WO2018061199A1 - Ultrasonic transducer and method for producing ultrasonic transducer - Google Patents

Ultrasonic transducer and method for producing ultrasonic transducer Download PDF

Info

Publication number
WO2018061199A1
WO2018061199A1 PCT/JP2016/079115 JP2016079115W WO2018061199A1 WO 2018061199 A1 WO2018061199 A1 WO 2018061199A1 JP 2016079115 W JP2016079115 W JP 2016079115W WO 2018061199 A1 WO2018061199 A1 WO 2018061199A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
block
end side
base end
bolt
Prior art date
Application number
PCT/JP2016/079115
Other languages
French (fr)
Japanese (ja)
Inventor
之彦 島村
英人 吉嶺
雅也 戸田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/079115 priority Critical patent/WO2018061199A1/en
Publication of WO2018061199A1 publication Critical patent/WO2018061199A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibration when supplied with electric energy, and a method for manufacturing the ultrasonic transducer.
  • US2009 / 275864A1 discloses an ultrasonic treatment tool for treating a treatment target using ultrasonic vibration.
  • This ultrasonic treatment instrument is provided with an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibration when supplied with electrical energy.
  • the tip of the bolt is connected to the tip side block, and the bolt and the tip side block are integrally formed.
  • a drive unit including a piezoelectric element is attached to the outer periphery of the bolt.
  • the base end portion of the bolt is connected to the base end side block, and the base end side block is fastened to the outer periphery of the bolt.
  • the drive unit is sandwiched between the distal end side block and the proximal end side block, and a pressing force toward the distal end side acts on the drive unit from the proximal end side block.
  • a rod member including a treatment portion is connected to the distal end side of the ultrasonic transducer. The ultrasonic vibration generated by the piezoelectric element is transmitted to the treatment portion through the rod member.
  • a vibrating body including an ultrasonic transducer and a rod member is brought close to a predetermined resonance frequency as much as possible by ultrasonic vibration at a predetermined resonance frequency. And is required to vibrate.
  • the ultrasonic transducer itself can be vibrated at a predetermined resonance frequency by ultrasonic vibration generated by a piezoelectric element. Alternatively, it is required to vibrate as close to a predetermined resonance frequency as possible.
  • a single element minimum constituent unit of the ultrasonic transducer and a half wavelength of vibration corresponding to each physical property of the components forming the ultrasonic transducer such as the piezoelectric element, the distal end side block, and the proximal end side block. It is necessary to form an ultrasonic transducer that vibrates at a predetermined resonance frequency even in an assembly of a natural number multiple).
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ultrasonic transducer that vibrates at a predetermined resonance frequency alone or a method for manufacturing the ultrasonic transducer.
  • a method of manufacturing an ultrasonic transducer according to an aspect of the present invention is characterized in that an electrical energy is supplied to an outer periphery of a bolt extending along a longitudinal axis from a proximal end to a distal end.
  • a drive unit including a piezoelectric element that generates a sonic vibration is attached; a distal end block to which a distal end portion of the bolt is connected in a direction along the longitudinal axis; and a proximal end block to which a proximal end portion of the bolt is connected
  • the driving unit is sandwiched between the bolt and the driving unit to apply a pressing force to the driving unit from the base end side block, and the ultrasonic vibration generated in the piezoelectric element causes the bolt and the tip
  • the ultrasonic transducer including the side block, the base end side block, and the drive unit vibrates at a predetermined resonance frequency. Comprising and adjusting the pressing force from the side blocks to the drive unit.
  • An aspect of the present invention includes a bolt having a proximal end and a distal end and extending along the longitudinal axis from the proximal end to the distal end, a distal end side block to which the distal end portion of the bolt is connected, and a base of the bolt A proximal block to which an end portion is connected; and a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied; and the distal block and the proximal block in a direction along the longitudinal axis And a drive unit attached to the outer periphery of the bolt in a state of being sandwiched between the base end block and the base end block from the base end of the bolt to the base end of the base end block A block extending portion extending toward the base end, and the shape of the block extending portion is determined by the ultrasonic transducer generated by the ultrasonic vibration generated by the piezoelectric element.
  • the ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit is affected by the resonance frequency in the state where the vibration is generated. Due to the shape of the block extending portion, it vibrates at a predetermined resonance frequency.
  • an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied to an outer periphery of a bolt extending along a longitudinal axis from a proximal end to a distal end.
  • the base of the bolt in a state where a block extending portion extends from the base end of the bolt to the base end of the base end side block toward the base end side in the base end side block.
  • An ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit by the ultrasonic vibration generated in the piezoelectric element.
  • the state body to vibrate at a predetermined resonance frequency, and a adjusting the shape of the block extending portion.
  • FIG. 1 is a schematic view showing a treatment system in which the ultrasonic transducer according to the first embodiment is used.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the ultrasonic transducer according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an example of the relationship between the pressing force from the proximal block to the drive unit and the resonance frequency of the ultrasonic transducer.
  • FIG. 4 is a side view schematically showing the configuration of the ultrasonic transducer according to the second embodiment.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the ultrasonic transducer according to the second embodiment.
  • FIG. 6 is a schematic diagram illustrating an example of the relationship between the second cross-sectional area of the block extending portion and the resonance frequency of the ultrasonic transducer in the second extending region.
  • FIG. 7 is a schematic diagram illustrating an example of the relationship between the dimension in the direction along the longitudinal axis of the second extending region in the block extending portion and the resonance frequency of the ultrasonic transducer.
  • FIG. 8 is a cross-sectional view schematically showing a configuration of an ultrasonic transducer according to a second modification of the second embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a configuration of an ultrasonic transducer according to a third modification of the second embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of the relationship between the hole area of the hole formed in the block extending portion and the resonance frequency of the ultrasonic transducer.
  • FIG. 11 is a side view schematically showing a configuration of an ultrasonic transducer according to a modification of the first embodiment and the second embodiment.
  • FIG. 1 is a diagram showing a treatment system 1 in which the ultrasonic transducer 20 of the present embodiment is used.
  • the treatment system 1 includes an ultrasonic treatment tool 2 and an energy control device 3.
  • the ultrasonic treatment instrument 2 includes a housing 5 that can be held, and a shaft 6 that is attached to the housing 5.
  • the shaft 6 extends substantially straight.
  • the side on which the housing 5 is positioned with respect to the shaft 6 is a base end side (arrow C1 side), and the side opposite to the base end side is a front end side (arrow C2 side).
  • the shaft 6 is attached to the housing 5 from the front end side.
  • an end effector 7 is provided at a position on the distal end side with respect to the shaft 6.
  • a handle 8 is rotatably attached to the housing 5. When the handle 8 rotates with respect to the housing 5, the handle 8 opens or closes with respect to the housing 5.
  • a rod member (probe) 10 is inserted through the shaft 6.
  • the rod member 10 is formed from a material having high vibration transmission properties such as a titanium alloy.
  • the rod member 10 extends from the inside of the housing 5 to the front end side through the inside of the shaft 6.
  • the rod member 10 includes a rod protrusion 11 that protrudes from the tip of the shaft 6 toward the tip.
  • a jaw 12 is rotatably attached to the tip of the shaft 6. The jaw 12 and the handle 8 are connected via a movable member (not shown) that extends through the inside of the shaft 6.
  • the movable member moves to the proximal end side or the distal end side.
  • the jaw 12 rotates with respect to the shaft 6, and the gap between the jaw 12 and the rod protrusion 11 opens or closes.
  • the end effector 7 is formed by the rod protrusion 11 and the jaw 12.
  • the treatment target is treated by gripping the treatment target such as a living tissue between the jaw 12 and the rod protrusion 11.
  • a rotation knob (not shown) that is a rotation operation member is attached to the housing 5, and the rotation knob can rotate with respect to the housing 5 around the axis of the shaft 6.
  • the shaft 6, the end effector 7, and the rod member 10 rotate together with respect to the housing 5 around the axis of the central axis of the shaft 6.
  • the jaw 12 is not provided, and the end effector 7 is formed only from the rod protrusion 11.
  • the handle 8 and the movable member described above are not provided.
  • the rod protrusion 11 has a hook shape, a spatula shape, a blade shape, or the like.
  • the ultrasonic transducer 20 is connected to the rod member 10 from the base end side inside the housing 5.
  • the ultrasonic transducer 20 is accommodated in the transducer case 18 and supported by the transducer case 18.
  • the ultrasonic transducer 20 is connected to the rod member 10 by attaching the transducer case 18 to the housing 5 from the proximal end side.
  • the distal end of the ultrasonic transducer 20 is directly connected to the proximal end of the rod member 10.
  • one end of the cable 13 is connected to the transducer case 18. The other end of the cable 13 is detachably connected to the energy control device 3.
  • the transducer case 18 is not provided.
  • the ultrasonic transducer 20 is supported by the housing 5, and one end of the cable 13 is connected to the housing 5.
  • the rotation knob is provided, the ultrasonic transducer 20 is rotated around the central axis of the shaft 6 together with the shaft 6, the end effector 7 and the rod member 10 by rotating the rotation knob. Rotates relative to the housing 5.
  • FIG. 2 is a diagram showing the configuration of the ultrasonic transducer 20.
  • the ultrasonic transducer 20 includes a bolt (shaft) 21 having a longitudinal axis C as a central axis.
  • a bolt (shaft) 21 having a longitudinal axis C as a central axis.
  • one side in the direction along the longitudinal axis C coincides with the base end side (arrow C1 side)
  • the other side in the direction along the longitudinal axis C coincides with the distal end side (arrow C2 side).
  • the bolt 21 extends substantially straight along the longitudinal axis C from the proximal end to the distal end.
  • the tip of the bolt 21 is connected to the tip side block (front mass) 22.
  • the front end side block 22 is integral with the bolt 21.
  • the front end side block 22 and the bolt 21 are made of, for example, a titanium alloy, an aluminum alloy, SUS, or the like.
  • the tip side block 22 may be formed of the same material as the bolt 21 or may be formed of a material different from the bolt 21. Further, the distal end side block 22 forms the distal end of the ultrasonic transducer 20 and is connected to the rod member 10.
  • a supported portion 25 such as a flange supported by the transducer case 18 or the housing 5 is formed on the distal end side block 22, and the horn whose cross-sectional area substantially perpendicular to the longitudinal axis C decreases toward the distal end side. 26 is formed.
  • the base end portion of the bolt 21 is connected to the base end side block (back mass) 23.
  • the base end side block 23 is formed in a ring shape that covers the outer periphery of the bolt 21.
  • a male screw portion 27 is formed as a first engagement portion.
  • a female thread portion 28 is formed on the inner periphery of the base end side block 23 as a second engagement portion that engages with the first engagement portion.
  • the male screw portion 27 extends from the proximal end of the bolt 21 toward the distal end side
  • the female screw portion 28 extends from the proximal end of the proximal end side block 23 toward the distal end side.
  • the base end side block 23 is fastened to the outer periphery of the bolt 21 by engaging the female screw portion 28 with the male screw portion 27, that is, by screwing. Therefore, in this embodiment, the base end side block 23 is a fastening member fastened to the outer periphery of the bolt 21.
  • the base end side block 23 is made of, for example, a titanium alloy, an aluminum alloy, SUS, or the like.
  • the proximal side block 23 may be formed from the same material as the distal side block 22, or may be formed from a material different from the distal side block 22.
  • the base end of the base end side block 23 is substantially coincident with the base end of the bolt 21 in the direction along the longitudinal axis C, and the base end of the base end side block 23 and the base end of the bolt 21 are the same.
  • the base end of the ultrasonic transducer 20 is formed.
  • the drive unit 30 is attached to the outer periphery of the bolt 21.
  • the drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23 in the direction along the longitudinal axis C. Then, the drive unit 30 is pressed toward the distal end side by the proximal end side block 23.
  • the drive unit 30 includes ten piezoelectric elements 31 in this embodiment.
  • the piezoelectric element 31 is formed of a material having a material (physical property value) such as a rigidity that is different from that of the bolt 21 such as ceramics.
  • the piezoelectric element 31 converts electrical energy into vibration energy.
  • Each of the piezoelectric elements 31 is formed in a ring shape, and the bolt 21 is inserted through each of the piezoelectric elements 31. Note that at least one piezoelectric element 31 may be provided.
  • the drive unit 30 includes electrode members 32 and 33 formed of a conductive material such as metal.
  • the electrode member 32 includes six electrode ring portions 35 in the present embodiment, and the electrode member 33 includes five electrode ring portions 36 in the present embodiment.
  • the bolt 21 is inserted through each of the electrode ring portions 35 and each of the electrode ring portions 36.
  • Each of the piezoelectric elements 31 is sandwiched between a corresponding one of the electrode ring portions 35 and a corresponding one of the electrode ring portions 36 in the direction along the longitudinal axis C.
  • One end of an electrical wiring 37 is connected to the electrode member 32.
  • one end of an electrical wiring 38 is connected to the electrode member 33.
  • the number of electrode ring portions 35 and 36 is determined in accordance with the number of piezoelectric elements 31, and in each case, each piezoelectric element 31 corresponds to one corresponding electrode ring portion 35 and the electrode ring portion 36. It becomes the structure pinched
  • the energy control device 3 includes an energy output source 15, a processor 16, and a storage medium 17.
  • the electric wires 37 and 38 are extended through the inside of the cable 13, and the other ends of the electric wires 37 and 38 are connected to the energy output source 15.
  • the energy output source 15 includes a conversion circuit that converts electric power from a power source or the like with a battery power source or an outlet into electric energy supplied to the drive unit 30 of the ultrasonic transducer 20, and outputs the converted electric energy.
  • the electrical energy output from the energy output source 15 is supplied to the drive unit 30 via the electrical wirings 37 and 38.
  • the energy output source 15 outputs AC power as electric energy to the drive unit 30.
  • the processor 16 as a control unit is formed of an integrated circuit including a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array).
  • the processing in the processor 16 is performed according to a program stored in the processor 16 or the storage medium 17.
  • the storage medium 17 stores a processing program used by the processor 16, parameters and tables used in calculation by the processor 16, and the like.
  • the processor 16 controls the output of electrical energy from the energy output source 15 to the drive unit 30.
  • the processor 16 adjusts the frequency in the output of the electrical energy from the energy output source 15 to a predetermined frequency. In one embodiment, the default frequency is 47 kHz.
  • each of the piezoelectric elements 31 converts electrical energy into vibration energy, and ultrasonic vibration is generated in the piezoelectric elements 31.
  • the generated ultrasonic vibration is transmitted to the rod member 10, and is transmitted from the proximal end side to the distal end side of the rod member 10 to the rod protruding portion 11.
  • the end effector 7 treats a treatment target such as a biological tissue using the ultrasonic vibration transmitted to the rod protrusion 11.
  • the vibrator including the ultrasonic transducer 20 and the rod member 10 vibrates at a predetermined resonance frequency Frref. Therefore, in the ultrasonic transducer 20, the bolt 21, the distal end side block 22, the proximal end side block 23, and the drive unit 30 vibrate together by ultrasonic vibration generated by the piezoelectric element 31. At this time, the vibrating body performs longitudinal vibration whose vibration direction is substantially parallel to the longitudinal axis C.
  • the predetermined resonance frequency Frref can be set as appropriate. In one embodiment, the predetermined resonance frequency Frref is 47 kHz.
  • a vibration antinode A1 which is one of the vibration antinodes, is generated at the base end of the vibrator, that is, the base end of the ultrasonic transducer 20.
  • the vibration antinode A1 is located on the most proximal side in the vibration antinode.
  • a vibration antinode A2 that is half a wavelength away from the vibration antinode A1 toward the tip side is generated in the tip side block 22.
  • a vibration antinode A3 that is one wavelength away from the vibration antinode A1 toward the tip side is generated at the tip of the tip block 22, that is, the tip of the ultrasonic transducer 20. Therefore, in the present embodiment, the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at a predetermined resonance frequency Frref. For this reason, even the single ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref due to the ultrasonic vibration generated in the piezoelectric element 31.
  • a vibration node N1 that is a quarter wavelength away from the vibration antinode A1 toward the tip side is generated in the drive unit 30 and the bolt 21.
  • a vibration node N2 that is 3/4 wavelength away from the vibration antinode A1 toward the distal end side is generated in the supported portion 25 of the distal end side block 22.
  • the single unit of the ultrasonic transducer 20 described above is a minimum structural unit of the ultrasonic transducer 20 and is an assembly of the bolt 21, the distal end side block 22, the proximal end side block 23, and the drive unit 30.
  • the single length of the ultrasonic transducer 20 is a natural number multiple of the half wavelength of the longitudinal vibration at the predetermined resonance frequency Frref.
  • the rod member 10 is connected to the distal end side of the ultrasonic transducer 20 as a separate body.
  • the ultrasonic transducer 20 has a dimension L1 from the proximal end to the distal end in the longitudinal direction, which is the direction along the longitudinal axis C.
  • the dimension L1 is a predetermined size L1ref.
  • an insulating ring (not shown) formed of an electrically insulating material is provided between the drive unit 30 and the distal block 22 and between the drive unit 30 and the proximal block 23.
  • An insulating tube (not shown) formed of an electrically insulating material is provided between the inner periphery of the drive unit 30 and the outer periphery of the bolt 21. Thereby, the supply of the electric energy supplied to the drive unit 30 to the distal end side block 22, the proximal end side block 23 and the bolt 21 is prevented.
  • electric energy different from the electric energy supplied to the drive unit 30 is output from the energy output source 15.
  • electrical energy different from the electrical energy supplied to the drive unit 30 is supplied to each of the rod protrusion 11 and the jaw 12. As a result, a high-frequency current flows through the treatment target gripped between the jaw 12 and the rod protrusion 11.
  • the drive unit 30 including the piezoelectric element 31 is attached to the outer periphery of the bolt 21.
  • the female screw portion (second engaging portion) 28 of the base end side block 23 is screwed into the male screw portion (first engaging portion) 27 of the bolt 21, and the base end side block 23 is connected to the bolt 21.
  • the drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23, and a pressing force P acts on the drive unit 30 from the proximal end side block 23.
  • the base end side block 23 is connected to the bolt 21 so that the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the base end side block 23.
  • the ultrasonic transducer 20 When the ultrasonic transducer 20 is assembled as described above, electric energy is supplied from the energy output source 15 to the drive unit 30, and the ultrasonic transducer 20 is vibrated alone by the ultrasonic vibration generated by the piezoelectric element 31. At this time, the frequency at the output of electrical energy from the energy output source 15 is adjusted by the processor 16 to a predetermined frequency. Then, in a state where the ultrasonic transducer 20 is vibrating, the resonance frequency Fr in vibration is detected. The resonance frequency Fr is detected by, for example, a vibrometer.
  • the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is such as the rigidity of the members constituting the ultrasonic transducer 20 such as the bolt 21, the distal end side block 22, the proximal end side block 23, and the piezoelectric element 31. It is affected by physical properties (materials) and the shape of those members. Further, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is affected by the pressing force P applied from the proximal end block 23 to the drive unit 30. When the pressing force P from the base end side block 23 to the drive unit 30 is changed, for example, stress in the piezoelectric element 31 is changed, and the rigidity of the drive unit 30 including the piezoelectric element 31 is changed.
  • the resonance frequency Fr of the ultrasonic transducer 20 changes.
  • the pressing force P is adjusted based on the detection result of the resonance frequency Fr. Then, the pressing force P is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref.
  • FIG. 3 is a diagram illustrating an example of the relationship between the pressing force P from the base end side block 23 to the drive unit 30 and the resonance frequency Fr of the ultrasonic transducer 20.
  • the horizontal axis represents the pressing force P
  • the vertical axis represents the resonance frequency Fr.
  • an example of the relationship between the pressing force P and the resonance frequency Fr is indicated by a solid line
  • another example of the relationship between the pressing force P and the resonance frequency Fr is indicated by a broken line.
  • the relationship between the pressing force P and the resonance frequency Fr corresponds to the physical properties (materials) such as the rigidity (Young's modulus) of the members constituting the ultrasonic transducer 20 and the shapes of these members. Change. However, as shown in FIG. 3, in any case, when the pressing force P increases, the resonance frequency Fr increases.
  • the ultrasonic transducer 20 has a predetermined resonance frequency Frref in a state where a pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal end block 23. Vibrates at a lower resonance frequency Fr1. In this case, the pressing force P is increased from the predetermined magnitude Pref to the magnitude P1 based on the detection result of the resonance frequency Fr. When the pressing force P is adjusted to the magnitude P1, the single unit of the ultrasonic transducer 20 is vibrated at the predetermined resonance frequency Frref. In the example shown by the broken line in FIG.
  • the ultrasonic transducer 20 has a resonance higher than a predetermined resonance frequency Frref in a state in which the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal block 23. It vibrates at the frequency Fr2. In this case, the pressing force P is decreased from the predetermined magnitude Pref to the magnitude P2 based on the detection result of the resonance frequency Fr. When the pressing force P is adjusted to the magnitude P2, the single unit of the ultrasonic transducer 20 is vibrated at the predetermined resonance frequency Frref.
  • the state of oscillating at the predetermined resonance frequency Frref includes a state in which the resonance frequency Fr is slightly deviated from the predetermined resonance frequency Frref but can be regarded as being oscillated at the predetermined resonance frequency Frref.
  • the pressing force P is adjusted based on the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members.
  • the adjustment of the pressing force P is performed by estimating the relationship between the pressing force P and the resonance frequency Fr from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of these members, for example. Based on the relationship.
  • the pressing force P is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the ultrasonic transducer 20 alone vibrates at the predetermined resonance frequency Fr by the ultrasonic vibration generated in the piezoelectric element 31. For this reason, when the vibrating body including the ultrasonic transducer 20 and the rod member 10 is vibrated at a predetermined resonance frequency, energy loss is reduced and the vibration stability of the vibrating body is ensured. By ensuring the stability of the vibration of the vibrating body, the ultrasonic treatment tool 2 improves the treatment performance in the treatment using ultrasonic vibration.
  • the dimension L1 from the proximal end to the distal end of the ultrasonic transducer 20 is maintained at the predetermined size L1ref. Therefore, in the ultrasonic transducer in which the pressing force P is adjusted, the dimension L1 in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the predetermined size L1ref. Since the dimension L1 in the longitudinal direction of the ultrasonic transducer 20 is maintained at the predetermined size L1ref, the influence of the ultrasonic transducer 20 in the product configuration of the ultrasonic treatment instrument 2 is suppressed.
  • FIGS. 4 and 5 are diagrams showing the configuration of the ultrasonic transducer 20 of the present embodiment. 4 is a side view, and FIG. 5 is a cross-sectional view showing a cross section substantially parallel to the longitudinal axis C.
  • the ultrasonic transducer 20 includes a bolt 21, a distal end side block 22, a proximal end side block 23, and a drive unit 30. A supported portion 25 and a horn 26 are formed on the side block 22.
  • the drive unit 30 includes a piezoelectric element 31 and electrode members 32 and 33.
  • the dimension L2 in the direction (longitudinal direction) along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the predetermined size L2ref.
  • the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref even when it is a single element.
  • vibration transducers A1 to A3 and vibration nodes N1 and N2 are generated in the ultrasonic transducer 20. Therefore, also in this embodiment, the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at a predetermined resonance frequency Frref.
  • a block extending portion 40 extending from the base end of the bolt 21 toward the base end side is formed in the base end side block 23.
  • the block extending portion 40 extends toward the base end side to the base end of the base end side block 23. Therefore, in this embodiment, the base end of the base end side block 23 is located on the base end side with respect to the base end of the bolt 21.
  • the base end of the ultrasonic transducer 20 is formed by the base end of the block extending portion 40, that is, the base end of the base end side block 23.
  • the base end block 23 is formed with a concave shape that is recessed from the tip of the base end block 23 toward the base end.
  • a female screw part 28 is formed in the concave shape of the base end side block 23, and a base end part of the bolt 21 including the male screw part 27 is inserted.
  • the block extending portion 40 has an extending dimension L ⁇ b> 3 in the direction along the longitudinal axis C from the base end of the bolt 21 to the base end of the base end side block 23.
  • the extension dimension L3 of the block extending portion 40 is a predetermined size L3ref.
  • the block extending portion 40 includes a first extending region 41 and a second extending region 42.
  • the cross-sectional area perpendicular to the longitudinal axis C becomes the first cross-sectional area Sa.
  • the cross-sectional area perpendicular to the longitudinal axis C becomes the second cross-sectional area Sb smaller than the first cross-sectional area Sa.
  • the second extending region 42 extends to a portion different from the first extending region 41 in the direction along the longitudinal axis C, and is adjacent to the proximal end side of the first extending region 41 in the present embodiment. Is done.
  • the second extension region 42 extends to the base end of the base end side block 23.
  • the second extending region 42 has a dimension T in the direction along the longitudinal axis C.
  • the range surrounded by the outer periphery of the proximal block 23 in the cross section perpendicular to the longitudinal axis C is the first range area Aa.
  • the range surrounded by the outer periphery in the cross section perpendicular to the longitudinal axis C is the second range area Ab smaller than the first range area Aa.
  • the outer diameter of the base end side block 23 in the second extension region 42 is made smaller than the outer diameter of the base end side block 23 in the first extension region 41, and the first extension region 41.
  • the second range area Ab in the second extension region 42 is made smaller than the first range area Aa in the installation region 41.
  • a plane having a smaller distance from the longitudinal axis C than the outer radius of the proximal end block 23 in the first extending region 41 is formed on the outer periphery of the second extending region 42.
  • the second range area Ab in the second extension region 42 is made smaller than the first range area Aa in the first extension region 41 due to the formation.
  • the first extension region 41 since the second range area Ab in the second extension region 42 is smaller than the first range area Aa in the first extension region 41, the first extension region 41
  • the second cross-sectional area Sb in the second extended region 42 is smaller than the first cross-sectional area Sa.
  • the first extension region 41 and the second extension region 40 are formed on the outer periphery of the block extending portion 40.
  • a step 43 is formed at the boundary with the extended region 42.
  • the drive unit 30 including the piezoelectric element 31 is attached to the outer periphery of the bolt 21, and the proximal end block 23 is fastened to the outer periphery of the bolt 21.
  • the drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23, and a pressing force P acts on the drive unit 30 from the proximal end side block 23.
  • the proximal block 23 is connected to the bolt 21 so that the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal block 23.
  • the second cross-sectional area Sb in the second extending region 42 is brought into a state where the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. Adjust.
  • the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is a physical property (material) such as the rigidity (Young's modulus) of the members constituting the ultrasonic transducer 20. And the influence of the shape of those members.
  • the second cross-sectional area Sb in the second extending region 42 and the shape of the block extending portion 40 that is a part of the proximal-side block 23 are the resonance frequency in the vibration of the ultrasonic transducer 20 alone. Affects Fr. Therefore, when the second cross-sectional area Sb is changed by adjusting the second cross-sectional area Sb in the second extending region 42, the shape of the block extending portion 40 and the shape of the base end side block 23 are changed. The rigidity and mass of the base end side block 23 change.
  • the resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes due to changes in rigidity, mass, and the like of the proximal end block 23.
  • the ultrasonic transducer 20 is vibrated alone, and the resonance frequency Fr in the vibration is detected by a vibration meter or the like. Then, based on the detected resonance frequency Fr, the second cross-sectional area Sb is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the relationship between the second cross-sectional area Sb and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. To do. Then, based on the relationship between the estimated second cross-sectional area Sb and the resonance frequency Fr, the second cross-sectional area Sb is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • FIG. 6 is a diagram illustrating an example of the relationship between the second cross-sectional area Sb of the block extending portion 40 in the second extending region 42 and the resonance frequency Fr of the ultrasonic transducer 20.
  • the horizontal axis indicates the second cross-sectional area Sb
  • the vertical axis indicates the resonance frequency Fr.
  • the relationship between the second cross-sectional area Sb and the resonance frequency Fr changes corresponding to the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. To do. However, in either case, as shown in FIG. 6, when the second cross-sectional area Sb increases, the resonance frequency Fr decreases.
  • the ultrasonic transducer 20 vibrates at a resonance frequency Fr3 lower than the predetermined resonance frequency Frref in a state where the second cross-sectional area Sb becomes the size Sb1.
  • the outer diameter of the block extending portion 40 is reduced in the second extending region 42,
  • the second cross-sectional area Sb is decreased from the size Sb1 to the size Sb2.
  • the ultrasonic transducer 20 alone is adjusted by adjusting the second cross-sectional area Sb in the second extending region 42 of the block extending portion 40 and adjusting the shape of the block extending portion 40.
  • it vibrates at a predetermined resonance frequency Fr by the ultrasonic vibration generated in the piezoelectric element 31.
  • the vibrating body including the ultrasonic transducer 20 and the rod member 10 is vibrated at a predetermined resonance frequency, energy loss is reduced and the vibration stability of the vibrating body is ensured. Is done.
  • the dimension L2 in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is a predetermined size. Maintained at L2ref.
  • the dimension L2 in the longitudinal direction of the ultrasonic transducer 20 is maintained at the predetermined size L2ref, the influence of the ultrasonic transducer 20 in the product configuration of the ultrasonic treatment instrument 2 can be suppressed as in the first embodiment. .
  • the resonance frequency Fr of the ultrasonic transducer 20 alone is set. adjust.
  • the proportion of the portion that becomes the second cross-sectional area Sb in the block extending portion 40 changes.
  • the shape of the block extension part 40 and the shape of the base end side block 23 change, and the rigidity, mass, etc. of the base end side block 23 change.
  • the resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes as the rigidity and mass of the proximal end block 23 change.
  • the dimension T in the direction along the longitudinal axis C of the second extending region 42 affects the resonance frequency Fr.
  • the dimension T of the second extending region 42 is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the resonance frequency Fr is detected by a vibration meter or the like, and the dimension T is adjusted based on the detection result of the resonance frequency Fr.
  • the relationship between the dimension T and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shape of the members. The dimension T is adjusted based on
  • FIG. 7 is a diagram showing an example of the relationship between the dimension T in the direction along the longitudinal axis C of the second extending region 42 and the resonance frequency Fr of the ultrasonic transducer 20.
  • the horizontal axis indicates the dimension T
  • the vertical axis indicates the resonance frequency Fr.
  • the relationship between the dimension T and the resonance frequency Fr changes in accordance with physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members.
  • the resonance frequency Fr increases.
  • the ultrasonic transducer 20 vibrates at a resonance frequency Fr4 lower than a predetermined resonance frequency Frref in a state where the dimension T becomes the size T1.
  • the dimension T is increased from the magnitude T1 to the magnitude T2 based on the detection result of the resonance frequency Fr or the relationship between the estimated dimension T and the resonance frequency Fr.
  • the single unit of the ultrasonic transducer 20 is in a state of vibrating at the predetermined resonance frequency Frref.
  • the first extending region 41 is formed solid, whereas the second extending region 42 is It is formed hollow.
  • the second extending region 42 is formed hollow by the hole 45 extending along the longitudinal axis C.
  • the hole 45 extends from the proximal end of the proximal end side block 23 toward the distal end side.
  • the cross-sectional area perpendicular to the longitudinal axis C is the first cross-sectional area Sa
  • the cross-sectional area perpendicular to the longitudinal axis C is The second sectional area Sb is smaller than the first sectional area Sa.
  • the size of the second cross-sectional area Sb in the second extending region 42 is adjusted by adjusting the diameter of the hole 45, and the resonance of the ultrasonic transducer 20 as a single unit is adjusted.
  • the frequency Fr is adjusted.
  • the second cross-sectional area Sb or the dimension T is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the ultrasonic transducer is adjusted by adjusting both the second cross-sectional area Sb in the second extending region 42 and the dimension T along the longitudinal axis C of the second extending region 42.
  • the resonance frequency Fr of the single unit 20 is adjusted.
  • the second cross-sectional area Sb and the dimension T are adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • a hole 47 is formed in the block extending portion 40 so as to extend along a direction (substantially perpendicular) intersecting the longitudinal axis C. .
  • the hole 47 has a hole area Sc substantially perpendicular to the extending direction of the hole 47.
  • the extension dimension L3 in the direction along the longitudinal axis C of the block extending portion 40 is a predetermined size L3ref, and the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the same.
  • the dimension L2 is a predetermined size L2ref.
  • the resonance frequency Fr of the ultrasonic transducer 20 alone is adjusted by adjusting the hole area Sc of the hole 47.
  • strength becomes low compared with the other site
  • FIG. For this reason, the ratio of the part with low intensity
  • the hole area Sc changes, the shape of the block extending part 40 and the shape of the base end side block 23 change, and the rigidity and mass of the base end side block 23 change. Due to the change described above, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes.
  • the hole area Sc substantially perpendicular to the extending direction of the hole 47 affects the resonance frequency Fr.
  • the hole area Sc of the hole 47 is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the resonance frequency Fr is detected by a vibrometer or the like, and the hole area Sc is adjusted based on the detection result of the resonance frequency Fr.
  • the relationship between the hole area Sc and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of these members. The hole area Sc is adjusted based on the relationship.
  • FIG. 10 is a diagram showing an example of the relationship between the hole area Sc of the hole 47 and the resonance frequency Fr of the ultrasonic transducer 20.
  • the horizontal axis indicates the hole area Sc
  • the vertical axis indicates the resonance frequency Fr.
  • the relationship between the hole area Sc and the resonance frequency Fr changes in accordance with physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members.
  • the resonance frequency Fr decreases as the hole area Sc increases, that is, when the proportion of the portion with low strength in the block extending portion 40 increases.
  • the ultrasonic transducer 20 vibrates at a resonance frequency Fr5 higher than a predetermined resonance frequency Frref in a state where the hole area Sc becomes the size Sc1.
  • the hole area Sc is increased from the size Sc1 to the size Sc2 based on the detection result of the resonance frequency Fr or the estimated relationship between the hole area Sc and the resonance frequency Fr.
  • the single unit of the ultrasonic transducer 20 is in a state of vibrating at the predetermined resonance frequency Frref.
  • the ultrasonic transducer is adjusted by adjusting the position along the longitudinal axis C of the hole 47 instead of the hole area Sc of the hole 47 or in addition to the hole area Sc of the hole 47.
  • the resonance frequency Fr of the single unit 20 is adjusted.
  • the position of the hole 47 or the hole area Sc and the position of the hole 47 are adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
  • the ultrasonic transducer (20) includes a bolt (21) extending along the longitudinal axis (C) and a tip side to which a tip of the bolt (21) is connected.
  • the drive unit (30) includes a piezoelectric element (31) that generates ultrasonic vibration when supplied with electric energy, and the proximal end block (23) extends from the proximal end of the bolt (21) to the proximal end block.
  • a block extension part (40) extending toward the base end side to the base end of (23) is provided.
  • the shape of the block extending portion (40) affects the resonance frequency (Fr) when the ultrasonic transducer (20) vibrates due to the ultrasonic vibration generated in the piezoelectric element (31), and the ultrasonic transducer (20). Due to the occurrence of ultrasonic vibration, the single body of the material vibrates at a predetermined resonance frequency (Frref) due to the shape of the block extending portion (40).
  • the ultrasonic transducer 20 is indirectly connected to the rod member 10 via one or more relay members (not shown).
  • the relay member is formed from a material having high vibration transmission properties such as a titanium alloy.
  • the above-mentioned supported portion 25 and the horn 26 are provided on the relay member between the ultrasonic transducer 20 and the rod member 10.
  • the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to a half wavelength of longitudinal vibration at a predetermined resonance frequency Frref.
  • the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref by the ultrasonic vibration generated in the piezoelectric element 31.
  • a vibration antinode A1 located closest to the base end of the vibration antinode is generated at the base end of the ultrasonic transducer 20, and the ultrasonic transducer 20 is separated by a half wavelength from the vibration antinode A1 to the front end side. Vibration antinode A2 occurs.
  • a vibration node N1 that is a quarter wavelength away from the vibration antinode A1 is generated on the tip side.
  • the length of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at the predetermined resonance frequency Frref (see FIG. 2), and longitudinal vibration at the predetermined resonance frequency Frref.
  • An example corresponding to a half wavelength has been described.
  • the length of the single unit of the ultrasonic transducer 20 may be a natural number times the half wavelength of the longitudinal vibration at the predetermined resonance frequency Frref.
  • the space between the distal end and the proximal end of the ultrasonic transducer (20) corresponds to a natural number multiple of a half wavelength of longitudinal vibration at a predetermined resonance frequency (Frref). That is, the pressing force (P) from the base end side block (23) to the drive unit (30) and the base end side so that the single unit of the ultrasonic transducer (20) vibrates at a predetermined resonance frequency (Frref). At least one of the shapes of the block extending portions (40) of the block (23) is adjusted.

Abstract

An ultrasonic transducer provided with a drive unit attached to the outer circumference of a bolt in a state of being sandwiched between a block on the front-end side and a block on the base-end side in a direction along the longitudinal axis, the drive unit being provided with a piezoelectric element that generates ultrasonic vibration by being supplied with electric energy. A single unit of the ultrasonic transducer is caused to vibrate with a prescribed resonant frequency by a pressing force from the front-end-side block to the base-end-side block and/or the shape of a block extension part of the base-end-side block that is extended from the base end of the bolt to the base-end side.

Description

超音波トランスデューサ及び超音波トランスデューサの製造方法Ultrasonic transducer and method of manufacturing ultrasonic transducer
 本発明は、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える超音波トランスデューサ、及び、その超音波トランスデューサの製造方法に関する。 The present invention relates to an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibration when supplied with electric energy, and a method for manufacturing the ultrasonic transducer.
 US2009/275864A1には、超音波振動を用いて処置対象を処置する超音波処置具が開示されている。この超音波処置具には、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える超音波トランスデューサが設けられる。この超音波トランスデューサでは、ボルトの先端部が先端側ブロックに接続され、ボルト及び先端側ブロックが一体に形成される。また、ボルトの外周には、圧電素子を含む駆動ユニットが取付けられる。ボルトの基端部は、基端側ブロックに接続され、ボルトの外周に基端側ブロックが締結される。駆動ユニットは、先端側ブロックと基端側ブロックとの間で挟まれ、基端側ブロックから駆動ユニットには、先端側への押圧力が作用する。超音波処置具では、超音波トランスデューサの先端側に、処置部を備えるロッド部材が接続される。圧電素子で発生した超音波振動は、ロッド部材を通して処置部に伝達される。 US2009 / 275864A1 discloses an ultrasonic treatment tool for treating a treatment target using ultrasonic vibration. This ultrasonic treatment instrument is provided with an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibration when supplied with electrical energy. In this ultrasonic transducer, the tip of the bolt is connected to the tip side block, and the bolt and the tip side block are integrally formed. A drive unit including a piezoelectric element is attached to the outer periphery of the bolt. The base end portion of the bolt is connected to the base end side block, and the base end side block is fastened to the outer periphery of the bolt. The drive unit is sandwiched between the distal end side block and the proximal end side block, and a pressing force toward the distal end side acts on the drive unit from the proximal end side block. In the ultrasonic treatment instrument, a rod member including a treatment portion is connected to the distal end side of the ultrasonic transducer. The ultrasonic vibration generated by the piezoelectric element is transmitted to the treatment portion through the rod member.
 US2009/275864A1のような超音波処置具では、処置性能等の観点から、超音波トランスデューサ及びロッド部材を含む振動体を、超音波振動によって既定の共振周波数で又は可能な限り既定の共振周波数に近づけて振動させることが求められている。また、超音波トランスデューサ及びロッド部材を含む振動体を既定の共振周波数で振動させる場合、エネルギーのロスを低減させるために、超音波トランスデューサ単体でも圧電素子で発生した超音波振動によって既定の共振周波数で又は可能な限り既定の共振周波数に近づけて振動することが求められている。したがって、圧電素子、先端側ブロック及び基端側ブロック等の超音波トランスデューサを形成する部品のそれぞれの物性等に対応させて、単体(超音波トランスデューサの最小構成単位で、かつ、振動の半波長の自然数倍の組立体)でも既定の共振周波数で振動する超音波トランスデューサを形成する必要がある。 In an ultrasonic treatment instrument such as US2009 / 275864A1, from the viewpoint of treatment performance and the like, a vibrating body including an ultrasonic transducer and a rod member is brought close to a predetermined resonance frequency as much as possible by ultrasonic vibration at a predetermined resonance frequency. And is required to vibrate. In addition, when a vibrating body including an ultrasonic transducer and a rod member is vibrated at a predetermined resonance frequency, in order to reduce energy loss, the ultrasonic transducer itself can be vibrated at a predetermined resonance frequency by ultrasonic vibration generated by a piezoelectric element. Alternatively, it is required to vibrate as close to a predetermined resonance frequency as possible. Therefore, a single element (minimum constituent unit of the ultrasonic transducer and a half wavelength of vibration) corresponding to each physical property of the components forming the ultrasonic transducer such as the piezoelectric element, the distal end side block, and the proximal end side block. It is necessary to form an ultrasonic transducer that vibrates at a predetermined resonance frequency even in an assembly of a natural number multiple).
 本発明は前記課題を解決するためになされたものであり、その目的とするところは、単体でも既定の共振周波数で振動する超音波トランスデューサ及びその超音波トランスデューサの製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ultrasonic transducer that vibrates at a predetermined resonance frequency alone or a method for manufacturing the ultrasonic transducer.
 前記目的を達成するために、本発明のある態様の超音波トランスデューサの製造方法は、基端から先端まで長手軸に沿って延設されるボルトの外周に、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える駆動ユニットを取付けることと、前記長手軸に沿う方向について前記ボルトの先端部が接続される先端側ブロックと前記ボルトの基端部が接続される基端側ブロックとの間で、前記駆動ユニットを挟むことにより、前記基端側ブロックから前記駆動ユニットに先端側へ押圧力を作用させることと、前記圧電素子で発生した前記超音波振動によって前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む超音波トランスデューサの単体が既定の共振周波数で振動する状態に、前記基端側ブロックから前記駆動ユニットへの前記押圧力を調整することと、を備える。 In order to achieve the above object, a method of manufacturing an ultrasonic transducer according to an aspect of the present invention is characterized in that an electrical energy is supplied to an outer periphery of a bolt extending along a longitudinal axis from a proximal end to a distal end. A drive unit including a piezoelectric element that generates a sonic vibration is attached; a distal end block to which a distal end portion of the bolt is connected in a direction along the longitudinal axis; and a proximal end block to which a proximal end portion of the bolt is connected The driving unit is sandwiched between the bolt and the driving unit to apply a pressing force to the driving unit from the base end side block, and the ultrasonic vibration generated in the piezoelectric element causes the bolt and the tip The ultrasonic transducer including the side block, the base end side block, and the drive unit vibrates at a predetermined resonance frequency. Comprising and adjusting the pressing force from the side blocks to the drive unit.
 本発明のある態様は、基端及び先端を有し、基端から先端まで長手軸に沿って延設されるボルトと、前記ボルトの先端部が接続される先端側ブロックと、前記ボルトの基端部が接続される基端側ブロックと、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備えるとともに、前記長手軸に沿う方向について前記先端側ブロックと前記基端側ブロックとの間で挟まれる状態で前記ボルトの外周に取付けられる駆動ユニットと、を備える超音波トランスデューサ であって、前記基端側ブロックは、前記ボルトの前記基端から前記基端側ブロックの基端まで基端側に向かって延設されるブロック延伸部 を備え、前記ブロック延伸部の形状は、前記圧電素子で発生した前記超音波振動によって前記超音波トランスデューサが振動する状態での共振周波数に影響を与え、前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む前記超音波トランスデューサの単体は、前記超音波振動が発生することにより、前記ブロック延伸部の前記形状に起因して、既定の共振周波数で振動する。 An aspect of the present invention includes a bolt having a proximal end and a distal end and extending along the longitudinal axis from the proximal end to the distal end, a distal end side block to which the distal end portion of the bolt is connected, and a base of the bolt A proximal block to which an end portion is connected; and a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied; and the distal block and the proximal block in a direction along the longitudinal axis And a drive unit attached to the outer periphery of the bolt in a state of being sandwiched between the base end block and the base end block from the base end of the bolt to the base end of the base end block A block extending portion extending toward the base end, and the shape of the block extending portion is determined by the ultrasonic transducer generated by the ultrasonic vibration generated by the piezoelectric element. The ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit is affected by the resonance frequency in the state where the vibration is generated. Due to the shape of the block extending portion, it vibrates at a predetermined resonance frequency.
 本発明のある態様の超音波トランスデューサの製造方法は、基端から先端まで長手軸に沿って延設されるボルトの外周に、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える駆動ユニットを取付けることと、基端側ブロックにおいて前記ボルトの前記基端から前記基端側ブロックの基端までブロック延伸部が基端側に向かって延設される状態に、前記ボルトの基端部を基端側ブロックに接続することと、前記長手軸に沿う方向について前記ボルトの先端部が接続される先端側ブロックと前記基端側ブロックとの間で、前記駆動ユニットを挟むことと、前記圧電素子で発生した前記超音波振動によって前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む超音波トランスデューサの単体が既定の共振周波数で振動する状態に、前記ブロック延伸部の形状を調整することと、を備える。 According to another aspect of the present invention, there is provided a method of manufacturing an ultrasonic transducer including a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied to an outer periphery of a bolt extending along a longitudinal axis from a proximal end to a distal end. The base of the bolt in a state where a block extending portion extends from the base end of the bolt to the base end of the base end side block toward the base end side in the base end side block. Connecting the end to the proximal block, and sandwiching the drive unit between the proximal block to which the distal end of the bolt is connected in the direction along the longitudinal axis and the proximal block An ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit by the ultrasonic vibration generated in the piezoelectric element. The state body to vibrate at a predetermined resonance frequency, and a adjusting the shape of the block extending portion.
図1は、第1の実施形態に係る超音波トランスデューサが用いられる処置システムを示す概略図である。FIG. 1 is a schematic view showing a treatment system in which the ultrasonic transducer according to the first embodiment is used. 図2は、第1の実施形態に係る超音波トランスデューサの構成を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of the ultrasonic transducer according to the first embodiment. 図3は、基端側ブロックから駆動ユニットへの押圧力と超音波トランスデューサの共振周波数との関係の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of the relationship between the pressing force from the proximal block to the drive unit and the resonance frequency of the ultrasonic transducer. 図4は、第2の実施形態に係る超音波トランスデューサの構成を概略的に示す側面図である。FIG. 4 is a side view schematically showing the configuration of the ultrasonic transducer according to the second embodiment. 図5は、第2の実施形態に係る超音波トランスデューサの構成を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the configuration of the ultrasonic transducer according to the second embodiment. 図6は、第2の延設領域でのブロック延伸部の第2の断面積と超音波トランスデューサの共振周波数との関係の一例を示す概略図である。FIG. 6 is a schematic diagram illustrating an example of the relationship between the second cross-sectional area of the block extending portion and the resonance frequency of the ultrasonic transducer in the second extending region. 図7は、ブロック延伸部での第2の延設領域の長手軸に沿う方向についての寸法と超音波トランスデューサの共振周波数との関係の一例を示す概略図である。FIG. 7 is a schematic diagram illustrating an example of the relationship between the dimension in the direction along the longitudinal axis of the second extending region in the block extending portion and the resonance frequency of the ultrasonic transducer. 図8は、第2の実施形態の第2の変形例に係る超音波トランスデューサの構成を概略的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a configuration of an ultrasonic transducer according to a second modification of the second embodiment. 図9は、第2の実施形態の第3の変形例に係る超音波トランスデューサの構成を概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a configuration of an ultrasonic transducer according to a third modification of the second embodiment. 図10は、ブロック延伸部に形成される孔の孔面積と超音波トランスデューサの共振周波数との関係の一例を示す概略図である。FIG. 10 is a schematic diagram illustrating an example of the relationship between the hole area of the hole formed in the block extending portion and the resonance frequency of the ultrasonic transducer. 図11は、第1の実施形態及び第2の実施形態のある変形例に係る超音波トランスデューサの構成を概略的に示す側面図である。FIG. 11 is a side view schematically showing a configuration of an ultrasonic transducer according to a modification of the first embodiment and the second embodiment.
 (第1の実施形態) 
 本発明の第1の実施形態について、図1乃至図3を参照して説明する。図1は、本実施形態の超音波トランスデューサ20が用いられる処置システム1を示す図である。図1に示すように、処置システム1は、超音波処置具2と、エネルギー制御装置3と、を備える。超音波処置具2は、保持可能なハウジング5と、ハウジング5に取付けられるシャフト6と、を備える。シャフト6は、略真直ぐに延設される。ここで、超音波処置具2では、シャフト6に対してハウジング5が位置する側を基端側(矢印C1側)とし、基端側とは反対側を先端側(矢印C2側)とする。このため、シャフト6は、先端側からハウジング5に取付けられる。また、超音波処置具2では、シャフト6に対して先端側の部位に、エンドエフェクタ7が設けられる。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a treatment system 1 in which the ultrasonic transducer 20 of the present embodiment is used. As shown in FIG. 1, the treatment system 1 includes an ultrasonic treatment tool 2 and an energy control device 3. The ultrasonic treatment instrument 2 includes a housing 5 that can be held, and a shaft 6 that is attached to the housing 5. The shaft 6 extends substantially straight. Here, in the ultrasonic treatment instrument 2, the side on which the housing 5 is positioned with respect to the shaft 6 is a base end side (arrow C1 side), and the side opposite to the base end side is a front end side (arrow C2 side). For this reason, the shaft 6 is attached to the housing 5 from the front end side. In the ultrasonic treatment instrument 2, an end effector 7 is provided at a position on the distal end side with respect to the shaft 6.
 ハウジング5には、ハンドル8が回動可能に取付けられる。ハンドル8がハウジング5に対して回動することにより、ハンドル8がハウジング5に対して開く又は閉じる。また、シャフト6には、ロッド部材(プローブ)10が挿通される。ロッド部材10は、チタン合金等の振動伝達性の高い材料から形成される。ロッド部材10は、ハウジング5の内部からシャフト6の内部を通って、先端側へ向かって延設される。そして、ロッド部材10は、シャフト6の先端から先端側に突出するロッド突出部11を備える。また、シャフト6の先端部には、ジョー12が回動可能に取付けられる。ジョー12とハンドル8との間は、シャフト6の内部を通って延設される可動部材(図示しない)を介して連結される。ハンドル8をハウジング5に対して開く又は閉じることにより、可動部材が基端側又は先端側に移動する。これにより、ジョー12がシャフト6に対して回動し、ジョー12とロッド突出部11との間が開く又は閉じる。本実施形態では、ロッド突出部11及びジョー12によってエンドエフェクタ7が形成される。そして、ジョー12とロッド突出部11との間で生体組織等の処置対象を把持することにより、処置対象を処置する。 A handle 8 is rotatably attached to the housing 5. When the handle 8 rotates with respect to the housing 5, the handle 8 opens or closes with respect to the housing 5. A rod member (probe) 10 is inserted through the shaft 6. The rod member 10 is formed from a material having high vibration transmission properties such as a titanium alloy. The rod member 10 extends from the inside of the housing 5 to the front end side through the inside of the shaft 6. The rod member 10 includes a rod protrusion 11 that protrudes from the tip of the shaft 6 toward the tip. A jaw 12 is rotatably attached to the tip of the shaft 6. The jaw 12 and the handle 8 are connected via a movable member (not shown) that extends through the inside of the shaft 6. By opening or closing the handle 8 with respect to the housing 5, the movable member moves to the proximal end side or the distal end side. As a result, the jaw 12 rotates with respect to the shaft 6, and the gap between the jaw 12 and the rod protrusion 11 opens or closes. In the present embodiment, the end effector 7 is formed by the rod protrusion 11 and the jaw 12. Then, the treatment target is treated by gripping the treatment target such as a living tissue between the jaw 12 and the rod protrusion 11.
 なお、ある実施例では、ハウジング5に、回転操作部材である回転ノブ(図示しない)が取付けられ、回転ノブは、シャフト6の中心軸の軸回りにハウジング5に対して回転可能である。この場合、回転ノブを回転させることにより、シャフト6、エンドエフェクタ7及びロッド部材10は、シャフト6の中心軸の軸回りにハウジング5に対して一緒に回転する。また、ある実施例では、ジョー12が設けられず、ロッド突出部11のみからエンドエフェクタ7が形成される。この場合、前述のハンドル8及び可動部材は設けらない。また、この場合、ロッド突出部11は、フック形状、ヘラ形状又はブレード形状等を有する。 In an embodiment, a rotation knob (not shown) that is a rotation operation member is attached to the housing 5, and the rotation knob can rotate with respect to the housing 5 around the axis of the shaft 6. In this case, by rotating the rotary knob, the shaft 6, the end effector 7, and the rod member 10 rotate together with respect to the housing 5 around the axis of the central axis of the shaft 6. In some embodiments, the jaw 12 is not provided, and the end effector 7 is formed only from the rod protrusion 11. In this case, the handle 8 and the movable member described above are not provided. In this case, the rod protrusion 11 has a hook shape, a spatula shape, a blade shape, or the like.
 超音波トランスデューサ20は、ハウジング5の内部において、ロッド部材10に基端側から接続される。本実施形態では、超音波トランスデューサ20は、トランスデューサケース18の内部に収容され、トランスデューサケース18に支持される。そして、トランスデューサケース18をハウジング5に基端側から取付けることにより、超音波トランスデューサ20がロッド部材10に接続される。本実施形態では、超音波トランスデューサ20の先端が、直接的にロッド部材10の基端に接続される。また、本実施形態では、トランスデューサケース18に、ケーブル13の一端が接続される。ケーブル13の他端は、エネルギー制御装置3に取外し可能に接続される。 The ultrasonic transducer 20 is connected to the rod member 10 from the base end side inside the housing 5. In the present embodiment, the ultrasonic transducer 20 is accommodated in the transducer case 18 and supported by the transducer case 18. The ultrasonic transducer 20 is connected to the rod member 10 by attaching the transducer case 18 to the housing 5 from the proximal end side. In the present embodiment, the distal end of the ultrasonic transducer 20 is directly connected to the proximal end of the rod member 10. In the present embodiment, one end of the cable 13 is connected to the transducer case 18. The other end of the cable 13 is detachably connected to the energy control device 3.
 なお、ある実施例では、トランスデューサケース18が設けられない。この場合、超音波トランスデューサ20は、ハウジング5によって支持され、ケーブル13の一端は、ハウジング5に接続される。また、前述の回転ノブが設けられる実施例では、回転ノブを回転させることにより、超音波トランスデューサ20は、シャフト6、エンドエフェクタ7及びロッド部材10と一緒に、シャフト6の中心軸の軸回りにハウジング5に対して回転する。 In some embodiments, the transducer case 18 is not provided. In this case, the ultrasonic transducer 20 is supported by the housing 5, and one end of the cable 13 is connected to the housing 5. In the embodiment in which the rotation knob is provided, the ultrasonic transducer 20 is rotated around the central axis of the shaft 6 together with the shaft 6, the end effector 7 and the rod member 10 by rotating the rotation knob. Rotates relative to the housing 5.
 図2は、超音波トランスデューサ20の構成を示す図である。図2に示すように、超音波トランスデューサ20は、中心軸として長手軸Cを有するボルト(シャフト)21を備える。ここで、長手軸Cに沿う方向の一方側が基端側(矢印C1側)と一致し、長手軸Cに沿う方向の他方側が先端側(矢印C2側)と一致する。ボルト21は、基端から先端まで長手軸Cに沿って略真直ぐに延設される。 FIG. 2 is a diagram showing the configuration of the ultrasonic transducer 20. As shown in FIG. 2, the ultrasonic transducer 20 includes a bolt (shaft) 21 having a longitudinal axis C as a central axis. Here, one side in the direction along the longitudinal axis C coincides with the base end side (arrow C1 side), and the other side in the direction along the longitudinal axis C coincides with the distal end side (arrow C2 side). The bolt 21 extends substantially straight along the longitudinal axis C from the proximal end to the distal end.
 図1及び図2に示すように、超音波トランスデューサ20では、ボルト21の先端部が、先端側ブロック(フロントマス)22に接続される。本実施形態では、先端側ブロック22は、ボルト21と一体である。先端側ブロック22及びボルト21は、例えばチタン合金、アルミニウム合金又はSUS等から形成される。なお、先端側ブロック22は、ボルト21と同一の材料から形成されてもよく、ボルト21とは異なる材料から形成されてもよい。また、先端側ブロック22は、超音波トランスデューサ20の先端を形成し、ロッド部材10に接続される。本実施形態では、先端側ブロック22に、トランスデューサケース18又はハウジング5によって支持されるフランジ等の被支持部25が形成され、先端側に向かって長手軸Cに略垂直な断面積が減少するホーン26が形成される。 1 and 2, in the ultrasonic transducer 20, the tip of the bolt 21 is connected to the tip side block (front mass) 22. In the present embodiment, the front end side block 22 is integral with the bolt 21. The front end side block 22 and the bolt 21 are made of, for example, a titanium alloy, an aluminum alloy, SUS, or the like. The tip side block 22 may be formed of the same material as the bolt 21 or may be formed of a material different from the bolt 21. Further, the distal end side block 22 forms the distal end of the ultrasonic transducer 20 and is connected to the rod member 10. In the present embodiment, a supported portion 25 such as a flange supported by the transducer case 18 or the housing 5 is formed on the distal end side block 22, and the horn whose cross-sectional area substantially perpendicular to the longitudinal axis C decreases toward the distal end side. 26 is formed.
 超音波トランスデューサ20では、ボルト21の基端部が、基端側ブロック(バックマス)23に接続される。本実施形態では、基端側ブロック23は、ボルト21の外周を覆うリング状に形成される。ボルト21の基端部の外周には、第1の係合部として雄ネジ部27が形成される。また、基端側ブロック23の内周には、第1の係合部に係合する第2の係合部として、雌ネジ部28が形成される。本実施形態では、雄ネジ部27は、ボルト21の基端から先端側に向かって延設され、雌ネジ部28は、基端側ブロック23の基端から先端側に向かって延設される。雄ネジ部27に雌ネジ部28が係合する、すなわち螺合することにより、ボルト21の外周に基端側ブロック23が締結される。したがって、本実施形態では、基端側ブロック23は、ボルト21の外周に締結される締結部材である。 In the ultrasonic transducer 20, the base end portion of the bolt 21 is connected to the base end side block (back mass) 23. In the present embodiment, the base end side block 23 is formed in a ring shape that covers the outer periphery of the bolt 21. On the outer periphery of the base end portion of the bolt 21, a male screw portion 27 is formed as a first engagement portion. A female thread portion 28 is formed on the inner periphery of the base end side block 23 as a second engagement portion that engages with the first engagement portion. In the present embodiment, the male screw portion 27 extends from the proximal end of the bolt 21 toward the distal end side, and the female screw portion 28 extends from the proximal end of the proximal end side block 23 toward the distal end side. . The base end side block 23 is fastened to the outer periphery of the bolt 21 by engaging the female screw portion 28 with the male screw portion 27, that is, by screwing. Therefore, in this embodiment, the base end side block 23 is a fastening member fastened to the outer periphery of the bolt 21.
 基端側ブロック23は、例えばチタン合金、アルミニウム合金又はSUS等から形成される。ここで、基端側ブロック23は、先端側ブロック22と同一の材料から形成されてもよく、先端側ブロック22とは異なる材料から形成されてもよい。また、本実施形態では、基端側ブロック23の基端は、長手軸Cに沿う方向についてボルト21の基端と位置が略一致し、基端側ブロック23の基端及びボルト21の基端によって、超音波トランスデューサ20の基端が形成される。 The base end side block 23 is made of, for example, a titanium alloy, an aluminum alloy, SUS, or the like. Here, the proximal side block 23 may be formed from the same material as the distal side block 22, or may be formed from a material different from the distal side block 22. In the present embodiment, the base end of the base end side block 23 is substantially coincident with the base end of the bolt 21 in the direction along the longitudinal axis C, and the base end of the base end side block 23 and the base end of the bolt 21 are the same. Thus, the base end of the ultrasonic transducer 20 is formed.
 ボルト21の外周には、駆動ユニット30が取付けられる。駆動ユニット30は、長手軸Cに沿う方向について先端側ブロック22と基端側ブロック23との間で挟まれる。そして、駆動ユニット30は、基端側ブロック23によって先端側へ押圧される。駆動ユニット30は、本実施形態では10個の圧電素子31を備える。圧電素子31は、例えばセラミックス等、ボルト21とは剛性率等の材質(物性値)が異なる材料から形成される。圧電素子31は、電気エネルギーを振動エネルギーに変換する。圧電素子31のそれぞれは、リング状に形成され、ボルト21は、圧電素子31のそれぞれに挿通される。なお、圧電素子31は、少なくとも1つ設けられていればよい。 The drive unit 30 is attached to the outer periphery of the bolt 21. The drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23 in the direction along the longitudinal axis C. Then, the drive unit 30 is pressed toward the distal end side by the proximal end side block 23. The drive unit 30 includes ten piezoelectric elements 31 in this embodiment. The piezoelectric element 31 is formed of a material having a material (physical property value) such as a rigidity that is different from that of the bolt 21 such as ceramics. The piezoelectric element 31 converts electrical energy into vibration energy. Each of the piezoelectric elements 31 is formed in a ring shape, and the bolt 21 is inserted through each of the piezoelectric elements 31. Note that at least one piezoelectric element 31 may be provided.
 また、駆動ユニット30は、金属等の導電材料から形成される電極部材32,33を備える。電極部材32は、本実施形態では6つの電極リング部35を備え、電極部材33は、本実施形態では5つの電極リング部36を備える。ボルト21は、電極リング部35のそれぞれ及び電極リング部36のそれぞれに挿通される。圧電素子31のそれぞれは、長手軸Cに沿う方向について電極リング部35の対応する1つと電極リング部36の対応する1つとの間で挟まれる。電極部材32には、電気配線37の一端が接続される。また、電極部材33には、電気配線38の一端が接続される。なお、電極リング部35,36の数は、圧電素子31の数に対応して決定され、いずれの場合も、圧電素子31のそれぞれが電極リング部35の対応する1つと電極リング部36の対応する1つとの間で挟まれる構成となる。前述のように超音波トランスデューサ20が形成されるため、本実施形態では、超音波トランスデューサ20は、ボルト締めランジュバン型振動子(Bolt-clamped Langevin-type Transducer)となる。 The drive unit 30 includes electrode members 32 and 33 formed of a conductive material such as metal. The electrode member 32 includes six electrode ring portions 35 in the present embodiment, and the electrode member 33 includes five electrode ring portions 36 in the present embodiment. The bolt 21 is inserted through each of the electrode ring portions 35 and each of the electrode ring portions 36. Each of the piezoelectric elements 31 is sandwiched between a corresponding one of the electrode ring portions 35 and a corresponding one of the electrode ring portions 36 in the direction along the longitudinal axis C. One end of an electrical wiring 37 is connected to the electrode member 32. In addition, one end of an electrical wiring 38 is connected to the electrode member 33. Note that the number of electrode ring portions 35 and 36 is determined in accordance with the number of piezoelectric elements 31, and in each case, each piezoelectric element 31 corresponds to one corresponding electrode ring portion 35 and the electrode ring portion 36. It becomes the structure pinched | interposed between one to do. Since the ultrasonic transducer 20 is formed as described above, in the present embodiment, the ultrasonic transducer 20 is a bolt-clamped Langevin-type transducer.
 エネルギー制御装置3は、エネルギー出力源15、プロセッサ16及び記憶媒体17を備える。電気配線37,38は、ケーブル13の内部を通って延設され、電気配線37,38のそれぞれの他端は、エネルギー出力源15に接続される。エネルギー出力源15は、バッテリー電源又はコンセントで電源等からの電力を超音波トランスデューサ20の駆動ユニット30に供給される電気エネルギーに変換する変換回路等を備え、変換した電気エネルギーを出力する。エネルギー出力源15から出力され電気エネルギーは、電気配線37,38を介して、駆動ユニット30に供給される。エネルギー出力源15は、電気エネルギーとして交流電力を駆動ユニット30へ出力する。 The energy control device 3 includes an energy output source 15, a processor 16, and a storage medium 17. The electric wires 37 and 38 are extended through the inside of the cable 13, and the other ends of the electric wires 37 and 38 are connected to the energy output source 15. The energy output source 15 includes a conversion circuit that converts electric power from a power source or the like with a battery power source or an outlet into electric energy supplied to the drive unit 30 of the ultrasonic transducer 20, and outputs the converted electric energy. The electrical energy output from the energy output source 15 is supplied to the drive unit 30 via the electrical wirings 37 and 38. The energy output source 15 outputs AC power as electric energy to the drive unit 30.
 制御部であるプロセッサ16は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等を含む集積回路から形成される。プロセッサ16での処理は、プロセッサ16又は記憶媒体17に記憶されたプログラムに従って行われる。また、記憶媒体17には、プロセッサ16で用いられる処理プログラム、及び、プロセッサ16での演算で用いられるパラメータ及びテーブル等が記憶される。プロセッサ16は、エネルギー出力源15から駆動ユニット30への電気エネルギーの出力を制御する。本実施形態では、プロセッサ16は、エネルギー出力源15からの電気エネルギーの出力における周波数を、既定の周波数に調整する。ある実施例では、既定の周波数は、47kHzである。 The processor 16 as a control unit is formed of an integrated circuit including a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). The processing in the processor 16 is performed according to a program stored in the processor 16 or the storage medium 17. In addition, the storage medium 17 stores a processing program used by the processor 16, parameters and tables used in calculation by the processor 16, and the like. The processor 16 controls the output of electrical energy from the energy output source 15 to the drive unit 30. In this embodiment, the processor 16 adjusts the frequency in the output of the electrical energy from the energy output source 15 to a predetermined frequency. In one embodiment, the default frequency is 47 kHz.
 エネルギー出力源15から駆動ユニット30に電気エネルギーが供給されることにより、電極部材32,33の間に電圧が印加され、圧電素子31のそれぞれに電圧が印加される。これにより、圧電素子31のそれぞれは、電気エネルギーを振動エネルギーに変換し、圧電素子31で超音波振動が発生する。発生した超音波振動は、ロッド部材10に伝達され、ロッド部材10において基端側から先端側へロッド突出部11まで伝達される。エンドエフェクタ7は、ロッド突出部11に伝達された超音波振動を用いて生体組織等の処置対象を処置する。超音波トランスデューサ20及びロッド部材10において超音波振動が伝達される状態では、超音波トランスデューサ20及びロッド部材10を含む振動体が既定の共振周波数Frrefで振動する。したがって、超音波トランスデューサ20では、ボルト21、先端側ブロック22、基端側ブロック23及び駆動ユニット30が、圧電素子31で発生した超音波振動によって、一緒に振動する。この際、振動体は、振動方向が長手軸Cに略平行な縦振動を行う。なお、既定の共振周波数Frrefは、適宜に設定可能である。ある実施例では、既定の共振周波数Frrefは、47kHzである。 When electric energy is supplied from the energy output source 15 to the drive unit 30, a voltage is applied between the electrode members 32 and 33, and a voltage is applied to each of the piezoelectric elements 31. Thereby, each of the piezoelectric elements 31 converts electrical energy into vibration energy, and ultrasonic vibration is generated in the piezoelectric elements 31. The generated ultrasonic vibration is transmitted to the rod member 10, and is transmitted from the proximal end side to the distal end side of the rod member 10 to the rod protruding portion 11. The end effector 7 treats a treatment target such as a biological tissue using the ultrasonic vibration transmitted to the rod protrusion 11. In a state where ultrasonic vibration is transmitted in the ultrasonic transducer 20 and the rod member 10, the vibrator including the ultrasonic transducer 20 and the rod member 10 vibrates at a predetermined resonance frequency Frref. Therefore, in the ultrasonic transducer 20, the bolt 21, the distal end side block 22, the proximal end side block 23, and the drive unit 30 vibrate together by ultrasonic vibration generated by the piezoelectric element 31. At this time, the vibrating body performs longitudinal vibration whose vibration direction is substantially parallel to the longitudinal axis C. The predetermined resonance frequency Frref can be set as appropriate. In one embodiment, the predetermined resonance frequency Frref is 47 kHz.
 振動体が既定の共振周波数Frrefで振動する状態では、振動体の先端、すなわちロッド部材10の先端に、振動腹の1つが発生する。そして、振動体の基端、すなわち超音波トランスデューサ20の基端に振動腹の1つである振動腹A1が発生する。振動腹A1は、振動腹の中で最も基端側に位置する。また、本実施形態では、振動腹A1から先端側に半波長離れた振動腹A2が、先端側ブロック22に発生する。そして、振動腹A1から先端側に一波長離れた振動腹A3が、先端側ブロック22の先端、すなわち超音波トランスデューサ20の先端に発生する。したがって、本実施形態では、超音波トランスデューサ20の先端と基端との間は、既定の共振周波数Frrefでの縦振動の一波長に相当する。このため、超音波トランスデューサ20の単体でも、圧電素子31で発生した超音波振動によって、既定の共振周波数Frrefで振動する。なお、本実施形態では、振動体が既定の共振周波数Frrefで振動する状態において、振動腹A1から先端側に4分の1波長離れた振動節N1が、駆動ユニット30及びボルト21に発生する。そして、振動腹A1から先端側に4分の3波長離れた振動節N2が、先端側ブロック22の被支持部25に発生する。 In the state where the vibrating body vibrates at the predetermined resonance frequency Frref, one of the vibration antinodes is generated at the tip of the vibrating body, that is, the tip of the rod member 10. Then, a vibration antinode A1, which is one of the vibration antinodes, is generated at the base end of the vibrator, that is, the base end of the ultrasonic transducer 20. The vibration antinode A1 is located on the most proximal side in the vibration antinode. Further, in the present embodiment, a vibration antinode A2 that is half a wavelength away from the vibration antinode A1 toward the tip side is generated in the tip side block 22. Then, a vibration antinode A3 that is one wavelength away from the vibration antinode A1 toward the tip side is generated at the tip of the tip block 22, that is, the tip of the ultrasonic transducer 20. Therefore, in the present embodiment, the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at a predetermined resonance frequency Frref. For this reason, even the single ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref due to the ultrasonic vibration generated in the piezoelectric element 31. In the present embodiment, in a state where the vibrating body vibrates at a predetermined resonance frequency Frref, a vibration node N1 that is a quarter wavelength away from the vibration antinode A1 toward the tip side is generated in the drive unit 30 and the bolt 21. Then, a vibration node N2 that is 3/4 wavelength away from the vibration antinode A1 toward the distal end side is generated in the supported portion 25 of the distal end side block 22.
 なお、前述した超音波トランスデューサ20の単体とは、超音波トランスデューサ20の最小構成単位であり、ボルト21、先端側ブロック22、基端側ブロック23及び駆動ユニット30の組立体である。超音波トランスデューサ20の単体の長さは、既定の共振周波数Frrefでの縦振動の半波長の自然数倍である。超音波トランスデューサ20の単体の先端側には、別体としてロッド部材10が接続される。 The single unit of the ultrasonic transducer 20 described above is a minimum structural unit of the ultrasonic transducer 20 and is an assembly of the bolt 21, the distal end side block 22, the proximal end side block 23, and the drive unit 30. The single length of the ultrasonic transducer 20 is a natural number multiple of the half wavelength of the longitudinal vibration at the predetermined resonance frequency Frref. The rod member 10 is connected to the distal end side of the ultrasonic transducer 20 as a separate body.
 また、超音波トランスデューサ20は、長手軸Cに沿う方向である長手方向について、基端から先端まで寸法L1を有する。本実施形態では、寸法L1は、既定の大きさL1refになる。 Also, the ultrasonic transducer 20 has a dimension L1 from the proximal end to the distal end in the longitudinal direction, which is the direction along the longitudinal axis C. In the present embodiment, the dimension L1 is a predetermined size L1ref.
 なお、ある実施例では、駆動ユニット30と先端側ブロック22との間、及び、駆動ユニット30と基端側ブロック23との間のそれぞれに、電気的に絶縁材料から形成される絶縁リング(図示しない)が設けられる。そして、駆動ユニット30の内周とボルト21の外周との間に、電気的に絶縁材料から形成される絶縁チューブ(図示しない)が設けられる。これにより、駆動ユニット30に供給された電気エネルギーの先端側ブロック22、基端側ブロック23及びボルト21への供給が防止される。また、ある実施例では、駆動ユニット30に供給される電気エネルギーとは異なる電気エネルギーが、エネルギー出力源15から出力される。例えば、駆動ユニット30に供給される電気エネルギーとは異なる電気エネルギーが、ロッド突出部11及びジョー12のそれぞれに供給される。これにより、ジョー12とロッド突出部11との間で把持される処置対象に高周波電流が流れる。 In some embodiments, an insulating ring (not shown) formed of an electrically insulating material is provided between the drive unit 30 and the distal block 22 and between the drive unit 30 and the proximal block 23. Not). An insulating tube (not shown) formed of an electrically insulating material is provided between the inner periphery of the drive unit 30 and the outer periphery of the bolt 21. Thereby, the supply of the electric energy supplied to the drive unit 30 to the distal end side block 22, the proximal end side block 23 and the bolt 21 is prevented. In an embodiment, electric energy different from the electric energy supplied to the drive unit 30 is output from the energy output source 15. For example, electrical energy different from the electrical energy supplied to the drive unit 30 is supplied to each of the rod protrusion 11 and the jaw 12. As a result, a high-frequency current flows through the treatment target gripped between the jaw 12 and the rod protrusion 11.
 次に、本実施形態の超音波トランスデューサ20の製造方法、作用及び効果について説明する。超音波トランスデューサ20の製造においては、まず、ボルト21の外周に、圧電素子31を含む駆動ユニット30を取付ける。そして、ボルト21の雄ネジ部(第1の係合部)27に基端側ブロック23の雌ネジ部(第2の係合部)28を螺合し、基端側ブロック23をボルト21の外周に締結する。これにより、駆動ユニット30が先端側ブロック22と基端側ブロック23との間で挟まれ、基端側ブロック23から駆動ユニット30に押圧力Pが作用する。この際、ある実施例では、所定の大きさPrefの押圧力Pが基端側ブロック23から駆動ユニット30に作用する状態に、基端側ブロック23をボルト21に接続する。 Next, the manufacturing method, operation, and effect of the ultrasonic transducer 20 of this embodiment will be described. In manufacturing the ultrasonic transducer 20, first, the drive unit 30 including the piezoelectric element 31 is attached to the outer periphery of the bolt 21. Then, the female screw portion (second engaging portion) 28 of the base end side block 23 is screwed into the male screw portion (first engaging portion) 27 of the bolt 21, and the base end side block 23 is connected to the bolt 21. Fasten to the outer periphery. As a result, the drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23, and a pressing force P acts on the drive unit 30 from the proximal end side block 23. At this time, in one embodiment, the base end side block 23 is connected to the bolt 21 so that the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the base end side block 23.
 前述のように超音波トランスデューサ20を組立てると、エネルギー出力源15から駆動ユニット30に電気エネルギーを供給し、圧電素子31で発生する超音波振動によって超音波トランスデューサ20を単体で振動させる。この際、プロセッサ16によって、エネルギー出力源15からの電気エネルギーの出力における周波数は、既定の周波数に調整される。そして、超音波トランスデューサ20が振動している状態において、振動における共振周波数Frを検出する。共振周波数Frは、例えば振動計等によって検出する。 When the ultrasonic transducer 20 is assembled as described above, electric energy is supplied from the energy output source 15 to the drive unit 30, and the ultrasonic transducer 20 is vibrated alone by the ultrasonic vibration generated by the piezoelectric element 31. At this time, the frequency at the output of electrical energy from the energy output source 15 is adjusted by the processor 16 to a predetermined frequency. Then, in a state where the ultrasonic transducer 20 is vibrating, the resonance frequency Fr in vibration is detected. The resonance frequency Fr is detected by, for example, a vibrometer.
 ここで、超音波トランスデューサ20の単体での振動における共振周波数Frは、ボルト21、先端側ブロック22、基端側ブロック23及び圧電素子31等の超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状の影響を受ける。また、超音波トランスデューサ20の単体での振動における共振周波数Frは、基端側ブロック23から駆動ユニット30への押圧力Pの影響を受ける。基端側ブロック23から駆動ユニット30への押圧力Pが変化することにより、例えば圧電素子31での応力等が変化し、圧電素子31を含む駆動ユニット30の剛性が変化する。駆動ユニット30の剛性が変化することにより、超音波トランスデューサ20の共振周波数Frが変化する。本実施形態では、共振周波数Frの検出結果に基づいて、押圧力Pを調整する。そして、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、押圧力Pが調整される。 Here, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is such as the rigidity of the members constituting the ultrasonic transducer 20 such as the bolt 21, the distal end side block 22, the proximal end side block 23, and the piezoelectric element 31. It is affected by physical properties (materials) and the shape of those members. Further, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is affected by the pressing force P applied from the proximal end block 23 to the drive unit 30. When the pressing force P from the base end side block 23 to the drive unit 30 is changed, for example, stress in the piezoelectric element 31 is changed, and the rigidity of the drive unit 30 including the piezoelectric element 31 is changed. When the rigidity of the drive unit 30 changes, the resonance frequency Fr of the ultrasonic transducer 20 changes. In the present embodiment, the pressing force P is adjusted based on the detection result of the resonance frequency Fr. Then, the pressing force P is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref.
 図3は、基端側ブロック23から駆動ユニット30への押圧力Pと超音波トランスデューサ20の共振周波数Frとの関係の一例を示す図である。図3では、横軸に押圧力Pを示し、縦軸に共振周波数Frを示す。そして、図3では、押圧力Pと共振周波数Frとの関係の一例を実線で示し、押圧力Pと共振周波数Frとの関係の実線とは別の一例を破線で示す。図3の実線の一例及び破線の一例では、超音波トランスデューサ20の単体を構成する部材(例えばボルト21、先端側ブロック22、基端側ブロック23及び駆動ユニット30の少なくとも1つ)の例えばロットが互いに対して異なる。ここで、押圧力Pと共振周波数Frとの関係は、超音波トランスデューサ20を構成する部材の剛性率(ヤング率)等の物性(材質)、及び、それらの部材の形状等に対応して、変化する。ただし、図3に示すように、いずれの場合も、押圧力Pが増加すると、共振周波数Frが増加する。 FIG. 3 is a diagram illustrating an example of the relationship between the pressing force P from the base end side block 23 to the drive unit 30 and the resonance frequency Fr of the ultrasonic transducer 20. In FIG. 3, the horizontal axis represents the pressing force P, and the vertical axis represents the resonance frequency Fr. In FIG. 3, an example of the relationship between the pressing force P and the resonance frequency Fr is indicated by a solid line, and another example of the relationship between the pressing force P and the resonance frequency Fr is indicated by a broken line. In the example of the solid line and the example of the broken line in FIG. 3, for example, a lot of members (for example, at least one of the bolt 21, the distal end side block 22, the proximal end side block 23, and the drive unit 30) constituting the single unit of the ultrasonic transducer 20 Different from each other. Here, the relationship between the pressing force P and the resonance frequency Fr corresponds to the physical properties (materials) such as the rigidity (Young's modulus) of the members constituting the ultrasonic transducer 20 and the shapes of these members. Change. However, as shown in FIG. 3, in any case, when the pressing force P increases, the resonance frequency Fr increases.
 図3の実線で示す超音波トランスデューサ20の一例では、所定の大きさPrefの押圧力Pが基端側ブロック23から駆動ユニット30に作用する状態において、超音波トランスデューサ20は、既定の共振周波数Frrefより低い共振周波数Fr1で振動する。この場合、共振周波数Frの検出結果に基づいて、押圧力Pを所定の大きさPrefから大きさP1に増加させる。押圧力Pが大きさP1に調整されることにより、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態になる。また、図3の破線で示す一例では、所定の大きさPrefの押圧力Pが基端側ブロック23から駆動ユニット30に作用する状態において、超音波トランスデューサ20は、既定の共振周波数Frrefより高い共振周波数Fr2で振動する。この場合、共振周波数Frの検出結果に基づいて、押圧力Pを所定の大きさPrefから大きさP2に減少させる。押圧力Pが大きさP2に調整されることにより、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態になる。なお、既定の共振周波数Frrefで振動する状態とは、共振周波数Frが既定の共振周波数Frrefから僅かにずれているが、既定の周波数Frrefで振動していると同一視できる状態を含む。 In the example of the ultrasonic transducer 20 indicated by the solid line in FIG. 3, the ultrasonic transducer 20 has a predetermined resonance frequency Frref in a state where a pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal end block 23. Vibrates at a lower resonance frequency Fr1. In this case, the pressing force P is increased from the predetermined magnitude Pref to the magnitude P1 based on the detection result of the resonance frequency Fr. When the pressing force P is adjusted to the magnitude P1, the single unit of the ultrasonic transducer 20 is vibrated at the predetermined resonance frequency Frref. In the example shown by the broken line in FIG. 3, the ultrasonic transducer 20 has a resonance higher than a predetermined resonance frequency Frref in a state in which the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal block 23. It vibrates at the frequency Fr2. In this case, the pressing force P is decreased from the predetermined magnitude Pref to the magnitude P2 based on the detection result of the resonance frequency Fr. When the pressing force P is adjusted to the magnitude P2, the single unit of the ultrasonic transducer 20 is vibrated at the predetermined resonance frequency Frref. The state of oscillating at the predetermined resonance frequency Frref includes a state in which the resonance frequency Fr is slightly deviated from the predetermined resonance frequency Frref but can be regarded as being oscillated at the predetermined resonance frequency Frref.
 なお、ある実施例では、駆動ユニット30に電気エネルギーを供給することによる共振周波数Frの検出が、行われなくてもよい。この場合、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等に基づいて、押圧力Pを調整する。押圧力Pの調整は、例えば、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等から押圧力Pと共振周波数Frの関係を推定し、推定した関係に基づいて行われる。本実施例においても、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態に、押圧力Pが調整される。 In some embodiments, detection of the resonance frequency Fr by supplying electric energy to the drive unit 30 may not be performed. In this case, the pressing force P is adjusted based on the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. The adjustment of the pressing force P is performed by estimating the relationship between the pressing force P and the resonance frequency Fr from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of these members, for example. Based on the relationship. Also in this embodiment, the pressing force P is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
 前述のように本実施形態では、押圧力Pを調整することにより、超音波トランスデューサ20単体でも、圧電素子31で発生した超音波振動によって、既定の共振周波数Frで振動する。このため、超音波トランスデューサ20及びロッド部材10を含む振動体を既定の共振周波数で振動させる場合、エネルギーのロスが低減され、振動体の振動の安定性が確保される。振動体の振動の安定性が確保されることより、超音波処置具2では、超音波振動を用いた処置における処置性能が向上する。 As described above, in this embodiment, by adjusting the pressing force P, the ultrasonic transducer 20 alone vibrates at the predetermined resonance frequency Fr by the ultrasonic vibration generated in the piezoelectric element 31. For this reason, when the vibrating body including the ultrasonic transducer 20 and the rod member 10 is vibrated at a predetermined resonance frequency, energy loss is reduced and the vibration stability of the vibrating body is ensured. By ensuring the stability of the vibration of the vibrating body, the ultrasonic treatment tool 2 improves the treatment performance in the treatment using ultrasonic vibration.
 また、本実施形態では、共振周波数Frの既定の共振周波数Frrefへの調整において、押圧力Pの調整のみが行われ、超音波トランスデューサ20を構成する部材の形状等の変更は行われない。このため、超音波トランスデューサ20の基端から先端まで寸法L1は、既定の大きさL1refで維持される。したがって、押圧力Pが調整された超音波トランスデューサでは、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向についての寸法L1は、既定の大きさL1refになる。超音波トランスデューサ20の長手方向についての寸法L1が既定の大きさL1refで維持されるため、超音波処置具2の製品構成における超音波トランスデューサ20の影響が抑えられる。 Further, in the present embodiment, in adjusting the resonance frequency Fr to the predetermined resonance frequency Frref, only the pressing force P is adjusted, and the shape and the like of the members constituting the ultrasonic transducer 20 are not changed. For this reason, the dimension L1 from the proximal end to the distal end of the ultrasonic transducer 20 is maintained at the predetermined size L1ref. Therefore, in the ultrasonic transducer in which the pressing force P is adjusted, the dimension L1 in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the predetermined size L1ref. Since the dimension L1 in the longitudinal direction of the ultrasonic transducer 20 is maintained at the predetermined size L1ref, the influence of the ultrasonic transducer 20 in the product configuration of the ultrasonic treatment instrument 2 is suppressed.
 (第2の実施形態) 
 次に、本発明の第2の実施形態について、図4乃至図6を参照して説明する。第2の実施形態は、第1の実施形態の構成を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the configuration of the first embodiment is modified as follows. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.
 図4及び図5は、本実施形態の超音波トランスデューサ20の構成を示す図である。ここで、図4は、側面図であり、図5は、長手軸Cに略平行な断面を示す断面図である。図4及び図5に示すように、本実施形態でも第1の実施形態と同様に、超音波トランスデューサ20は、ボルト21、先端側ブロック22、基端側ブロック23及び駆動ユニット30を備え、先端側ブロック22には、被支持部25及びホーン26が形成される。また、駆動ユニット30は、圧電素子31及び電極部材32,33を備える。本実施形態でも、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向(長手方向)についての寸法L2は、既定の大きさL2refになる。そして、圧電素子31で超音波振動が発生することにより、超音波トランスデューサ20は単体でも既定の共振周波数Frrefで振動する。この際、第1の実施形態と同様に、超音波トランスデューサ20に、振動腹A1~A3及び振動節N1,N2が発生する。したがって、本実施形態でも、超音波トランスデューサ20の先端と基端との間は、既定の共振周波数Frrefでの縦振動の一波長に相当する。 4 and 5 are diagrams showing the configuration of the ultrasonic transducer 20 of the present embodiment. 4 is a side view, and FIG. 5 is a cross-sectional view showing a cross section substantially parallel to the longitudinal axis C. As shown in FIG. As shown in FIGS. 4 and 5, in this embodiment as well, as in the first embodiment, the ultrasonic transducer 20 includes a bolt 21, a distal end side block 22, a proximal end side block 23, and a drive unit 30. A supported portion 25 and a horn 26 are formed on the side block 22. The drive unit 30 includes a piezoelectric element 31 and electrode members 32 and 33. Also in this embodiment, the dimension L2 in the direction (longitudinal direction) along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the predetermined size L2ref. When the ultrasonic vibration is generated in the piezoelectric element 31, the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref even when it is a single element. At this time, as in the first embodiment, vibration transducers A1 to A3 and vibration nodes N1 and N2 are generated in the ultrasonic transducer 20. Therefore, also in this embodiment, the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at a predetermined resonance frequency Frref.
 本実施形態では、基端側ブロック23に、ボルト21の基端から基端側に向かって延設されるブロック延伸部40が形成される。ブロック延伸部40は、基端側ブロック23の基端まで、基端側に向かって延設される。したがって、本実施形態では、ボルト21の基端に対して、基端側ブロック23の基端が基端側に位置する。本実施形態では、ブロック延伸部40の基端、すなわち基端側ブロック23の基端によって、超音波トランスデューサ20の基端が形成される。また、本実施形態では、基端側ブロック23に、基端側ブロック23の先端から基端側に向かって凹む凹形状が形成される。基端側ブロック23の凹形状には、雌ネジ部28が形成されるとともに、雄ネジ部27を含むボルト21の基端部が挿入される。ブロック延伸部40は、ボルト21の基端から基端側ブロック23の基端まで長手軸Cに沿う方向について、延設寸法L3を有する。ブロック延伸部40の延設寸法L3は、既定の大きさL3refになる。 In this embodiment, a block extending portion 40 extending from the base end of the bolt 21 toward the base end side is formed in the base end side block 23. The block extending portion 40 extends toward the base end side to the base end of the base end side block 23. Therefore, in this embodiment, the base end of the base end side block 23 is located on the base end side with respect to the base end of the bolt 21. In the present embodiment, the base end of the ultrasonic transducer 20 is formed by the base end of the block extending portion 40, that is, the base end of the base end side block 23. In the present embodiment, the base end block 23 is formed with a concave shape that is recessed from the tip of the base end block 23 toward the base end. A female screw part 28 is formed in the concave shape of the base end side block 23, and a base end part of the bolt 21 including the male screw part 27 is inserted. The block extending portion 40 has an extending dimension L <b> 3 in the direction along the longitudinal axis C from the base end of the bolt 21 to the base end of the base end side block 23. The extension dimension L3 of the block extending portion 40 is a predetermined size L3ref.
 ブロック延伸部40は、第1の延設領域41及び第2の延設領域42を備える。第1の延設領域41では、長手軸Cに垂直な断面積が第1の断面積Saになる。また、第2の延設領域42では、長手軸Cに垂直な断面積が第1の断面積Saより小さい第2の断面積Sbになる。第2の延設領域42は、長手軸Cに沿う方向について第1の延設領域41とは異なる部位に延設され、本実施形態では第1の延設領域41の基端側に隣設される。また、本実施形態では、第2の延設領域42は、基端側ブロック23の基端まで延設される。第2の延設領域42は、長手軸Cに沿う方向について寸法Tを有する。 The block extending portion 40 includes a first extending region 41 and a second extending region 42. In the first extending region 41, the cross-sectional area perpendicular to the longitudinal axis C becomes the first cross-sectional area Sa. Further, in the second extending region 42, the cross-sectional area perpendicular to the longitudinal axis C becomes the second cross-sectional area Sb smaller than the first cross-sectional area Sa. The second extending region 42 extends to a portion different from the first extending region 41 in the direction along the longitudinal axis C, and is adjacent to the proximal end side of the first extending region 41 in the present embodiment. Is done. In the present embodiment, the second extension region 42 extends to the base end of the base end side block 23. The second extending region 42 has a dimension T in the direction along the longitudinal axis C.
 第1の延設領域41では、長手軸Cに垂直な断面において基端側ブロック23の外周によって囲まれる範囲が、第1の範囲面積Aaになる。また、第2の延設領域42では、長手軸Cに垂直な断面において外周によって囲まれる範囲が、第1の範囲面積Aaより小さい第2の範囲面積Abになる。ある実施例では、第1の延設領域41での基端側ブロック23の外径に比べて第2の延設領域42での基端側ブロック23の外径を小さくし、第1の延設領域41での第1の範囲面積Aaに比べて第2の延設領域42での第2の範囲面積Abを小さくする。また、別のある実施例では、第1の延設領域41での基端側ブロック23の外半径に比べて長手軸Cからの距離が小さい平面を、第2の延設領域42の外周に形成し、平面によって、第1の延設領域41での第1の範囲面積Aaに比べて第2の延設領域42での第2の範囲面積Abを小さくする。本実施形態では、第1の延設領域41での第1の範囲面積Aaに比べ第2の延設領域42での第2の範囲面積Abが小さくなることにより、第1の延設領域での第1の断面積Saに比べて、第2の延設領域42での第2の断面積Sbが小さくなる。前述のように、第1の延設領域41の外周及び第2の延設領域42の外周が形成されることにより、ブロック延伸部40の外周では、第1の延設領域41と第2の延設領域42との境界に、段差43が形成される。 In the first extending region 41, the range surrounded by the outer periphery of the proximal block 23 in the cross section perpendicular to the longitudinal axis C is the first range area Aa. Further, in the second extending region 42, the range surrounded by the outer periphery in the cross section perpendicular to the longitudinal axis C is the second range area Ab smaller than the first range area Aa. In one embodiment, the outer diameter of the base end side block 23 in the second extension region 42 is made smaller than the outer diameter of the base end side block 23 in the first extension region 41, and the first extension region 41. The second range area Ab in the second extension region 42 is made smaller than the first range area Aa in the installation region 41. In another embodiment, a plane having a smaller distance from the longitudinal axis C than the outer radius of the proximal end block 23 in the first extending region 41 is formed on the outer periphery of the second extending region 42. The second range area Ab in the second extension region 42 is made smaller than the first range area Aa in the first extension region 41 due to the formation. In the present embodiment, since the second range area Ab in the second extension region 42 is smaller than the first range area Aa in the first extension region 41, the first extension region 41 The second cross-sectional area Sb in the second extended region 42 is smaller than the first cross-sectional area Sa. As described above, by forming the outer periphery of the first extension region 41 and the outer periphery of the second extension region 42, the first extension region 41 and the second extension region 40 are formed on the outer periphery of the block extending portion 40. A step 43 is formed at the boundary with the extended region 42.
 次に、本実施形態の超音波トランスデューサ20の製造方法、作用及び効果について説明する。本実施形態でも、超音波トランスデューサ20の製造において、ボルト21の外周に、圧電素子31を含む駆動ユニット30を取付け、基端側ブロック23をボルト21の外周に締結する。これにより、駆動ユニット30が先端側ブロック22と基端側ブロック23との間で挟まれ、基端側ブロック23から駆動ユニット30に押圧力Pが作用する。本実施形態では、基端側ブロック23においてボルト21の基端から基端側ブロック23の基端までブロック延伸部40が基端側に向かって延設される状態に、ボルト21の基端部を基端側ブロック23に接続する。また、ボルト21の基端から基端側ブロック23の基端までの長手軸Cに沿う方向についてのブロック延伸部40の延設寸法L3を、既定の大きさL3refにする。これにより、ブロック延伸部40の延設寸法L3が既定の大きさL3refになった超音波トランスデューサ20では、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向についての寸法L2が、既定の大きさL2refになる。また、ある実施例では、所定の大きさPrefの押圧力Pが基端側ブロック23から駆動ユニット30に作用する状態に、基端側ブロック23をボルト21に接続する。 Next, the manufacturing method, operation, and effect of the ultrasonic transducer 20 of this embodiment will be described. Also in this embodiment, in the manufacture of the ultrasonic transducer 20, the drive unit 30 including the piezoelectric element 31 is attached to the outer periphery of the bolt 21, and the proximal end block 23 is fastened to the outer periphery of the bolt 21. As a result, the drive unit 30 is sandwiched between the distal end side block 22 and the proximal end side block 23, and a pressing force P acts on the drive unit 30 from the proximal end side block 23. In the present embodiment, the base end portion of the bolt 21 in a state in which the block extending portion 40 extends from the base end of the bolt 21 to the base end of the base end side block 23 in the base end side block 23 toward the base end side. Is connected to the proximal block 23. Further, the extension dimension L3 of the block extending portion 40 in the direction along the longitudinal axis C from the base end of the bolt 21 to the base end of the base end side block 23 is set to a predetermined size L3ref. Thereby, in the ultrasonic transducer 20 in which the extension dimension L3 of the block extending portion 40 is the predetermined size L3ref, the dimension L2 in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is It becomes a predetermined size L2ref. In one embodiment, the proximal block 23 is connected to the bolt 21 so that the pressing force P having a predetermined magnitude Pref acts on the drive unit 30 from the proximal block 23.
 前述のように超音波トランスデューサ20を組立てると、本実施形態では、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の延設領域42での第2の断面積Sbを調整する。ここで、第1の実施形態で前述したように、超音波トランスデューサ20の単体での振動における共振周波数Frは、超音波トランスデューサ20を構成する部材の剛性率(ヤング率)等の物性(材質)、及び、それらの部材の形状の影響を受ける。したがって、第2の延設領域42での第2の断面積Sb、及び、基端側ブロック23の一部であるブロック延伸部40の形状は、超音波トランスデューサ20の単体での振動における共振周波数Frに影響を与える。したがって、第2の延設領域42での第2の断面積Sbの調整によって第2の断面積Sbが変化することにより、ブロック延伸部40の形状及び基端側ブロック23の形状が変化し、基端側ブロック23の剛性及び質量等が変化する。基端側ブロック23の剛性及び質量等が変化することより、超音波トランスデューサ20の振動における共振周波数Frが、変化する。 When the ultrasonic transducer 20 is assembled as described above, in the present embodiment, the second cross-sectional area Sb in the second extending region 42 is brought into a state where the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. Adjust. Here, as described above in the first embodiment, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 alone is a physical property (material) such as the rigidity (Young's modulus) of the members constituting the ultrasonic transducer 20. And the influence of the shape of those members. Therefore, the second cross-sectional area Sb in the second extending region 42 and the shape of the block extending portion 40 that is a part of the proximal-side block 23 are the resonance frequency in the vibration of the ultrasonic transducer 20 alone. Affects Fr. Therefore, when the second cross-sectional area Sb is changed by adjusting the second cross-sectional area Sb in the second extending region 42, the shape of the block extending portion 40 and the shape of the base end side block 23 are changed. The rigidity and mass of the base end side block 23 change. The resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes due to changes in rigidity, mass, and the like of the proximal end block 23.
 ある実施例では、第1の実施形態で前述したように、超音波トランスデューサ20を単体で振動させ、振動における共振周波数Frを振動計等によって検出する。そして、検出した共振周波数Frに基づいて、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の断面積Sbを調整する。また、別のある実施例では、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等から第2の断面積Sbと共振周波数Frの関係を推定する。そして、推定された第2の断面積Sbと共振周波数Frとの関係に基づいて、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の断面積Sbを調整する。 In an example, as described above in the first embodiment, the ultrasonic transducer 20 is vibrated alone, and the resonance frequency Fr in the vibration is detected by a vibration meter or the like. Then, based on the detected resonance frequency Fr, the second cross-sectional area Sb is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. In another embodiment, the relationship between the second cross-sectional area Sb and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. To do. Then, based on the relationship between the estimated second cross-sectional area Sb and the resonance frequency Fr, the second cross-sectional area Sb is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
 図6は、第2の延設領域42でのブロック延伸部40の第2の断面積Sbと超音波トランスデューサ20の共振周波数Frとの関係の一例を示す図である。図6では、横軸に第2の断面積Sbを示し、縦軸に共振周波数Frを示す。ここで、第2の断面積Sbと共振周波数Frとの関係は、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等に対応して、変化する。ただし、いずれの場合も、図6に示すように、第2の断面積Sbが増加すると、共振周波数Frが減少する。 FIG. 6 is a diagram illustrating an example of the relationship between the second cross-sectional area Sb of the block extending portion 40 in the second extending region 42 and the resonance frequency Fr of the ultrasonic transducer 20. In FIG. 6, the horizontal axis indicates the second cross-sectional area Sb, and the vertical axis indicates the resonance frequency Fr. Here, the relationship between the second cross-sectional area Sb and the resonance frequency Fr changes corresponding to the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. To do. However, in either case, as shown in FIG. 6, when the second cross-sectional area Sb increases, the resonance frequency Fr decreases.
 図6で示す一例では、第2の断面積Sbが大きさSb1になる状態において、超音波トランスデューサ20は、既定の共振周波数Frrefより低い共振周波数Fr3で振動する。この場合、共振周波数Frの検出結果、又は、推定した第2の断面積Sbと共振周波数Frとの関係に基づいて、第2の延設領域42においてブロック延伸部40の外径を減少させ、第2の断面積Sbを大きさSb1から大きさSb2に減少させる。第2の断面積Sbが大きさSb2に調整されることにより、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態になる。 In the example shown in FIG. 6, the ultrasonic transducer 20 vibrates at a resonance frequency Fr3 lower than the predetermined resonance frequency Frref in a state where the second cross-sectional area Sb becomes the size Sb1. In this case, based on the detection result of the resonance frequency Fr or the relationship between the estimated second cross-sectional area Sb and the resonance frequency Fr, the outer diameter of the block extending portion 40 is reduced in the second extending region 42, The second cross-sectional area Sb is decreased from the size Sb1 to the size Sb2. By adjusting the second cross-sectional area Sb to the size Sb2, the single unit of the ultrasonic transducer 20 is vibrated at the predetermined resonance frequency Frref.
 前述のように本実施形態では、ブロック延伸部40の第2の延設領域42での第2の断面積Sbを調整し、ブロック延伸部40の形状を調整することにより、超音波トランスデューサ20単体でも、圧電素子31で発生した超音波振動によって、既定の共振周波数Frで振動する。このため、第1の実施形態と同様に、超音波トランスデューサ20及びロッド部材10を含む振動体を既定の共振周波数で振動させる場合、エネルギーのロスが低減され、振動体の振動の安定性が確保される。 As described above, in the present embodiment, the ultrasonic transducer 20 alone is adjusted by adjusting the second cross-sectional area Sb in the second extending region 42 of the block extending portion 40 and adjusting the shape of the block extending portion 40. However, it vibrates at a predetermined resonance frequency Fr by the ultrasonic vibration generated in the piezoelectric element 31. For this reason, as in the first embodiment, when the vibrating body including the ultrasonic transducer 20 and the rod member 10 is vibrated at a predetermined resonance frequency, energy loss is reduced and the vibration stability of the vibrating body is ensured. Is done.
 また、本実施形態では、共振周波数Frの既定の共振周波数Frrefへの調整において、第2の断面積Sbの調整のみが行われ、ブロック延伸部40の長手軸Cに沿う方向についての延設寸法L3は、既定の大きさL3refから変更されない。したがって、第2の断面積Sbの調整、すなわちブロック延伸部40の形状の調整においては、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向についての寸法L2が、既定の大きさL2refで維持される。超音波トランスデューサ20の長手方向についての寸法L2が既定の大きさL2refで維持されるため、第1の実施形態と同様に、超音波処置具2の製品構成における超音波トランスデューサ20の影響が抑えられる。 In the present embodiment, in the adjustment of the resonance frequency Fr to the predetermined resonance frequency Frref, only the adjustment of the second cross-sectional area Sb is performed, and the extending dimension in the direction along the longitudinal axis C of the block extending portion 40 is performed. L3 is not changed from the default size L3ref. Therefore, in the adjustment of the second sectional area Sb, that is, the adjustment of the shape of the block extending portion 40, the dimension L2 in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is a predetermined size. Maintained at L2ref. Since the dimension L2 in the longitudinal direction of the ultrasonic transducer 20 is maintained at the predetermined size L2ref, the influence of the ultrasonic transducer 20 in the product configuration of the ultrasonic treatment instrument 2 can be suppressed as in the first embodiment. .
 (第2の実施形態の変形例) 
 なお、第2の実施形態の第1の変形例では、第2の延設領域42の長手軸Cに沿う方向について寸法Tを調整することにより、超音波トランスデューサ20の単体での共振周波数Frを調整する。寸法Tが変化することにより、ブロック延伸部40において第2の断面積Sbとなる部分の割合が、変化する。これにより、ブロック延伸部40の形状及び基端側ブロック23の形状が変化し、基端側ブロック23の剛性及び質量等が変化する。基端側ブロック23の剛性及び質量等が変化することより、前述のように、超音波トランスデューサ20の振動における共振周波数Frが、変化する。したがって、第2の延設領域42の長手軸Cに沿う方向について寸法Tは、共振周波数Frに影響を与える。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の延設領域42の寸法Tが、調整される。ある実施例では、前述したように共振周波数Frを振動計等で検出し、共振周波数Frの検出結果に基づいて、寸法Tが調整される。別のある実施例では、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等から寸法Tと共振周波数Frの関係を推定し、推定された関係に基づいて寸法Tを調整する。
(Modification of the second embodiment)
In the first modification of the second embodiment, by adjusting the dimension T in the direction along the longitudinal axis C of the second extending region 42, the resonance frequency Fr of the ultrasonic transducer 20 alone is set. adjust. As the dimension T changes, the proportion of the portion that becomes the second cross-sectional area Sb in the block extending portion 40 changes. Thereby, the shape of the block extension part 40 and the shape of the base end side block 23 change, and the rigidity, mass, etc. of the base end side block 23 change. As described above, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes as the rigidity and mass of the proximal end block 23 change. Accordingly, the dimension T in the direction along the longitudinal axis C of the second extending region 42 affects the resonance frequency Fr. Also in this modification, the dimension T of the second extending region 42 is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. In one embodiment, as described above, the resonance frequency Fr is detected by a vibration meter or the like, and the dimension T is adjusted based on the detection result of the resonance frequency Fr. In another embodiment, the relationship between the dimension T and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shape of the members. The dimension T is adjusted based on
 図7は、第2の延設領域42の長手軸Cに沿う方向についての寸法Tと超音波トランスデューサ20の共振周波数Frとの関係の一例を示す図である。図7では、横軸に寸法Tを示し、縦軸に共振周波数Frを示す。ここで、寸法Tと共振周波数Frとの関係は、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等に対応して、変化する。ただし、いずれの場合も、図7に示すように、第2の寸法Tが増加すると、共振周波数Frが増加する。 FIG. 7 is a diagram showing an example of the relationship between the dimension T in the direction along the longitudinal axis C of the second extending region 42 and the resonance frequency Fr of the ultrasonic transducer 20. In FIG. 7, the horizontal axis indicates the dimension T, and the vertical axis indicates the resonance frequency Fr. Here, the relationship between the dimension T and the resonance frequency Fr changes in accordance with physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. However, in any case, as shown in FIG. 7, when the second dimension T increases, the resonance frequency Fr increases.
 図7で示す一例では、寸法Tが大きさT1になる状態において、超音波トランスデューサ20は、既定の共振周波数Frrefより低い共振周波数Fr4で振動する。この場合、共振周波数Frの検出結果、又は、推定した寸法Tと共振周波数Frとの関係に基づいて、寸法Tを大きさT1から大きさT2に増加させる。寸法Tが大きさT2に調整されることにより、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態になる。 In the example shown in FIG. 7, the ultrasonic transducer 20 vibrates at a resonance frequency Fr4 lower than a predetermined resonance frequency Frref in a state where the dimension T becomes the size T1. In this case, the dimension T is increased from the magnitude T1 to the magnitude T2 based on the detection result of the resonance frequency Fr or the relationship between the estimated dimension T and the resonance frequency Fr. By adjusting the dimension T to the size T2, the single unit of the ultrasonic transducer 20 is in a state of vibrating at the predetermined resonance frequency Frref.
 また、図8に示す第2の実施形態の第2の変形例では、ブロック延伸部40において、第1の延設領域41は中実に形成されるのに対し、第2の延設領域42は中空に形成される。本変形例では、長手軸Cに沿って延設される孔45によって、第2の延設領域42が中空に形成される。孔45は、基端側ブロック23の基端から先端側に向かって延設される。本変形例でも、第1の延設領域41では、長手軸Cに垂直な断面積が第1の断面積Saになり、第2の延設領域42では、長手軸Cに垂直な断面積が第1の断面積Saより小さい第2の断面積Sbになる。 Further, in the second modification of the second embodiment shown in FIG. 8, in the block extending portion 40, the first extending region 41 is formed solid, whereas the second extending region 42 is It is formed hollow. In this modification, the second extending region 42 is formed hollow by the hole 45 extending along the longitudinal axis C. The hole 45 extends from the proximal end of the proximal end side block 23 toward the distal end side. Also in this modified example, in the first extending region 41, the cross-sectional area perpendicular to the longitudinal axis C is the first cross-sectional area Sa, and in the second extending region 42, the cross-sectional area perpendicular to the longitudinal axis C is The second sectional area Sb is smaller than the first sectional area Sa.
 本変形例のある実施例では、孔45の径を調整することにより、第2の延設領域42での第2の断面積Sbの大きさを調整し、超音波トランスデューサ20の単体での共振周波数Frが調整する。また、別のある実施例では、孔45の延設寸法を調整することにより、第2の延設領域42の長手軸Cに沿った寸法Tを調整し、超音波トランスデューサ20の単体での共振周波数Frが調整する。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の断面積Sb又は寸法Tが調整される。 In an embodiment of this modification, the size of the second cross-sectional area Sb in the second extending region 42 is adjusted by adjusting the diameter of the hole 45, and the resonance of the ultrasonic transducer 20 as a single unit is adjusted. The frequency Fr is adjusted. In another embodiment, by adjusting the extension dimension of the hole 45, the dimension T along the longitudinal axis C of the second extension region 42 is adjusted, and the resonance of the ultrasonic transducer 20 as a single unit is adjusted. The frequency Fr is adjusted. Also in this modification, the second cross-sectional area Sb or the dimension T is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
 また、ある変形例では、第2の延設領域42での第2の断面積Sb及び第2の延設領域42の長手軸Cに沿った寸法Tの両方を調整することにより、超音波トランスデューサ20の単体での共振周波数Frが調整される。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、第2の断面積Sb及び寸法Tが調整される。 In a modification, the ultrasonic transducer is adjusted by adjusting both the second cross-sectional area Sb in the second extending region 42 and the dimension T along the longitudinal axis C of the second extending region 42. The resonance frequency Fr of the single unit 20 is adjusted. Also in this modification, the second cross-sectional area Sb and the dimension T are adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
 また、図9に示す第2の実施形態の第3の変形例では、ブロック延伸部40に、長手軸Cに交差する(略垂直な)方向に沿って延設される孔47が形成される。孔47は、孔47の延設方向に略垂直な孔面積Scを有する。本変形例でも、ブロック延伸部40の長手軸Cに沿う方向についての延設寸法L3は、既定の大きさL3refになり、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向についての寸法L2は、既定の大きさL2refになる。 In the third modification of the second embodiment shown in FIG. 9, a hole 47 is formed in the block extending portion 40 so as to extend along a direction (substantially perpendicular) intersecting the longitudinal axis C. . The hole 47 has a hole area Sc substantially perpendicular to the extending direction of the hole 47. Also in this modification, the extension dimension L3 in the direction along the longitudinal axis C of the block extending portion 40 is a predetermined size L3ref, and the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is the same. The dimension L2 is a predetermined size L2ref.
 本変形例では、孔47の孔面積Scを調整することにより、超音波トランスデューサ20の単体での共振周波数Frを調整する。孔47が形成される部位では、ブロック延伸部40の他の部位、すなわち基端側ブロック23の他の部位に比べて、強度が低くなる。このため、孔面積Scが変化することにより、ブロック延伸部40において強度が低い部分の割合が、変化する。また、孔面積Scが変化することにより、ブロック延伸部40の形状及び基端側ブロック23の形状が変化し、基端側ブロック23の剛性及び質量等が変化する。前述の変化に起因して、超音波トランスデューサ20の振動における共振周波数Frが、変化する。したがって、孔47の延設方向に略垂直な孔面積Scは、共振周波数Frに影響を与える。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、孔47の孔面積Scが、調整される。ある実施例では、前述したように共振周波数Frを振動計等で検出し、共振周波数Frの検出結果に基づいて、孔面積Scが調整される。別のある実施例では、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等から孔面積Scと共振周波数Frの関係を推定し、推定された関係に基づいて孔面積Scを調整する。 In this modification, the resonance frequency Fr of the ultrasonic transducer 20 alone is adjusted by adjusting the hole area Sc of the hole 47. In the site | part in which the hole 47 is formed, intensity | strength becomes low compared with the other site | part of the block extending part 40, ie, the other site | part of the base end side block 23. FIG. For this reason, the ratio of the part with low intensity | strength changes in the block extending part 40 by changing the hole area Sc. Moreover, when the hole area Sc changes, the shape of the block extending part 40 and the shape of the base end side block 23 change, and the rigidity and mass of the base end side block 23 change. Due to the change described above, the resonance frequency Fr in the vibration of the ultrasonic transducer 20 changes. Therefore, the hole area Sc substantially perpendicular to the extending direction of the hole 47 affects the resonance frequency Fr. Also in this modification, the hole area Sc of the hole 47 is adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. In one embodiment, as described above, the resonance frequency Fr is detected by a vibrometer or the like, and the hole area Sc is adjusted based on the detection result of the resonance frequency Fr. In another embodiment, the relationship between the hole area Sc and the resonance frequency Fr is estimated from the physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of these members. The hole area Sc is adjusted based on the relationship.
 図10は、孔47の孔面積Scと超音波トランスデューサ20の共振周波数Frとの関係の一例を示す図である。図10では、横軸に孔面積Scを示し、縦軸に共振周波数Frを示す。ここで、孔面積Scと共振周波数Frとの関係は、超音波トランスデューサ20を構成する部材の剛性率等の物性(材質)、及び、それらの部材の形状等に対応して、変化する。ただし、いずれの場合も、図10に示すように、孔面積Scが増加すると、すなわち、ブロック延伸部40において強度が低い部分の割合が増加すると、共振周波数Frが減少する。 FIG. 10 is a diagram showing an example of the relationship between the hole area Sc of the hole 47 and the resonance frequency Fr of the ultrasonic transducer 20. In FIG. 10, the horizontal axis indicates the hole area Sc, and the vertical axis indicates the resonance frequency Fr. Here, the relationship between the hole area Sc and the resonance frequency Fr changes in accordance with physical properties (materials) such as the rigidity of the members constituting the ultrasonic transducer 20 and the shapes of the members. However, in any case, as shown in FIG. 10, the resonance frequency Fr decreases as the hole area Sc increases, that is, when the proportion of the portion with low strength in the block extending portion 40 increases.
 図10で示す一例では、孔面積Scが大きさSc1になる状態において、超音波トランスデューサ20は、既定の共振周波数Frrefより高い共振周波数Fr5で振動する。この場合、共振周波数Frの検出結果、又は、推定した孔面積Scと共振周波数Frとの関係に基づいて、孔面積Scを大きさSc1から大きさSc2に増加させる。孔面積Scが大きさSc2に調整されることにより、超音波トランスデューサ20の単体が、既定の共振周波数Frrefで振動する状態になる。 In the example shown in FIG. 10, the ultrasonic transducer 20 vibrates at a resonance frequency Fr5 higher than a predetermined resonance frequency Frref in a state where the hole area Sc becomes the size Sc1. In this case, the hole area Sc is increased from the size Sc1 to the size Sc2 based on the detection result of the resonance frequency Fr or the estimated relationship between the hole area Sc and the resonance frequency Fr. By adjusting the hole area Sc to the size Sc2, the single unit of the ultrasonic transducer 20 is in a state of vibrating at the predetermined resonance frequency Frref.
 また、ある変形例では、孔47の孔面積Scの代わりに、又は、孔47の孔面積Scに加えて、孔47の長手軸Cに沿う方向についての位置を調整することにより、超音波トランスデューサ20の単体での共振周波数Frが調整される。孔47の位置が変化することにより、ブロック延伸部40の形状及び剛性等が変化し、超音波トランスデューサ20の共振周波数が変化する。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、孔47の位置、又は、孔47の孔面積Sc及び位置が調整される。 Further, in a modification, the ultrasonic transducer is adjusted by adjusting the position along the longitudinal axis C of the hole 47 instead of the hole area Sc of the hole 47 or in addition to the hole area Sc of the hole 47. The resonance frequency Fr of the single unit 20 is adjusted. By changing the position of the hole 47, the shape and rigidity of the block extending portion 40 change, and the resonance frequency of the ultrasonic transducer 20 changes. Also in this modification, the position of the hole 47 or the hole area Sc and the position of the hole 47 are adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref.
 第2の実施形態及びその変形例では、超音波トランスデューサ(20)は、長手軸(C)に沿って延設されるボルト(21)と、ボルト(21)の先端部が接続される先端側ブロック(22)と、ボルト(21)の基端部が接続される基端側ブロック(23)と、長手軸(C)に沿う方向について先端側ブロック(22)と基端側ブロック(23)との間で挟まれる状態でボルト(21)の外周に取付けられる駆動ユニット(30)と、を備える。駆動ユニット(30)は、電気エネルギーが供給されることにより超音波振動を発生する圧電素子(31)を備え、基端側ブロック(23)は、ボルト(21)の基端から基端側ブロック(23)の基端まで基端側に向かって延設されるブロック延伸部(40)を備える。ブロック延伸部(40)の形状は、圧電素子(31)で発生した超音波振動によって超音波トランスデューサ(20)が振動する状態での共振周波数(Fr)に影響を与え、超音波トランスデューサ(20)の単体は、超音波振動が発生することにより、ブロック延伸部(40)の形状に起因して、既定の共振周波数(Frref)で振動する。 In the second embodiment and its modification, the ultrasonic transducer (20) includes a bolt (21) extending along the longitudinal axis (C) and a tip side to which a tip of the bolt (21) is connected. A block (22), a proximal block (23) to which the proximal end of the bolt (21) is connected, and a distal block (22) and a proximal block (23) in the direction along the longitudinal axis (C) A drive unit (30) attached to the outer periphery of the bolt (21) in a state of being sandwiched between the two. The drive unit (30) includes a piezoelectric element (31) that generates ultrasonic vibration when supplied with electric energy, and the proximal end block (23) extends from the proximal end of the bolt (21) to the proximal end block. A block extension part (40) extending toward the base end side to the base end of (23) is provided. The shape of the block extending portion (40) affects the resonance frequency (Fr) when the ultrasonic transducer (20) vibrates due to the ultrasonic vibration generated in the piezoelectric element (31), and the ultrasonic transducer (20). Due to the occurrence of ultrasonic vibration, the single body of the material vibrates at a predetermined resonance frequency (Frref) due to the shape of the block extending portion (40).
 (その他の変形例)
 なお、ある変形例では、第1の実施形態の構成、及び、第2の実施形態及びその変形例のいずれかの構成を組み合わせてもよい。この場合、基端側ブロック23から駆動ユニット30への押圧力P及びブロック延伸部40の形状の両方を調整することにより、超音波トランスデューサ20の単体での共振周波数Frが調整される。本変形例でも、超音波トランスデューサ20の単体が既定の共振周波数Frrefで振動する状態に、押圧力P及びブロック延伸部40の形状が調整される。また、本変形例でも、超音波トランスデューサ20の基端から先端までの長手軸Cに沿う方向についての寸法(L1;L2)は、既定の大きさ(L1ref;L2ref)になる。
(Other variations)
In addition, in a certain modification, you may combine the structure of 1st Embodiment, and any structure of 2nd Embodiment and its modification. In this case, by adjusting both the pressing force P from the base end side block 23 to the drive unit 30 and the shape of the block extending portion 40, the resonance frequency Fr of the ultrasonic transducer 20 alone is adjusted. Also in this modification, the pressing force P and the shape of the block extending portion 40 are adjusted so that the single unit of the ultrasonic transducer 20 vibrates at the predetermined resonance frequency Frref. Also in this modification, the dimension (L1; L2) in the direction along the longitudinal axis C from the proximal end to the distal end of the ultrasonic transducer 20 is a predetermined size (L1ref; L2ref).
 また、図11に示すある変形例では、超音波トランスデューサ20は、1つ以上の中継部材(図示しない)を介して間接的にロッド部材10に接続される。この場合、中継部材は、チタン合金等の振動伝達性の高い材料から形成される。本変形例では、超音波トランスデューサ20とロッド部材10との間の中継部材に、前述の被支持部25及びホーン26が設けられる。また、本変形例では、超音波トランスデューサ20の先端と基端との間は、既定の共振周波数Frrefでの縦振動の半波長に相当する。このため、本変形例でも、圧電素子31で発生した超音波振動によって、超音波トランスデューサ20は単体で、既定の共振周波数Frrefで振動する。本変形例では、超音波トランスデューサ20の基端に、振動腹の中で最も基端側に位置する振動腹A1が発生し、超音波トランスデューサ20の先端に、振動腹A1から先端側に半波長離れた振動腹A2が発生する。そして、駆動ユニット30及びボルト21に、振動腹A1から先端側に4分の1波長離れた振動節N1が発生する。 Further, in a modification shown in FIG. 11, the ultrasonic transducer 20 is indirectly connected to the rod member 10 via one or more relay members (not shown). In this case, the relay member is formed from a material having high vibration transmission properties such as a titanium alloy. In the present modification, the above-mentioned supported portion 25 and the horn 26 are provided on the relay member between the ultrasonic transducer 20 and the rod member 10. In the present modification, the space between the distal end and the proximal end of the ultrasonic transducer 20 corresponds to a half wavelength of longitudinal vibration at a predetermined resonance frequency Frref. For this reason, in this modification as well, the ultrasonic transducer 20 vibrates at a predetermined resonance frequency Frref by the ultrasonic vibration generated in the piezoelectric element 31. In this modification, a vibration antinode A1 located closest to the base end of the vibration antinode is generated at the base end of the ultrasonic transducer 20, and the ultrasonic transducer 20 is separated by a half wavelength from the vibration antinode A1 to the front end side. Vibration antinode A2 occurs. Then, in the drive unit 30 and the bolt 21, a vibration node N1 that is a quarter wavelength away from the vibration antinode A1 is generated on the tip side.
 前述した実施形態等では、超音波トランスデューサ20の長さが、既定の共振周波数Frrefでの縦振動の一波長に相当する例(図2参照)、及び、既定の共振周波数Frrefでの縦振動の半波長に相当する例(図11参照)について説明した。その他、超音波トランスデューサ20の単体の長さは、既定の共振周波数Frrefでの縦振動の半波長の自然数倍の長さであればよい。 In the above-described embodiment and the like, an example in which the length of the ultrasonic transducer 20 corresponds to one wavelength of longitudinal vibration at the predetermined resonance frequency Frref (see FIG. 2), and longitudinal vibration at the predetermined resonance frequency Frref. An example corresponding to a half wavelength (see FIG. 11) has been described. In addition, the length of the single unit of the ultrasonic transducer 20 may be a natural number times the half wavelength of the longitudinal vibration at the predetermined resonance frequency Frref.
 前述の実施形態等では、超音波トランスデューサ(20)の先端と基端との間は、既定の共振周波数(Frref)での縦振動の半波長の自然数倍に相当する。すなわち、超音波トランスデューサ(20)の単体が既定の共振周波数(Frref)で振動する状態に、基端側ブロック(23)から駆動ユニット(30)への押圧力(P)、及び、基端側ブロック(23)のブロック延伸部(40)の形状の少なくとも一方が調整される。 In the above-described embodiment and the like, the space between the distal end and the proximal end of the ultrasonic transducer (20) corresponds to a natural number multiple of a half wavelength of longitudinal vibration at a predetermined resonance frequency (Frref). That is, the pressing force (P) from the base end side block (23) to the drive unit (30) and the base end side so that the single unit of the ultrasonic transducer (20) vibrates at a predetermined resonance frequency (Frref). At least one of the shapes of the block extending portions (40) of the block (23) is adjusted.
 以上、本発明の実施形態等について説明したが、本発明は前述の実施形態等に限るものではなく、発明の趣旨を逸脱することなく種々の変形ができることは、もちろんである。 The embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

Claims (12)

  1.  基端から先端まで長手軸に沿って延設されるボルトの外周に、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える駆動ユニットを取付けることと、
     前記長手軸に沿う方向について前記ボルトの先端部が接続される先端側ブロックと前記ボルトの基端部が接続される基端側ブロックとの間で、前記駆動ユニットを挟むことにより、前記基端側ブロックから前記駆動ユニットに先端側へ押圧力を作用させることと、
     前記圧電素子で発生した前記超音波振動によって前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む超音波トランスデューサの単体が既定の共振周波数で振動する状態に、前記基端側ブロックから前記駆動ユニットへの前記押圧力を調整することと、
     を具備する超音波トランスデューサの製造方法。
    Attaching a drive unit comprising a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied to the outer periphery of a bolt extending along the longitudinal axis from the proximal end to the distal end;
    The base end is sandwiched between a front end side block to which the front end portion of the bolt is connected and a base end side block to which the base end portion of the bolt is connected in the direction along the longitudinal axis. Applying a pressing force from the side block to the driving unit toward the distal end;
    The base end side of the ultrasonic transducer including the bolt, the front end side block, the base end side block, and the drive unit vibrates at a predetermined resonance frequency by the ultrasonic vibration generated in the piezoelectric element. Adjusting the pressing force from a block to the drive unit;
    A method of manufacturing an ultrasonic transducer comprising:
  2.  前記基端側ブロックから前記駆動ユニットへの前記押圧力が調整された状態において、前記超音波トランスデューサの基端から先端までの前記長手軸に沿う前記方向についての寸法を、既定の大きさにすることをさらに具備する、請求項1の製造方法。 In a state where the pressing force from the proximal end side block to the drive unit is adjusted, the dimension in the direction along the longitudinal axis from the proximal end to the distal end of the ultrasonic transducer is set to a predetermined size. The manufacturing method according to claim 1, further comprising:
  3.  前記押圧力を調整することは、
      前記基端側ブロックから前記駆動ユニットへ前記押圧力が作用している状態において、前記圧電素子で発生した前記超音波振動によって前記超音波トランスデューサを前記単体で振動させ、前記超音波トランスデューサの振動における共振周波数を検出することと、
      前記共振周波数の検出結果に基づいて、前記駆動ユニットへの前記押圧力を調整することと、
     を備える、請求項1の製造方法。
    Adjusting the pressing force is
    In a state where the pressing force is applied from the base end side block to the drive unit, the ultrasonic transducer is vibrated by the ultrasonic vibration generated by the piezoelectric element, and the ultrasonic transducer vibrates. Detecting the resonant frequency;
    Adjusting the pressing force to the drive unit based on the detection result of the resonance frequency;
    The manufacturing method of Claim 1 provided with these.
  4.  基端及び先端を有し、基端から先端まで長手軸に沿って延設されるボルトと、
     前記ボルトの先端部が接続される先端側ブロックと、
     前記ボルトの基端部が接続される基端側ブロックと、
     電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備えるとともに、前記長手軸に沿う方向について前記先端側ブロックと前記基端側ブロックとの間で挟まれる状態で前記ボルトの外周に取付けられる駆動ユニットと、
     を具備する超音波トランスデューサであって、
     前記基端側ブロックは、前記ボルトの前記基端から前記基端側ブロックの基端まで基端側に向かって延設されるブロック延伸部を備え、
     前記ブロック延伸部の形状は、前記圧電素子で発生した前記超音波振動によって前記超音波トランスデューサが振動する状態での共振周波数に影響を与え、
     前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む前記超音波トランスデューサの単体は、前記超音波振動が発生することにより、前記ブロック延伸部の前記形状に起因して、既定の共振周波数で振動する、
     超音波トランスデューサ。
    A bolt having a proximal end and a distal end and extending along the longitudinal axis from the proximal end to the distal end;
    A tip side block to which the tip of the bolt is connected;
    A proximal block to which a proximal end of the bolt is connected;
    A piezoelectric element that generates ultrasonic vibrations when supplied with electrical energy is provided, and the outer periphery of the bolt is sandwiched between the distal end side block and the proximal end side block in a direction along the longitudinal axis. An attached drive unit; and
    An ultrasonic transducer comprising:
    The base end side block includes a block extending portion extending toward the base end side from the base end of the bolt to the base end of the base end side block,
    The shape of the block extending portion affects the resonance frequency in a state where the ultrasonic transducer vibrates due to the ultrasonic vibration generated in the piezoelectric element,
    The single unit of the ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit is caused by the shape of the block extending portion due to the generation of the ultrasonic vibration. Vibrates at the resonance frequency of
    Ultrasonic transducer.
  5.  前記ボルトの前記基端から前記基端側ブロックの前記基端までの前記長手軸に沿う前記方向についての前記ブロック延伸部の延設寸法は、既定の大きさになり、
     前記超音波トランスデューサの基端から先端までの前記長手軸に沿う前記方向についての寸法は、既定の大きさになる、
     請求項4の超音波トランスデューサ。
    The extension dimension of the block extension part in the direction along the longitudinal axis from the base end of the bolt to the base end of the base end side block is a predetermined size,
    The dimension in the direction along the longitudinal axis from the proximal end to the distal end of the ultrasonic transducer is a predetermined size.
    The ultrasonic transducer according to claim 4.
  6.  前記ブロック延伸部は、前記長手軸に垂直な断面積が第1の断面積になる第1の延設領域と、前記長手軸に沿う前記方向について前記第1の延設領域とは異なる部位に延設され、前記長手軸に垂直な断面積が前記第1の断面積より小さい第2の断面積になる第2の延設領域と、を備え、
     前記第2の延設領域での前記第2の断面積及び前記第2の延設領域の前記長手軸に沿う前記方向についての寸法は、前記超音波トランスデューサが振動する状態での前記共振周波数に影響を与え、
     前記超音波トランスデューサの前記単体は、前記超音波振動が発生することにより、前記第2の延設領域での前記第2の断面積及びは前記第2の延設領域の前記寸法の少なくとも一方に起因して、前記既定の共振周波数で振動する、
     請求項4の超音波トランスデューサ。
    The block extending portion has a first extending region in which a cross-sectional area perpendicular to the longitudinal axis becomes a first cross-sectional area, and a portion different from the first extending region in the direction along the longitudinal axis. A second extension region extending and having a cross-sectional area perpendicular to the longitudinal axis that is a second cross-sectional area smaller than the first cross-sectional area,
    The second cross-sectional area in the second extending region and the dimension in the direction along the longitudinal axis of the second extending region are the resonance frequency in a state where the ultrasonic transducer vibrates. Influencing,
    The single unit of the ultrasonic transducer has at least one of the second cross-sectional area in the second extending region and the dimension of the second extending region by generating the ultrasonic vibration. Due to the vibration at the predetermined resonance frequency,
    The ultrasonic transducer according to claim 4.
  7.  前記第1の延設領域では、前記長手軸に垂直な断面において外周によって囲まれる範囲が第1の範囲面積になり、
     前記第2の延設領域では、前記長手軸に垂直な前記断面において外周によって囲まれる範囲が前記第1の範囲面積より小さい第2の範囲面積になる、
     請求項6の超音波トランスデューサ。
    In the first extension region, a range surrounded by the outer periphery in a cross section perpendicular to the longitudinal axis is a first range area,
    In the second extension region, a range surrounded by an outer periphery in the cross section perpendicular to the longitudinal axis is a second range area smaller than the first range area.
    The ultrasonic transducer according to claim 6.
  8.  前記第1の延設領域は、中実に形成され、
     前記第2の延設領域は、前記長手軸に沿って延設される孔を有し、中空に形成される、
     請求項6の超音波トランスデューサ。
    The first extension region is formed solid,
    The second extending region has a hole extending along the longitudinal axis and is formed hollow.
    The ultrasonic transducer according to claim 6.
  9.  前記ブロック延伸部は、前記長手軸に交差する方向に沿って延設される孔を有し、
     前記孔の延設方向に垂直な孔面積は、前記超音波トランスデューサが振動する状態での前記共振周波数に影響を与え、
     前記超音波トランスデューサの前記単体は、前記超音波振動が発生することにより、前記孔の前記孔面積に起因して、前記既定の共振周波数で振動する、
     請求項4の超音波トランスデューサ。
    The block extending portion has a hole extending along a direction intersecting the longitudinal axis,
    The hole area perpendicular to the extending direction of the hole affects the resonance frequency in a state where the ultrasonic transducer vibrates,
    The single unit of the ultrasonic transducer vibrates at the predetermined resonance frequency due to the hole area of the hole due to the generation of the ultrasonic vibration.
    The ultrasonic transducer according to claim 4.
  10.  基端から先端まで長手軸に沿って延設されるボルトの外周に、電気エネルギーが供給されることにより超音波振動を発生する圧電素子を備える駆動ユニットを取付けることと、
     基端側ブロックにおいて前記ボルトの前記基端から前記基端側ブロックの基端までブロック延伸部が基端側に向かって延設される状態に、前記ボルトの基端部を基端側ブロックに接続することと、
     前記長手軸に沿う方向について前記ボルトの先端部が接続される先端側ブロックと前記基端側ブロックとの間で、前記駆動ユニットを挟むことと、
     前記圧電素子で発生した前記超音波振動によって前記ボルト、前記先端側ブロック、前記基端側ブロック及び前記駆動ユニットを含む超音波トランスデューサの単体が既定の共振周波数で振動する状態に、前記ブロック延伸部の形状を調整することと、
     を具備する超音波トランスデューサの製造方法。
    Attaching a drive unit comprising a piezoelectric element that generates ultrasonic vibrations when electric energy is supplied to the outer periphery of a bolt extending along the longitudinal axis from the proximal end to the distal end;
    In the state where the block extending portion extends toward the base end side from the base end of the bolt to the base end of the base end side block in the base end side block, the base end portion of the bolt is changed to the base end side block. Connecting,
    Sandwiching the drive unit between the distal end side block and the proximal end block to which the distal end of the bolt is connected in the direction along the longitudinal axis;
    The block extending portion is brought into a state where a single ultrasonic transducer including the bolt, the distal end side block, the proximal end side block, and the drive unit vibrates at a predetermined resonance frequency due to the ultrasonic vibration generated in the piezoelectric element. Adjusting the shape of the
    A method of manufacturing an ultrasonic transducer comprising:
  11.  前記ボルトを前記基端がブロックに接続することは、前記ボルトの前記基端から前記基端側ブロックの前記基端までの前記長手軸に沿う前記方向についての前記ブロック延伸部の延設寸法を既定の大きさにすることにより、前記超音波トランスデューサの基端から先端までの前記長手軸に沿う前記方向についての寸法を既定の大きさにすることを備え、
     前記ブロック延伸部の前記形状を調整することは、前記ブロック延伸部の前記延設寸法を前記既定の大きさから変更することなく、前記ブロック延伸部の形状を調整することを備える、
     請求項10の製造方法。
    Connecting the bolt to the block at the base end means that the extension dimension of the block extending portion in the direction along the longitudinal axis from the base end of the bolt to the base end of the base end side block is determined. Providing a predetermined size for the direction along the longitudinal axis from the proximal end to the distal end of the ultrasonic transducer by having a predetermined size;
    Adjusting the shape of the block extending portion comprises adjusting the shape of the block extending portion without changing the extension dimension of the block extending portion from the predetermined size.
    The manufacturing method of Claim 10.
  12.  前記ブロック延伸部の前記形状を調整することは、
      前記基端側ブロックから前記駆動ユニットへ押圧力が作用している状態において、前記圧電素子で発生した前記超音波振動によって前記超音波トランスデューサを前記単体で振動させ、前記超音波トランスデューサの振動における共振周波数を検出することと、
      前記共振周波数の検出結果に基づいて、前記ブロック延伸部の前記形状を調整することと、
     を備える、請求項10の製造方法。
    Adjusting the shape of the block extending portion,
    In a state where a pressing force is applied from the base end side block to the drive unit, the ultrasonic transducer is vibrated by the ultrasonic vibration generated by the piezoelectric element, and resonance in vibration of the ultrasonic transducer is caused. Detecting the frequency,
    Adjusting the shape of the block extending portion based on the detection result of the resonance frequency;
    The manufacturing method of Claim 10 provided with these.
PCT/JP2016/079115 2016-09-30 2016-09-30 Ultrasonic transducer and method for producing ultrasonic transducer WO2018061199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079115 WO2018061199A1 (en) 2016-09-30 2016-09-30 Ultrasonic transducer and method for producing ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079115 WO2018061199A1 (en) 2016-09-30 2016-09-30 Ultrasonic transducer and method for producing ultrasonic transducer

Publications (1)

Publication Number Publication Date
WO2018061199A1 true WO2018061199A1 (en) 2018-04-05

Family

ID=61760231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079115 WO2018061199A1 (en) 2016-09-30 2016-09-30 Ultrasonic transducer and method for producing ultrasonic transducer

Country Status (1)

Country Link
WO (1) WO2018061199A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170498U (en) * 1984-10-15 1986-05-14
JP2003143697A (en) * 2001-11-07 2003-05-16 Olympus Optical Co Ltd Method of producing screw-fastened langevin vibrator
JP2010034817A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Ultrasonic transducer and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170498U (en) * 1984-10-15 1986-05-14
JP2003143697A (en) * 2001-11-07 2003-05-16 Olympus Optical Co Ltd Method of producing screw-fastened langevin vibrator
JP2010034817A (en) * 2008-07-29 2010-02-12 Ngk Spark Plug Co Ltd Ultrasonic transducer and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN103908321B (en) Ultrasonic transducer system
JP5959781B2 (en) Ultrasonic probe and ultrasonic treatment instrument
US10010342B2 (en) Ultrasonic probe and ultrasonic treatment apparatus
CN109845293B (en) Vibration transmission body, ultrasonic transducer structure, and medical device
JP6242559B2 (en) Vibration transmitting member, ultrasonic treatment instrument, vibrating body unit, and method of manufacturing vibration transmitting member
WO2016114290A1 (en) Vibrating body unit and ultrasonic probe
US11266428B2 (en) Ultrasonic transducer and manufacturing method of ultrasonic transducer
US11903603B2 (en) Ultrasonic transducer
US10182963B2 (en) Vibration generating unit, vibrating body unit and ultrasonic treatment instrument
WO2018061199A1 (en) Ultrasonic transducer and method for producing ultrasonic transducer
US20170239497A1 (en) Vibration generating unit, vibrating body unit and ultrasonic treatment instrument
WO2016147769A1 (en) Vibration transmission unit and ultrasonic treatment tool
WO2017126032A1 (en) Vibration transmission member, ultrasonic treatment instrument and vibration body unit
WO2014065177A1 (en) Ultrasonic transmission unit and production method for ultrasonic transmission unit
US20190262027A1 (en) Vibration transmitter and ultrasonic treatment instrument
WO2019116510A1 (en) Ultrasonic treatment tool
WO2016006463A1 (en) Ultrasonic probe and ultrasonic treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP