WO2018061285A1 - Carbon dioxide absorption device and electronic apparatus - Google Patents

Carbon dioxide absorption device and electronic apparatus Download PDF

Info

Publication number
WO2018061285A1
WO2018061285A1 PCT/JP2017/017564 JP2017017564W WO2018061285A1 WO 2018061285 A1 WO2018061285 A1 WO 2018061285A1 JP 2017017564 W JP2017017564 W JP 2017017564W WO 2018061285 A1 WO2018061285 A1 WO 2018061285A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
unit
concentration
moisture
water
Prior art date
Application number
PCT/JP2017/017564
Other languages
French (fr)
Japanese (ja)
Inventor
峻之 中
貴洋 土江
健太郎 岸良
博久 山田
郁夫 柳瀬
Original Assignee
シャープ株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 国立大学法人埼玉大学 filed Critical シャープ株式会社
Publication of WO2018061285A1 publication Critical patent/WO2018061285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the following disclosure relates to a carbon dioxide absorption device including a carbon dioxide absorbent that absorbs carbon dioxide (CO 2 ) contained in a gas.
  • Patent Document 1 discloses a technique for removing CO 2 by adsorbing CO 2 in a gas stream to zeolite.
  • Patent Document 2 discloses a technique for removing CO 2 in combustion exhaust gas by bringing the combustion exhaust gas into contact with an aqueous amine solution.
  • Patent Document 3 discloses a carbon dioxide absorbent containing lithium silicate as a main component, containing a predetermined amount of moisture.
  • the zeolite disclosed in Patent Document 1 has hydrophilicity. For this reason, when zeolite separates and adsorbs CO 2 from a gas containing moisture and CO 2 , the zeolite preferentially adsorbs moisture. Therefore, there has been a problem that the ability of the zeolite to separate and adsorb CO 2 is significantly reduced.
  • the amine aqueous solution currently disclosed by patent document 2 is aqueous solution which has a density
  • Patent Document 2 has a problem that a large-scale absorption / regeneration mechanism is required to adjust the concentration of the aqueous amine solution so that CO 2 can be absorbed again.
  • the carbon dioxide absorbent disclosed in Patent Document 3 can absorb carbon dioxide (in other words, CO 2 ) from a gas containing moisture and CO 2 at room temperature.
  • CO 2 carbon dioxide
  • absorption of carbon dioxide by a carbon dioxide absorbent is performed by adding moisture to the carbon dioxide absorbent or (ii) adding a particulate wetting agent to the carbon dioxide absorbent. Prior to the start, water is contained in the carbon dioxide absorbent.
  • the CO 2 absorption rate (CO 2 absorption amount per unit time) by the carbon dioxide absorbent is determined by the amount of moisture given to the carbon dioxide absorbent prior to the start of CO 2 absorption. . For this reason, there was a problem that the CO 2 absorption rate could not be changed (controlled) when the carbon dioxide absorbing material was absorbing CO 2 .
  • Patent Documents 1 to 3 have a problem that the absorption amount (absorption rate) of CO 2 in the carbon dioxide absorbent cannot be appropriately controlled with a simple configuration.
  • One aspect of the present disclosure has been made in view of the above-described problems, and a purpose thereof is a carbon dioxide absorption device or the like that can control the amount of CO 2 absorbed in the carbon dioxide absorbent by a simple configuration. Is to realize.
  • a carbon dioxide absorption device includes a carbon dioxide absorbent that absorbs carbon dioxide contained in the gas from a gas containing moisture and carbon dioxide.
  • the carbon dioxide absorber comprises a tetravalent lithium silicate, retains the carbon dioxide absorber and moisture, and at least part of the retained moisture is the dioxide.
  • the apparatus further includes a holding unit that supplies the carbon absorbent, a supply unit that supplies the moisture to the holding unit, and a supply control unit that controls the operation of the supply unit.
  • the carbon dioxide absorber according to one aspect of the present disclosure, by a simple configuration, an effect that it is possible to control the CO 2 absorption amount of the carbon dioxide absorbent.
  • FIG. It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows the schematic structure of the water
  • the carbon dioxide absorption absorbing device of FIG. 1 is a diagram schematically showing the relationship between the amount of CO 2 absorption and moisture per unit time of the carbon dioxide absorbent. It is a figure which shows an example of the 1st table in the carbon dioxide absorption / absorption apparatus of FIG.
  • the carbon dioxide absorber of FIG. 1 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 2. It is a functional block diagram which shows the schematic structure of the water
  • FIG. 11 In the carbon dioxide absorption absorbing device of FIG. 11 is a diagram schematically showing the relationship between the pH of the CO 2 absorption and moisture per unit time of the carbon dioxide absorbent. It is a figure which shows an example of the 2nd table in the carbon dioxide absorption / absorption apparatus of FIG.
  • the carbon dioxide absorber of FIG. 11 In the carbon dioxide absorber of FIG. 11 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 3.
  • In the carbon dioxide absorber of FIG. 17 In the carbon dioxide absorber of FIG. 17 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. It is a figure which shows schematic structure of the air cleaner which concerns on Embodiment 4.
  • FIG. 1 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorber 1.
  • the carbon dioxide absorption device 1 includes a carbon dioxide absorbent 10, a holding unit 11, a moisture supply unit 12 (supply unit), a control unit 13, a detection unit 14, and a storage unit 15.
  • the control unit 13 includes a difference calculation unit 131 and an addition amount setting unit 132 (supply control unit).
  • the carbon dioxide absorbent 10 is placed on the holding unit 11.
  • the carbon dioxide absorber 1 may be provided with a member (for example, a pump or a fan) for sending air into the carbon dioxide absorbent 10 and the detector 14.
  • a member for example, a pump or a fan
  • these members are not shown in FIG.
  • the carbon dioxide absorbent 10 absorbs CO 2 contained in the gas. Specifically, the carbon dioxide absorbent 10 separates at least a part of CO 2 from a gas in a space containing moisture (ie, water vapor) and CO 2 (ie, carbon dioxide gas), and absorbs the CO 2 . To do.
  • low concentration means, for example, a concentration of 5000 ppm or less, and particularly a concentration of 3000 ppm or less when the influence on the human body is taken into consideration.
  • Space means an environment in which humans (or other living organisms) can survive. Therefore, the atmospheric pressure in the space of the present embodiment is near atmospheric pressure (1 atm).
  • the carbon dioxide absorbent 10 contains tetravalent lithium silicate (Li 4 SiO 4 ).
  • tetravalent lithium silicate means “lithium silicate having four monovalent Li”.
  • the lithium silicate is the main component of the carbon dioxide absorbent 10.
  • the amount of CO 2 absorbed per unit time in the carbon dioxide absorbent 10 (that is, the pH of water) by changing the amount of moisture contained in the carbon dioxide absorbent 10 or the nature of moisture (eg, pH of moisture) (that is, CO 2 absorption rate) can be adjusted. That is, the CO 2 absorption rate can be adjusted by changing the moisture content in the carbon dioxide absorbent 10.
  • the holding unit 11 is a member on which the carbon dioxide absorbent 10 is placed. That is, the holding unit 11 is a support member that supports (holds) the carbon dioxide absorbent 10. Further, as will be described below, moisture is supplied to the holding unit 11 from the water supply unit 12.
  • the holding unit 11 holds the moisture and supplies part of the held moisture to the carbon dioxide absorbent 10.
  • the moisture supply unit 12 can supply moisture to the carbon dioxide absorbent 10 via the holding unit 11. Therefore, according to the supply of moisture from the moisture supply unit 12 to the holding unit 11, the moisture content in the carbon dioxide absorbent 10 can be changed.
  • the holding unit 11 only needs to be able to hold the carbon dioxide absorbent 10 and moisture, and the material of the holding unit 11 is not particularly limited.
  • the material of the holding unit 11 cellulose, melamine resin, or the like can be used.
  • the case where the holding unit 11 is a filter paper made of cellulose will be mainly described as an example.
  • FIG. 2 is a functional block diagram showing a schematic configuration of the moisture supply unit 12.
  • the water supply unit 12 includes a water storage unit 121 that stores water to be supplied to the holding unit 11, and a water supply unit 122 that sends water from the water storage unit 121 to the holding unit 11.
  • the moisture supply unit 12 further includes a water channel 123 (eg, a tube or a pipe) that connects the water storage unit 121 and the water supply unit 122 to each other.
  • the water supply unit 122 extracts a predetermined amount of water from the water storage unit 121 through the water channel 123 and supplies the extracted water to the holding unit 11.
  • the water storage unit 121 is a container that is made of a known material (eg, a plastic material or a glass material) and receives a predetermined amount of water.
  • the water stored in the water storage unit 121 is ion exchange water having a pH of about 7.
  • the water supply unit 122 includes a pump 124 (for example, a liquid supply pump or a syringe pump) for supplying (transporting) water to the holding unit 11.
  • a pump 124 for example, a liquid supply pump or a syringe pump
  • the amount of water supplied from the moisture supply unit 12 to the holding unit 11 can be set (changed) by the control unit 13 (more specifically, an addition amount setting unit 132 described later) controlling the operation of the pump 124. .
  • the operation of the pump 124 may be controlled by an external device different from the carbon dioxide absorber 1.
  • the user can input the external device and set the amount of water supplied from the moisture supply unit 12 to the holding unit 11 based on the input.
  • the detection unit 14 detects (measures) the CO 2 concentration in the gas in the space where the carbon dioxide absorption device 1 is provided. In addition, the detection unit 14 gives a detection value (detection result) of the CO 2 concentration to the control unit 13 (more specifically, a difference calculation unit 131 described later).
  • the detection method of the CO 2 concentration in the detection unit 14 is not particularly limited.
  • a method using a semiconductor sensor semiconductor method
  • an electrochemical method electrochemical method
  • an infrared absorption method or the like
  • the semiconductor detection method When the semiconductor detection method is adopted, there are advantages such as (i) the cost of the detection unit 14 can be reduced, and (ii) the detection unit 14 can be given resistance to severe environmental conditions. .
  • a semiconductor such as SnO 2 or ZnO (eg, n-type semiconductor) is used. From the viewpoint of improving the selectivity of the detection target, SnO 2 added with La is used. Is particularly preferred.
  • an infrared absorption detection method there are advantages such as (i) the sensitivity of the detection unit 14 can be increased, and (ii) the selectivity of the detection target can be improved.
  • an electrochemical detection method for example, a sodium ion conductor is used as the conductive ion species of the solid electrolyte.
  • the control unit 13 comprehensively controls each unit (hardware element) of the carbon dioxide absorber 1.
  • the function of the control unit 13 may be realized by executing a program stored in the storage unit 15 by a CPU (Central Processing Unit).
  • the storage unit 15 stores various programs executed by the control unit 13 and data used by the programs.
  • the storage unit 15 stores a first table 151 described later.
  • the difference calculation unit 131 and the addition amount setting unit 132 are illustrated as separate functional units.
  • the addition amount setting unit 132 has the function of the difference calculation unit 131 in combination. May be. That is, the difference calculation unit 131 and the addition amount setting unit 132 may be realized as an integrated functional unit. The same applies to the pH setting unit 232 (supply control unit) described in the second embodiment described later.
  • control unit 13 (specifically, the addition amount setting unit 132) has a function as a supply control unit that controls the supply of moisture from the moisture supply unit 12 to the holding unit 11. More specifically, the addition amount setting unit 132 adjusts the amount of moisture supplied from the moisture supply unit 12 to the holding unit 11 based on the detected value of the CO 2 concentration in the detection unit 14.
  • Example of method for producing carbon dioxide absorbent 10 Hereinafter, an example of a method for producing the carbon dioxide absorbent 10 will be described.
  • the silicon dioxide (SiO 2 ) and lithium nitrate (LiNO 3 ) are weighed so that the molar ratio is 1: 4 (weighing step).
  • the weighed silicon dioxide and lithium nitrate are placed in a container together with ethanol.
  • silicon dioxide and lithium nitrate are mixed by a ball mill using Al 2 O 3 balls for about 24 hours (mixing step). Thereafter, ethanol is removed by an evaporator to obtain a mixed powder of silicon dioxide and lithium nitrate.
  • the obtained mixed powder is grind
  • the carbon dioxide absorbent 10 (powder) prepared by the above preparation method is referred to as powder X. From the observation result by SEM (Scanning Electron Microscope), it was confirmed that the particle size of the powder X was about 5 to 30 ⁇ m.
  • the mixing time in the mixing step is merely an example.
  • the mixing time may be appropriately set according to the total weight of silicon dioxide and lithium nitrate weighed in the weighing step.
  • the heating temperature and heating time in the heating step are merely examples.
  • the heating temperature and the heating time may be appropriately set depending on the specifications of the electric furnace to be used.
  • the heating temperature may be 600 ° C. or higher and 1000 ° C. or lower.
  • the heating time may be 5 hours or more and 40 hours or less.
  • FIG. 3 is a graph showing an example of measurement results for powder X using XRD.
  • the horizontal axis represents the diffraction angle (°)
  • the vertical axis represents the X-ray intensity (arbitrary unit) after scattering in the measurement object.
  • “8: 1” is the measurement result when the measurement object is other than the powder X (powder obtained with the molar ratio of lithium nitrate and silicon dioxide other than 1: 4 in the weighing step in the above production method). Indicates.
  • Li 4 SiO 4 (circle mark), “Li 2 SiO 3 ” (triangle mark), and “Li 2 CO 3 ” (square mark) in FIG. 3 are respectively Li 4 SiO 4 as a reference. , Li 2 SiO 3 , and Li 2 CO 3 measurement results are shown.
  • FIG. 4 is a diagram illustrating an example of a measurement mechanism for measuring the CO 2 absorption amount (that is, the CO 2 absorption characteristic of the carbon dioxide absorbent 10) by the carbon dioxide absorbent 10 (eg, powder X).
  • 5 and 6 are graphs showing examples of measurement results obtained by the measurement mechanism of FIG.
  • the carbon dioxide absorbent 10, the holding unit 11, and the detection unit 14 are arranged in the container 150.
  • the CO 2 absorption amount of the carbon dioxide absorbent 10 can be measured by measuring the CO 2 concentration in the gas contained in the container 150.
  • the container 150 can be filled with a gas containing moisture and carbon dioxide to create a measurement environment therein.
  • a door (not shown) is provided on the front surface of the container 150.
  • the material of the container 150 will not be specifically limited if the above-mentioned measurement environment can be provided.
  • the material of the container 150 is, for example, acrylic.
  • the detection unit 14 measures the concentration of CO 2 in the gas contained in the container 150 in a sealed state with the door closed.
  • the measurement method of the CO 2 absorption characteristics of the carbon dioxide absorbent 10 in the measurement mechanism of FIG. 4 is as follows. First, a container 150 (made of acrylic) having an internal volume of 12 liters is placed in an atmosphere having a CO 2 concentration of about 450 ppm, room temperature, and humidity of 45-50% RH (Relative Humidity), and the inside of the container 150 is the same as the atmosphere. And the atmosphere.
  • a predetermined amount (0 to 500 ⁇ L) of water is added to the holding unit 11, and the carbon dioxide absorbent 10 (powder X) is added to the holding unit 11 by 0.0. 15 g was placed. Thereafter, only 0.05 g of the carbon dioxide absorbent 10 was removed from the holding unit 11, and the remaining 0.1 g of the carbon dioxide absorbent 10 was placed on the holding unit 11. Subsequently, the door of the container 150 was closed, and the inside of the container 150 was sealed. In the sealed state, the CO 2 concentration contained in the container 150 was measured over time by the detection unit 14. An example of the measurement result is shown in FIGS. 5 and 6 described below.
  • FIG. 5 is a graph showing an example of measurement results when a filter paper made of cellulose is used as the holding unit 11.
  • FIG. 5 shows the amount of CO 2 absorbed by the carbon dioxide absorbent 10 (more specifically, detected by the detection unit 14 when the amount of water added to the holding unit 11 (filter paper) is changed variously. The measurement result about the time transition of the amount of reduction of CO 2 in the container 150 is shown.
  • FIG. 5 shows the measurement results for five types of water addition amounts of “0 ⁇ L” (no addition), “100 ⁇ L”, “200 ⁇ L”, “300 ⁇ L”, “400 ⁇ L”, and “500 ⁇ L”. Yes.
  • the amount of CO 2 absorbed by the carbon dioxide absorbent 10 within a predetermined time increases as the amount of water added increases.
  • the addition amount of water was 0 ⁇ L (no addition)
  • FIG. 6 is a graph showing an example of a measurement result when a melamine resin container is used as the holding unit 11.
  • FIG. 6 shows a measurement result of the temporal transition of the CO 2 absorption amount by the carbon dioxide absorbent 10 when the amount of water added to the holding unit 11 (container) is 500 ⁇ L.
  • the holding unit 11 can sufficiently hold moisture, and the carbon dioxide absorbent 10 suitably absorbs CO 2. It was confirmed that it was possible to
  • Li 4 SiO 4 contained in the carbon dioxide absorbent 10 contains water to partially dissolve the surface of Li 4 SiO 4 . Then, by increasing the amount of water to be contained in the Li 4 SiO 4, dissolution of the surface of the Li 4 SiO 4 is promoted. As a result, the CO 2 absorption reaction in the carbon dioxide absorbent 10 is promoted.
  • FIG. 7 is a table showing an example of the measurement result of the moisture content.
  • the moisture content of the carbon dioxide absorbent 10 is measured by measuring the weight of the carbon dioxide absorbent 10 before and after the process of dehydrating water from the carbon dioxide absorbent 10 (dehydration process) using a moisture meter. It was done by doing. In addition, the dehydration process was performed by heating the carbon dioxide absorbent 10 at 120 ° C. for about 1 minute.
  • the moisture content of 0.05 g of the carbon dioxide absorbent 10 removed from the holding unit 11 was measured prior to the start of measurement of the CO 2 absorption characteristics.
  • the moisture content is referred to as “a moisture content before measurement”.
  • moisture content after measurement 120 minutes after the start of measurement of the CO 2 absorption characteristics
  • the moisture content after measurement is lower than the moisture content before measurement except when the amount of moisture added is 0 ⁇ L (when moisture is not added to the holding unit 11). It was confirmed. This is presumed to be due to a decrease in the moisture content of the carbon dioxide absorbent 10 because a part of the water contained in the carbon dioxide absorbent 10 has evaporated inside the container 150.
  • Control method of CO 2 absorption amount in carbon dioxide absorber 1 The inventors have conceived a new method for controlling the CO 2 absorption amount (CO 2 absorption rate) in the carbon dioxide absorption device 1 based on the measurement results. Subsequently, an example of the control method will be described.
  • FIG. 8 shows the amount of CO 2 absorbed per unit time of the carbon dioxide absorbent 10 (vertical axis, unit: g) (that is, CO 2 absorption rate) and the amount of moisture W added to the holding unit 11 (horizontal axis, unit). : L) (hereinafter simply referred to as “addition amount W”).
  • the graph of FIG. 8 also shows that the CO 2 absorption rate depends on the addition amount W.
  • the addition amount W at which the maximum value of the CO 2 absorption rate is obtained is expressed as W m in particular.
  • W 1 to W m shown in FIG. 8 are set values of the addition amount W. As will be described later, all of W 1 to W X are smaller than W m .
  • the CO 2 absorption rate increases as W increases.
  • W> W m the CO 2 absorption rate decreases even when W is increased.
  • W 0, the CO 2 absorption rate is zero. From these facts, it is understood that the CO 2 absorption rate can be controlled in the numerical range from 0 to the maximum value by adjusting the addition amount W in the numerical range of 0 ⁇ W ⁇ W m .
  • the difference calculation unit 131 acquires the detection result (the detected value of the CO 2 concentration) from the detection unit 14 from the detection unit 14. Then, the difference calculation unit 131, based on the detection result, calculates the CO 2 absorption rate of the above (hereinafter, referred to as the detection value P1).
  • the difference calculation unit 131 calculates the difference between the detected value P1 (that is, the CO 2 absorption amount per unit time) and the reference value of the predetermined CO 2 absorption amount (hereinafter referred to as the reference value DT) as a difference.
  • the difference calculation unit 131 supplies the difference value D to the addition amount setting unit 132.
  • the reference value DT may be set in advance at the time of product shipment of the carbon dioxide absorber 1, or may be set by the user.
  • the reference value DT may be set to 1000 ppm which is a reference value such as the Building Sanitation Law. This numerical value (concentration) of 1000 ppm is an example of a CO 2 concentration that is considered to possibly have an adverse effect on the human body (eg, there is a possibility that humans may be invited to sleepiness and concentration may be reduced).
  • the addition amount setting unit 132 acquires the difference value D from the difference calculation unit 131 and sets the addition amount W based on the difference value D. That is, the addition amount setting unit 132 controls the operation of the pump 124 of the moisture supply unit 12 based on the difference value D.
  • the addition amount setting unit 132 refers to the first table 151 and sets (selects) the addition amount W according to the numerical range of the difference value D.
  • the addition amount setting unit 132 can set the addition amount W according to the detection value P1 with reference to the first table 151.
  • the first table 151 is a predetermined table showing a correspondence relationship between the numerical range of the difference value D and the addition amount W (more specifically, the set value of the addition amount W). It should be noted that the first table 151 may be understood as a table showing the correspondence between the detection value P1 and the addition amount W.
  • FIG. 9 is a table showing an example of the first table 151.
  • the case where the first table 151 is stored in the storage unit 15 is illustrated, but the first table 151 may be set inside the addition amount setting unit 132.
  • X is an arbitrary integer. Also, 0 ⁇ S 1 ⁇ S 2 ⁇ ... ⁇ S X-1 ⁇ S X , and 0 ⁇ W 1 ⁇ W 2 ⁇ ... ⁇ W X ⁇ W m . That is, in the first table 151, S 1 to S X (threshold value of the difference value D) and W are set so that the addition amount W increases (so that the CO 2 absorption rate can be increased) as the difference value D increases. the value of 1 ⁇ W m has been set. The values of X, S 1 to S X , and W 1 to W m may be set in advance when the carbon dioxide absorber 1 is shipped, or may be set by the user.
  • an appropriate addition amount is determined according to the degree of the difference value D (that is, how large the detected value P1 is relative to the reference value DT). W can be set stepwise (discrete). Therefore, the addition amount setting unit 132 can set the addition amount W by a simple process (calculation).
  • FIG. 10 is a flowchart illustrating the flow of the processing.
  • the detection unit 14 operates to detect the CO 2 concentration in the gas in the space (S1). Subsequently, as described above, the difference calculation unit 131 acquires the detection result of the detection unit 14 and calculates the difference value D (S2). Then, the addition amount setting unit 132 sets the addition amount W according to the numerical range of the difference value D based on the first table 151.
  • the addition amount setting unit 132 determines whether or not S 1 ⁇ D ⁇ S 2 (S7).
  • S 1 ⁇ D ⁇ S 2 YES in S 7
  • the addition amount setting unit 132 determines which numerical range in the first table 151 the value of D belongs to, and the same as described above. Then, the process of setting the addition amount W corresponding to the numerical range of D is performed. In FIG. 10, the processes from “NO at S7” to S9 are not shown.
  • the detection unit 14 detects the CO 2 concentration in the gas in the space at any two different times t1 and t2 (t2> t1). (S13). Note that the times t1 and t2 may be set in advance when the carbon dioxide absorption device 1 is shipped, or may be set by the user.
  • the difference calculation unit 131 determines whether the change amount is 0 or positive (S14).
  • the process returns to the above-described process S1 and the same process is repeated. This is because when the amount of change is 0 or positive, the CO 2 concentration does not decrease with the passage of time, so it is considered preferable to continue the absorption of CO 2 by the carbon dioxide absorbent 10. On the other hand, if the amount of change is negative (NO in S14), the process returns to S13 described above.
  • the addition amount W is set by setting the addition amount W (the amount of moisture supplied from the moisture supply unit 12 to the holding unit 11) in the addition amount setting unit 132. Accordingly, the CO 2 absorption amount (CO 2 absorption rate) of the carbon dioxide absorbent 10 can be changed. That is, with a simple configuration, the moisture content in the carbon dioxide absorbent 10 (in this embodiment, the moisture content) can be changed arbitrarily, so that the CO 2 absorption can be appropriately controlled. It becomes.
  • the CO 2 absorption amount can be controlled in a plurality of stages by adjusting the addition amount W within a numerical range of 0 ⁇ W ⁇ W m that is greater than or equal to zero. For this reason, the CO 2 absorption amount can also be set so that the carbon dioxide absorbent 10 does not absorb an excessive amount of CO 2 . Therefore, useless consumption (deterioration) of the carbon dioxide absorbent 10 can be prevented.
  • the carbon dioxide absorption device 1 it is possible to control the CO 2 concentration in the gas within an appropriate range over a long period of time. Therefore, the carbon dioxide absorption device 1 is particularly suitable in a space where the CO 2 concentration to be removed changes with time (eg, a space where ventilation can be restricted, which will be described later).
  • FIG. 11 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorption device 2 of the present embodiment.
  • the carbon dioxide absorption device 2 is the same as the carbon dioxide absorption device 1 of the first embodiment described above, in which (i) the moisture supply unit 12 is replaced with the moisture supply unit 22 (supply unit), and (ii) the addition amount setting unit 132 of the control unit 13. Is replaced with a pH setting unit 232, respectively.
  • control part of the carbon dioxide absorption apparatus 2 is called the control part 23 for the distinction with the control part 13.
  • the storage unit 15 stores a second table 251 (described later) instead of the first table 151 described above.
  • FIG. 12 is a functional block diagram showing a schematic configuration of the moisture supply unit 22.
  • the water supply unit 22 is different from the water supply unit 12 described above in that it includes a plurality of water storage units that store water supplied to the holding unit 11.
  • the water supply unit 22 includes five water storage units 221a to 221e.
  • the water storage units 221a to 221e may be collectively referred to as the water storage unit 221.
  • FIG. 12 for simplicity, only three water storage units 221a, 221b, and 221e out of the five water storage units 221a to 221e are illustrated. The same applies to water channels 223a to 223e described below.
  • each of the five water storage units 221 stores aqueous solutions having five different pH values of “pH 0”, “pH 2”, “pH 7”, “pH 12”, and “pH 14”.
  • the water supply unit 22 further includes water channels 223a to 223e that connect the water storage units 221a to 221e and the water supply unit 122 to each other.
  • the water supply unit 122 (more specifically, the pump 124) takes out the aqueous solution of pH 0 from the water storage unit 221a through the water channel 223a.
  • the water supply unit 122 selects a specific water storage unit (for example, the water storage unit 221a) from the plurality of water storage units 221 (water storage units 221a to 221e). A predetermined amount of water can be taken out from the water reservoir.
  • a specific water storage unit for example, the water storage unit 221a
  • water storage units 221a to 221e water storage units 221a to 221e
  • the pH setting unit 232 in FIG. 11 described above adds to the above-described addition amount setting unit 132 a water storage unit (eg, water storage unit 221a) that is a target for extracting water from the plurality of water storage units 221 in the water supply unit 22.
  • a function for selecting is added. That is, the pH setting unit 232 can set the pH of the moisture in addition to the added amount W of the moisture.
  • a specific example of the operation of the pH setting unit 232 will be described in detail below.
  • FIG. 13 is a graph (a graph paired with FIG. 5 described above) showing an example of measurement results when cellulose filter paper is used as the holding unit 11 in the measurement mechanism of FIG. 4 described above. Specifically, FIG. 13 shows the measurement result of the temporal transition of the amount of CO 2 absorbed by the carbon dioxide absorbent 10 when water having a predetermined pH is added to the holding unit 11 (filter paper). ing.
  • FIG. 13 shows measurement results for six cases of “pH 0”, “pH 2.4”, “pH 7”, “pH 12”, “pH 13”, and “pH 14”. Further, the amount of water added to the holding unit 11 is 300 ⁇ L at any pH. Other conditions are the same as those in the case of FIG.
  • the amount of CO 2 absorbed by the carbon dioxide absorbent 10 within a predetermined time may increase as the pH of water increases. confirmed.
  • Control method of CO 2 absorption amount in carbon dioxide absorber 2 The inventors have conceived a new method for controlling the CO 2 absorption amount (CO 2 absorption rate) different from that of the first embodiment based on the measurement result. Subsequently, an example of the control method will be described.
  • FIG. 14 shows the amount of CO 2 absorbed per unit time of the carbon dioxide absorbent 10 (vertical axis, unit: g) (that is, CO 2 absorption rate) and the pH of water relative to the holding unit 11 (horizontal axis, unit: L). It is a graph which shows the relationship with) schematically. Hereinafter, a letter (symbol) representing the pH of moisture is assumed to be A. As described above, the graph of FIG. 14 also shows that the CO 2 absorption rate depends on the pH of water (the value of A).
  • the value of A from which the minimum value of the CO 2 absorption rate is obtained is expressed as A 1 in particular.
  • a 1 0.
  • the value of A the maximum value of the CO 2 absorption rate is obtained, expressed as a particular A m.
  • a m 14.
  • the pH setting unit 232 sets the value of A based on the difference value D acquired from the difference calculation unit 131. More specifically, the pH setting unit 232 refers to the second table 251 and sets the value A according to the numerical range of the difference value D. In other words, the pH setting unit 232 can set the value of A according to the detection value P1 with reference to the second table 251.
  • the second table 251 is a predetermined table indicating the correspondence between the numerical range of the difference value D and the value of A (more specifically, the set value of A). It should be noted that the second table 251 may be understood as a table indicating the correspondence between the detection value P1 and the value A.
  • FIG. 15 is a table showing an example of the second table 251.
  • the case where the second table 251 is stored in the storage unit 15 is illustrated, but the second table 251 may be set inside the pH setting unit 232.
  • X and S 1 to S X are the same as those in the case of the first table 151 (FIG. 9) described above, and a description thereof will be omitted.
  • the values of X and S 1 to S X may be the same as or different from those of the first table 151 described above.
  • the pH setting unit 232 can set an appropriate value of A stepwise in accordance with the degree of the difference value D. For this reason, the pH setting unit 232 can also set the value of A by a simple process.
  • FIG. 16 is a flowchart illustrating the flow of the processing.
  • the pH setting unit 232 determines which numerical range in the second table 251 the value of D belongs to, A process of setting a value of A corresponding to the numerical value range of D is performed. Also in FIG. 16, as in FIG. 10 described above, the processes from “NO at S27” to S29 are not shown.
  • the carbon dioxide absorbent 10 can also be obtained by changing the pH (value of A) of the water instead of the amount of water (addition amount W) supplied from the water supply unit 22 to the holding unit 11.
  • the amount of CO 2 absorbed (and CO 2 absorption rate) can be adjusted.
  • the carbon dioxide absorption device 2 of the present embodiment sets the value of A in the pH setting unit 232, so that the CO 2 absorption amount (CO 2) of the carbon dioxide absorbent 10 according to the value of A. (Absorption rate) is changed.
  • the carbon oxide absorption device 2 can also arbitrarily change the moisture content in the carbon dioxide absorbent 10 (in this embodiment, the pH of the moisture), so that the amount of CO 2 absorption can be controlled appropriately. Is possible. Therefore, the carbon dioxide absorption device 2 can provide the same effect as that of the first embodiment.
  • the pH setting unit 232 may further set not only the value A but also the addition amount W according to the numerical range of the difference value D described above.
  • the pH setting unit 232 can further set the addition amount W by referring to the first table 151 described above. According to this configuration, since both the pH and amount of water added to the holding unit 11 can be set, the CO 2 absorption amount (or CO 2 absorption rate) can be controlled with higher accuracy.
  • FIG. 17 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorption device 3 of the present embodiment.
  • the carbon dioxide absorption device 3 has a configuration in which a heating unit 35 and a heating control unit 333 are added to the carbon dioxide absorption device 1 of the first embodiment.
  • the control unit of the carbon dioxide absorber 3 is referred to as a control unit 33.
  • the heating control unit 333 is provided in the control unit 33.
  • the heating unit 35 heats the holding unit 11 and removes at least a part of the moisture added to the holding unit 11.
  • the heating unit 35 may be, for example, a heater or a microwave irradiator, but is not limited thereto.
  • the heating temperature in the heating unit 35 (the temperature at which the holding unit 11 is heated) is preferably set within a temperature range where the holding unit 11 does not burn (eg, 60 ° C. to 200 ° C.).
  • a temperature range where the holding unit 11 does not burn eg, 60 ° C. to 200 ° C.
  • the material of the holding unit 11 is an organic substance (eg, cellulose)
  • the heating control unit 333 controls the operation of the heating unit 35.
  • the heating control unit 333 is based on the moisture addition history (may be referred to as supply history) to the holding unit 11 of the moisture supply unit 12 (hereinafter, also simply referred to as “addition history”).
  • the operation of the heating unit 35 may be controlled.
  • the addition history is a history in which the moisture supply unit 12 supplies (transports) moisture to the holding unit 11.
  • the operation of the heating unit 35 may be controlled by an external device different from the carbon dioxide absorber 3.
  • the user can give an input to the external device and operate the heating unit 35 based on the input.
  • FIG. 18 is a flowchart illustrating the flow of the processing.
  • FIG. 18 may be understood as a flowchart in which S44 and S46 are added to FIG.
  • S44 and S46 and their peripheral processing will be described.
  • the addition time setting unit 132 sets the operation time of the moisture supply unit 12 based on the instruction.
  • the addition amount setting unit 132 stores a log (record) indicating the operation time in the storage unit 15 as “addition history”.
  • the heating control unit 333 confirms whether the above-described addition history is present (stored) in the storage unit 15 (S44). If the addition history does not exist (NO in S44), the process proceeds to S45. That is, in this case, the heating control unit 333 does not operate the heating unit 35 and the state where moisture has not been added to the holding unit 11 is maintained as it is.
  • the heating control unit 333 operates the heating unit 35 in order to remove at least part of the moisture already added to the holding unit 11 ( S46). For example, when removing all of the moisture from the holding unit 11, the heating control unit 333 operates the heating unit 35 at a predetermined heating temperature (eg, 100 ° C.) over a predetermined heating time. Good.
  • a predetermined heating temperature eg, 100 ° C.
  • the predetermined heating time is a time during which the maximum amount of moisture that can be held by the holding unit 11 can be removed when the holding unit 11 is heated at the predetermined heating temperature (100 ° C.).
  • the predetermined heating time may be set in advance when the carbon dioxide absorption device 1 is shipped, or may be set by the user.
  • the above-described difference value D is D ⁇ 0 (that is, the detected value P1 is equal to or less than the reference value DT), and the above-described addition history exists (that is, dioxide dioxide).
  • the carbon absorption device 3 causes the carbon dioxide absorbent 10 to absorb CO 2 at least once
  • the necessity of maintaining the CO 2 absorption capacity in the carbon dioxide absorbent 10 is low. This is because it is considered that the CO 2 concentration in the gas has already been sufficiently reduced by the absorption of CO 2 by the carbon dioxide absorbent 10 so far.
  • the carbon dioxide absorption device 3 of the present embodiment is configured to control the operation of the heating unit 35 by the heating control unit 333 and remove at least a part of the moisture added to the holding unit 11. ing.
  • the heating unit 35 is operated in accordance with an instruction from the heating control unit 333 to quickly reduce the CO 2 absorption amount (CO 2 absorption rate) of the carbon dioxide absorbent 10. it can. For this reason, useless consumption of the carbon dioxide absorbent 10 in an unnecessary case can be effectively prevented.
  • the carbon dioxide absorption device 3 of the present embodiment by providing the heating control unit 333 and the heating unit 35, compared to the carbon dioxide absorption device 1 of the above-described first embodiment, CO 2 absorption.
  • the amount can be controlled with higher accuracy.
  • the case where the operation of the heating unit 35 is controlled in consideration of both the difference value D and the addition history is illustrated.
  • the operation of the heating unit 35 may be controlled considering only the difference value D.
  • the heating control unit 333 may operate the heating unit 35 regardless of the presence or absence of the addition history when D ⁇ 0. Also with this configuration, wasteful consumption of the carbon dioxide absorbent 10 can be prevented.
  • Embodiment 4 The following describes Embodiment 4 of the present disclosure with reference to FIG. In this embodiment, an example of an electronic device including the carbon dioxide absorption device according to one aspect of the present disclosure will be described.
  • FIG. 19 is a diagram showing a schematic configuration of the air cleaner 100 (electronic device) of the present embodiment.
  • the arrow in FIG. 19 has shown the flow of the air which the air cleaner 100 took in.
  • the air cleaner 100 includes a carbon dioxide absorber 1, a filter 101, and a fan 102.
  • the carbon dioxide absorption apparatus 1 of Embodiment 1 is provided in the air cleaner 100 for convenience of explanation, it replaces with the said carbon dioxide absorption apparatus 1, and is implemented.
  • the carbon dioxide absorbers 2 and 3 in the forms 2 and 3 may be provided in the air cleaner 100.
  • the fan 102 is a blower that takes air into the air purifier 100.
  • the operation of the fan 102 is controlled by a control unit (not shown) provided in the air cleaner 100. However.
  • the operation of the fan 102 may be controlled by the controller 13 of the carbon dioxide absorber 1.
  • the filter 101 cleans the air taken into the air purifier 100 by the operation of the fan 102.
  • the type of the filter 101 is not particularly limited, and examples include a deodorizing air conditioning filter, a formaldehyde absorbing air conditioning filter, an antibacterial / dust collecting air conditioning filter, and a combination of these filters.
  • the carbon dioxide absorption device 1 detects the CO 2 concentration of the taken-in air, and controls the CO 2 absorption rate of the carbon dioxide absorbent 10 according to the CO 2 concentration. For this reason, the air purifier 100 can send out air that has been cleaned by the filter 101 and whose CO 2 concentration has been adjusted to an appropriate value by the carbon dioxide absorber 1. Thus, the air cleaner 100 can provide the user with air that is more suitable for the health of the user.
  • the air purifier 100 operates the fan 102 to perform both (i) intake of air for cleaning air in the filter 101 and (i) intake of air into the carbon dioxide absorber 1. be able to.
  • the fan 102 is shared between the filter 101 (member related to the air cleaning function) and the carbon dioxide absorber 1 (member related to the CO 2 absorption function). Therefore, according to the said structure, compared with the case where a fan is separately provided with respect to each of the filter 101 and the carbon dioxide absorption apparatus 1, the number of parts can be reduced. For this reason, the manufacturing cost of the air cleaner 100 can be reduced.
  • the filter 101 preferably removes a substance that inhibits the detection of the CO 2 concentration in the carbon dioxide absorption device 1 (more specifically, the detection unit 14) (hereinafter referred to as a detection inhibitor).
  • the detection inhibitor is, for example, dust in the air.
  • the detection unit 14 can detect the CO 2 concentration with respect to the air from which the detection inhibitor is removed by the filter 101. For this reason, it becomes possible to more accurately detect the CO 2 concentration by eliminating the influence of the detection inhibitor. In addition, it is possible to prevent a detection inhibition substance from adhering to the detection unit 14 itself, and a reduction in detection accuracy after the detection inhibition substance has adhered. Therefore, the carbon dioxide absorber 1 can adjust the CO 2 concentration more accurately over a long period of time.
  • the air cleaner 100 was illustrated as an example of an electronic device, the said electronic device is not limited to this.
  • the electronic device only needs to include the carbon dioxide absorption device according to one embodiment of the present disclosure, and may be a dehumidifier, a humidifier, an air conditioner, or the like, for example.
  • the carbon dioxide absorption device 1 when the carbon dioxide absorption device 1 is provided in a dehumidifier or a humidifier, it is possible to provide air whose humidity and CO 2 concentration are adjusted to appropriate values. Moreover, when the carbon dioxide absorption apparatus 1 is provided in the air conditioner, it is possible to provide air whose humidity and CO 2 concentration are adjusted to appropriate values. Thus, the carbon dioxide absorption device 1 may be provided in various devices that provide a comfortable air environment for the user. Further, when the carbon dioxide absorption device 1 is mounted on the dehumidifier, when a semiconductor sensor is used as the detection unit 14, it is preferable to provide a dehumidification unit instead of the filter 101 described above. In this case, the air dehumidified in the dehumidifying unit is taken into the carbon dioxide absorption device 1 so that the detection unit 14 (semiconductor sensor) can detect the CO 2 concentration of the dehumidified air.
  • the detection unit 14 semiconductor sensor
  • the detection accuracy of a gas (eg, CO 2 ) concentration by a semiconductor sensor is easily affected by moisture (humidity). Therefore, according to this configuration, it is possible to prevent the reliability of CO 2 concentration detection in the detection unit 14 (semiconductor sensor) from being reduced due to the presence of moisture. Therefore, it is possible to detect the CO 2 concentration more accurately. Further, it is possible to prevent water vapor from adhering to the detection unit 14 itself.
  • a gas eg, CO 2
  • the carbon dioxide absorption device 1 is preferably used in a space where ventilation can be restricted. This is because when the ventilation is restricted in a space where ventilation can be restricted, the CO 2 concentration in the air increases due to the CO 2 contained in human exhalation or the like. Considering this point, it is desirable that the electronic device (for example, the air purifier 100) including the carbon dioxide absorption device 1 is also used in a space where ventilation can be restricted. Therefore, the air cleaner 100 may be used as an in-vehicle air cleaner, for example.
  • the “space where ventilation can be restricted” means a sealed space, an indoor space where ventilation can be restricted, an indoor space, or an interior space.
  • “Ventilation-restrictable space” means to voluntarily ventilate (open a window, operate a ventilation fan, operate a ventilating device, operate a device such as a vacuum device to create a negative pressure) In other words, the space can be restricted or prohibited.
  • control blocks (particularly the control units 13, 23, 33) of the carbon dioxide absorbers 1 to 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central It may be realized by software using a Processing Unit.
  • the carbon dioxide absorbers 1 to 3 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read CPU) in which the program and various data are recorded so as to be readable by the computer (or CPU). Only Memory) or a storage device (these are referred to as “recording media”), RAM (Random Access Memory) for expanding the program, and the like. And the objective of this indication is achieved when a computer (or CPU) reads and runs the said program from the said recording medium.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one aspect of the present disclosure can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a carbon dioxide absorption device (1) includes a carbon dioxide absorbent (10) that absorbs carbon dioxide contained in a gas from a gas containing moisture and carbon dioxide (CO 2 ).
  • the carbon dioxide absorbing device provided, wherein the carbon dioxide absorbing material contains tetravalent lithium silicate (Li 4 SiO 4 ), holds the carbon dioxide absorbing material and moisture, and holds the moisture.
  • a holding unit (11) that supplies at least a part of the carbon dioxide absorbent to the carbon dioxide absorbent, a supply unit (moisture supply unit 12) that supplies the moisture to the holding unit, and a supply that controls the operation of the supply unit And a control unit (addition amount setting unit 132).
  • the inventors have changed the carbon dioxide absorbent containing Li 4 SiO 4 by changing the moisture content (eg, moisture content or moisture pH). It was newly found that the amount of CO 2 absorbed in the absorbent material can be adjusted (controlled).
  • a supply part can supply a water
  • the carbon dioxide absorption device further includes a detection unit (14) that detects the concentration (detection value P1) of the carbon dioxide contained in the gas in the aspect 1, and the supply control unit Depending on the concentration, the amount of moisture supplied from the supply unit to the holding unit may be set.
  • the amount of water supplied to the holding unit (the amount of water added) can be set according to the CO 2 concentration in the gas, so that the CO 2 absorption amount is controlled with higher accuracy. It becomes possible.
  • the supply control unit uses a first table (151) indicating a correspondence relationship between the concentration and the set value of the amount of moisture. It is preferable to set the amount of water according to the concentration.
  • the carbon dioxide absorption device further includes a detection unit that detects the concentration of the carbon dioxide contained in the gas in any one of the aspects 1 to 3, and the supply control unit ( The pH setting unit 232) may set the pH of the water that the supply unit supplies to the holding unit according to the concentration.
  • the supply control unit uses a second table (251) indicating a correspondence relationship between the concentration and the set value of the pH of the water. It is preferable to set the pH of the water according to the concentration.
  • the carbon dioxide absorber according to aspect 6 of the present disclosure further includes a detection unit that detects the concentration of the carbon dioxide contained in the gas in any one of the aspects 1 to 5, and the supply control unit includes: When the concentration is not more than a predetermined reference value (DT), it is preferable that the supply unit stops the supply of the water to the holding unit.
  • DT predetermined reference value
  • the carbon dioxide absorption device in any one of the aspects 1 to 6, heats the detection unit that detects the concentration of the carbon dioxide contained in the gas and the holding unit.
  • a heating unit (35) and a heating control unit (333) for controlling the operation of the heating unit are further provided, and the heating control unit holds the holding when the concentration is equal to or lower than a predetermined reference value. It is preferable to operate the heating unit so as to remove at least a part of the moisture held by the unit.
  • the carbon dioxide absorption device according to aspect 8 of the present disclosure is the carbon dioxide absorption device according to aspect 7, in which the supply control unit uses the history of supplying the moisture to the holding unit as the supply history, and the heating control unit has the concentration described above. It is preferable to operate the heating unit when the supply value is equal to or less than the reference value and the supply history exists.
  • the electronic apparatus (air purifier 100) preferably includes the carbon dioxide absorption device according to any one of the first to eighth aspects.
  • the carbon dioxide absorber includes a carbon dioxide absorbent containing Li 4 SiO 4 that absorbs carbon dioxide in a gas containing water and low-concentration carbon dioxide, and the above A carbon dioxide absorbent, a moisture holding unit that holds moisture, and a moisture supply unit that supplies moisture to the moisture holding unit are provided.
  • the carbon dioxide absorption device further includes a control unit that can control the supply of moisture from the moisture supply unit to the moisture holding unit.
  • the carbon dioxide absorption device further includes a detection unit that detects the concentration of carbon dioxide in the air.
  • control unit controls the amount of moisture supplied from the moisture supply unit to the moisture holding unit.
  • control unit controls the pH of moisture supplied from the moisture supply unit to the moisture holding unit.
  • the carbon dioxide absorption device further includes a heating unit that heats the moisture holding unit.

Abstract

The present invention controls the carbon dioxide (CO2) absorption amount of a carbon dioxide absorber by means of a simple configuration. In a carbon dioxide absorption device (1), a carbon dioxide absorber (10) includes tetravalent lithium silicate. The carbon dioxide absorption device (1) is further provided with: a holding part (11) that holds the carbon dioxide absorber (10) and water moisture, and supplies at least a portion of the held water moisture to the carbon dioxide absorber (10); a water moisture supply part (12) that supplies the water moisture to the holding part (11); and an addition amount setting unit (132) that controls the operation of the water moisture supply part (12).

Description

二酸化炭素吸収装置および電子機器Carbon dioxide absorber and electronic device
 以下の開示は、気体中に含まれる二酸化炭素(CO)を吸収する二酸化炭素吸収材を備えた二酸化炭素吸収装置等に関する。 The following disclosure relates to a carbon dioxide absorption device including a carbon dioxide absorbent that absorbs carbon dioxide (CO 2 ) contained in a gas.
 近年、米国ローレンス・バークレー国立研究所からCO濃度が2500ppm以上になると思考力が低下するとの報告がなされている。このように、空気中のCO濃度が特定の濃度以上になると、人体へ悪影響を及ぼす。このため、空気中のCO濃度の上昇を防ぐ必要がある。また、分析機器の中には、取り込んだ空気からのCOの除去を必要とするものもある。これらの点を踏まえ、従来から、気体中に含まれるCOを除去する技術が開発されている。このような技術は、例えば特許文献1~3に開示されている。 In recent years, the Lawrence Berkeley National Laboratory in the United States has reported that the thinking ability decreases when the CO 2 concentration exceeds 2500 ppm. Thus, when the CO 2 concentration in the air becomes more specific concentrations, adversely affects the human body. For this reason, it is necessary to prevent an increase in the CO 2 concentration in the air. Some analytical instruments also require the removal of CO 2 from the captured air. Based on these points, techniques for removing CO 2 contained in gas have been developed. Such techniques are disclosed in, for example, Patent Documents 1 to 3.
 特許文献1には、気体流中のCOを、ゼオライトに吸着させることにより、当該COを除去する技術が開示されている。また、特許文献2には、燃焼排ガスをアミン水溶液に接触させることにより、燃焼排ガス中のCOを除去する技術が開示されている。また、特許文献3には、所定量の水分を含有している、リチウムシリケートを主成分とする炭酸ガス吸収材が開示されている。 Patent Document 1 discloses a technique for removing CO 2 by adsorbing CO 2 in a gas stream to zeolite. Patent Document 2 discloses a technique for removing CO 2 in combustion exhaust gas by bringing the combustion exhaust gas into contact with an aqueous amine solution. Patent Document 3 discloses a carbon dioxide absorbent containing lithium silicate as a main component, containing a predetermined amount of moisture.
日本国公開特許公報「特開平11-253736号公報(1999年9月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-253736 (published on September 21, 1999)” 日本国公開特許公報「特開平8-252430号公報(1996年10月1日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 8-252430 (published on October 1, 1996)” 日本国公開特許公報「特開2005-13952号公報(2005年1月20日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-13952 (published on January 20, 2005)”
 しかしながら、特許文献1に開示されているゼオライトは、親水性を有している。このため、ゼオライトは、水分とCOとを含む気体中からCOを分離吸着する場合、水分を優先的に吸着してしまう。それゆえ、ゼオライトにおけるCOを分離吸着する能力が著しく低下するという問題があった。 However, the zeolite disclosed in Patent Document 1 has hydrophilicity. For this reason, when zeolite separates and adsorbs CO 2 from a gas containing moisture and CO 2 , the zeolite preferentially adsorbs moisture. Therefore, there has been a problem that the ability of the zeolite to separate and adsorb CO 2 is significantly reduced.
 また、特許文献2に開示されているアミン水溶液は、一定以上の濃度を有する水溶液である。そのため、気体中からCOを分離吸収する場合、アミン水溶液を常に再生しておかないと、アミン水溶液の濃度が低下してしまい、CO吸収特性が低下してしまうという問題があった。 Moreover, the amine aqueous solution currently disclosed by patent document 2 is aqueous solution which has a density | concentration more than fixed. For this reason, when CO 2 is separated and absorbed from the gas, unless the aqueous amine solution is always regenerated, the concentration of the aqueous amine solution is lowered and the CO 2 absorption characteristic is lowered.
 すなわち、一定以上の濃度を保持するようにアミン水溶液を処理しておかないと、アミン水溶液の濃度が低下し、COを吸収することができなくなってしまう。このため、特許文献2の技術では、COの吸収が再び可能となるようにアミン水溶液の濃度を調整するために、大規模な吸収再生機構が必要になるという問題があった。 That is, if the aqueous amine solution is not treated so as to maintain a concentration above a certain level, the concentration of the aqueous amine solution decreases, and CO 2 cannot be absorbed. For this reason, the technique of Patent Document 2 has a problem that a large-scale absorption / regeneration mechanism is required to adjust the concentration of the aqueous amine solution so that CO 2 can be absorbed again.
 また、特許文献3に開示されている炭酸ガス吸収材は、室温状態において、水分とCOとを含む気体中から、炭酸ガス(換言すればCO)を吸収することが可能である。特許文献3では、例えば、(i)炭酸ガス吸収材に水分を含ませるか、あるいは、(ii)炭酸ガス吸収材に粒子状湿潤剤を配合することによって、炭酸ガス吸収材による二酸化炭素の吸収開始に先立ち、当該炭酸ガス吸収材に水分を含有させている。 The carbon dioxide absorbent disclosed in Patent Document 3 can absorb carbon dioxide (in other words, CO 2 ) from a gas containing moisture and CO 2 at room temperature. In Patent Document 3, for example, (i) absorption of carbon dioxide by a carbon dioxide absorbent is performed by adding moisture to the carbon dioxide absorbent or (ii) adding a particulate wetting agent to the carbon dioxide absorbent. Prior to the start, water is contained in the carbon dioxide absorbent.
 しかしながら、特許文献3において、炭酸ガス吸収材によるCO吸収速度(単位時間あたりのCO吸収量)は、COの吸収開始に先立ち当該炭酸ガス吸収材に与えられる水分の量によって決定される。このため、炭酸ガス吸収材がCOを吸収している時に、CO吸収速度を変更(制御)することができないという問題があった。 However, in Patent Document 3, the CO 2 absorption rate (CO 2 absorption amount per unit time) by the carbon dioxide absorbent is determined by the amount of moisture given to the carbon dioxide absorbent prior to the start of CO 2 absorption. . For this reason, there was a problem that the CO 2 absorption rate could not be changed (controlled) when the carbon dioxide absorbing material was absorbing CO 2 .
 また、特許文献3に開示された一構成では、炭酸ガス(CO)を含有する被処理ガスに水分が添加されている。この場合、水分が添加された被処理ガスが炭酸ガス吸収材に接触することで、炭酸ガス吸収材によるCOの吸収が開始される。しかしながら、このような場合には、炭酸ガス吸収材によるCO吸収速度を、当該炭酸ガス吸収材による被処理炭酸ガスの吸収速度よりも遅くすることができないという問題があった。 Further, in an arrangement disclosed in Patent Document 3, water is added to the treatment gas containing carbon dioxide (CO 2). In this case, absorption of CO 2 by the carbon dioxide absorbent starts when the gas to be treated, to which moisture has been added, contacts the carbon dioxide absorbent. However, in such a case, there has been a problem that the CO 2 absorption rate by the carbon dioxide absorbing material cannot be made slower than the absorption rate of the carbon dioxide to be treated by the carbon dioxide absorbing material.
 以上のように、特許文献1~3の技術では、簡便な構成によって、二酸化炭素吸収材におけるCOの吸収量(吸収速度)を適切に制御できないという問題があった。 As described above, the techniques of Patent Documents 1 to 3 have a problem that the absorption amount (absorption rate) of CO 2 in the carbon dioxide absorbent cannot be appropriately controlled with a simple configuration.
 本開示の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、簡便な構成によって、二酸化炭素吸収材におけるCO吸収量を制御することが可能な二酸化炭素吸収装置等を実現することにある。 One aspect of the present disclosure has been made in view of the above-described problems, and a purpose thereof is a carbon dioxide absorption device or the like that can control the amount of CO 2 absorbed in the carbon dioxide absorbent by a simple configuration. Is to realize.
 上記の課題を解決するために、本開示の一態様に係る二酸化炭素吸収装置は、水分と二酸化炭素とを含む気体中から、当該気体中に含まれる二酸化炭素を吸収する二酸化炭素吸収材を備えた二酸化炭素吸収装置であって、上記二酸化炭素吸収材は、4価のリチウムシリケートを含んでおり、上記二酸化炭素吸収材および水分を保持し、かつ、保持した当該水分の少なくとも一部を当該二酸化炭素吸収材に供給する保持部と、上記保持部に対して上記水分を供給する供給部と、上記供給部の動作を制御する供給制御部と、をさらに備えている。 In order to solve the above problem, a carbon dioxide absorption device according to one embodiment of the present disclosure includes a carbon dioxide absorbent that absorbs carbon dioxide contained in the gas from a gas containing moisture and carbon dioxide. The carbon dioxide absorber comprises a tetravalent lithium silicate, retains the carbon dioxide absorber and moisture, and at least part of the retained moisture is the dioxide. The apparatus further includes a holding unit that supplies the carbon absorbent, a supply unit that supplies the moisture to the holding unit, and a supply control unit that controls the operation of the supply unit.
 本開示の一態様に係る二酸化炭素吸収装置によれば、簡便な構成によって、二酸化炭素吸収材におけるCO吸収量を制御することが可能となるという効果を奏する。 According to the carbon dioxide absorber according to one aspect of the present disclosure, by a simple configuration, an effect that it is possible to control the CO 2 absorption amount of the carbon dioxide absorbent.
実施形態1に係る二酸化炭素吸収装置の要部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 1. FIG. 図1の二酸化炭素吸吸収装置における水分供給部の概略的な構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the water | moisture-content supply part in the carbon dioxide absorption / absorption apparatus of FIG. XRDを用いた、粉末Xに対する測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result with respect to the powder X using XRD. 図1の二酸化炭素吸収材によるCO吸収量を測定するための測定機構の一例を示す図である。It is a diagram illustrating an example of a measuring mechanism for measuring the CO 2 absorption amount by the carbon dioxide absorber of Figure 1. 図4の測定機構における測定結果の一例を示す図である。It is a figure which shows an example of the measurement result in the measurement mechanism of FIG. 図4の測定機構における測定結果の別の例を示す図である。It is a figure which shows another example of the measurement result in the measurement mechanism of FIG. 図1の二酸化炭素吸収材の含水率の一例を示す図である。It is a figure which shows an example of the moisture content of the carbon dioxide absorber of FIG. 図1の二酸化炭素吸吸収装置における、二酸化炭素吸収材の単位時間あたりのCO吸収量と水分の添加量との関係を概略的に示す図である。In the carbon dioxide absorption absorbing device of FIG. 1 is a diagram schematically showing the relationship between the amount of CO 2 absorption and moisture per unit time of the carbon dioxide absorbent. 図1の二酸化炭素吸吸収装置における第1テーブルの一例を示す図である。It is a figure which shows an example of the 1st table in the carbon dioxide absorption / absorption apparatus of FIG. 図1の二酸化炭素吸収装置において、CO濃度を制御する処理の流れを例示する図である。In the carbon dioxide absorber of FIG. 1 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. 実施形態2に係る二酸化炭素吸収装置の要部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 2. 図11の二酸化炭素吸吸収装置における水分供給部の概略的な構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the water | moisture-content supply part in the carbon dioxide absorption / absorption apparatus of FIG. 図4の測定機構における測定結果のさらに別の例を示す図である。It is a figure which shows another example of the measurement result in the measurement mechanism of FIG. 図11の二酸化炭素吸吸収装置における、二酸化炭素吸収材の単位時間あたりのCO吸収量と水分のpHとの関係を概略的に示す図である。In the carbon dioxide absorption absorbing device of FIG. 11 is a diagram schematically showing the relationship between the pH of the CO 2 absorption and moisture per unit time of the carbon dioxide absorbent. 図11の二酸化炭素吸吸収装置における第2テーブルの一例を示す図である。It is a figure which shows an example of the 2nd table in the carbon dioxide absorption / absorption apparatus of FIG. 図11の二酸化炭素吸収装置において、CO濃度を制御する処理の流れを例示する図である。In the carbon dioxide absorber of FIG. 11 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. 実施形態3に係る二酸化炭素吸収装置の要部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the principal part of the carbon dioxide absorber which concerns on Embodiment 3. 図17の二酸化炭素吸収装置において、CO濃度を制御する処理の流れを例示する図である。In the carbon dioxide absorber of FIG. 17 is a diagram illustrating the flow of processing for controlling the CO 2 concentration. 実施形態4に係る空気清浄器の概略的な構成を示す図である。It is a figure which shows schematic structure of the air cleaner which concerns on Embodiment 4. FIG.
 〔実施形態1〕
 以下、本開示の実施形態1について、図1~図10に基づいて説明する。はじめに、図1を参照して、本実施形態の二酸化炭素吸収装置1の概要について述べる。図1は、二酸化炭素吸収装置1の要部の構成を示す機能ブロック図である。
Embodiment 1
Hereinafter, Embodiment 1 of the present disclosure will be described with reference to FIGS. First, the outline of the carbon dioxide absorber 1 of the present embodiment will be described with reference to FIG. FIG. 1 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorber 1.
 (二酸化炭素吸収装置1の概要)
 二酸化炭素吸収装置1は、二酸化炭素吸収材10、保持部11、水分供給部12(供給部)、制御部13、検出部14、および記憶部15を備えている。また、制御部13は、差分算出部131および添加量設定部132(供給制御部)を備えている。また、二酸化炭素吸収材10は、保持部11上に載置されている。
(Outline of carbon dioxide absorber 1)
The carbon dioxide absorption device 1 includes a carbon dioxide absorbent 10, a holding unit 11, a moisture supply unit 12 (supply unit), a control unit 13, a detection unit 14, and a storage unit 15. The control unit 13 includes a difference calculation unit 131 and an addition amount setting unit 132 (supply control unit). The carbon dioxide absorbent 10 is placed on the holding unit 11.
 なお、二酸化炭素吸収装置1には、二酸化炭素吸収材10および検出部14に空気を送り込むための部材(例:ポンプまたはファン等)が設けられてもよい。但し、これらの部材については、図1での図示は省略されている。 Note that the carbon dioxide absorber 1 may be provided with a member (for example, a pump or a fan) for sending air into the carbon dioxide absorbent 10 and the detector 14. However, these members are not shown in FIG.
 二酸化炭素吸収材10は、気体中に含まれるCOを吸収する。具体的には、二酸化炭素吸収材10は、水分(すなわち水蒸気)とCO(すなわち炭酸ガス)とを含む空間内の気体から、少なくとも一部のCOを分離して、当該COを吸収する。 The carbon dioxide absorbent 10 absorbs CO 2 contained in the gas. Specifically, the carbon dioxide absorbent 10 separates at least a part of CO 2 from a gas in a space containing moisture (ie, water vapor) and CO 2 (ie, carbon dioxide gas), and absorbs the CO 2 . To do.
 本実施形態では、二酸化炭素吸収材10によって低濃度のCOを吸収させる場合について説明する。ここで、「低濃度」とは、例えば5000ppm以下の濃度を意味し、人体への影響を考慮した場合には、特に3000ppm以下の濃度を意味する。また、「空間」は、人間(またはその他の生物)が生存可能な環境を意味する。従って、本実施形態の空間における気圧は、大気圧(1気圧)付近である。 In the present embodiment, a case where a low concentration of CO 2 is absorbed by the carbon dioxide absorbent 10 will be described. Here, “low concentration” means, for example, a concentration of 5000 ppm or less, and particularly a concentration of 3000 ppm or less when the influence on the human body is taken into consideration. “Space” means an environment in which humans (or other living organisms) can survive. Therefore, the atmospheric pressure in the space of the present embodiment is near atmospheric pressure (1 atm).
 また、後述するように、二酸化炭素吸収材10は、4価のリチウムシリケート(LiSiO)を含んでいる。ここで、「4価のリチウムシリケート」とは、「1価のLiを4つ有するリチウムシリケート」を意味する。本実施形態では、二酸化炭素吸収材10に含まれている全物質に対する、4価のリチウムシリケートの割合が例えば50%以上であれば、当該リチウムシリケートが二酸化炭素吸収材10の主成分であるものとする。 Further, as will be described later, the carbon dioxide absorbent 10 contains tetravalent lithium silicate (Li 4 SiO 4 ). Here, “tetravalent lithium silicate” means “lithium silicate having four monovalent Li”. In this embodiment, if the ratio of the tetravalent lithium silicate to the total amount of substances contained in the carbon dioxide absorbent 10 is, for example, 50% or more, the lithium silicate is the main component of the carbon dioxide absorbent 10. And
 以下に述べるように、二酸化炭素吸収材10に含有させる水分の量または水分の性質(例:水分のpH)を変化させることによって、二酸化炭素吸収材10における単位時間あたりCO吸収量(つまり、CO吸収速度)を調整できる。つまり、二酸化炭素吸収材10における水分の含有状態を変化させることによって、CO吸収速度を調整できる。 As described below, the amount of CO 2 absorbed per unit time in the carbon dioxide absorbent 10 (that is, the pH of water) by changing the amount of moisture contained in the carbon dioxide absorbent 10 or the nature of moisture (eg, pH of moisture) (that is, CO 2 absorption rate) can be adjusted. That is, the CO 2 absorption rate can be adjusted by changing the moisture content in the carbon dioxide absorbent 10.
 保持部11は、二酸化炭素吸収材10を載置するための部材である。つまり、保持部11は、二酸化炭素吸収材10を支持(保持)する支持部材である。また、以下に述べるように、保持部11には、水分供給部12から水分が供給される。 The holding unit 11 is a member on which the carbon dioxide absorbent 10 is placed. That is, the holding unit 11 is a support member that supports (holds) the carbon dioxide absorbent 10. Further, as will be described below, moisture is supplied to the holding unit 11 from the water supply unit 12.
 そして、保持部11は、当該水分を保持するとともに、保持した水分の一部を二酸化炭素吸収材10に供給する。このため、水分供給部12は、保持部11を介して、二酸化炭素吸収材10に水分を供給できる。従って、水分供給部12から保持部11への水分の供給に応じて、二酸化炭素吸収材10における水分の含有状態を変化させることができる。 The holding unit 11 holds the moisture and supplies part of the held moisture to the carbon dioxide absorbent 10. For this reason, the moisture supply unit 12 can supply moisture to the carbon dioxide absorbent 10 via the holding unit 11. Therefore, according to the supply of moisture from the moisture supply unit 12 to the holding unit 11, the moisture content in the carbon dioxide absorbent 10 can be changed.
 保持部11は二酸化炭素吸収材10と水分とを保持可能であればよく、保持部11の材料は特に限定されない。一例として、保持部11の材料としては、セルロースまたはメラミン樹脂等を用いることができる。本実施形態では、保持部11がセルロース製の濾紙である場合を主に例示して説明を行う。 The holding unit 11 only needs to be able to hold the carbon dioxide absorbent 10 and moisture, and the material of the holding unit 11 is not particularly limited. As an example, as the material of the holding unit 11, cellulose, melamine resin, or the like can be used. In the present embodiment, the case where the holding unit 11 is a filter paper made of cellulose will be mainly described as an example.
 水分供給部12は、保持部11に水分(水)を供給する。図2は、水分供給部12の概略的な構成を示す機能ブロック図である。図2に示されるように、水分供給部12は、保持部11へ供給する水を蓄える貯水部121と、当該貯水部121から保持部11へと水を送出する送水部122とを備えている。また、水分供給部12は、貯水部121と送水部122とを互いに接続する水路123(例:チューブまたは配管)をさらに備えている。送水部122は、水路123を介して貯水部121から所定の量の水を取り出し、取り出した水を保持部11に供給する。 The moisture supply unit 12 supplies moisture (water) to the holding unit 11. FIG. 2 is a functional block diagram showing a schematic configuration of the moisture supply unit 12. As shown in FIG. 2, the water supply unit 12 includes a water storage unit 121 that stores water to be supplied to the holding unit 11, and a water supply unit 122 that sends water from the water storage unit 121 to the holding unit 11. . The moisture supply unit 12 further includes a water channel 123 (eg, a tube or a pipe) that connects the water storage unit 121 and the water supply unit 122 to each other. The water supply unit 122 extracts a predetermined amount of water from the water storage unit 121 through the water channel 123 and supplies the extracted water to the holding unit 11.
 一例として、貯水部121は、公知の材料(例:プラスチック材料またはガラス材料)によって製作された、所定の量の水を受容する容器である。本実施形態では、貯水部121に蓄えられている水は、pH7程度のイオン交換水である。 As an example, the water storage unit 121 is a container that is made of a known material (eg, a plastic material or a glass material) and receives a predetermined amount of water. In the present embodiment, the water stored in the water storage unit 121 is ion exchange water having a pH of about 7.
 また、送水部122は、保持部11に水を供給(輸送)するためのポンプ124(例:送液ポンプまたはシリンジポンプ)を備えている。制御部13(より具体的には、後述する添加量設定部132)がポンプ124の動作を制御することにより、水分供給部12から保持部11に供給される水の量を設定(変更)できる。 Further, the water supply unit 122 includes a pump 124 (for example, a liquid supply pump or a syringe pump) for supplying (transporting) water to the holding unit 11. The amount of water supplied from the moisture supply unit 12 to the holding unit 11 can be set (changed) by the control unit 13 (more specifically, an addition amount setting unit 132 described later) controlling the operation of the pump 124. .
 但し、ポンプ124の動作は、二酸化炭素吸収装置1とは異なる外部装置によって制御されてもよい。この場合、ユーザが外部装置に入力を与え、当該入力に基づいて水分供給部12から保持部11に供給される水の量を設定することもできる。 However, the operation of the pump 124 may be controlled by an external device different from the carbon dioxide absorber 1. In this case, the user can input the external device and set the amount of water supplied from the moisture supply unit 12 to the holding unit 11 based on the input.
 検出部14は、二酸化炭素吸収装置1が設けられている空間における、気体中のCO濃度を検出(測定)する。また、検出部14は、CO濃度の検出値(検出結果)を、制御部13(より具体的には、後述する差分算出部131)に与える。 The detection unit 14 detects (measures) the CO 2 concentration in the gas in the space where the carbon dioxide absorption device 1 is provided. In addition, the detection unit 14 gives a detection value (detection result) of the CO 2 concentration to the control unit 13 (more specifically, a difference calculation unit 131 described later).
 なお、検出部14におけるCO濃度の検出方式は、特に限定されない。当該検出方式としては、半導体センサを用いた方式(半導体式)、電気化学式、赤外線吸収式等が用いられてよい。 Note that the detection method of the CO 2 concentration in the detection unit 14 is not particularly limited. As the detection method, a method using a semiconductor sensor (semiconductor method), an electrochemical method, an infrared absorption method, or the like may be used.
 半導体式の検出方式を採用した場合には、(i)検出部14のコストを低減できる、および、(ii)検出部14に過酷な環境条件への耐性を付与できる、等のメリットが得られる。なお、半導体センサの材料としては、SnOまたはZnO等の半導体(例:n型半導体)が用いられるが、検出対象の選択性を向上させるという観点からは、Laを添加したSnOを用いることが特に好ましい。 When the semiconductor detection method is adopted, there are advantages such as (i) the cost of the detection unit 14 can be reduced, and (ii) the detection unit 14 can be given resistance to severe environmental conditions. . As a material for the semiconductor sensor, a semiconductor such as SnO 2 or ZnO (eg, n-type semiconductor) is used. From the viewpoint of improving the selectivity of the detection target, SnO 2 added with La is used. Is particularly preferred.
 また、赤外線吸収式の検出方式を採用した場合には、(i)検出部14の感度を高くできる、および、(ii)検出対象の選択性を向上させることができる、等のメリットが得られる。また、電気化学式の検出方式を採用した場合には、固体電解質の伝導イオン種として、例えばナトリウムイオン伝導体等が用いられる。 Further, when an infrared absorption detection method is employed, there are advantages such as (i) the sensitivity of the detection unit 14 can be increased, and (ii) the selectivity of the detection target can be improved. . When an electrochemical detection method is employed, for example, a sodium ion conductor is used as the conductive ion species of the solid electrolyte.
 制御部13は、二酸化炭素吸収装置1の各部(ハードウェア要素)を統括的に制御する。制御部13の機能は、記憶部15に記憶されたプログラムを、CPU(Central Processing Unit)が実行することで実現されてよい。記憶部15は、制御部13が実行する各種のプログラムおよび当該プログラムによって使用されるデータを格納する。なお、記憶部15には、後述する第1テーブル151が格納されている。 The control unit 13 comprehensively controls each unit (hardware element) of the carbon dioxide absorber 1. The function of the control unit 13 may be realized by executing a program stored in the storage unit 15 by a CPU (Central Processing Unit). The storage unit 15 stores various programs executed by the control unit 13 and data used by the programs. The storage unit 15 stores a first table 151 described later.
 なお、制御部13における差分算出部131および添加量設定部132の具体的な動作については、後述する。また、本実施形態では、説明の便宜上、差分算出部131と添加量設定部132とを個別の機能部として図示しているが、添加量設定部132に差分算出部131の機能を併有させてもよい。つまり、差分算出部131と添加量設定部132とを一体の機能部として実現してもよい。この点については、後述する実施形態2において述べるpH設定部232(供給制御部)についても同様である。 Note that specific operations of the difference calculation unit 131 and the addition amount setting unit 132 in the control unit 13 will be described later. In the present embodiment, for convenience of explanation, the difference calculation unit 131 and the addition amount setting unit 132 are illustrated as separate functional units. However, the addition amount setting unit 132 has the function of the difference calculation unit 131 in combination. May be. That is, the difference calculation unit 131 and the addition amount setting unit 132 may be realized as an integrated functional unit. The same applies to the pH setting unit 232 (supply control unit) described in the second embodiment described later.
 以下に詳述するように、制御部13(具体的には、添加量設定部132)は、水分供給部12から保持部11への水分の供給を制御する供給制御部としての機能を有する。より具体的には、添加量設定部132は、検出部14におけるCO濃度の検出値に基づいて、水分供給部12から保持部11へ供給される水分の量を調整する。 As will be described in detail below, the control unit 13 (specifically, the addition amount setting unit 132) has a function as a supply control unit that controls the supply of moisture from the moisture supply unit 12 to the holding unit 11. More specifically, the addition amount setting unit 132 adjusts the amount of moisture supplied from the moisture supply unit 12 to the holding unit 11 based on the detected value of the CO 2 concentration in the detection unit 14.
 (二酸化炭素吸収材10の作製方法の一例)
 以下、二酸化炭素吸収材10の作製方法の一例について説明する。まず、二酸化珪素(SiO)および硝酸リチウム(LiNO)のモル比が1:4となるよう、秤量する(秤量工程)。続いて、秤量した二酸化珪素および硝酸リチウムを、エタノールとともに容器に入れる。
(Example of method for producing carbon dioxide absorbent 10)
Hereinafter, an example of a method for producing the carbon dioxide absorbent 10 will be described. First, the silicon dioxide (SiO 2 ) and lithium nitrate (LiNO 3 ) are weighed so that the molar ratio is 1: 4 (weighing step). Subsequently, the weighed silicon dioxide and lithium nitrate are placed in a container together with ethanol.
 そして、二酸化珪素および硝酸リチウムを、約24時間に亘って、Alボールを用いて、ボールミルによって混合する(混合工程)。その後、エバポレータによってエタノールを除去し、二酸化珪素および硝酸リチウムの混合粉体を得る。 Then, silicon dioxide and lithium nitrate are mixed by a ball mill using Al 2 O 3 balls for about 24 hours (mixing step). Thereafter, ethanol is removed by an evaporator to obtain a mixed powder of silicon dioxide and lithium nitrate.
 そして、得られた混合粉体を乳鉢によって粉砕し、電気炉において、約900℃の温度で、当該混合粉体を10時間加熱する(加熱工程)。続いて、加熱後の混合粉体を、乳鉢によって粉砕する。(粉砕工程)。その結果、LiSiOを含む、粉体(粉末状)の二酸化炭素吸収材10が作製される。 And the obtained mixed powder is grind | pulverized with a mortar, and the said mixed powder is heated for 10 hours at the temperature of about 900 degreeC in an electric furnace (heating process). Subsequently, the heated mixed powder is pulverized with a mortar. (Crushing process). As a result, a powdery (powdered) carbon dioxide absorbent 10 containing Li 4 SiO 4 is produced.
 以降、上記作成方法によって作成された二酸化炭素吸収材10(粉体)を、粉体Xと称する。SEM(Scanning Electron Microscope,走査電子顕微鏡)による観察結果から、粉体Xの粒径は、5~30μm程度であることが確認された。 Hereinafter, the carbon dioxide absorbent 10 (powder) prepared by the above preparation method is referred to as powder X. From the observation result by SEM (Scanning Electron Microscope), it was confirmed that the particle size of the powder X was about 5 to 30 μm.
 なお、上記混合工程における混合時間は、単なる一例であることに留意されたい。当該混合時間は、上記秤量工程において秤量される二酸化珪素および硝酸リチウムの全重量に応じて、適宜設定されてよい。 It should be noted that the mixing time in the mixing step is merely an example. The mixing time may be appropriately set according to the total weight of silicon dioxide and lithium nitrate weighed in the weighing step.
 また、上記加熱工程における加熱温度および加熱時間についても、単なる一例である。当該加熱温度および加熱時間は、使用する電気炉の仕様によって適宜設定されてよい。一例として、加熱温度は、600℃以上1000℃以下であればよい。また、加熱時間は、5時間以上40時間以下であればよい。 Also, the heating temperature and heating time in the heating step are merely examples. The heating temperature and the heating time may be appropriately set depending on the specifications of the electric furnace to be used. As an example, the heating temperature may be 600 ° C. or higher and 1000 ° C. or lower. The heating time may be 5 hours or more and 40 hours or less.
 (XRDによる粉体Xの同定)
 続いて、本願の発明者ら(以下、発明者ら)は、XRD(X-Ray Diffraction,X線回折装置)を用いて、粉体Xに対する同定を行うことにより、当該粉体XがLiSiOを実際に含むことを確認した。
(Identification of powder X by XRD)
Subsequently, the inventors of the present application (hereinafter, the inventors) identify the powder X using XRD (X-Ray Diffraction, X-ray diffractometer), whereby the powder X becomes Li 4. It was confirmed that SiO 4 was actually included.
 図3は、XRDを用いた、粉体Xに対する測定結果の一例を示すグラフである。図3において、横軸は回折角(°)を示し、縦軸は測定対象における散乱後のX線強度(任意単位)を示す。 FIG. 3 is a graph showing an example of measurement results for powder X using XRD. In FIG. 3, the horizontal axis represents the diffraction angle (°), and the vertical axis represents the X-ray intensity (arbitrary unit) after scattering in the measurement object.
 また、図3の凡例「Li:Si=4.0:1」は、測定対象を粉体Xとした場合の測定結果を示す。他方、図3の凡例「Li:Si=4.2:1」、「Li:Si=4.1:1」、「Li:Si=3.9:1」、および「Li:Si=3.8:1」はそれぞれ、測定対象を粉体X以外とした場合(上記製造方法における秤量工程おいて、硝酸リチウムおよび二酸化珪素のモル比を1:4以外として得られた粉体)の測定結果を示す。 Also, the legend “Li: Si = 4.0: 1” in FIG. 3 shows the measurement results when the measurement object is powder X. On the other hand, the legends “Li: Si = 4.2: 1”, “Li: Si = 4.1: 1”, “Li: Si = 3.9: 1”, and “Li: Si = 3. "8: 1" is the measurement result when the measurement object is other than the powder X (powder obtained with the molar ratio of lithium nitrate and silicon dioxide other than 1: 4 in the weighing step in the above production method). Indicates.
 また、図3の凡例「LiSiO」(丸印)、「LiSiO」(三角印)、およびい「LiCO」(四角印)はそれぞれ、リファレンスとしてのLiSiO、LiSiO、およびLiCOの測定結果を示す。 In addition, the legends “Li 4 SiO 4 ” (circle mark), “Li 2 SiO 3 ” (triangle mark), and “Li 2 CO 3 ” (square mark) in FIG. 3 are respectively Li 4 SiO 4 as a reference. , Li 2 SiO 3 , and Li 2 CO 3 measurement results are shown.
 図3に示すように、凡例「Li:Si=4.0:1」に示される測定結果のグラフは、リファレンスとしてのLiSiOとの略同一の回折角度においてピークを有している。従って、当該測定結果から、粉体XがLiSiOを含んでいることが確認できた。 As shown in FIG. 3, the graph of the measurement results shown in the legend “Li: Si = 4.0: 1” has a peak at substantially the same diffraction angle as that of Li 4 SiO 4 as a reference. Therefore, from the measurement result, it was confirmed that the powder X contains Li 4 SiO 4 .
 (水分の添加量とCO吸収能力との関係)
 次に、図4~図6を参照し、保持部11に対する水分の添加量(水分供給部12から保持部11へ供給する水分の量)と、二酸化炭素吸収材10におけるCO吸収能力(CO吸収特性とも称される)との関係について説明する。
(Relationship between added amount of water and CO 2 absorption capacity)
Next, referring to FIG. 4 to FIG. 6, the amount of water added to the holding unit 11 (the amount of water supplied from the water supply unit 12 to the holding unit 11) and the CO 2 absorption capacity (CO 2 ) of the carbon dioxide absorbent 10. 2 ) (also referred to as “ 2 absorption characteristics”).
 図4は、二酸化炭素吸収材10(例:粉体X)によるCO吸収量(つまり、二酸化炭素吸収材10のCO吸収特性)を測定するための測定機構の一例を示す図である。また、図5および図6は、図4の測定機構における測定結果の一例を示すグラフである。 FIG. 4 is a diagram illustrating an example of a measurement mechanism for measuring the CO 2 absorption amount (that is, the CO 2 absorption characteristic of the carbon dioxide absorbent 10) by the carbon dioxide absorbent 10 (eg, powder X). 5 and 6 are graphs showing examples of measurement results obtained by the measurement mechanism of FIG.
 図4に示されるように、上記測定機構では、容器150内に、二酸化炭素吸収材10、保持部11、および検出部14が配置されている。当該測定機構によれば、容器150内に含まれる気体中のCO濃度を測定することにより、二酸化炭素吸収材10のCO吸収量を測定できる。 As shown in FIG. 4, in the measurement mechanism, the carbon dioxide absorbent 10, the holding unit 11, and the detection unit 14 are arranged in the container 150. According to the measurement mechanism, the CO 2 absorption amount of the carbon dioxide absorbent 10 can be measured by measuring the CO 2 concentration in the gas contained in the container 150.
 容器150は、水分と二酸化炭素とを含む気体を充填して、測定環境をその内部に作り出すことが可能なものである。容器150の前面には、扉(不図示)が設けられている。なお、容器150の材料は、上述の測定環境を提供できるものであれば、特に限定されない。実施形態において、容器150の材料は例えばアクリルである。図4の測定機構において、検出部14は、扉を閉めて密閉した状態の容器150の内部に含まれる気体中のCOの濃度を測定する。 The container 150 can be filled with a gas containing moisture and carbon dioxide to create a measurement environment therein. A door (not shown) is provided on the front surface of the container 150. In addition, the material of the container 150 will not be specifically limited if the above-mentioned measurement environment can be provided. In the embodiment, the material of the container 150 is, for example, acrylic. In the measurement mechanism of FIG. 4, the detection unit 14 measures the concentration of CO 2 in the gas contained in the container 150 in a sealed state with the door closed.
 図4の測定機構における、二酸化炭素吸収材10のCO吸収特性の測定方法は以下の通りである。まず、内容積12リットルの容器150(アクリル製)を、CO濃度約450ppm、室温、湿度45~50%RH(Relative Humidity)の大気中に載置し、容器150の内部を当該大気と同一の雰囲気とした。 The measurement method of the CO 2 absorption characteristics of the carbon dioxide absorbent 10 in the measurement mechanism of FIG. 4 is as follows. First, a container 150 (made of acrylic) having an internal volume of 12 liters is placed in an atmosphere having a CO 2 concentration of about 450 ppm, room temperature, and humidity of 45-50% RH (Relative Humidity), and the inside of the container 150 is the same as the atmosphere. And the atmosphere.
 次に、所定の量(0~500μL)の水分(pH約7のイオン交換水)を保持部11に添加し、当該保持部11上に、二酸化炭素吸収材10(粉体X)を0.15g載置した。その後、二酸化炭素吸収材10を保持部11上から0.05gだけ取り除き、残りの0.1gの二酸化炭素吸収材10を保持部11上に載置した。続いて、容器150の扉を閉めて、容器150の内部を密閉した。当該密閉状態において、検出部14によって、容器150の内部に含まれるCO濃度を経時的に測定した。以下に述べる図5および図6には、当該測定結果の一例が示されている。 Next, a predetermined amount (0 to 500 μL) of water (ion-exchanged water having a pH of about 7) is added to the holding unit 11, and the carbon dioxide absorbent 10 (powder X) is added to the holding unit 11 by 0.0. 15 g was placed. Thereafter, only 0.05 g of the carbon dioxide absorbent 10 was removed from the holding unit 11, and the remaining 0.1 g of the carbon dioxide absorbent 10 was placed on the holding unit 11. Subsequently, the door of the container 150 was closed, and the inside of the container 150 was sealed. In the sealed state, the CO 2 concentration contained in the container 150 was measured over time by the detection unit 14. An example of the measurement result is shown in FIGS. 5 and 6 described below.
 図5は、保持部11としてセルロース製の濾紙を用いた場合の、測定結果の一例を示すグラフである。図5には、保持部11(濾紙)に対する水分の添加量を、様々に変化させた場合における、二酸化炭素吸収材10によるCO吸収量(より具体的には、検出部14によって検出された、容器150内のCOの減少量)の時間的な推移についての測定結果が示されている。 FIG. 5 is a graph showing an example of measurement results when a filter paper made of cellulose is used as the holding unit 11. FIG. 5 shows the amount of CO 2 absorbed by the carbon dioxide absorbent 10 (more specifically, detected by the detection unit 14 when the amount of water added to the holding unit 11 (filter paper) is changed variously. The measurement result about the time transition of the amount of reduction of CO 2 in the container 150 is shown.
 図5のグラフにおいて、横軸は時間(測定開始時刻からの経過時間)(分)を示し、縦軸は二酸化炭素吸収材10によるCO吸収量(mg)を示す。図5には、「0μL」(添加無)、「100μL」、「200μL」、「300μL」、「400μL」、および「500μL」という、5通りの水分の添加量についての測定結果が示されている。 In the graph of FIG. 5, the horizontal axis indicates time (elapsed time from the measurement start time) (minutes), and the vertical axis indicates the CO 2 absorption amount (mg) by the carbon dioxide absorbent 10. FIG. 5 shows the measurement results for five types of water addition amounts of “0 μL” (no addition), “100 μL”, “200 μL”, “300 μL”, “400 μL”, and “500 μL”. Yes.
 図5に示されるように、水分の添加量が増加するにつれて、所定の時間内における二酸化炭素吸収材10によるCO吸収量(つまり、二酸化炭素吸収材10のCO吸収速度)が増加することが確認された。また、水分の添加量が0μL(添加無)の場合、全ての時間において、二酸化炭素吸収材10によるCO吸収量が0mgであることが確認された。 As shown in FIG. 5, the amount of CO 2 absorbed by the carbon dioxide absorbent 10 within a predetermined time (that is, the CO 2 absorption rate of the carbon dioxide absorbent 10) increases as the amount of water added increases. Was confirmed. Moreover, when the addition amount of water was 0 μL (no addition), it was confirmed that the CO 2 absorption amount by the carbon dioxide absorbent 10 was 0 mg at all times.
 図6は、保持部11としてメラミン樹脂性の容器を用いた場合の、測定結果の一例を示すグラフである。図6には、保持部11(容器)に対する水分の添加量を、500μLとした場合の、二酸化炭素吸収材10によるCO吸収量の時間的な推移についての測定結果が示されている。 FIG. 6 is a graph showing an example of a measurement result when a melamine resin container is used as the holding unit 11. FIG. 6 shows a measurement result of the temporal transition of the CO 2 absorption amount by the carbon dioxide absorbent 10 when the amount of water added to the holding unit 11 (container) is 500 μL.
 図6に示されるように、保持部11としてメラミン樹脂性の容器を用いた場合においても、当該保持部11は水分を十分に保持可能であり、二酸化炭素吸収材10にCOを好適に吸収させることが可能であることが確認された。 As shown in FIG. 6, even when a melamine resin container is used as the holding unit 11, the holding unit 11 can sufficiently hold moisture, and the carbon dioxide absorbent 10 suitably absorbs CO 2. It was confirmed that it was possible to
 (CO吸収速度の増加のメカニズムについての一考察)
 上述のように、発明者らは、保持部11に対する水分の添加量を増加させることにより、二酸化炭素吸収材10のCO吸収速度を増加させることができることを新たに見出した。しかしながら、上記水分の添加量を増加させることにより、二酸化炭素吸収材10のCO吸収速度が増加するメカニズム(原理)については、現時点では解明されていない。但し、発明者らは、当該メカニズムの一例を以下の通り推察している。
(A study on the mechanism of increase of CO 2 absorption rate)
As described above, the inventors have newly found that the CO 2 absorption rate of the carbon dioxide absorbent 10 can be increased by increasing the amount of water added to the holding unit 11. However, the mechanism (principle) of increasing the CO 2 absorption rate of the carbon dioxide absorbent 10 by increasing the amount of moisture added has not been elucidated at the present time. However, the inventors speculate an example of the mechanism as follows.
 (推察):二酸化炭素吸収材10に含まれるLiSiOに水分を含ませることで、LiSiOの表面が一部溶解する。そして、LiSiOに含ませる水分の量を増加させることで、LiSiOの表面の溶解が促進する。その結果、二酸化炭素吸収材10におけるCO吸収反応が促進される。 (Inference): Li 4 SiO 4 contained in the carbon dioxide absorbent 10 contains water to partially dissolve the surface of Li 4 SiO 4 . Then, by increasing the amount of water to be contained in the Li 4 SiO 4, dissolution of the surface of the Li 4 SiO 4 is promoted. As a result, the CO 2 absorption reaction in the carbon dioxide absorbent 10 is promoted.
 また、発明者らは、図4の測定機構において、上述の5通りの水分の添加量のそれぞれに対して、二酸化炭素吸収材10のCO吸収特性の測定前後のそれぞれの時点における、当該二酸化炭素吸収材10に含まれる水分の割合(すなわち、二酸化炭素吸収材10の含水率)をさらに測定した。図7は、当該含水率の測定結果の一例を示す表である。 Further, the inventors of the measurement mechanism shown in FIG. 4 have said dioxide dioxide at each time point before and after the measurement of the CO 2 absorption characteristics of the carbon dioxide absorbent 10 for each of the five types of water addition described above. The ratio of moisture contained in the carbon absorbent 10 (that is, the moisture content of the carbon dioxide absorbent 10) was further measured. FIG. 7 is a table showing an example of the measurement result of the moisture content.
 なお、二酸化炭素吸収材10の含水率の測定は、水分量測定器を用いて、二酸化炭素吸収材10から水分を脱水する処理(脱水処理)の前後における、二酸化炭素吸収材10の重量を測定することで行った。また、上記脱水処理については、二酸化炭素吸収材10を120℃で1分間程度加熱することで行った。 The moisture content of the carbon dioxide absorbent 10 is measured by measuring the weight of the carbon dioxide absorbent 10 before and after the process of dehydrating water from the carbon dioxide absorbent 10 (dehydration process) using a moisture meter. It was done by doing. In addition, the dehydration process was performed by heating the carbon dioxide absorbent 10 at 120 ° C. for about 1 minute.
 まず、CO吸収特性の測定開始に先立ち、保持部11上から取り除かれた0.05gの二酸化炭素吸収材10の含水率を測定した。以降、当該含水率を、「測定前の含水率」と称する。 First, prior to the start of measurement of the CO 2 absorption characteristics, the moisture content of 0.05 g of the carbon dioxide absorbent 10 removed from the holding unit 11 was measured. Hereinafter, the moisture content is referred to as “a moisture content before measurement”.
 また、CO吸収特性の測定開始から120分経過後、二酸化炭素吸収材10を容器150から速やかに取り出し、取り出した二酸化炭素吸収材10の含水率を測定した。以降、当該含水率を、「測定後の含水率」と称する。 Further, 120 minutes after the start of measurement of the CO 2 absorption characteristics, the carbon dioxide absorbent 10 was quickly taken out from the container 150, and the moisture content of the taken carbon dioxide absorbent 10 was measured. Hereinafter, the moisture content is referred to as “moisture content after measurement”.
 図7に示されるように、水分の添加量が0μLの場合(保持部11に水分を添加していない場合)を除き、測定後の含水率が測定前の含水率に比べて低下していることが確認された。これは、二酸化炭素吸収材10に含まれていた水分の一部が、容器150の内部において蒸発したために、当該二酸化炭素吸収材10の含水率が低下したためであると推測される。 As shown in FIG. 7, the moisture content after measurement is lower than the moisture content before measurement except when the amount of moisture added is 0 μL (when moisture is not added to the holding unit 11). It was confirmed. This is presumed to be due to a decrease in the moisture content of the carbon dioxide absorbent 10 because a part of the water contained in the carbon dioxide absorbent 10 has evaporated inside the container 150.
 なお、上述の図5では、水分の添加量が100μLまたは200μLの場合、測定開始から120分付近の時間帯において、二酸化炭素吸収材10のCO吸収速度がほぼ0まで低下していることが示されている。当該吸収速度の低下は、上述した二酸化炭素吸収材10の含水率の低下によるものと推測される。 In FIG. 5 described above, when the amount of water added is 100 μL or 200 μL, the CO 2 absorption rate of the carbon dioxide absorbent 10 decreases to almost 0 in the time zone near 120 minutes from the start of measurement. It is shown. The decrease in the absorption rate is assumed to be due to the decrease in the moisture content of the carbon dioxide absorbent 10 described above.
 他方、図7に示されるように、水分の添加量が0μLの場合には、測定後の含水率は、測定前の含水率(0%)に対して増加していた。但し、上述の図5に示されるように、水分の添加量が0μLの場合には、二酸化炭素吸収材10によるCOの吸収は確認されなかった。 On the other hand, as shown in FIG. 7, when the amount of water added was 0 μL, the moisture content after the measurement increased with respect to the moisture content before the measurement (0%). However, as shown in FIG. 5 described above, absorption of CO 2 by the carbon dioxide absorbent 10 was not confirmed when the amount of water added was 0 μL.
 ゆえに、水分の添加量が0μLの場合には、測定後の含水率(15.12%)では、二酸化炭素吸収材10におけるCO吸収反応を促進するには不十分であることが推測される。同様のことは、水分の水分量が100μLまたは200μLの場合についても、推測される。 Therefore, when the amount of water added is 0 μL, it is estimated that the water content after measurement (15.12%) is insufficient to promote the CO 2 absorption reaction in the carbon dioxide absorbent 10. . The same can be assumed for the case where the water content is 100 μL or 200 μL.
 以上のように、上述の図5~図7の測定結果からは、二酸化炭素吸収材10のCO吸収能力が低下した場合においても、保持部11に水分をさらに添加することにより、当該CO吸収能力を維持または向上させることが可能であることが理解される。 As described above, the measurement results of FIGS. 5-7 described above, when the CO 2 absorption capacity of the carbon dioxide absorbent 10 has fallen, by further adding water to the holding portion 11, the CO 2 It is understood that it is possible to maintain or improve the absorption capacity.
 (二酸化炭素吸収装置1におけるCO吸収量の制御方法)
 発明者らは、上記測定結果に基づいて、二酸化炭素吸収装置1におけるCO吸収量(CO吸収速度)の制御方法を新たに想到した。続いて、当該制御方法の一例について述べる。
(Control method of CO 2 absorption amount in carbon dioxide absorber 1)
The inventors have conceived a new method for controlling the CO 2 absorption amount (CO 2 absorption rate) in the carbon dioxide absorption device 1 based on the measurement results. Subsequently, an example of the control method will be described.
 図8は、二酸化炭素吸収材10の単位時間あたりのCO吸収量(縦軸,単位:g)(つまり、CO吸収速度)と、保持部11に対する水分の添加量W(横軸,単位:L)(以下、単に「添加量W」とも称する)との関係を概略的に示すグラフである。 FIG. 8 shows the amount of CO 2 absorbed per unit time of the carbon dioxide absorbent 10 (vertical axis, unit: g) (that is, CO 2 absorption rate) and the amount of moisture W added to the holding unit 11 (horizontal axis, unit). : L) (hereinafter simply referred to as “addition amount W”).
 上述の説明の通り、図8のグラフにおいても、CO吸収速度が、添加量Wに依存することが示されている。ここで、図8のグラフにおいて、CO吸収速度の最大値が得られる添加量Wを、特にWとして表す。図8に示されるW~Wは、添加量Wの設定値である。なお、後述するように、W~Wはいずれも、Wよりも小さい値である。 As described above, the graph of FIG. 8 also shows that the CO 2 absorption rate depends on the addition amount W. Here, in the graph of FIG. 8, the addition amount W at which the maximum value of the CO 2 absorption rate is obtained is expressed as W m in particular. W 1 to W m shown in FIG. 8 are set values of the addition amount W. As will be described later, all of W 1 to W X are smaller than W m .
 上述の説明の通り、0<W≦Wである場合には、Wの増加に応じて、CO吸収速度は増加する。他方、W>Wである場合には、Wを増加させた場合であっても、CO吸収速度が減少する。また、W=0である場合には、CO吸収速度が0となる。これらのことから、添加量Wを0≦W≦Wの数値範囲で調整することにより、CO吸収速度を0以上から最大値以下までの数値範囲で制御できることが理解される。 As described above, when 0 <W ≦ W m , the CO 2 absorption rate increases as W increases. On the other hand, when W> W m , the CO 2 absorption rate decreases even when W is increased. In addition, when W = 0, the CO 2 absorption rate is zero. From these facts, it is understood that the CO 2 absorption rate can be controlled in the numerical range from 0 to the maximum value by adjusting the addition amount W in the numerical range of 0 ≦ W ≦ W m .
 ここで、上述の図1を再び参照し、差分算出部131および添加量設定部132の動作について述べる。差分算出部131は、検出部14の検出結果(CO濃度の検出値)を、当該検出部14から取得する。そして、差分算出部131は、当該検出結果に基づいて、上述のCO吸収速度(以降、検出値P1と称する)を算出する。 Here, the operations of the difference calculation unit 131 and the addition amount setting unit 132 will be described with reference to FIG. 1 again. The difference calculation unit 131 acquires the detection result (the detected value of the CO 2 concentration) from the detection unit 14 from the detection unit 14. Then, the difference calculation unit 131, based on the detection result, calculates the CO 2 absorption rate of the above (hereinafter, referred to as the detection value P1).
 続いて、差分算出部131は、検出値P1(つまり、単位時間あたりのCO吸収量)と、所定のCO吸収量の基準値(以降、基準値DTと称する)との差を、差分値Dとして算出する。つまり、差分算出部131は、D=P1-DTを算出する。そして、差分算出部131は、差分値Dを添加量設定部132に供給する。 Subsequently, the difference calculation unit 131 calculates the difference between the detected value P1 (that is, the CO 2 absorption amount per unit time) and the reference value of the predetermined CO 2 absorption amount (hereinafter referred to as the reference value DT) as a difference. Calculated as value D. That is, the difference calculation unit 131 calculates D = P1−DT. Then, the difference calculation unit 131 supplies the difference value D to the addition amount setting unit 132.
 なお、基準値DTは、二酸化炭素吸収装置1の製品出荷時にあらかじめ設定されていてもよいし、ユーザによって設定可能であってもよい。一例として、基準値DTは、建築物衛生法等の基準値である1000ppmに設定されてよい。この1000ppmという数値(濃度)は、人体へ悪影響を及ぼす可能性がある(例:人間が眠気に誘われ集中力が低下する可能性がある)と考えられるCO濃度の一例である。 The reference value DT may be set in advance at the time of product shipment of the carbon dioxide absorber 1, or may be set by the user. As an example, the reference value DT may be set to 1000 ppm which is a reference value such as the Building Sanitation Law. This numerical value (concentration) of 1000 ppm is an example of a CO 2 concentration that is considered to possibly have an adverse effect on the human body (eg, there is a possibility that humans may be invited to sleepiness and concentration may be reduced).
 添加量設定部132は、差分算出部131から差分値Dを取得し、当該差分値Dに基づいて、添加量Wを設定する。つまり、添加量設定部132は、差分値Dに基づいて、水分供給部12のポンプ124の動作を制御する。 The addition amount setting unit 132 acquires the difference value D from the difference calculation unit 131 and sets the addition amount W based on the difference value D. That is, the addition amount setting unit 132 controls the operation of the pump 124 of the moisture supply unit 12 based on the difference value D.
 より具体的には、添加量設定部132は、第1テーブル151を参照し、差分値Dの数値範囲に応じた添加量Wを設定(選択)する。換言すれば、添加量設定部132は、第1テーブル151を参照し、検出値P1に応じた添加量Wを設定できる。ここで、第1テーブル151とは、差分値Dの数値範囲と添加量W(より具体的には、添加量Wの設定値)との対応関係を示す所定のテーブルである。なお、第1テーブル151は、検出値P1と添加量Wとの対応関係を示すテーブルであると理解されてもよい。 More specifically, the addition amount setting unit 132 refers to the first table 151 and sets (selects) the addition amount W according to the numerical range of the difference value D. In other words, the addition amount setting unit 132 can set the addition amount W according to the detection value P1 with reference to the first table 151. Here, the first table 151 is a predetermined table showing a correspondence relationship between the numerical range of the difference value D and the addition amount W (more specifically, the set value of the addition amount W). It should be noted that the first table 151 may be understood as a table showing the correspondence between the detection value P1 and the addition amount W.
 図9は、第1テーブル151の一例を示す表である。なお、本実施形態では、第1テーブル151が記憶部15に格納されている場合が例示されているが、当該第1テーブル151は、添加量設定部132の内部に設定されていてもよい。 FIG. 9 is a table showing an example of the first table 151. In the present embodiment, the case where the first table 151 is stored in the storage unit 15 is illustrated, but the first table 151 may be set inside the addition amount setting unit 132.
 第1テーブル151において、Xは任意の整数である。また、0<S<S<…<SX-1<Sであり、0<W<W<…<W<Wである。つまり、第1テーブル151では、差分値Dが大きくなるにつれて、添加量Wが大きくなるように(CO吸収速度を増加できるように)、S~S(差分値Dの閾値)およびW~Wの値が設定されている。なお、X、S~S、およびW~Wの値は、二酸化炭素吸収装置1の製品出荷時にあらかじめ設定されていてもよいし、ユーザによって設定可能であってもよい。 In the first table 151, X is an arbitrary integer. Also, 0 <S 1 <S 2 <... <S X-1 <S X , and 0 <W 1 <W 2 <... <W X <W m . That is, in the first table 151, S 1 to S X (threshold value of the difference value D) and W are set so that the addition amount W increases (so that the CO 2 absorption rate can be increased) as the difference value D increases. the value of 1 ~ W m has been set. The values of X, S 1 to S X , and W 1 to W m may be set in advance when the carbon dioxide absorber 1 is shipped, or may be set by the user.
 第1テーブル151を設けることにより、添加量設定部132において、差分値Dの大きさの程度(つまり、検出値P1が基準値DTに対してどの程度大きいか)に応じて、適切な添加量Wを段階的(離散的)に設定できる。このため、添加量設定部132は、簡単な処理(演算)によって、添加量Wを設定できる。 By providing the first table 151, in the addition amount setting unit 132, an appropriate addition amount is determined according to the degree of the difference value D (that is, how large the detected value P1 is relative to the reference value DT). W can be set stepwise (discrete). Therefore, the addition amount setting unit 132 can set the addition amount W by a simple process (calculation).
 (二酸化炭素吸収装置1におけるCO濃度制御の処理の流れ)
 続いて、図10を参照し、二酸化炭素吸収装置1におけるCO濃度制御の処理S1~S14の流れについて述べる。図10は、当該処理の流れを例示するフローチャートである。
(Processing flow of CO 2 concentration control in the carbon dioxide absorber 1)
Next, the flow of the CO 2 concentration control processes S1 to S14 in the carbon dioxide absorber 1 will be described with reference to FIG. FIG. 10 is a flowchart illustrating the flow of the processing.
 まず、二酸化炭素吸収装置1の電源が投入(ON)されると、検出部14が動作し、空間内の気体中のCO濃度を検出する(S1)。続いて、上述の通り、差分算出部131は、検出部14の検出結果を取得し、差分値Dを算出する(S2)。そして、添加量設定部132は、第1テーブル151に基づいて、差分値Dの数値範囲に応じた添加量Wを設定する。 First, when the power of the carbon dioxide absorber 1 is turned on (ON), the detection unit 14 operates to detect the CO 2 concentration in the gas in the space (S1). Subsequently, as described above, the difference calculation unit 131 acquires the detection result of the detection unit 14 and calculates the difference value D (S2). Then, the addition amount setting unit 132 sets the addition amount W according to the numerical range of the difference value D based on the first table 151.
 まず、添加量設定部132は、D≦0であるかを判定する(S3)。D≦0である場合には(S3でYES)、添加量設定部132は、添加量をW=0(D≦0に対応する添加量,Wの最小値)に設定し(S4)、S13(後述)に進む。他方、D≦0でない場合には(S3でNO)、S5に進む。 First, the addition amount setting unit 132 determines whether D ≦ 0 (S3). When D ≦ 0 (YES in S3), the addition amount setting unit 132 sets the addition amount to W = 0 (addition amount corresponding to D ≦ 0, minimum value of W) (S4), S13 Proceed to (described later). On the other hand, if D ≦ 0 is not satisfied (NO in S3), the process proceeds to S5.
 続いて、添加量設定部132は、0<D<Sであるかを判定する(S5)。0<D<Sである場合には(S5でYES)、添加量設定部132は、添加量をW=W(0<D<Sに対応する添加量)に設定し(S6)、S13に進む。他方、0<D<Sでない場合には(S5でNO)、S7に進む。 Subsequently, the addition amount setting unit 132 determines whether 0 <D <S 1 (S5). When 0 <D <S 1 (YES in S5), the addition amount setting unit 132 sets the addition amount to W = W 1 (addition amount corresponding to 0 <D <S 1 ) (S6). , Go to S13. On the other hand, 0 <D <if not S 1 (NO at S5), the process proceeds to S7.
 続いて、添加量設定部132は、S≦D<Sであるかを判定する(S7)。S≦D<Sである場合には(S7でYES)、添加量設定部132は、添加量をW=W(S≦D<Sに対応する添加量)に設定し(S8)、S13に進む。 Subsequently, the addition amount setting unit 132 determines whether or not S 1 ≦ D <S 2 (S7). When S 1 ≦ D <S 2 (YES in S 7), the addition amount setting unit 132 sets the addition amount to W = W 2 (addition amount corresponding to S 1 ≦ D <S 2 ) ( The process proceeds to S8) and S13.
 他方、S≦D<Sでない場合には(S7でNO)、添加量設定部132は、Dの値が第1テーブル151におけるいずれの数値範囲に属するかを判定し、上述と同様に、当該Dの数値範囲に対応する添加量Wを設定する処理を行う。なお、図10では、「S7でNO」以降からS9に至るまでの処理については、図示を省略している。 On the other hand, when S 1 ≦ D <S 2 is not satisfied (NO in S7), the addition amount setting unit 132 determines which numerical range in the first table 151 the value of D belongs to, and the same as described above. Then, the process of setting the addition amount W corresponding to the numerical range of D is performed. In FIG. 10, the processes from “NO at S7” to S9 are not shown.
 以下、S9以降の処理について述べる。添加量設定部132は、SX-1≦D<Sであるかを判定する(S9)。SX-1≦D<Sである場合には(S9でYES)、添加量設定部132は、添加量をW=W(SX-1≦D<Sに対応する添加量)に設定し(S10)、S13に進む。他方、SX-1≦D<Sでない場合には(S9でNO)、S11に進む。 Hereinafter, the processing after S9 will be described. The addition amount setting unit 132 determines whether S X-1 ≦ D <S X (S9). When S X-1 ≦ D <S X (YES in S9), the addition amount setting unit 132 sets the addition amount to W = W X (addition amount corresponding to S X-1 ≦ D <S X ) (S10), and proceed to S13. On the other hand, if S X-1 ≦ D <S X is not satisfied (NO in S9), the process proceeds to S11.
 続いて、添加量設定部132は、D≧Sであるかを判定する(S11)。D≧Sである場合には(S11でYES)、添加量設定部132は、添加量をW=W(D≧Sに対応する添加量,Wの最大値)に設定し(S2)、S13に進む。他方、D≧Sでない場合には(S11でNO)、S1に戻る。 Subsequently, the addition amount setting unit 132 determines whether D ≧ S X (S11). If D ≧ S X (YES in S11), the addition amount setting unit 132 sets the addition amount to W = W m (addition amount corresponding to D ≧ S, maximum value of W) (S2). , Go to S13. On the other hand, if D ≧ S X is not satisfied (NO in S11), the process returns to S1.
 そして、添加量設定部132における添加量Wの設定が完了すると、検出部14は、任意の異なる2つの時刻t1およびt2(t2>t1)において、空間内の気体中のCO濃度を検出する(S13)。なお、時刻t1およびt2は、二酸化炭素吸収装置1の製品出荷時にあらかじめ設定されていてもよいし、ユーザによって設定可能であってもよい。 When the setting of the addition amount W in the addition amount setting unit 132 is completed, the detection unit 14 detects the CO 2 concentration in the gas in the space at any two different times t1 and t2 (t2> t1). (S13). Note that the times t1 and t2 may be set in advance when the carbon dioxide absorption device 1 is shipped, or may be set by the user.
 そして、差分算出部131は、検出部14の検出結果を取得し、時刻t2におけるCO濃度と時刻t1におけるCO濃度との差を、時刻t1・t2間におけるCO濃度の変化量(差分値)として算出する。続いて、差分算出部131は、当該変化量が0または正であるかを判定する(S14)。 Then, the difference calculation unit 131, the detection result to get the difference and the variation of CO 2 concentration between time t1 · t2 of the CO 2 concentration in the CO 2 concentration and time t1 at time t2 of the detector 14 (the difference Value). Subsequently, the difference calculation unit 131 determines whether the change amount is 0 or positive (S14).
 そして、時刻t1・t2間におけるCO濃度の変化量が0または正である場合には(S14でYES)、上述の処理S1に戻り、同様の処理を繰り返す。当該変化量が0または正である場合には、時間経過に伴ってCO濃度が減少しないため、二酸化炭素吸収材10によるCOの吸収を継続させることが好ましいと考えられるためである。他方、当該変化量が負である場合には(S14でNO)、上述のS13に戻る。 If the amount of change in the CO 2 concentration between times t1 and t2 is 0 or positive (YES in S14), the process returns to the above-described process S1 and the same process is repeated. This is because when the amount of change is 0 or positive, the CO 2 concentration does not decrease with the passage of time, so it is considered preferable to continue the absorption of CO 2 by the carbon dioxide absorbent 10. On the other hand, if the amount of change is negative (NO in S14), the process returns to S13 described above.
 そして、図10の処理S1~S14は、二酸化炭素吸収装置1の電源が停止(OFF)されるまで繰り返される。処理S1~S14を繰り返すことにより、二酸化炭素吸収装置1の電源ON時において、気体中のCO濃度(検出値P1)が高い場合であっても、当該CO濃度を上述の基準値DT以下まで、最終的に低下させることができる。 10 are repeated until the power source of the carbon dioxide absorber 1 is stopped (OFF). By repeating the process S1 ~ S14, when the power is turned ON carbon dioxide absorber 1, even if the CO 2 concentration in the gas (the detected value P1) is high, the CO 2 concentration below the reference value DT above Until finally can be lowered.
 (二酸化炭素吸収装置1の効果)
 上述のように、二酸化炭素吸収装置1によれば、添加量設定部132において添加量W(水分供給部12から保持部11に供給される水分の量)を設定することによって、当該添加量Wに応じて二酸化炭素吸収材10のCO吸収量(CO吸収速度)を変化させることができる。つまり、簡便な構成によって、二酸化炭素吸収材10における水分の含有状態(本実施形態の場合には、水分の含有率)を随意に変更できるので、CO吸収量を適切に制御することが可能となる。
(Effect of the carbon dioxide absorber 1)
As described above, according to the carbon dioxide absorption device 1, the addition amount W is set by setting the addition amount W (the amount of moisture supplied from the moisture supply unit 12 to the holding unit 11) in the addition amount setting unit 132. Accordingly, the CO 2 absorption amount (CO 2 absorption rate) of the carbon dioxide absorbent 10 can be changed. That is, with a simple configuration, the moisture content in the carbon dioxide absorbent 10 (in this embodiment, the moisture content) can be changed arbitrarily, so that the CO 2 absorption can be appropriately controlled. It becomes.
 さらに、添加量設定部132において、添加量Wを0以上の0≦W≦Wの数値範囲で調整することにより、CO吸収量を複数の段階で制御できる。このため、二酸化炭素吸収材10に過度の量のCOを吸収させないように、CO吸収量を設定することもできる。従って、二酸化炭素吸収材10の無駄な消費(劣化)も防止できる。 Furthermore, in the addition amount setting unit 132, the CO 2 absorption amount can be controlled in a plurality of stages by adjusting the addition amount W within a numerical range of 0 ≦ W ≦ W m that is greater than or equal to zero. For this reason, the CO 2 absorption amount can also be set so that the carbon dioxide absorbent 10 does not absorb an excessive amount of CO 2 . Therefore, useless consumption (deterioration) of the carbon dioxide absorbent 10 can be prevented.
 特に、上述の差分値Dが、D≦0を満たす場合(つまり、検出値P1が基準値DT以下である場合)には、添加量をW=0に設定する(保持部11に対する水分の添加を停止する)ことにより、二酸化炭素吸収材10におけるCO吸収能力を速やかに低下させることができる。このため、二酸化炭素吸収材10の無駄な消費を特に効果的に防止できる。 In particular, when the above-described difference value D satisfies D ≦ 0 (that is, when the detection value P1 is equal to or less than the reference value DT), the addition amount is set to W = 0 (addition of moisture to the holding unit 11) Is stopped), the CO 2 absorption capacity of the carbon dioxide absorbent 10 can be quickly reduced. For this reason, useless consumption of the carbon dioxide absorbent 10 can be particularly effectively prevented.
 以上のように、二酸化炭素吸収装置1によれば、長時間に亘って、適切な範囲での気体中のCO濃度の制御を行うことができる。それゆえ、二酸化炭素吸収装置1は、除去すべきCO濃度が時間的に変化する空間(例:後述の換気制限可能な空間)において、特に好適である。 As described above, according to the carbon dioxide absorption device 1, it is possible to control the CO 2 concentration in the gas within an appropriate range over a long period of time. Therefore, the carbon dioxide absorption device 1 is particularly suitable in a space where the CO 2 concentration to be removed changes with time (eg, a space where ventilation can be restricted, which will be described later).
 〔実施形態2〕
 本開示の実施形態2について、図11~図16に基づいて説明すれば、以下の通りである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The second embodiment of the present disclosure will be described below with reference to FIGS. 11 to 16. For convenience of explanation, members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
 (二酸化炭素吸収装置2の構成)
 図11は、本実施形態の二酸化炭素吸収装置2の要部の構成を示す機能ブロック図である。二酸化炭素吸収装置2は、上述の実施形態1の二酸化炭素吸収装置1において、(i)水分供給部12を水分供給部22(供給部)に、(ii)制御部13の添加量設定部132をpH設定部232に、それぞれ置き換えた構成である。
(Configuration of carbon dioxide absorber 2)
FIG. 11 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorption device 2 of the present embodiment. The carbon dioxide absorption device 2 is the same as the carbon dioxide absorption device 1 of the first embodiment described above, in which (i) the moisture supply unit 12 is replaced with the moisture supply unit 22 (supply unit), and (ii) the addition amount setting unit 132 of the control unit 13. Is replaced with a pH setting unit 232, respectively.
 なお、制御部13との区別のため、二酸化炭素吸収装置2の制御部を、制御部23と称する。また、記憶部15には、上述の第1テーブル151に替えて、第2テーブル251(後述)が格納されている。 In addition, the control part of the carbon dioxide absorption apparatus 2 is called the control part 23 for the distinction with the control part 13. The storage unit 15 stores a second table 251 (described later) instead of the first table 151 described above.
 図12は、水分供給部22の概略的な構成を示す機能ブロック図である。図12に示されるように、水分供給部22は、保持部11へ供給する水を蓄える貯水部を複数備えているという点において、上述の水分供給部12と異なる。一例として、水分供給部22は、5つの貯水部221a~221eを備えている。貯水部221a~221eは、総称的に貯水部221と称されてもよい。 FIG. 12 is a functional block diagram showing a schematic configuration of the moisture supply unit 22. As shown in FIG. 12, the water supply unit 22 is different from the water supply unit 12 described above in that it includes a plurality of water storage units that store water supplied to the holding unit 11. As an example, the water supply unit 22 includes five water storage units 221a to 221e. The water storage units 221a to 221e may be collectively referred to as the water storage unit 221.
 なお、図12では、簡単のために、5つの貯水部221a~221eのうち、3つの貯水部221a・221b・221eのみを図示している。この点については、以下に述べる水路223a~223eについても同様である。 In FIG. 12, for simplicity, only three water storage units 221a, 221b, and 221e out of the five water storage units 221a to 221e are illustrated. The same applies to water channels 223a to 223e described below.
 そして、図12に示されるように、水分供給部22において、複数の貯水部221のそれぞれには、異なるpHを有する水溶液が蓄えられている。一例として、5つの貯水部221のそれぞれには、「pH0」、「pH2」、「pH7」、「pH12」、「pH14」という5通りの異なるpHを有する水溶液が蓄えられている。 And as FIG. 12 shows, in the water | moisture-content supply part 22, the aqueous solution which has different pH in each of the some water storage part 221 is stored. As an example, each of the five water storage units 221 stores aqueous solutions having five different pH values of “pH 0”, “pH 2”, “pH 7”, “pH 12”, and “pH 14”.
 また、水分供給部22は、貯水部221a~221eのそれぞれと送水部122とを互いに接続する水路223a~223eをさらに備えている。一例として、貯水部221aにpH0の水溶液が蓄えられている場合を考える。この場合、送水部122(より具体的には、ポンプ124)は、水路223aを介して、pH0の水溶液を貯水部221aから取り出す。 The water supply unit 22 further includes water channels 223a to 223e that connect the water storage units 221a to 221e and the water supply unit 122 to each other. As an example, consider a case where an aqueous solution of pH 0 is stored in the water storage unit 221a. In this case, the water supply unit 122 (more specifically, the pump 124) takes out the aqueous solution of pH 0 from the water storage unit 221a through the water channel 223a.
 このように、水分供給部22の構成によれば、送水部122は、複数の貯水部221(貯水部221a~221e)の中から、特定の貯水部(例:貯水部221a)を選択して、当該貯水部から所定の量の水分を取り出すことができる。 As described above, according to the configuration of the water supply unit 22, the water supply unit 122 selects a specific water storage unit (for example, the water storage unit 221a) from the plurality of water storage units 221 (water storage units 221a to 221e). A predetermined amount of water can be taken out from the water reservoir.
 上述の図11のpH設定部232は、上述の添加量設定部132に、水分供給部22内の複数の貯水部221の中から、水分を取り出す対象とする貯水部(例:貯水部221a)を選択する機能を付加したものである。つまり、pH設定部232は、水分の添加量Wに加えて、当該水分のpHをも設定可能である。pH設定部232の動作の具体例については、以下に詳細に述べる。 The pH setting unit 232 in FIG. 11 described above adds to the above-described addition amount setting unit 132 a water storage unit (eg, water storage unit 221a) that is a target for extracting water from the plurality of water storage units 221 in the water supply unit 22. A function for selecting is added. That is, the pH setting unit 232 can set the pH of the moisture in addition to the added amount W of the moisture. A specific example of the operation of the pH setting unit 232 will be described in detail below.
 (水分のpHとCO吸収能力との関係)
 次に、図13を参照し、保持部11に添加される水分のpHと、二酸化炭素吸収材10におけるCO吸収能力との関係について説明する。
(Relationship between water pH and CO 2 absorption capacity)
Next, the relationship between the pH of moisture added to the holding unit 11 and the CO 2 absorption capacity of the carbon dioxide absorbent 10 will be described with reference to FIG.
 図13は、上述の図4の測定機構において、保持部11としてセルロース製の濾紙を用いた場合の測定結果の一例を示すグラフ(上述の図5と対になるグラフ)である。具体的には、図13には、所定のpHの水分を保持部11(濾紙)に添加した場合の、二酸化炭素吸収材10によるCO吸収量の時間的な推移についての測定結果が示されている。 FIG. 13 is a graph (a graph paired with FIG. 5 described above) showing an example of measurement results when cellulose filter paper is used as the holding unit 11 in the measurement mechanism of FIG. 4 described above. Specifically, FIG. 13 shows the measurement result of the temporal transition of the amount of CO 2 absorbed by the carbon dioxide absorbent 10 when water having a predetermined pH is added to the holding unit 11 (filter paper). ing.
 図13には、「pH0」、「pH2.4」、「pH7」、「pH12」、「pH13」、および「pH14」の6通りの場合についての測定結果が示されている。また、保持部11に対する水分の添加量は、いずれのpHの場合にも300μLである。また、その他の条件については、上述の図5の場合の測定と同様である。 FIG. 13 shows measurement results for six cases of “pH 0”, “pH 2.4”, “pH 7”, “pH 12”, “pH 13”, and “pH 14”. Further, the amount of water added to the holding unit 11 is 300 μL at any pH. Other conditions are the same as those in the case of FIG.
 図13に示されるように、水分のpHが増加するにつれて、所定の時間内における二酸化炭素吸収材10によるCO吸収量(つまり、二酸化炭素吸収材10のCO吸収速度)が増加することが確認された。 As shown in FIG. 13, the amount of CO 2 absorbed by the carbon dioxide absorbent 10 within a predetermined time (that is, the CO 2 absorption rate of the carbon dioxide absorbent 10) may increase as the pH of water increases. confirmed.
 (本実施形態におけるCO吸収速度の増加のメカニズムについての一考察)
 上述のように、発明者らは、保持部11に添加する水分のpHを増加させることにより、二酸化炭素吸収材10のCO吸収速度を増加させることができることを確認した。しかしながら、上記水分のpHを増加させることにより、二酸化炭素吸収材10のCO吸収速度が増加するメカニズム(原理)については、現時点では解明されていない。但し、発明者らは、当該メカニズムの一例を以下の通り推察している。
(Consideration of mechanism of increase of CO 2 absorption rate in this embodiment)
As described above, the inventors have confirmed that the CO 2 absorption rate of the carbon dioxide absorbent 10 can be increased by increasing the pH of the water added to the holding unit 11. However, the mechanism (principle) of increasing the CO 2 absorption rate of the carbon dioxide absorbent 10 by increasing the pH of the moisture has not been elucidated at the present time. However, the inventors speculate an example of the mechanism as follows.
 (推察):炭酸ガスのpHは比較的低い(弱酸性である)ため、保持部11に添加される水分のpHが増加するにつれて(例:水分のアルカリ性が強まるにつれて)、二酸化炭素吸収材10におけるCO吸収反応が促進される。 (Inference): Since the pH of carbon dioxide gas is relatively low (weakly acidic), the carbon dioxide absorbent 10 increases as the pH of water added to the holding unit 11 increases (eg, as the alkalinity of water increases). The CO 2 absorption reaction in is promoted.
 (二酸化炭素吸収装置2におけるCO吸収量の制御方法)
 発明者らは、上記測定結果に基づいて、上述の実施形態1とは異なるCO吸収量(CO吸収速度)の制御方法を新たに想到した。続いて、当該制御方法の一例について述べる。
(Control method of CO 2 absorption amount in carbon dioxide absorber 2)
The inventors have conceived a new method for controlling the CO 2 absorption amount (CO 2 absorption rate) different from that of the first embodiment based on the measurement result. Subsequently, an example of the control method will be described.
 図14は、二酸化炭素吸収材10の単位時間あたりのCO吸収量(縦軸,単位:g)(つまり、CO吸収速度)と、保持部11に対する水分のpH(横軸,単位:L)との関係を概略的に示すグラフである。以降、水分のpHを表す文字(記号)をAとする。上述の説明の通り、図14のグラフにおいても、CO吸収速度が、水分のpH(Aの値)に依存することが示されている。 FIG. 14 shows the amount of CO 2 absorbed per unit time of the carbon dioxide absorbent 10 (vertical axis, unit: g) (that is, CO 2 absorption rate) and the pH of water relative to the holding unit 11 (horizontal axis, unit: L). It is a graph which shows the relationship with) schematically. Hereinafter, a letter (symbol) representing the pH of moisture is assumed to be A. As described above, the graph of FIG. 14 also shows that the CO 2 absorption rate depends on the pH of water (the value of A).
 ここで、図14のグラフにおいて、CO吸収速度の最小値が得られるAの値を、特にAとして表す。一例として、A=0である。また、CO吸収速度の最大値が得られるAの値を、特にAとして表す。一例として、A=14である。図14に示されるA~Aは、Aの設定値である。 Here, in the graph of FIG. 14, the value of A from which the minimum value of the CO 2 absorption rate is obtained is expressed as A 1 in particular. As an example, A 1 = 0. Further, the value of A the maximum value of the CO 2 absorption rate is obtained, expressed as a particular A m. As an example, A m = 14. A 1 to A m shown in FIG.
 図14に示されるように、A(=0)≦A≦A(=14)の数値範囲において、CO吸収速度は、Aに対して単調増加する。このことから、Aの値(水分のpH)を上述の数値範囲で調整することにより、CO吸収速度を最小値以上から最大値以下までの数値範囲で制御できることが理解される。 As shown in FIG. 14, the CO 2 absorption rate monotonously increases with respect to A in the numerical range of A 1 (= 0) ≦ A ≦ A m (= 14). From this, it is understood that the CO 2 absorption rate can be controlled in the numerical range from the minimum value to the maximum value by adjusting the value of A (water pH) in the above numerical range.
 本実施形態において、pH設定部232は、差分算出部131から取得した差分値Dに基づいて、Aの値を設定する。より具体的には、pH設定部232は、第2テーブル251を参照し、差分値Dの数値範囲に応じたAの値を設定する。換言すれば、pH設定部232は、第2テーブル251を参照し、検出値P1に応じたAの値を設定できる。ここで、第2テーブル251とは、差分値Dの数値範囲とAの値(より具体的には、Aの設定値)との対応関係を示す所定のテーブルである。なお、第2テーブル251は、検出値P1とAの値との対応関係を示すテーブルであると理解されてもよい。 In the present embodiment, the pH setting unit 232 sets the value of A based on the difference value D acquired from the difference calculation unit 131. More specifically, the pH setting unit 232 refers to the second table 251 and sets the value A according to the numerical range of the difference value D. In other words, the pH setting unit 232 can set the value of A according to the detection value P1 with reference to the second table 251. Here, the second table 251 is a predetermined table indicating the correspondence between the numerical range of the difference value D and the value of A (more specifically, the set value of A). It should be noted that the second table 251 may be understood as a table indicating the correspondence between the detection value P1 and the value A.
 図15は、第2テーブル251の一例を示す表である。なお、本実施形態では、第2テーブル251が記憶部15に格納されている場合が例示されているが、当該第2テーブル251は、pH設定部232の内部に設定されていてもよい。 FIG. 15 is a table showing an example of the second table 251. In the present embodiment, the case where the second table 251 is stored in the storage unit 15 is illustrated, but the second table 251 may be set inside the pH setting unit 232.
 第2テーブル251において、XおよびS~Sについては、上述の第1テーブル151(図9)の場合と同様であるので、説明を省略する。また、第2テーブル251において、XおよびS~Sのそれぞれの値については、上述の第1テーブル151と同じであってもよいし、異なっていてもよい。 In the second table 251, X and S 1 to S X are the same as those in the case of the first table 151 (FIG. 9) described above, and a description thereof will be omitted. In the second table 251, the values of X and S 1 to S X may be the same as or different from those of the first table 151 described above.
 第2テーブル251では、A(=0)<A<…<A<A(=14)である。つまり、第2テーブル251は、差分値Dが大きくなるにつれて、Aの値が大きくなるように(CO吸収速度を増加できるように)、S~SおよびA~Aの値が設定されている。なお、上述の実施形態1と同様に、A~Aの値についても、二酸化炭素吸収装置1の製品出荷時にあらかじめ設定されていてもよいし、ユーザによって設定可能であってもよい。 In the second table 251, A 1 (= 0) <A 2 <... <A X <A m (= 14). That is, in the second table 251, the values of S 1 to S X and A 1 to A m are set so that the value of A increases as the difference value D increases (so that the CO 2 absorption rate can be increased). Is set. As in the first embodiment, the values of A 1 to A m may be set in advance when the carbon dioxide absorber 1 is shipped, or may be set by the user.
 第2テーブル251を設けることにより、pH設定部232において、差分値Dの大きさの程度に応じて、適切なAの値を段階的に設定できる。このため、pH設定部232もまた、簡単な処理によって、Aの値を設定できる。 By providing the second table 251, the pH setting unit 232 can set an appropriate value of A stepwise in accordance with the degree of the difference value D. For this reason, the pH setting unit 232 can also set the value of A by a simple process.
 (二酸化炭素吸収装置2におけるCO濃度制御の処理の流れ)
 続いて、図16を参照し、二酸化炭素吸収装置2におけるCO濃度制御の処理S21~S34の流れについて述べる。図16は、当該処理の流れを例示するフローチャートである。
(Processing flow of CO 2 concentration control in the carbon dioxide absorber 2)
Subsequently, the flow of the CO 2 concentration control processes S21 to S34 in the carbon dioxide absorber 2 will be described with reference to FIG. FIG. 16 is a flowchart illustrating the flow of the processing.
 なお、図16のS21~S22、S23・S25・S27・S29・S31、およびS33~S34はそれぞれ、上述の図10のS1~S2、S3・S5・S7・S9・S11、およびS13~S14と同様の処理であるため、説明を省略する。以下、S24・S26・S28・S30・S32およびその周辺の処理について述べる。 Note that S21 to S22, S23, S25, S27, S29, and S31, and S33 to S34 in FIG. Since it is the same process, description is abbreviate | omitted. Hereinafter, S24, S26, S28, S30, and S32 and their peripheral processing will be described.
 まず、D≦0である場合には(S23でNO)、pH設定部232は、保持部11に対する水分の添加を停止する(S24)。つまり、pH設定部232は、上述の添加量WをW=0に設定し、水分供給部22に保持部11への水分の供給を行わせない。そして、S33に進む。 First, when D ≦ 0 (NO in S23), the pH setting unit 232 stops adding moisture to the holding unit 11 (S24). That is, the pH setting unit 232 sets the above-described addition amount W to W = 0, and does not cause the moisture supply unit 22 to supply moisture to the holding unit 11. Then, the process proceeds to S33.
 また、0<D<Sである場合には(S25でYES)、pH設定部232は、Aの値をA=A(=0)(0<D<Sに対応するAの値,Aの最小値)に設定し(S26)、S33に進む。 If 0 <D <S 1 (YES in S25), the pH setting unit 232 sets the value of A to A = A 1 (= 0) (the value of A corresponding to 0 <D <S 1 , A) (S26), and the process proceeds to S33.
 また、S≦D<Sである場合には(S27でYES)、pH設定部232は、Aの値をA=A(S≦D<Sに対応するAの値)に設定し(S28)、S33に進む。 When S 1 ≦ D <S 2 (YES in S 27), the pH setting unit 232 sets the value of A to A = A 2 (the value of A corresponding to S 1 ≦ D <S 2 ). Set (S28) and proceed to S33.
 なお、S≦D<Sでない場合には(S27でNO)、pH設定部232は、Dの値が第2テーブル251におけるいずれの数値範囲に属するかを判定し、上述と同様に、当該Dの数値範囲に対応するAの値を設定する処理を行う。図16においても、上述の図10と同様に、「S27でNO」以降からS29に至るまでの処理については、図示を省略している。 If S 1 ≦ D <S 2 is not satisfied (NO in S27), the pH setting unit 232 determines which numerical range in the second table 251 the value of D belongs to, A process of setting a value of A corresponding to the numerical value range of D is performed. Also in FIG. 16, as in FIG. 10 described above, the processes from “NO at S27” to S29 are not shown.
 そして、SX-1≦D<Sである場合には(S29でYES)、pH設定部232は、Aの値をA=A(SX-1≦D<Sに対応するAの値)に設定し(S30)、S33に進む。 If S X-1 ≦ D <S X (YES in S29), the pH setting unit 232 sets the value of A to A = A X (S X-1 ≦ D <S X corresponding to A (S30), and the process proceeds to S33.
 また、D≧Sである場合には(S31でYES)、pH設定部232は、Aの値をA=A(D≧Sに対応するAの値,Aの最大値)に設定し(S32)、S33に進む。 If D ≧ S X (YES in S31), the pH setting unit 232 sets the value of A to A = A m (the value of A corresponding to D ≧ S, the maximum value of A). (S32), the process proceeds to S33.
 なお、本実施形態のS21~S34についても、上述の図10のS1~S14と同様に、二酸化炭素吸収装置1の電源がOFFされるまで繰り返される。このため、上述の実施形態1と同様に、二酸化炭素吸収装置2の電源ON時において、気体中のCO濃度(検出値P1)が高い場合であっても、当該CO濃度を上述の基準値DT以下まで、最終的に低下させることができる。 Note that S21 to S34 of this embodiment are also repeated until the power of the carbon dioxide absorber 1 is turned off, as in S1 to S14 of FIG. For this reason, as in the first embodiment, even when the CO 2 concentration (detection value P1) in the gas is high when the carbon dioxide absorber 2 is turned on, the CO 2 concentration is set to the above-described reference. It can be finally reduced to a value DT or less.
 (二酸化炭素吸収装置2の効果)
 上述のように、水分供給部22から保持部11に供給される水分の量(添加量W)に替えて、当該水分のpH(Aの値)を変更することによっても、二酸化炭素吸収材10のCO吸収量(およびCO吸収速度)を調整することができる。
(Effect of the carbon dioxide absorber 2)
As described above, the carbon dioxide absorbent 10 can also be obtained by changing the pH (value of A) of the water instead of the amount of water (addition amount W) supplied from the water supply unit 22 to the holding unit 11. The amount of CO 2 absorbed (and CO 2 absorption rate) can be adjusted.
 この点を踏まえ、本実施形態の二酸化炭素吸収装置2は、pH設定部232においてAの値を設定することによって、当該Aの値に応じて二酸化炭素吸収材10のCO吸収量(CO吸収速度)を変化させるように構成されている。 In consideration of this point, the carbon dioxide absorption device 2 of the present embodiment sets the value of A in the pH setting unit 232, so that the CO 2 absorption amount (CO 2) of the carbon dioxide absorbent 10 according to the value of A. (Absorption rate) is changed.
 つまり、酸化炭素吸収装置2によっても、二酸化炭素吸収材10における水分の含有状態(本実施形態の場合には、水分のpH)を随意に変更できるので、CO吸収量を適切に制御することが可能となる。それゆえ、二酸化炭素吸収装置2によっても、上述の実施形態1と同様の効果を得られる。 That is, the carbon oxide absorption device 2 can also arbitrarily change the moisture content in the carbon dioxide absorbent 10 (in this embodiment, the pH of the moisture), so that the amount of CO 2 absorption can be controlled appropriately. Is possible. Therefore, the carbon dioxide absorption device 2 can provide the same effect as that of the first embodiment.
 なお、pH設定部232において、実施形態1の添加量設定部132と同様の処理をさらに行ってもよい。つまり、pH設定部232は、上述の差分値Dの数値範囲に応じて、Aの値のみならず、添加量Wをさらに設定してもよい。 In addition, in the pH setting part 232, you may further perform the process similar to the addition amount setting part 132 of Embodiment 1. FIG. That is, the pH setting unit 232 may further set not only the value A but also the addition amount W according to the numerical range of the difference value D described above.
 例えば、pH設定部232は、上述の第1テーブル151を参照することで、添加量Wをさらに設定できる。当該構成によれば、保持部11に添加される水分のpHおよび量の両方を設定できるので、CO吸収量(またはCO吸収速度)をより高精度に制御することが可能となる。 For example, the pH setting unit 232 can further set the addition amount W by referring to the first table 151 described above. According to this configuration, since both the pH and amount of water added to the holding unit 11 can be set, the CO 2 absorption amount (or CO 2 absorption rate) can be controlled with higher accuracy.
 〔実施形態3〕
 本開示の実施形態3について、図17および図18に基づいて説明すれば、以下の通りである。
[Embodiment 3]
The third embodiment of the present disclosure will be described below with reference to FIGS. 17 and 18.
 (二酸化炭素吸収装置3の構成)
 図17は、本実施形態の二酸化炭素吸収装置3の要部の構成を示す機能ブロック図である。二酸化炭素吸収装置3は、上述の実施形態1の二酸化炭素吸収装置1において、加熱部35および加熱制御部333を付加した構成である。なお、制御部13との区別のため、二酸化炭素吸収装置3の制御部を、制御部33と称する。図17に示されるように、加熱制御部333は、制御部33に設けられている。
(Configuration of carbon dioxide absorber 3)
FIG. 17 is a functional block diagram illustrating a configuration of a main part of the carbon dioxide absorption device 3 of the present embodiment. The carbon dioxide absorption device 3 has a configuration in which a heating unit 35 and a heating control unit 333 are added to the carbon dioxide absorption device 1 of the first embodiment. In order to distinguish from the control unit 13, the control unit of the carbon dioxide absorber 3 is referred to as a control unit 33. As shown in FIG. 17, the heating control unit 333 is provided in the control unit 33.
 加熱部35は、保持部11を加熱し、当該保持部11に添加された水分の少なくとも一部を除去する。加熱部35は、例えばヒータまたはマイクロ波照射機等であってよいが、これらに限定されない。 The heating unit 35 heats the holding unit 11 and removes at least a part of the moisture added to the holding unit 11. The heating unit 35 may be, for example, a heater or a microwave irradiator, but is not limited thereto.
 加熱部35における加熱温度(保持部11を加熱する温度)は、保持部11が燃焼しない温度範囲内(例:60℃~200℃)に設定されることが好ましい。特に、保持部11の材料が有機物(例:セルロース)である場合には、当該有機物の燃焼を避けるために、加熱温度を60~100℃程度に設定することが好ましい。 The heating temperature in the heating unit 35 (the temperature at which the holding unit 11 is heated) is preferably set within a temperature range where the holding unit 11 does not burn (eg, 60 ° C. to 200 ° C.). In particular, when the material of the holding unit 11 is an organic substance (eg, cellulose), it is preferable to set the heating temperature to about 60 to 100 ° C. in order to avoid burning the organic substance.
 加熱制御部333は、加熱部35の動作を制御する。本実施形態では、加熱部35の動作が、加熱制御部333によって制御される場合を例示して説明を行う。以下に述べるように、加熱制御部333は、水分供給部12の保持部11への水分の添加履歴(供給履歴と称されてもよい)(以降、単に「添加履歴」とも称する)に基づいて、加熱部35の動作を制御してよい。ここで、添加履歴とは、水分供給部12が保持部11に対して水分の供給(輸送)を行った履歴である。 The heating control unit 333 controls the operation of the heating unit 35. In the present embodiment, a case where the operation of the heating unit 35 is controlled by the heating control unit 333 will be described as an example. As will be described below, the heating control unit 333 is based on the moisture addition history (may be referred to as supply history) to the holding unit 11 of the moisture supply unit 12 (hereinafter, also simply referred to as “addition history”). The operation of the heating unit 35 may be controlled. Here, the addition history is a history in which the moisture supply unit 12 supplies (transports) moisture to the holding unit 11.
 但し、加熱部35の動作は、二酸化炭素吸収装置3とは異なる外部装置によって制御されてもよい。この場合、ユーザが外部装置に入力を与え、当該入力に基づいて加熱部35を動作させることもできる。 However, the operation of the heating unit 35 may be controlled by an external device different from the carbon dioxide absorber 3. In this case, the user can give an input to the external device and operate the heating unit 35 based on the input.
 (二酸化炭素吸収装置3におけるCO濃度制御の処理の流れ)
 続いて、図18を参照し、二酸化炭素吸収装置3におけるCO濃度制御の処理S41~S56の流れについて述べる。図18は、当該処理の流れを例示するフローチャートである。
(Flow of CO 2 concentration control process in the carbon dioxide absorber 3)
Next, the flow of CO 2 concentration control processes S41 to S56 in the carbon dioxide absorber 3 will be described with reference to FIG. FIG. 18 is a flowchart illustrating the flow of the processing.
 なお、図18のS41~S43、S45、およびS47~56はそれぞれ、上述の図10のS1~S3、S4、およびS5~S14と同様の処理であるため、説明を省略する。つまり、図18は、上述の図10において、S44・S46を付加したフローチャートと理解されてよい。以下、S44・S46およびその周辺の処理について述べる。 It should be noted that S41 to S43, S45, and S47 to 56 in FIG. 18 are the same processes as S1 to S3, S4, and S5 to S14 in FIG. That is, FIG. 18 may be understood as a flowchart in which S44 and S46 are added to FIG. Hereinafter, S44 and S46 and their peripheral processing will be described.
 なお、本実施形態において、添加量設定部132は、水分供給部12に保持部11への水分の添加を行わせる指示を与えた場合には、当該指示に基づく水分供給部12の動作時刻を確認する。そして、添加量設定部132は、上記動作時刻を示すログ(記録)を、「添加履歴」として記憶部15に格納する。 In this embodiment, when the addition amount setting unit 132 gives an instruction to the moisture supply unit 12 to add moisture to the holding unit 11, the addition time setting unit 132 sets the operation time of the moisture supply unit 12 based on the instruction. Check. The addition amount setting unit 132 stores a log (record) indicating the operation time in the storage unit 15 as “addition history”.
 まず、D≦0である場合には(S43でYES)、加熱制御部333は、記憶部15に上述の添加履歴が存在しているか(格納されているか)を確認する(S44)。そして、添加履歴が存在していない場合には(S44でNO)、S45に進む。つまり、この場合には、加熱制御部333は加熱部35を動作させず、保持部11に対する水分の添加が一度も行われていない状態がそのまま維持される。 First, when D ≦ 0 (YES in S43), the heating control unit 333 confirms whether the above-described addition history is present (stored) in the storage unit 15 (S44). If the addition history does not exist (NO in S44), the process proceeds to S45. That is, in this case, the heating control unit 333 does not operate the heating unit 35 and the state where moisture has not been added to the holding unit 11 is maintained as it is.
 他方、添加履歴が存在している場合には(S44でYES)、加熱制御部333は、保持部11にすでに添加された水分の少なくとも一部を除去するために、加熱部35を動作させる(S46)。例えば、保持部11から上記水分の全てを除去する場合には、加熱制御部333は、所定の加熱時間に亘って、所定の加熱温度(例:100℃)で、加熱部35を動作させてよい。 On the other hand, when the addition history exists (YES in S44), the heating control unit 333 operates the heating unit 35 in order to remove at least part of the moisture already added to the holding unit 11 ( S46). For example, when removing all of the moisture from the holding unit 11, the heating control unit 333 operates the heating unit 35 at a predetermined heating temperature (eg, 100 ° C.) over a predetermined heating time. Good.
 一例として、当該所定の加熱時間は、上記所定の加熱温度(100℃)で保持部11を加熱した場合に、当該保持部11が保持可能な水分の最大量を除去できる時間である。所定の加熱時間は、二酸化炭素吸収装置1の製品出荷時にあらかじめ設定されていてもよいし、ユーザによって設定可能であってもよい。 As an example, the predetermined heating time is a time during which the maximum amount of moisture that can be held by the holding unit 11 can be removed when the holding unit 11 is heated at the predetermined heating temperature (100 ° C.). The predetermined heating time may be set in advance when the carbon dioxide absorption device 1 is shipped, or may be set by the user.
 (二酸化炭素吸収装置3の効果)
 一例として、上述の差分値DがD≦0である場合(つまり、検出値P1が基準値DT以下である場合)であって、かつ、上述の添加履歴が存在している場合(つまり、二酸化炭素吸収装置3が二酸化炭素吸収材10にCOの吸収を少なくとも一度行わせた場合)には、二酸化炭素吸収材10におけるCOの吸収能力を維持する必要性が低いと言える。二酸化炭素吸収材10によるこれまでのCOの吸収によって、気体中のCO濃度がすでに十分に低減されたと考えられるためである。
(Effect of the carbon dioxide absorber 3)
As an example, the above-described difference value D is D ≦ 0 (that is, the detected value P1 is equal to or less than the reference value DT), and the above-described addition history exists (that is, dioxide dioxide). In the case where the carbon absorption device 3 causes the carbon dioxide absorbent 10 to absorb CO 2 at least once), it can be said that the necessity of maintaining the CO 2 absorption capacity in the carbon dioxide absorbent 10 is low. This is because it is considered that the CO 2 concentration in the gas has already been sufficiently reduced by the absorption of CO 2 by the carbon dioxide absorbent 10 so far.
 それにもかかわらず、このようなケース(以下、不要ケース)においても、上記CO吸収能力をなお維持させた場合には、二酸化炭素吸収材10の無駄な消費(劣化)が生じる可能性がある。この点を踏まえ、本実施形態の二酸化炭素吸収装置3は、加熱制御部333によって加熱部35の動作を制御して、保持部11に添加された水分の少なくとも一部を除去するように構成されている。 Nevertheless, even in such a case (hereinafter, unnecessary case), if the CO 2 absorption capacity is still maintained, there is a possibility that wasteful consumption (deterioration) of the carbon dioxide absorbent 10 may occur. . Based on this point, the carbon dioxide absorption device 3 of the present embodiment is configured to control the operation of the heating unit 35 by the heating control unit 333 and remove at least a part of the moisture added to the holding unit 11. ing.
 当該構成によれば、不要ケースにおいて、加熱制御部333の指示に応じて加熱部35を動作させて、二酸化炭素吸収材10のCO吸収量(CO吸収速度)を速やかに減少させることができる。このため、不要ケースにおける二酸化炭素吸収材10の無駄な消費を効果的に防止できる。 According to this configuration, in an unnecessary case, the heating unit 35 is operated in accordance with an instruction from the heating control unit 333 to quickly reduce the CO 2 absorption amount (CO 2 absorption rate) of the carbon dioxide absorbent 10. it can. For this reason, useless consumption of the carbon dioxide absorbent 10 in an unnecessary case can be effectively prevented.
 以上のように、本実施形態の二酸化炭素吸収装置3によれば、加熱制御部333および加熱部35が設けられることにより、上述の実施形態1の二酸化炭素吸収装置1に比べて、CO吸収量をより高精度に制御することが可能となる。なお、上述の実施形態2の二酸化炭素吸収装置2に、加熱制御部333および加熱部35をさらに設けてもよい。 As described above, according to the carbon dioxide absorption device 3 of the present embodiment, by providing the heating control unit 333 and the heating unit 35, compared to the carbon dioxide absorption device 1 of the above-described first embodiment, CO 2 absorption. The amount can be controlled with higher accuracy. In addition, you may further provide the heating control part 333 and the heating part 35 in the carbon dioxide absorption apparatus 2 of above-mentioned Embodiment 2. FIG.
 なお、本実施形態では、差分値Dと添加履歴との両方を考慮して、加熱部35の動作を制御する場合を例示した。但し、加熱部35の動作は、差分値Dのみを考慮して制御されてもよい。一例として、加熱制御部333は、D≦0である場合に、添加履歴の有無に関わらず加熱部35を動作させてもよい。当該構成によっても、二酸化炭素吸収材10の無駄な消費を防止できる。 In the present embodiment, the case where the operation of the heating unit 35 is controlled in consideration of both the difference value D and the addition history is illustrated. However, the operation of the heating unit 35 may be controlled considering only the difference value D. As an example, the heating control unit 333 may operate the heating unit 35 regardless of the presence or absence of the addition history when D ≦ 0. Also with this configuration, wasteful consumption of the carbon dioxide absorbent 10 can be prevented.
 〔実施形態4〕
 本開示の実施形態4について、図19に基づいて説明すれば、以下の通りである。本実施形態では、本開示の一態様に係る二酸化炭素吸収装置を備えた電子機器の一例について述べる。
[Embodiment 4]
The following describes Embodiment 4 of the present disclosure with reference to FIG. In this embodiment, an example of an electronic device including the carbon dioxide absorption device according to one aspect of the present disclosure will be described.
 図19は、本実施形態の空気清浄器100(電子機器)の概略的な構成を示す図である。なお、図19における矢印は、空気清浄器100が取り込んだ空気の流れを示している。図19に示されるように、空気清浄器100は、二酸化炭素吸収装置1と、フィルタ101と、ファン102とを備えている。 FIG. 19 is a diagram showing a schematic configuration of the air cleaner 100 (electronic device) of the present embodiment. In addition, the arrow in FIG. 19 has shown the flow of the air which the air cleaner 100 took in. As shown in FIG. 19, the air cleaner 100 includes a carbon dioxide absorber 1, a filter 101, and a fan 102.
 なお、本実施形態では、説明の便宜上、実施施形態1の二酸化炭素吸収装置1が空気清浄器100に設けられている場合を例示しているが、当該二酸化炭素吸収装置1に替えて、実施形態2・3の二酸化炭素吸収装置2・3が空気清浄器100に設けられてもよい。 In addition, in this embodiment, although the case where the carbon dioxide absorption apparatus 1 of Embodiment 1 is provided in the air cleaner 100 is illustrated for convenience of explanation, it replaces with the said carbon dioxide absorption apparatus 1, and is implemented. The carbon dioxide absorbers 2 and 3 in the forms 2 and 3 may be provided in the air cleaner 100.
 ファン102は、空気清浄器100の内部に空気を取り込む送風機である。ファン102の動作は、空気清浄器100に設けられた制御部(不図示)によって制御される。但し。二酸化炭素吸収装置1の制御部13によって、ファン102の動作が制御されてもよい。 The fan 102 is a blower that takes air into the air purifier 100. The operation of the fan 102 is controlled by a control unit (not shown) provided in the air cleaner 100. However. The operation of the fan 102 may be controlled by the controller 13 of the carbon dioxide absorber 1.
 フィルタ101は、ファン102の動作によって空気清浄器100の内部に取り込まれた空気を清浄する。フィルタ101の種類は特に限定されないが、一例としては、脱臭空調フィルタ、ホルムアルデド吸収空調フィルタ、抗菌/集塵空調フィルタ、およびこれらのフィルタを組み合わせたものが挙げられる。 The filter 101 cleans the air taken into the air purifier 100 by the operation of the fan 102. The type of the filter 101 is not particularly limited, and examples include a deodorizing air conditioning filter, a formaldehyde absorbing air conditioning filter, an antibacterial / dust collecting air conditioning filter, and a combination of these filters.
 図19に示される通り、ファン102が動作して空気が空気清浄器100の内部へと取り込まれた場合、当該空気はフィルタ101を通過する。そして、フィルタ101を通過したことにより清浄された空気は、二酸化炭素吸収装置1へと取り込まれる。 As shown in FIG. 19, when the fan 102 operates and air is taken into the air cleaner 100, the air passes through the filter 101. The air purified by passing through the filter 101 is taken into the carbon dioxide absorber 1.
 続いて、上述の通り、二酸化炭素吸収装置1は、取り込んだ空気のCO濃度を検出し、当該CO濃度に応じて二酸化炭素吸収材10のCO吸収速度を制御する。このため、空気清浄器100は、フィルタ101によって清浄化され、かつ、二酸化炭素吸収装置1によってCO濃度が適切な値に調整された空気を送出できる。このように、空気清浄器100は、ユーザの健康により好適な空気を、当該ユーザに提供できる。 Subsequently, as described above, the carbon dioxide absorption device 1 detects the CO 2 concentration of the taken-in air, and controls the CO 2 absorption rate of the carbon dioxide absorbent 10 according to the CO 2 concentration. For this reason, the air purifier 100 can send out air that has been cleaned by the filter 101 and whose CO 2 concentration has been adjusted to an appropriate value by the carbon dioxide absorber 1. Thus, the air cleaner 100 can provide the user with air that is more suitable for the health of the user.
 また、空気清浄器100は、ファン102を動作させることにより、(i)フィルタ101における空気清浄のための空気の取り入れと、(i)二酸化炭素吸収装置1への空気の取り入れとの両方を行うことができる。 Further, the air purifier 100 operates the fan 102 to perform both (i) intake of air for cleaning air in the filter 101 and (i) intake of air into the carbon dioxide absorber 1. be able to.
 つまり、空気清浄器100では、フィルタ101(空気清浄機能に係る部材)と、二酸化炭素吸収装置1(CO吸収機能に係る部材)との間で、ファン102が共有されている。従って、当該構成によれば、フィルタ101と二酸化炭素吸収装置1とのそれぞれに対してファンを個別に設けた場合に比べて、部品数を低減できる。このため、空気清浄器100の製造コストを削減できる。 In other words, in the air purifier 100, the fan 102 is shared between the filter 101 (member related to the air cleaning function) and the carbon dioxide absorber 1 (member related to the CO 2 absorption function). Therefore, according to the said structure, compared with the case where a fan is separately provided with respect to each of the filter 101 and the carbon dioxide absorption apparatus 1, the number of parts can be reduced. For this reason, the manufacturing cost of the air cleaner 100 can be reduced.
 なお、フィルタ101は、二酸化炭素吸収装置1(より具体的には、検出部14)におけるCO濃度の検出を阻害する物質(以降、検出阻害物質と称する)を除去することが望ましい。検出阻害物質とは、例えば空気中の塵等である。 The filter 101 preferably removes a substance that inhibits the detection of the CO 2 concentration in the carbon dioxide absorption device 1 (more specifically, the detection unit 14) (hereinafter referred to as a detection inhibitor). The detection inhibitor is, for example, dust in the air.
 この場合、二酸化炭素吸収装置1において、検出部14は、フィルタ101により検出阻害物質が除去された空気に対して、CO濃度を検出できる。このため、検出阻害物質の影響を排除して、より正確にCO濃度を検出することが可能となる。加えて、検出部14自体に検出阻害物質が付着し、検出阻害物質が付着した以降の検出精度が低下することも防止できる。それゆえ、二酸化炭素吸収装置1に、長時間に亘って、より正確にCO濃度を調整させることが可能となる。 In this case, in the carbon dioxide absorber 1, the detection unit 14 can detect the CO 2 concentration with respect to the air from which the detection inhibitor is removed by the filter 101. For this reason, it becomes possible to more accurately detect the CO 2 concentration by eliminating the influence of the detection inhibitor. In addition, it is possible to prevent a detection inhibition substance from adhering to the detection unit 14 itself, and a reduction in detection accuracy after the detection inhibition substance has adhered. Therefore, the carbon dioxide absorber 1 can adjust the CO 2 concentration more accurately over a long period of time.
 なお、本実施形態では、電子機器の一例として空気清浄器100を例示したが、当該電子機器はこれに限定されない。当該電子機器は、本開示の一態様に係る二酸化炭素吸収装置を備えていればよく、例えば、除湿器、加湿器、または空気調和機等であってもよい。 In addition, in this embodiment, although the air cleaner 100 was illustrated as an example of an electronic device, the said electronic device is not limited to this. The electronic device only needs to include the carbon dioxide absorption device according to one embodiment of the present disclosure, and may be a dehumidifier, a humidifier, an air conditioner, or the like, for example.
 例えば、除湿器または加湿器に二酸化炭素吸収装置1を設けた場合、湿度およびCO濃度が適切な値に調整された空気を提供できる。また、空気調和機に二酸化炭素吸収装置1を設けた場合、湿度およびCO濃度が適切な値に調整された空気を提供できる。このように、ユーザに対して快適な空気環境を提供する各種の機器に、二酸化炭素吸収装置1が設けられてよい、
 また、除湿器に二酸化炭素吸収装置1を搭載する場合において、検出部14として半導体センサを用いる場合には、上述したフィルタ101に替えて、除湿ユニットを設けることが好ましい。この場合、除湿ユニットにおいて除湿された空気を二酸化炭素吸収装置1に取り込ませることにより、検出部14(半導体センサ)において、除湿後の空気のCO濃度を検出できる。
For example, when the carbon dioxide absorption device 1 is provided in a dehumidifier or a humidifier, it is possible to provide air whose humidity and CO 2 concentration are adjusted to appropriate values. Moreover, when the carbon dioxide absorption apparatus 1 is provided in the air conditioner, it is possible to provide air whose humidity and CO 2 concentration are adjusted to appropriate values. Thus, the carbon dioxide absorption device 1 may be provided in various devices that provide a comfortable air environment for the user.
Further, when the carbon dioxide absorption device 1 is mounted on the dehumidifier, when a semiconductor sensor is used as the detection unit 14, it is preferable to provide a dehumidification unit instead of the filter 101 described above. In this case, the air dehumidified in the dehumidifying unit is taken into the carbon dioxide absorption device 1 so that the detection unit 14 (semiconductor sensor) can detect the CO 2 concentration of the dehumidified air.
 一般的に、半導体センサによる気体(例:CO)濃度の検出精度は、水分(湿度)による影響を受けやすい。そこで、当該構成によれば、水分の存在により検出部14(半導体センサ)におけるCO濃度の検出の信頼性が低下することを防止できる。従って、より正確にCO濃度を検出することが可能となる。また、検出部14自体に水蒸気が付着することも防止できる。 In general, the detection accuracy of a gas (eg, CO 2 ) concentration by a semiconductor sensor is easily affected by moisture (humidity). Therefore, according to this configuration, it is possible to prevent the reliability of CO 2 concentration detection in the detection unit 14 (semiconductor sensor) from being reduced due to the presence of moisture. Therefore, it is possible to detect the CO 2 concentration more accurately. Further, it is possible to prevent water vapor from adhering to the detection unit 14 itself.
 また、二酸化炭素吸収装置1は、換気制限可能な空間において用いられることが望ましい。換気制限可能な空間で換気を制限する場合には、人間の呼気等に含まれるCOにより、空気中のCO濃度が増加するためである。この点を踏まえると、二酸化炭素吸収装置1を備えた電子機器(例:空気清浄器100)についても、換気制限可能な空間において用いられることが望ましい。従って、空気清浄器100は、例えば車載用の空気清浄器として用いられてよい。 The carbon dioxide absorption device 1 is preferably used in a space where ventilation can be restricted. This is because when the ventilation is restricted in a space where ventilation can be restricted, the CO 2 concentration in the air increases due to the CO 2 contained in human exhalation or the like. Considering this point, it is desirable that the electronic device (for example, the air purifier 100) including the carbon dioxide absorption device 1 is also used in a space where ventilation can be restricted. Therefore, the air cleaner 100 may be used as an in-vehicle air cleaner, for example.
 なお、「換気制限可能な空間」とは、密閉空間、換気の制限可能な屋内空間、室内空間、または車内空間を意味する。もしくは、「換気制限可能な空間」とは、自発的に換気を行うこと(窓を開ける、換気扇を動作させる、換気を行う装置を動作させる、真空装置等の部屋を負圧にさせる装置を動作させる等)を制限または禁止することができる空間、と言い換えることも可能である。 It should be noted that the “space where ventilation can be restricted” means a sealed space, an indoor space where ventilation can be restricted, an indoor space, or an interior space. Or, “Ventilation-restrictable space” means to voluntarily ventilate (open a window, operate a ventilation fan, operate a ventilating device, operate a device such as a vacuum device to create a negative pressure) In other words, the space can be restricted or prohibited.
 〔ソフトウェアによる実現例〕
 二酸化炭素吸収装置1~3の制御ブロック(特に制御部13・23・33)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly the control units 13, 23, 33) of the carbon dioxide absorbers 1 to 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central It may be realized by software using a Processing Unit.
 後者の場合、二酸化炭素吸収装置1~3は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本開示の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the carbon dioxide absorbers 1 to 3 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read CPU) in which the program and various data are recorded so as to be readable by the computer (or CPU). Only Memory) or a storage device (these are referred to as “recording media”), RAM (Random Access Memory) for expanding the program, and the like. And the objective of this indication is achieved when a computer (or CPU) reads and runs the said program from the said recording medium. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. Note that one aspect of the present disclosure can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本開示の態様1に係る二酸化炭素吸収装置(1)は、水分と二酸化炭素(CO)とを含む気体中から、当該気体中に含まれる二酸化炭素を吸収する二酸化炭素吸収材(10)を備えた二酸化炭素吸収装置であって、上記二酸化炭素吸収材は、4価のリチウムシリケート(LiSiO)を含んでおり、上記二酸化炭素吸収材および水分を保持し、かつ、保持した当該水分の少なくとも一部を当該二酸化炭素吸収材に供給する保持部(11)と、上記保持部に対して上記水分を供給する供給部(水分供給部12)と、上記供給部の動作を制御する供給制御部(添加量設定部132)と、をさらに備えている。
[Summary]
A carbon dioxide absorption device (1) according to aspect 1 of the present disclosure includes a carbon dioxide absorbent (10) that absorbs carbon dioxide contained in a gas from a gas containing moisture and carbon dioxide (CO 2 ). The carbon dioxide absorbing device provided, wherein the carbon dioxide absorbing material contains tetravalent lithium silicate (Li 4 SiO 4 ), holds the carbon dioxide absorbing material and moisture, and holds the moisture. A holding unit (11) that supplies at least a part of the carbon dioxide absorbent to the carbon dioxide absorbent, a supply unit (moisture supply unit 12) that supplies the moisture to the holding unit, and a supply that controls the operation of the supply unit And a control unit (addition amount setting unit 132).
 上述のように、発明者らは、LiSiOを含んでいる二酸化炭素吸収材において、水分の含有状態(例:水分の含有率または当該水分のpH)を変化させることにより、当該二酸化炭素吸収材におけるCO吸収量を調整(制御)できることを新たに見出した。 As described above, the inventors have changed the carbon dioxide absorbent containing Li 4 SiO 4 by changing the moisture content (eg, moisture content or moisture pH). It was newly found that the amount of CO 2 absorbed in the absorbent material can be adjusted (controlled).
 そこで、上記の構成によれば、供給制御部の指示に基づいて、供給部が保持部への水分の供給を行うことで、当該保持部を介して二酸化炭素吸収材に水分を供給できる。つまり、二酸化炭素吸収材における水分の含有状態を随意に設定(変更)できるので、当該二酸化炭素吸収材におけるCO吸収量を制御できる。それゆえ、簡便な構成の二酸化炭素吸収装置によって、二酸化炭素吸収材におけるCO吸収量を制御することが可能となる。 So, according to said structure, a supply part can supply a water | moisture content to a carbon dioxide absorber via the said holding | maintenance part by supplying a water | moisture content to a holding | maintenance part based on the instruction | indication of a supply control part. That is, since the moisture content in the carbon dioxide absorbent can be arbitrarily set (changed), the amount of CO 2 absorbed in the carbon dioxide absorbent can be controlled. Therefore, it is possible to control the amount of CO 2 absorbed in the carbon dioxide absorbent by a carbon dioxide absorber having a simple configuration.
 本開示の態様2に係る二酸化炭素吸収装置は、上記態様1において、上記気体中に含まれる上記二酸化炭素の濃度(検出値P1)を検出する検出部(14)をさらに備え、上記供給制御部は、上記濃度に応じて、上記供給部が上記保持部に対して供給する上記水分の量を設定してもよい。 The carbon dioxide absorption device according to aspect 2 of the present disclosure further includes a detection unit (14) that detects the concentration (detection value P1) of the carbon dioxide contained in the gas in the aspect 1, and the supply control unit Depending on the concentration, the amount of moisture supplied from the supply unit to the holding unit may be set.
 上記の構成によれば、気体中のCO濃度に応じて、保持部に対して供給される水分の量(水分の添加量)を設定できるので、CO吸収量をより高精度に制御することが可能となる。 According to the above configuration, the amount of water supplied to the holding unit (the amount of water added) can be set according to the CO 2 concentration in the gas, so that the CO 2 absorption amount is controlled with higher accuracy. It becomes possible.
 本開示の態様3に係る二酸化炭素吸収装置は、上記態様2において、上記供給制御部は、上記濃度と上記水分の量の設定値との対応関係を示す第1テーブル(151)を用いて、上記濃度に応じた上記水分の量を設定することが好ましい。 In the carbon dioxide absorption device according to aspect 3 of the present disclosure, in the aspect 2, the supply control unit uses a first table (151) indicating a correspondence relationship between the concentration and the set value of the amount of moisture. It is preferable to set the amount of water according to the concentration.
 上記の構成によれば、第1テーブルを用いて、気体中のCO濃度に応じた水分の添加量を設定できるので、供給制御部において水分の添加量を設定する処理を簡単化することが可能となる。 According to the above configuration, by using the first table, it is possible to set the amount of water in accordance with the CO 2 concentration in the gas, is possible to simplify the process of setting the amount of water in the supply controller It becomes possible.
 本開示の態様4に係る二酸化炭素吸収装置は、上記態様1から3のいずれか1つにおいて、上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部をさらに備え、上記供給制御部(pH設定部232)は、上記濃度に応じて、上記供給部が上記保持部に対して供給する上記水分のpHを設定してもよい。 The carbon dioxide absorption device according to aspect 4 of the present disclosure further includes a detection unit that detects the concentration of the carbon dioxide contained in the gas in any one of the aspects 1 to 3, and the supply control unit ( The pH setting unit 232) may set the pH of the water that the supply unit supplies to the holding unit according to the concentration.
 上記の構成によれば、気体中のCO濃度に応じて、保持部に対して供給される水分のpHを設定できるので、CO吸収量をより高精度に制御することが可能となる。 According to the arrangement, in accordance with the CO 2 concentration in the gas, it is possible to set the pH of the water supplied to the holding portion, it is possible to control the CO 2 absorption amount with higher accuracy.
 本開示の態様5に係る二酸化炭素吸収装置は、上記態様4において、上記供給制御部は、上記濃度と上記水分のpHの設定値との対応関係を示す第2テーブル(251)を用いて、上記濃度に応じた上記水分のpHを設定することが好ましい。 In the carbon dioxide absorption device according to aspect 5 of the present disclosure, in the aspect 4, the supply control unit uses a second table (251) indicating a correspondence relationship between the concentration and the set value of the pH of the water. It is preferable to set the pH of the water according to the concentration.
 上記の構成によれば、第2テーブルを用いて、気体中のCO濃度に応じた水分のpHを設定できるので、供給制御部において水分のpHを設定する処理を簡単化することが可能となる。 According to the above configuration, by using the second table, it is possible to set the pH of the water in accordance with the CO 2 concentration in the gas, it is possible to simplify the process of setting the pH of the water in the supply controller Become.
 本開示の態様6に係る二酸化炭素吸収装置は、上記態様1から5のいずれか1つにおいて、上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部をさらに備え、上記供給制御部は、上記濃度が所定の基準値(DT)以下である場合に、上記供給部に上記保持部への上記水分の供給を停止させることが好ましい。 The carbon dioxide absorber according to aspect 6 of the present disclosure further includes a detection unit that detects the concentration of the carbon dioxide contained in the gas in any one of the aspects 1 to 5, and the supply control unit includes: When the concentration is not more than a predetermined reference value (DT), it is preferable that the supply unit stops the supply of the water to the holding unit.
 上述のように、気体中のCO濃度が基準値以下である場合には、二酸化炭素吸収材の無駄な消費(劣化)を防止するために、当該二酸化炭素吸収材に過度の量のCOを吸収させないことが好ましい。 As described above, when the CO 2 concentration in the gas is equal to or less than the reference value, an excessive amount of CO 2 is contained in the carbon dioxide absorbent in order to prevent wasteful consumption (deterioration) of the carbon dioxide absorbent. It is preferable not to absorb.
 そこで、上記の構成によれば、気体中のCO濃度が基準値以下である場合において、保持部に対する水分の添加を停止することにより、二酸化炭素吸収材のCO吸収量を速やかに低下させることができる。それゆえ、二酸化炭素吸収材の無駄な消費を効果的に防止することが可能となる。 Therefore, according to the above configuration, when the CO 2 concentration in the gas is less than the reference value, by stopping the addition of water with respect to the holding unit, thereby promptly reducing the CO 2 absorption amount of carbon dioxide absorbent be able to. Therefore, wasteful consumption of the carbon dioxide absorbent can be effectively prevented.
 本開示の態様7に係る二酸化炭素吸収装置は、上記態様1から6のいずれか1つおいて、上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部と、上記保持部を加熱する加熱部(35)と、上記加熱部の動作を制御する加熱制御部(333)と、をさらに備えており、上記加熱制御部は、上記濃度が所定の基準値以下である場合に、上記保持部が保持する上記水分の少なくとも一部を除去するように、上記加熱部を動作させることが好ましい。 The carbon dioxide absorption device according to aspect 7 of the present disclosure, in any one of the aspects 1 to 6, heats the detection unit that detects the concentration of the carbon dioxide contained in the gas and the holding unit. A heating unit (35) and a heating control unit (333) for controlling the operation of the heating unit are further provided, and the heating control unit holds the holding when the concentration is equal to or lower than a predetermined reference value. It is preferable to operate the heating unit so as to remove at least a part of the moisture held by the unit.
 上記の構成によれば、気体中のCO濃度が基準値以下である場合において、加熱部を動作させることにより、二酸化炭素吸収材のCO吸収量を速やかに低下させることができる。それゆえ、二酸化炭素吸収材の無駄な消費を効果的に防止することが可能となる。 According to the above structure, in the case where the CO 2 concentration in the gas is less than the reference value, by operating the heating unit, it is possible to quickly lower the CO 2 absorption amount of the carbon dioxide absorbent. Therefore, wasteful consumption of the carbon dioxide absorbent can be effectively prevented.
 本開示の態様8に係る二酸化炭素吸収装置は、上記態様7において、上記供給部が上記保持部に対して上記水分の供給を行った履歴を供給履歴として、上記加熱制御部は、上記濃度が上記基準値以下であり、かつ、上記供給履歴が存在している場合に、上記加熱部を動作させることが好ましい。 The carbon dioxide absorption device according to aspect 8 of the present disclosure is the carbon dioxide absorption device according to aspect 7, in which the supply control unit uses the history of supplying the moisture to the holding unit as the supply history, and the heating control unit has the concentration described above. It is preferable to operate the heating unit when the supply value is equal to or less than the reference value and the supply history exists.
 上述のように、気体中のCO濃度が基準値以下であり、かつ、供給履歴が存在している場合(つまり、上述の不要ケース)には、二酸化炭素吸収材によるこれまでのCOの吸収によって、気体中のCO濃度がすでに十分に低減されたと考えられる。このため、不要ケースの場合には、二酸化炭素吸収材の無駄な消費を防止する観点からは、当該二酸化炭素吸収材におけるCO吸収量を維持する必要性が特に低いと言える。 As discussed above, or less CO 2 concentration reference value in the gas, and, when the supply history is present (i.e., unwanted case described above), the the CO 2 to this with carbon dioxide absorbent It is considered that the CO 2 concentration in the gas has already been sufficiently reduced by the absorption. For this reason, in the case of an unnecessary case, it can be said that the necessity to maintain the CO 2 absorption amount in the carbon dioxide absorbent is particularly low from the viewpoint of preventing wasteful consumption of the carbon dioxide absorbent.
 そこで、上記の構成によれば、不要ケースの場合に加熱部を動作させて、二酸化炭素吸収材のCO吸収量を速やかに低下させることができる。それゆえ、二酸化炭素吸収材の無駄な消費を特に効果的に防止することが可能となる。 Therefore, according to the above configuration, it is possible to operate the heating unit in the case of unwanted case, to quickly lower the CO 2 absorption amount of the carbon dioxide absorbent. Therefore, wasteful consumption of the carbon dioxide absorbent can be prevented particularly effectively.
 本開示の態様9に係る電子機器(空気清浄器100)は、上記態様1から8のいずれか1つに係る二酸化炭素吸収装置を備えていることが好ましい。 The electronic apparatus (air purifier 100) according to the ninth aspect of the present disclosure preferably includes the carbon dioxide absorption device according to any one of the first to eighth aspects.
 上記の構成によれば、本開示の一態様に係る二酸化炭素吸収装置と同様の効果を奏する。 According to said structure, there exists an effect similar to the carbon dioxide absorber which concerns on 1 aspect of this indication.
 〔付記事項〕
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
[Additional Notes]
The present disclosure is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. Are also included in the technical scope of the present disclosure. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 〔本開示の別の表現〕
 なお、本開示の一態様は、以下のようにも表現できる。
[Another expression of the present disclosure]
Note that one embodiment of the present disclosure can also be expressed as follows.
 すなわち、本開示の一態様に係る二酸化炭素吸収装置は、水分と低濃度の二酸化炭素とを含む空間内の気体中の二酸化炭素を吸収するLiSiOを含有する二酸化炭素吸収材と、上記二酸化炭素吸収材、および、水分を保持する水分保持部と、上記水分保持部へ水分を供給する水分供給部と、を備えている。 That is, the carbon dioxide absorber according to one embodiment of the present disclosure includes a carbon dioxide absorbent containing Li 4 SiO 4 that absorbs carbon dioxide in a gas containing water and low-concentration carbon dioxide, and the above A carbon dioxide absorbent, a moisture holding unit that holds moisture, and a moisture supply unit that supplies moisture to the moisture holding unit are provided.
 また、本開示の一態様に係る二酸化炭素吸収装置は、上記水分供給部から上記水分保持部への水分の供給を制御可能な制御部をさらに備えている。 The carbon dioxide absorption device according to an aspect of the present disclosure further includes a control unit that can control the supply of moisture from the moisture supply unit to the moisture holding unit.
 また、本開示の一態様に係る二酸化炭素吸収装置は、上記空気中の二酸化炭素の濃度を検出する検出部をさらに備えている。 The carbon dioxide absorption device according to one aspect of the present disclosure further includes a detection unit that detects the concentration of carbon dioxide in the air.
 また、本開示の一態様に係る二酸化炭素吸収装置において、上記制御部は、上記水分供給部から上記水分保持部へ供給する水分の量を制御する。 In the carbon dioxide absorption device according to one aspect of the present disclosure, the control unit controls the amount of moisture supplied from the moisture supply unit to the moisture holding unit.
 また、本開示の一態様に係る二酸化炭素吸収装置において、上記制御部は、上記水分供給部から上記水分保持部へ供給する水分のpHを制御する。 Further, in the carbon dioxide absorption device according to one aspect of the present disclosure, the control unit controls the pH of moisture supplied from the moisture supply unit to the moisture holding unit.
 また、本開示の一態様に係る二酸化炭素吸収装置は、上記水分保持部を加熱する加熱部をさらに設けている。 In addition, the carbon dioxide absorption device according to one aspect of the present disclosure further includes a heating unit that heats the moisture holding unit.
 (関連出願の相互参照)
 本出願は、2016年9月30日に出願された日本国特許出願:特願2016-194494に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
(Cross-reference of related applications)
This application claims the benefit of priority over the Japanese patent application filed on September 30, 2016: Japanese Patent Application No. 2016-194494, and by referring to it, all of its contents Included in this document.
 1,2,3 二酸化炭素吸収装置
 10 二酸化炭素吸収材
 11 保持部
 12,22 水分供給部(供給部)
 14 検出部
 35 ヒータ
 132 添加量設定部(供給制御部)
 151 第1テーブル
 232 pH設定部(供給制御部)
 251 第2テーブル
 333 加熱制御部
 100 空気清浄器(電子機器)
1, 2, 3 Carbon dioxide absorber 10 Carbon dioxide absorber 11 Holding part 12, 22 Moisture supply part (supply part)
14 detection unit 35 heater 132 addition amount setting unit (supply control unit)
151 1st table 232 pH setting part (supply control part)
251 Second table 333 Heating control unit 100 Air purifier (electronic device)

Claims (9)

  1.  水分と二酸化炭素とを含む気体中から、当該気体中に含まれる二酸化炭素を吸収する二酸化炭素吸収材を備えた二酸化炭素吸収装置であって、
     上記二酸化炭素吸収材は、4価のリチウムシリケートを含んでおり、
     上記二酸化炭素吸収材および水分を保持し、かつ、保持した当該水分の少なくとも一部を当該二酸化炭素吸収材に供給する保持部と、
     上記保持部に対して上記水分を供給する供給部と、
     上記供給部の動作を制御する供給制御部と、をさらに備えていることを特徴とする二酸化炭素吸収装置。
    A carbon dioxide absorber comprising a carbon dioxide absorbent that absorbs carbon dioxide contained in the gas from a gas containing moisture and carbon dioxide,
    The carbon dioxide absorbent contains tetravalent lithium silicate,
    A holding unit that holds the carbon dioxide absorbent and moisture, and supplies at least a part of the retained moisture to the carbon dioxide absorbent;
    A supply unit for supplying the moisture to the holding unit;
    And a supply control unit that controls the operation of the supply unit.
  2.  上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部をさらに備え、
     上記供給制御部は、上記濃度に応じて、上記供給部が上記保持部に対して供給する上記水分の量を設定することを特徴とする請求項1に記載の二酸化炭素吸収装置。
    A detector that detects the concentration of the carbon dioxide contained in the gas;
    The carbon dioxide absorption device according to claim 1, wherein the supply control unit sets the amount of the water that the supply unit supplies to the holding unit according to the concentration.
  3.  上記供給制御部は、上記濃度と上記水分の量の設定値との対応関係を示す第1テーブルを用いて、上記濃度に応じた上記水分の量を設定することを特徴とする請求項2に記載の二酸化炭素吸収装置。 The said supply control part sets the said quantity of the water | moisture content according to the said density | concentration using the 1st table which shows the corresponding | compatible relationship between the said density | concentration and the setting value of the said quantity of the water | moisture content. The carbon dioxide absorption device described.
  4.  上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部をさらに備え、
     上記供給制御部は、上記濃度に応じて、上記供給部が上記保持部に対して供給する上記水分のpHを設定することを特徴とする請求項1から3のいずれか1項に記載の二酸化炭素吸収装置。
    A detector that detects the concentration of the carbon dioxide contained in the gas;
    The said supply control part sets pH of the said water | moisture content which the said supply part supplies with respect to the said holding | maintenance part according to the said density | concentration, The dioxide dioxide of any one of Claim 1 to 3 characterized by the above-mentioned. Carbon absorber.
  5.  上記供給制御部は、上記濃度と上記水分のpHの設定値との対応関係を示す第2テーブルを用いて、上記濃度に応じた上記水分のpHを設定することを特徴とする請求項4に記載の二酸化炭素吸収装置。 The said supply control part sets the pH of the said water | moisture content according to the said density | concentration using the 2nd table which shows the corresponding | compatible relationship between the said density | concentration and the set value of the pH of the said water | moisture content. The carbon dioxide absorption device described.
  6.  上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部をさらに備え、
     上記供給制御部は、上記濃度が所定の基準値以下である場合に、上記供給部に上記保持部への上記水分の供給を停止させることを特徴とする請求項1から5のいずれか1項に記載の二酸化炭素吸収装置。
    A detector that detects the concentration of the carbon dioxide contained in the gas;
    The said supply control part makes the said supply part stop supply of the said water | moisture content to the said holding | maintenance part, when the said density | concentration is below a predetermined reference value, The any one of Claim 1 to 5 characterized by the above-mentioned. The carbon dioxide absorber described in 1.
  7.  上記気体中に含まれる上記二酸化炭素の濃度を検出する検出部と、
     上記保持部を加熱する加熱部と、
     上記加熱部の動作を制御する加熱制御部と、をさらに備えており、
     上記加熱制御部は、上記濃度が所定の基準値以下である場合に、上記保持部が保持する上記水分の少なくとも一部を除去するように、上記加熱部を動作させることを特徴とする請求項1から6のいずれか1項に記載の二酸化炭素吸収装置。
    A detection unit for detecting the concentration of the carbon dioxide contained in the gas;
    A heating unit for heating the holding unit;
    A heating control unit for controlling the operation of the heating unit,
    The said heating control part operates the said heating part so that at least one part of the said water | moisture content which the said holding | maintenance part hold | maintains may be removed when the said density | concentration is below a predetermined reference value. The carbon dioxide absorption device according to any one of 1 to 6.
  8.  上記供給部が上記保持部に対して上記水分の供給を行った履歴を供給履歴として、
     上記加熱制御部は、上記濃度が上記基準値以下であり、かつ、上記供給履歴が存在している場合に、上記加熱部を動作させることを特徴とする請求項7に記載の二酸化炭素吸収装置。
    As a supply history, a history of the supply unit supplying the moisture to the holding unit,
    The carbon dioxide absorption device according to claim 7, wherein the heating control unit operates the heating unit when the concentration is equal to or lower than the reference value and the supply history exists. .
  9.  請求項1から8のいずれか1項に記載の二酸化炭素吸収装置を備えていることを特徴とする電子機器。 An electronic apparatus comprising the carbon dioxide absorber according to any one of claims 1 to 8.
PCT/JP2017/017564 2016-09-30 2017-05-09 Carbon dioxide absorption device and electronic apparatus WO2018061285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194494 2016-09-30
JP2016194494A JP2019205952A (en) 2016-09-30 2016-09-30 Carbon dioxide absorption device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2018061285A1 true WO2018061285A1 (en) 2018-04-05

Family

ID=61760329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017564 WO2018061285A1 (en) 2016-09-30 2017-05-09 Carbon dioxide absorption device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2019205952A (en)
WO (1) WO2018061285A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020209A (en) * 2019-07-30 2021-02-18 田島 秀春 Carbon dioxide concentration control device and carbon dioxide absorption material
KR102432476B1 (en) * 2022-01-21 2022-08-16 (주)로우카본 Artificial forest manufacturing system
KR102499516B1 (en) * 2022-08-09 2023-02-15 (주)로우카본 Cascade type artificial forest creating apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013952A (en) * 2003-06-27 2005-01-20 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2006102561A (en) * 2004-09-30 2006-04-20 Toshiba Ceramics Co Ltd Carbon dioxide absorption material and carbon dioxide reaction device
WO2015125355A1 (en) * 2014-02-21 2015-08-27 シャープ株式会社 Carbon dioxide concentration control apparatus and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013952A (en) * 2003-06-27 2005-01-20 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2006102561A (en) * 2004-09-30 2006-04-20 Toshiba Ceramics Co Ltd Carbon dioxide absorption material and carbon dioxide reaction device
WO2015125355A1 (en) * 2014-02-21 2015-08-27 シャープ株式会社 Carbon dioxide concentration control apparatus and electronic apparatus

Also Published As

Publication number Publication date
JP2019205952A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US10005019B2 (en) Carbon dioxide concentration-controlling device and electronic apparatus
WO2018061285A1 (en) Carbon dioxide absorption device and electronic apparatus
CN109282374A (en) Dehumidification air conditioner device
TWI590932B (en) Hand mode operation box
KR101131616B1 (en) Air quality and water exclusion unit of minute particles measuring instrument and water exclusion method
CN108139093A (en) Humidistat
US20180169562A1 (en) Capture and removal of targeted gas
Abou-Ziyan et al. Performance characteristics of thin-multilayer activated alumina bed
CN109153003A (en) Air-conditioning device, air-conditioning system, the removing method of carbon dioxide, adsorbent and carbon dioxide remover
WO2017199908A1 (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner
WO2018150583A1 (en) Air conditioner and air-conditioning system
KR101909176B1 (en) Radon adsorption filter and radon reduction apparatus inculding the filter
WO2018150582A1 (en) Air conditioner and air conditioning system
CN109237654A (en) The safe purification method of Laboratory air Internet-based
CN101342377A (en) Indoor harmful gas removing method
JP2019217430A (en) Carbon dioxide absorbing material, carbon dioxide absorption device, carbon dioxide absorption method, and electronic apparatus
JP2008253672A (en) Volatile organic compound eliminating device
JPWO2017199919A1 (en) Adsorbent, carbon dioxide removal method, carbon dioxide remover, and air conditioner
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
WO2018168290A1 (en) Carbon dioxide absorption device, carbon dioxide absorption method, and electronic device
WO2019093211A1 (en) Carbon dioxide absorption material, pellet, filter, carbon dioxide absorption device, and carbon dioxide absorption method
CN211179437U (en) Interference removing device of β ray particulate matter monitor
CN101722062B (en) Equipment for measuring concentration of volatile organic compound and measuring method
JP2019209228A (en) Carbon dioxide absorption device, carbon dioxide absorber, carbon dioxide absorption method and electronic apparatus
CN201298043Y (en) Volatile organic compound concentration measuring mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP