、共重合体1、2から製造された誘電層を備える実施例1、2のアクチュエータにおいては、共重合体19から製造された誘電層を備える比較例1のアクチュエータと比較して、発生力および変位率が大きくなった。また、アクリルゴムまたはシリコーンゴムから製造された誘電層を備える比較例4、5のアクチュエータと比較すると、実施例1、2、11、14のアクチュエータの方が、発生力および変位率が大きくなった。 As described above, the copolymers 1 and 2 and the copolymer 19 are different in the type of the monomer B, and the copolymers 1 and 2 have a higher relative dielectric constant. As a result, as shown in Tables 3 and 4, the actuators of Examples 1 and 2 including the dielectric layers manufactured from the copolymers 1 and 2 are compared with the dielectric layer manufactured from the copolymer 19. Compared with the actuator of Example 1, the generated force and the displacement rate increased. In addition, compared with the actuators of Comparative Examples 4 and 5 having a dielectric layer made of acrylic rubber or silicone rubber, the actuators of Examples 1, 2, 11, and 14 had higher generation force and displacement rate. .
 <アクチュエータ特性2>
 共重合体1、11を用いて誘電層を製造し、当該誘電層を備える電歪型のアクチュエータを製造した。製造したアクチュエータの構成は、誘電層の厚さ方向の表裏両面にイオン固定層が積層されている点以外は、<アクチュエータ特性1>におけるそれと同じである。すなわち、製造したアクチュエータにおいては、カチオン固定層/誘電層/アニオン固定層からなる積層体の表裏両面に電極が配置されている。誘電層および電極の製造方法は、<アクチュエータ特性1>におけるそれと同じである。以下、アニオン固定層およびカチオン固定層(イオン固定層)について説明する。
<Actuator characteristics 2>
A dielectric layer was manufactured using the copolymers 1 and 11, and an electrostrictive actuator provided with the dielectric layer was manufactured. The structure of the manufactured actuator is the same as that in <Actuator characteristic 1> except that ion-fixed layers are laminated on both front and back surfaces in the thickness direction of the dielectric layer. That is, in the manufactured actuator, electrodes are arranged on both the front and back surfaces of a laminate composed of a cation fixed layer / dielectric layer / anion fixed layer. The manufacturing method of the dielectric layer and the electrode is the same as that in <Actuator characteristic 1>. Hereinafter, the anion fixing layer and the cation fixing layer (ion fixing layer) will be described.
 [アニオン固定層]
 まず、反応性イオン液体を製造した。1-ブチル-3-メチルイミダゾリウム炭酸水素塩の溶液5.0g(溶剤:メタノール/水=3:2混合液、濃度50質量%、0.0125mol)中に、等モルのアクリル酸モノマー(0.0125mol)を氷浴上で滴下した。その際、気泡が出るのを確認した。30分後に室温に戻し、6時間撹拌した。溶媒を減圧留去した後、メタノール(超脱水)(和光純薬工業)を加えて、再度溶媒を減圧留去した。このようにして、イオン液体モノマーを得た。得られたイオン液体モノマー2.10g(10.0mmol)と、3-メルカプトプロピルトリメトキシシラン1.87ml(10.1mmol)と、をメタノール(超脱水)20mlに溶解した。3-メルカプトプロピルトリメトキシシランに対して10mol%のジイソプロピルアミンを触媒として加えて、室温で20時間撹拌し、溶媒を減圧留去して、次式(20)に示される反応性イオン液体を得た。
Figure JPOXMLDOC01-appb-C000024
[Anion fixed layer]
First, a reactive ionic liquid was produced. In 5.0 g of 1-butyl-3-methylimidazolium bicarbonate solution (solvent: methanol / water = 3: 2 mixed solution, concentration 50% by mass, 0.0125 mol), equimolar amount of acrylic acid monomer (0 0.0125 mol) was added dropwise on an ice bath. At that time, it was confirmed that bubbles appeared. After 30 minutes, the temperature was returned to room temperature and stirred for 6 hours. After depressurizingly distilling a solvent, methanol (super dehydration) (Wako Pure Chemical Industries) was added, and the solvent was depressurizingly distilled again. In this way, an ionic liquid monomer was obtained. 2.10 g (10.0 mmol) of the obtained ionic liquid monomer and 1.87 ml (10.1 mmol) of 3-mercaptopropyltrimethoxysilane were dissolved in 20 ml of methanol (super-dehydrated). 10 mol% of diisopropylamine as a catalyst with respect to 3-mercaptopropyltrimethoxysilane was added and stirred at room temperature for 20 hours, and the solvent was distilled off under reduced pressure to obtain a reactive ionic liquid represented by the following formula (20). It was.
Figure JPOXMLDOC01-appb-C000024
 次に、アニオン固定層を製造した。製造した反応性イオン液体を、チタンテトライソプロポキシドとアセチルアセトンとをモル比で1:1で混合した混合液に溶解させた。この混合液にイソプロピルアルコール(IPA)を添加し、さらにチタンテトライソプロポキシドのモル数の4倍量の水を滴下して加水分解反応を行った。このようにして、反応性イオン液体のアニオン成分が固定されたTiO粒子と、反応性イオン液体のカチオン成分と、を含むゾルを得た。得られたゾルを、カルボキシル基変性水素化ニトリルゴム(HX-NBR、ランクセス社製「テルバン(登録商標)XT8889」)の12質量%溶液(溶媒:アセチルアセトン)に混合した。ゾルは、HX-NBR100質量部に対してTiO換算で2.4質量部入るように混合した。ゾルを混合した混合液に、架橋剤としてテトラキス(2-エチルヘキシルオキシ)チタンのアセチルアセトン溶液(濃度20質量%)を5質量部添加して、液状のエラストマー組成物を調製した。エラストマー組成物を基材上に塗布し、乾燥させた後、150℃で1時間加熱して、アニオン固定層を得た。アニオン固定層の厚さは10μmであった。 Next, an anion fixing layer was produced. The produced reactive ionic liquid was dissolved in a mixed solution in which titanium tetraisopropoxide and acetylacetone were mixed at a molar ratio of 1: 1. Isopropyl alcohol (IPA) was added to this mixed solution, and water was added dropwise in an amount 4 times the number of moles of titanium tetraisopropoxide to conduct a hydrolysis reaction. In this way, a sol containing TiO 2 particles on which the anion component of the reactive ionic liquid was fixed and the cation component of the reactive ionic liquid was obtained. The obtained sol was mixed with a 12 mass% solution (solvent: acetylacetone) of carboxyl group-modified hydrogenated nitrile rubber (HX-NBR, “Terban (registered trademark) XT8889” manufactured by LANXESS). The sol was mixed such that 2.4 parts by mass in terms of TiO 2 was added to 100 parts by mass of HX-NBR. A liquid elastomer composition was prepared by adding 5 parts by mass of a tetrakis (2-ethylhexyloxy) titanium acetylacetone solution (concentration 20% by mass) as a crosslinking agent to the mixed solution obtained by mixing the sol. The elastomer composition was applied on a substrate, dried, and then heated at 150 ° C. for 1 hour to obtain an anion-fixing layer. The thickness of the anion fixing layer was 10 μm.
 [カチオン固定層]
 まず、反応性イオン液体を製造した。1-メチル-3-ビニルイミダゾリウム炭酸メチル塩の溶液16.2g(溶剤:メタノール/水=3:2混合液、濃度25質量%、0.022mol)中に、等モルのベンゼンスルホン酸・一水和物3.80(0.022mol)を滴下した。室温で1時間撹拌した後、溶媒を減圧留去し、減圧乾燥を2時間行った。このようにして、イオン液体モノマーを得た。得られたイオン液体モノマー3.00g(11.3mmol)と、3-メルカプトトリメトキシシラン2.43g(12.4mmol)と、をメタノール(超脱水)40mlに溶解した。3-メルカプトトリメトキシシランに対して15mol%のアゾビスイソブチリロニトリルをラジカル発生剤として加えて、アルゴンバブリングを30分間行った後、温度75℃、アルゴン下において7時間還流した。溶媒を減圧留去し、ジエチルエーテルで洗浄した後、減圧乾燥して、次式(21)に示される反応性イオン液体を得た。
Figure JPOXMLDOC01-appb-C000025
[Cation fixed layer]
First, a reactive ionic liquid was produced. In 16.2 g of a solution of 1-methyl-3-vinylimidazolium methyl carbonate (solvent: methanol / water = 3: 2 mixture, concentration 25% by mass, 0.022 mol), equimolar benzenesulfonic acid Hydrate 3.80 (0.022 mol) was added dropwise. After stirring at room temperature for 1 hour, the solvent was distilled off under reduced pressure, followed by drying under reduced pressure for 2 hours. In this way, an ionic liquid monomer was obtained. 3.00 g (11.3 mmol) of the obtained ionic liquid monomer and 2.43 g (12.4 mmol) of 3-mercaptotrimethoxysilane were dissolved in 40 ml of methanol (super-dehydrated). After adding 15 mol% of azobisisobutyronitrile as a radical generator with respect to 3-mercaptotrimethoxysilane and performing argon bubbling for 30 minutes, the mixture was refluxed at 75 ° C. under argon for 7 hours. The solvent was distilled off under reduced pressure, washed with diethyl ether, and then dried under reduced pressure to obtain a reactive ionic liquid represented by the following formula (21).
Figure JPOXMLDOC01-appb-C000025
 次に、カチオン固定層を製造した。製造した反応性イオン液体を、チタンテトライソプロポキシドとアセチルアセトンとをモル比で1:1で混合した混合液に溶解させた。この混合液にIPAを添加し、さらにチタンテトライソプロポキシドのモル数の4倍量の水を滴下して加水分解反応を行った。このようにして、反応性イオン液体のカチオン成分が固定されたTiO粒子と、反応性イオン液体のアニオン成分と、を含むゾルを得た。得られたゾルを、HX-NBR(同上)の12質量%溶液(溶媒:アセチルアセトン)に混合した。ゾルは、HX-NBR100質量部に対してTiO換算で2.4質量部入るように混合した。ゾルを混合した混合液に、架橋剤としてテトラキス(2-エチルヘキシルオキシ)チタンのアセチルアセトン溶液(濃度20質量%)を5質量部添加して、液状のエラストマー組成物を調製した。エラストマー組成物を基材上に塗布し、乾燥させた後、150℃で1時間加熱して、カチオン固定層を得た。カチオン固定層の厚さは10μmであった。 Next, a cation fixed layer was produced. The produced reactive ionic liquid was dissolved in a mixed solution in which titanium tetraisopropoxide and acetylacetone were mixed at a molar ratio of 1: 1. IPA was added to this mixed solution, and water was added dropwise in an amount 4 times the number of moles of titanium tetraisopropoxide to conduct a hydrolysis reaction. In this way, a sol containing TiO 2 particles to which the cation component of the reactive ionic liquid was fixed and the anion component of the reactive ionic liquid was obtained. The obtained sol was mixed with a 12% by mass solution (solvent: acetylacetone) of HX-NBR (same as above). The sol was mixed such that 2.4 parts by mass in terms of TiO 2 was added to 100 parts by mass of HX-NBR. A liquid elastomer composition was prepared by adding 5 parts by mass of a tetrakis (2-ethylhexyloxy) titanium acetylacetone solution (concentration 20% by mass) as a crosslinking agent to the mixed solution obtained by mixing the sol. The elastomer composition was applied on a substrate, dried, and then heated at 150 ° C. for 1 hour to obtain a cation fixed layer. The thickness of the cation fixing layer was 10 μm.
 誘電層の表面にカチオン固定層を、裏面にアニオン固定層を貼り付けて、各々から基材を剥離することにより、三層構造の積層体を製造した。製造した積層体の表裏両面に電極を貼り付けてアクチュエータを製造した。共重合体1、11から製造された誘電層を備える実施例1、11のアクチュエータは、本発明のトランスデューサに含まれる。各アクチュエータについて、<アクチュエータ特性1>で行ったのと同様にして、絶縁破壊強度、発生力、および変位量を測定した。 A laminate having a three-layer structure was manufactured by attaching a cation fixing layer on the surface of the dielectric layer and an anion fixing layer on the back surface, and peeling the substrate from each. An actuator was manufactured by attaching electrodes to both the front and back surfaces of the manufactured laminate. The actuators of Examples 1 and 11 including dielectric layers manufactured from the copolymers 1 and 11 are included in the transducer of the present invention. For each actuator, the dielectric breakdown strength, generated force, and displacement were measured in the same manner as in <Actuator characteristic 1>.
 先の表3に、各アクチュエータの発生力、変位率、および絶縁破壊強度の測定結果を併せて示す。表3に示すように、共重合体1、11から製造された誘電層にイオン固定層を積層することにより、発生力、変位率、絶縁破壊強度のいずれも大幅に大きくなった。 Table 3 above also shows the measurement results of the generated force, displacement rate, and dielectric strength of each actuator. As shown in Table 3, by laminating the ion-fixed layer on the dielectric layers produced from the copolymers 1 and 11, all of the generated force, the displacement rate, and the dielectric breakdown strength were greatly increased.
 <センサ特性>
 共重合体1~21を用いて誘電層を製造し、当該誘電層を備える静電容量型センサを製造した。まず、共重合体をアセチルアセトンに溶解し、固形分濃度が20質量%のポリマー溶液を調製した。次に、ポリマー溶液100質量部に対して、架橋剤のテトラキス(2-エチルヘキシルオキシ)チタンのアセトン溶液(濃度20質量%)を5質量部添加して、混合液を調製した。調製した混合液を基材上に塗布し、乾燥させた後、150℃で60分間加熱することにより、厚さ10μmの薄膜状の誘電層を製造した。これとは別に、アクリルゴムポリマー溶液100質量部に対してカーボンブラックを10質量部添加して導電塗料を調製した。調製した導電塗料を基材上に塗布し、乾燥させた後、150℃で60分間加熱して、厚さ5μmの薄膜状の電極を製造した。電極の体積抵抗率は、5Ω・cmである。製造した電極を、誘電層の厚さ方向の表裏両面に貼り付けて、一対の電極を形成した。このようにして、誘電層が異なる十五種類のセンサを製造した。共重合体1~18は、本発明の誘電エラストマー材料を構成する共重合体に含まれる。共重合体1~18から製造された誘電層を備える実施例1~18のセンサは、本発明のトランスデューサに含まれる。また、上述した市販のアクリルゴム、シリコーンゴム、カルボキシル基含有NBRからも誘電層を製造し、同じようにして製造した電極を誘電層の厚さ方向の表裏両面に貼り付けて、センサを製造した。
<Sensor characteristics>
A dielectric layer was manufactured using the copolymers 1 to 21, and a capacitive sensor including the dielectric layer was manufactured. First, the copolymer was dissolved in acetylacetone to prepare a polymer solution having a solid content concentration of 20% by mass. Next, 5 parts by mass of an acetone solution (concentration 20% by mass) of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent was added to 100 parts by mass of the polymer solution to prepare a mixed solution. The prepared mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin dielectric layer having a thickness of 10 μm. Separately, 10 parts by mass of carbon black was added to 100 parts by mass of the acrylic rubber polymer solution to prepare a conductive paint. The prepared conductive paint was applied onto a substrate, dried, and then heated at 150 ° C. for 60 minutes to produce a thin-film electrode having a thickness of 5 μm. The volume resistivity of the electrode is 5 Ω · cm. The manufactured electrodes were attached to both the front and back surfaces in the thickness direction of the dielectric layer to form a pair of electrodes. In this way, 15 types of sensors with different dielectric layers were manufactured. Copolymers 1 to 18 are included in the copolymer constituting the dielectric elastomer material of the present invention. The sensors of Examples 1-18 comprising a dielectric layer made from Copolymers 1-18 are included in the transducer of the present invention. In addition, a dielectric layer was also manufactured from the above-mentioned commercially available acrylic rubber, silicone rubber, and carboxyl group-containing NBR, and electrodes manufactured in the same manner were attached to both the front and back surfaces in the thickness direction of the dielectric layer to manufacture a sensor. .
 製造したセンサについて、まずは初期(未伸長時)の静電容量を測定した。次に、センサを面方向の一方向に伸長し、伸長率100%下での静電容量を測定した。そして、伸長時の静電容量から初期の静電容量を差し引いて、静電容量変化量を算出した。静電容量は、LCRメータ(Keysight社製「E4980AL」)を用いて測定した。 For the manufactured sensor, first, the initial capacitance (when not stretched) was measured. Next, the sensor was stretched in one direction of the surface direction, and the capacitance was measured at a stretch rate of 100%. Then, the amount of change in capacitance was calculated by subtracting the initial capacitance from the capacitance at the time of extension. The capacitance was measured using an LCR meter (“E4980AL” manufactured by Keysight).
 表3および表4に、各センサの初期および伸長時の静電容量、静電容量変化量の測定結果を併せて示す。表3および表4に示すように、実施例1~13と比較例1~4、実施例14~17と比較例5、実施例18と比較例6、というように、ベースポリマーが同じもの同士を比較すると、実施例のセンサの方が比較例のセンサよりも、静電容量および静電容量変化量が大きくなった。実施例12のセンサにおいては、静電容量変化量が比較例1のセンサよりも若干小さくなったが、比較例2~4のセンサと比較すると大きくなった。静電容量変化量が大きいほど、感度が高く、より小さな変位を検出することができる。 Tables 3 and 4 also show the measurement results of the capacitance and the amount of change in capacitance at the initial stage and at the extension of each sensor. As shown in Tables 3 and 4, Examples 1 to 13 and Comparative Examples 1 to 4, Examples 14 to 17 and Comparative Example 5, Examples 18 and Comparative Example 6, and the like with the same base polymer In comparison, the capacitance of the sensor of the example and the capacitance change amount were larger than those of the sensor of the comparative example. In the sensor of Example 12, the capacitance change amount was slightly smaller than that of the sensor of Comparative Example 1, but was larger than that of the sensors of Comparative Examples 2 to 4. The larger the capacitance change amount, the higher the sensitivity and the smaller displacement can be detected.
 本発明のトランスデューサは、機械エネルギーと電気エネルギーとの変換を行うアクチュエータ、センサ、発電素子など、あるいは音響エネルギーと電気エネルギーとの変換を行うスピーカ、マイクロフォン、ノイズキャンセラなどとして、広く用いることができる。なかでも、産業、医療、福祉ロボットやアシストスーツなどに用いられる人工筋肉、電子部品冷却用や医療用などの小型ポンプ、振動による触覚機能(ハプティスク)素子、および医療用器具などに用いられる柔軟なアクチュエータとして好適である。また、ウエアラブルな生体情報センサや、ロボットの人工皮膚、医療用、介護用などのマットレス、車椅子のシートなどに配置される圧力センサとして好適である。 The transducer of the present invention can be widely used as an actuator, a sensor, a power generation element, etc. for converting mechanical energy and electric energy, or a speaker, a microphone, a noise canceller, etc. for converting acoustic energy and electric energy. Among them, artificial muscles used for industrial, medical, welfare robots, assist suits, etc., small pumps for cooling electronic parts and medical use, tactile function (haptics) elements by vibration, and flexible for medical instruments It is suitable as an actuator. Moreover, it is suitable as a pressure sensor that is disposed on a wearable biological information sensor, artificial skin of a robot, a mattress for medical use or nursing care, a seat of a wheelchair, or the like.

Claims (12)

  1.  モノマーAと、架橋可能な官能基を有するモノマーCと、の少なくとも一方と、極性基を有するモノマーBと、がランダムまたは交互に共重合された構造を有する共重合体を含み、
     該共重合体中、該モノマーBからなる構成単位において、該極性基は直鎖状に繋がる3つ以上の原子を介してポリマー主鎖に結合されていることを特徴とする誘電エラストマー材料。
    A copolymer having a structure in which at least one of the monomer A, the monomer C having a crosslinkable functional group, and the monomer B having a polar group are randomly or alternately copolymerized,
    In the copolymer, in the structural unit comprising the monomer B, the polar group is bonded to the polymer main chain via three or more atoms linked in a straight chain.
  2.  前記極性基の含有量は、前記共重合体の全体を100質量%とした場合の10質量%以上25質量%以下である請求項1に記載の誘電エラストマー材料。 The dielectric elastomer material according to claim 1, wherein the content of the polar group is 10% by mass or more and 25% by mass or less when the entire copolymer is 100% by mass.
  3.  前記モノマーBの含有量は、前記共重合体の全体を100mol%とした場合の50mol%以上98mol%以下である請求項1または請求項2に記載の誘電エラストマー材料。 3. The dielectric elastomer material according to claim 1, wherein the content of the monomer B is 50 mol% or more and 98 mol% or less when the entire copolymer is 100 mol%.
  4.  前記極性基と前記ポリマー主鎖との間に介在する前記原子は、炭素、酸素、窒素、硫黄から選ばれる一種以上である請求項1ないし請求項3のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 3, wherein the atom interposed between the polar group and the polymer main chain is one or more selected from carbon, oxygen, nitrogen, and sulfur.
  5.  前記極性基は、シアノ基、エーテル基、エステル基、フッ素基、トリフルオロメチル基、カーボネート基から選ばれる一種以上である請求項1ないし請求項4のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 4, wherein the polar group is at least one selected from a cyano group, an ether group, an ester group, a fluorine group, a trifluoromethyl group, and a carbonate group.
  6.  前記共重合体の重量平均分子量は、1万以上500万以下である請求項1ないし請求項5のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 5, wherein the copolymer has a weight average molecular weight of 10,000 to 5,000,000.
  7.  前記共重合体のガラス転移点は、0℃以下である請求項1ないし請求項6のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 6, wherein a glass transition point of the copolymer is 0 ° C or lower.
  8.  前記モノマーCの前記官能基は、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、シラノール基、エポキシ基、ビニル基から選ばれる一種以上である請求項1ないし請求項7のいずれかに記載の誘電エラストマー材料。 The dielectric according to any one of claims 1 to 7, wherein the functional group of the monomer C is one or more selected from a hydroxy group, an amino group, a thiol group, a carboxyl group, a silanol group, an epoxy group, and a vinyl group. Elastomer material.
  9.  前記モノマーAは、(メタ)アクリレートモノマー、シリコーンモノマー、ウレタンモノマーから選ばれる一種以上である請求項1ないし請求項8のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 8, wherein the monomer A is at least one selected from a (meth) acrylate monomer, a silicone monomer, and a urethane monomer.
  10.  さらに、絶縁フィラーを含む請求項1ないし請求項9のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 9, further comprising an insulating filler.
  11.  前記共重合体は、架橋構造を有する請求項1ないし請求項10のいずれかに記載の誘電エラストマー材料。 The dielectric elastomer material according to any one of claims 1 to 10, wherein the copolymer has a crosslinked structure.
  12.  請求項1ないし請求項11のいずれかに記載の誘電エラストマー材料からなる誘電層と、該誘電層を介して配置される複数の電極と、を備えることを特徴とするトランスデューサ。 A transducer comprising: a dielectric layer made of the dielectric elastomer material according to any one of claims 1 to 11; and a plurality of electrodes disposed through the dielectric layer.
PCT/JP2017/024920 2016-09-28 2017-07-07 Dielectric elastomer material and transducer using same WO2018061393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017004872.9T DE112017004872B4 (en) 2016-09-28 2017-07-07 Transducer with dielectric elastomer material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016189662 2016-09-28
JP2016-189662 2016-09-28
JP2017-049455 2017-03-15
JP2017049455A JP2018059042A (en) 2016-09-28 2017-03-15 Dielectric elastomer material and transducer using the same

Publications (1)

Publication Number Publication Date
WO2018061393A1 true WO2018061393A1 (en) 2018-04-05

Family

ID=61762647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024920 WO2018061393A1 (en) 2016-09-28 2017-07-07 Dielectric elastomer material and transducer using same

Country Status (1)

Country Link
WO (1) WO2018061393A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020261904A1 (en) * 2019-06-28 2020-12-30
WO2020261911A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Polymer composite piezoelectric body, piezoelectric film, piezoelectric speaker, and flexible display

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617315A (en) * 1984-05-30 1986-01-14 ピーピージー・インダストリーズ・インコーポレーテツド Cyanoethylacrylate/acrylic acid copolymer and manufacture
JPS6144941A (en) * 1984-08-10 1986-03-04 Japan Synthetic Rubber Co Ltd Production of multicomponent copolymer rubber composition
JPS63304679A (en) * 1987-06-03 1988-12-12 Kuraray Co Ltd High molecular liquid crystal piezoelectric body and manufacture thereof
JPH0762037A (en) * 1992-09-30 1995-03-07 Tosoh Corp Copolymer rubber and its production
JP2008255284A (en) * 2007-04-09 2008-10-23 Fujifilm Corp Optically driven actuator and method for producing optically driven actuator
JP2012097296A (en) * 2010-10-29 2012-05-24 Fujifilm Corp Method of forming metal film
JP2012512265A (en) * 2008-12-16 2012-05-31 テーザ・ソシエタス・ヨーロピア Self-adhesive base polymer for electroluminescent materials
JP2012514102A (en) * 2008-12-30 2012-06-21 スリーエム イノベイティブ プロパティズ カンパニー Electroactive polymer and articles containing the same
JP2016503108A (en) * 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation Curable organopolysiloxane composition for transducer and use of such curable silicone composition in transducer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617315A (en) * 1984-05-30 1986-01-14 ピーピージー・インダストリーズ・インコーポレーテツド Cyanoethylacrylate/acrylic acid copolymer and manufacture
JPS6144941A (en) * 1984-08-10 1986-03-04 Japan Synthetic Rubber Co Ltd Production of multicomponent copolymer rubber composition
JPS63304679A (en) * 1987-06-03 1988-12-12 Kuraray Co Ltd High molecular liquid crystal piezoelectric body and manufacture thereof
JPH0762037A (en) * 1992-09-30 1995-03-07 Tosoh Corp Copolymer rubber and its production
JP2008255284A (en) * 2007-04-09 2008-10-23 Fujifilm Corp Optically driven actuator and method for producing optically driven actuator
JP2012512265A (en) * 2008-12-16 2012-05-31 テーザ・ソシエタス・ヨーロピア Self-adhesive base polymer for electroluminescent materials
JP2012514102A (en) * 2008-12-30 2012-06-21 スリーエム イノベイティブ プロパティズ カンパニー Electroactive polymer and articles containing the same
JP2012097296A (en) * 2010-10-29 2012-05-24 Fujifilm Corp Method of forming metal film
JP2016503108A (en) * 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation Curable organopolysiloxane composition for transducer and use of such curable silicone composition in transducer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020261904A1 (en) * 2019-06-28 2020-12-30
WO2020261911A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Polymer composite piezoelectric body, piezoelectric film, piezoelectric speaker, and flexible display
JPWO2020261911A1 (en) * 2019-06-28 2020-12-30
WO2020261904A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Polymer composite piezoelectric body, piezoelectric film, piezoelectric speaker and flexible display
JP7155427B2 (en) 2019-06-28 2022-10-18 富士フイルム株式会社 Polymer composite piezoelectric material, Piezoelectric film, Piezoelectric speaker, Flexible display
JP7155426B2 (en) 2019-06-28 2022-10-18 富士フイルム株式会社 Polymer composite piezoelectric material, Piezoelectric film, Piezoelectric speaker, Flexible display

Similar Documents

Publication Publication Date Title
Romasanta et al. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective
JP5633769B1 (en) Flexible transducer
JP2018059042A (en) Dielectric elastomer material and transducer using the same
JP5486369B2 (en) Dielectric material and transducer using the same
US10035897B2 (en) Dielectric film, process for producing same, and transducer using same
JP4982432B2 (en) Dielectric film, manufacturing method thereof, and actuator, sensor, and transducer using the same
US9051446B2 (en) Conductive crosslinked body and production process thereof, and transducer, flexible wiring board and electromagnetic wave shield using the conductive crosslinked body
US6876125B2 (en) Elastomeric polyphosphazene transducers, methods of making, and methods of use thereof
US8760040B2 (en) Polymer blend composition and tunable actuators using the same
US9903738B2 (en) Conductive material, method for producing the conductive material, and transducer including the conductive material
JP5474331B2 (en) Dielectric film, and actuator, sensor, and transducer using the same
WO2013058237A1 (en) Dielectric film and transducer using same
JP2016153729A (en) Deformation amount measuring structure
WO2018061393A1 (en) Dielectric elastomer material and transducer using same
JP2012248399A (en) Soft conductive material and method for producing the same
JP5243775B2 (en) Dielectric film and actuator, sensor, and transducer using the same
JP5506488B2 (en) Dielectric laminate and transducer using the same
JP6067447B2 (en) Conductive materials and transducers
JP6002524B2 (en) Transducer
JP5662754B2 (en) Dielectric material, manufacturing method thereof, and transducer using the same
Gong et al. Tuning the ferroelectric phase transition of P (VDF-TrFE) through a simple approach of modification by introducing double bonds
JP5916270B2 (en) Dielectric film and transducer using the same
JP7045777B2 (en) Transducer and power generation system using it
JP6207325B2 (en) Ionic component copolymer polymer material and transducer using the same
JP5337651B2 (en) Dielectric film and transducer using the same

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855352

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17855352

Country of ref document: EP

Kind code of ref document: A1