WO2018061368A1 - Electrographic photoreceptor, process cartridge, and image formation device - Google Patents

Electrographic photoreceptor, process cartridge, and image formation device Download PDF

Info

Publication number
WO2018061368A1
WO2018061368A1 PCT/JP2017/024096 JP2017024096W WO2018061368A1 WO 2018061368 A1 WO2018061368 A1 WO 2018061368A1 JP 2017024096 W JP2017024096 W JP 2017024096W WO 2018061368 A1 WO2018061368 A1 WO 2018061368A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
general formula
image
group
image carrier
Prior art date
Application number
PCT/JP2017/024096
Other languages
French (fr)
Japanese (ja)
Inventor
智文 清水
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to CN201780059543.2A priority Critical patent/CN109791382A/en
Priority to JP2018541919A priority patent/JP6642727B2/en
Publication of WO2018061368A1 publication Critical patent/WO2018061368A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Definitions

  • the present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.
  • an electrophotographic photoreceptor is used as an image carrier in an electrophotographic image forming apparatus (for example, a printer or a multifunction machine).
  • an electrophotographic photoreceptor includes a photosensitive layer.
  • the photosensitive layer contains, for example, a charge generator, a charge transport agent (more specifically, a hole transport agent or an electron transport agent), and a resin (binder resin) that binds these.
  • an electrophotographic photoreceptor contains a charge generating agent and a charge transport agent in the same layer (photosensitive layer), and has both functions of charge generation and charge transport in the same layer.
  • Such an electrophotographic photoreceptor is referred to as a single layer type electrophotographic photoreceptor.
  • Patent Document 1 describes an organic photoelectric conversion film.
  • the organic photoelectric conversion film is used for, for example, an optical sensor or a solar cell.
  • the organic photoelectric conversion film includes a p-type material layer and an n-type material layer.
  • the n-type material layer is formed from 1,4,5,8-naphthalenetetracarboxylic dianhydride.
  • Patent Document 1 the technique described in Patent Document 1 is insufficient to improve the transferability of the toner image by the electrophotographic photosensitive member.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrophotographic photoreceptor excellent in toner image transferability. Another object of the present invention is to provide a process cartridge and an image forming apparatus that suppress image defects.
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer.
  • the photosensitive layer is a single-layer type photosensitive layer.
  • the photosensitive layer includes a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and an acid anhydride.
  • the acid anhydride is represented by general formula (1), general formula (2), or general formula (3).
  • R a , R b , R c and R d are each independently a hydrogen atom, a halogen atom, or a carbon atom which may have a first substituent.
  • the first substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the second substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the third substituent is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom.
  • X represents a methylene group or an oxygen atom.
  • the process cartridge of the present invention includes the above-described electrophotographic photosensitive member.
  • the image forming apparatus of the present invention includes an image carrier, a charging unit, an exposure unit, a developing unit, and a transfer unit.
  • the image carrier is the above-described electrophotographic photosensitive member.
  • the charging unit charges the surface of the image carrier.
  • the charging polarity of the charging unit is positive.
  • the exposure unit exposes the charged surface of the image carrier to form an electrostatic latent image on the surface of the image carrier.
  • the developing unit develops the electrostatic latent image as a toner image.
  • the transfer unit transfers the toner image from the image carrier to a transfer body.
  • the electrophotographic photosensitive member of the present invention is excellent in toner image transferability.
  • the process cartridge and the image forming apparatus of the present invention can suppress image defects.
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • “polymer” is added after the compound name to indicate the polymer name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms, carbon
  • An alkoxy group having 1 to 6 atoms and an aryl group having 6 to 14 carbon atoms have the following meanings unless otherwise specified.
  • halogen atom examples include a fluorine atom (fluoro group), a chlorine atom (chloro group), a bromine atom (bromo group), or an iodine atom (iodo group).
  • An alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, A neopentyl group or a hexyl group is mentioned.
  • An alkyl group having 1 to 5 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, or A neopentyl group is mentioned.
  • An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • An alkoxy group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, and hexyl.
  • An oxy group is mentioned.
  • An aryl group having 6 to 14 carbon atoms is unsubstituted.
  • Examples of the aryl group having 6 to 14 carbon atoms include an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 14 carbon atoms and an unsubstituted aromatic condensed bicyclic carbon group having 6 to 14 carbon atoms.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • the electrophotographic photoreceptor according to the first embodiment (hereinafter sometimes referred to as “photoreceptor”) has excellent toner image transferability. The reason is presumed as follows.
  • An electrophotographic image forming apparatus includes, for example, an image carrier (photosensitive member), a charging unit, an exposure unit, a developing unit, and a transfer unit.
  • the transfer unit transfers the toner image from the photosensitive member to the transfer member.
  • the transferability of the toner image from the photosensitive member to the transfer member may decrease. Such a drop in toner image transferability is likely to occur particularly in a high temperature and high humidity environment.
  • the photosensitive layer includes an acid anhydride represented by the general formula (1), the general formula (2), or the general formula (3) (hereinafter, the acid anhydrides (1) to ( 3)).
  • Acid anhydrides (1) to (3) are anhydrides of phthalic acid derivatives or 1,8-naphthalenedicarboxylic acid derivatives, and have a relatively small molecular weight and an asymmetric structure. It is easy to dissolve in the photosensitive layer and to disperse in the photosensitive layer.
  • the photosensitive layer tends to have an appropriate electrical resistance. As a result, the photoreceptor according to the first embodiment is likely to stably hold the surface potential and the electrostatic latent image. Therefore, it is considered that the photoconductor according to the first embodiment is excellent in toner image transferability.
  • the transferability of the toner image can be evaluated from the image. Further, the transferability of the toner image can be evaluated by the surface potential of the photoconductor in the exposed area after transfer. These evaluation methods will be described in detail in Examples. Here, the surface potential of the photoreceptor after transfer will be described.
  • the surface potential of the photosensitive member is charged by the charging unit after the transfer unit transfers the toner image from the surface of the photosensitive member to the transfer member. Measured before.
  • the next round means the round of the next image forming process of the photoconductor using the circumference of the photoconductor in the image forming process as a reference circumference.
  • the surface potential of the photoreceptor is preferably ⁇ 50 V or more, more preferably 0 V or more, more preferably 0 V or more and +90 V or less, and further preferably 0 V or more and +70 V or less.
  • the electrostatic attraction is less likely to act between the positively charged toner and the exposed area on the surface of the photoconductor, so that the toner image is easily transferred from the photoconductor to the transfer body.
  • FIGS. 1A to 1C are schematic cross-sectional views showing the structure of the photoreceptor 1.
  • the photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3.
  • the photosensitive layer 3 is a single layer type photosensitive layer.
  • the photosensitive layer 3 is provided directly or indirectly on the conductive substrate 2.
  • the photosensitive layer 3 may be provided directly on the conductive substrate 2.
  • an intermediate layer 4 may be provided between the conductive substrate 2 and the photosensitive layer 3 as shown in FIG. 1B.
  • the photosensitive layer 3 may be exposed as the outermost layer.
  • a protective layer 5 may be provided on the photosensitive layer 3.
  • the conductive substrate, the photosensitive layer, and the intermediate layer will be described.
  • a method for manufacturing the photoreceptor will be described.
  • the conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor.
  • a conductive substrate formed of a material having at least a surface portion having conductivity (hereinafter sometimes referred to as a conductive material) can be used.
  • An example of the conductive substrate is a conductive substrate made of a conductive material.
  • Another example of a conductive substrate is a conductive substrate coated with a conductive material.
  • the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium.
  • These materials having conductivity may be used alone or in combination of two or more. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.).
  • aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
  • the shape of the conductive substrate can be appropriately selected according to the structure of the image forming apparatus to be used.
  • Examples of the shape of the conductive substrate include a sheet shape or a drum shape.
  • the thickness of the conductive substrate can be appropriately selected according to the shape of the conductive substrate.
  • the photosensitive layer contains a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and any one of acid anhydrides (1) to (3).
  • the photosensitive layer may contain various additives as required.
  • an acid anhydride, a charge generator, an electron transport agent, a hole transport agent, a binder resin, and an additive will be described.
  • R a , R b , R c, and R d each independently represent a hydrogen atom, a halogen atom, or a carbon atom that may have a first substituent.
  • the first substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the second substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the third substituent is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom.
  • X represents a methylene group or an oxygen atom.
  • the halogen atom represented by R a to R d is preferably a chlorine atom.
  • the alkyl group having 1 to 6 carbon atoms represented by R a to R d may have a substituent.
  • the substituent of the alkyl group having 1 to 6 carbon atoms represented by R a to R d is a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the alkoxy group having 1 to 6 carbon atoms represented by R a to R d may have a substituent.
  • the substituent of the alkyl group having 1 to 6 carbon atoms represented by R a to R d is a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
  • the aryl group having 6 to 14 carbon atoms represented by R a to R d may have a substituent.
  • the substituent of the aryl group having 6 to 14 carbon atoms represented by R a to R d is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom. Is the selected substituent.
  • R a and R b represent a hydrogen atom.
  • R c and R d preferably represent a hydrogen atom or a halogen atom, and a hydrogen atom or a chlorine atom represents More preferred.
  • acid anhydride examples include chemical formula (ADD-1), chemical formula (ADD-2), chemical formula (ADD-3), chemical formula (ADD-4), chemical formula (ADD-5), or chemical formula (ADD-6).
  • ADD-1 chemical formula
  • ADD-2 chemical formula
  • ADD-3 chemical formula
  • ADD-4 chemical formula
  • ADD-5 chemical formula
  • ADD-6 chemical formula
  • acid anhydrides (ADD-1) to (ADD-6) acid anhydrides (ADD-1) or (ADD-6) are preferred.
  • acid anhydrides (ADD-1) to (ADD-6) acid anhydrides (ADD-1), (ADD-4) or (ADD-) are used from the viewpoint of further improving the transferability of the toner image by the photoreceptor. 5) is preferred.
  • the content of the acid anhydrides (1) to (3) is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.02 parts by mass or more and 7.00 parts by mass with respect to 100 parts by mass of the binder resin.
  • the amount is more preferably 0.02 parts by mass or more and 4.00 parts by mass or less, and particularly preferably 0.02 parts by mass or more and 0.07 parts by mass or less.
  • the photoreceptor has excellent toner image transferability and excellent sensitivity characteristics.
  • the content of the acid anhydride is 0.02 parts by mass or more and 4.00 parts by mass or less with respect to 100 parts by mass of the binder resin, the toner image is further improved in toner image transferability.
  • Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, and cyanine pigments.
  • Powders of inorganic photoconductive materials (more specifically, selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, etc.), pyrylium salts, ansanthrone pigments, triphenylmethane pigments, selenium pigments, Toluidine pigments, pyrazoline pigments or quinacridone pigments may be mentioned.
  • the phthalocyanine pigment examples include metal-free phthalocyanine or metal phthalocyanine represented by the chemical formula (CGM-1).
  • the metal phthalocyanine examples include titanyl phthalocyanine represented by the chemical formula (CGM-2) or phthalocyanine coordinated with a metal other than titanium oxide (more specifically, V-type hydroxygallium phthalocyanine).
  • the phthalocyanine pigment may be crystalline or non-crystalline.
  • the crystal shape of the phthalocyanine pigment (for example, ⁇ type, ⁇ type, or Y type) is not particularly limited, and phthalocyanine pigments having various crystal shapes are used.
  • Examples of the crystal of metal-free phthalocyanine include a metal-free phthalocyanine X-type crystal (hereinafter sometimes referred to as X-type metal-free phthalocyanine).
  • Examples of the titanyl phthalocyanine crystal include ⁇ -type crystal, ⁇ -type crystal, and Y-type crystal of titanyl phthalocyanine.
  • a charge generator having an absorption wavelength in a desired region may be used alone, or two or more charge generators may be used in combination. Further, for example, in a digital optical image forming apparatus, it is preferable to use a photoconductor having sensitivity in a wavelength region of 700 nm or more. Examples of the digital optical image forming apparatus include a laser beam printer or a facsimile using a light source such as a semiconductor laser. Therefore, for example, phthalocyanine pigments are preferable, and metal-free phthalocyanine or titanyl phthalocyanine is more preferable.
  • a charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an ansanthrone pigment or a perylene pigment is preferably used as a charge generating agent.
  • the laser which has a wavelength about 350 nm or more and 550 nm or less is mentioned, for example.
  • the content of the charge generating agent is preferably from 0.1 to 50 parts by mass, and more preferably from 0.5 to 30 parts by mass with respect to 100 parts by mass of the binder resin.
  • Electron transport agent examples include quinone compounds, diimide compounds, hydrazone compounds, malononitrile compounds, thiopyran compounds, trinitrothioxanthone compounds, 3,4,5,7-tetranitro-9-fluorenone compounds, Examples thereof include dinitroanthracene compounds, dinitroacridine compounds, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroacridine, succinic anhydride, maleic anhydride or dibromomaleic anhydride.
  • quinone compounds include diphenoquinone compounds, azoquinone compounds, anthraquinone compounds, naphthoquinone compounds, nitroanthraquinone compounds, and dinitroanthraquinone compounds. These electron transfer agents may be used alone or in combination of two or more.
  • electron transport agents compounds represented by general formula (ETM1), general formula (ETM2), general formula (ETM3), general formula (ETM4), or general formula (ETM5) (hereinafter referred to as electron transport agents (each ETM1) to (ETM5) are sometimes preferred.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may have a halogen atom.
  • the aryl group having 6 to 14 carbon atoms may have a halogen atom or one or more alkyl groups having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms represented by R 1 and R 2 is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a 2-methyl-2-butyl group.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the electron transfer agent (ETM1) include a compound represented by the chemical formula (ETM1-1) (hereinafter, sometimes referred to as an electron transfer agent (ETM1-1)).
  • the alkyl group having 1 to 6 carbon atoms represented by R 3 , R 4 , R 5 and R 6 is preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group or tert- A butyl group is more preferred.
  • R 3 , R 4 , R 5 and R 6 preferably represent an alkyl group having 1 to 6 carbon atoms.
  • Examples of the electron transfer agent (ETM2) include a compound represented by the chemical formula (ETM2-1) (hereinafter sometimes referred to as an electron transfer agent (ETM2-1)).
  • the alkyl group having 1 to 6 carbon atoms represented by R 7 , R 8 and R 9 is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a tert-butyl group.
  • the halogen atom represented by R 7 , R 8 and R 9 is preferably a chlorine atom.
  • the aryl group having 6 to 14 carbon atoms represented by R 7 , R 8 and R 9 is preferably an aryl group having 6 to 14 carbon atoms having a halogen atom, and having a chlorine atom.
  • a phenyl group is more preferred, and a p-chlorophenyl group is still more preferred.
  • R 7 , R 8, and R 9 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms having a halogen atom. preferable.
  • the electron transfer agent (ETM3) include a compound represented by the chemical formula (ETM3-1) (hereinafter sometimes referred to as an electron transfer agent (ETM3-1)).
  • an aryl group having 6 to 14 carbon atoms that may have one or more alkyl groups having 1 to 6 carbon atoms represented by R 10 and R 11 is a plurality of carbon atoms.
  • An aryl group having 6 to 14 carbon atoms having an alkyl group having 1 to 6 carbon atoms is preferred, more preferably a phenyl group having a plurality of alkyl groups having 1 to 3 carbon atoms, more preferably 2-ethyl- More preferred is a 6-methylphenyl group.
  • R 10 and R 11 preferably represent an aryl group having 6 to 14 carbon atoms having a plurality of alkyl groups having 1 to 6 carbon atoms.
  • Examples of the electron transfer agent (ETM4) include a compound represented by the chemical formula (ETM4-1) (hereinafter, sometimes referred to as an electron transfer agent (ETM4-1)).
  • the alkyl group having 1 to 6 carbon atoms which may have a halogen atom represented by R 12 is preferably an alkyl group having 1 to 6 carbon atoms having a halogen atom. And more preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a 4-chloro-n-butyl group.
  • R 12 preferably represents an alkyl group having 1 to 6 carbon atoms having a halogen atom.
  • Examples of the electron transfer agent (ETM5) include a compound represented by the chemical formula (ETM5-1) (hereinafter sometimes referred to as an electron transfer agent (ETM5-1)).
  • the content of the electron transport agent is preferably 5 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • Examples of the hole transporting agent include nitrogen-containing cyclic compounds and condensed polycyclic compounds.
  • Examples of nitrogen-containing cyclic compounds and condensed polycyclic compounds include triphenylamine derivatives; diamine derivatives (more specifically, N, N, N ′, N′-tetraphenylbenzidine derivatives, N, N, N ', N'-tetraphenylphenylenediamine derivative, N, N, N', N'-tetraphenylnaphthylenediamine derivative, di (aminophenylethenyl) benzene derivative or N, N, N ', N'-tetraphenyl Phenanthrylenediamine derivatives, etc.); oxadiazole compounds (more specifically, 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole, etc.); styryl compounds (more Specifically, 9- (4-diethylaminostyryl)
  • HTM hole transport agents
  • R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxy having 1 to 6 carbon atoms. Represents a group.
  • p, q, v and w each independently represent an integer of 0 or more and 5 or less.
  • m and n each independently represents an integer of 0 or more and 4 or less.
  • R 21 and R 25 each independently represents an alkyl group having 1 to 6 carbon atoms, p and v represent 1, q, w, m and n represent 0. It is preferable to represent.
  • hole transport agent examples include a compound represented by the chemical formula (HTM-1) (hereinafter sometimes referred to as a hole transport agent (HTM-1)).
  • the content of the hole transporting agent is preferably 10 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • binder resin examples include a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • thermoplastic resin examples include polyester resin, polycarbonate resin, styrene resin, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, styrene-acrylic acid copolymer, acrylic copolymer.
  • thermosetting resin examples include a silicone resin, an epoxy resin, a phenol resin, a urea resin, a melamine resin, and other crosslinkable thermosetting resins.
  • photocurable resin examples include an epoxy acrylate resin or a urethane-acrylic acid copolymer.
  • polycarbonate resins are preferred.
  • the binder resin is a polycarbonate resin
  • the polycarbonate resins bisphenol Z-type polycarbonate resin, bisphenol CZ-type polycarbonate resin, or bisphenol C-type polycarbonate resin is preferable, and the polycarbonate represented by the chemical formula (Z) is preferable because the transferability of the toner image by the photoreceptor is easy to improve.
  • a resin is more preferable.
  • the subscript of the repeating unit indicates the mole fraction of the repeating unit to which the subscript is attached relative to the total number of moles of the repeating unit in the resin.
  • the viscosity average molecular weight of the binder resin is preferably 40,000 or more, and more preferably 40,000 or more and 52,500 or less.
  • the viscosity average molecular weight of the binder resin is 40,000 or more, it is easy to improve the wear resistance of the photoreceptor. Further, when the viscosity average molecular weight of the binder resin is 52,500 or less, the binder resin is easily dissolved in the solvent at the time of forming the photosensitive layer, and the viscosity of the coating solution for the photosensitive layer does not become too high. As a result, it becomes easy to form a photosensitive layer.
  • Additives include, for example, deterioration inhibitors (more specifically, antioxidants, radical scavengers, quenchers or ultraviolet absorbers), softeners, surface modifiers, extenders, thickeners, dispersions. Stabilizers, waxes, acceptors, donors, surfactants, plasticizers, sensitizers or leveling agents can be mentioned.
  • the antioxidant include hindered phenol, hindered amine, paraphenylenediamine, arylalkane, hydroquinone, spirochroman, spiroidanone, or a derivative thereof, an organic sulfur compound, or an organic phosphorus compound.
  • middle layer contains an inorganic particle and resin (resin for intermediate
  • the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, zinc oxide, etc.). Or particles of a non-metal oxide (more specifically, silica or the like). These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
  • the intermediate layer resin is not particularly limited as long as it is a resin that can be used as a resin for forming the intermediate layer.
  • the intermediate layer may contain various additives as long as the electrophotographic characteristics of the photoreceptor are not adversely affected.
  • the additive is the same as the additive for the photosensitive layer.
  • the method for manufacturing the photoreceptor 1 includes a photosensitive layer forming step.
  • the photosensitive layer forming step will be described.
  • Photosensitive layer forming step In the photosensitive layer forming step, a photosensitive layer forming coating solution (hereinafter sometimes referred to as a coating solution) is applied onto the conductive substrate 2, and at least part of the solvent of the applied coating solution is removed.
  • the photosensitive layer 3 is formed.
  • the photosensitive layer forming step includes, for example, a coating solution preparing step, a coating step, and a drying step.
  • a coating liquid preparation process, a coating process, and a drying process will be described.
  • a coating liquid is prepared.
  • the coating liquid contains at least one of acid anhydrides (1) to (3), a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and a solvent.
  • An additive may be included in the coating liquid as necessary.
  • the coating solution for example, any one of acid anhydrides (1) to (3), a charge generator, a hole transport agent, an electron transport agent, a binder resin, and an additive are dissolved in a solvent. Alternatively, it can be prepared by dispersing.
  • the solvent contained in the coating solution is not particularly limited as long as each component contained in the coating solution can be dissolved or dispersed.
  • the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic hydrocarbon ( More specifically, benzene, toluene, xylene and the like), halogenated hydrocarbon (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ether (more specifically, dimethyl ether, diethyl ether, Tetrahydrofuran, ethylene glycol dimethyl ether or diethylene glycol dimethyl ether), ketone (more specifically, acetone, methyl ethyl ketone, cyclohexanone, etc.), ester (more specifically, ethyl a
  • the coating solution is prepared by mixing each component and dissolving or dispersing in a solvent.
  • dissolving, or dispersing for example, a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
  • the coating liquid may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of each layer formed.
  • a coating solution is applied onto the conductive substrate 2.
  • the method for applying the coating solution is not particularly limited as long as it is a method that can uniformly apply the coating solution on the conductive substrate 2. Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
  • a dip coating method is preferable as a method of applying the coating solution.
  • the coating process is performed by a dip coating method, in the coating process, the conductive substrate 2 is immersed in a coating solution. Subsequently, the immersed conductive substrate 2 is pulled up from the coating solution. Thereby, a coating liquid is apply
  • the drying step at least a part of the solvent contained in the coating film is removed.
  • the method for removing the solvent contained in the coating film is not particularly limited as long as it is a method capable of evaporating the solvent in the coating film. Examples of the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned.
  • the heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
  • the method for manufacturing the photoreceptor 1 may further include one or both of a step of forming the intermediate layer 4 and a step of forming the protective layer 5 as necessary.
  • a known method is appropriately selected.
  • FIG. 2 is a schematic diagram illustrating an example of an image forming apparatus according to the second embodiment.
  • the image forming apparatus 100 according to the second embodiment includes an image forming unit 40 (for example, an image forming unit 40a).
  • the image forming unit 40 includes an image carrier 30, a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48.
  • the image carrier 30 is a photoconductor according to the first embodiment.
  • the charging unit 42 charges the surface of the image carrier 30.
  • the charging polarity of the charging unit 42 is positive.
  • the exposure unit 44 exposes the charged surface of the image carrier 30 to form an electrostatic latent image on the surface of the image carrier 30.
  • the developing unit 46 develops the electrostatic latent image as a toner image.
  • the transfer unit 48 transfers the toner image from the image carrier 30 to the transfer body.
  • the image forming apparatus 100 according to the second embodiment can suppress image defects.
  • image defects include image defects caused by at least one of a decrease in toner image transferability and a decrease in sensitivity characteristics.
  • image defect an image defect caused by a decrease in toner image transferability will be described. *
  • the transferability of the toner image is deteriorated, the toner that could not be transferred to the transfer body remains on the image carrier 30. Residual toner may be transferred to an image formed in the next round with the circumference of the image carrier in the image forming step as a reference circumference.
  • An image defect in which an image reflecting the image of the reference circumference of the image carrier 30 is formed is an image defect caused by a decrease in transferability.
  • FIG. 3 is a schematic diagram showing an image in which an image defect has occurred.
  • the image 120 includes a region 102, a region 104, and a region 106.
  • the region 102, the region 104, and the region 106 are regions corresponding to one turn of the image carrier 30.
  • the image 108 in the region 102 includes a rectangular solid image (image density 100%).
  • Each of the area 104 and the area 106 includes an entire blank image (image density 0%) on the design image.
  • the image 108 in the region 102 is first formed along the direction a (conveying direction a) in which the recording medium is conveyed, then the blank image in the region 104 is formed, and finally, the blank image in the region 106 is formed.
  • the blank paper image in the region 104 is an image corresponding to one round of the next rotation of the image carrier 30, and 1 of the image carrier 30 in the second round with reference to the first round of the image carrier 30 forming the image 108. It is an image corresponding to the circumference.
  • the blank paper image in the area 106 is an image corresponding to one round of the next rotation of the image carrier 30, and 1 of the image carrier 30 on the third round with reference to the first round of the image carrier 30 forming the image 108. It is an image corresponding to the circumference.
  • the blank image in the area 110 of the area 104 is an image corresponding to the image 108 in the second turn of the image carrier 30.
  • a blank image in the area 112 of the area 106 is an image corresponding to the image 108 in the third round of the photoconductor.
  • an image reflecting the image 108 is formed in the area 110 and / or the area 112 as an image defect.
  • the image defect due to the decrease in the transferability of the toner image by the image carrier 30 occurs in a cycle with the circumference of the image carrier 30 as a unit. Images reflecting the image 108 are easily formed on both ends of the recording medium. This is considered to be because the pressing force to both ends of the recording medium is relatively strong.
  • the both end portions of the recording medium are, for example, both end portions in the vertical direction b (region 110L and region 110R) in the region 110 of the recording medium, and both end portions (region 112L and region 112R in the vertical direction b in the region 112. ).
  • the reason why the image forming apparatus 100 according to the second embodiment suppresses image defects is estimated as follows.
  • the image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30.
  • the photoconductor according to the first embodiment is excellent in toner image transferability.
  • the photoreceptor according to the first embodiment also has excellent sensitivity characteristics. Therefore, the image forming apparatus 100 according to the second embodiment can suppress image defects.
  • the image forming apparatus 100 is not particularly limited as long as it is an electrophotographic image forming apparatus.
  • the image forming apparatus 100 may be, for example, a monochrome image forming apparatus or a color image forming apparatus.
  • the image forming apparatus 100 employs, for example, a tandem method.
  • the tandem image forming apparatus 100 will be described as an example.
  • the image forming apparatus 100 employs a direct transfer method.
  • the transfer body is the recording medium P.
  • an image carrier is likely to be affected by a transfer bias, and thus a transfer memory is usually easily generated.
  • the image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30. Since the photoreceptor according to the first embodiment also has excellent sensitivity characteristics, it is possible to suppress the generation of a transfer memory.
  • the image bearing member 30 includes the photoconductor according to the first embodiment, it is considered that the occurrence of image defects due to the transfer memory can be suppressed even when the image forming apparatus 100 adopts the direct transfer method. It is done.
  • the image forming apparatus 100 can also employ an intermediate transfer method.
  • the transfer member is an intermediate transfer member (for example, an intermediate transfer belt or an intermediate transfer drum).
  • the image forming apparatus 100 can employ a contact development method.
  • the developing unit 46 develops the electrostatic latent image as a toner image while being in contact with the surface of the image carrier 30.
  • the image forming apparatus 100 according to the second embodiment can suppress the occurrence of image defects due to a decrease in transferability of the toner image by the image carrier 30 even when the contact development method is employed.
  • the image forming apparatus 100 can include a charging roller as the charging unit 42.
  • the charging roller comes into contact with the surface of the image carrier 30. That is, the image forming apparatus usually tends to generate a transfer memory in an image forming apparatus including a charging roller.
  • the image forming apparatus 100 includes the photoconductor according to the first embodiment as the image carrier 30. Since the photoreceptor according to the first embodiment also has excellent sensitivity characteristics, it is possible to suppress the generation of a transfer memory. Therefore, even if the image forming apparatus 100 according to the second embodiment includes a charging roller as the charging unit 42, it is possible to suppress the occurrence of image defects due to the generation of the transfer memory.
  • the image forming apparatus 100 can employ a so-called blade cleaner-less method.
  • the developing unit 46 cleans the surface of the image carrier 30.
  • the developing unit 46 can remove residual components.
  • residual components on the surface of the image carrier 30 are not scraped off by a cleaning unit (for example, a cleaning blade).
  • a cleaning unit for example, a cleaning blade.
  • a residual component usually tends to remain on the surface of the image carrier 30.
  • the photoreceptor of the first embodiment is excellent in toner transferability.
  • the image forming apparatus 100 including such a photoconductor employs a blade cleaner-less method, residual components, particularly minute components (for example, paper dust) of the recording medium P are unlikely to remain on the surface of the photoconductor. As a result, the image forming apparatus 100 can suppress the occurrence of image defects.
  • the image forming apparatus 100 includes image forming units 40a, 40b, 40c, and 40d, a transfer belt 50, and a fixing unit 52.
  • image forming unit 40 each of the image forming units 40a, 40b, 40c, and 40d is referred to as an image forming unit 40.
  • the image forming apparatus 100 is a monochrome image forming apparatus, the image forming apparatus 100 includes an image forming unit 40a, and the image forming units 40b to 40d are omitted.
  • the image forming unit 40 includes the image carrier 30, the charging unit 42, the exposure unit 44, the developing unit 46, and the transfer unit 48.
  • the image forming unit 40 includes an image carrier 30 at the center position.
  • the image carrier 30 is provided to be rotatable in the arrow direction (counterclockwise).
  • a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48 are provided in order from the upstream side in the rotation direction of the image carrier 30 with respect to the charging unit 42.
  • the image forming unit 40 may further include a cleaning unit or a charge removal unit (not shown).
  • Each of the image forming units 40a to 40d sequentially superimposes toner images of a plurality of colors (for example, four colors of black, cyan, magenta, and yellow) on the recording medium P on the transfer belt 50.
  • a plurality of colors for example, four colors of black, cyan, magenta, and yellow
  • the charging unit 42 charges the surface of the image carrier 30.
  • the charging unit 42 is a charging roller.
  • the charging roller charges the surface of the image carrier 30 while being in contact with the surface of the image carrier 30.
  • the charging polarity of the charging unit is positive.
  • the charging unit 42 is a non-contact type or contact type charging unit. Examples of the non-contact charging unit 42 include a corotron charger and a scorotron charger. Examples of the contact-type charging unit 42 include a charging roller or a charging brush.
  • the voltage applied by the charging unit 42 is not particularly limited, and examples thereof include a DC voltage, an AC voltage, or a superimposed voltage obtained by superimposing a DC current on an AC current.
  • the charging unit 42 that applies only the DC voltage has the following advantages compared to the case where the charging unit applies an AC voltage or the charging unit applies a superimposed voltage obtained by superimposing the AC voltage on the DC voltage.
  • the charging unit 42 applies only a DC voltage the voltage value applied to the image carrier 30 is constant, so that the surface of the image carrier 30 is easily charged uniformly to a constant potential. Further, when the charging unit 42 applies only a DC voltage, the wear amount of the photosensitive layer tends to decrease. As a result, a suitable image can be formed.
  • the image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30.
  • the photoconductor according to the first embodiment can also suppress the generation of a transfer memory. Therefore, even if the image forming apparatus 100 according to the second embodiment includes the charging unit 42 that contacts the image carrier 30 and applies a DC voltage, it is possible to suppress the occurrence of image defects due to the transfer memory. .
  • the exposure unit 44 exposes the surface of the charged image carrier 30. As a result, an electrostatic latent image is formed on the surface of the image carrier 30.
  • the electrostatic latent image is formed based on image data input to the image forming apparatus 100.
  • the developing unit 46 supplies toner to the surface of the image carrier 30 and develops the electrostatic latent image as a toner image.
  • the developing unit 46 can develop the electrostatic latent image as a toner image while in contact with the image carrier 30. Further, the developing unit 46 can clean the surface of the image carrier 30.
  • condition (a) A contact developing method is employed, and a peripheral speed (rotational speed) difference is provided between the image carrier 30 and the developing unit 46.
  • the contact development method shown in the condition (a) When the contact development method shown in the condition (a) is employed and a peripheral speed difference is provided between the image carrier 30 and the development unit 46, the surface of the image carrier 30 comes into contact with the development unit 46, and the image Adhering components on the surface of the carrier 30 are removed by friction with the developing unit 46.
  • the peripheral speed of the developing unit 46 is preferably faster than the peripheral speed of the image carrier 30.
  • the development method is a reversal development method.
  • the charging polarity of the toner, the surface potential of the unexposed area of the image carrier 30, and the surface potential of the exposed area of the image carrier 30 It is preferable that both the potential of the developing bias and the potential of the developing bias are positive.
  • the surface potential of the unexposed area and the surface potential of the exposed area of the image carrier 30 are the image carrier 30 that forms an image after the transfer unit 48 transfers the toner image from the image carrier 30 to the recording medium P. Is used before the charging unit 42 charges the surface of the image carrier 30 on the next round of the reference circumference.
  • the mathematical expression (b-1) of the condition (b) acts between the toner remaining on the image carrier 30 (hereinafter sometimes referred to as residual toner) and the unexposed area of the image carrier 30.
  • the electrostatic repulsive force is larger than the electrostatic repulsive force acting between the residual toner and the developing unit 46. Therefore, the residual toner in the unexposed area of the image carrier 30 moves from the surface of the image carrier 30 to the developing unit 46 and is collected.
  • the transfer belt 50 conveys the recording medium P between the image carrier 30 and the transfer unit 48.
  • the transfer belt 50 is an endless belt.
  • the transfer belt 50 is provided to be rotatable in the arrow direction (clockwise).
  • the transfer unit 48 transfers the toner image developed by the developing unit 46 from the surface of the image carrier 30 to the recording medium P.
  • the image carrier 30 is in contact with the recording medium P.
  • An example of the transfer unit 48 is a transfer roller.
  • the fixing unit 52 heats and / or pressurizes the unfixed toner image transferred to the recording medium P by the transfer unit 48.
  • the fixing unit 52 is, for example, a heating roller and / or a pressure roller.
  • the toner image is fixed on the recording medium P by heating and / or pressurizing the toner image. As a result, an image is formed on the recording medium P.
  • a process cartridge according to the third embodiment includes the photoconductor according to the first embodiment. Next, the process cartridge according to the third embodiment will be described with reference to FIG.
  • the process cartridge includes a unitized part.
  • the unitized portion includes the image carrier 30.
  • the unitized portion may include at least one selected from the group consisting of a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48 in addition to the image carrier 30.
  • the process cartridge corresponds to each of the image forming units 40a to 40d, for example.
  • the process cartridge may further include a static eliminator (not shown).
  • the process cartridge is designed to be detachable from the image forming apparatus 100. Therefore, the process cartridge is easy to handle, and when the sensitivity characteristics and the like of the image carrier 30 are deteriorated, the process cartridge including the image carrier 30 can be easily and quickly replaced.
  • Photoconductor Material As materials for forming the photosensitive layer of the photoreceptor, the following charge generator, hole transport agent, electron transport agent and binder resin were prepared.
  • the crystal structure of the charge generator (CGM-1) was X-type.
  • the hole transport agent (HTM-1) described in the first embodiment was prepared.
  • Photoconductors (A-1) to (A-21) and photoconductors (B-1) to (B-5) were produced using the materials for forming the photosensitive layer of the prepared photoconductor.
  • a photosensitive layer forming step was performed. First, a coating solution was prepared. 1.00 parts by weight of an acid anhydride (ADD-1), 2 parts by weight of a charge generating agent (CGM-1), 60 parts by weight of a hole transporting agent (HTM-1), and an electron transporting agent (ETM1-1) 35 parts by mass, 100 parts by mass of a polycarbonate resin (Z) as a binder resin, and 800 parts by mass of tetrahydrofuran as a solvent were charged into a container. The contents of the container were mixed and dispersed for 50 hours using a ball mill to obtain a coating solution.
  • ADD-1 acid anhydride
  • CGM-1 charge generating agent
  • HTM-1 hole transporting agent
  • ETM1-1 electron transporting agent
  • a coating solution was applied on the conductive substrate to form a coating film on the conductive substrate.
  • the conductive substrate was made of aluminum having a diameter of 160 mm, a length of 365 mm, and a thickness of 2 mm. Specifically, the conductive substrate was immersed in the coating solution. Next, the immersed conductive substrate was pulled up from the coating solution. Thereby, the coating solution was applied to the conductive substrate to form a coating film.
  • the conductive substrate on which the coating film was formed was dried with hot air at 100 ° C. for 40 minutes. Thereby, the solvent (tetrahydrofuran) contained in the coating film was removed. As a result, a photosensitive layer was formed on the conductive substrate. As a result, a photoreceptor (A-1) was obtained.
  • Table 1 shows the configurations of the photoconductors (A-1) to (A-21) and the photoconductors (B-1) to (B-5).
  • ETM1-1 to ETM5-1 in the column “Type of ETM” indicate the electron transfer agents (ETM1-1) to (ETM5-1), respectively.
  • ADD-1 to ADD-6 indicate acid anhydrides (ADD-1) to (ADD-6), respectively.
  • the column “content of acid anhydride” indicates the content (part by mass) of the acid anhydride with respect to 100 parts by mass of the binder resin.
  • Evaluation of sensitivity characteristics of photoreceptor measurement of potential after exposure of photoreceptor
  • the sensitivity characteristics of the photoreceptor were evaluated by measuring the post-exposure potential of the photoreceptor.
  • a surface potential meter (“MODEL244” manufactured by Monroe Electronics) was used to measure the post-exposure potential of the photoreceptor.
  • a surface potential probe (“MODEL1017AE” manufactured by Monroe Electronics) was placed at the position of the developing unit. That is, the surface potential of the photoreceptor in the exposure area after the charging process and the exposure process was measured. The obtained surface potential was defined as a post-exposure potential.
  • the post-exposure potential of the photoreceptor was measured under the conditions of a temperature of 23 ° C., a humidity of 50% RH, a charging potential of +600 V, an exposure wavelength of 780 nm, and an exposure dose of 1.2 ⁇ J / cm 2 .
  • the sensitivity characteristics of the photoreceptor were evaluated based on the evaluation criteria from the obtained post-exposure potential. Table 1 shows the post-exposure potential of the photoreceptor. (Evaluation criteria for sensitivity characteristics) Evaluation A (good): The post-exposure potential of the photoreceptor is less than + 140V. Evaluation B (normal): The post-exposure potential of the photoreceptor is +140 V or more and less than +160 V. Evaluation C (bad): The post-exposure potential of the photoreceptor is +160 V or more.
  • the surface potential of the photoreceptor was measured under the conditions of a temperature of 23 ° C., a humidity of 50% RH, a drum linear speed of 165 mm / second, a grid voltage of 600 V, and a flowing current of 300 ⁇ A.
  • Table 1 shows the surface potential of the photoreceptor.
  • the photoconductor was mounted on an evaluation machine.
  • a printer (“FS-1300D” manufactured by Kyocera Document Solutions Inc., dry electrophotographic printer using a semiconductor laser) was used as an evaluation machine.
  • the evaluator was provided with a charging roller as a charging unit. A DC voltage was applied to the charging roller.
  • the evaluation machine was provided with a direct transfer type transfer section (transfer roller).
  • the evaluator was equipped with a contact developing type developing unit.
  • “Kyocera Document Solutions Brand Paper VM-A4 (A4 size)” sold by Kyocera Document Solutions Inc. was used as the paper.
  • TK-131 manufactured by Kyocera Document Solutions Co., Ltd. was used as a toner.
  • the measurement of the transferability evaluation was performed in a high temperature and high humidity (temperature: 32.5 ° C., humidity: 80% RH) environment.
  • An evaluation image was formed on paper using an evaluation machine equipped with a photoreceptor and toner. Details of the evaluation image will be described later with reference to FIG.
  • the image forming condition was set to a linear velocity of 165 mm / sec.
  • the current applied by the transfer roller to the photoconductor was set to -25 ⁇ A.
  • the obtained image was visually confirmed, and the presence or absence of an image corresponding to the image 208 in the region 210 and the region 212 was confirmed.
  • the transferability of the toner image by the photoconductor was evaluated according to the following criteria. A (very good) and B (good) were accepted. Table 1 shows the evaluation results of the transferability of the toner image.
  • FIG. 4 is a schematic diagram showing an evaluation image.
  • the evaluation image 200 includes a region 202, a region 204, and a region 206.
  • the area 202 is an area corresponding to one turn of the image carrier 30.
  • the image 208 in the region 202 includes a solid image (image density 100%). This solid image had a rectangular shape.
  • Each of the region 204 and the region 206 is a region corresponding to one turn of the image carrier 30 and is composed of a blank paper image (image density 0%).
  • the image 208 of the region 202 was formed along the transport direction a, and then blank images of the region 204 and the region 206 were formed.
  • the blank image in the area 204 is an image formed on the second turn with reference to the circumference on which the image 208 is formed.
  • An area 210 is an area corresponding to the image 208 in the area 204.
  • a blank paper image in the area 206 is an image formed on the third circumference with the circumference on which the image 108 is formed as a reference.
  • An area 212 is an area corresponding to the image 208 in the area 206.
  • Evaluation A (very good): Images corresponding to the image 208 were not confirmed in the areas 210 and 212.
  • Evaluation B (good): Images corresponding to the image 208 were slightly confirmed at both ends of the area 210 in the vertical direction b. An image corresponding to the image 208 was not confirmed in the area 212.
  • Evaluation C (bad): Images corresponding to the image 208 were clearly confirmed at both ends of the area 210 in the vertical direction b. An image corresponding to the image 208 was not confirmed in the area 212.
  • the photosensitive layer includes a charge generator, a hole transport agent, an electron transport agent, a binder resin, an acid anhydride, and the like.
  • the acid anhydride is any one of acid anhydrides (ADD-1) to (ADD-6).
  • the acid anhydrides (ADD-1) to (ADD-6) are represented by general formula (1), general formula (2), or general formula (3).
  • the evaluation results of the transferability of the toner image by the photoconductor are all evaluation A (good).
  • the photosensitive layers are all acid anhydrides represented by the general formula (1), the general formula (2), or the general formula (3). Does not include things.
  • the evaluation results of the transferability of the toner image by the photoconductor are all evaluation C (bad).
  • the content of acid anhydride is 0.02 parts by mass or more to 100 parts by mass of the binder resin. 0.000 part by mass or less.
  • the surface potential is +55 V or more and +79 V or less in the evaluation of the transferability of the toner image, and all the evaluation results of the sensitivity characteristics are evaluation A (good). ).
  • the content of the acid anhydride is 0.01 parts by mass and 10.0 parts by mass with respect to 100 parts by mass of the binder resin, respectively. It is.
  • the surface potential is ⁇ 34V.
  • evaluation B normal.
  • the photoconductors (A-1) and (A-15) to (A-19) have both toner image transferability and sensitivity characteristics as compared with the photoconductors (A-20) to (A-21). Is also clearly superior.
  • the photoreceptor according to the present invention can be suitably used in an electrophotographic image forming apparatus.

Abstract

An electrographic photoreceptor (1) is provided with an electroconductive base (2) and a photosensitive layer (3). The photosensitive layer (3) is a single-layer photosensitive layer. The photosensitive layer (3) includes a charge-generating agent, a hole transport agent, an electron transport agent, a binder resin, and an acid anhydride. The acid anhydride is represented by formula (1), formula (2), or formula (3). In formulae (1) and (2), Ra, Rb, Rc, and Rd each represent, independently: a C1-6 alkyl group that optionally having a hydrogen atom, a halogen atom, and a first substituent group; a C1-6 alkoxy group that optionally has a second substituent group; or a C6-14 aryl group that optionally has a third substituent group. In formula (3), X represents a methylene group or an oxygen atom.

Description

電子写真感光体、プロセスカートリッジ及び画像形成装置Electrophotographic photosensitive member, process cartridge, and image forming apparatus
 本発明は、電子写真感光体、プロセスカートリッジ及び画像形成装置に関する。 The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.
 電子写真感光体は、像担持体として電子写真方式の画像形成装置(例えば、プリンター、又は複合機)において用いられる。一般に、電子写真感光体は、感光層を備える。感光層は、例えば、電荷発生剤、電荷輸送剤(より具体的には、正孔輸送剤又は電子輸送剤)、及びこれらを結着させる樹脂(バインダー樹脂)を含有する。例えば、電子写真感光体は、電荷発生剤と電荷輸送剤とを同一の層(感光層)に含有し、電荷発生と電荷輸送との両方の機能を同一の層に備える。このような電子写真感光体は、単層型電子写真感光体と呼ばれる。 The electrophotographic photoreceptor is used as an image carrier in an electrophotographic image forming apparatus (for example, a printer or a multifunction machine). In general, an electrophotographic photoreceptor includes a photosensitive layer. The photosensitive layer contains, for example, a charge generator, a charge transport agent (more specifically, a hole transport agent or an electron transport agent), and a resin (binder resin) that binds these. For example, an electrophotographic photoreceptor contains a charge generating agent and a charge transport agent in the same layer (photosensitive layer), and has both functions of charge generation and charge transport in the same layer. Such an electrophotographic photoreceptor is referred to as a single layer type electrophotographic photoreceptor.
 特許文献1には、有機光電変換膜が記載されている。有機光電変換膜は、例えば、光センサー、又は太陽電池に使用される。有機光電変換膜は、p型物質層と、n型物質層とを備える。n型物質層は1,4,5,8-ナフタレンテトラカルボン酸二無水物から形成される。 Patent Document 1 describes an organic photoelectric conversion film. The organic photoelectric conversion film is used for, for example, an optical sensor or a solar cell. The organic photoelectric conversion film includes a p-type material layer and an n-type material layer. The n-type material layer is formed from 1,4,5,8-naphthalenetetracarboxylic dianhydride.
特開2009-290190号公報JP 2009-290190 A
 しかし、特許文献1に記載の技術では、電子写真感光体によるトナー像の転写性を向上させることは不十分であった。 However, the technique described in Patent Document 1 is insufficient to improve the transferability of the toner image by the electrophotographic photosensitive member.
 本発明は上記課題に鑑みてなされたものであり、その目的は、トナー像の転写性に優れる電子写真感光体を提供することである。また、本発明の別の目的は、画像不良を抑制するプロセスカートリッジ及び画像形成装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrophotographic photoreceptor excellent in toner image transferability. Another object of the present invention is to provide a process cartridge and an image forming apparatus that suppress image defects.
 本発明の電子写真感光体は導電性基体と、感光層とを備える。前記感光層は、単層型感光層である。前記感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、酸無水物とを含む。前記酸無水物は、一般式(1)、一般式(2)又は一般式(3)で表される。 The electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer. The photosensitive layer is a single-layer type photosensitive layer. The photosensitive layer includes a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and an acid anhydride. The acid anhydride is represented by general formula (1), general formula (2), or general formula (3).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記一般式(1)及び前記一般式(2)中、Ra、Rb、Rc及びRdは、各々独立に、水素原子、ハロゲン原子、第一置換基を有してもよい炭素原子数1以上6以下のアルキル基、第二置換基を有してもよい炭素原子数1以上6以下のアルコキシ基又は第三置換基を有してもよい炭素原子数6以上14以下のアリール基を表す。前記第一置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。前記第二置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。第三置換基は、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。前記一般式(3)中、Xは、メチレン基又は酸素原子を表す。 In the general formula (1) and the general formula (2), R a , R b , R c and R d are each independently a hydrogen atom, a halogen atom, or a carbon atom which may have a first substituent. An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms which may have a second substituent, or an aryl group having 6 to 14 carbon atoms which may have a third substituent Represents. The first substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom. The second substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom. The third substituent is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom. In the general formula (3), X represents a methylene group or an oxygen atom.
 本発明のプロセスカートリッジは、上述した電子写真感光体を備える。 The process cartridge of the present invention includes the above-described electrophotographic photosensitive member.
 本発明の画像形成装置は、像担持体と、帯電部と、露光部と、現像部と、転写部とを備える。前記像担持体は、上述の電子写真感光体である。前記帯電部は、前記像担持体の表面を帯電する。前記帯電部の帯電極性は、正極性である。前記露光部は、帯電された前記像担持体の前記表面を露光して、前記像担持体の前記表面に静電潜像を形成する。前記現像部は、前記静電潜像をトナー像として現像する。前記転写部は、前記トナー像を前記像担持体から転写体へ転写する。 The image forming apparatus of the present invention includes an image carrier, a charging unit, an exposure unit, a developing unit, and a transfer unit. The image carrier is the above-described electrophotographic photosensitive member. The charging unit charges the surface of the image carrier. The charging polarity of the charging unit is positive. The exposure unit exposes the charged surface of the image carrier to form an electrostatic latent image on the surface of the image carrier. The developing unit develops the electrostatic latent image as a toner image. The transfer unit transfers the toner image from the image carrier to a transfer body.
 本発明の電子写真感光体は、トナー像の転写性に優れる。また、本発明のプロセスカートリッジ及び画像形成装置は、画像不良を抑制することができる。 The electrophotographic photosensitive member of the present invention is excellent in toner image transferability. In addition, the process cartridge and the image forming apparatus of the present invention can suppress image defects.
第一実施形態に係る電子写真感光体の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrophotographic photoreceptor which concerns on 1st embodiment. 第一実施形態に係る電子写真感光体の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrophotographic photoreceptor which concerns on 1st embodiment. 第一実施形態に係る電子写真感光体の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrophotographic photoreceptor which concerns on 1st embodiment. 第二実施形態に係る画像形成装置の一例を示す概略図である。It is the schematic which shows an example of the image forming apparatus which concerns on 2nd embodiment. 画像不良が発生した画像を示す模式図である。It is a schematic diagram which shows the image in which the image defect generate | occur | produced. 評価用画像を示す模式図である。It is a schematic diagram which shows the image for evaluation.
 以下、本発明の実施形態について詳細に説明する。しかし、本発明は、以下の実施形態に何ら限定されない。本発明は、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨は限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The present invention can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, about the location where description overlaps, although description may be abbreviate | omitted suitably, the summary of invention is not limited.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。 Hereinafter, a compound and its derivatives may be generically named by adding “system” after the compound name. In addition, when “polymer” is added after the compound name to indicate the polymer name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
 以下、ハロゲン原子、炭素原子数1以上6以下のアルキル基、炭素原子数1以上5以下のアルキル基、炭素原子数1以上4以下のアルキル基、炭素原子数1以上3以下のアルキル基、炭素原子数1以上6以下のアルコキシ基及び炭素原子数6以上14以下のアリール基は、何ら規定していなければ、それぞれ次の意味である。 Hereinafter, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms, carbon An alkoxy group having 1 to 6 atoms and an aryl group having 6 to 14 carbon atoms have the following meanings unless otherwise specified.
 ハロゲン原子としては、例えば、フッ素原子(フルオロ基)、塩素原子(クロロ基)、臭素原子(ブロモ基)又はヨウ素原子(ヨード基)が挙げられる。 Examples of the halogen atom include a fluorine atom (fluoro group), a chlorine atom (chloro group), a bromine atom (bromo group), or an iodine atom (iodo group).
 炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基又はヘキシル基が挙げられる。 An alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, A neopentyl group or a hexyl group is mentioned.
 炭素原子数1以上5以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上5以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基又はネオペンチル基が挙げられる。 An alkyl group having 1 to 5 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, or A neopentyl group is mentioned.
 炭素原子数1以上4以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上4以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基又はtert-ブチル基が挙げられる。 An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
 炭素原子数1以上3以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上3以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基又はイソプロピル基が挙げられる。 An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
 炭素原子数1以上6以下のアルコキシ基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基又はヘキシルオキシ基が挙げられる。 An alkoxy group having 1 to 6 carbon atoms is linear or branched and unsubstituted. Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, and hexyl. An oxy group is mentioned.
 炭素原子数6以上14以下のアリール基は、非置換である。炭素原子数6以上14以下のアリール基は、例えば、炭素原子数6以上14以下の非置換の芳香族単環炭化水素基、炭素原子数6以上14以下の非置換の芳香族縮合二環炭化水素基又は炭素原子数6以上14以下の非置換の芳香族縮合三環炭化水素基である。炭素原子数6以上14以下のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基又はフェナントリル基が挙げられる。 An aryl group having 6 to 14 carbon atoms is unsubstituted. Examples of the aryl group having 6 to 14 carbon atoms include an unsubstituted aromatic monocyclic hydrocarbon group having 6 to 14 carbon atoms and an unsubstituted aromatic condensed bicyclic carbon group having 6 to 14 carbon atoms. A hydrogen group or an unsubstituted aromatic condensed tricyclic hydrocarbon group having 6 to 14 carbon atoms. Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
<第一実施形態:電子写真感光体>
 第一実施形態に係る電子写真感光体(以下、「感光体」と記載することがある)は、トナー像の転写性に優れる。その理由は以下のように推測される。
<First embodiment: electrophotographic photoreceptor>
The electrophotographic photoreceptor according to the first embodiment (hereinafter sometimes referred to as “photoreceptor”) has excellent toner image transferability. The reason is presumed as follows.
 まず、便宜上、転写性の低下について説明する。電子写真方式の画像形成装置は、例えば、像担持体(感光体)と、帯電部と、露光部と、現像部と、転写部とを備える。転写部は、トナー像を感光体から転写体へ転写する。この転写部によって実行される転写工程において、感光体の露光領域の表面電位が低下し0V未満となると、感光体から転写体へのトナー像の転写性が低下することがある。このようなトナー像の転写性の低下は、特に高温高湿環境下で発生し易い。 First, for the sake of convenience, the deterioration of transferability will be described. An electrophotographic image forming apparatus includes, for example, an image carrier (photosensitive member), a charging unit, an exposure unit, a developing unit, and a transfer unit. The transfer unit transfers the toner image from the photosensitive member to the transfer member. In the transfer process executed by the transfer unit, if the surface potential of the exposure area of the photosensitive member decreases and becomes less than 0 V, the transferability of the toner image from the photosensitive member to the transfer member may decrease. Such a drop in toner image transferability is likely to occur particularly in a high temperature and high humidity environment.
 第一実施形態に係る感光体では、感光層は、一般式(1)、一般式(2)又は一般式(3)で表される酸無水物(以下、それぞれ酸無水物(1)~(3)と記載することがある)を含む。酸無水物(1)~(3)は、フタル酸誘導体又は1,8-ナフタレンジカルボン酸誘導体の無水物であって、分子量が比較的小さくかつ非対称構造を有するため、感光層用塗布液の溶媒に溶解し易く、感光層中に分散し易い。第一実施形態に係る感光体では、感光層が適度な電気抵抗を有する傾向にある。その結果、第一実施形態に係る感光体は、表面電位及び静電潜像が安定的に保持され易い。よって、第一実施形態に係る感光体は、トナー像の転写性に優れると考えられる。 In the photoreceptor according to the first embodiment, the photosensitive layer includes an acid anhydride represented by the general formula (1), the general formula (2), or the general formula (3) (hereinafter, the acid anhydrides (1) to ( 3)). Acid anhydrides (1) to (3) are anhydrides of phthalic acid derivatives or 1,8-naphthalenedicarboxylic acid derivatives, and have a relatively small molecular weight and an asymmetric structure. It is easy to dissolve in the photosensitive layer and to disperse in the photosensitive layer. In the photoreceptor according to the first embodiment, the photosensitive layer tends to have an appropriate electrical resistance. As a result, the photoreceptor according to the first embodiment is likely to stably hold the surface potential and the electrostatic latent image. Therefore, it is considered that the photoconductor according to the first embodiment is excellent in toner image transferability.
 トナー像の転写性は、画像により評価することができる。また、トナー像の転写性は、転写後の露光領域の感光体の表面電位により評価することができる。これらの評価方法は、実施例で詳細に説明する。ここで、転写後の感光体の表面電位を説明する。感光体の表面電位は、後述する第二実施形態に係る画像形成装置において転写部がトナー像を感光体の表面から転写体へ転写した後、帯電部が次周回の感光体の表面を帯電する前に測定される。次周回とは、画像形成工程における感光体の周回を基準周として感光体の次の画像形成工程の周回を意味する。感光体の表面電位は、正の値であってその絶対値が小さい場合、トナー像の転写性に優れることを示す。感光体の表面電位は、-50V以上であることが好ましく、0V以上であることがより好ましく、0V以上+90V以下であることがより好ましく、0V以上+70V以下であることが更に好ましい。感光体の表面電位が0V以上である場合、正帯電トナーと感光体表面の露光領域との間で静電的引力が作用しにくいため、トナー像は感光体から転写体へ転写し易い。 The transferability of the toner image can be evaluated from the image. Further, the transferability of the toner image can be evaluated by the surface potential of the photoconductor in the exposed area after transfer. These evaluation methods will be described in detail in Examples. Here, the surface potential of the photoreceptor after transfer will be described. In the image forming apparatus according to the second embodiment, which will be described later, the surface potential of the photosensitive member is charged by the charging unit after the transfer unit transfers the toner image from the surface of the photosensitive member to the transfer member. Measured before. The next round means the round of the next image forming process of the photoconductor using the circumference of the photoconductor in the image forming process as a reference circumference. When the surface potential of the photosensitive member is a positive value and its absolute value is small, it indicates that the toner image is excellent in transferability. The surface potential of the photoreceptor is preferably −50 V or more, more preferably 0 V or more, more preferably 0 V or more and +90 V or less, and further preferably 0 V or more and +70 V or less. When the surface potential of the photoconductor is 0 V or more, the electrostatic attraction is less likely to act between the positively charged toner and the exposed area on the surface of the photoconductor, so that the toner image is easily transferred from the photoconductor to the transfer body.
 図1A~図1Cを参照して、感光体について説明する。図1A~図1Cは、感光体1の構造を示す概略断面図である。感光体1は、導電性基体2と感光層3とを備える。感光層3は、単層型感光層である。感光層3は、導電性基体2上に直接又は間接に設けられる。例えば、図1Aに示すように、導電性基体2上に感光層3が直接設けられてもよい。例えば、図1Bに示すように、導電性基体2と感光層3との間に中間層4が設けられてもよい。また、図1A及び図1Bに示すように、感光層3が最外層として露出してもよい。図1Cに示すように、感光層3上に保護層5が備えられてもよい。以下、導電性基体、感光層及び中間層を説明する。また、感光体の製造方法も説明する。 The photoreceptor will be described with reference to FIGS. 1A to 1C. 1A to 1C are schematic cross-sectional views showing the structure of the photoreceptor 1. The photoreceptor 1 includes a conductive substrate 2 and a photosensitive layer 3. The photosensitive layer 3 is a single layer type photosensitive layer. The photosensitive layer 3 is provided directly or indirectly on the conductive substrate 2. For example, as shown in FIG. 1A, the photosensitive layer 3 may be provided directly on the conductive substrate 2. For example, an intermediate layer 4 may be provided between the conductive substrate 2 and the photosensitive layer 3 as shown in FIG. 1B. Further, as shown in FIGS. 1A and 1B, the photosensitive layer 3 may be exposed as the outermost layer. As shown in FIG. 1C, a protective layer 5 may be provided on the photosensitive layer 3. Hereinafter, the conductive substrate, the photosensitive layer, and the intermediate layer will be described. In addition, a method for manufacturing the photoreceptor will be described.
[1.導電性基体]
 導電性基体は、感光体の導電性基体として用いることができる限り、特に限定されない。導電性基体としては、少なくとも表面部が導電性を有する材料(以下、導電性材料と記載することがある)で構成される導電性基体を用いることができる。導電性基体の一例としては、導電性材料で構成される導電性基体が挙げられる。導電性基体の別の例としては、導電性材料で被覆される導電性基体が挙げられる。導電性材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム又はインジウムが挙げられる。これらの導電性を有する材料を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上の組合せとしては、例えば、合金(より具体的には、アルミニウム合金、ステンレス鋼又は真鍮等)が挙げられる。これらの導電性を有する材料のなかでも、感光層から導電性基体への電荷の移動が良好であることから、アルミニウム又はアルミニウム合金が好ましい。
[1. Conductive substrate]
The conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor. As the conductive substrate, a conductive substrate formed of a material having at least a surface portion having conductivity (hereinafter sometimes referred to as a conductive material) can be used. An example of the conductive substrate is a conductive substrate made of a conductive material. Another example of a conductive substrate is a conductive substrate coated with a conductive material. Examples of the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium. These materials having conductivity may be used alone or in combination of two or more. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.). Among these materials having conductivity, aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
 導電性基体の形状は、使用する画像形成装置の構造に合わせて適宜選択することができる。導電性基体の形状としては、例えば、シート状又はドラム状が挙げられる。また、導電性基体の厚みは、導電性基体の形状に応じて、適宜選択することができる。 The shape of the conductive substrate can be appropriately selected according to the structure of the image forming apparatus to be used. Examples of the shape of the conductive substrate include a sheet shape or a drum shape. Further, the thickness of the conductive substrate can be appropriately selected according to the shape of the conductive substrate.
[2.感光層]
 感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、酸無水物(1)~(3)の何れか一種とを含む。感光層は、必要に応じて、各種添加剤を含んでもよい。以下、酸無水物、電荷発生剤、電子輸送剤、正孔輸送剤、バインダー樹脂及び添加剤を説明する。
[2. Photosensitive layer]
The photosensitive layer contains a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and any one of acid anhydrides (1) to (3). The photosensitive layer may contain various additives as required. Hereinafter, an acid anhydride, a charge generator, an electron transport agent, a hole transport agent, a binder resin, and an additive will be described.
(2-1.酸無水物)
 酸無水物(1)~(3)は、それぞれ一般式(1)、一般式(2)又は一般式(3)で表される。
(2-1. Acid anhydride)
The acid anhydrides (1) to (3) are represented by general formula (1), general formula (2) or general formula (3), respectively.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(1)及び一般式(2)中、Ra、Rb、Rc及びRdは、各々独立に、水素原子、ハロゲン原子、第一置換基を有してもよい炭素原子数1以上6以下のアルキル基、第二置換基を有してもよい炭素原子数1以上6以下のアルコキシ基又は第三置換基を有してもよい炭素原子数6以上14以下のアリール基を表す。第一置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。第二置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。第三置換基は、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される。一般式(3)中、Xは、メチレン基又は酸素原子を表す。 In General Formula (1) and General Formula (2), R a , R b , R c, and R d each independently represent a hydrogen atom, a halogen atom, or a carbon atom that may have a first substituent. Represents an alkyl group having 6 or less carbon atoms, an alkoxy group having 1 to 6 carbon atoms which may have a second substituent, or an aryl group having 6 to 14 carbon atoms which may have a third substituent. . The first substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom. The second substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom. The third substituent is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom. In general formula (3), X represents a methylene group or an oxygen atom.
 一般式(1)~(2)中、Ra~Rdが表すハロゲン原子としては、塩素原子が好ましい。 In general formulas (1) to (2), the halogen atom represented by R a to R d is preferably a chlorine atom.
 一般式(1)~(2)中、Ra~Rdが表す炭素原子数1以上6以下のアルキル基は、置換基を有してもよい。Ra~Rdが表す炭素原子数1以上6以下のアルキル基の置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される置換基である。 In general formulas (1) to (2), the alkyl group having 1 to 6 carbon atoms represented by R a to R d may have a substituent. The substituent of the alkyl group having 1 to 6 carbon atoms represented by R a to R d is a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
 一般式(1)~(2)中、Ra~Rdが表す炭素原子数1以上6以下のアルコキシ基は、置換基を有してもよい。Ra~Rdが表す炭素原子数1以上6以下のアルキル基の置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される置換基である。 In general formulas (1) to (2), the alkoxy group having 1 to 6 carbon atoms represented by R a to R d may have a substituent. The substituent of the alkyl group having 1 to 6 carbon atoms represented by R a to R d is a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom.
 一般式(1)~(2)中、Ra~Rdが表す炭素原子数6以上14以下のアリール基は、置換基を有してもよい。Ra~Rdが表す炭素原子数6以上14以下のアリール基の置換基は、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択される置換基である。 In general formulas (1) to (2), the aryl group having 6 to 14 carbon atoms represented by R a to R d may have a substituent. The substituent of the aryl group having 6 to 14 carbon atoms represented by R a to R d is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom. Is the selected substituent.
 一般式(1)中、Ra及びRbは、水素原子を表し、一般式(2)中、Rc及びRdは、水素原子又はハロゲン原子を表すことが好ましく、水素原子又は塩素原子がより好ましい。 In general formula (1), R a and R b represent a hydrogen atom. In general formula (2), R c and R d preferably represent a hydrogen atom or a halogen atom, and a hydrogen atom or a chlorine atom represents More preferred.
 酸無水物の具体例としては、化学式(ADD-1)、化学式(ADD-2)、化学式(ADD-3)、化学式(ADD-4)、化学式(ADD-5)又は化学式(ADD-6)で表される化合物(以下、それぞれ酸無水物(ADD-1)~(ADD-6)と記載することがある)が挙げられる。 Specific examples of the acid anhydride include chemical formula (ADD-1), chemical formula (ADD-2), chemical formula (ADD-3), chemical formula (ADD-4), chemical formula (ADD-5), or chemical formula (ADD-6). (Hereinafter, may be referred to as acid anhydrides (ADD-1) to (ADD-6), respectively).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 酸無水物(ADD-1)~(ADD-6)のうち、酸無水物(ADD-1)又は(ADD-6)が好ましい。酸無水物(ADD-1)~(ADD-6)のうち、感光体によるトナー像の転写性を更に向上させる観点から、酸無水物(ADD-1)、(ADD-4)又は(ADD-5)が好ましい。 Of the acid anhydrides (ADD-1) to (ADD-6), acid anhydrides (ADD-1) or (ADD-6) are preferred. Among acid anhydrides (ADD-1) to (ADD-6), acid anhydrides (ADD-1), (ADD-4) or (ADD-) are used from the viewpoint of further improving the transferability of the toner image by the photoreceptor. 5) is preferred.
 酸無水物(1)~(3)の含有量は、バインダー樹脂100質量部に対して、0.01質量部以上10質量部以下であることが好ましく、0.02質量部以上7.00質量部以下であることがより好ましく、0.02質量部以上4.00質量部以下であることが更に好ましく、0.02質量部以上0.07質量以下であることが特に好ましい。酸無水物の含有量がバインダー樹脂100質量部に対して0.02質量部以上7.00質量部以下であると、感光体は、トナー像の転写性に優れ、かつ感度特性にも優れる。酸無水物の含有量がバインダー樹脂100質量部に対して0.02質量部以上4.00質量部以下であると、感光体は、トナー像の転写性が更に向上する。 The content of the acid anhydrides (1) to (3) is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.02 parts by mass or more and 7.00 parts by mass with respect to 100 parts by mass of the binder resin. The amount is more preferably 0.02 parts by mass or more and 4.00 parts by mass or less, and particularly preferably 0.02 parts by mass or more and 0.07 parts by mass or less. When the content of the acid anhydride is 0.02 parts by mass or more and 7.00 parts by mass or less with respect to 100 parts by mass of the binder resin, the photoreceptor has excellent toner image transferability and excellent sensitivity characteristics. When the content of the acid anhydride is 0.02 parts by mass or more and 4.00 parts by mass or less with respect to 100 parts by mass of the binder resin, the toner image is further improved in toner image transferability.
(2-2.電荷発生剤)
 電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン顔料、ビスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、トリスアゾ顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、無機光導電材料(より具体的には、セレン、セレン-テルル、セレン-ヒ素、硫化カドミウム又はアモルファスシリコン等)の粉末、ピリリウム塩、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料又はキナクリドン系顔料が挙げられる。
(2-2. Charge generator)
Examples of the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, and cyanine pigments. Powders of inorganic photoconductive materials (more specifically, selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, etc.), pyrylium salts, ansanthrone pigments, triphenylmethane pigments, selenium pigments, Toluidine pigments, pyrazoline pigments or quinacridone pigments may be mentioned.
 フタロシアニン系顔料としては、例えば、化学式(CGM-1)で表される無金属フタロシアニン又は金属フタロシアニンが挙げられる。金属フタロシアニンとしては、例えば、化学式(CGM-2)で表されるチタニルフタロシアニン、又は酸化チタン以外の金属が配位したフタロシアニン(より具体的には、V型ヒドロキシガリウムフタロシアニン等)が挙げられる。フタロシアニン系顔料は、結晶であってもよく、非結晶であってもよい。フタロシアニン系顔料の結晶形状(例えば、α型、β型又はY型)については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。 Examples of the phthalocyanine pigment include metal-free phthalocyanine or metal phthalocyanine represented by the chemical formula (CGM-1). Examples of the metal phthalocyanine include titanyl phthalocyanine represented by the chemical formula (CGM-2) or phthalocyanine coordinated with a metal other than titanium oxide (more specifically, V-type hydroxygallium phthalocyanine). The phthalocyanine pigment may be crystalline or non-crystalline. The crystal shape of the phthalocyanine pigment (for example, α type, β type, or Y type) is not particularly limited, and phthalocyanine pigments having various crystal shapes are used.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 無金属フタロシアニンの結晶としては、例えば、無金属フタロシアニンのX型結晶(以下、X型無金属フタロシアニンと記載することがある)が挙げられる。チタニルフタロシアニンの結晶としては、例えば、チタニルフタロシアニンのα型結晶、β型結晶又はY型結晶が挙げられる。感光層が酸無水物(1)~(3)の何れか一種を含む場合、これらの電荷発生剤のうち、フタロシアニン顔料が好ましく、無金属フタロシアニンがより好ましく、X型無金属フタロシアニンが更に好ましい。 Examples of the crystal of metal-free phthalocyanine include a metal-free phthalocyanine X-type crystal (hereinafter sometimes referred to as X-type metal-free phthalocyanine). Examples of the titanyl phthalocyanine crystal include α-type crystal, β-type crystal, and Y-type crystal of titanyl phthalocyanine. When the photosensitive layer contains any one of acid anhydrides (1) to (3), among these charge generators, phthalocyanine pigments are preferable, metal-free phthalocyanines are more preferable, and X-type metal-free phthalocyanines are still more preferable.
 所望の領域に吸収波長を有する電荷発生剤を単独で用いてもよいし、2種以上の電荷発生剤を組み合わせて用いてもよい。更に、例えば、デジタル光学式の画像形成装置には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。デジタル光学式の画像形成装置としては、例えば、半導体レーザーのような光源を使用したレーザービームプリンター又はファクシミリが挙げられる。そのため、例えば、フタロシアニン系顔料が好ましく、無金属フタロシアニン又はチタニルフタロシアニンがより好ましい。電荷発生剤は、一種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 A charge generator having an absorption wavelength in a desired region may be used alone, or two or more charge generators may be used in combination. Further, for example, in a digital optical image forming apparatus, it is preferable to use a photoconductor having sensitivity in a wavelength region of 700 nm or more. Examples of the digital optical image forming apparatus include a laser beam printer or a facsimile using a light source such as a semiconductor laser. Therefore, for example, phthalocyanine pigments are preferable, and metal-free phthalocyanine or titanyl phthalocyanine is more preferable. A charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 短波長レーザー光源を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料又はペリレン系顔料が好適に用いられる。なお、短波長レーザーとしては、例えば、350nm以上550nm以下程度の波長を有するレーザーが挙げられる。 For a photoreceptor applied to an image forming apparatus using a short wavelength laser light source, an ansanthrone pigment or a perylene pigment is preferably used as a charge generating agent. In addition, as a short wavelength laser, the laser which has a wavelength about 350 nm or more and 550 nm or less is mentioned, for example.
 電荷発生剤の含有量は、バインダー樹脂100質量部に対して、0.1質量部以上50質量部以下であることが好ましく、0.5質量部以上30質量部以下であることがより好ましい。 The content of the charge generating agent is preferably from 0.1 to 50 parts by mass, and more preferably from 0.5 to 30 parts by mass with respect to 100 parts by mass of the binder resin.
(2-3.電子輸送剤)
 電子輸送剤としては、例えば、キノン系化合物、ジイミド系化合物、ヒドラゾン系化合物、マロノニトリル系化合物、チオピラン系化合物、トリニトロチオキサントン系化合物、3,4,5,7-テトラニトロ-9-フルオレノン系化合物、ジニトロアントラセン系化合物、ジニトロアクリジン系化合物、テトラシアノエチレン、2,4,8-トリニトロチオキサントン、ジニトロベンゼン、ジニトロアクリジン、無水コハク酸、無水マレイン酸又はジブロモ無水マレイン酸が挙げられる。キノン系化合物としては、例えば、ジフェノキノン系化合物、アゾキノン系化合物、アントラキノン系化合物、ナフトキノン系化合物、ニトロアントラキノン系化合物又はジニトロアントラキノン系化合物が挙げられる。これらの電子輸送剤は、一種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(2-3. Electron transport agent)
Examples of the electron transfer agent include quinone compounds, diimide compounds, hydrazone compounds, malononitrile compounds, thiopyran compounds, trinitrothioxanthone compounds, 3,4,5,7-tetranitro-9-fluorenone compounds, Examples thereof include dinitroanthracene compounds, dinitroacridine compounds, tetracyanoethylene, 2,4,8-trinitrothioxanthone, dinitrobenzene, dinitroacridine, succinic anhydride, maleic anhydride or dibromomaleic anhydride. Examples of quinone compounds include diphenoquinone compounds, azoquinone compounds, anthraquinone compounds, naphthoquinone compounds, nitroanthraquinone compounds, and dinitroanthraquinone compounds. These electron transfer agents may be used alone or in combination of two or more.
 これらの電子輸送剤のうち、一般式(ETM1)、一般式(ETM2)、一般式(ETM3)、一般式(ETM4)又は一般式(ETM5)で表される化合物(以下、それぞれ電子輸送剤(ETM1)~(ETM5)と記載することがある)が好ましい。 Among these electron transport agents, compounds represented by general formula (ETM1), general formula (ETM2), general formula (ETM3), general formula (ETM4), or general formula (ETM5) (hereinafter referred to as electron transport agents (each ETM1) to (ETM5) are sometimes preferred.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 一般式(ETM1)~(ETM5)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11及びR12は、各々独立に、水素原子、ハロゲン原子、炭素原子数1以上6以下のアルキル基又は炭素原子数6以上14以下のアリール基を表す。炭素原子数1以上6以下のアルキル基は、ハロゲン原子を有してもよい。炭素原子数6以上14以下のアリール基は、ハロゲン原子又は1若しくは複数の炭素原子数1以上6以下のアルキル基を有してもよい。 In the general formulas (ETM1) to (ETM5), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms. The alkyl group having 1 to 6 carbon atoms may have a halogen atom. The aryl group having 6 to 14 carbon atoms may have a halogen atom or one or more alkyl groups having 1 to 6 carbon atoms.
 一般式(ETM1)中、R1及びR2が表す炭素原子数1以上6以下のアルキル基は、炭素原子数1以上5以下のアルキル基が好ましく、2-メチル-2-ブチル基が好ましい。一般式(ETM1)中、R1及びR2は、各々独立に、水素原子又は炭素原子数1以上6以下のアルキル基を表すことが好ましい。電子輸送剤(ETM1)としては、例えば、化学式(ETM1-1)で表される化合物(以下、電子輸送剤(ETM1-1)と記載することがある)が挙げられる。 In general formula (ETM1), the alkyl group having 1 to 6 carbon atoms represented by R 1 and R 2 is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a 2-methyl-2-butyl group. In general formula (ETM1), it is preferable that R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the electron transfer agent (ETM1) include a compound represented by the chemical formula (ETM1-1) (hereinafter, sometimes referred to as an electron transfer agent (ETM1-1)).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 一般式(ETM2)中、R3、R4、R5及びR6が表す炭素原子数1以上6以下のアルキル基は、炭素原子数1以上4以下のアルキル基が好ましく、メチル基又はtert-ブチル基がより好ましい。一般式(ETM2)中、R3、R4、R5及びR6は、炭素原子数1以上6以下のアルキル基を表すことが好ましい。電子輸送剤(ETM2)としては、例えば、化学式(ETM2-1)で表される化合物(以下、電子輸送剤(ETM2-1)と記載することがある)が挙げられる。 In general formula (ETM2), the alkyl group having 1 to 6 carbon atoms represented by R 3 , R 4 , R 5 and R 6 is preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group or tert- A butyl group is more preferred. In general formula (ETM2), R 3 , R 4 , R 5 and R 6 preferably represent an alkyl group having 1 to 6 carbon atoms. Examples of the electron transfer agent (ETM2) include a compound represented by the chemical formula (ETM2-1) (hereinafter sometimes referred to as an electron transfer agent (ETM2-1)).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(ETM3)中、R7、R8及びR9が表す炭素原子数1以上6以下のアルキル基は、炭素原子数1以上4以下のアルキル基が好ましく、tert-ブチル基がより好ましい。R7、R8及びR9が表すハロゲン原子は塩素原子が好ましい。一般式(ETM3)中、R7、R8及びR9が表す炭素原子数6以上14以下のアリール基は、ハロゲン原子を有する炭素原子数6以上14以下のアリール基が好ましく、塩素原子を有するフェニル基がより好ましく、p-クロロフェニル基が更に好ましい。一般式(ETM3)中、R7、R8及びR9は、各々独立に、炭素原子数1以上6以下のアルキル基又はハロゲン原子を有する炭素原子数6以上14以下のアリール基を表すことが好ましい。電子輸送剤(ETM3)としては、例えば、化学式(ETM3-1)で表される化合物(以下、電子輸送剤(ETM3-1)と記載することがある)が挙げられる。 In general formula (ETM3), the alkyl group having 1 to 6 carbon atoms represented by R 7 , R 8 and R 9 is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a tert-butyl group. The halogen atom represented by R 7 , R 8 and R 9 is preferably a chlorine atom. In general formula (ETM3), the aryl group having 6 to 14 carbon atoms represented by R 7 , R 8 and R 9 is preferably an aryl group having 6 to 14 carbon atoms having a halogen atom, and having a chlorine atom. A phenyl group is more preferred, and a p-chlorophenyl group is still more preferred. In General Formula (ETM3), R 7 , R 8, and R 9 each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms having a halogen atom. preferable. Examples of the electron transfer agent (ETM3) include a compound represented by the chemical formula (ETM3-1) (hereinafter sometimes referred to as an electron transfer agent (ETM3-1)).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 一般式(ETM4)中、R10及びR11が表す1又は複数の炭素原子数1以上6以下のアルキル基を有してもよい炭素原子数6以上14以下のアリール基は、複数の炭素原子数1以上6以下のアルキル基を有する炭素原子数6以上14以下のアリール基が好ましく、複数の炭素原子数1以上3以下のアルキル基を有するフェニル基を表すことがより好ましく、2-エチル-6-メチルフェニル基が更に好ましい。一般式(ETM4)中、R10及びR11は、複数の炭素原子数1以上6以下のアルキル基を有する炭素原子数6以上14以下のアリール基を表すことが好ましい。電子輸送剤(ETM4)としては、例えば、化学式(ETM4-1)で表される化合物(以下、電子輸送剤(ETM4-1)と記載することがある)が挙げられる。 In General Formula (ETM4), an aryl group having 6 to 14 carbon atoms that may have one or more alkyl groups having 1 to 6 carbon atoms represented by R 10 and R 11 is a plurality of carbon atoms. An aryl group having 6 to 14 carbon atoms having an alkyl group having 1 to 6 carbon atoms is preferred, more preferably a phenyl group having a plurality of alkyl groups having 1 to 3 carbon atoms, more preferably 2-ethyl- More preferred is a 6-methylphenyl group. In General Formula (ETM4), R 10 and R 11 preferably represent an aryl group having 6 to 14 carbon atoms having a plurality of alkyl groups having 1 to 6 carbon atoms. Examples of the electron transfer agent (ETM4) include a compound represented by the chemical formula (ETM4-1) (hereinafter, sometimes referred to as an electron transfer agent (ETM4-1)).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 一般式(ETM5)中、R12が表すハロゲン原子を有してもよい炭素原子数1以上6以下のアルキル基は、ハロゲン原子を有する炭素原子数1以上6以下のアルキル基が好ましく、ハロゲン原子を有する炭素原子数1以上4以下のアルキル基がより好ましく、4-クロロ-n-ブチル基が更に好ましい。一般式(ETM5)中、R12は、ハロゲン原子を有する炭素原子数1以上6以下のアルキル基を表すことが好ましい。電子輸送剤(ETM5)としては、例えば、化学式(ETM5-1)で表される化合物(以下、電子輸送剤(ETM5-1)と記載することがある)が挙げられる。 In general formula (ETM5), the alkyl group having 1 to 6 carbon atoms which may have a halogen atom represented by R 12 is preferably an alkyl group having 1 to 6 carbon atoms having a halogen atom. And more preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a 4-chloro-n-butyl group. In General Formula (ETM5), R 12 preferably represents an alkyl group having 1 to 6 carbon atoms having a halogen atom. Examples of the electron transfer agent (ETM5) include a compound represented by the chemical formula (ETM5-1) (hereinafter sometimes referred to as an electron transfer agent (ETM5-1)).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 電子輸送剤の含有量は、バインダー樹脂100質量部に対して、5質量部以上100質量部以下であることが好ましく、10質量部以上80質量部以下であることがより好ましい。 The content of the electron transport agent is preferably 5 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the binder resin.
(2-4.正孔輸送剤)
 正孔輸送剤としては、例えば、含窒素環式化合物又は縮合多環式化合物が挙げられる。含窒素環式化合物及び縮合多環式化合物としては、例えば、トリフェニルアミン誘導体;ジアミン誘導体(より具体的には、N,N,N’,N’-テトラフェニルベンジジン誘導体、N,N,N’,N’-テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’-テトラフェニルナフチレンジアミン誘導体、ジ(アミノフェニルエテニル)ベンゼン誘導体又はN,N,N’,N’-テトラフェニルフェナントリレンジアミン誘導体等);オキサジアゾール系化合物(より具体的には、2,5-ジ(4-メチルアミノフェニル)-1,3,4-オキサジアゾール等);スチリル系化合物(より具体的には、9-(4-ジエチルアミノスチリル)アントラセン等);カルバゾール系化合物(より具体的には、ポリビニルカルバゾール等);有機ポリシラン化合物;ピラゾリン系化合物(より具体的には、1-フェニル-3-(p-ジメチルアミノフェニル)ピラゾリン等);ヒドラゾン系化合物;インドール系化合物;オキサゾール系化合物;イソオキサゾール系化合物;チアゾール系化合物;チアジアゾール系化合物;イミダゾール系化合物;ピラゾール系化合物;又はトリアゾール系化合物が挙げられる。これらの正孔輸送剤は、一種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(2-4. Hole transport agent)
Examples of the hole transporting agent include nitrogen-containing cyclic compounds and condensed polycyclic compounds. Examples of nitrogen-containing cyclic compounds and condensed polycyclic compounds include triphenylamine derivatives; diamine derivatives (more specifically, N, N, N ′, N′-tetraphenylbenzidine derivatives, N, N, N ', N'-tetraphenylphenylenediamine derivative, N, N, N', N'-tetraphenylnaphthylenediamine derivative, di (aminophenylethenyl) benzene derivative or N, N, N ', N'-tetraphenyl Phenanthrylenediamine derivatives, etc.); oxadiazole compounds (more specifically, 2,5-di (4-methylaminophenyl) -1,3,4-oxadiazole, etc.); styryl compounds (more Specifically, 9- (4-diethylaminostyryl) anthracene etc.); carbazole compounds (more specifically, polyvinyl carbazole etc.); organic poly Lan compounds; pyrazoline compounds (more specifically, 1-phenyl-3- (p-dimethylaminophenyl) pyrazoline, etc.); hydrazone compounds; indole compounds; oxazole compounds; isoxazole compounds; thiazole compounds A thiadiazole compound; an imidazole compound; a pyrazole compound; or a triazole compound. These hole transport agents may be used alone or in combination of two or more.
 これらの正孔輸送剤のうち、一般式(HTM)で表される化合物が好ましい。 Of these hole transport agents, compounds represented by the general formula (HTM) are preferred.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 一般式(HTM)中、R21、R22、R23、R24、R25及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表す。p、q、v及びwは、各々独立に、0以上5以下の整数を表す。m及びnは、各々独立に、0以上4以下の整数を表す。 In the general formula (HTM), R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxy having 1 to 6 carbon atoms. Represents a group. p, q, v and w each independently represent an integer of 0 or more and 5 or less. m and n each independently represents an integer of 0 or more and 4 or less.
 一般式(HTM)中、R21及びR25は、各々独立に、炭素原子数1以上6以下のアルキル基を表し、p及びvは、1を表し、q、w、m及びnは0を表すことが好ましい。 In the general formula (HTM), R 21 and R 25 each independently represents an alkyl group having 1 to 6 carbon atoms, p and v represent 1, q, w, m and n represent 0. It is preferable to represent.
 正孔輸送剤の具体例としては、化学式(HTM-1)で表される化合物(以下、正孔輸送剤(HTM-1)と記載することがある)が挙げられる。 Specific examples of the hole transport agent include a compound represented by the chemical formula (HTM-1) (hereinafter sometimes referred to as a hole transport agent (HTM-1)).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 正孔輸送剤の含有量は、バインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。 The content of the hole transporting agent is preferably 10 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin.
(2-5.バインダー樹脂)
 バインダー樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリエステル樹脂、ポリカーボネート樹脂、スチレン系樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸共重合体、アクリル共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル-酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂又はポリエーテル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂又はその他の架橋性の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシアクリル酸樹脂又はウレタン-アクリル酸共重合体が挙げられる。これらのバインダー樹脂は、一種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(2-5. Binder resin)
Examples of the binder resin include a thermoplastic resin, a thermosetting resin, and a photocurable resin. Examples of the thermoplastic resin include polyester resin, polycarbonate resin, styrene resin, styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-maleic acid copolymer, styrene-acrylic acid copolymer, acrylic copolymer. Polymer, polyethylene resin, ethylene-vinyl acetate copolymer, chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin, urethane resin, polyarylate resin , Polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin or polyether resin. Examples of the thermosetting resin include a silicone resin, an epoxy resin, a phenol resin, a urea resin, a melamine resin, and other crosslinkable thermosetting resins. Examples of the photocurable resin include an epoxy acrylate resin or a urethane-acrylic acid copolymer. These binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 これらのバインダー樹脂の中では、ポリカーボネート樹脂が好ましい。バインダー樹脂がポリカーボネート樹脂であると、加工性、機械的強度、光学的特性及び耐摩耗性のバランスに優れた感光層が得られ易い。感光体によるトナー像の転写性を向上させ易いことから、ポリカーボネート樹脂のなかでは、ビスフェノールZ型ポリカーボネート樹脂、ビスフェノールCZ型ポリカーボネート樹脂又はビスフェノールC型ポリカーボネート樹脂が好ましく、化学式(Z)で表されるポリカーボネート樹脂がより好ましい。化学式(Z)中、繰り返し単位の添え字は、樹脂中の繰り返し単位の総モル数に対する、添え字が付された繰り返し単位のモル分率を示す。 Of these binder resins, polycarbonate resins are preferred. When the binder resin is a polycarbonate resin, it is easy to obtain a photosensitive layer having an excellent balance of processability, mechanical strength, optical characteristics, and wear resistance. Among the polycarbonate resins, bisphenol Z-type polycarbonate resin, bisphenol CZ-type polycarbonate resin, or bisphenol C-type polycarbonate resin is preferable, and the polycarbonate represented by the chemical formula (Z) is preferable because the transferability of the toner image by the photoreceptor is easy to improve. A resin is more preferable. In chemical formula (Z), the subscript of the repeating unit indicates the mole fraction of the repeating unit to which the subscript is attached relative to the total number of moles of the repeating unit in the resin.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 バインダー樹脂の粘度平均分子量は、40,000以上であることが好ましく、40,000以上52,500以下であることがより好ましい。バインダー樹脂の粘度平均分子量が40,000以上であると、感光体の耐摩耗性を向上させ易い。また、バインダー樹脂の粘度平均分子量が52,500以下であると、感光層の形成時にバインダー樹脂が溶剤に溶解し易くなり、感光層用塗布液の粘度が高くなり過ぎない。その結果、感光層を形成し易くなる。 The viscosity average molecular weight of the binder resin is preferably 40,000 or more, and more preferably 40,000 or more and 52,500 or less. When the viscosity average molecular weight of the binder resin is 40,000 or more, it is easy to improve the wear resistance of the photoreceptor. Further, when the viscosity average molecular weight of the binder resin is 52,500 or less, the binder resin is easily dissolved in the solvent at the time of forming the photosensitive layer, and the viscosity of the coating solution for the photosensitive layer does not become too high. As a result, it becomes easy to form a photosensitive layer.
(2-6.添加剤)
 添加剤としては、例えば、劣化防止剤(より具体的には、酸化防止剤、ラジカル捕捉剤、消光剤又は紫外線吸収剤等)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、アクセプター、ドナー、界面活性剤、可塑剤、増感剤又はレベリング剤が挙げられる。酸化防止剤としては、例えば、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン若しくはこれらの誘導体、有機硫黄化合物又は有機燐化合物が挙げられる。
(2-6. Additives)
Additives include, for example, deterioration inhibitors (more specifically, antioxidants, radical scavengers, quenchers or ultraviolet absorbers), softeners, surface modifiers, extenders, thickeners, dispersions. Stabilizers, waxes, acceptors, donors, surfactants, plasticizers, sensitizers or leveling agents can be mentioned. Examples of the antioxidant include hindered phenol, hindered amine, paraphenylenediamine, arylalkane, hydroquinone, spirochroman, spiroidanone, or a derivative thereof, an organic sulfur compound, or an organic phosphorus compound.
[3.中間層]
 中間層は、例えば、無機粒子と、樹脂(中間層用樹脂)とを含有する。中間層4の存在により、電流リークの発生を抑制し得る程度の絶縁状態を維持すると考えられる。また、中間層4の存在により、感光体1を露光した時に発生する電流の流れを円滑にして、電気抵抗の上昇が抑えられると考えられる。
[3. Middle layer]
An intermediate | middle layer contains an inorganic particle and resin (resin for intermediate | middle layers), for example. It is considered that the presence of the intermediate layer 4 maintains an insulating state that can suppress the occurrence of current leakage. In addition, it is considered that the presence of the intermediate layer 4 smoothes the flow of current generated when the photosensitive member 1 is exposed and suppresses an increase in electrical resistance.
 無機粒子としては、例えば、金属(より具体的には、アルミニウム、鉄又は銅等)の粒子、金属酸化物(より具体的には、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ又は酸化亜鉛等)の粒子又は非金属酸化物(より具体的には、シリカ等)の粒子が挙げられる。これらの無機粒子は、一種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, zinc oxide, etc.). Or particles of a non-metal oxide (more specifically, silica or the like). These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
 中間層用樹脂としては、中間層を形成する樹脂として用いることができる樹脂である限り、特に限定されない。 The intermediate layer resin is not particularly limited as long as it is a resin that can be used as a resin for forming the intermediate layer.
 中間層は、感光体の電子写真特性に悪影響を与えない範囲で、各種の添加剤を含有してもよい。添加剤は、感光層の添加剤と同様である。 The intermediate layer may contain various additives as long as the electrophotographic characteristics of the photoreceptor are not adversely affected. The additive is the same as the additive for the photosensitive layer.
[4.感光体の製造方法]
 図1を参照して、感光体1の製造方法について説明する。感光体1の製造方法は、感光層形成工程を含む。以下、感光層形成工程を説明する。
[4. Photoconductor manufacturing method]
With reference to FIG. 1, the manufacturing method of the photoreceptor 1 is demonstrated. The method for manufacturing the photoreceptor 1 includes a photosensitive layer forming step. Hereinafter, the photosensitive layer forming step will be described.
(4-1.感光層形成工程)
 感光層形成工程では、導電性基体2上に感光層形成用塗布液(以下、塗布液と記載することがある)を塗布して、塗布した塗布液の溶媒の少なくとも一部を除去して、感光層3を形成する。感光層形成工程は、例えば、塗布液調製工程と、塗布工程と、乾燥工程とを含む。以下、塗布液調製工程、塗布工程及び乾燥工程を説明する。
(4-1. Photosensitive layer forming step)
In the photosensitive layer forming step, a photosensitive layer forming coating solution (hereinafter sometimes referred to as a coating solution) is applied onto the conductive substrate 2, and at least part of the solvent of the applied coating solution is removed. The photosensitive layer 3 is formed. The photosensitive layer forming step includes, for example, a coating solution preparing step, a coating step, and a drying step. Hereinafter, a coating liquid preparation process, a coating process, and a drying process will be described.
(4-1-1.塗布液調製工程)
 塗布液調製工程では、塗布液を調製する。塗布液は、酸無水物(1)~(3)の何れか一種と、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、溶剤とを少なくとも含む。塗布液には、必要に応じて、添加剤を含ませてもよい。塗布液は、例えば、酸無水物(1)~(3)の何れか一種と、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、添加剤とを、溶剤に溶解又は分散させることにより調製することができる。
(4-1-1. Coating solution preparation process)
In the coating liquid preparation step, a coating liquid is prepared. The coating liquid contains at least one of acid anhydrides (1) to (3), a charge generating agent, a hole transporting agent, an electron transporting agent, a binder resin, and a solvent. An additive may be included in the coating liquid as necessary. As the coating solution, for example, any one of acid anhydrides (1) to (3), a charge generator, a hole transport agent, an electron transport agent, a binder resin, and an additive are dissolved in a solvent. Alternatively, it can be prepared by dispersing.
 塗布液に含有される溶剤は、塗布液に含まれる各成分を溶解又は分散できれば、特に限定されない。溶剤としては、例えば、アルコール(より具体的には、メタノール、エタノール、イソプロパノール又はブタノール等)、脂肪族炭化水素(より具体的には、n-ヘキサン、オクタン又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素又はクロロベンゼン等)、エーテル(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル又はジエチレングリコールジメチルエーテル等)、ケトン(より具体的には、アセトン、メチルエチルケトン又はシクロヘキサノン等)、エステル(より具体的には、酢酸エチル又は酢酸メチル等)、ジメチルホルムアルデヒド、N,N-ジメチルホルムアミド(DMF)又はジメチルスルホキシドが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの溶剤のうち、非ハロゲン溶剤が好ましい。 The solvent contained in the coating solution is not particularly limited as long as each component contained in the coating solution can be dissolved or dispersed. Examples of the solvent include alcohol (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbon (more specifically, n-hexane, octane, cyclohexane, etc.), aromatic hydrocarbon ( More specifically, benzene, toluene, xylene and the like), halogenated hydrocarbon (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ether (more specifically, dimethyl ether, diethyl ether, Tetrahydrofuran, ethylene glycol dimethyl ether or diethylene glycol dimethyl ether), ketone (more specifically, acetone, methyl ethyl ketone, cyclohexanone, etc.), ester (more specifically, ethyl acetate, methyl acetate, etc.), dimethylform Aldehydes, N, include N- dimethylformamide (DMF) or dimethyl sulfoxide. These solvents may be used alone or in combination of two or more. Of these solvents, non-halogen solvents are preferred.
 塗布液は、各成分を混合し、溶剤に溶解又は分散することにより調製される。混合、溶解又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー又は超音波分散器を用いることができる。 The coating solution is prepared by mixing each component and dissolving or dispersing in a solvent. For mixing, dissolving, or dispersing, for example, a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
 塗布液は、各成分の分散性又は形成される各々の層の表面平滑性を向上させるために、例えば、界面活性剤又はレベリング剤を含有してもよい。 The coating liquid may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of each layer formed.
(4-1-2.塗布工程)
 塗布工程では、塗布液を導電性基体2上に塗布する。塗布液を塗布する方法としては、例えば、導電性基体2上に均一に塗布液を塗布できる方法であれば、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法又はバーコート法が挙げられる。
(4-1-2. Application process)
In the coating process, a coating solution is applied onto the conductive substrate 2. The method for applying the coating solution is not particularly limited as long as it is a method that can uniformly apply the coating solution on the conductive substrate 2. Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
 感光層3の厚さを所望の値に調整し易いことから、塗布液を塗布する方法としては、ディップコート法が好ましい。塗布工程がディップコート法によって行われる場合、塗布工程では、導電性基体2を、塗布液に浸漬する。続いて、浸漬した導電性基体2を塗布液から引き上げる。これにより、導電性基体2に塗布液が塗布され、塗布膜が形成される。 Since it is easy to adjust the thickness of the photosensitive layer 3 to a desired value, a dip coating method is preferable as a method of applying the coating solution. When the coating process is performed by a dip coating method, in the coating process, the conductive substrate 2 is immersed in a coating solution. Subsequently, the immersed conductive substrate 2 is pulled up from the coating solution. Thereby, a coating liquid is apply | coated to the electroconductive base | substrate 2, and a coating film is formed.
(4-1-3.乾燥工程)
 乾燥工程では、塗布膜に含まれる溶剤の少なくとも一部を除去する。塗布膜に含まれる溶剤を除去する方法としては、塗布膜中の溶剤を蒸発させ得る方法であれば、特に制限されない。除去する方法としては、例えば、加熱、減圧又は加熱と減圧との併用が挙げられる。より具体的には、高温乾燥機又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間である。
(4-1-3. Drying step)
In the drying step, at least a part of the solvent contained in the coating film is removed. The method for removing the solvent contained in the coating film is not particularly limited as long as it is a method capable of evaporating the solvent in the coating film. Examples of the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned. The heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
 なお、感光体1の製造方法は、必要に応じて、中間層4を形成する工程、及び保護層5を形成する工程の一方又は両方を更に含んでいてもよい。中間層4を形成する工程及び保護層5を形成する工程では、公知の方法が適宜選択される。 Note that the method for manufacturing the photoreceptor 1 may further include one or both of a step of forming the intermediate layer 4 and a step of forming the protective layer 5 as necessary. In the step of forming the intermediate layer 4 and the step of forming the protective layer 5, a known method is appropriately selected.
<第二実施形態:画像形成装置>
 以下、図2を参照して第二実施形態に係る画像形成装置について説明する。図2は、第二実施形態に係る画像形成装置の一例を示す概略図である。第二実施形態に係る画像形成装置100は、画像形成ユニット40(例えば、画像形成ユニット40a)を備える。画像形成ユニット40は、像担持体30と、帯電部42と、露光部44と、現像部46と、転写部48とを備える。像担持体30は、第一実施形態に係る感光体である。帯電部42は、像担持体30の表面を帯電する。帯電部42の帯電極性は、正極性である。露光部44は、帯電された像担持体30の表面を露光して、像担持体30の表面に静電潜像を形成する。現像部46は、静電潜像をトナー像として現像する。転写部48は、トナー像を像担持体30から転写体へ転写する。以上、第二実施形態に係る画像形成装置100の概要を記載した。
<Second Embodiment: Image Forming Apparatus>
The image forming apparatus according to the second embodiment will be described below with reference to FIG. FIG. 2 is a schematic diagram illustrating an example of an image forming apparatus according to the second embodiment. The image forming apparatus 100 according to the second embodiment includes an image forming unit 40 (for example, an image forming unit 40a). The image forming unit 40 includes an image carrier 30, a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48. The image carrier 30 is a photoconductor according to the first embodiment. The charging unit 42 charges the surface of the image carrier 30. The charging polarity of the charging unit 42 is positive. The exposure unit 44 exposes the charged surface of the image carrier 30 to form an electrostatic latent image on the surface of the image carrier 30. The developing unit 46 develops the electrostatic latent image as a toner image. The transfer unit 48 transfers the toner image from the image carrier 30 to the transfer body. The outline of the image forming apparatus 100 according to the second embodiment has been described above.
 第二実施形態に係る画像形成装置100は、画像不良を抑制することができる。このような画像不良としては、例えば、トナー像の転写性の低下及び感度特性の低下のうち少なくとも1つに起因する画像不良が挙げられる。画像不良の一例として、トナー像の転写性の低下に起因する画像不良について説明する。  The image forming apparatus 100 according to the second embodiment can suppress image defects. Examples of such image defects include image defects caused by at least one of a decrease in toner image transferability and a decrease in sensitivity characteristics. As an example of the image defect, an image defect caused by a decrease in toner image transferability will be described. *
 上述のようにトナー像の転写性の低下が発生すると、像担持体30上に転写体に転写しきれなかったトナーが残留する。残留したトナーは、画像形成工程での像担持体の周を基準周として次周回で形成される画像に転写されることがある。このような像担持体30の基準周の画像を反映した画像が形成される画像不良が、転写性の低下に起因する画像不良である。 As described above, when the transferability of the toner image is deteriorated, the toner that could not be transferred to the transfer body remains on the image carrier 30. Residual toner may be transferred to an image formed in the next round with the circumference of the image carrier in the image forming step as a reference circumference. An image defect in which an image reflecting the image of the reference circumference of the image carrier 30 is formed is an image defect caused by a decrease in transferability.
 図2と図3とを参照して、画像不良が発生した画像を更に説明する。図3は、画像不良が発生した画像を示す模式図である。画像120は、領域102、領域104及び領域106を有する。領域102、領域104及び領域106は、それぞれ像担持体30の1周分に相当する領域である。領域102の画像108は長方形のソリッド画像(画像濃度100%)を含む。領域104及び領域106は、それぞれ設計画像上、全面白紙画像(画像濃度0%)を含む。記録媒体の搬送される方向a(搬送方向a)に沿って、はじめに領域102の画像108を形成し、その後、領域104の白紙画像を形成し、最後に領域106の白紙画像を形成する。領域104の白紙画像は、像担持体30の次周回1周分に相当する画像であり、画像108を形成する像担持体30の1周目を基準として2周目の像担持体30の1周分に相当する画像である。領域106の白紙画像は、像担持体30の次々周回1周分に相当する画像であり、画像108を形成する像担持体30の1周目を基準として3周目の像担持体30の1周分に相当する画像である。 Referring to FIG. 2 and FIG. 3, an image in which an image defect has occurred will be further described. FIG. 3 is a schematic diagram showing an image in which an image defect has occurred. The image 120 includes a region 102, a region 104, and a region 106. The region 102, the region 104, and the region 106 are regions corresponding to one turn of the image carrier 30. The image 108 in the region 102 includes a rectangular solid image (image density 100%). Each of the area 104 and the area 106 includes an entire blank image (image density 0%) on the design image. The image 108 in the region 102 is first formed along the direction a (conveying direction a) in which the recording medium is conveyed, then the blank image in the region 104 is formed, and finally, the blank image in the region 106 is formed. The blank paper image in the region 104 is an image corresponding to one round of the next rotation of the image carrier 30, and 1 of the image carrier 30 in the second round with reference to the first round of the image carrier 30 forming the image 108. It is an image corresponding to the circumference. The blank paper image in the area 106 is an image corresponding to one round of the next rotation of the image carrier 30, and 1 of the image carrier 30 on the third round with reference to the first round of the image carrier 30 forming the image 108. It is an image corresponding to the circumference.
 領域104の領域110の白紙画像は、像担持体30の2周目における画像108に対応する画像である。領域106の領域112の白紙画像は、感光体の3周目における画像108に対応する画像である。この場合において、画像108を反映した画像が、画像不良として領域110及び/又は領域112に形成される。このように像担持体30によるトナー像の転写性の低下に起因する画像不良は、像担持体30の周長を単位とする周期で発生する。画像108を反映した画像は、記録媒体の両端部に形成され易い。これは、記録媒体の両端部への押圧力が比較的強いことが理由と考えられる。ここで、記録媒体の両端部とは、例えば、記録媒体の領域110における垂直方向bの両端部(領域110L及び領域110R)であり、領域112における垂直方向bの両端部(領域112L及び領域112R)である。 The blank image in the area 110 of the area 104 is an image corresponding to the image 108 in the second turn of the image carrier 30. A blank image in the area 112 of the area 106 is an image corresponding to the image 108 in the third round of the photoconductor. In this case, an image reflecting the image 108 is formed in the area 110 and / or the area 112 as an image defect. As described above, the image defect due to the decrease in the transferability of the toner image by the image carrier 30 occurs in a cycle with the circumference of the image carrier 30 as a unit. Images reflecting the image 108 are easily formed on both ends of the recording medium. This is considered to be because the pressing force to both ends of the recording medium is relatively strong. Here, the both end portions of the recording medium are, for example, both end portions in the vertical direction b (region 110L and region 110R) in the region 110 of the recording medium, and both end portions (region 112L and region 112R in the vertical direction b in the region 112. ).
 第二実施形態に係る画像形成装置100が画像不良を抑制する理由は、以下のように推測される。第二実施形態に係る画像形成装置100は、像担持体30として第一実施形態に係る感光体を備える。第一実施形態に係る感光体は、トナー像の転写性に優れる。また、第一実施形態に係る感光体は、感度特性も優れる。よって、第二実施形態に係る画像形成装置100は、画像不良を抑制することができる。 The reason why the image forming apparatus 100 according to the second embodiment suppresses image defects is estimated as follows. The image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30. The photoconductor according to the first embodiment is excellent in toner image transferability. The photoreceptor according to the first embodiment also has excellent sensitivity characteristics. Therefore, the image forming apparatus 100 according to the second embodiment can suppress image defects.
 以下、図2に戻って画像形成装置100の各部について詳細に説明する。画像形成装置100は、電子写真方式の画像形成装置である限り、特に限定されない。画像形成装置100は、例えば、モノクロ画像形成装置であってもよいし、カラー画像形成装置であってもよい。画像形成装置100がカラー画像形成装置である場合、画像形成装置100は、例えば、タンデム方式を採用する。以下、タンデム方式の画像形成装置100を例に挙げて説明する。 Hereinafter, returning to FIG. 2, each part of the image forming apparatus 100 will be described in detail. The image forming apparatus 100 is not particularly limited as long as it is an electrophotographic image forming apparatus. The image forming apparatus 100 may be, for example, a monochrome image forming apparatus or a color image forming apparatus. When the image forming apparatus 100 is a color image forming apparatus, the image forming apparatus 100 employs, for example, a tandem method. Hereinafter, the tandem image forming apparatus 100 will be described as an example.
 画像形成装置100は、直接転写方式を採用する。画像形成装置100が直接転写方式を採用する場合、転写体は記録媒体Pである。通常、直接転写方式を採用する画像形成装置では、像担持体が転写バイアスの影響を受けやすいため、通常、転写メモリーが発生し易い。しかし、第二実施形態に係る画像形成装置100は、像担持体30として第一実施形態に係る感光体を備える。第一実施形態に係る感光体は感度特性も優れるため、転写メモリーの発生を抑制することもできる。よって、像担持体30として第一実施形態に係る感光体を備えると、画像形成装置100が直接転写方式を採用する場合であっても、転写メモリーに起因する画像不良の発生を抑制できると考えられる。なお、画像形成装置100は、中間転写方式も採用できる。画像形成装置100が中間転写方式を採用する場合、転写体は、中間転写体(例えば、中間転写ベルト又は中間転写ドラム)である。 The image forming apparatus 100 employs a direct transfer method. When the image forming apparatus 100 adopts the direct transfer method, the transfer body is the recording medium P. Usually, in an image forming apparatus that employs a direct transfer method, an image carrier is likely to be affected by a transfer bias, and thus a transfer memory is usually easily generated. However, the image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30. Since the photoreceptor according to the first embodiment also has excellent sensitivity characteristics, it is possible to suppress the generation of a transfer memory. Therefore, if the image bearing member 30 includes the photoconductor according to the first embodiment, it is considered that the occurrence of image defects due to the transfer memory can be suppressed even when the image forming apparatus 100 adopts the direct transfer method. It is done. The image forming apparatus 100 can also employ an intermediate transfer method. When the image forming apparatus 100 adopts the intermediate transfer method, the transfer member is an intermediate transfer member (for example, an intermediate transfer belt or an intermediate transfer drum).
 画像形成装置100は、接触現像方式を採用することができる。接触現像方式を採用する画像形成装置100では、現像部46が像担持体30の表面と接触しながら静電潜像をトナー像として現像する。第二実施形態に係る画像形成装置100は、接触現像方式を採用したとしても、像担持体30によるトナー像の転写性の低下に起因する画像不良の発生を抑制できる。 The image forming apparatus 100 can employ a contact development method. In the image forming apparatus 100 employing the contact development method, the developing unit 46 develops the electrostatic latent image as a toner image while being in contact with the surface of the image carrier 30. The image forming apparatus 100 according to the second embodiment can suppress the occurrence of image defects due to a decrease in transferability of the toner image by the image carrier 30 even when the contact development method is employed.
 画像形成装置100は、帯電部42として帯電ローラーを備えることができる。像担持体30の表面を帯電するときに、帯電ローラーは像担持体30の表面と接触する。すなわち、画像形成装置は、通常、帯電ローラーを備える画像形成装置では、転写メモリーが発生し易い。しかし、画像形成装置100は、像担持体30として第一実施形態に係る感光体を備える。第一実施形態に係る感光体は感度特性も優れるため、転写メモリーの発生を抑制することもできる。よって、第二実施形態に係る画像形成装置100は、帯電部42として帯電ローラーを備える場合であっても、転写メモリーの発生に起因する画像不良の発生を抑制することができる。 The image forming apparatus 100 can include a charging roller as the charging unit 42. When charging the surface of the image carrier 30, the charging roller comes into contact with the surface of the image carrier 30. That is, the image forming apparatus usually tends to generate a transfer memory in an image forming apparatus including a charging roller. However, the image forming apparatus 100 includes the photoconductor according to the first embodiment as the image carrier 30. Since the photoreceptor according to the first embodiment also has excellent sensitivity characteristics, it is possible to suppress the generation of a transfer memory. Therefore, even if the image forming apparatus 100 according to the second embodiment includes a charging roller as the charging unit 42, it is possible to suppress the occurrence of image defects due to the generation of the transfer memory.
 画像形成装置100は、いわゆるブレードクリーナーレス方式を採用することができる。ブレードクリーナーレス方式を採用する画像形成装置100では、現像部46は、像担持体30の表面を清掃する。具体的には、現像部46は、残留成分を除去することができる。このような画像形成装置100では、クリーニング部(例えば、クリーニングブレード)によって像担持体30の表面の残留成分が掻き取られない。そのため、ブレードクリーナーレス方式を採用する画像形成装置100では、通常、像担持体30の表面に残留成分が残り易い。しかし、第一実施形態の感光体は、トナーの転写性に優れる。従って、このような感光体を備える画像形成装置100は、ブレードクリーナーレス方式を採用したとしても、感光体の表面に残留成分、特に記録媒体Pの微小成分(例えば、紙粉)が残り難い。その結果、画像形成装置100は、画像不良の発生を抑制することができる。 The image forming apparatus 100 can employ a so-called blade cleaner-less method. In the image forming apparatus 100 employing the blade cleaner-less method, the developing unit 46 cleans the surface of the image carrier 30. Specifically, the developing unit 46 can remove residual components. In such an image forming apparatus 100, residual components on the surface of the image carrier 30 are not scraped off by a cleaning unit (for example, a cleaning blade). For this reason, in the image forming apparatus 100 that employs the blade cleaner-less method, a residual component usually tends to remain on the surface of the image carrier 30. However, the photoreceptor of the first embodiment is excellent in toner transferability. Therefore, even if the image forming apparatus 100 including such a photoconductor employs a blade cleaner-less method, residual components, particularly minute components (for example, paper dust) of the recording medium P are unlikely to remain on the surface of the photoconductor. As a result, the image forming apparatus 100 can suppress the occurrence of image defects.
 画像形成装置100は、画像形成ユニット40a、40b、40c及び40dと、転写ベルト50と、定着部52とを備える。以下、区別する必要がない場合には、画像形成ユニット40a、40b、40c及び40dの各々を、画像形成ユニット40と記載する。なお、画像形成装置100がモノクロ画像形成装置である場合には、画像形成装置100は、画像形成ユニット40aを備え、画像形成ユニット40b~40dは省略される。 The image forming apparatus 100 includes image forming units 40a, 40b, 40c, and 40d, a transfer belt 50, and a fixing unit 52. Hereinafter, when it is not necessary to distinguish, each of the image forming units 40a, 40b, 40c, and 40d is referred to as an image forming unit 40. When the image forming apparatus 100 is a monochrome image forming apparatus, the image forming apparatus 100 includes an image forming unit 40a, and the image forming units 40b to 40d are omitted.
 図2を参照して既に説明したように、画像形成ユニット40は、像担持体30と、帯電部42と、露光部44と、現像部46と、転写部48とを備える。画像形成ユニット40は、その中央位置に、像担持体30を備える。像担持体30は、矢符方向(反時計回り)に回転可能に設けられる。像担持体30の周囲には、帯電部42を基準として像担持体30の回転方向の上流側から順に、帯電部42と、露光部44と、現像部46と、転写部48とが設けられる。なお、画像形成ユニット40には、クリーニング部又は除電部(不図示)が更に備えられてもよい。 As already described with reference to FIG. 2, the image forming unit 40 includes the image carrier 30, the charging unit 42, the exposure unit 44, the developing unit 46, and the transfer unit 48. The image forming unit 40 includes an image carrier 30 at the center position. The image carrier 30 is provided to be rotatable in the arrow direction (counterclockwise). Around the image carrier 30, a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48 are provided in order from the upstream side in the rotation direction of the image carrier 30 with respect to the charging unit 42. . The image forming unit 40 may further include a cleaning unit or a charge removal unit (not shown).
 画像形成ユニット40a~40dの各々によって、転写ベルト50上の記録媒体Pに、複数色(例えば、ブラック、シアン、マゼンタ及びイエローの4色)のトナー像が順に重ねられる。 Each of the image forming units 40a to 40d sequentially superimposes toner images of a plurality of colors (for example, four colors of black, cyan, magenta, and yellow) on the recording medium P on the transfer belt 50.
 帯電部42は、像担持体30の表面を帯電する。帯電部42は、帯電ローラーである。帯電ローラーは、像担持体30の表面と接触しながら像担持体30の表面を帯電する。帯電部の帯電極性は正極性である。帯電部42は、非接触方式又は接触方式の帯電部である。非接触方式の帯電部42としては、例えば、コロトロン帯電器、又はスコロトロン帯電器が挙げられる。接触方式の帯電部42としては、例えば、帯電ローラー又は帯電ブラシが挙げられる。 The charging unit 42 charges the surface of the image carrier 30. The charging unit 42 is a charging roller. The charging roller charges the surface of the image carrier 30 while being in contact with the surface of the image carrier 30. The charging polarity of the charging unit is positive. The charging unit 42 is a non-contact type or contact type charging unit. Examples of the non-contact charging unit 42 include a corotron charger and a scorotron charger. Examples of the contact-type charging unit 42 include a charging roller or a charging brush.
 帯電部42が印加する電圧としては、特に制限されないが、例えば、直流電圧、交流電圧、又は交流電流に直流電流を重畳した重畳電圧が挙げられる。直流電圧のみを印加する帯電部42は、帯電部が交流電圧を印加する場合又は帯電部が直流電圧に交流電圧を重畳した重畳電圧を印加する場合に比べ、以下に示す優位性がある。帯電部42が直流電圧のみを印加すると、像担持体30に印加される電圧値が一定であるため、像担持体30の表面を一様に一定電位まで帯電させ易い。また、帯電部42が直流電圧のみを印加すると、感光層の磨耗量が減少する傾向がある。その結果、好適な画像を形成することができる。 The voltage applied by the charging unit 42 is not particularly limited, and examples thereof include a DC voltage, an AC voltage, or a superimposed voltage obtained by superimposing a DC current on an AC current. The charging unit 42 that applies only the DC voltage has the following advantages compared to the case where the charging unit applies an AC voltage or the charging unit applies a superimposed voltage obtained by superimposing the AC voltage on the DC voltage. When the charging unit 42 applies only a DC voltage, the voltage value applied to the image carrier 30 is constant, so that the surface of the image carrier 30 is easily charged uniformly to a constant potential. Further, when the charging unit 42 applies only a DC voltage, the wear amount of the photosensitive layer tends to decrease. As a result, a suitable image can be formed.
 帯電部42が印加する電圧が直流電圧である場合、通常、交流電圧に比べ、転写メモリーが発生し易い傾向にある。しかし、第二実施形態に係る画像形成装置100は、像担持体30として第一実施形態に係る感光体を備える。第一実施形態に係る感光体は、転写メモリーの発生を抑制することもできる。よって、第二実施形態に係る画像形成装置100は、像担持体30と接触して直流電圧を印加する帯電部42を備えても、転写メモリーに起因する画像不良の発生を抑制することができる。 When the voltage applied by the charging unit 42 is a DC voltage, a transfer memory tends to be generated more easily than an AC voltage. However, the image forming apparatus 100 according to the second embodiment includes the photoconductor according to the first embodiment as the image carrier 30. The photoconductor according to the first embodiment can also suppress the generation of a transfer memory. Therefore, even if the image forming apparatus 100 according to the second embodiment includes the charging unit 42 that contacts the image carrier 30 and applies a DC voltage, it is possible to suppress the occurrence of image defects due to the transfer memory. .
 露光部44は、帯電された像担持体30の表面を露光する。これにより、像担持体30の表面に静電潜像が形成される。静電潜像は、画像形成装置100に入力された画像データに基づいて形成される。 The exposure unit 44 exposes the surface of the charged image carrier 30. As a result, an electrostatic latent image is formed on the surface of the image carrier 30. The electrostatic latent image is formed based on image data input to the image forming apparatus 100.
 現像部46は、像担持体30の表面にトナーを供給し、静電潜像をトナー像として現像する。現像部46は、像担持体30と接触しながら静電潜像をトナー像として現像することができる。また、現像部46は、像担持体30の表面を清掃することができる。 The developing unit 46 supplies toner to the surface of the image carrier 30 and develops the electrostatic latent image as a toner image. The developing unit 46 can develop the electrostatic latent image as a toner image while in contact with the image carrier 30. Further, the developing unit 46 can clean the surface of the image carrier 30.
 現像部46が像担持体30の表面を効率的に清掃するためには、以下に示す条件(a)及び条件(b)を満たすことが好ましい。
条件(a):接触現像方式を採用し、像担持体30と現像部46との間に周速(回転速度)差が設けられる。
条件(b):像担持体30の表面電位と、現像バイアスの電位とが以下の数式(b-1)及び数式(b-2)を満たす。
  0(V)<現像バイアスの電位(V)<像担持体30の未露光領域の表面電位(V)・・・(b-1)
  現像バイアスの電位(V)>像担持体30の露光領域の表面電位(V)>0(V)・・・(b-2)
In order for the developing unit 46 to efficiently clean the surface of the image carrier 30, it is preferable to satisfy the following conditions (a) and (b).
Condition (a): A contact developing method is employed, and a peripheral speed (rotational speed) difference is provided between the image carrier 30 and the developing unit 46.
Condition (b): The surface potential of the image carrier 30 and the potential of the developing bias satisfy the following formulas (b-1) and (b-2).
0 (V) <potential of developing bias (V) <surface potential of unexposed area of image carrier 30 (V) (b-1)
Developing bias potential (V)> Surface potential (V) of exposed area of image carrier 30> 0 (V) (b-2)
 条件(a)に示す接触現像方式を採用し、像担持体30と現像部46との間に周速差が設けられていると、像担持体30の表面は現像部46と接触し、像担持体30の表面の付着成分が現像部46との摩擦により除去される。現像部46の周速は、像担持体30の周速よりも速いことが好ましい。 When the contact development method shown in the condition (a) is employed and a peripheral speed difference is provided between the image carrier 30 and the development unit 46, the surface of the image carrier 30 comes into contact with the development unit 46, and the image Adhering components on the surface of the carrier 30 are removed by friction with the developing unit 46. The peripheral speed of the developing unit 46 is preferably faster than the peripheral speed of the image carrier 30.
 条件(b)では、現像方式が反転現像方式である場合を想定している。帯電極性が正極性である像担持体30の電気特性を向上させるためには、トナーの帯電極性と、像担持体30の未露光領域の表面電位と、像担持体30の露光領域の表面電位と、現像バイアスの電位とが何れも正極性であることが好ましい。なお、像担持体30の未露光領域の表面電位と、露光領域の表面電位とは、転写部48が像担持体30から記録媒体Pへトナー像を転写した後、画像形成する像担持体30の周を基準周とした場合、帯電部42が基準周の次周回の像担持体30の表面を帯電する前に測定される。 In condition (b), it is assumed that the development method is a reversal development method. In order to improve the electrical characteristics of the image carrier 30 having a positive polarity, the charging polarity of the toner, the surface potential of the unexposed area of the image carrier 30, and the surface potential of the exposed area of the image carrier 30 It is preferable that both the potential of the developing bias and the potential of the developing bias are positive. The surface potential of the unexposed area and the surface potential of the exposed area of the image carrier 30 are the image carrier 30 that forms an image after the transfer unit 48 transfers the toner image from the image carrier 30 to the recording medium P. Is used before the charging unit 42 charges the surface of the image carrier 30 on the next round of the reference circumference.
 条件(b)の数式(b-1)を満たすと、像担持体30に残留したトナー(以下、残留トナーと記載することがある)と像担持体30の未露光領域との間に作用する静電的斥力が、残留トナーと現像部46との間に作用する静電的斥力に比べ大きくなる。このため、像担持体30の未露光領域の残留トナーは、像担持体30の表面から現像部46へと移動し、回収される。 When the mathematical expression (b-1) of the condition (b) is satisfied, it acts between the toner remaining on the image carrier 30 (hereinafter sometimes referred to as residual toner) and the unexposed area of the image carrier 30. The electrostatic repulsive force is larger than the electrostatic repulsive force acting between the residual toner and the developing unit 46. Therefore, the residual toner in the unexposed area of the image carrier 30 moves from the surface of the image carrier 30 to the developing unit 46 and is collected.
 条件(b)の数式(b-2)を満たすと、残留トナーと像担持体30の露光領域との間に作用する静電的斥力が、残留トナーと現像部46との間に作用する静電的斥力に比べ小さくなる。このため、像担持体30の露光領域の残留トナーは、像担持体30の表面に保持される。像担持体30の露光領域に保持されたトナーは、そのまま画像形成に使用される。 When the mathematical expression (b-2) of the condition (b) is satisfied, an electrostatic repulsive force that acts between the residual toner and the exposed area of the image carrier 30 acts between the residual toner and the developing unit 46. Smaller than electric repulsion. Therefore, the residual toner in the exposed area of the image carrier 30 is held on the surface of the image carrier 30. The toner held in the exposure area of the image carrier 30 is used for image formation as it is.
 転写ベルト50は、像担持体30と転写部48との間に記録媒体Pを搬送する。転写ベルト50は、無端状のベルトである。転写ベルト50は、矢符方向(時計回り)に回転可能に設けられる。 The transfer belt 50 conveys the recording medium P between the image carrier 30 and the transfer unit 48. The transfer belt 50 is an endless belt. The transfer belt 50 is provided to be rotatable in the arrow direction (clockwise).
 転写部48は、現像部46によって現像されたトナー像を、像担持体30の表面から記録媒体Pへ転写する。像担持体30から記録媒体Pにトナー像が転写されるときに、像担持体30は記録媒体Pと接触している。転写部48は、例えば、転写ローラーが挙げられる。 The transfer unit 48 transfers the toner image developed by the developing unit 46 from the surface of the image carrier 30 to the recording medium P. When the toner image is transferred from the image carrier 30 to the recording medium P, the image carrier 30 is in contact with the recording medium P. An example of the transfer unit 48 is a transfer roller.
 定着部52は、転写部48によって記録媒体Pに転写された未定着のトナー像を、加熱及び/又は加圧する。定着部52は、例えば、加熱ローラー及び/又は加圧ローラーである。トナー像を加熱及び/又は加圧することにより、記録媒体Pにトナー像が定着する。その結果、記録媒体Pに画像が形成される。 The fixing unit 52 heats and / or pressurizes the unfixed toner image transferred to the recording medium P by the transfer unit 48. The fixing unit 52 is, for example, a heating roller and / or a pressure roller. The toner image is fixed on the recording medium P by heating and / or pressurizing the toner image. As a result, an image is formed on the recording medium P.
<第三実施形態:プロセスカートリッジ>
 第三実施形態に係るプロセスカートリッジは、第一実施形態に係る感光体を備える。引き続き、図2を参照して、第三実施形態に係るプロセスカートリッジについて説明する。
<Third embodiment: Process cartridge>
A process cartridge according to the third embodiment includes the photoconductor according to the first embodiment. Next, the process cartridge according to the third embodiment will be described with reference to FIG.
 プロセスカートリッジは、ユニット化された部分を含む。ユニット化された部分は、像担持体30を含む。ユニット化された部分は、像担持体30に加えて、帯電部42、露光部44、現像部46、及び転写部48からなる群より選択される少なくとも1つを含んでもよい。プロセスカートリッジは、例えば、画像形成ユニット40a~40dの各々に相当する。プロセスカートリッジには、除電器(不図示)が更に備えられてもよい。プロセスカートリッジは、画像形成装置100に対して着脱自在に設計される。そのため、プロセスカートリッジは取り扱いが容易であり、像担持体30の感度特性等が劣化した場合に、像担持体30を含めて容易かつ迅速に交換することができる。 The process cartridge includes a unitized part. The unitized portion includes the image carrier 30. The unitized portion may include at least one selected from the group consisting of a charging unit 42, an exposure unit 44, a developing unit 46, and a transfer unit 48 in addition to the image carrier 30. The process cartridge corresponds to each of the image forming units 40a to 40d, for example. The process cartridge may further include a static eliminator (not shown). The process cartridge is designed to be detachable from the image forming apparatus 100. Therefore, the process cartridge is easy to handle, and when the sensitivity characteristics and the like of the image carrier 30 are deteriorated, the process cartridge including the image carrier 30 can be easily and quickly replaced.
 以下、実施例を用いて本発明を更に具体的に説明する。しかし、本発明は実施例の範囲に何ら限定されない。 Hereinafter, the present invention will be described more specifically using examples. However, the present invention is not limited to the scope of the examples.
[1.感光体の材料]
 感光体の感光層を形成するための材料として、以下の電荷発生剤、正孔輸送剤、電子輸送剤及びバインダー樹脂を準備した。第一実施形態で説明した酸無水物(ADD-1)~(ADD-6)を準備した。第一実施形態で説明した電荷発生剤(CGM-1)を準備した。電荷発生剤(CGM-1)は、化学式(CGM-1)で表される無金属フタロシアニンであった。電荷発生剤(CGM-1)の結晶構造はX型であった。第一実施形態で説明した正孔輸送剤(HTM-1)を準備した。第一実施形態で説明した電子輸送剤(ETM1-1)~(ETM5-1)を準備した。バインダー樹脂として、ポリカーボネート樹脂(Z)を準備した。ポリカーボネート樹脂(Z)は、第一実施形態で説明した化学式(Z)で表されるポリカーボネート樹脂であった。
[1. Photoconductor Material]
As materials for forming the photosensitive layer of the photoreceptor, the following charge generator, hole transport agent, electron transport agent and binder resin were prepared. The acid anhydrides (ADD-1) to (ADD-6) described in the first embodiment were prepared. The charge generating agent (CGM-1) described in the first embodiment was prepared. The charge generation agent (CGM-1) was a metal-free phthalocyanine represented by the chemical formula (CGM-1). The crystal structure of the charge generator (CGM-1) was X-type. The hole transport agent (HTM-1) described in the first embodiment was prepared. The electron transport agents (ETM1-1) to (ETM5-1) described in the first embodiment were prepared. A polycarbonate resin (Z) was prepared as a binder resin. The polycarbonate resin (Z) was a polycarbonate resin represented by the chemical formula (Z) described in the first embodiment.
[2.感光体の製造]
 準備した感光体の感光層を形成するための材料を用いて、感光体(A-1)~(A-21)及び感光体(B-1)~(B-5)を製造した。
[2. Production of photoconductor]
Photoconductors (A-1) to (A-21) and photoconductors (B-1) to (B-5) were produced using the materials for forming the photosensitive layer of the prepared photoconductor.
(2-1.感光体(A-1)の製造)
 感光層形成工程を行った。まず、塗布液を調製した。酸無水物(ADD-1)1.00質量部と、電荷発生剤(CGM-1)2質量部と、正孔輸送剤(HTM-1)60質量部と、電子輸送剤(ETM1-1)35質量部と、バインダー樹脂としてのポリカーボネート樹脂(Z)100質量部と、溶剤としてのテトラヒドロフラン800質量部とを容器内に投入した。容器の内容物を、ボールミルを用いて50時間混合して分散し、塗布液を得た。
(2-1. Production of Photosensitive Member (A-1))
A photosensitive layer forming step was performed. First, a coating solution was prepared. 1.00 parts by weight of an acid anhydride (ADD-1), 2 parts by weight of a charge generating agent (CGM-1), 60 parts by weight of a hole transporting agent (HTM-1), and an electron transporting agent (ETM1-1) 35 parts by mass, 100 parts by mass of a polycarbonate resin (Z) as a binder resin, and 800 parts by mass of tetrahydrofuran as a solvent were charged into a container. The contents of the container were mixed and dispersed for 50 hours using a ball mill to obtain a coating solution.
 次に、ディップコート法を用いて、導電性基体上に塗布液を塗布し、導電性基体上に塗布膜を形成した。導電性基体は、直径160mm、長さ365mm、厚さ2mmのアルミニウム製であった。詳しくは、導電性基体を塗布液に浸漬させた。次いで、浸漬した導電性基体を塗布液から引き上げた。これにより、導電性基体に塗布液を塗布し、塗布膜を形成した。 Next, using a dip coating method, a coating solution was applied on the conductive substrate to form a coating film on the conductive substrate. The conductive substrate was made of aluminum having a diameter of 160 mm, a length of 365 mm, and a thickness of 2 mm. Specifically, the conductive substrate was immersed in the coating solution. Next, the immersed conductive substrate was pulled up from the coating solution. Thereby, the coating solution was applied to the conductive substrate to form a coating film.
 次に、塗布膜を形成した導電性基体を、100℃で40分間、熱風により乾燥させた。これにより、塗布膜に含有される溶剤(テトラヒドロフラン)を除去した。その結果、導電性基体上に、感光層が形成された。これにより、感光体(A-1)が得られた。 Next, the conductive substrate on which the coating film was formed was dried with hot air at 100 ° C. for 40 minutes. Thereby, the solvent (tetrahydrofuran) contained in the coating film was removed. As a result, a photosensitive layer was formed on the conductive substrate. As a result, a photoreceptor (A-1) was obtained.
(2-2.感光体(A-2)~(A-21)及び感光体(B-1)~(B-5)の製造)
 以下の点を変更した以外は、感光体(A-1)の製造と同様の方法で、感光体(A-2)~(A-21)及び感光体(B-1)~(B-5)を製造した。酸無水物(ADD-1)1.00質量部及び電子輸送剤(ETM-1)の代わりに、それぞれ表1に示す種類の酸無水物、酸無水物の含有量及び種類の電子輸送剤を用いた。そのようにして感光体(A-2)~(A-21)及び感光体(B-1)~(B-5)をそれぞれ得た。
(2-2. Production of photoconductors (A-2) to (A-21) and photoconductors (B-1) to (B-5))
The photoconductors (A-2) to (A-21) and the photoconductors (B-1) to (B-5) were manufactured in the same manner as in the production of the photoconductor (A-1) except that the following points were changed. ) Was manufactured. Instead of 1.00 parts by weight of acid anhydride (ADD-1) and electron transport agent (ETM-1), the types of acid anhydrides, acid anhydride contents and types of electron transport agents shown in Table 1 were used. Using. In this way, photoreceptors (A-2) to (A-21) and photoreceptors (B-1) to (B-5) were obtained, respectively.
 表1は感光体(A-1)~(A-21)及び感光体(B-1)~(B-5)の構成を示す。表1中、欄「ETMの種類」のETM1-1~ETM5-1は、それぞれ電子輸送剤(ETM1-1)~(ETM5-1)を示す。欄「酸無水物の種類」のADD-1~ADD-6は、それぞれ酸無水物(ADD-1)~(ADD-6)を示す。欄「酸無水物の含有量」は、バインダー樹脂100質量部に対する酸無水物の含有量(質量部)を示す。 Table 1 shows the configurations of the photoconductors (A-1) to (A-21) and the photoconductors (B-1) to (B-5). In Table 1, ETM1-1 to ETM5-1 in the column “Type of ETM” indicate the electron transfer agents (ETM1-1) to (ETM5-1), respectively. In the column “Types of acid anhydrides”, ADD-1 to ADD-6 indicate acid anhydrides (ADD-1) to (ADD-6), respectively. The column “content of acid anhydride” indicates the content (part by mass) of the acid anhydride with respect to 100 parts by mass of the binder resin.
[3.評価方法]
(3-1.感光体の感度特性の評価:感光体の露光後電位の測定)
 感光体の感度特性は、感光体の露光後電位を測定して評価した。感光体の露光後電位の測定は、表面電位計(Monroe Electronics社製「MODEL244」)を用いた。表面電位プローブ(Monroe Electronics社製「MODEL1017AE」)を現像部の位置に設置した。すなわち、帯電工程及び露光工程後の露光領域における感光体の表面電位を測定した。得られた表面電位を露光後電位とした。感光体の露光後電位は、温度23℃、湿度50%RH、帯電電位+600V、露光波長780nm及び露光量1.2μJ/cm2の条件で測定された。得られた露光後電位から評価基準に基づいて感光体の感度特性を評価した。表1に感光体の露光後電位を示す。
(感度特性の評価基準)
評価A(良い):感光体の露光後電位が+140V未満である。
評価B(普通):感光体の露光後電位が+140V以上+160V未満である。
評価C(悪い):感光体の露光後電位が+160V以上である。
[3. Evaluation methods]
(3-1. Evaluation of sensitivity characteristics of photoreceptor: measurement of potential after exposure of photoreceptor)
The sensitivity characteristics of the photoreceptor were evaluated by measuring the post-exposure potential of the photoreceptor. A surface potential meter (“MODEL244” manufactured by Monroe Electronics) was used to measure the post-exposure potential of the photoreceptor. A surface potential probe (“MODEL1017AE” manufactured by Monroe Electronics) was placed at the position of the developing unit. That is, the surface potential of the photoreceptor in the exposure area after the charging process and the exposure process was measured. The obtained surface potential was defined as a post-exposure potential. The post-exposure potential of the photoreceptor was measured under the conditions of a temperature of 23 ° C., a humidity of 50% RH, a charging potential of +600 V, an exposure wavelength of 780 nm, and an exposure dose of 1.2 μJ / cm 2 . The sensitivity characteristics of the photoreceptor were evaluated based on the evaluation criteria from the obtained post-exposure potential. Table 1 shows the post-exposure potential of the photoreceptor.
(Evaluation criteria for sensitivity characteristics)
Evaluation A (good): The post-exposure potential of the photoreceptor is less than + 140V.
Evaluation B (normal): The post-exposure potential of the photoreceptor is +140 V or more and less than +160 V.
Evaluation C (bad): The post-exposure potential of the photoreceptor is +160 V or more.
(3-2.感光体によるトナー像の転写性の評価:感光体の表面電位の測定)
 感光体によるトナー像の転写性は、感光体の表面電位を測定して評価した。表面電位計(Monroe Electronics社製「MODEL244」)を用いた。表面電位プローブ(Monroe Electronics社製「MODEL1017AS」)を転写後の位置に設置した。すなわち、転写工程後の露光領域における感光体の表面電位(単位:V)を測定した。感光体の表面電位は、温度23℃、湿度50%RH、ドラム線速165mm/秒、グリッド電圧600V、流れ込み電流300μAの条件で測定された。表1に感光体の表面電位を示す。
(3-2. Evaluation of transferability of toner image by photoreceptor: measurement of surface potential of photoreceptor)
The transferability of the toner image by the photoconductor was evaluated by measuring the surface potential of the photoconductor. A surface potential meter (“MODEL244” manufactured by Monroe Electronics) was used. A surface potential probe (“MODEL1017AS” manufactured by Monroe Electronics) was placed at the position after transfer. That is, the surface potential (unit: V) of the photoconductor in the exposure area after the transfer process was measured. The surface potential of the photoreceptor was measured under the conditions of a temperature of 23 ° C., a humidity of 50% RH, a drum linear speed of 165 mm / second, a grid voltage of 600 V, and a flowing current of 300 μA. Table 1 shows the surface potential of the photoreceptor.
(3-3.感光体によるトナー像の転写性評価:画像評価)
 感光体を評価機に搭載した。評価機として、プリンター(京セラドキュメントソリューションズ株式会社製「FS-1300D」、半導体レーザーによる乾式電子写真方式のプリンター)を使用した。評価機は、帯電ローラーを帯電部として備えていた。帯電ローラーには直流電圧が印加されていた。評価機は、直接転写方式の転写部(転写ローラー)を備えていた。評価機は、接触現像方式の現像部を備えていた。転写性評価には、用紙として、京セラドキュメントソリューションズ株式会社販売「京セラドキュメントソリューションズブランド紙VM-A4(A4サイズ)」を使用した。転写性評価には、トナーとして、京セラドキュメントソリューションズ株式会社製「TK-131」を使用した。転写性評価の測定は、高温高湿(温度:32.5℃、湿度:80%RH)環境下で行われた。
(3-3. Evaluation of transferability of toner image by photoconductor: image evaluation)
The photoconductor was mounted on an evaluation machine. A printer (“FS-1300D” manufactured by Kyocera Document Solutions Inc., dry electrophotographic printer using a semiconductor laser) was used as an evaluation machine. The evaluator was provided with a charging roller as a charging unit. A DC voltage was applied to the charging roller. The evaluation machine was provided with a direct transfer type transfer section (transfer roller). The evaluator was equipped with a contact developing type developing unit. For the transferability evaluation, “Kyocera Document Solutions Brand Paper VM-A4 (A4 size)” sold by Kyocera Document Solutions Inc. was used as the paper. In the transferability evaluation, “TK-131” manufactured by Kyocera Document Solutions Co., Ltd. was used as a toner. The measurement of the transferability evaluation was performed in a high temperature and high humidity (temperature: 32.5 ° C., humidity: 80% RH) environment.
 感光体を搭載した評価機とトナーとを用いて、用紙に評価用画像を形成した。評価用画像の詳細は、図4を参照して後述する。画像形成条件を、線速165mm/秒に設定した。転写ローラーが感光体に印加する電流を、-25μAに設定した。 An evaluation image was formed on paper using an evaluation machine equipped with a photoreceptor and toner. Details of the evaluation image will be described later with reference to FIG. The image forming condition was set to a linear velocity of 165 mm / sec. The current applied by the transfer roller to the photoconductor was set to -25 μA.
 次いで、得られた画像を目視で確認し、領域210及び領域212に画像208に対応した画像の有無を確認した。得られた目視による観察結果から、下記の基準に従い感光体によるトナー像の転写性を評価した。A(非常に良い)及びB(良い)を合格とした。表1にトナー像の転写性の評価結果を示す。 Next, the obtained image was visually confirmed, and the presence or absence of an image corresponding to the image 208 in the region 210 and the region 212 was confirmed. From the obtained visual observation results, the transferability of the toner image by the photoconductor was evaluated according to the following criteria. A (very good) and B (good) were accepted. Table 1 shows the evaluation results of the transferability of the toner image.
 図4を参照して、評価用画像を説明する。図4は、評価用画像を示す模式図である。評価用画像200は、領域202、領域204及び領域206を含む。領域202は、像担持体30の1周分に相当する領域である。領域202の画像208は、ソリッド画像(画像濃度100%)を含む。このソリッド画像は、長方形の形状を有していた。領域204及び領域206は、それぞれ像担持体30の1周分に相当する領域であり、いずれも白紙画像(画像濃度0%)からなる。搬送方向aに沿ってはじめに領域202の画像208を形成し、その後、領域204及び領域206の白紙画像を形成した。領域204の白紙画像は、画像208を形成した周を基準として2周目に形成された画像である。領域210は、領域204における画像208に対応する領域である。領域206の白紙画像は、画像108を形成した周を基準として3周目に形成された画像である。領域212は、領域206における画像208に対応する領域である。 The image for evaluation will be described with reference to FIG. FIG. 4 is a schematic diagram showing an evaluation image. The evaluation image 200 includes a region 202, a region 204, and a region 206. The area 202 is an area corresponding to one turn of the image carrier 30. The image 208 in the region 202 includes a solid image (image density 100%). This solid image had a rectangular shape. Each of the region 204 and the region 206 is a region corresponding to one turn of the image carrier 30 and is composed of a blank paper image (image density 0%). First, the image 208 of the region 202 was formed along the transport direction a, and then blank images of the region 204 and the region 206 were formed. The blank image in the area 204 is an image formed on the second turn with reference to the circumference on which the image 208 is formed. An area 210 is an area corresponding to the image 208 in the area 204. A blank paper image in the area 206 is an image formed on the third circumference with the circumference on which the image 108 is formed as a reference. An area 212 is an area corresponding to the image 208 in the area 206.
(転写性の評価基準)
評価A(非常に良い):画像208に対応した画像が領域210及び領域212に確認されなかった。
評価B(良い):画像208に対応した画像が領域210の垂直方向bの両端部にわずかに確認された。画像208に対応した画像が領域212に確認されなかった。
評価C(悪い):画像208に対応した画像が領域210の垂直方向bの両端部に明確に確認された。画像208に対応した画像が領域212に確認されなかった。
(Evaluation criteria for transferability)
Evaluation A (very good): Images corresponding to the image 208 were not confirmed in the areas 210 and 212.
Evaluation B (good): Images corresponding to the image 208 were slightly confirmed at both ends of the area 210 in the vertical direction b. An image corresponding to the image 208 was not confirmed in the area 212.
Evaluation C (bad): Images corresponding to the image 208 were clearly confirmed at both ends of the area 210 in the vertical direction b. An image corresponding to the image 208 was not confirmed in the area 212.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表1に示すように、感光体(A-1)~(A-21)では、感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、酸無水物とを含む。酸無水物は、酸無水物(ADD-1)~(ADD-6)のうちの何れか一種である。酸無水物(ADD-1)~(ADD-6)は、一般式(1)、一般式(2)又は一般式(3)で表される。感光体(A-1)~(A-21)では、感光体によるトナー像の転写性の評価結果はいずれも評価A(良い)である。 As shown in Table 1, in the photoreceptors (A-1) to (A-21), the photosensitive layer includes a charge generator, a hole transport agent, an electron transport agent, a binder resin, an acid anhydride, and the like. including. The acid anhydride is any one of acid anhydrides (ADD-1) to (ADD-6). The acid anhydrides (ADD-1) to (ADD-6) are represented by general formula (1), general formula (2), or general formula (3). In the photoconductors (A-1) to (A-21), the evaluation results of the transferability of the toner image by the photoconductor are all evaluation A (good).
 表1に示すように、感光体(B-1)~(B-5)では、感光層はいずれも一般式(1)、一般式(2)又は一般式(3)で表される酸無水物を含まない。感光体(B-1)~(B-5)では、感光体によるトナー像の転写性の評価結果はいずれも評価C(悪い)である。 As shown in Table 1, in the photoreceptors (B-1) to (B-5), the photosensitive layers are all acid anhydrides represented by the general formula (1), the general formula (2), or the general formula (3). Does not include things. In the photoconductors (B-1) to (B-5), the evaluation results of the transferability of the toner image by the photoconductor are all evaluation C (bad).
 以上から、感光体(A-1)~(A-21)は、感光体(B-1)~(B-5)に比べ、トナー像の転写性に優れることが明らかである。 From the above, it is clear that the photoconductors (A-1) to (A-21) are superior in toner image transferability to the photoconductors (B-1) to (B-5).
 表1に示すように、感光体(A-1)及び(A-15)~(A-19)では、酸無水物の含有量はバインダー樹脂100質量部に対して0.02質量部以上5.00質量部以下である。感光体(A-1)及び(A-15)~(A-19)では、トナー像の転写性の評価において表面電位が+55V以上+79V以下であり、感度特性の評価結果は全て評価A(良い)である。 As shown in Table 1, in the photoreceptors (A-1) and (A-15) to (A-19), the content of acid anhydride is 0.02 parts by mass or more to 100 parts by mass of the binder resin. 0.000 part by mass or less. In the photoreceptors (A-1) and (A-15) to (A-19), the surface potential is +55 V or more and +79 V or less in the evaluation of the transferability of the toner image, and all the evaluation results of the sensitivity characteristics are evaluation A (good). ).
 表1に示すように、感光体(A-20)~(A-21)では、酸無水物の含有量は、それぞれバインダー樹脂100質量部に対して0.01質量部及び10.0質量部である。感光体(A-20)では、表面電位が-34Vである。感光体(A-21)では、感度特性の評価結果が評価B(普通)である。 As shown in Table 1, in the photoreceptors (A-20) to (A-21), the content of the acid anhydride is 0.01 parts by mass and 10.0 parts by mass with respect to 100 parts by mass of the binder resin, respectively. It is. In the photoreceptor (A-20), the surface potential is −34V. In the photoreceptor (A-21), the evaluation result of the sensitivity characteristic is evaluation B (normal).
 以上から、感光体(A-1)及び(A-15)~(A-19)は、感光体(A-20)~(A-21)に比べ、トナー像の転写性及び感度特性のいずれも優れることが明らかである。 From the above, the photoconductors (A-1) and (A-15) to (A-19) have both toner image transferability and sensitivity characteristics as compared with the photoconductors (A-20) to (A-21). Is also clearly superior.
 本発明に係る感光体は、電子写真方式の画像形成装置において好適に使用できる。 The photoreceptor according to the present invention can be suitably used in an electrophotographic image forming apparatus.

Claims (14)

  1.  導電性基体と、感光層とを備える電子写真感光体であって、
     前記感光層は、単層型感光層であり、
     前記感光層は、電荷発生剤と、正孔輸送剤と、電子輸送剤と、バインダー樹脂と、酸無水物とを含み、
     前記酸無水物は、一般式(1)、一般式(2)又は一般式(3)で表される、電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     前記一般式(1)及び前記一般式(2)中、
     Ra、Rb、Rc及びRdは、各々独立に、水素原子、ハロゲン原子、第一置換基を有してもよい炭素原子数1以上6以下のアルキル基、第二置換基を有してもよい炭素原子数1以上6以下のアルコキシ基又は第三置換基を有してもよい炭素原子数6以上14以下のアリール基を表し、
     前記第一置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択され、
     前記第二置換基は、炭素原子数1以上6以下のアルコキシ基及びハロゲン原子からなる群より選択され、
     前記第三置換基は、炭素原子数1以上6以下のアルキル基、炭素原子数1以上6以下のアルコキシ基、及びハロゲン原子からなる群より選択され、
     前記一般式(3)中、
     Xは、メチレン基又は酸素原子を表す。
    An electrophotographic photosensitive member comprising a conductive substrate and a photosensitive layer,
    The photosensitive layer is a single-layer type photosensitive layer,
    The photosensitive layer includes a charge generating agent, a hole transport agent, an electron transport agent, a binder resin, and an acid anhydride,
    The acid anhydride is an electrophotographic photosensitive member represented by the general formula (1), the general formula (2), or the general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (1) and the general formula (2),
    R a , R b , R c and R d each independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a first substituent, and a second substituent. Represents an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms which may have a third substituent,
    The first substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom,
    The second substituent is selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom,
    The third substituent is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom,
    In the general formula (3),
    X represents a methylene group or an oxygen atom.
  2.  前記一般式(1)中、Ra及びRbは、水素原子を表し、
     前記一般式(2)中、Rc及びRdは、水素原子又はハロゲン原子を表す、請求項1に記載の電子写真感光体。
    In the general formula (1), R a and R b represent a hydrogen atom,
    2. The electrophotographic photosensitive member according to claim 1, wherein in the general formula (2), R c and R d represent a hydrogen atom or a halogen atom.
  3.  前記酸無水物は、化学式(ADD-1)、化学式(ADD-2)、化学式(ADD-3)、化学式(ADD-4)、化学式(ADD-5)又は化学式(ADD-6)で表される、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The acid anhydride is represented by chemical formula (ADD-1), chemical formula (ADD-2), chemical formula (ADD-3), chemical formula (ADD-4), chemical formula (ADD-5), or chemical formula (ADD-6). The electrophotographic photosensitive member according to claim 1.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  4.  前記酸無水物の含有量は、前記バインダー樹脂100質量部に対して0.02質量部以上7.00質量部以下である、請求項1に記載の電子写真感光体。 The electrophotographic photoreceptor according to claim 1, wherein the content of the acid anhydride is 0.02 parts by mass or more and 7.00 parts by mass or less with respect to 100 parts by mass of the binder resin.
  5.  前記電子輸送剤は、一般式(ETM1)、一般式(ETM2)、一般式(ETM3)、一般式(ETM4)又は一般式(ETM5)で表される、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
     前記一般式(ETM1)、前記一般式(ETM2)、前記一般式(ETM3)、前記一般式(ETM4)及び前記一般式(ETM5)中、
     R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11及びR12は、各々独立に、水素原子、ハロゲン原子、炭素原子数1以上6以下のアルキル基又は炭素原子数6以上14以下のアリール基を表す。前記炭素原子数1以上6以下のアルキル基は、ハロゲン原子を有してもよい。炭素原子数6以上14以下のアリール基は、ハロゲン原子又は1若しくは複数の炭素原子数1以上6以下のアルキル基を有してもよい。
    The electrophotographic photosensitive member according to claim 1, wherein the electron transfer agent is represented by a general formula (ETM1), a general formula (ETM2), a general formula (ETM3), a general formula (ETM4), or a general formula (ETM5). .
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    In the general formula (ETM1), the general formula (ETM2), the general formula (ETM3), the general formula (ETM4) and the general formula (ETM5),
    R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, a halogen atom, or a carbon atom number. It represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms. The alkyl group having 1 to 6 carbon atoms may have a halogen atom. The aryl group having 6 to 14 carbon atoms may have a halogen atom or one or more alkyl groups having 1 to 6 carbon atoms.
  6.  前記一般式(ETM1)中、R1及びR2は、各々独立に、水素原子又は炭素原子数1以上6以下のアルキル基を表し、
     前記一般式(ETM2)中、R3、R4、R5及びR6は、炭素原子数1以上6以下のアルキル基を表し、
     前記一般式(ETM3)中、R7、R8及びR9は、各々独立に、炭素原子数1以上6以下のアルキル基又はハロゲン原子を有する炭素原子数6以上14以下のアリール基を表し、
     前記一般式(ETM4)中、R10及びR11は、複数の炭素原子数1以上6以下のアルキル基を有する炭素原子数6以上14以下のアリール基を表し、
     前記一般式(ETM5)中、R12は、ハロゲン原子を有する炭素原子数1以上6以下のアルキル基を表す、請求項5に記載の電子写真感光体。
    In the general formula (ETM1), R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
    In the general formula (ETM2), R 3 , R 4 , R 5 and R 6 represent an alkyl group having 1 to 6 carbon atoms,
    In the general formula (ETM3), R 7 , R 8 and R 9 each independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms having a halogen atom,
    In the general formula (ETM4), R 10 and R 11 represent an aryl group having 6 to 14 carbon atoms having a plurality of alkyl groups having 1 to 6 carbon atoms,
    6. The electrophotographic photosensitive member according to claim 5, wherein in the general formula (ETM5), R 12 represents an alkyl group having 1 to 6 carbon atoms having a halogen atom.
  7.  前記電子輸送剤は、化学式(ETM1-1)、化学式(ETM2-1)、化学式(ETM3-1)、化学式(ETM4-1)又は化学式(ETM5-1)で表される、請求項5に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    The electron transport agent is represented by a chemical formula (ETM1-1), a chemical formula (ETM2-1), a chemical formula (ETM3-1), a chemical formula (ETM4-1), or a chemical formula (ETM5-1). Electrophotographic photoreceptor.
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
  8.  前記正孔輸送剤は、一般式(HTM)で表される、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000020
     前記一般式(HTM)中、R21、R22、R23、R24、R25及びR26は、各々独立に、炭素原子数1以上6以下のアルキル基又は炭素原子数1以上6以下のアルコキシ基を表し、
     p、q、v及びwは、各々独立に、0以上5以下の整数を表し、
     m及びnは、各々独立に、0以上4以下の整数を表す。
    The electrophotographic photosensitive member according to claim 1, wherein the hole transport agent is represented by a general formula (HTM).
    Figure JPOXMLDOC01-appb-C000020
    In the general formula (HTM), R 21 , R 22 , R 23 , R 24 , R 25 and R 26 are each independently an alkyl group having 1 to 6 carbon atoms or 1 to 6 carbon atoms. Represents an alkoxy group,
    p, q, v and w each independently represent an integer of 0 to 5,
    m and n each independently represents an integer of 0 or more and 4 or less.
  9.  請求項1に記載の電子写真感光体を備える、プロセスカートリッジ。 A process cartridge comprising the electrophotographic photosensitive member according to claim 1.
  10.  像担持体と、
     前記像担持体の表面を帯電する帯電部と、
     帯電された前記像担持体の前記表面を露光して、前記像担持体の前記表面に静電潜像を形成する露光部と、
     前記静電潜像をトナー像として現像する現像部と、
     前記トナー像を前記像担持体から転写体へ転写する転写部と
    を備える画像形成装置であって、
     前記帯電部の帯電極性は、正極性であり、
     前記像担持体は、請求項1に記載の電子写真感光体である、画像形成装置。
    An image carrier;
    A charging unit that charges the surface of the image carrier;
    An exposure unit that exposes the surface of the charged image carrier to form an electrostatic latent image on the surface of the image carrier;
    A developing unit for developing the electrostatic latent image as a toner image;
    A transfer unit that transfers the toner image from the image carrier to a transfer body,
    The charging polarity of the charging part is positive.
    The image forming apparatus according to claim 1, wherein the image carrier is the electrophotographic photosensitive member according to claim 1.
  11.  前記現像部は、前記像担持体と接触しながら前記静電潜像を前記トナー像として現像する、請求項10に記載の画像形成装置。 The image forming apparatus according to claim 10, wherein the developing unit develops the electrostatic latent image as the toner image while being in contact with the image carrier.
  12.  前記現像部は、前記像担持体の前記表面を清掃する、請求項10に記載の画像形成装置。 The image forming apparatus according to claim 10, wherein the developing unit cleans the surface of the image carrier.
  13.  前記転写体は、記録媒体である、請求項10に記載の画像形成装置。 The image forming apparatus according to claim 10, wherein the transfer member is a recording medium.
  14.  前記帯電部は、帯電ローラーである、請求項10に記載の画像形成装置。 The image forming apparatus according to claim 10, wherein the charging unit is a charging roller.
PCT/JP2017/024096 2016-09-29 2017-06-30 Electrographic photoreceptor, process cartridge, and image formation device WO2018061368A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059543.2A CN109791382A (en) 2016-09-29 2017-06-30 Electrophtography photosensor, handle box and image forming apparatus
JP2018541919A JP6642727B2 (en) 2016-09-29 2017-06-30 Electrophotographic photoreceptor, process cartridge and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016190916 2016-09-29
JP2016-190916 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061368A1 true WO2018061368A1 (en) 2018-04-05

Family

ID=61762618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024096 WO2018061368A1 (en) 2016-09-29 2017-06-30 Electrographic photoreceptor, process cartridge, and image formation device

Country Status (3)

Country Link
JP (1) JP6642727B2 (en)
CN (1) CN109791382A (en)
WO (1) WO2018061368A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180215183A1 (en) * 2017-01-27 2018-08-02 Kyocera Document Solutions Inc. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2021071536A (en) * 2019-10-29 2021-05-06 株式会社沖データ Image carrier unit, image forming unit, and image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132157A (en) * 1981-02-09 1982-08-16 Mita Ind Co Ltd Sensitized composition of electrophotographic photosensitizer
JPS57147642A (en) * 1981-03-10 1982-09-11 Mita Ind Co Ltd Photosensitive plate for electrophotography
JPH01285952A (en) * 1988-05-13 1989-11-16 Nippon Shokubai Kagaku Kogyo Co Ltd Positively charged single layer type electrophotographic sensitive body
JP2004143180A (en) * 2002-10-25 2004-05-20 Samsung Electronics Co Ltd Organic photoreceptor, apparatus and method, for electrophotographic imaging charge transport compound, and polymeric charge transport compound
JP2014210768A (en) * 2013-04-01 2014-11-13 株式会社パーマケム・アジア Electron transport material and electronic material using the electron transport material
JP2016142932A (en) * 2015-02-02 2016-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, image forming apparatus, and process cartridge
WO2016148035A1 (en) * 2015-03-13 2016-09-22 三菱化学株式会社 Single-layer-type electrophotographic photoreceptor for positive electrification, electrophotographic photoreceptor cartridge, and image-forming device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823707B2 (en) * 1987-04-22 1996-03-06 富士写真フイルム株式会社 Image forming method including scanning exposure step
JPH0664353B2 (en) * 1989-02-02 1994-08-22 石原産業株式会社 Electrophotographic photoconductor
JP5899159B2 (en) * 2013-05-31 2016-04-06 京セラドキュメントソリューションズ株式会社 Electrophotographic photosensitive member and image forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132157A (en) * 1981-02-09 1982-08-16 Mita Ind Co Ltd Sensitized composition of electrophotographic photosensitizer
JPS57147642A (en) * 1981-03-10 1982-09-11 Mita Ind Co Ltd Photosensitive plate for electrophotography
JPH01285952A (en) * 1988-05-13 1989-11-16 Nippon Shokubai Kagaku Kogyo Co Ltd Positively charged single layer type electrophotographic sensitive body
JP2004143180A (en) * 2002-10-25 2004-05-20 Samsung Electronics Co Ltd Organic photoreceptor, apparatus and method, for electrophotographic imaging charge transport compound, and polymeric charge transport compound
JP2014210768A (en) * 2013-04-01 2014-11-13 株式会社パーマケム・アジア Electron transport material and electronic material using the electron transport material
JP2016142932A (en) * 2015-02-02 2016-08-08 京セラドキュメントソリューションズ株式会社 Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, image forming apparatus, and process cartridge
WO2016148035A1 (en) * 2015-03-13 2016-09-22 三菱化学株式会社 Single-layer-type electrophotographic photoreceptor for positive electrification, electrophotographic photoreceptor cartridge, and image-forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180215183A1 (en) * 2017-01-27 2018-08-02 Kyocera Document Solutions Inc. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US10372047B2 (en) * 2017-01-27 2019-08-06 Kyocera Document Solutions Inc. Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2021071536A (en) * 2019-10-29 2021-05-06 株式会社沖データ Image carrier unit, image forming unit, and image forming apparatus

Also Published As

Publication number Publication date
CN109791382A (en) 2019-05-21
JP6642727B2 (en) 2020-02-12
JPWO2018061368A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP5814222B2 (en) Positively charged single layer type electrophotographic photosensitive member and image forming apparatus
JP5814212B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP6524974B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6413968B2 (en) Positively charged single layer type electrophotographic photosensitive member, process cartridge, and image forming apparatus
WO2016159244A1 (en) Positively chargeable single-layer electrophotographic photosensitive body, process cartridge and image forming device
JP6354669B2 (en) Positively charged single layer type electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2016090610A (en) Positively-charged single-layer electrophotographic photoreceptor and image forming apparatus
JP6812947B2 (en) Electrophotographic photosensitive member, image forming apparatus and process cartridge
JP2019002950A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6760207B2 (en) Electrophotographic photosensitive member, process cartridge and image forming apparatus
JP6642727B2 (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP6907878B2 (en) Electrophotographic photosensitive member, image forming apparatus and process cartridge
JP6561926B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6354668B2 (en) Positively charged single layer type electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6583546B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
WO2018230100A1 (en) Method for producing electrophotographic photoreceptor
CN107783384B (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2002169306A (en) Monolayer electrophotographic photoreceptor
JP6569597B2 (en) Electrophotographic photosensitive member and method for manufacturing the same, process cartridge, and image forming apparatus
CN109298606B (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019144491A (en) Electrophotographic photoreceptor and image forming apparatus
JP7180174B2 (en) Image forming apparatus and image forming method
JP6717217B2 (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2018031952A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2018105972A (en) Positive charge laminate type electrophotographic photoreceptor, process cartridge and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855327

Country of ref document: EP

Kind code of ref document: A1