WO2018060603A1 - Echangeur de chaleur comprenant un matériau à changement de phase - Google Patents

Echangeur de chaleur comprenant un matériau à changement de phase Download PDF

Info

Publication number
WO2018060603A1
WO2018060603A1 PCT/FR2017/052608 FR2017052608W WO2018060603A1 WO 2018060603 A1 WO2018060603 A1 WO 2018060603A1 FR 2017052608 W FR2017052608 W FR 2017052608W WO 2018060603 A1 WO2018060603 A1 WO 2018060603A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
heat exchanger
change material
gas
channel
Prior art date
Application number
PCT/FR2017/052608
Other languages
English (en)
Inventor
Kamel Azzouz
Dawid Szostek
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2018060603A1 publication Critical patent/WO2018060603A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Heat exchanger comprising a material
  • the present invention relates to a heat exchanger.
  • the invention relates to a heat exchanger adapted for use in cooling the charge air or the recirculated exhaust gas.
  • the internal combustion engine of said motor vehicle can be combined with a turbocharger to improve the performance of said engine.
  • the internal combustion engine is powered with compressed air also called "supercharging air”.
  • the use of the turbocharger induces a high temperature of said charge air introduced into the internal combustion engine. Therefore, it is known to associate said turbocharger, a heat exchanger to cool the charge air prior to its introduction into the internal combustion engine.
  • Such a heat exchanger generally comprises a housing, and an exchange beam disposed inside the housing.
  • the exchange beam comprises passages positioned one above the other and forming in combination a conduit for guiding a first fluid to be cooled, such as charge air or recirculated exhaust gas, a first input to a first output.
  • the shell of the exchange bundle is generally provided with a second inlet and a second outlet for a second fluid, such as a coolant.
  • the housing of the exchange beam is adapted to guide the second fluid from the second inlet to the second outlet.
  • the gas passages comprise corrugated inserts.
  • the heat exchanger is also connected to an inlet box for routing gas within the heat exchanger and an outlet housing to vent the cooled gas to the outside of the heat exchanger.
  • heat Turbocharger performance varies with changes in coolant temperature and vehicle engine load. These variations in performance have a negative impact on the environment through the fuel consumption and the C02 emissions emitted by the motor vehicle.
  • a first object of the invention relates to a heat exchanger for cooling a motor vehicle engine inlet gas comprising a bundle of spacers arranged to allow the passage of a gas to be cooled, the heat exchanger comprising a material phase change arrangement arranged to exchange heat with the gas passing through the interlayer bundle.
  • the heat exchanger according to the present invention makes it possible to reduce the variations in the temperature of the gas leaving the heat exchanger, while having a compact heat exchanger. This makes it possible to reduce the variations in turbocharger performance and / or the variations in the temperature of the coolant.
  • the heat exchanger comprises a bundle of channels arranged to allow the flow of a cooling liquid to cool the gas passing through the interlayer bundle.
  • the phase change material is arranged to pass from a solid phase to a liquid phase beyond a phase change temperature.
  • This phase change material is static, ie, does not flow.
  • the phase change material and in particular its phase change temperature is chosen so that this material is, at least temporarily in operation of the exchanger, in a mixed solid / liquid phase .
  • the phase change material is a compound comprising inorganic compounds such as an alloy of organic salts and water.
  • the phase change material is a compound comprising organic compounds such as paraffins and fatty acids.
  • the phase change material is a compound comprising eutectic compounds.
  • the phase change material is a compound comprising compounds of plant origin. According to one aspect of the invention, the phase change material is disposed closer to a gas outlet of the exchanger than a gas inlet.
  • the phase change material is preferably located closer to an inlet of the cooling fluid of a channel arranged to allow the flow of a coolant than an outlet of the cooling fluid of this channel.
  • the phase change material extends transversely to the direction of passage of the gas.
  • the phase change material extends over a distance equal to at most a quarter of the distance between a gas inlet and a gas outlet of the exchanger.
  • the phase change material extends over a distance equal to at least half, preferably at least 80% of the length L of the channel bundle.
  • the phase change of the phase change material is caused by heat exchanges between at least this phase change material and the gas.
  • the phase change of the phase change material is caused by heat exchanges between this phase change material with both the gas and the coolant.
  • the exchanger comprises a cavity adapted to receive the phase change material.
  • the cavity is arranged so that the coolant can be in thermal contact with the phase change material.
  • the cavity is arranged so that the gas can be in thermal contact with the phase change material.
  • the exchanger comprises a plurality of cavities adapted to receive the phase change material.
  • the cavities are separated from each other.
  • the channel bundle comprises at least one channel comprising a pair of plates.
  • a channel is delimited by a pair of plates of the exchanger.
  • the cavity adapted to receive the phase change material is formed at least partially on one of the plates.
  • the cavity is formed between the pair of plates.
  • the cavity is in the channel or adjacent to the channel.
  • the cavity is located in at least one channel of the channel bundle.
  • the channel arranged to allow the flow of a cooling liquid comprises coolant passages, these passages being formed between the pair of plates.
  • the channel is partially blocked by the phase change material, the unclosed spaces form coolant passages.
  • the channel comprises 3 elbows in half-turns.
  • the phase change material cavity is between coolant passages.
  • the phase change material cavity extends for about a quarter of the length of the path traveled by the coolant within a channel.
  • the cavity is adjacent to the channel.
  • the heat exchanger comprises a collector.
  • the collector comprises an orifice communicating with the cavity of phase change material.
  • the orifice is located in a double hollow wall of the collector.
  • the cavity is located between two channels of the channel bundle. In this case, the cavity is outside the channels.
  • the cavity is formed in an embossed channel.
  • the embossed channel at least locally replaces a portion of an interlayer of the interlayer bundle. According to one aspect of the invention, the embossed channel completely replaces an interlayer of the interlayer bundle.
  • the embossed channel is configured to leave gas passages between the embossed channel and at least one neighboring channel arranged to allow the flow of a coolant
  • the embossed channel comprises a pair of plates.
  • the embossed channel comprises at least one embossed plate. According to one aspect of the invention, the embossed channel extends over more than a quarter, preferably at least 30% of the length L of the channel bundle.
  • the exchanger comprises several embossed channels.
  • FIG. 1 shows a schematic representation of a side view of a heat exchanger
  • FIG. 2 shows a schematic representation of a top view of a channel plate arranged to allow the flow of a coolant to achieve the exchanger of Figure 1 according to a first embodiment.
  • Figure 2a shows a sectional view of the plate of Figure 2 according to the plane passing through lla-lla.
  • FIG. 2b shows a partial perspective view of the exchanger according to the first embodiment, the exchanger comprising the collector connected to the cavity comprising the phase-change material.
  • FIG. 3 shows a schematic representation of a top view of a channel plate arranged to allow the flow of a cooling liquid according to a variant of the first embodiment, FIG.
  • FIG. 3a shows a partial perspective view of the exchanger according to the variant of the first embodiment, the exchanger comprising the collector connected to the cavity comprising the phase-change material
  • FIG. 4 shows a schematic representation of a side view of a heat exchanger comprising a embossed channel according to a second embodiment.
  • Figure 4a shows the partial perspective view of an embossed plate according to the second embodiment.
  • Figure 5 shows a diagram of a low temperature system loop including the exchanger of the invention.
  • FIG. 1 shows a heat exchanger 100 for a vehicle comprising:
  • the exchanger 100 is disposed on a low temperature coolant loop.
  • the loop comprises the exchanger 100, a coolant cooling exchanger 101 and an electric pump 102.
  • the gas 3 which passes through the exchanger 100 comes from a turbocharger or a valve and is injected into the intake of 'a motor.
  • the interlayer bundles 2 and channels 4 are arranged inside a not shown housing, comprising inputs and outputs (not shown) for the passage of gas and coolant through the exchanger 100.
  • the exchanger comprises a phase-change material 8 arranged to exchange heat with the gas 3 passing through the interlayer bundle 2 so as to damp the temperature variations of this gas 3 at the outlet of the exchanger.
  • the phase change material 8 is arranged to pass from a solid phase to a liquid phase beyond a phase change temperature.
  • the phase change material 8 and in particular its phase change temperature is chosen so that this material is, at least temporarily, in a mixed solid / liquid phase so as to dampen temperature variations of the gas 3 at the outlet of the exchanger.
  • the phase change material is for example a compound comprising inorganic compounds such as an organic salt and water alloy.
  • the phase change material may comprise organic compounds such as paraffins and fatty acids.
  • the phase change material is for example a compound comprising eutectic compounds.
  • the phase change material is a compound which can include compounds of plant origin.
  • the channel bundle 4 comprises a pair of plates 5.
  • the plate 5 has a periphery of substantially rectangular shape of width I and length L.
  • It comprises a coolant inlet 12 and a coolant outlet 13.
  • a path capable of circulating the cooling fluid is formed on the plate 5. It defines with another complementary plate the channel 4 of the plate 5.
  • the inlet 12 and the outlet 13 are located at the edge of the plate 5. They can be located alternately in the center of the plate 5.
  • the plate 5 comprises one or more cavities 10 able to receive the phase-change material 8.
  • the plate 5 comprises four rectilinear cavities 10 separated from one another.
  • the cavities 10 can be connected to each other.
  • the number of cavities is to be adapted according to the plate, the shape of the channel 4 and the application.
  • the plate 5 may comprise a single cavity 10.
  • the shape of the cavities is not limiting either.
  • the cavities can be sinuous. They can in the manner of protuberances contribute to the disruption of the circulation of cooling fluid in the channel 4.
  • FIG. 1 Arrows illustrate the direction and the direction of passage of the gas 3 through the exchanger 100.
  • the gas 3 enter the exchanger through the gas inlet 31 and exit the exchanger through the gas outlet 32.
  • phase change material 8 and the cavities 10 are arranged closer to the gas outlet 32 of the exchanger than the gas inlet 31 of the exchanger. Indeed, this makes it possible not to disturb the conventional cooling process of the gas 3 when it circulates in the exchanger 100. This configuration makes it possible to regenerate the phase-change material with the coolant. This improves the phase change process in the phase change material 8.
  • the gas 3 and the coolant flow in opposite directions.
  • the phase-change material 8 and thus the cavities 10 are arranged closer to the inlet 12 of the plate 5 provided for the coolant than to the outlet 13 of this same plate 5.
  • the phase-change material 8 extends transversely to the direction of passage of the gas 3.
  • the cavities 10 therefore extend in the same way transversely with respect to the direction of the passage of the gas. 3.
  • the phase change material 8 extends over a distance equal to at most a quarter of the distance between the gas inlet 31 and the gas outlet 32 of the exchanger. In other words, the phase change material 8 extends over a distance equal to at most a quarter of the width I of the plate.
  • the phase change material 8 extends over a distance equal to at least half, preferably at least 80% of the length L of the channel bundle.
  • the cavities 10 of phase change material 8 are located on the plate 5 and arranged so that the gas can be in thermal contact with the phase change material.
  • the plate 5 is located between two spacers 2 through which a gas 3 to cool can circulate. The plate 5 is therefore in thermal contact with at least one interlayer 2.
  • the phase change of the phase change material 8 within the cavity 10 is therefore possible thanks to the heat exchange between this phase change material 8 and a gas 3 flowing in the heat exchanger 100.
  • the cavities 10 of phase change material 8 being located on the plate 5 and arranged so that the coolant can be in thermal contact with the phase change material 8, a heat exchange between a circulating cooling liquid on the plate 5 and the phase change material 8 is possible.
  • the phase change of the phase change material 8 is therefore possible thanks to heat exchanges between this phase change material 8 with both a gas 3 and a cooling liquid, when these two fluids circulate in the exchanger.
  • the cavities 10 capable of receiving the phase-change material 8 are formed at least partially on one of the plates 5.
  • the channel 4 being formed by a pair of plates comprising the plate 5, the cavities 10 are formed between a pair of plates.
  • the cavities 10 are located in at least one channel of the channel bundle, that is to say at least on a plate 5, in the channel 4 of this plate. 5.
  • the channel 4 of the plate 5 comprises three bends in half-turns 15 and four straight portions 16, the inlet 12 and the outlet 13 being located on the same side of the plate 5.
  • the straight portions 16 form a liquid path
  • the right portion 16 located opposite the cooling fluid inlet 12 comprises the cavities 10.
  • the cavities 10 of phase change material 8 extending over almost any one of the straight portions 16 of the channel 4, they extend over approximately a quarter of the length of the path traveled by the cooling fluid. 4.
  • passages 17 of coolant are between the cavities 10.
  • the cavities 10 of phase change material 8 are between passages 17 of coolant, on a straight portion 16 of the channel 4 of the plate 5.
  • Figure 2a illustrates a sectional view of the plate 5. The portion of the channel 4 comprising the cavities 10 of phase change material 8 is divided into alternating passages 17 of coolant and cavities 10 filled with phase change material.
  • Separating walls 9 of these passages 17 and cavities 10 are for example formed at least in part on the plate 5. They may be formed on the plate complementary to the plate 5 of the plate pair. They can also be formed by an intermediate piece located between a pair of plates.
  • the heat exchanger comprises a manifold 19.
  • the cavities 10 are closed at the plate edge by the manifold 19.
  • the cavities 10 are closed by closing walls 9a.
  • the closure walls 9a are for example formed at least in part on the plate 5. They can be formed on the plate complementary to the plate 5 of the plate pair. They can also be formed by an intermediate piece located between a pair of plates.
  • the manifold 19 comprises openings 7 for passage of coolant.
  • the cavities 10 may for example be filled with phase change material 8 by an orifice 19a located in a double hollow wall of the manifold 19 defining a compartment communicating only with the cavities 10 and not the passages 17 of coolant.
  • the orifice 19a is then mechanically closed appropriately, for example by a plug or a cover covering the collector.
  • the hollow double wall of the manifold 19 is very advantageous.
  • the collector 19 thus comprises a central partition making it possible to close the cavities 10 at the edge of the plate and to delimit two compartments: a first compartment communicating only with passages 17 of cooling liquid and a second compartment communicating only with the cavities 10.
  • the second compartment communicates with the orifice 19a, able to be sealed.
  • the cavities can also be filled by a hole in the plate in the manner of that described below in Figure 4a corresponding to the second embodiment.
  • the plate 5 comprises a cavity 10 adjacent to at least one channel of the channel bundle 4.
  • the channel 4 of the plate 5 comprises a half-turn elbow 15. Since the inlet 12 and the outlet 13 of cooling fluid are situated on the same side of the plate 5, the straight portions 16 form a U-shaped coolant path.
  • the cavity 10 is not located in the U-shaped channel 4.
  • the cavity 10 is located in an independent space adjacent to one of the portions 16.
  • the cavity 10 is formed on the plate 5, in the manner of the channel 4, but without any fluidic communication being possible between the channel 4 and the cavity 10. As can be seen in FIG. 3, the cavity 10 extends substantially over the entire length L of the plate 5. In the direction of flow of the gas 3 illustrated by the arrows, the cavity 10 extends over less than a quarter of the width I of the plate 5. The width of the cavity 10 is therefore narrower than a straight portion 16 of U-shaped channel 4.
  • FIG. 3a illustrates an example of a collector 19 adapted for the exchanger 100 according to the variant of the first embodiment.
  • the manifold 19 comprises a hole or opening 1 9a adapted to fill the cavities 10 of the plate 5 of phase change material 8.
  • the orifice or opening 19a can then be closed for example by a plug or a cover covering the collector.
  • the manifold 19 also comprises at least one opening 19b communicating with openings 7 for passage of coolant.
  • the cavity 10 is located between two channels 4 arranged to allow the flow of a coolant.
  • the cavity 10 is formed in an embossed channel 20.
  • the embossed channel 20 replaces at least locally a portion of an insert 2 of the spacer bundle. In FIG. 4, the embossed channel 20 entirely replaces an interlayer 2 of the interlayer bundle.
  • the embossed channel 20 has passages 21 of gas 3 between the embossed channel 20 and at least one adjacent channel 4 arranged to allow the flow of a cooling liquid.
  • the embossed channel 4 comprises a pair of plates forming therein a cavity 10 of phase change material 8.
  • the pair of plates forming the embossed channel 20 comprises, as illustrated in Figure 4, an embossed plate 24 and a substantially flat plate.
  • FIG. 4a An example of an embossed plate is illustrated in FIG. 4a. It comprises bosses forming the cavities 10. The spaces left between the bosses create the passages 21 of gas 3.
  • the embossed channel 20 is filled with phase change material 8 by an orifice 23 formed in the embossed plate. The orifice 23 is then closed by a plug 25.
  • the pair of plates forming the embossed channel 20 may comprise two embossed plates allowing passages 21 of gas 3 on both sides of the embossed channel 4, thus improving the heat exchange between the phase-change material 8 and the gas. 3.
  • the embossed channel 20 extends over the entire length L of the channel bundle 4. It completely replaces a spacer 2 of the spacer bundle.
  • the housing between two channels 4 arranged to allow the flow of a coolant is shared between a spacer 2 and an embossed channel 20.
  • the housing between two channels 4 can be shared according to the width I of the heat exchange bundle 1.
  • the embossed channel will preferably be on the gas outlet 32 side.
  • the location of the gas outlet side embossed channel 32 makes it possible not to disturb the conventional cooling process of the gas 32 as it circulates in the exchanger This configuration makes it possible to regenerate the phase change material with the coolant. This enhances the phase change process in the phase change material 8.
  • the housing between two channels 4 can be shared according to the length of the beam.
  • the embossed channel then extends over more than a quarter, preferably at least 30% of the length L of the channel bundle.
  • several interleaves 2 may be substituted by embossed channels 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur de chaleur (100) pour refroidir un gaz d'admission de moteur de véhicule automobile comprenant un faisceau d'intercalaires (2) agencés pour permettre le passage d'un gaz à refroidir, caractérisé en ce que l'échangeur de chaleur (100) comprend un matériau à changement de phase (8) agencé pour échanger de la chaleur avec le gaz (3) passant dans le faisceau d'intercalaires (2).

Description

Echanqeur de chaleur comprenant un matériau à
changement de phase
La présente invention concerne un échangeur de chaleur. L'invention concerne un échangeur de chaleur adapté pour être utilisé lors du refroidissement de l'air de suralimentation ou du gaz d'échappement recirculé.
De nos jours, au sein d'un véhicule automobile, le moteur à combustion interne dudit véhicule automobile peut être combiné à un turbocompresseur afin d'améliorer les performances dudit moteur. Ainsi, le moteur à combustion interne est alimenté avec un air comprimé aussi appelé « air de suralimentation ». L'utilisation du turbocompresseur induit une température élevée dudit air de suralimentation introduit au sein du moteur à combustion interne. Par conséquent, il est connu d'associer audit turbocompresseur, un échangeur de chaleur afin de refroidir l'air de suralimentation préalablement à son introduction à l'intérieur du moteur à combustion interne.
Un tel échangeur de chaleur comprend généralement un boîtier, et un faisceau d'échange disposé à l'intérieur du boîtier. Le faisceau d'échange comprend des passages positionnés les uns au-dessus des autres et formant en combinaison un conduit permettant de guider un premier fluide destiné à être refroidi, tel que de l'air de suralimentation ou du gaz d'échappement recirculé, d'une première entrée vers une première sortie. Le boîtier du faisceau d'échange est généralement pourvu d'une deuxième entrée et d'une deuxième sortie pour un deuxième fluide, tel qu'un liquide de refroidissement. Le boîtier du faisceau d'échange est adapté pour guider le deuxième fluide de la deuxième entrée vers la deuxième sortie. Afin d'améliorer l'échange de chaleur entre le premier fluide et le deuxième fluide, les passages de gaz comprennent des intercalaires ondulés.
L'échangeur de chaleur est également connecté à un boîtier d'entrée afin d'acheminer du gaz au sein de l'échangeur de chaleur et à un boîtier de sortie afin d'évacuer le gaz refroidi vers l'extérieur de l'échangeur de chaleur. Les performances du turbocompresseur sont variables en fonction des variations de température du liquide de refroidissement et de la charge du moteur du véhicule. Ces variations de performances ont un impact négatif sur l'environnement à travers la consommation de carburant et les émissions de C02 émis par le véhicule automobile.
Par conséquent, il existe un besoin de diminuer les variations de la température du gaz en sortie de l'échangeur de chaleur.
Un premier objet de l'invention concerne un échangeur de chaleur pour refroidir un gaz d'admission de moteur de véhicule automobile comprenant un faisceau d'intercalaires agencés pour permettre le passage d'un gaz à refroidir, l'échangeur de chaleur comprenant un matériau à changement de phase agencé pour échanger de la chaleur avec le gaz passant dans le faisceau d'intercalaires.
L'échangeur de chaleur selon la présente invention permet de diminuer les variations de la température du gaz en sortie de l'échangeur de chaleur, tout en présentant un échangeur de chaleur compact. Cela permet de diminuer les variations de performances du turbocompresseur et/ou les variations de température du liquide de refroidissement.
Selon un aspect de l'invention, l'échangeur de chaleur comprend un faisceau de canaux agencés pour permettre l'écoulement d'un liquide de refroidissement pour refroidir le gaz passant dans le faisceau d'intercalaires.
Selon un aspect de l'invention, le matériau à changement de phase est agencé pour passer d'une phase solide à une phase liquide au-delà d'une température de changement de phase. Ce matériau à changement de phase est statique, à savoir ne s'écoule pas.
Selon un aspect de l'invention, le matériau à changement de phase et notamment sa température de changement de phase est choisi de manière à ce que ce matériau soit, au moins temporairement en fonctionnement de l'échangeur, dans une phase mixte solide/liquide. Selon un aspect de l'invention, le matériau à changement de phase est un composé comprenant des composés inorganiques tels qu'un alliage de sels organiques et d'eau. Selon un aspect de l'invention, le matériau à changement de phase est un composé comprenant des composés organiques tels que les paraffines et les acides gras.
Selon un aspect de l'invention, le matériau à changement de phase est un composé comprenant des composés eutectiques.
Selon un aspect de l'invention, le matériau à changement de phase est un composé comprenant des composés d'origine végétale. Selon un aspect de l'invention, le matériau à changement de phase est disposé plus proche d'une sortie de gaz de l'échangeur que d'une entrée de gaz.
Selon un aspect de l'invention, le matériau à changement de phase est localisé de préférence plus proche d'une entrée du fluide de refroidissement d'un canal agencé pour permettre l'écoulement d'un liquide de refroidissement que d'une sortie du fluide de refroidissement de ce canal.
Selon un aspect de l'invention, le matériau à changement de phase s'étend transversalement à la direction du passage du gaz.
Selon un aspect de l'invention, le matériau à changement de phase s'étend sur une distance égale à au plus un quart de la distance entre une entrée de gaz et une sortie de gaz de l'échangeur.
Selon un aspect de l'invention, le matériau à changement de phase s'étend sur une distance égale à au moins la moitié, de préférence au moins 80% de la longueur L du faisceau de canaux. Selon un aspect de l'invention, le changement de phase du matériau à changement de phase est provoqué par des échanges de chaleur entre au moins ce matériau à changement de phase et le gaz.
Selon un aspect de l'invention, le changement de phase du matériau à changement de phase est provoqué par des échanges de chaleur entre ce matériau à changement de phase avec à la fois le gaz et le liquide de refroidissement.
Selon un aspect de l'invention, l'échangeur comprend une cavité apte à recevoir le matériau à changement de phase. Selon un aspect de l'invention, la cavité est agencée pour que le liquide de refroidissement puisse être en contact thermique avec le matériau à changement de phase.
Selon un aspect de l'invention, la cavité est agencée pour que le gaz puisse être en contact thermique avec le matériau à changement de phase. Selon un aspect de l'invention, l'échangeur comprend plusieurs cavités aptes à recevoir le matériau à changement de phase.
Selon un aspect de l'invention, les cavités sont séparées les unes des autres.
Selon un aspect de l'invention, le faisceau de canaux comprend au moins un canal comprenant une paire de plaques.
Selon un aspect de l'invention, un canal est délimité par une paire de plaques de l'échangeur.
Selon un aspect de l'invention, la cavité apte à recevoir le matériau à changement de phase est formée au moins partiellement sur l'une des plaques. Selon un aspect de l'invention, la cavité est formée entre la paire de plaques. Selon un aspect de l'invention, la cavité est dans le canal ou adjacent au canal. Selon un aspect de l'invention, la cavité est située dans au moins un canal du faisceau de canaux.
Selon un aspect de l'invention, le canal agencé pour permettre l'écoulement d'un liquide de refroidissement comprend des passages de liquide de refroidissement, ces passages étant formés entre la paire de plaque. Autrement dit, le canal est partiellement obturé par le matériau à changement de phase, les espaces non obturés forment des passages de liquide de refroidissement.
Selon un aspect de l'invention, le canal comprend 3 coudes en demi-tours.
Selon un aspect de l'invention, la cavité de matériau de changement de phase est comprise entre des passages de liquide de refroidissement.
Selon un aspect de l'invention, la cavité de matériau de changement de phase s'étend sur environ un quart de la longueur du chemin parcouru par le fluide de refroidissement au sein d'un canal.
Selon un aspect de l'invention, la cavité est adjacente au canal. Selon un aspect de l'invention, l'échangeur de chaleur comprend un collecteur.
Selon un aspect de l'invention, le collecteur comprend un orifice communiquant avec la cavité de matériau à changement de phase.
Selon un aspect de l'invention, l'orifice est localisé dans une double paroi creuse du collecteur.
Selon un aspect de l'invention, la cavité est localisée entre deux canaux du faisceau de canaux. Dans ce cas, la cavité est en dehors des canaux.
Selon un aspect de l'invention, la cavité est formée dans un canal gaufré.
Selon un aspect de l'invention, le canal gaufré se substitue au moins localement à une partie d'un intercalaire du faisceau d'intercalaires. Selon un aspect de l'invention, le canal gaufré se substitue entièrement à un intercalaire du faisceau d'intercalaires.
Selon un aspect de l'invention, le canal gaufré est configuré pour laisser des passages de gaz entre le canal gaufré et au moins un canal voisin agencé pour permettre l'écoulement d'un liquide de refroidissement
Selon un aspect de l'invention, le canal gaufré comprend une paire de plaque.
Selon un aspect de l'invention, le canal gaufré comprend au moins une plaque gaufrée. Selon un aspect de l'invention, le canal gaufré s'étend sur plus d'un quart, de préférence au moins 30% de la longueur L du faisceau de canaux.
Selon un aspect de l'invention, l'échangeur comprend plusieurs canaux gaufrés.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
- la figure 1 montre une représentation schématique d'une vue de côté d'un échangeur de chaleur,
- la figure 2 montre une représentation schématique d'une vue de dessus d'une plaque de canal agencé pour permettre l'écoulement d'un liquide de refroidissement pour réaliser l'échangeur de la figure 1 selon un premier mode de réalisation. la figure 2a montre une vue en coupe de la plaque de la figure 2 selon le plan passant par lla-lla. la figure 2b montre une vue partielle en perspective de l'échangeur selon le premier mode de réalisation, l'échangeur comprenant le collecteur connecté à la cavité comprenant le matériau à changement de phase. la figure 3 montre une représentation schématique d'une vue de dessus d'une plaque de canal agencé pour permettre l'écoulement d'un liquide de refroidissement selon une variante du premier mode de réalisation, la figure 3a montre une vue partielle en perspective de l'échangeur selon la variante du premier mode de réalisation, l'échangeur comprenant le collecteur connecté à la cavité comprenant le matériau à changement de phase la figure 4 montre une représentation schématique d'une vue de côté d'un échangeur de chaleur comprenant un canal gaufré selon un deuxième mode de réalisation. la figure 4a montre la vue partielle en perspective d'une plaque gaufrée selon le deuxième mode de réalisation. la figure 5 montre un schéma d'une boucle système basse température comprenant l'échangeur de l'invention.
On a représenté sur la figure 1 un échangeur de chaleur 100 pour véhicule comprenant :
- un faisceau d'intercalaires 2 agencés pour permettre le passage et le refroidissement d'un gaz 3 d'admission de moteur à refroidir,
- un faisceau de canaux 4 agencés pour permettre l'écoulement d'un liquide de refroidissement pour refroidir le gaz 3 passant dans le faisceau d'intercalaires 2. Comme illustré à la figure 5, l'échangeur 100 est disposé sur une boucle basse température de liquide de refroidissement. La boucle comprend l'échangeur 100, un échangeur 101 de refroidissement du liquide de refroidissement et une pompe électrique 102. Le gaz 3 qui parcourt l'échangeur 100 provient d'un turbocompresseur ou d'une vanne et est injecté dans l'admission d'un moteur.
Les faisceaux d'intercalaires 2 et de canaux 4 sont disposés à l'intérieur d'un boîtier non représenté, comprenant des entrées et sorties (non représentées) pour le passage du gaz et du liquide de refroidissement à travers l'échangeur 100.
Les faisceaux d'intercalaires 2 et de canaux 4 forment ensemble un faisceau d'échange de chaleur 1 ayant une longueur utile L. Les intercalaires 2 et les canaux 4 ont cette longueur L.
L'échangeur comprend un matériau à changement de phase 8 agencé pour échanger de la chaleur avec le gaz 3 passant dans le faisceau d'intercalaires 2 de manière à amortir les variations de température de ce gaz 3 en sortie de l'échangeur.
Le matériau à changement de phase 8 est agencé pour passer d'une phase solide à une phase liquide au-delà d'une température de changement de phase. Le matériau de changement de phase 8 et notamment sa température de changement de phase est choisi de manière à ce que ce matériau soit, au moins temporairement, dans une phase mixte solide/liquide de manière amortir des variations de température du gaz 3 en sortie de l'échangeur.
Le matériau à changement de phase est par exemple un composé comprenant des composés inorganiques tels qu'un alliage de sels organiques et d'eau.
Le matériau à changement de phase peut comprendre des composés organiques tels que les paraffines et les acides gras. Le matériau à changement de phase est par exemple un composé comprenant des composés eutectiques. Le matériau à changement de phase est un composé pouvant comprendre des composés d'origine végétale.
Comme illustré sur le mode de réalisation de la figure 1 , le faisceau de canaux 4 comprend une paire de plaques 5. La plaque 5 présente un pourtour de forme sensiblement rectangulaire de largeur I et de longueur L.
Elle comprend une entrée 12 de fluide de refroidissement et une sortie 13 de fluide de refroidissement.
Entre l'entrée 12 et la sortie 13 un chemin apte à faire circuler le fluide de refroidissement est formé sur la plaque 5. Il définit avec une autre plaque complémentaire le canal 4 de la plaque 5.
L'entrée 12 et la sortie 13 sont localisées en bordure de plaque 5. Elles peuvent être localisées de manière alternative au centre de la plaque 5.
Selon ce premier mode de réalisation, la plaque 5 comprend une ou plusieurs cavités 10 aptes à recevoir le matériau à changement de phase 8.
Sur la figure 2, la plaque 5 comprend quatre cavités 10 rectilignes séparées les unes des autres.
Cet exemple de réalisation n'est pas limitatif. Les cavités 10 peuvent être reliées les unes aux autres. Le nombre de cavités est à adapter en fonction de la plaque, de la forme du canal 4 et de l'application. La plaque 5 peut comprendre une unique cavité 10. La forme des cavités n'est pas non plus limitative. Les cavités peuvent être sinueuses. Elles peuvent à la manière de protubérances contribuer à la perturbation de la circulation de fluide de refroidissement dans le canal 4.
Des flèches illustrent la direction et le sens du passage du gaz 3 à travers l'échangeur 100. Le gaz 3 entrent dans l'échangeur par l'entrée de gaz 31 et sortent de l'échangeur par la sortie de gaz 32.
Le matériau à changement de phase 8 et les cavités 10 sont disposés plus proche de la sortie de gaz 32 de l'échangeur que de l'entrée de gaz 31 de l'échangeur. En effet, cela permet de ne pas perturber le processus de refroidissement conventionnel du gaz 3 lorsqu'il circule dans l'échangeur 100. Cette configuration permet de régénérer le matériau à changement de phase avec le liquide de refroidissement. Cela améliore le processus de changement de phase dans le matériau à changement de phase 8.
Le gaz 3 et le liquide de refroidissement circulent dans des directions opposées. Le matériau à changement de phase 8 et donc les cavités 10 sont disposés plus proche de l'entrée 12 de la plaque 5 prévue pour le liquide de refroidissement que de la sortie 13 de cette même plaque 5.
Comme illustré à la figure 2, le matériau à changement de phase 8 s'étend transversalement à la direction du passage du gaz 3. Les cavités 10 s'étendent donc de la même façon de manière transversale par rapport à la direction du passage du gaz 3.
Le matériau à changement de phase 8 s'étend sur une distance égale à au plus un quart de la distance entre l'entrée de gaz 31 et la sortie de gaz 32 de l'échangeur. En d'autres termes, le matériau à changement de phase 8 s'étend sur une distance égale à au plus un quart de la largeur I de la plaque.
Selon la direction longitudinale de la plaque 5, le matériau à changement de phase 8 s'étend sur une distance égale à au moins la moitié, de préférence au moins 80% de la longueur L du faisceau de canaux. Les cavités 10 de matériau de changement de phase 8 sont localisées sur la plaque 5 et agencées pour que le gaz puisse être en contact thermique avec le matériau à changement de phase. La plaque 5 est localisée entre deux intercalaires 2 au travers desquels un gaz 3 à refroidir peut circuler. La plaque 5 est donc en contact thermique avec au moins un intercalaire 2. Le changement de phase du matériau à changement de phase 8 au sein de la cavité 10 est donc possible grâce aux échanges de chaleur entre ce matériau à changement de phase 8 et un gaz 3 circulant dans l'échangeur de chaleur 100.
De plus, les cavités 10 de matériau de changement de phase 8 étant localisées sur la plaque 5 et agencées pour que le liquide de refroidissement puisse être en contact thermique avec le matériau à changement de phase 8, un échange thermique entre un liquide de refroidissement circulant sur la plaque 5 et le matériau à changement de phase 8 est possible. Le changement de phase du matériau à changement de phase 8 est donc possible grâce aux échanges de chaleur entre ce matériau à changement de phase 8 avec à la fois un gaz 3 et un liquide de refroidissement, lorsque ces deux fluides circulent dans l'échangeur.
Comme illustré sur la figure 2, les cavités 10 aptes à recevoir le matériau à changement de phase 8 sont formées au moins partiellement sur l'une des plaques 5. Le canal 4 étant formé par une paire de plaque comprenant la plaque 5, les cavités 10 sont formées entre une paire de plaques.
En particulier, selon le premier mode de réalisation de la figure 2, les cavités 10 sont situées dans au moins un canal du faisceau de canaux, c'est-à-dire au moins sur une plaque 5, dans le canal 4 de cette plaque 5. Le canal 4 de la plaque 5 comprend trois coudes en demi-tours 15 et quatre portions droites 16, l'entrée 12 et la sortie 13 étant situées du même côté de la plaque 5. Les portions droites 16 forment un chemin de liquide de refroidissement en forme de W. La portion droite 16 située en regard de l'entrée 12 de fluide de refroidissement comprend les cavités 10. Sur la figure 2, les cavités 10 de matériau de changement de phase 8 s'étendant sur quasiment toute une des portions droites 16 du canal 4, elles s'étendent sur environ un quart de la longueur du chemin parcouru par le fluide de refroidissement au sein du canal 4. Afin de permettre l'écoulement d'un fluide de refroidissement sur la portion droite 16 comprenant les cavités 10, des passages 17 de liquide de refroidissement sont entre les cavités 10. En d'autres termes, les cavités 10 de matériau de changement de phase 8 sont comprises entre des passages 17 de liquide de refroidissement, sur une portion droite 16 du canal 4 de la plaque 5. La figure 2a illustre une vue en coupe de la plaque 5. La partie du canal 4 comprenant les cavités 10 de matériau à changement de phase 8 est divisée en une alternance de passages 17 de liquide de refroidissement et de cavités 10 remplies de matériau à changement de phase.
Des parois séparatrices 9 de ces passages 17 et cavités 10 sont par exemple formées au moins en partie sur la plaque 5. Elles peuvent être formées sur la plaque complémentaire de la plaque 5 de la paire de plaque. Elles peuvent également être formées par une pièce intercalaire localisée entre une paire de plaque.
L'échangeur de chaleur comprend un collecteur 19. Sur la figure 2b, les cavités 10 sont fermées en bord de plaque par le collecteur 19.
Du côté opposé, les cavités 10 sont fermées, par des parois de fermeture 9a. A la manière des parois séparatrices de ces passages 17 et cavités 10, les parois de fermeture 9a sont par exemple formées au moins en partie sur la plaque 5. Elles peuvent être formées sur la plaque complémentaire de la plaque 5 de la paire de plaque. Elles peuvent également être formées par une pièce intercalaire localisée entre une paire de plaque.
Le collecteur 19 comprend des ouvertures 7 de passage de liquide de refroidissement. Les cavités 10 peuvent par exemple être remplies de matériau à changement de phase 8 par un orifice 19a localisé dans une double paroi creuse du collecteur 19 délimitant un compartiment ne communiquant qu'avec les cavités 10 et non les passages 17 de liquide de refroidissement. L'orifice 19a est ensuite fermé mécaniquement de manière appropriée, par exemple par un bouchon ou un couvercle recouvrant le collecteur.
La double paroi creuse du collecteur 19 est très avantageuse. Le collecteur 19 comprend ainsi une cloison centrale permettant de fermer les cavités 10 en bord de plaque et de délimiter deux compartiments : un premier compartiment ne communicant qu'avec des passages 17 de liquide de refroidissement et un deuxième compartiment ne communicant qu'avec les cavités 10.
Le deuxième compartiment communique avec l'orifice 19a, apte à être fermé de manière étanche.
Les cavités peuvent être remplies également par un orifice ménagé dans la plaque à la manière de celui décrit ci-après sur la figure 4a correspondant au deuxième mode de réalisation.
Dans une variante du premier mode de réalisation, comme illustré La figure 3, la plaque 5 comprend une cavité 10 adjacente à au moins un canal du faisceau de canaux 4. Le canal 4 de la plaque 5 comporte un coude en demi-tour 15. L'entrée 12 et la sortie 13 de fluide de refroidissement étant situées du même côté de la plaque 5, les portions droites 16 forment un chemin de liquide de refroidissement en forme de U.
La cavité 10 n'est pas localisée dans le canal 4 en forme de U. La cavité 10 est localisée dans un espace indépendant adjacent à une des portions 16.
La cavité 10 est formée sur la plaque 5, à la manière du canal 4, mais sans qu'aucune communication fluidique ne soit possible entre le canal 4 et la cavité 10. Comme visible sur la figure 3, la cavité 10 s'étend sensiblement sur toute la longueur L de la plaque 5. Dans la sens de circulation du gaz 3 illustré par les flèches, la cavité 10 s'étend sur moins d'un quart de la largeur I de la plaque 5. La largeur de la cavité 10 est donc moins large qu'une portion droite 16 de canal 4 en forme de U.
La figure 3a illustre un exemple de collecteur 19 adapté pour l'échangeur 100 selon la variante du premier mode de réalisation.
Le collecteur 19 comprend un orifice ou ouverture 1 9a adaptée pour remplir les cavités 10 de la plaque 5 de matériau à changement de phase 8. L'orifice ou ouverture 19a peut ensuite être fermée par exemple par un bouchon ou un couvercle recouvrant le collecteur.
Le collecteur 19 comprend également au moins une ouverture 19b communiquant avec des ouvertures 7 de passage de liquide de refroidissement. Dans le deuxième mode de réalisation illustré sur la figure 4, la cavité 10 est localisée entre deux canaux 4 agencés pour permettre l'écoulement d'un liquide de refroidissement.
En particulier, la cavité 10 est formée dans un canal gaufré 20.
Le canal gaufré 20 se substitue au moins localement à une partie d'un intercalaire 2 du faisceau d'intercalaires. Sur la figure 4, le canal gaufré 20 se substitue entièrement à un intercalaire 2 du faisceau d'intercalaires.
Afin de permettre un échange de chaleur efficace entre le canal gaufré 20 et le gaz 3, le canal gaufré 20 comporte des passages 21 de gaz 3 entre le canal gaufré 20 et au moins un canal voisin 4 agencé pour permettre l'écoulement d'un liquide de refroidissement.
Le canal gaufré 4 comprend une paire de plaques formant en son sein une cavité 10 de matériau à changement de phase 8. La paire de plaque formant le canal gaufré 20 comprend, comme illustré à la figure 4, une plaque gaufrée 24 et une plaque sensiblement plane.
Un exemple de plaque gaufrée est illustrée figure 4a. Elle comprend des bossages formant les cavités 10. Les espaces laissés entre les bossages créent les passages 21 de gaz 3. Le canal gaufré 20 est rempli de matériau à changement de phase 8 par un orifice 23 aménagé dans la plaque gaufrée. L'orifice 23 est ensuite fermé par un bouchon 25.
De manière avantageuse, la paire de plaque formant le canal gaufré 20 peut comprendre deux plaques gaufrées permettant des passages 21 de gaz 3 des deux côtés du canal gaufré 4, améliorant ainsi l'échange thermique entre le matériau à changement de phase 8 et le gaz 3.
Sur la figure 4, le canal gaufré 20 s'étend sur toute la longueur L du faisceau de canaux 4. Il se substitue complètement à un intercalaire 2 du faisceau d'intercalaire.
Il peut également se substituer partiellement à un intercalaire 2. Dans ce cas, le logement entre deux canaux 4 agencés pour permettre l'écoulement d'un liquide de refroidissement est partagé entre un intercalaire 2 et un canal gaufré 20.
Le logement entre deux canaux 4 peut être partagé selon la largeur I du faisceau d'échange de chaleur 1 . Dans ce cas, le canal gaufré sera de préférence du côté de la sortie du gaz 32. La localisation du canal gaufré côté sortie de gaz 32 permet de ne pas perturber le processus de refroidissement conventionnel du gaz 32 lorsqu'il circule dans l'échangeur 100. Cette configuration permet de régénérer le matériau à changement de phase avec le liquide de refroidissement. Cela valorise le processus de changement de phase dans le matériau à changement de phase 8.
Le logement entre deux canaux 4 peut être partagé selon la longueur du faisceau. De préférence, le canal gaufré s'étend alors sur plus d'un quart, de préférence au moins 30% de la longueur L du faisceau de canaux. Selon les applications, plusieurs intercalaires 2 peuvent être substitués par des canaux gaufrés 20.

Claims

Revendications
1 - Echangeur de chaleur (100) pour refroidir un gaz d'admission de moteur de véhicule automobile comprenant un faisceau d'intercalaires (2) agencés pour permettre le passage d'un gaz (3) à refroidir, caractérisé en ce que l'échangeur de chaleur (100) comprend un matériau à changement de phase (8) agencé pour échanger de la chaleur avec le gaz (3) passant dans le faisceau d'intercalaires (2).
Echangeur de chaleur (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau à changement de phase (8) et notamment sa température de changement de phase est choisi de manière à ce que ce matériau soit, au moins temporairement en fonctionnement de l'échangeur, dans une phase mixte solide/liquide.
Echangeur de chaleur (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau à changement de phase (8) est disposé plus proche d'une sortie de gaz (32) de l'échangeur que d'une entrée de gaz (31 ).
Echangeur de chaleur (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau à changement de phase (8) s'étend transversalement à la direction du passage du gaz. 5- Echangeur de chaleur (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau à changement de phase (8) s'étend sur une distance égale à au plus un quart de la distance entre une entrée de gaz (31 ) et une sortie de gaz (32) de l'échangeur. 6- Echangeur de chaleur (100) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'échangeur comprend une cavité (10) apte à recevoir le matériau à changement de phase (8).
7- Echangeur de chaleur (100) selon la revendication précédente, caractérisé en ce qu'il comprend un faisceau de canaux (4) agencés pour permettre l'écoulement d'un liquide de refroidissement pour refroidir le gaz (3) passant dans le faisceau d'intercalaires (2).
8- Echangeur de chaleur (100) selon la revendication précédente, caractérisé en ce que le faisceau de canaux comprend au moins un canal (4) comprenant une paire de plaques.
9- Echangeur de chaleur (100) selon la revendication précédente, caractérisé en ce que le canal (4) comprend 3 coudes en demi-tours.
10- Echangeur de chaleur (100) selon l'une quelconque des revendications 8 à 9, caractérisé en ce que la cavité (10) apte à recevoir le matériau à changement de phase (8) est formée au moins partiellement sur l'une des plaques.
1 1 -Echangeur de chaleur (100) selon l'une quelconque des revendications 8 à 10, caractérisé en ce que la cavité (10) est formée entre la paire de plaques.
12- Echangeur de chaleur (100) selon l'une quelconque des revendications 8 à 1 1 , caractérisé en ce que la cavité (10) est adjacente au canal (4).
13- Echangeur de chaleur (100) selon la revendication 7, caractérisé en ce que la cavité (10) est localisée entre deux canaux (4) du faisceau de canaux. -Echangeur de chaleur (100) selon la revendication précédente, caractérisé en ce que la cavité (10) est formée dans un canal gaufré
PCT/FR2017/052608 2016-09-27 2017-09-27 Echangeur de chaleur comprenant un matériau à changement de phase WO2018060603A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659102 2016-09-27
FR1659102A FR3056717B1 (fr) 2016-09-27 2016-09-27 Echangeur de chaleur comprenant un materiau a changement de phase

Publications (1)

Publication Number Publication Date
WO2018060603A1 true WO2018060603A1 (fr) 2018-04-05

Family

ID=57680395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052608 WO2018060603A1 (fr) 2016-09-27 2017-09-27 Echangeur de chaleur comprenant un matériau à changement de phase

Country Status (2)

Country Link
FR (1) FR3056717B1 (fr)
WO (1) WO2018060603A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002481A1 (fr) * 1982-01-13 1983-07-21 Tholen, Paul Moteur suralimente a combustion interne avec echangeur thermique de l'air de combustion
FR2856747A1 (fr) * 2003-06-25 2004-12-31 Valeo Thermique Moteur Sa Module de refroidissement de l'air de suralimentation et des gaz d'echappement recircules d'un moteur a combustion interne de vehicule automobile.
DE102005035017A1 (de) * 2005-07-27 2007-02-01 Behr Gmbh & Co. Kg Wärmeübertrager zur Kühlung von Ladeluft
EP2275654A2 (fr) * 2009-07-17 2011-01-19 Bayerische Motoren Werke Dispositif de refroidissement d'air de suralimentation et procédé de fonctionnement de celui-ci
FR3014183A1 (fr) * 2013-11-29 2015-06-05 Valeo Systemes Thermiques Echangeur thermique notamment pour vehicule automobile, procede de fabrication correspondant, et utilisation d'un materiau a changement de phase associee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002481A1 (fr) * 1982-01-13 1983-07-21 Tholen, Paul Moteur suralimente a combustion interne avec echangeur thermique de l'air de combustion
FR2856747A1 (fr) * 2003-06-25 2004-12-31 Valeo Thermique Moteur Sa Module de refroidissement de l'air de suralimentation et des gaz d'echappement recircules d'un moteur a combustion interne de vehicule automobile.
DE102005035017A1 (de) * 2005-07-27 2007-02-01 Behr Gmbh & Co. Kg Wärmeübertrager zur Kühlung von Ladeluft
EP2275654A2 (fr) * 2009-07-17 2011-01-19 Bayerische Motoren Werke Dispositif de refroidissement d'air de suralimentation et procédé de fonctionnement de celui-ci
FR3014183A1 (fr) * 2013-11-29 2015-06-05 Valeo Systemes Thermiques Echangeur thermique notamment pour vehicule automobile, procede de fabrication correspondant, et utilisation d'un materiau a changement de phase associee

Also Published As

Publication number Publication date
FR3056717A1 (fr) 2018-03-30
FR3056717B1 (fr) 2019-09-13

Similar Documents

Publication Publication Date Title
EP2726804B1 (fr) Echangeur thermique notamment pour vehicule automobile
EP2715267B1 (fr) Dispositif d'admission d'air avec échangeur thermique
EP2726805B1 (fr) Lame d'echangeur de chaleur a zone de contournement
EP2737269B1 (fr) Plaque d'echangeur de chaleur
EP2972049B1 (fr) Echangeur thermique, en particulier refroidisseur d'air de suralimentation
EP2764314A1 (fr) Plaque pour échangeur de chaleur et échangeur de chaleur muni de telles plaques
EP2715264B1 (fr) Echangeur thermique, notamment pour vehicule automobile, et dispositif d'admission d'air correspondant
EP2638275A1 (fr) Collecteur de repartition de gaz et module d'admission de gaz correspondant
WO2012080039A2 (fr) Echangeur de chaleur a plaques empilees
FR2935475A1 (fr) Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
FR3056717B1 (fr) Echangeur de chaleur comprenant un materiau a changement de phase
WO2008053090A1 (fr) Échangeur thermique comportant un corps extrudé
EP2469067B1 (fr) Carter pour module d'admission, notamment pour module d'admission de moteur thermique de véhicule automobile, et module d'admission comprenant un tel carter
EP2649283B2 (fr) Dispositif de canalisation d'un flux de gaz d'alimentation d'un moteur à combustion interne
EP1983171A1 (fr) Echangeur de chaleur pour véhicule automobile
WO2008135321A1 (fr) Echangeur de chaleur extrude
EP2469066B1 (fr) Collecteur de répartition de gaz dans des conduits d'admission d'un moteur thermique
WO2014064079A1 (fr) Boite collectrice pour échangeur de chaleur, notamment refroidisseur d'air de suralimentation de moteur de véhicule automobile
FR2907886A1 (fr) Echangeur thermique a canal central pour fluide caloporteur.
EP2463610B1 (fr) Échangeur de chaleur notamment pour véhicule automobile
FR2915274A1 (fr) Echangeur de chaleur pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17787477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17787477

Country of ref document: EP

Kind code of ref document: A1